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Credibility Prediction Using
Collateral Information

by Edward W. Frees and Peng Shi

ABSTRACT

In property-casualty insurance ratemaking, insurers often have

access to external information which could be manual rates from

a rating bureau or scores from a commercial predictive model.

Such collateral information could be valuable because the insurer

might either not have sufficient rating information nor the pre-

dictive modeling expertise to produce an effective score.

This paper shows how to blend collateral information with an

insurer’s own experience for ratemaking in a predictive modeling

framework. Bayesian methods are employed to allow analysts to

incorporate their personal knowledge about the precision of the

external score. Using conjugate priors, we show that closed-form

credibility predictions exist for a variety of distributions, includ-

ing the Tweedie family. A simulation study is performed to dem-

onstrate the prediction with collateral information in a variety of

hypothetical scenarios. We further apply the proposed approach

to an automobile insurance dataset from Massachusetts. Both the

simulation and empirical studies demonstrate situations where

combining external information with internal company informa-

tion provides lift in the prediction of out-of-sample policies.
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on Ohlsson and Johansson (2006) but focused on the
risk sharing aspects of credibility.

The rest of the paper is structured as follows:
Section 2 motivates our modeling framework and
Section 3 introduces the closed-form credibility pre-
dictors. A simulation study is performed in Section 4.
We demonstrate the value added by the collateral
information in a variety of hypothetical scenarios,
such as different types of score, sample size, and data
variability. Section 5 applies the proposed approach
to an automobile insurance dataset from Massachu-
setts. Section 6 concludes the paper and technical
details are summarized in the Appendix.

2. Motivation

In this paper, we consider cross-sectional sam-
pling. So, think of each policyholder being observed
once and policyholders’ claims experience as being
unrelated. (In the Appendix, we more precisely
assume that claims are independent, conditional on
uncertainties in the collateral information introduced
in the following.) For the ith policyholder, use yi to
denote the dependent variable (claim) and xi to denote
a vector of explanatory (covariate) variables that
provide rating information about the policyholder.
For this sampling scheme, the information for the
model development or training data set is {(yi,xi),
i = 1, . . . , n} that we label as YTrain. In a similar way,
the information for the model validation set is {(yi,xi)},
i = n + 1, . . . , n + nValid} that we label as YValid.

2.1. Base case—No covariate
information

In the base model, the insurer’s ith policyholder
has claim yi with mean Ri. The mean is not observed
and may be estimated by policyholder covariates.
Before introducing covariates, we assume that the
insurer has available an observed score or “manual
premium” that is provided by an external agency.
Denote the score as RF,i and relate it to the mean as a
multiplicative effect

µ = α × µαi i .,

1. Introduction

Dating back at least to papers by Mowbray (1914)
and Whitney (1918), credibility has enjoyed a long
history in actuarial science. As seen in the Mowbray
and Whitney papers, credibility helps to address two
important problems:

• Sharing of information among risk classes. It is
common for a distinct risk class to lack informa-
tion or exposure upon which the insurer can ade-
quately base prices. When developing a rate for a
specific risk class, it is naturally desirable to use
information from related risk classes.

• Infusing collateral information into resulting rates.
At times, an insurer may not have sufficient infor-
mation from a specific risk class nor from related
risk classes and so wishes to incorporate external
(“collateral”) information.

A natural tool for incorporating collateral infor-
mation in a disciplined manner is through the use
of Bayesian methods (cf. Norberg 1979, p. 202,
and Jewell 1975). Bailey (1950a, b) introduced the
Bayesian model into credibility theory and showed
the equivalence between the Bayesian predictive
mean and traditional credibility pricing formulas in
specific cases. As noted by these authors, the Bayes-
ian paradigm not only readily permits the sharing of
information among risk classes but also allows the
analyst to incorporate collateral information.

This result was considerably generalized by Jewell
(1974), who showed that linear credibility estimators
can be achieved through the use of conjugate priors in
linear exponential families. Subsequently, Dannenburg
et al. (1996) demonstrated how to incorporate vari-
able weights and Ohlsson and Johansson (2006)
extended it to allow parameters to vary by policy-
holder as one would observe in an insurance port-
folio. Moreover, Ohlsson and Johansson (2006) gave
specific results for the Tweedie family, a special case
of considerable interest in insurance applications and
this study. In this work, we also incorporate collat-
eral information in a GLM context and so extend this
line of research. In some sense, this paper is a dual
application to that of Ohlsson (2008), who also relied
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where G is a parameter to be estimated. For this
motivation section, we use a logarithmic link func-
tion. More generally, the insurer could have a set
of covariates that could be included through the
representation

aµ = α + µ + ′α xi i iln ln ln . (1),

Here, x ie = (xi1, . . . , xiK) represents a set of K explan-
atory variables and a is the corresponding set of
parameters. We interpret the term x iea as represent-
ing the effects of the insurer’s portfolio on claims
(e.g., insurer underwriting standards).

Similar to the base case, the training sample YTrain

is {(yi, xi), i = 1, . . . , n} and Section 3 will show how
to use Bayesian procedures to estimate E(F�YTrain).
Based on YTrain, we may estimate the regression coef-
ficients a (say, b). Then, we will be able to form a
prediction using E(yi�YTrain) = E(F�YTrain) w RF,i w
exp(xieb) for i in {n + 1, . . . , n + nValid}.

2.3. Multiple scores

As a variation, we can imagine a situation where
there is more than one set of collateral information.
Suppose that we have two sets of collateral scores
with their associated uncertainties, F1 w R1,F,i and
F2 w R2,F,i. If we are unsure how to combine them in
our claims model, then it would be sensible to use
(unknown) scaling factors L1 and L2 and consider a
variation of equation (1),

a
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where x~ie = (xi1, . . . , xiK, lnR1,F,i, lnR2,F,i) is a set of
known covariates, a~ = (G1, . . . , GK, L1, L2)e is a set
of variables to be estimated, and lnF~ = L1 lnF1 + L2

lnF2 is a random source of uncertainty. In a similar

The external score is an estimate of the true mean
and we use F to denote the corresponding relative
error. The variable F may vary by policyholder or
risk class. For the moment, we omit the subscript on
this term.

From a frequentist perspective, one can think
about the term F as a measurement error induced by
the score. It is well known in the statistical literature
that ignoring this aspect can induce bias in all model
coefficients; cf. Carroll et al. (2006). We utilize a
Bayesian framework and interpret the distribution of
{F} as representing the knowledge that the actuary
has of the score. Before seeing any data, we assume
unbiased scoring and so the mean of the prior dis-
tribution is one. This distribution may be subjective
and allows the analyst a formal mechanism to inject
his or her assessments into the model.

With the training sample YTrain, it will be straight-
forward to use Bayesian procedures to directly form an
estimate of the scoring procedure bias as E(F�YTrain).
Then, for a new policy in YValid, we are able to form a
prediction using E(yi�YTrain) = RF,i w E(F�YTrain) for i

in {n + 1, . . . , n + nValid}.
Of course, it is certainly possible to focus on the

random mean Ri, that is, using Bayesian procedures
to update Ri directly. As will be seen, creation of a
new variable F allows us to decompose the random
aspect of the uncertainty from other portions, such as
covariate information. Moreover, this decomposition
will facilitate interpretability as we seek to combine
different categorical (factor) random effects.

2.2. Introducing covariates

As a next step, we assume that the insurer has one or
more covariates that could be included in the model.
For example, thinking of yi representing the claim on
the ith personal automobile policy, the insurer knows
whether or not the policyholder also owns a home-
owners policy (xi = 1 if yes and = 0 otherwise). The
insurer could incorporate this information into the
collateral score model using the representation

ln ln ln ,, xi i iµ = α + + βα
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3. Credibility prediction

To recapitulate, we assume that the claims distri-
bution is a component of a generalized linear model
(GLM). For the ith policyholder that is in the jth level
of the factor, we specify a conditional mean

` a( )( ) = α × µ × ′α xyij j ij ijE exp (3),

where Fj reflects the uncertainty about the score,
RF,ij is the (externally) provided score, and exp(xeija)
represents insurer-specific adjustments reflecting
covariate effects. Our prior belief is that the scor-
ing procedure is unbiased and so we assume that
E(Fj) = 1. Thus, the (unconditional) mean is Rij =
RF,ij exp(xeija). Although our theory allows Rij to be a
(smooth) nonlinear function of covariates, in prac-
tice we often specify a logarithmic link function used
in equation (3).

We next specify a prior distribution to reflect the
uncertainty of the collateral information summarized
in Fj. Fortunately, modern-day computational methods
permit a wide scope of alternative choices using,
for example, Markov chain Monte Carlo (MCMC)
methods (see, for example, Hartman 2014). With a
prior distribution, it is straightforward to calculate
the marginal distribution of y by integrating over
the prior and then use maximum likelihood to esti-
mate the parameters of the conditional outcome dis-
tribution that include a.

Although it is possible to calculate posterior means
using MCMC techniques for general prior distribu-
tions, it is also desirable to specify distributions where
closed-form expressions are available. In the Appen-
dix, we consider several exponential families, includ-
ing the normal, Poisson, gamma, inverse Gaussian,
and Tweedie. This section generalizes the work of
Ohlsson and Johansson (2006), who focused on the
Tweedie distribution (that includes the Poisson and
gamma cases). For each family, we specify a natural
conjugate prior density in Appendix equation (9) with
mean EFj = 1 and dispersion parameter KF. For exam-
ple, in the case of the Tweedie distribution, the disper-
sion parameter associated with the natural conjugate
prior is KF = Var(Fj)/EFj

p.

way, incorporating multiple sets of collateral scores
is simply a special case of equation (1).

If the scaling factors L1 and L2 are known, then
we can again use equation (1) but with uncertainty
lnF~ = L1 lnF1 + L2 lnF2 and offset lnRF,i = L1 lnR1,F,i

+ L2 lnR2,F,i.

2.4. Introducing multiple sources 
of collateral information

The collateral information may also contain mul-
tiple sources, each representing a different type of
uncertainty. For example, returning to the personal
automobile example, one can imagine one set of
uncertainties (F1) for retirees and another set (F2)
for all other drivers. In general, we will assume
that there are q sets of uncertainties represented
as `* = (lnF1, . . . , lnFq)e that feed into a claims
model as

a `µ = µ + ′ + ′α x zi i i iln ln *. (2),

Here, zie = (zi1, . . . , ziq) represents a set of q explana-
tory variables for a linear allocation of the appro-
priate sources of collateral information to the ith
policyholder.

2.5. Factor random effects

To further develop intuition, think of the special
case where we have split up the rating schedule into
q categories, where q may range in the hundreds (for
example, in personal auto, one can think of many
combinations of age, gender, territory, and so forth).
Now, `* represents a categorical factor so that each
zij is a binary variable assigning the ith observation
to the jth level of the factor. Standard mappings (e.g.,
Frees 2010, section 4.7) allow one to readily go from
regression notation, where we distinguish observa-
tions using i, to a one-factor notation, where we
distinguish observations using ij. In the one-factor
notation, there are i = 1, . . . , c factors, and, for the
jth factor, there are j = 1, . . . , nj observations, for a
total of n1 + . . . + nc = n observations. Henceforth,
we use the factor notation.
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n + 1, . . . , n + nValid. Using estimates based on YTrain,
the predictor for the ith policyholder in the validation
sample is

( )( ) ( )( )ζ + − ζ µ µ ′α x byj j Wj ij ij1 exp . (7),

3.1. Illustration

To get a better handle on the credibility factors,
assume that you wish to apply the credibility factors
in equation (5). How does one think about the distribu-
tion of the uncertainty of scores, Fj? We know that the
expected uncertainty is one (EFj = 1) and that the dis-
persion parameter, at least in the Tweedie case, is close
to the variance of Fj (specifically, KF = VarFj/EFj

p).
To give a better sense of the dispersion parameter

prior distribution, Figure 1 compares prior distribu-
tions over different values of dispersion parameters.
This prior distribution corresponds to a Tweedie
distribution with shape parameter p = 1.5. From the
figure, we see that large values of KF mean that the
distribution is fatter tailed and right-skewed. Con-
versely, a relatively small value of KF (equal to 0.01)
gives a distribution that appears to be approximately
normally distributed.

How does the prior distribution affect the cred-
ibility factor? To give insights into this question, we
turn to the special case in equation (6) where covari-
ates are constant within the uncertainty group. As a
benchmark, we consider the parameters of a Tweedie
regression model that will be described in detail

In these special cases, we have an explicit expres-
sion for the posterior mean of the form

( )( ) ( )α = ζ + − ζ µY yj Train j j WjE 1 , (4)

where _j is a credibility factor

ζ = φ
φ + φαW

j
j

, (5)

that is determined by the sum of weights within the
jth factor Wj = ¨i:zij=1b2(Rij), and (y/R)Wj = ¨i:zij=1(yij /Rij)
b2(Rij)/Wj, a weighted average. Here, zij is a binary
variable that is one if the ith policyholder is in the
jth risk category. The parameter K and the function
b2(z) depend on the choice of the outcome (claims)
distribution. For example, Table 9 in the Appendix
shows that b2(Rij) = Rij

2−p for the Tweedie distribution.
Equations (4) and (5) have pleasing interpreta-

tions that are common in credibility expressions. On
the one hand, the credibility factor _j tends to one
as either KF q 0 or K q h. In either case, we think
of the uncertainty associated with the score being
very (increasingly) small relative to the dispersion
in the outcome distribution. On the other hand, the
credibility factor _j tends to zero as either K q 0 or
Wj q h. Intuitively, the credibility (of the score) is
small with high precision data or as the number of
observations in the jth level of the factor becomes
large, indicating substantial information content in
the data. Additional details are in the Appendix.

As yet another special case, suppose that the
uncertainty grouping is sufficiently refined so that
the covariates are constant within the uncertainty
group. In this case, Rij is a constant over the set
{i:zij = 1} and equal to, say, Rj. Then, the weight is a
constant times the number of observations in group j,
Wj = nj w b2 (Rj), the weighted average becomes a
simple average (y/R)Wj = ¨i:zij=1yij/(nj Rj) = yj/Rj, and
the credibility factor reduces to

( )
ζ = φ

φ + φ µαn b
j

j j

. (6)
2

For predicting claims from the validation sample,
we can calculate an estimator of E(yij�YTrain) for i in
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Figure 1. Prior distributions for different
dispersion parameters e`
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be used by the insurer to produce modified rating
predictors. An insurer then compares the alternative
predictors using a new data set, “out-of-sample test-
ing.” As part of the testing procedure, the external
agency also provides scores based on the character-
istics of the new out-of-sample policyholders.

Prior to giving the comparison results, this section
describes the data generating process, alternative
scores provided, and the rating predictors.

4.1.1. Data generating process
We simulated a portfolio of policies and claims

experience based on a sample of Massachusetts auto-
mobile experience reported in Frees (2014). Table 1
provides the policyholder distribution by two rating
factors, an age-based rating group and territory. Think-
ing of an insurer’s experience in a specific state or
province, we consider sample sizes of 2,000 and
10,000 policyholders. For each situation, we gener-
ated a portfolio of policyholders using the distribu-
tion reported in Table 1 for the model or ratemaking
development (in-) sample, and another data set of
the same size for out-of-sample testing.

For each policyholder, we simulated claims using
the Tweedie distribution with parameters reported
in Table 2. We used a logarithmic link function
with scale parameter p = 1.5 and initial choice of
a dispersion parameter K = 250. For example, sup-
pose that we wish to estimate expected claims for
an Adult driver in Territory 6. Because these are the
reference levels, the estimate is exp(5.356) = 211.87.
The corresponding probability of zero claims is

in Section 4. Specifically, we assume a Tweedie dis-
tribution with parameters p = 1.5, K = 1,087.709 and
R = 211.87.

For these parameter choices and the credibility
factor in equation (6), Figure 2 compares credibility
factors over several dispersion parameters and group
sizes. As anticipated, smaller values of KF mean that
we have more confidence in the (external) score and
so the credibility factor is closer to one. Further, larger
group sizes mean that we have more confidence in the
posterior mean so that the credibility factor is lower.
Note that in this paper, the credibility factor measures
the amount of belief in the prior mean, not in the data.
We could have easily defined the credibility factor in
terms of its complement (1 − _); however, our goal is
to emphasize the credibility of the collateral (prior)
information, not the data.

4. Simulation study

4.1. Simulation design

For the simulation study, we consider a situation
where an insurer has a portfolio of policies in a rate-
making development year. The insurer has policy-
holder characteristics (xs) and claims (ys) upon which
rating predictors can be developed. The insurer also
contacts an external agency that provides one or more
scores based on the characteristics in the insurer’s
portfolio in the development year. These scores can
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Figure 2. Credibility factors by uncertainty
parameters e` and group size

Table 1. Proportion of policies by rating group and territory

Rating Group Proportion Territory Proportion

A – Adult 0.76616 1 0.18410

B – Business 0.01269 2 0.19360

I – Youthful with less
than 3 years Experience

0.03453 3 0.11245

4 0.20300

M – Youthful with
3–6 years Experience

0.04190 5 0.18921

6 0.11764

S – Senior Citizens 0.14472
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bution described in the Appendix with parameter
KF = 0.01. This corresponds to a standard deviation
of Fj of approximately 0.1.

4.1.3. Rating predictors
The analyst for the insurer has many choices of

rating predictors. First, one option is to use only
company experience, ignoring any scores provided
by an external agency. We will assume that the
insurer analyst is only using GLM representations
but, like the external analyst, may be working with
a limited set of covariates. Specifically, we distin-
guish between the cases when the analyst has a full
set of covariates, including both age and territory
(Full), and a reduced set, only age (Red).

Second, another option is to use only the score
provided by the external agency, ignoring company
information. As described in Section 4.1.2, there are
eight such scores available, in addition to the base-
line true score.

A third option is for the analyst to use the exter-
nally provided score as an offset in a GLM model
and then incorporate additional company covariates
as available. We also considered including the exter-
nally provided score as a variable in a GLM model
together with company covariates. No real insights
were garnered from this alternative option and so we
do not describe results here.

Fourth, the analyst may incorporate the externally
provided score as an offset, use company covariates,
and modify the predictors based on the insurer’s
belief in the scores using the predictors described in
Section 3. For our work, we allow the belief param-
eter to vary over KF = 0.5,0.1,0.01,0.

4.1.4. Out-of-sample summary measures
We choose seven criteria to measure how each

model performs in terms of out-of-sample pre-
diction. The first three statistics are standard out-
of-sample validation statistics, e.g., Frees (2010);
they measure how far away the predicted values
deviate from the observed values in the hold-out
sample. Thus, the smaller the numbers, the better the
predictions. The mean absolute (percentage) error

exp{−R2
ij

−p/(K(2 − p))} = 89.0%. Use a0 to denote the
vector of parameters in Table 2.

4.1.2. Alternative scores
A score is provided by an external agency that

is based on policyholder characteristics. The best
(although unattainable in practice) score is the mean,
exp(xea0), that we label ScoreTrue.

To derive alternative scores, we assume that the
external agency has other data that follows the same
distribution as in Section 4.1.1. Ideally, the analyst
for the external agency (i) works with a large data
set, (ii) employs an extensive set of covariates, and
(iii) uses modern (appropriate) statistical methods.
To assess these alternatives, we provide eight alter-
native scores that vary by:

• sample size, either a relatively large sample size
(LS) 100,000 or a small sample size (SS) 10,000;

• number of covariates, either including both age and
territory (Full) or a reduced set, only age (Red); and

• statistical methods, either a GLM using a Tweedie
distribution (GLM) or a linear model (LM).

Thus, for example, LS_Full_GLM denotes a score
that the analyst derives using a sample size of 100,000,
both age and territory covariates, and a GLM repre-
sentation. As another example, SS_Red_LM denotes
a score derived using a sample size of 10,000, only
the age covariate, and a linear model.

Scores are calibrated from data and so are sub-
ject to estimation error. To generate the scores, we
used q = 6 risk categories corresponding to differ-
ent territories. We use the conjugate prior distri-

Table 2. Tweedie GLM coefficients

Rating Group Estimate Territory Estimate

B 0.340 1 −0.743

I 1.283 2 −0.782

M 0.474 3 −0.552

S −0.033 4 −0.480

5 −0.269

Intercept is 5.356
Reference levels are “A” for Rating Group and “6” for Territory
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Panels B, C, and D of Table 3 present results as
the analyst changes his or her belief about the score’s
precision. As one increases the value of KF, one places
less credibility on the score and more on the data. Inter-
estingly, when even acknowledging a small impreci-
sion in the score, the case KF = 0.01, the Gini correlation
increases from approximately 5.22 to 7.48, even for
scores that use only a reduced set of covariates. This
is because we selected the risk classes to correspond
to the set of information, territory, that is “missing”
in both the company’s covariates and external agency
covariates. By averaging over these risk classes in one
period, the insurer has a very useful nonparametric
predictor of claims in the next period. Results for the
traditional Pearson and Spearmen coefficients are
consistent with the newer Gini correlations. Because
of the literature cited above, we focus henceforth on
the newer Gini measure.

Tables 4 and 5 present out-of-sample summary
statistics for small sample and small dispersion cases.
For these alternative cases, we focus on the Gini corre-
lations. Table 4 provides similar information compared
to Table 3, except we now assume that the insurer has
2,000 policyholders for in-sample analysis and out-of-
sample testing. The scoring procedures by the exter-
nal agency remain the same. The table shows that
the results for this smaller sample size are consis-
tent with those in Table 3, except that now the belief
parameter KF must be larger, placing more emphasis
on the data, in order to overcome a poor score.

Table 5 returns to the scenario of 10,000 policy-
holders available in- and out-of-sample, yet now
consider the case where the outcome dispersion
parameter K reduces from 250 to 100. Because of
this reduction in dispersion, all correlations are
larger than the corresponding elements in Table 3,
yet the conclusions remain essentially the same.

5. Massachusetts automobile
claims

In this example, we consider a database of personal
automobile claims from the Commonwealth Auto-
mobile Reinsurers (CAR) in Massachusetts, described

computes the average of the (percentage) absolute
error between the prediction and the observed value;
the root mean square error is the square root of the
average squared distance between the prediction and
the observed values.

The next three statistics measure the correlation
between predicted values and observed values in
the hold-out sample. The larger the numbers, the
better are the predictions. Recall that the Pearson
correlation is obtained by dividing the covariance
of two variables by their standard deviations and the
Spearman correlation is defined as the Pearson cor-
relation coefficient of the ranked variables. That is,
the original values need to be converted to ranks, and
Spearman correlation is less sensitive than Pearson
correlation to outliers in the tails of both samples.
The Gini coefficient is a newer measure developed
in Frees et al. (2013). It measures the correlation
between the rank of predictor and the correspond-
ing outcome from a hold-out sample. The seventh
statistic is a Gini index that corresponds closely to
the correlation coefficient. This Gini index is twice
the average covariance between the the outcome
in the hold-out sample and the rank of the predictor.
All correlations are reported on a percentage scale,
that is, multiplied by 100.

4.2. Simulation results
Table 3 summarizes the out-of-sample statistics

for our credibility rating predictors. For ease of
comparison, Panel A presents the results in the case
KF = 0.0 so there is no presumed uncertainty asso-
ciated with the score. Even in Panel A we see that
the mean absolute error and the mean absolute per-
centage error give non-intuitive results. In each case,
going from the “Full” set of covariates to the “Red”
(reduced), they actually increase, indicating a poorer
ability to predict. The root mean square error statistic
fares better, although it still does not provide the type
of separation that one would like to see. Although
useful for many applications, because our outcome
claims variable contains many zeros and, when posi-
tive, has a skewed distribution, these traditional mea-
sures are less useful for rating analyses.

14953-03_Frees-3rdPgs.indd   52 8/9/18   10:07 AM



Credibility Prediction Using Collateral Information

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 53

Table 3. Out-of-sample statistics for credibility predictors

n = 10,000, K = 250

With Company Experience Adjustment, Reduced Covariates

Mean
Absolute

Error

Mean
Absolute

Perc Error

Root Mean
Square
Error

Simple
Gini

Panel A. KF = 0.0

LS_Full_GLM 278.920 184.216 721.825 11.031 5.400 7.837 32.680

LS_Red_GLM 279.620 184.127 723.020 9.427 3.368 5.217 21.688

LS_Full_LM 279.301 184.569 722.058 10.680 5.425 7.867 32.802

LS_Red_LM 279.690 184.200 723.084 9.317 3.378 5.224 21.715

SS_Full_GLM 279.427 184.638 722.003 10.865 5.241 7.648 31.890

SS_Red_GLM 279.620 184.127 723.020 9.427 3.368 5.217 21.688

SS_Full_LM 280.002 287.171 722.278 10.485 5.253 7.660 31.937

SS_Red_LM 279.716 216.308 723.105 9.292 3.379 5.226 21.725

Panel B. KF = 0.1

LS_Full_GLM 288.857 182.296 723.061 10.786 5.431 7.861 32.776

LS_Red_GLM 283.796 180.882 722.262 10.541 5.104 7.483 31.206

LS_Full_LM 289.411 182.707 722.882 10.587 5.469 7.909 32.978

LS_Red_LM 283.846 180.969 722.254 10.506 5.115 7.496 31.258

SS_Full_GLM 289.465 182.720 723.334 10.687 5.349 7.763 32.368

SS_Red_GLM 283.796 180.882 722.262 10.541 5.104 7.483 31.206

SS_Full_LM 290.391 253.368 723.280 10.438 5.370 7.795 32.499

SS_Red_LM 283.895 212.954 722.275 10.483 5.113 7.492 31.241

Panel C. KF = 0.1

LS_Full_GLM 298.500 183.709 726.078 10.416 5.367 7.744 32.286

LS_Red_GLM 287.745 181.372 722.473 10.749 5.297 7.704 32.121

LS_Full_LM 299.213 184.182 725.374 10.221 5.414 7.813 32.573

LS_Red_LM 287.779 181.471 722.389 10.738 5.318 7.734 32.248

SS_Full_GLM 299.200 184.156 726.475 10.351 5.324 7.695 32.082

SS_Red_GLM 287.745 181.372 722.473 10.749 5.297 7.704 32.121

SS_Full_LM 300.478 244.978 726.083 10.108 5.355 7.739 32.264

SS_Red_LM 287.851 215.296 722.413 10.720 5.312 7.729 32.224

Panel D. KF = 0.5

LS_Full_GLM 300.363 184.403 726.854 10.349 5.352 7.716 32.170

LS_Red_GLM 288.482 181.870 722.622 10.735 5.305 7.708 32.136

LS_Full_LM 301.107 184.891 726.036 10.148 5.400 7.787 32.467

LS_Red_LM 288.514 181.972 722.521 10.724 5.327 7.739 32.266

SS_Full_GLM 301.080 184.858 727.278 10.288 5.311 7.671 31.979

SS_Red_GLM 288.482 181.870 722.622 10.735 5.305 7.708 32.136

SS_Full_LM 302.428 244.757 726.824 10.039 5.344 7.718 32.178

SS_Red_LM 288.590 216.335 722.547 10.706 5.325 7.737 32.258

Legend: LS means large sample, SS means small sample.
Full means full set of covariates, Red means reduce set of covariates.
GLM means generalized linear model, LM means linear model.
*All correlations are reported on a percentage scale, that is, multiplied by 100.

Correlations*

Pearson Spearman Gini
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experience from several insurance carriers, we only
have access to a limited number of common rating
variables reported to the bureau.

We take a random sample of 100,000 policyholders
for this study. The first 50,000 observations are used
as training data to develop the model, and the rest are
reserved as hold-out for validation. Table 6 displays
the description and summary statistics of the rating
factors for the training data. As described in Ferreira
and Minikel (2010), Rating Group indicates poli-
cyholder characteristics and Territory Group indi-
cates the risk level of the driving area defined by the
garage town. Rating Group is constructed from finer-
grained driver classes. Territory Group is constructed
based the Automobile Insurance Bureau’s relativities

in Ferreira and Minikel (2010). The CAR is a statisti-
cal agent for motor vehicle insurance in the Common-
wealth of Massachusetts and collects insurance data
for both private passengers and commercial auto-
mobiles in the state. In Massachusetts, individuals who
drive a car must purchase third-party liability (prop-
erty damage and bodily injury) and personal injury
protection (PIP) coverage for their personal vehicle.

The database summarizes experience of over three
million policyholders in year 2006. For each policy,
we observe the number of claims, the type of claim
for each accident, and the total payments associated
with each type during the year. Besides the claim
information, the data also contain basic risk clas-
sification variables. Because the dataset represents

Table 5. Out-of-sample Gini correlations 
for credibility predictors—Small dispersion

n = 10,000, K = 100

With Company Experience Adjustment, 
Reduced Covariates

Gini
Correlation

Gini
Correlation

KF = 0.0 KF = 0.01

ScoreTrue 12.650

LS_Full_GLM 12.486 LS_Full_GLM 12.413

LS_Red_GLM 7.964 LS_Red_GLM 12.196

LS_Full_LM 12.512 LS_Full_LM 12.521

LS_Red_LM 7.974 LS_Red_LM 12.223

SS_Full_GLM 12.382 SS_Full_GLM 12.370

SS_Red_GLM 7.964 SS_Red_GLM 12.196

SS_Full_LM 12.403 SS_Full_LM 12.474

SS_Red_LM 7.973 SS_Red_LM 12.219

KF = 0.10 KF = 0.50

LS_Full_GLM 12.290 LS_Full_GLM 12.271

LS_Red_GLM 12.318 LS_Red_GLM 12.321

LS_Full_LM 12.401 LS_Full_LM 12.384

LS_Red_LM 12.361 LS_Red_LM 12.368

SS_Full_GLM 12.252 SS_Full_GLM 12.236

SS_Red_GLM 12.318 SS_Red_GLM 12.321

SS_Full_LM 12.366 SS_Full_LM 12.351

SS_Red_LM 12.358 SS_Red_LM 12.364

Legend: LS means large sample, SS means small sample.
Full means full set of covariates, Red means reduce set of covariates.
GLM means generalized linear model, LM means linear model.

Table 4. Out-of-sample Gini correlations 
for credibility predictors—Small sample

n = 2,000, K = 250

With Company Experience Adjustment, 
Reduced Covariates

Gini
Correlation

Gini
Correlation

KF = 0.0 KF = 0.01

ScoreTrue 7.307

LS_Full_GLM 7.224 LS_Full_GLM 7.049

LS_Red_GLM 4.345 LS_Red_GLM 5.423

LS_Full_LM 7.276 LS_Full_LM 7.095

LS_Red_LM 4.395 LS_Red_LM 5.467

SS_Full_GLM 7.036 SS_Full_GLM 6.889

SS_Red_GLM 4.345 SS_Red_GLM 5.423

SS_Full_LM 7.091 SS_Full_LM 6.930

SS_Red_LM 4.397 SS_Red_LM 5.468

KF = 0.10 KF = 0.50

LS_Full_GLM 6.889 LS_Full_GLM 6.759

LS_Red_GLM 6.194 LS_Red_GLM 6.239

LS_Full_LM 6.959 LS_Full_LM 6.834

LS_Red_LM 6.229 LS_Red_LM 6.279

SS_Full_GLM 6.807 SS_Full_GLM 6.676

SS_Red_GLM 6.194 SS_Red_GLM 6.239

SS_Full_LM 6.843 SS_Full_LM 6.743

SS_Red_LM 6.230 SS_Red_LM 6.276

Legend: LS means large sample, SS means small sample.
Full means full set of covariates, Red means reduce set of covariates.
GLM means generalized linear model, LM means linear model.
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with (Panels B–E) and without (Panel A) collateral
information—the vehicle module liability score.

In Panel A, the insurer only uses rating variables
as covariates in the prediction. We consider three
base scenarios representing a range of complexity of
predictive models employed by the insurer.

1. A naive insurer, relying on the principal of par-
simony, could use a reduced set of covariates—
rating group only.

estimated for the 351 Massachusetts towns and the
10 state-defined regions within the city of Boston.
These geographical units are ranked by the estimated
risk and then grouped into six territories. Table 6
shows that 77% policyholders are adult drivers and
11% are from the most risky driving territory. The
last two columns present the average liability and
PIP claims.

To illustrate the value added by the collateral infor-
mation from external sources, we consider scores
produced by ISO Risk Analyzer—a commercial
predictive model from Verisk Analytics. Specifi-
cally, two sets of scores are used in the credibility
prediction, the relativities from the vehicle module
for liability and from the environmental module.
The former is based on vehicle characteristics and
is the focus of this example. The latter captures the
effects of granular environmental factors instead of
the crude location of garage town indicated by the
territory group.

We use the same out-of-sample statistics as intro-
duced in the simulation section. The results for the lia-
bility and PIP coverage are reported in Tables 7 and 8,
respectively. We compare the credibility predictions

Table 6. Description and summary statistics of basic rating
information†

Pure Premium

Mean Liability PIP

Rating Group

A - Adult 0.772 165.371 15.929

B - Business 0.013 173.446 13.924

I - Youth with <3 years experience 0.036 344.686 32.542

M - Youth with 3–6 years experience 0.039 358.413 43.913

S - Senior citizens 0.140 169.500 8.944

Territory Group

1–the least risky territory group 0.192 125.979 7.812

2 0.197 163.083 5.226

3 0.114 209.265 11.855

4 0.206 156.951 17.279

5 0.180 202.764 23.189

6–the most risky territory group 0.110 279.889 45.145
†The summary statistics are adjusted by exposure.

Table 7. Out-of-sample statistics for credibility predictors 
of liability coverage

Pearson Spearman Gini Simple Gini

Panel A: Insurer Information

Rating Group 3.389 3.047 1.931 17.361

Rating Group + 
Territory Group

4.833 4.883 3.423 41.328

Rating Group +
Territory Group +
Environmental

4.973 5.535 3.831 46.586

Panel B: KF = 0

Rating Group 3.916 4.343 2.615 31.791

Rating Group + 
Territory Group

5.276 5.850 3.873 47.101

Rating Group +
Territory Group +
Environmental

5.355 6.318 4.072 49.518

Panel C: KF = 0.01

Rating Group 4.909 5.702 3.768 45.828

Rating Group + 
Territory Group

5.223 5.839 3.899 47.414

Rating Group +
Territory Group +
Environmental

5.299 6.301 4.089 49.725

Panel D: KF = 0.1

Rating Group 5.084 5.702 3.858 46.921

Rating Group + 
Territory Group

5.146 5.783 3.880 47.181

Rating Group +
Territory Group +
Environmental

5.224 6.243 4.061 49.390

Panel E: KF = 0.5

Rating Group 5.091 5.707 3.860 46.940

Rating Group + 
Territory Group

5.132 5.774 3.878 47.162

Rating Group +
Territory Group +
Environmental

5.210 6.230 4.054 49.302
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In Panels B–E, the insurer combines the vehicle
liability score with each of the three basic models
introduced in Panel A. Consistent with the simula-
tion study, we include the vehicle module relativity
as an offset in the Tweedie GLM. We further assume
that the measurement error in this external score
varies by territory group, i.e., credibility predictions
are calculated according to equation (4) where the
subscript j refers to territory. The confidence in the
score is reflected by parameter KF with a larger value
indicating higher uncertainty. Predictions for KF = 0,
0.01, 0.1, and 0.5 are reported.

We observe similar patterns in both tables and, in
general, the out-of-sample statistics suggest that col-
lateral information could improve prediction. First,
Panel A suggests that geographic information is an
important predictor for this data set. For example,
if the insurer is knowledgeable enough to use terri-
tory group in the prediction, the Gini index increases
from 17.36 to 41.33. By further incorporating granu-
lar information from the environmental module, one
could improve the Gini index to 46.59. Consistent
results are also observed in Panels B–E.

Second, the credibility prediction in Panels B–E
for the naive insurer reinforces the results observed
in Table 3 in the simulation study. Specifically, when
even allowing for a small imprecision (KF = 0.01)
in the score, the Gini index increases from 31.79 to
45.83. This is because the territory group, as sug-
gested by Panel A, is an important risk class indica-
tor for the portfolio of policyholders. Although the
naive insurer is not knowledgeable to use territory as
a covariate, the territory information is brought into
the prediction through the factor random effect spec-
ification. However, this difference between Panel B
and Panels C–E is less prominent for more sophisti-
cated insurers, because including territory group as a
predictor reduces the effect of averaging over these
risk classes.

Third, comparing Panels B–E with Panel A, one
finds that regardless of the complexity of the predic-
tive model used by the insurer, using the vehicle liabil-
ity score further improves the prediction. One notices

2. A more knowledgable insurer might consider a
full set of covariates, including both rating and
territory groups in the prediction.

3. In addition to the rough territory information,
a sophisticated insurer might incorporate the
more detailed address-specific risk factors, which
could be the relativities from the environmental
module.

Table 8. Out-of-sample statistics for credibility predictors 
of PIP coverage

Pearson Spearman Gini Simple Gini

Panel A: Inusurer Information

Rating Group 1.738 2.637 1.707 2.741

Rating Group +
Territory Group

4.250 4.439 2.990 6.450

Rating Group +
Territory Group +
Environmental

4.797 4.475 3.075 6.680

Panel B: KF = 0

Rating Group 1.812 2.872 1.975 4.291

Rating Group +
Territory Group

4.217 4.524 3.040 6.605

Rating Group +
Territory Group +
Environmental

4.667 4.593 3.137 6.817

Panel C: KF = 0.01

Rating Group 2.624 3.935 2.730 5.932

Rating Group +
Territory Group

4.233 4.529 3.045 6.617

Rating Group +
Territory Group +
Environmental

4.677 4.598 3.141 6.824

Panel D: KF = 0.1

Rating Group 4.071 4.691 3.148 6.840

Rating Group +
Territory Group

4.280 4.543 3.059 6.646

Rating Group +
Territory Group +
Environmental

4.708 4.615 3.153 6.851

Panel E: KF = 0.5

Rating Group 4.332 4.722 3.145 6.835

Rating Group +
Territory Group

4.302 4.547 3.065 6.661

Rating Group +
Territory Group +
Environmental

4.723 4.625 3.160 6.867
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manual rates or ISO Risk Analyzer relativities. For
validation, we noted that the traditional out-of-
sample statistics are less useful and emphasized
recently developed Gini statistics for measuring the
predictive performance.
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This interesting and useful result is originally due
to Jewell (1974), subsequently extended to include
weights by Kaas et al. (1997). Greater focus on the
Tweedie distribution was provided in Ohlsson and
Johansson (2006).

Multiplicative random effects

Assume that the means vary by subject and so use
Eyi = Ri. Assume also that a multiplicative random
effect is common to a set of observations and so use
E(yi�F) = FRi. In the GLM notation, we specify Mi =
g(E(yi ªF

~)) and so g(−1) (Mi) = Fµi. Here, F is a random
variable (effect).

To relate this to parameters of linear exponential
family, recall that be(Vi) = g(−1) (Mi) = Fµi. Thus, it use-
ful to define h(z) = (be)(−1) (z) and so write Vi = h(Fµi).
Note that because F is a random variable, so is Vi.

With these choices, we can express the conditional
distribution as
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Table 9 provides examples of several distribu-
tions where display (12) holds. We note that these
are not unique decompositions for each distribution.
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Appendix: Details of Bayesian
Inference for the Generalized
Linear Model

To establish notation, we begin with an linear expo-
nential family of the form

( ) ( )
( )

θ φ = θ − θ
φ

+ φ





y
y b

S yp , , exp , , (8)

with moments R = Ey = be(V) and Vary = Kbee(V).
Using the link function g(z), introduce a systematic
component M = g(R) and R = be(V). Further, use h(z) =
(be)−1 (z) so that V = h(g−1 (M)).

Conjugate prior distribution

Now think of V as a random variable. The natural
conjugate prior distribution of V is

( )
( )

( )θ δ φ =
δ φ

θδ − θ
φ





θ

θ θ
f

c

b
; ,

1

,
exp . (9)

Some easy calculations show (see Ohlsson and
Johansson 2006, Lemma 2.1) that I = Ebe(V). Fur-
ther, the mode satisfies I = be(Vmode).

We can use the Bayes machinery to update the
prior. Using equations (8) and (9), we have
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vations from the same, say, jth level. To this end,
consider a set of nj observations, independent con-
ditional on F~ j = h(Fj), with
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This has the same form as the density in equation (9)
with the new parameters
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In particular, define the weight Wj = ¨i:zij=1 b2 (Ri) and
the credibility factor

ζ = φ
φ + φαW

j
j

. (17)

With this, we have KF* = KF_j and

( )( )δ = ζ δ + − ζ µyj j Wj* 1 , (18)

where (y/µ)Wj = ¨i:zij=1(yi/Ri)b2(Ri)/Wj, a weighted
average.

For the prior distribution, define the transformed ran-
dom effect F~ = h(F). Assume that F~ has a (conjugate)
density corresponding to (9) with parameters I and KF.

With this, F~ = h(F), equations (11) and (9), we have
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This has the same form as equation (9).

Cross-sectional sample

We now combine the conditional outcome dis-
tribution over several observations with the prior
parameter distribution. We assume that there are
q uncertainties and that {Fj} are i.i.d. Recall that zij is
a binary variable assigning the ith observation to the
jth level of the factor. For the random factor model,
observations from different levels of the factor are
independent. Thus, we restrict our updating to obser-

Table 9. Exponential family distributions satisfying equation (12)

Distribution b(z) be(z) h(z) b(h(z)) h3(z) b2(z) b3(z)

Normal
2

2z
z z

2

2z
0 z2 0

Poisson ez ez ln z z ln z z 0

Gamma
–ln z

1
z
− 1

z
−

–ln z 0 1 –ln z

Inverse
Gaussian −(−2z)1/2 (−2z)−1/2

1
2 2z
− 1

4z
0

1
z

0

Tweedie*
k1zk2 k1 k2 zk2−1

1 2

1
12z

k k
k





−

1
1 2

1
2

2
k

z
k k

k
k





−
0 1

2

2z
k

k − 0

*For Tweedie, one uses k2 = (p − 2)/(p − 1) and k1 = (1 − p)k2/(2 − p) for 1 < p < 2, p # 2
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