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Counterfactual Disaster 
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ABSTRACT

The statistical foundation of disaster risk analysis is actual loss

experience. The past cannot be changed and is treated by actuar-

ies as fixed. But from a scientific perspective, history is just one

realization of what might have happened, given the randomness

and chaotic dynamics of nature. Stochastic analysis of the past

is an exploratory exercise in counterfactual history, considering

alternative possible scenarios. In particular, the dynamic per-

turbations that might transition a system to a disaster state are

considered. The value of counterfactual disaster risk analysis is

illustrated with examples from a diverse range of natural and

man-made perils.
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asters, actuaries can be better prepared to anticipate
and cope with such extreme rare events.

Counterfactual disaster risk analysis has a con-
trasting focus on the past, exploring the depths of
counterfactual history to identify and assess previous
situations where a disaster might have occurred, but
was averted or otherwise failed to materialize. Spe-
cifically, the following two questions are raised. First,
what perturbation to the historical context might have
 edged a system towards disaster? Second, what was
the likelihood that such a critical change might have
happened?

Answers to these questions facilitate counterfactual
risk evaluation (Balke and Pearl 1994), informing
decisions on catastrophe insurance risk management.
Importantly, they provide sense checks of estimates of
probable maximum loss (PML) that may be associ-
ated with substantial epistemic uncertainty, risk ambi-
guity, and diversity in expert judgement. Suppose
that the historical record for a particular peril spans
a period of N years. Within this observation period,
only M events have occurred. Counterfactual analysis
of the j’th event might be undertaken with a moderate
effort, and would generate a table of counterfactual
losses C1( j), C2( j), C3( j) . . . , with associated prob-
abilities p1( j), p2( j), p3( j). . . . Each historical event
spawns an ensemble of counterfactual realizations,
which may be envisioned in Figure 1 as a building
block of a basic catastrophe model.

These results could be used to calculate various
PML risk metrics to compare with existing standard
PML estimation methods. As another application,
counterfactual disaster analysis could be used as a
technique in reverse stress testing. Given a specified
catastrophe insurance loss, the various pathways by

1. Introduction

Whenever disasters occur, there are often many
lessons to be learned by the communities and indus-
tries affected and their insurers. Investigations may
be undertaken, public inquiries may be established,
technical reports written, and recommendations made
for disaster risk reduction. The greater the disaster, as
measured in terms of casualties, damage, and economic
loss, the more lessons that risk managers will seek to
learn. Conversely, as the human, societal, and insur-
ance loss measures associated with an event decrease,
so also is the amount of attention usually given. In the
limit that no actual loss is associated with an event
occurrence, few long-term lessons may ultimately be
learned, and a timely opportunity for future disaster
risk reduction may be lost.

The origin of the word “disaster” is based on the
ancient belief in an astrological cause, as if the clock-
work motions of the stars predetermined their dates
as precisely as eclipses. Except for those who read
horoscopes, we now know that disaster history is not
preordained. Because history cannot be changed, it
is typically treated as fixed. However, disaster occur-
rence has complex dynamics, in which randomness
and dynamical chaos play a substantial part. There
are numerous situations in history where a system
was close to disaster, which never quite materialized.
Fortunately, there was no untimely dynamic pertur-
bation that might have edged the system to disaster.

The statistical foundation of quantitative disaster
analysis is the database of actual loss experience. Any
disaster that occurs without apparent historical prec-
edent is liable to be received with some degree of sur-
prise. Since the start of the millennium, there have been
numerous costly surprises for the insurance industry,
affecting both assets and liabilities—so much so that
a special glossary of evocative terms has emerged to
describe surprising catastrophes: black swans (Taleb
2007), dragon kings (Sornette and Sanchez 2009),
unknown unknowns, etc. Knightian uncertainty is
often cited to explain the limits of risk analysis and
excuse surprise as almost inevitable. But beyond
adopting a new vocabulary to cover unforeseen dis-

Historical Event
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Figure 1. Counterfactual losses and
probabilities for a historical event
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occurring, but ultimately did not materialize, and
hence are completely absent from the historical record,
and therefore remain hidden from actuarial view.

Disaster events are typically chronicled and ana-
lyzed as if they were inevitable. Such determinism
is far from reality. A salient example of how a minor,
random perturbation to the system state can have
a massive impact on insurance loss is provided by
the Al Qaeda attack on the In-Amenas gas plant in
Algeria in January 2013. In the annals of insurance
claims, this event is recorded as a hostage crisis, not
a major international petrochemical plant disaster.
This is because a stray terrorist bullet accidentally
caused a power blackout that automatically shut down
the plant (Statoil 2013). This stroke of good fortune
prevented the terrorists from achieving their goal of
setting off a massive gas explosion.

Another notable illustration is 9/11, which is the
classic paradigm of an unforeseeable Black Swan
event. However, a hijacked passenger jet might have
been flown into an iconic structure before 9/11. The
Algerian terrorist organization GIA planned to destroy
the Eiffel Tower in Paris in this way in December
1994. Fortunately, French intelligence discovered
from an informant that this was the hijackers’ intent.
Accordingly, French commandos stormed the plane.
Without the intelligence on the hijackers’ true intent,
the French authorities might have been coerced by
continued hostage shooting to allow the plane to fly
on to Paris. From a risk perspective, the chance of
informant failure would have been at least 10%, so
there was a significant counterfactual probability that
the Eiffel Tower would have been attacked.

Crucially, because there was no impact on the Eiffel
Tower, international aviation policy on dealing with
hijack situations was not revised, as it most surely
would have been had the terrorist plot been successful.
Given the non-trivial probability of plot success, the
IATA protocol for dealing with hijackings might have
been altered six years before 9/11 to prevent unauthor-
ized cockpit control. This never happened; neither was
there any impact on U.S. terrorism insurance.

Another aviation example where safety policy might
have changed earlier involves criminal pilot action. A

which such an extreme loss might materialize could
be explored counterfactually by selecting some actual
historical events, and perturbing them to generate the
target extreme loss.

The practical need and rationale for counterfactual
disaster risk analysis emerges from the social psy-
chology of disasters. Complacency tends to become
entrenched amongst those who have experienced an
event that has caused little or no damage. Compound-
ing a public attitude of complacency is the sociological
principle of social proof: people tend to do what others
like them are doing. According to Lindell and Perry
(1992), the interpretations of the outcomes of prior
disasters and why these outcomes unfolded will influ-
ence subsequent perceptions of future disaster events.
If an event passes with few negative outcomes, there is
a natural inclination to move on, rather than look back
and take note of what actions might be warranted.

A counterfactual risk perspective is useful for many
government and corporate stakeholders apart from
insurers.Assessment of the counterfactual disaster risk
can guide safety authorities in commissioning disaster
mitigation projects to reduce future losses, and help
prioritize them according to urgency. The insurance
industry stands to benefit from lower claims, sounder
risk management, and enhanced underwriting risk
awareness.

1.1. Alternative realizations of history

From a scientist’s perspective, history is not inevi-
table, but is just one possible realization of what might
have happened. Indeed, in his discussion of the logic
of counterfactuals in causal inference, Pearl (2000)
has emphasized that counterfactuals carry as clear an
empirical message as any scientific laws, and indeed
are fundamental to them.

Major surprises may be discovered lurking in alter-
native realizations of historical experience. To quote
Philip Roth (2004), an eminent American author of
counterfactual fiction: “History, harmless history,
where everything unexpected in its own time is chroni-
cled on the page as inevitable. The terror of the unfore-
seen is what the science of history hides.” All manner
of unforeseen, surprising catastrophes were close to
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with huge uncertainty, the size of which is appreci-
ated by actuaries (Nicholson and Smith 2013).

Fortunately, loss statistics are far from being the
only source of useful information and knowledge
about a hazard. Indeed, it is the catastrophe modeler’s
task to understand, measure and chart the extent of
the dangerous domain of hazard variables D(t). In
particular, there are combinations of the input vari-
ables {X(1), X(2), . . . X(n)} which lie just outside
this dangerous domain, but which may be dynami-
cally perturbed to fall within the dangerous domain
(Figure 2). Furthermore, there are zones within the
interior of the dangerous domain itself that can be
perturbed into very much more dangerous regions of
high loss amplification.

The future stochastic event datasets constructed
within catastrophe risk models explore and chart the
dangerous domain of hazard variables D(t). These
stochastic datasets are constructed to span the realm
of possibility as thoroughly as is currently feasible, but
their completeness is an open hypothesis, subject to
potential refutation by surprising events. Interest-
ing new insights into D(t) can be gained from revis-
iting and rewriting virtual history (Ferguson 2000).
In particular, salutary lessons may be learned from
the counterfactual insurance losses that were nar-
rowly averted because of the haphazard absence
of the necessary dynamic perturbations. Stochastic
datasets might be further augmented by scenarios
inspired and constructed from detailed stochastic
modeling of past historical events. Spatial resolution
might be enhanced significantly in this way, espe-
cially in event regions of high population density
and complex geography. However, the past cannot
be changed, and it is not customary for catastrophe

Germanwings Airbus 320 was intentionally crashed
into a French mountainside on March 24, 2015. There
was a precedent for this malevolent pilot action. On
November 29, 2013, a MozambiqueAirlines plane fly-
ing from the Mozambican capital Maputo to Luanda
in Angola crashed: the pilot had locked out the copilot.
Relevant for risk analysis, there may have been some
previous situations where a pilot was minded to take
similar action, but was thwarted by lack of opportu-
nity. Following the Airbus 320 crash, codes of practice
have been revised to ensure at least two flight crew
are in the cockpit. However, a counterfactual analysis
would have earlier highlighted an exceptional avia-
tion risk that might have been addressed before, to
the benefit of flyers and aviation insurers.

2. System state representation

Catastrophe insurance risk modeling focuses on the
probability of an event occurring, and the conditional
loss probability given an event occurrence. More fun-
damentally, the hazard state of the whole system can
be described as a complex, time-dependent function
of a number n of underlying hazard variables, some
of which may be hidden and not directly observable:
S = f [X(1), X(2), . . . X(n)].

At various times t, a particular domain D(t) of the
space of underlying hazard variables becomes imme-
diately dangerous to an insurance risk portfolio in
that the hazard state changes from passive to active,
and some external agent of physical force strikes the
portfolio. Such an agent might be earthquake ground
shaking, volcanic flow, landslide debris, wind pres-
sure of a tropical cyclone or tornado, water breach
of a flood or tsunami defence, toxic release from an
industrial installation, terrorist bomb blast, etc.

As observed by an insurer, a hazard event occurs
at time t causing loss L(t) to the insured portfolio.
From an actuarial perspective, the historical time
series of occasional losses L(t) can be analyzed by
an array of statistical techniques. However, given the
rarity of extreme catastrophe insurance losses, and
the sparseness of the loss time series, any statistical
analysis just relying on loss experience is fraught

Figure 2. Perturbation of
a system state into the
dangerous domain D(t)
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generated), and a runaway disaster may develop if
strong hot dry winds persist in an unfavorable direction.

As a notable historical example, consider the 1991
East Bay Hills, California, wildfire storm. The fire
started on October 19, and by nightfall was being
brought under control. However, a new ignition the
following morning rapidly spread the wind-driven
fire, overwhelming the fire-fighting crews. More than
3,800 homes were destroyed and 25 people were
killed. The FEMA (1991) report on the wildfire noted
candidly that the fire was beyond the capability of fire
suppression forces to control. As long as the Diablo
wind was present, the fire was going to spread, no
matter what strategy and resources were used. The fire
was contained only when the wind changed.

A counterfactual analysis of this major U.S. wildfire
loss is illuminating. Fire losses will depend mainly on
the fuel that is downwind from the fire and the length
of time that the wind continues to push the fire in that
direction. The hot, dry wind persistence risk can be
estimated from decades of Californian meteorological
observation. There was a counterfactual probability of
a few percent that the wind might have persisted for
another half-day. This system perturbation might have
triggered a complete failure of wildfire control, and
driven the fire insurance loss way beyond the $2.7 bil-
lion that stands as a record to the present day.

Recognizing the likelihood of an uncontrolled wild-
fire, significant measures to mitigate the regional wild-
fire hazard would have been warranted by the reduction
in future property loss. Almost a quarter of a century
later, in the summer of 2015, civic approval was finally
given to cut down highly flammable oil-laden euca-
lyptus trees in the Oakland Hills. This decision might
have been hastened by earlier counterfactual disaster
risk analysis.

3. Counterfactual perspective 
on disaster heuristics

The degree of surprise and astonishment that extreme
events generate depends in part on the underlying
human perception of extreme events. This percep-
tion is naturally anchored to observations made about

modelers to undertake detailed stochastic modeling
of past historical events, which are generally treated
as fixed given data.

For some specific selected historical events, retro-
spective probabilistic assessments have been under-
taken. A prime example is a reassessment of the
volcanic crisis on the French Caribbean island of
Guadeloupe in 1976 (Hincks et al. 2014). A Bayesian
belief network was constructed to estimate the counter-
factual probability of the major eruption that never
ultimately materialized. A mass evacuation has long
been criticized for being unnecessary, but this retro-
spective analysis indicates that the hazard level war-
ranted this safety precaution, notwithstanding the
severe island economic disruption.

For any hazard, valuable lessons may be learned
from the counterfactual losses that were narrowly
averted or diminished because of the haphazard
absence of the necessary dynamic system perturba-
tions. Explorative study is required of the types of per-
turbation that might have triggered a disaster, and how
likely they were. Insights into the geometrical config-
uration of the dangerous domain emerge from consid-
ering the circumstances under which organizational
system defense counters the reducing safety margin of
a physical hazard variable. Marginal parameter varia-
tions that significantly amplify catastrophe loss are
important to tabulate. There are numerous explicit and
implicit sources of nonlinear loss amplification, cor-
responding to tipping points in hazard, vulnerability,
and loss aggregation.

2.1. Wildfire spread

A wide range of natural and man-made catastrophes
are available to illustrate how counterfactual disaster
risk analysis can promote disaster risk reduction. To
start, consider wildfire risk to an urban environment.
Three generic classes of fire risk variables are the num-
ber of fresh ignitions X(1); wind strength and direc-
tion X(2); and fire-fighting capacity X(3). Because of
fire-fighting crew fatigue and resource limitations, the
disaster domain can be breached if there is a sufficient
supply of ignitions (either accidentally or maliciously
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Japanese seismologist, Hiroo Kanamori, had estimated
the maximum regional earthquake magnitude to be
much lower, around 8.2. However, a counterfactual
review of regional earthquake history would have ques-
tioned this assertion. The Jogan earthquake of 869 gen-
erated a tsunami impacting an extremely broad area,
including not just two but all three main prefectures
of northeast Japan. Even if the 869 event magnitude
had been somewhat below 9, there is a counterfactual
argument that future fault slip might exceed whatever
it was in 869. Indeed, it has been common practice in
seismic hazard assessment to add half a unit of magni-
tude to the largest historical event to define maximum
magnitude.

3.2. Pattern regularity

Historical evidence may indicate a regular pattern
to the occurrence of event A, which informs prepared-
ness and response decisions. For example, there may
appear to be a periodic or quasi-periodic frequency to
the occurrence of event A. Expectation of such regular-
ity can be a source of dangerous unexpected surprise.
Unseasonal extreme weather is a prime cause of sur-
prising natural disasters, such as flash floods, violent
convective storms, late season tropical cyclones, etc.
From a counterfactual perspective, a dynamic meteo-
rological perturbation could delay a late season storm
into a hazardous out-of-season shock.

With regard to earthquake hazard, wariness is needed
over the concept of seismic cycles, and the appealing
but simplistic notion that there is some notable regu-
larity in the recurrence time intervals between major
earthquakes. This may result in the misleading percep-
tion that after a major earthquake, seismic risk mitiga-
tion may become less urgent and that insurance risk is
necessarily reduced.

To illustrate the degree of randomness in earth-
quake recurrence, consider the sequence of six earth-
quakes at Parkfield, Central California from 1857 to
1966. Based on the approximately regular time inter-
vals between these characteristic events, which aver-
aged 22 years, a prediction was made for the next event
after 1966 to fall in 1988. Surprisingly to seismologists,

hazards. Below are listed seven observations on the
historical record that influence and guide common,
but potentially misleading, heuristics about extreme
events. These events are identified here as A, B and C.
A counterfactual perspective can serve as a useful
corrective to intuitive heuristics that might lead actu-
aries astray (Kahneman 2011).

[1] Lack of Precedent: Event A has never happened
before.

[2] Pattern Regularity: There has been a regular pat-
tern to event A occurrence.

[3] Sound Operational Record: Past operational expe-
rience has so far been sound.

[4] Weather Crises Averted: Past weather crises have
been satisfactorily averted.

[5] Contingent Necessity: Event B has always pre-
ceded event A.

[6] Decoupled Events: Events A and B have never
occurred together.

[7] Cascading Losses: Cascade loss sequence C has
never been observed.

A counterfactual perspective on these heuristics,
and their pitfalls for actuaries, will be considered in
turn. For any peril and territory, such a perspective
can be explored, identifying dynamic system pertur-
bations for which these heuristics are violated. Here,
the principles of counterfactual thinking are explained
by way of some particularly salient examples, associ-
ated with catastrophe insurance losses.

3.1. Lack of precedent

If there is no historical precedent for an extreme
event, preparation for such an event may not seem
justified. This may lead to risk oversight. With the
current state of historical and scientific knowledge,
there are very few hazard events that should take risk
analysts by surprise. Almost all either did happen
before in some guise, or, taking a counterfactual view,
might well have happened before.

Take, for example, the magnitude 9 Japanese earth-
quake and tsunami of March 11, 2011. The influential
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terrestrial accuracy of GPS expressed within meters,
the dangerous domain should never have been close to
being breached, even allowing for gross human navi-
gational error.

However, a tradition had developed for the Costa
Concordia to be steered intentionally very close to the
safety contour to maximize the spectacle for islanders
and cruise passengers alike, so that X(1) ~ 0. This then
left virtually no margin for the navigational failings
that would take the Costa Concordia within the dan-
gerous sinking domain, as happened on the fateful
evening on January 13, 2012. With the heavy costs
of the lengthy engineering salvage operation, this
became the worst maritime insurance loss, exceeding
$2 billion. A counterfactual analysis of past cruises
would have warned of the risk of such a catastrophe.

3.4. Weather crises averted

Weather is a universal peril. When an extreme
weather crisis passes, the very act of survival may
lead to complacency rather than urgency to mitigate
the weather risk. Even if historical experience has
been benign in managing severe weather, important
lessons may yet need to be learned. On January 27,
2015, a Nor’easter winter storm, Juno, knocked out
both of the high voltage transmission lines connecting
the Pilgrim nuclear power plant in Plymouth, Mass.
The reactor automatically shut down when the second
offsite power line was lost. When equipment prob-
lems and operator errors complicated the intended
response, the Nuclear Regulatory Commission inves-
tigated, and found a failure to open the valve supplying
cooling water. Counterfactually, a serious nuclear inci-
dent might have occurred, with a likelihood that could
be gauged from the site probabilistic safety assess-
ment fault tree.

Amongst meteorological loss amplifiers, a sensitive
system state variable is the state of the tide. Consider
coastal flooding. The state of the tide is a key variable
for coastal flooding from a storm surge or tsunami.
Overtopping of a coastal sea defence defines a key
boundary of the dangerous domain. The historical
record provides numerous examples of calamitous

it was 16 years later in 2004 that the next characteris-
tic event occurred. Counterfactually, this can be inter-
preted in terms of the randomness of each past event
recurrence. The 1966 event was not inevitable in that
year—it might have happened a number of years ear-
lier or later. Seismologists making the prediction were
fooled by randomness (Taleb 2001). If this randomness
had been accounted for in the previous event dates,
there would have been much less confidence in the
predictability of the date of the next event.

3.3. Sound operational management

Critical industries have a predominantly sound
operational record. But there is a substantial database
of near misses and close calls (Hopkins 2010), from
which safety lessons should be learned, if statistics
other than actual incidents and casualties are taken
into account. In the interest of promoting safety within
industry and reducing the prevalence of accidents,
near-miss management systems have been advocated
by Kleindorfer et al. (2012), following on from studies
at the Wharton Business School, including opera-
tional risk (Muermann and Oktem 2002). Regretta-
bly, the warnings afforded by near misses are often
disregarded. Part of the risk management value of
counterfactual disaster analysis is the capacity to iden-
tify potential prospects for mitigating future disasters,
even where the historical evidence is very sparse or
completely nonexistent.

Near-miss examples in transportation provide some
of the most graphic scenarios. For example, in attempt-
ing to land at Heathrow, London, in thick fog on Nov-
ember 21, 1989, a Boeing 747 cleared the roof of an
airport hotel by just twelve feet (Macrae 2010). This
was, of course, not intentional. But consider the mari-
time insurance example of the Costa Concordia cruise
ship which sailed up the northwest coast of Italy, past
the island of Giglio. One of the key hazard variables
determining the ship’s hazard state was its distance
from the navigational safety contour around the island.
This might be designated as X(1). The official sched-
uled route of the cruise ship gave the island an abun-
dantly wide berth, with X(1) > 10 kilometers. Given the
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ence Y. We write y = f(z, u). For any given condition
U, the relationship between Z and Y must be one of
only four binary functions (Pearl 2000):

f Y Y f Y Y{ } { }( ) ( ) ( ) ( )= = = =: 0 0 & 1 0 ; : 0 1& 1 00 2

f Y Y f Y Y{ } { }( ) ( ) ( ) ( )= = = =: 0 0 & 1 1 ; : 0 1& 1 1 .1 3

As u varies, the only effect is to switch the (Z, Y )
relationship among these four functions. The prob-
ability P(u) thus induces a probability function over
the possible response pairs {Y(0), Y(1)}. U could be
an external forcing factor causing a sudden dynamic
perturbation to a volcanic system. Triggers include
regional earthquake occurrence, hydrological and
meteorological disturbance, and landslides.

Consider Mount St. Helens in Washington State in
May 1980. Earthquakes under the volcano had inten-
sified over a few weeks. On the morning of May 18,
a larger earthquake with a magnitude of 5.0 triggered
a landslide. This landslide sent layers of rock tum-
bling down the mountain, so the magma underneath
was suddenly relieved of the pressure above it. An
enormous lateral blast ensued and Mount St. Helens
erupted violently. Looking back over past volcanic
crises, the impact of external dynamic triggers can be
explored, and the risk of their occurrence assessed.

In volcano catalogues of eruptions, it has not been
routine to include periods of unrest, such as seismic
activity. This incompleteness of information reflects
the traditional view that such data are of scientific
interest, but inessential for hazard estimation, which
is primarily dependent on the time series of the actual
eruption events themselves. However, for volcanoes
with a low frequency of eruption, occasional periods
of unrest may be important indicators of failed erup-
tions which should be taken into account in volcano
hazard assessment.

Soufrière Hills on the Caribbean island of Mont-
serrat is a prime example. Until 1995, this volcano
had not erupted since 1630, yet had given rise to three
periods of significant unrest over the previous cen-
tury. These might be interpreted as failed attempts at

coastal flooding being averted, or the loss severity
being considerably mitigated, by a combination of
stout sea defences—and luck that the highest storm
surge level did not coincide with high tide.

In October 2012, Superstorm Sandy struck Boston
at low tide, but up to 6% of Boston could have been
flooded if Sandy had arrived at high tide (Douglas
et al. 2013). Four months later, a four-foot storm surge
hit Boston, fortunately again at low tide, not high
tide. With the high tide already a foot higher than
average because of the new moon, coincidence of the
storm surge with this high tide would have given rise
to the 100-year flood, as designated on flood maps. A
counterfactual analysis would have provided a sense
check on the extreme flood return period.

A year earlier, in August 2011, Hurricane Irene
made landfall as a tropical storm in the New York
City area, which narrowly avoided the flooding that
accompanied Superstorm Sandy. The sparse histori-
cal catalogue of hurricane losses in New York belies
the serious danger posed by threatening events in the
2011 and 2012 hurricane seasons. At one point along
Hurricane Irene’s track towards New York, there was
a counterfactual 1% probability of a catastrophe insur-
ance loss in excess of $50 billion.

3.5. Contingent necessity

It may emerge from historical experience that
if event A does happen, then event B would hap-
pen beforehand, and this sequence might be relied
upon to provide sufficient warning. In a volcanologi-
cal risk context, this precept of contingent necessity
may be expressed in the belief that, in the event of a
major eruption of a designated volcano, there would
be ample precursory observations that would warn of
an impending major eruption early enough for those
at risk to be safely evacuated.

A probabilistic framework is best for clarifying
the predictive role of precursory activity. Consider a
simple case where the output response Y (e.g., erup-
tion) is a binary function of another binary precursory
event indicator Z (e.g., presence of volcanic tremors),
and a complex set of other variables U that may influ-
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sumed that there is no need to consider what would
happen if they did. This may be poor risk manage-
ment procedure.

A tipping point in health risk can arise from the
occasional confluence of two independent risk factors.
As a natural hazard affecting the health of the U.K.
population, a sustained volcanic eruption in Iceland,
generating vast quantities of toxic gases, can have seri-
ous consequences for those with respiratory problems.
The Laki eruption in Iceland of 1783 persisted for
eight months. The resulting acid fog dispersed over
Europe caused more than 10,000 excess deaths in
England. But it could have been much worse. In the
previous year, 1782, a pandemic originating in China
spread westwards into England and Scotland. Had
the pandemic occurred a year later (or Laki erupted
a year earlier), the double perils of influenza and
acid fog would have elevated the death toll to cata-
strophic levels.

This counterfactual perfect storm scenario almost
happened with the arrival of the swine flu pandemic
from Mexico in 2009. Had it occurred a year later
(for which there was a few percent chance), it would
have coincided with the eruption of the Iceland vol-
cano Eyjafjallajōkull in 2010, the ash cloud from
which closed down U.K. airspace for days. Based on
previous history, there is a causal linkage between
eruptions of Eyjafjallajōkull and of its more fear-
some neighbor Katla. In 2010, there was a counter-
factual probability well in excess of 10% that a
major eruption of Katla might have been triggered
and magnified the regional societal dislocation and
insurance loss.

3.7. Cascading consequences

Even though the multidimensional space of risk vari-
ables has a complex geometry, important insight can
be gained from the marginal variation of an individual
or several variables. Thus the binary switch of on-site
power could leverage loss at a petrochemical plant by
orders of magnitude. Power outage is well appreciated
to be a key variable for estimating the scale of business
interruption, especially where industries lack supply

eruption. In the authoritative Smithsonian Institution
catalogue of volcanoes of the world (Simkin et al.
1994), which was published shortly before the erup-
tion in 1995, the 1630 eruption is included as the sole
entry for Montserrat—but none of the unrest his-
tory is listed. Yet there were three distinct episodes
of unrest in the 1890s, 1930s and 1960s.

Key system state variables X(t) for volcano hazard
include those governing the subterranean dynamics,
e.g., the influx of magma feeding the volcano. Periods
of unrest may correspond to intermittent intrusions
of magma which are insufficient to lead to eruptive
activity. For any historical period of unrest, a Bayesian
belief network of the underlying geophysical, geo-
chemical and geodetic causal factors could generate
an estimate of the counterfactual likelihood Pr(EU)
that the unrest U might lead to an eruption E. With
this likelihood evaluated, the annual probability of an
eruption can be calculated in terms of the frequency
of unrest periods f (U ) as: Pr(E ) = f (U) * Pr(EU).

For Montserrat, a baseline annual eruption fre-
quency would have been about 1%, which is higher
than using the elapsed time to the last eruption in
1630, and so would have yielded a more pessimis-
tic, and ultimately much more realistic, assessment
of volcanic hazard at the island capital, Plymouth,
which was destroyed in 1997. The risk blindness of
insurers is reflected in the absence of policy wording
for volcanic eruption.

3.6. Decoupled events

The resilience of society can be severely strained
by any major disaster. Stress analysts would inquire
what if the societal system state is perturbed by
another major event that can compound human and
economic losses. A geological hazard example is the
dynamic triggering of a volcanic eruption by a large
earthquake. This is a dual scenario for Tokyo, given
the active volcanic status of Mt. Fuji. Insight into
what other event combinations should be of concern
as societal stress tests may be gained from a counter-
factual disaster analysis. Where events A and B have
never occurred together historically, it is often pre-
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4. Terrorism

Following the Al Qaeda attack on 9/11, counterter-
rorism security and intelligence resources have been
ramped up steeply across the countries of the western
alliance: the United States, Canada, Western Europe,
Australia, and New Zealand. The balance between the
privacy and public safety shifted to make such coor-
dinated attacks very much harder to organize, plan,
resource, and perpetrate.

Terrorism is subject to control by Western civil
authorities in a way that natural hazards are not. As a
consequence of having highly capable and empowered
counterterrorism forces, despite there being numer-
ous plots, there have been only a handful of success-
ful notable terrorist attacks against the Western alliance
since 9/11. Even in these cases, at least one of the ter-
rorists was previously known to the national security
services. In the Western alliance since 9/11, terrorism
insurance is effectively insurance against the occa-
sional failure of counterterrorism.

The various links between members of a social net-
work provide key insight into the involvement of an
individual in a terrorist plot. The singular achievement
of the Western security services in interdicting the
great majority of the significant plots since 9/11 is evi-
dence of their command of terrorist communications
networks. A key part of the interdiction process is the
dragnet of contact chaining: the contacts of terrorist
suspects are tracked; then the contacts of these contacts
are tracked, etc. (Harding 2014). Through this envel-
oping international surveillance process, many ter-
rorists have been brought to justice, including Osama
bin Laden himself.

The process of contact chaining is a major social net-
work constraint on large conspiracies. The more opera-
tives are engaged in a plot, the greater is the chance
that one of them will be caught within a contact chain
under counterterrorism surveillance. Terrorist social
network and contact chaining analysis (Woo 2015) has
shown that the probability of a plot being interdicted
in the Western alliance [Int-Prob] by contact chaining
increases with the number of active cell operatives,
as indicated in Table 1:

chain resilience against external hazards. The Rome
blackout on September 17, 2003, was a classic cas-
cading process, which started with a windstorm caus-
ing a tree to fall on a power line several hundred miles
away on the Swiss border. All types of natural haz-
ards can trigger cascading disaster. After the Chi-Chi
earthquake in Taiwan of September 21, 1999, power
loss was a major factor impeding the 24-hour produc-
tion schedule of computer microchips.

The October 2011 Thailand floods generated insur-
ance losses approaching $15 billion, which came as
a financial shock and costly surprise to the develop-
ing Asian insurance markets. In estimating probable
maximum loss, an exploratory search should be
conducted for risk variables that have the capacity to
leverage large losses. For Bangkok flood risk, a key
risk variable was the volume capacity of dam reser-
voir storage. A government decision to keep the water
levels high before and during the summer rainy sea-
son resulted in the dams being full in late September
2011, and large amounts of water had to be released.
The discharge of water from dam reservoirs defines a
literal tipping point for the amplification of catastro-
phe loss in Thailand. The extra water resulted in the
failure of dikes that were intended to prevent flooding
of important facilities owned by Japanese manufac-
turing companies.

This 2011 disaster might have been foreseen from
a counterfactual perspective. Very similar rainfall con-
ditions were observed historically in 1995 as in 2011,
but many of the regional facilities that were flooded
in 2011 did not flood in 1995, even though the rainfall
conditions were comparable. This was because, dur-
ing the 1995 flood, much of the runoff was stored in
two dams. As an exacerbating factor in mid-October
2011, the tides were very high. Perturbing the 1995
system state with marginal adjustments to the tide
level and the release of dam reservoir water would
have moved the system deep into the disaster zone.
This counterfactual insight might have challenged the
policy to keep water levels high in the dam reservoirs
in September 2011, and so mitigate the consequent
flood insurance losses.
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alternative future pathways to disaster that might
be surprising and alarming, and for which further
risk mitigation is required. One such counterfactual
analysis is to substitute alternative disaster agents in
historical events. Historical disasters need not neces-
sarily have had their specific set of predetermined
causes, but might have occurred counterfactually
through other agents or factors. Exploring these alter-
natives can guide catastrophe risk management and
reduce future surprise and loss.

There are numerous possibilities to reflect upon.
First, any accidental human error might potentially
have been deliberate. Any historical control system
failure due to human error might in future be inten-
tional. If a control system is internet-enabled, fail-
ure might be induced through cyber crime. Take as
an example the natural-gas pipeline explosion in San
Bruno, California, in 2010. The explosion occurred
after maintenance on what should have been an unin-
terrupted power supply. The maintenance caused elec-
tricity to the Supervisory Control and Data Acquisition
(SCADA) system to be lost. A control valve on the
pipeline was programmed to open automatically if
the SCADA system lost power. As a consequence,
gas flowed into the pipeline in an uncontrolled way,
causing a pressure surge that burst the pipe. Counter-
factually, the agent for disrupting the power supply
might well have been a cyber criminal attacking the
SCADA control system, rather than the unforeseen
consequence of maintenance. Crucially, the risk man-
agement response to the disaster should have included
a tightening of cyber security.

Another counterfactual prospect is of industrial sen-
sor failure being substituted by a cyber attack. The
Buncefield U.K. explosion of December 2005 origi-
nated with the failure of the gauge monitoring the fuel
level in a storage tank. Overflow of the tank led to for-
mation of a vapor cloud, which eventually exploded.
Counterfactually, the gauge might have functioned

Highly elaborate ambitious plots capable of inflict-
ing catastrophic insurance loss would typically involve
so many operatives as to have a very high likelihood
of interdiction. This would be wasteful of terrorist
resources. Discouragement of jihadi plots involving
double-digit operative numbers has come from Osama
bin Laden himself in a message from his Abottabad
hideout: “For a large operation against the US, pick a
number of brothers not to exceed ten.” The more oper-
atives there are, the greater is the chance that one of
them will compromise the terrorist venture, either by
his own actions or communications, or through some
branch of his network of social contacts.

For any significant terrorist plot to succeed, it must
avoid interdiction as well as technical malfunction.
Taking both factors into account, the counterfactual
probability of success for any past plot can be esti-
mated. One of the most notorious plots since 9/11
was the liquid explosives plot of 2006, which the
Al Qaeda chief strategist boasted would be bigger
than 9/11. The ambitious plot to bring down as many
as seven transatlantic aircraft was interdicted. Given
the number of operatives involved, the counterfactual
probability of success was about 8%; high enough
to warrant the airport security restrictions on liquids
imposed ever since 2006.

4.1. Cyber terrorism

The 2006 liquid explosives plot required terrorists
to bring liquids on board aircraft. Another class of plot
where terrorists could attack remotely involves opera-
tions in cyberspace. By hacking control or monitoring
systems, terrorists could trigger industrial disasters.
The fact that hackers may be foreign and well beyond
the jurisdiction of where a disaster takes place makes
cyber terrorism a topical cause for concern to Western
security officials and insurers.

Where disasters have actually occurred, a counter-
factual perspective can yield important insights into

Table 1. Interdiction probabilities as a function of terrorist cell size

Cell Size 1 2 3 4 5 6 7 8 9 10

Int-Prob 0.26 0.46 0.60 0.70 0.78 0.84 0.88 0.91 0.93 0.95
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optimism bias, when a catastrophe loss does occur, it
often catches people by surprise. The degree of sur-
prise would be lessened if emerging risks were tracked
early and managed well in advance of any catastro-
phe event. Counterfactual analysis of emerging risks
would be helpful in this tracking and risk manage-
ment process. To enlarge the historical event dataset
of emerging risks, a retrospective stochastic analysis
of historical events can be undertaken to explore the
range of possible catastrophe losses that might have
arisen before, could still happen, and should be miti-
gated in the future.

The greatest U.S. catastrophe insurance loss was
caused by Hurricane Katrina in August 2005. During
Hurricane Katrina, more than half of the 3,500 miles
of levees that protect Greater New Orleans were dam-
aged, breached, or destroyed. The infrastructure fail-
ures observed in the Greater New Orleans area were
partly man-made and might have been prevented. A
combination of engineering errors and political inde-
cision weakened the hurricane protection system.

Analytical methods have been devised to address
issues of hurricane uncertainty. For estimating uncer-
tainty in extreme value analysis of hurricanes and
other weather hazards, the use of statistical resam-
pling methods, such as the bootstrap, was advocated
by Coles and Simiu (2003). But no amount of resam-
pling of the hurricane wind speed database before 2005
could have forewarned of the catastrophe loss of Hur-
ricane Katrina in August 2005. However, a counter-
factual analysis of Hurricanes Georges in 1998 and
Ivan in 2004 would have been more effective for
anticipating the record-breaking losses to come.

In the hurricane season just before Katrina, Hurri-
cane Ivan, a category 4 hurricane with 140 mph winds,
was slowly moving directly toward New Orleans. For-
tunately for New Orleans, the storm veered away to the
north and made landfall east of Mobile Bay, Alabama.
But forecasters at one stage were predicting a 25%
probability that Ivan would remain on track to strike
New Orleans as an extreme storm, and dire forecasts
of the flooding loss implications were issued (Laska
2004). Such counterfactual probabilities are useful to
insurers for benchmarking their return period loss esti-

normally until it ceased to operate due to a cyber
attack. Another U.S. example is the collapse of a dike
in Missouri, also in December 2005. Sensors failed to
detect when the dam’s 1.5 billion gallon water reser-
voir was full. A fail-safe shutdown mechanism also
failed, so an overflow developed and a 60-foot section
of parapet wall gave way.

The operability of sensors is crucial to many indus-
trial and infrastructure facilities. Whatever the likeli-
hood is estimated to be of accidental sensor failure, it
is augmented by the likelihood of malevolent action
by cyber vandals and cyber terrorists. A future sen-
sor failure disaster caused by cyber attack may well
have some similar historical precedent, where the
failure was induced accidentally through malfunc-
tion or error. The broadening of historical experience
to include scenarios with substitute disaster agents
yields a fuller risk perspective. In particular, consid-
eration of additional malevolent modes of loss may
elevate the probability of failure beyond what is actu-
arially perceived.

5. Conclusions

The past is what it was; but it is nevertheless instruc-
tive to ask questions about the past. One of the most
insightful questions that was asked of 9/11, and might
be asked of any disaster is this: Why didn’t this hap-
pen before? Historical investigation may reveal that it
did, or might have happened before with an estimated
likelihood, but there was limited risk awareness and
insufficient action taken to mitigate the potential loss.
Actual loss experience has always been the founda-
tion for actuarial risk analysis. Where losses are fre-
quent, the actual database of losses is large enough to
encompass most of the domain of realistic possibility.
Risk insights can then be gained through extensive
statistical data mining. However, especially for rare
risks, actual catastrophe loss experience, especially
when it has been light or even nonexistent, may be
very misleading, and engender risk perception bias.

There is an intrinsic optimism bias which leads peo-
ple, not least insurers, to underestimate risks if large
losses have yet to materialize. As a consequence of
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mates, and gauging a better sense of the robustness of
their models, in particular for detecting indications of
the underestimation of some extreme risks.

Counterfactual analysis of historical events is an
important supplementary tool for uncertainty assess-
ment and disaster preparedness, as well as for catastro-
phe insurance risk management such as the estimation
of probable maximum loss. The past cannot be
changed, but counterfactual disaster analysis can
change the future.
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