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Models Applied to Claim Counts
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AbSTRACT

New models for panel data that consist of a generalization of the 

hurdle model are presented and are applied to modeling a panel 

of claim counts. Correlated random effects are assumed for the 

two processes involved to allow for dependence among all the 

contracts held by the same insured. A method to obtain a pos-

teriori distribution of the random effects as well as predictive 

distributions of the number of claims is presented. A numerical 

illustration of reported insurance claims shows that if indepen-

dence between random effects is assumed, then the variance of 

a priori premiums may be underestimated. If dependence be-

tween random effects is considered, then the predicted number 

of claims given past observations and covariate information and 

its variance is also larger than the one obtained when indepen-

dence is assumed.
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a rebate under an experience rating system) can sup-
port the use of a hurdle model for the number of re-
ported claims. The behavior of the insureds is likely 
to change when they have already reported a claim, 
confirming the hypothesis concerning the two pro-
cesses that determine the total number of claims.

We consider our contribution necessary both from 
a theoretical and a practical point of view. On the 
theoretical sphere, we believe that hidden factors in-
fluencing claiming behavior have not been studied 
much. Once observable risk factors are taken into 
account, it is simplistic to assume that claiming is 
the result of chance. Some risk factors may not be 
directly observable, but still influence claiming. The 
nature of unobserved proneness to report claims is 
difficult to study. Here we address one common as-
sumption about unobserved risk factors that influ-
ence a policyholder’s claiming behavior. We want to 
relax the hypothesis that those hidden factors which 
may induce to report a claim are independent from 
those that would influence the policyholder to re-
port at least one more claim. In the empirical part, 
we show that dependence is significant, and even not 
distinguishable from perfect dependence. This means 
that random effects influencing the two processes in 
the hurdle model have much in common. We also 
see that ignoring random effects dependence implies 
variance underestimation when calculating a priori 
premiums and when predicting the number of claims 
given past observations. An accurate variance esti-
mate is usually needed for calculating premium load-
ings. Therefore, from the practical point of view, our 
aim is to show the importance of our methodological 
approach and to present how it can be implemented 
effectively.

Boucher, Denuit, and Guillén (2008a) extended 
hurdle models to panel count data with the help of in-
dependent random effects representing unexplained 
heterogeneity in both components (below and above 
the hurdle). Here, we allow for correlated random 
effects in each process. Given that hidden charac-
teristics of the insureds (for instance, swiftness of 
reflexes, drinking habits, or respect of the highway 
code) are partly revealed by the number of claims re-

1. Introduction

Many attempts have been made in the actuarial 
literature to find a model for the distribution of the 
annual number of claims reported by a given policy-
holder. Among all possible models, Boucher, Den-
uit, and Guillén (2007) show that when data exhibit 
a high number of zero values, hurdle models often 
provide a good fit for cross-section data. Boucher, 
Denuit, and Guillén (2008b) report that panel data 
models inducing serial dependence by means of 
random effects are well suited to fit observed claim 
counts. The present paper combines these two ideas 
and extends the hurdle model to panel count data.

The hurdle model was introduced by Cragg (1971) 
and reviewed by Mullahy (1986). It is character-
ized by the processes below and above the hurdle. 
The most widely used hurdle model sets the hurdle 
at zero: first, a binary variable allows for the par-
ticipation to the second process and second, another 
process specifies the count number if the first pro-
cess succeeds. See Mullahy (1986), Winkelmann 
(2003b), Grootendorst (1995), or Gurmu (1998). For 
a general overview, we refer the reader to Winkel-
mann (2003a).

The hurdle models have been successfully applied 
to the modeling of health care demand. It is generally 
accepted that the demand for certain types of health 
care services depends on two processes: the need for 
health care and the intensity of demand. Therefore, 
subject to certain assumptions, the use of a hurdle 
model is intuitive and the parameters can have a 
structural interpretation. See, e.g., Stoddart and 
Barer (1981), Pohlmeier and Ulrich (1995), Mul-
lahy (1998), or Santos Silva and Windmeijer (2001). 
Coming back to insurance, a classification of the in-
sured drivers based on two processes seems interest-
ing because the majority of policyholders report less 
than two claims per year. A dichotomous variable 
first separates insureds with and without claim. In 
the former case, another process then generates the 
number of reported claims. The reluctance of some 
insured drivers to report their accidents (because they 
would lose their favorable bonus-malus scheme, i.e., 
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Furthermore, we assume that J
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 is Bernoulli dis-

tributed with mean Q
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 and that the success probabil-
ity Q
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 is Beta(a
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Henceforth, all covariates included in the mod-
els are assumed to be time independent so that g

i,t
 = 

g
i,1

 = g
i
 and a

i,t
 = a

i,1
 = a

i
, for all t = 1, . . . , T. This 

assumption is often made for mathematical conve-
nience. See, e.g., Gourieroux (1999). It has been 
made in Boucher, Denuit, and Guillén (2008a) for 
the hurdle model with independent random effects. 
Here, this assumption is needed to obtain simple 
equation forms. The inclusion of time-varying co-
variates does not induce any numerical difficulties. 
Note also that many variables in our context, such as 
the policyholder’s age or vehicle’s age, are changing 
over time but their evolution is deterministic, so they 
can be transformed to avoid time variation simply 

ported by the policyholders, a posteriori distribution 
of the random effects and predictive distributions 
of the number of claims are derived. Markov chain 
Monte Carlo simulations are needed to compute pos-
terior distributions of the random effects. A numeri-
cal illustration of reported insurance claims supports 
the discussion, demonstrating that the dependence 
between random effects should be considered when 
computing predictive distribution.

This paper is organized as follows. Section 2 de-
scribes the model proposed in this paper and gives a 
numerical illustration based on a Spanish motor in-
surance portfolio observed during seven years. Sec-
tion 3 investigates predictive distributions. Markov 
chain Monte Carlo simulations are used to gener-
ate samples from the predictive distribution for the 
Spanish data set. Section 4 states the conclusion.

2. Hurdle model for panel  
count data

2.1. description of the model

Let us represent the number of claims N reported 
by a policyholder to the company as the product of 
an indicator variable J (equal to 1 if the policyholder 
reported at least 1 claim) and a counting variable K ≥ 
1 (giving the number of claims reported to the com-
pany when at least one claim has been filed). Fur-
thermore, J and K are assumed to be independent. 
Hence,

Pr[ ] Pr[ ]N n JK n= = =

=
= =
= = =

Pr[ ]

Pr[ ]Pr[ ]

J n

J K n n

0 0

1

for 

for 1, 2 , . . .






.  (2.1)

The representation N = JK is similar to the decom-
position of the total claim amount in the individual 
model of risk theory.

Let N
i,1

, N
i,2

, . . . , N
i,T

 be the number of claims re-
ported by policyholder i over period 1 to T. Each 
N

i,t
 is decomposed into the product J

i,t
K

i,t
. To allow 

for serial dependence, it is common since Haus-
man, Hall, and Griliches (1984) to include random 
effect modeling unknown individual characteris-
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which gives
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No closed-form expression is available for the 
likelihood of the model we defined. Numerical 

taking the value at given time reference, i.e., at the 
beginning of the contract.

Random effects capture the effect of hidden indi-
vidual characteristics. The two random effects (Q

i1
, 

Q
i2
) are likely to be correlated because the same 

omitted characteristics affect each process. Here, we 
use a Gaussian copula to represent the joint distribu-
tion of the random effects.1 More precisely, we as-
sume that g can be written as
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with

1Our approach differs from an existing alternative proposed by Gurmu 
and Elder (2007) for standard bivariate count data. These authors do not 
use a copula, but instead they directly specify a bivariate density for the 
random effects.

c G GGa
i i( ( ), ( )), ,1 1 2 2 

 =
−

−
+ −− −1

1

1

2

2
2

2 1
1 1

2 2 1
2 2

2

�

� � � �
exp

( ( )) ( ( )), ,� �G Gi i �� � �

�

� �− −

−
















1
1 1

1
2 2

21

( ( )) ( ( )), ,G Gi i  (2.4)

where F is the standard normal distribution func-
tion and the marginal density functions g

1
 and g

2
 are 

Beta and Gamma, respectively, whereas G
1
 and G

2 

are the corresponding distribution functions. If the 
correlation parameter r is equal to 1, then Q

i1
 and Q

i2 

are perfectly positively dependent. In this case, the 
Gaussian copula reduces to the Fréchet-Hoeffding 
upper bound. Conversely, if the correlation param-
eter r is set to 0, then Q

i1
 and Q

i2
 are mutually in-

dependent. The latter case has been investigated in 
Boucher, Denuit, and Guillén (2008a).
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(2.6)

integration techniques or Markov chain Monte  
Carlo methods can be used. Here, we resort to the 
NLMIXED procedure from the SAS System and we 
implement the approach developed by Nelson et al. 
(2006).

2.2. Empirical illustration

We worked with a sample from the automobile 
portfolio of a major company operating in Spain. 
Only cars for private use were considered in this 
sample. The panel data contain information for the 
period from 1991 to 1998. Our sample contains 
15,179 policyholders who remained with the com-
pany for seven complete periods. Five exogeneous 
variables are kept in the panel plus the annual num-
ber of claims. The exogenous variables are defined 
in Table 1.

Table 2 contains the observed annual claim fre-
quency for the whole portfolio, together with the 
maximum number of claims per policyholder. The 
average claim frequency is 6.8412% over the whole 
observation period.

Estimated parameters for the hurdle model with 
independent random effects are shown in Table 3. 
We also included the estimations obtained with the 
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other covariates, we also see that young drivers ex-
hibit worse claim experience, but it is not statistically 
significant. Finally, insureds with powerful vehicles 
tend to have more insured periods with accidents 
than other drivers.

The parameters of the positive part indicate which 
policyholders are most likely to report a high number 
of claims in a single time period. Quite surprisingly, 
only insured drivers who stayed with the company 
for three to five years tend to be better than the other 
groups.

The estimated parameters of the hurdle model 
with correlated random effects are shown in Tables 4 
and 5. The estimates of the parameters are very close 
to the ones obtained with the independent random 
effects model. The intercepts of the second process 
(i.e., positive part of the hurdle model) for corre-
lated models are smaller than the one estimated by 
the independent random effects model. This differ-

Poisson distribution with Gamma random effects 
(also called multivariate negative binomial distri-
bution, or MVNB) (Boucher, Denuit, and Guillén 
2008b). Analysis of estimations leads to the conclu-
sion that men file fewer claims than women, while 
new insureds in the company seem to have a worse 
loss experience than older clients. In the presence of 

Table 1. Exogenous variables

Variable Description

Sex equals 1 for women and 0 for men

Years with the company (3–5) equals 1 if the client has been with the company between 3 and 5 years
(> 5) equals 1 if the client has been with the company for more than 5 years

Age equals 1 if the insured is 30 years old or younger

Vehicle capacity equals 1 if engine capacity is larger than or equal to 5500 cc

Table 2. Frequency of claims

Period Frequency (%) Maximum

1 7.5367 3

2 6.9569 3

3 6.4035 3

4 6.1466 3

5 6.4695 4

6 6.8450 4

7 7.5301 3

Total 6.8412 4

Table 3. Estimated parameters for the MVNb model and for the hurdle model with independent (ind.) random effects

Hurdle Parts (Ind.)

Variable Parameter MVNB Zero Positive

Intercept — –2.6600 (0.0352) 0.3066 (0.0682) –2.3688 (0.0525)

Sex Women
Men

0.1087 (0.0409)
0

0.1298 (0.0401)
0

.    .

.    .

Years with the company 3–5
>5
<3

–0.1805 (0.0327)
–0.2103 (0.0370)

0

–0.1726 (0.0325)
–0.2124 (0.0370)

0

–0.1951 (0.0933)
.    .

0

Age ≤30
>30

0.0471 (0.0346)
0

0.0616 (0.0341)
0

.    .

.    .

Vehicle capacity ≥5500 cc
<5500 cc

0.0990 (0.0316)
0

0.0975 (0.0315)
0

.    .

.    .

Other a or b 0.8832 (0.0432) 19.9640 (1.2279) 0.8122 (0.2070)

Loglikelihood –26,702.98 –26,688.70
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It clearly shows that the insured drivers who report 
claims also experience time periods with a large 
number of reported claims. Here, Kendall’s tau is 
equal to 2arcsin(r)/p = 0.6377.

Considering the strong positive dependence exist-
ing between the random effects, we also fit the model 
assuming perfect positive dependence between Q

i1
 

and Q
i2
, i.e., we replace the Gaussian copula with the 

Fréchet-Hoeffding one corresponding to r = 1. The 

ence comes from the correlation added to the model. 
The second process seems to be affected by the cor-
related random effects because of the composition 
of the portfolio. Indeed, for all insureds who did not 
report a claim (approximately 66% of the portfolio), 
the model does not need to use the second random 
effects and its associated correlation.

The model shows a significant value of 0.8424 for 
the parameter r associated with the Gaussian copula. 

Table 4. Estimated parameters for the hurdle model with Gaussian copula (Gauss.) for random effects 
(standard errors)

Hurdle parts (Gauss.)

Variable Parameter Zero Positive

Intercept — 0.3043 (0.0531) –2.9100 (0.0882)

Sex Women
Men

0.1362 (0.0416)
0

.    .

.    .

Years with the company 3–5
>5
<3

–0.1703 (0.0323)
–0.2075 (0.0368)

0

–0.2278 (0.0939)
0
0

Age ≤30
>30

0.0600 (0.0440)
0

.    .

.    .

Vehicle capacity ≥5500 cc
<5500 cc

0.0966 (0.0315)
0

.    .

.    .

Other a or b
r

19.9568 (1.0844)
0.8424 (0.1165)

0.7533 (0.2038)
.    .

Loglikelihood –26,662.47

Table 5. Estimated parameters for the hurdle model with Fréchet-Hoeffding copula (F.-H.) for random 
effects (standard errors)

Hurdle parts (F.-H.)

Variable Parameter Zero Positive

Intercept — 0.3104 (0.0429) –2.9622 (0.0788)

Sex Women
Men

0.1368 (0.0399)
0

.    .

.    .

Years with the company 3–5
>5
<3

–0.1702 (0.0326)
–0.2069 (0.0366)

0

–0.2330 (0.0927)
0
0

Age ≤30
>30

0.0597 (0.0346)
0

.    .

.    .

Vehicle capacity ≥5500 cc
<5500 cc

0.0964 (0.0315)
0

.    .

.    .

Other a or b 20.0836 (0.5725) 0.8818 (0.2442)

Loglikelihood –26,663.28
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copula. This can be tested using versions of the Wald 
or loglikelihood ratio tests allowing for a null hypoth-
esis on the boundary of the parameter space. Data 
indicate that the independent copula assumption is re-
jected against the Gaussian copula, while no statistical 
difference is shown between the Fréchet-Hoeffding 
copula and the Gaussian copula.

The MVNB and the hurdle models cannot be com-
pared directly because they are non-nested models. 
A standard method of comparing non-nested mod-
els is through the information criteria, such as the 
Akaike Information Criteria (AIC) = –2log(L) + 2k  
where k is the number of parameters in the model. 
According to Burnham and Anderson (2002), a dif-
ference greater than 10 indicates a significant differ-
ence between models. The MVNB model gives an 
AIC value of 53,419.96 and the hurdle model (with 
F-H copula) has a value of 53,346.56, which indi-
cates that the latter should be preferred.

3. Predictive distribution

3.1. Updating the random effects 
distribution

As time passes, more observations become avail-
able and the distribution of the random effects Q

i,1
 

and Q
i,2

 can be updated from past experience. This 
allows the actuary to derive the distribution of the 

results are displayed in Table 5 and are very similar 
to those of Table 4. This is not unsurprising, as the 
Gaussian copula model exhibits a strong dependence 
between its random effects.

Differences between models can be analyzed 
through the mean and the variance of some insured 
profiles. Several profiles have been selected and are 
described in Table 6. The first profile is classified as a 
good driver, while the last one usually exhibits bad loss 
experience. The other profile corresponds to medium 
risk. Table 7 shows that the expected values of all pro-
files are similar for the four models studied. However, 
the independent random effects model underestimates 
the low risk profile and overestimates the riskier one, 
compared with the correlated hurdle models. The great-
est differences between the models lie in the variance 
estimates because the MVNB model exhibits lower 
variances than the other models. As for the expected 
values for the lower risk profiles, the independent ran-
dom effects model shows variance values that are less 
than the ones obtained for the correlated random ef-
fects models. This does not hold for the bad profile.

Let us now compare the different models. The 
correlated hurdle model with the Fréchet-Hoeffding 
copula as well as the independent hurdle model are 
nested to the correlated hurdle model with the Gauss-
ian copula. For r = 0 we get the independent copula, 
while a value r = 1 results in the Fréchet-Hoeffding 

Table 6. Profiles analyzed

Profile Number Kind of Profile Sex Years 3–5 Years >5 Age Vehicle

1 Good 0 0 1 0 0

2 Medium 1 1 0 0 0

4 Bad 1 0 0 1 1

Table 7. Expectations and variances of the annual number of claims for the different profiles considered

Good Profile Medium Profile Bad Profile

Models Mean Variance Mean Variance Mean Variance

MVNB 0.0567 0.0595 0.0651 0.0688 0.0902 0.0974

Hurdle Ind. 0.0570 0.0644 0.0659 0.0717 0.0911 0.0997

Hurdle Gaus. 0.0575 0.0654 0.0663 0.0720 0.0909 0.0985

Hurdle F.-H. 0.0577 0.0655 0.0663 0.0718 0.0909 0.0983
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future number of claims N
i,T+1

 from past observations 
N

i,1
, . . . , N

i,T
. Formally, the predictive distribution is 

obtained from
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(3.1)

where g(u
i,1

, u
i,2

un
i,1

, . . . , n
i,T

) is the joint posterior dis-
tribution of the random effects Q

i,1
, Q

i,2
), reflecting 

the past experience of policyholder i.
Exact predictive and posterior distributions for the 

random effects can only be expressed in closed form 
for some distributions, such as the hurdle distribu-
tion with independent random effects investigated 
by Boucher, Denuit, and Guillén (2008a). For other 
models, such as the correlated random effects hurdle 
models studied here, these distributions cannot be 
evaluated analytically. Instead, we use Markov chain 
Monte Carlo (MCMC) simulations to compute pos-
terior and predictive distributions.

3.2. Markov chain Monte Carlo 
approach

MCMC simulations reproduce realizations from a 
Markov chain that converges to the joint distribution 
of the random effects. The resulting random draws 
are no longer independent, but under mild regular-
ity conditions (as described in the appendix of Smith 
and Roberts (1993), for example), the value of the 
draw tends in distribution to that of a random draw 
from the joint distribution as the number of draws 
becomes moderately large. See Scollnik (2001) for 
an introduction to MCMC simulations in actuarial 
sciences.

The posterior distribution of the random effects 
can be expressed as

g n ni i i i T( , ), , , , 1 2 1, . . . , 

 
∝ g n n gi i T i i i i( , ) ( , ), , , , , ,1 1 2 1 2, . . . ,    

 ∝ × −− −c F FGa
i i i

A
i

B( ( ), ( )) ( ), , , ,1 1 2 2 1
1

1
11   

   i
C

i D, ,exp( )2
1

2
− −  (3.2)

where 

 A = I an i
t

T

i t( ), =
+∑ 0

 B = T I bn
t

T

i t
− +=∑ ( ), 0

 C = ( ) /, ( ),
n Ii t n

t

T

i t
− +=∑ 0 1 a

 D = � �i n
t

T

I
i t( ),

/= +∑ 0 1

Note that ∑ =t
T

nI i t( ), 0  and ∑t
T

i tn ,
 are respectively 

the number of insured periods without claims and the 
total number of reported claims of a specific insured.

Our strategy is to simulate values of Q
i,1

 and Q
i,2

 
using the Metropolis-Hasting algorithm. The most 
obvious choice for simulating realizations of these 
two random variables is to simulate independent 
Beta and Gamma distributed random variables with 
the parameters A, B and C, D, respectively.
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The same process has been used for the hurdle model 
with a Fréchet-Hoeffding copula.

Table 8 shows the mean of the predictive distribu-
tion for a medium risk profile. This mean depends 
on the sum of reported claims and on the number 
of insured periods with at least one reported claim  
(T – T

0
). To illustrate, we selected a loss experience 

of 10 years. The first jump process has been used to 
compute posterior distributions that are not close to 
the prior distribution, while the more extreme situa-
tions (10 reported claims, 10 insured periods with at 
least one claim, etc.) required the use of the second 
jump process.

We simulated five chains of 500,000 runs each, 
selected a burn-in value of 10,000 draws for our 
MCMC simulations and a lag of 10 to eliminate the 
possible correlation between successive draws. Table 
8 describes the results of these MCMC simulations, 
as well as results drawn from analytic computations 
for the MVNB and the independent random effects 
models.

Interesting conclusions can be drawn from Ta- 
ble 8. For the independent random effects, the number 
of insured periods with at least one claim has a greater 
impact on the predictive mean than the total number 
of reported claims. For insureds who reported one or 
fewer claims, the hurdle model shows a decrease in 
the predictive mean that is less than with the MVNB 
model. For higher claims reporters, the hurdle model 
exhibits a wide range of predictive mean values that 
go from 0.25 to 1.4 times the MVNB ones.

Further, the dependence between the two random 
effects has a major impact on the predictive mean. 
The hurdle model’s correlated random effects ex-
hibits predictive mean values that are closer to the 
MVNB ones than with the independent random ef-
fects model. Moreover, the impact on the predictive 
mean of the number of past reported claims com-
pared with the number of past insured periods with 
claims is different from the hurdle with independent 
random effects. In fact, it is exactly the opposite: the 
penalties generated by the model are higher for in-
sured having more reported claims in the same time 
period.

The ( j + 1)th iteration of the Metropolis-Hasting 
algorithm can be described as follows:

1.  Given  i
j

i
j

,
( )

,
( )

1 2, ,  simulate ˆ ˆ ( , ,, , ,
( )  i i i
jg x y1 2 1, ∼

i
j

,
( ) );2

2. Specifying the distribution of interest by

 ( , ) ( ( ), ( ))x y c F x F y xGa A= −
1 2

1

( ) exp( ),1 1 1− −− −x y yDB C  (3.3)
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3.3. Empirical illustration

Two jump functions g x y i
j

i
j( , , ),

( )
,
( ) 1 2  have been 

tested for our model:

1.  An independent Metropolis-Hastings jump func-
tion, where ˆ

,i 1  and ˆ
,i 2  are distributed as the 

product of a Beta(A,B) and a Gamma(C,D). In 
this situation, the values generated by the pro-
posal distribution (jump function) do not depend 
on the past realizations. Using this jump function, 
the acceptance probability can be simplified as

 P
c F F

c F F

Ga
i i

Ga
i
j

i

=
( ( ˆ ), ( ˆ ))

( ( ), (
, ,

,
( )

1 1 2 2

1 1 2

 

  ,,
( ) ))2
j

 (3.6)

 where F
1
 is the distribution function of the Beta 

distribution with parameters a and b, while F
2
 is 

the Gamma(1/a,1/a) distribution function.

2.  A second jump function has been used where ˆ
,i 1  

and ˆ
,i 2  are distributed as the product of a Beta 

and a Gamma distributions, having means equal 
to i

j
,
( )
1 and i

j
,
( )
2 , respectively. The second terms of 

the distributions, needed to compute the second 
moment, have been set to T k bt

T
i t− ∑ +,  for the 

Beta distribution and 1/a for the Gamma random 
effects.
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moments, which should be consistently estimated 
even under misspecification of the higher-order mo-
ments, provided the mean is correctly specified.

This conclusion is similar to what happens in much 
simpler situations. For instance, when the basic Pois-
son model for cross-sectional count data is used and 
conditional over- or under-dispersion is ignored, pa-
rameter estimates are consistently estimated if the 
mean is correctly specified. So, when estimating the 
negative binomial model, parameters estimates do 
not differ much from the ones obtained in the Pois-
son model, while standard errors may be quite differ-
ent and second-order moment estimates, too.

The method presented in the previous sections 
shows that it is possible to account for the correla-
tion between the two processes of hurdle count dis-
tribution and that estimation is feasible. Moreover, 
dependence should not be ignored if one is interested 

Table 9 shows the predictive variance. Big differ-
ences can also be seen between the independent ran-
dom effects model and the correlated one. In many 
situations, the predictive variance is smaller for the 
independent random effects model compared to the 
other hurdle models. Unlike the expected values, the 
correlated hurdle models do not exhibit close simi-
larities to the MVNB model for variance values. The 
difference is greatest for insureds who report often.

4. Conclusion

Even if the a priori and the predictive means of the 
correlated hurdle model are quite close to the MVNB 
ones, the corresponding variances greatly differ. This 
result is not surprising. It seems quite intuitive that 
the dependence assumption only affects the covari-
ance structure of the model, but not the first-order 

Table 8. Mean of the predictive distribution

Sum of claims

Models T – T0 A priori 0 1 2 3 4 10

MVNB . 0.0651 0.0413 0.0778 0.1143 0.1509 0.1874 0.4064

Hurdle Ind.  0 0.0659 0.0448 . . . . .

 1 0.0659 0.0833 0.0876 0.0920 0.0963 0.1223

 2 0.0659 . . 0.1246 0.1304 0.1363 0.1715

 3 0.0659 . . . 0.1683 0.1755 0.2190

 4 0.0659 . . . . 0.2140 0.2649

10 0.0659 . . . . . 0.5177

Hurdle Gaus.  0 0.0663 0.0441 . . . . .

 1 0.0663 . 0.0776 0.1161 0.1510 0.1848 0.3902

 2 0.0663 . . 0.1108 0.1495 0.1855 0.3953

 3 0.0663 . . . 0.1437 0.1825 0.3965

 4 0.0663 . . . . 0.1761 0.3951

10 0.0663 . . . . . 0.3631

Hurdle F.-H.  0 0.0663 0.0441 . . . . .

 1 0.0663 . 0.0774 0.1225 0.1655 0.2077 0.4640

 2 0.0663 . . 0.1083 0.1539 0.1965 0.4514

 3 0.0663 . . . 0.1427 0.1855 0.4386

 4 0.0663 . . . . 0.1748 0.4256

10 0.0663 . . . . . 0.3562
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that there is no reason to believe that certain types 
of policyholders within one risk group, i.e., with 
some particular unobserved characteristics, would 
base their claiming behavior on a bonus hunger more 
intensely than others. By “bonus hunger” we mean 
that they would refrain from claiming if no claim has 
already been filed during the year to guarantee that 
a rebate will be granted in the following year’s pre-
mium payment, but instead file the claim if the rebate 
is not granted.

It has sometimes been claimed that experience 
rating schemes induce in the policyholder a desire 
not to claim, but if a claim has already taken place, 
then policyholder would not underreport. In fact, we 
show that once some observed risk characteristics 
have been accounted for, there no such switching re-
gime in the model, so that unobserved proneness to 
claim would still remain once a claim has been filed.

in studying the variance and not only the mean of 
the number of claims, given the exogenous char-
acteristics. This is especially relevant in insurance. 
Ignoring dependence would lead to underestimation 
of the variance and, therefore, to inefficient pricing. 
Premium calculation starts from the expected num-
ber of claims to obtain a pure premium and it is then 
usually loaded by a factor which may depend on the 
estimated variance.

An interesting empirical conclusion results from 
our analysis too. Our illustration shows empirical 
evidence that the correlation between the two pro-
cesses of the hurdle model is significant and that 
the dependence is quite strong. Therefore, it means 
that the unobserved characteristics that influence the 
policyholder’s decision to report a claim do not dif-
fer much whether or not he has already reported one 
during that given time-period. So, we can conclude 

Table 9. Variance of the predictive distribution

Sum of claims

Models T – T0 A priori 0 1 2 3 4 10

MVNB . 0.0688 0.0428 0.0807 0.1185 0.1564 0.1942 0.4212

Hurdle Ind.  0 0.0717 0.0497 . . . . .

 1 0.0717 . 0.0841 0.0975 0.1114 0.1258 0.2220

 2 0.0717 . . 0.1155 0.1332 0.1515 0.2735

 3 0.0717 . . . 0.1439 0.1652 0.3066

 4 0.0717 . . . . 0.1697 0.3256

10 0.0717 . . . . . 0.2710

Hurdle Gaus.  0 0.0719 0.0466 . . . . .

 1 0.0720 . 0.0826 0.1289 0.1747 0.2217 0.5486

 2 0.0720 . . 0.1186 0.1666 0.2148 0.5393

 3 0.0720 . . . 0.1542 0.2036 0.5247

 4 0.0720 . . . . 0.1891 0.5066

10 0.0720 . . . . . 0.3801

Hurdle F.-H.  0 0.0718 0.0463 . . . . .

 1 0.0718 . 0.0826 0.1334 0.1840 0.2351 0.5661

 2 0.0718 . . 0.1176 0.1703 0.2214 0.5492

 3 0.0718 . . . 0.1570 0.2080 0.5319

 4 0.0718 . . . . 0.1952 0.5146

10 0.0718 . . . . . 0.4228
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