
60 CASUALTY ACTUARIAL SOCIETY VOLUME 11/ISSUE 1–2

A Comparison of Resampling Methods
for Bootstrapping Triangle GLMs

by Thomas Hartl

ABSTRACT

Bootstrapping is often employed for quantifying the inherent vari­

ability of development triangle GLMs. While easy to implement,

bootstrapping approaches frequently break down when dealing

with actual data sets. Often this happens because linear rescaling

leads to negative values in the resampled incremental develop­

ment data. We introduce two computationally efficient methods

for avoiding this pitfall: split­linear rescaling and parametric

resampling using a limited Pareto distribution. After describ­

ing the essential mathematical properties of the techniques, we

present a performance comparison based on a VBA for Excel

bootstrapping application. The VBA application is available on

request from the author.

KEYWORDS

Bootstrapping and resampling methods, generalized linear modeling, efficient
simulation, stochastic reserving, regression

14953-04_Hartl-3rdPgs.indd 60 8/9/18 10:06 AM

A Comparison of Resampling Methods for Bootstrapping Triangle GLMs

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 61

scaling of Pearson residuals. In Section 2 we describe
basic mathematical properties of split­linear rescal­
ing, and sampling from a limited and shifted Pareto
distribution. Proofs of some key formulas from this
section are given in Appendix A. Section 3 is more
technical in nature and can be skipped on a first
reading, but it does contain information of inter­
est to readers who want to implement the proposed
methods themselves. The algorithms and memory
requirements needed for linear rescaling, split­
linear rescaling, and sampling from a limited and
shifted Pareto distribution are discussed. We pre­
sent performance comparisons based on a VBA for
Excel implementation, and thus demonstrate that
the new methods are computationally as efficient
as linear rescaling. The VBA application is avail­
able from the author on request. Conclusions are
discussed in Section 4.

2. Two schemes for generating
pseudo data

Before delving into the mathematical properties of
the proposed methods, we briefly review resampling
for bootstrapping purposes and introduce the nota­
tion used in this paper.

2.1. Resampling basics

Bootstrapping is a Monte Carlo simulation tech­
nique that is employed to approximate the sampling
distribution of a quantity that is estimated from a data
sample. To do so, one repeatedly generates pseudo
data and re­estimates the quantity in question.

The key idea of non­parametric bootstrapping is
to sample the standardized observed residuals rela­
tive to the stochastic model that is assumed to gen­
erate the original data. The sampled standardized
observed residuals are then used to generate the
pseudo data. As pointed out in Davison and Hinkley
(1997), due to the non­unique definition of residuals
for GLMs, there are multiple non­parametric resid­
ual resampling methods. We also observe that the
various residual standardization schemes typically

1. Introduction

Several authors have described the use of boot­
strapping in the context of GLM­based stochastic
reserving models for property and casualty loss
development triangles; e.g., England and Verrall
(2002), Pinheiro, Silva and Centeno (2003), and
Hartl (2013). A more general textbook treatment of
the bootstrapping procedure for GLMs can be found
in Davison and Hinkley (1997, Section 7.2). While
alternative approaches are mentioned, practical
examples that are based on linear rescaling of
Pearson residuals are often presented. This approach
has the appeal of straightforward mathematics: all
you need is one addition and one multiplication. As
a result, it can be implemented with relative ease in
a spreadsheet.

For real data, however, the linear rescaling of
Pearson residuals often leads to negative values in
the resampling distribution for smaller data values,
thus violating the model assumptions of the GLM
we started with. In other words, the bootstrapping
procedure fails. Both the details of this breakdown
and the alternative method of deviance residual
resampling are discussed in Hartl (2010). Other
authors, e.g., Gluck and Venter (2009), employ para­
metric resampling and thus sidestep the problem.
While parametric resampling circumvents the issue
of negative values in the resampling distribution,
there is an increased computational cost because
generating pseudo­random variates from typical
exponential family distributions requires the evalua­
tion of logs, exponentials or even more computation­
ally intensive functions. As mentioned above, linear
rescaling of Pearson residuals, by contrast, only
requires one addition and one multiplication.

In this paper we propose two alternative methods
for generating pseudo data: split­linear rescaling and
sampling from a limited and shifted Pareto distribu­
tion. During the time­critical Monte Carlo iteration
phase of the bootstrapping procedure, both of the
proposed alternative methods are about the same or
better in terms of computational cost than linear re­

14953-04_Hartl-3rdPgs.indd 61 8/9/18 10:06 AM

Variance Advancing the Science of Risk

62 CASUALTY ACTUARIAL SOCIETY VOLUME 11/ISSUE 1–2

For residual­based bootstrapping, we need a set
of standardized residuals, which we denote by s. To
avoid bias as a result of the resampling process, we
require the mean of s to be exactly zero. This is in
addition to the usual requirement that the variance
of s equals one. It is useful to think of a standardized
residual as a function of an original data value and
the fitted value predicted by the GLM

s H yy ()= . (2.1)ˆ

The function Hŷ(�) depends on the definition of
residual and the standardization procedure employed.
This is discussed in detail in McCullagh and Nelder
(1989), Davison and Hinkley (1997), or Pinheiro,
Silva, and Centeno (2003). For residual­based boot­
strapping, obtaining a pseudo datum (a.k.a. resam­
pled data value) is a two­step process: we randomly
sample from the standardized residuals, and then solve
the following equation for y*

s H yy ()() =Rnd * .ˆ

Note that the function Rnd(s) denotes the operation
of randomly sampling from the set of standardized
residuals. We summarize the resampling procedure
for an individual data point as

y Hy ()()= − s* Rnd . (2.2)ˆ
1

For a concrete example, we consider Pearson resid­
ual resampling for an over dispersed Poisson model.
In this case equation (2.2) becomes

i* ˆ ˆ Rnd , (2.3)sy y y ()= + φ

where K is the dispersion factor. From this equa­
tion, one can easily see how a negative standardized
residual and sufficiently small values of ŷ will lead
to negative resampling values. This breakdown is
frequently encountered when using Pearson residu­
als for bootstrapping triangle GLMs. A more detailed
discussion and examples of this can be found in Hartl
(2010). As noted in subsection 2.1, non­parametric
residual resampling relies on the assumption that
standardized residuals are “approximately” iid. When

fail to strictly standardize the residuals.1 To proceed
with the bootstrap we therefore we must consider
the iid assumption for the standardized residuals as
being “approximately” true.

How these ideas are applied to GLM­based sto­
chastic reserving is described in England and Verrall
(2002) and Pinheiro, Silva, and Centeno (2003).
An alternative to non­parametric bootstrapping is
parametric resampling, where the pseudo data are
generated by sampling from an assumed parametric
distribution. One version of this approach is used
in Gluck and Venter (2009). In either case, pseudo
data are repeatedly generated and the model is refit­
ted to the pseudo data. In this way, one generates
a Monte Carlo sample of the distribution of fitted
parameters or other derived quantities, such as the
projected reserve.

2.2. Notation

In the context of our discussion we will have to
refer both to individual values and to collections of
similar values. To do so we follow the convention
that boldface symbols refer to vector quantities while
non­boldface symbols refer to scalar quantities. For
example, the symbol y refers to a generic element
of y. Where we do need to distinguish between dif­
ferent elements of y, we will employ subscripts such
as yi and yj.

More specifically, y refers to the vector of original
data. The hat symbol, as in ŷ or ŷ, indicates that we
are talking about fitted values. The asterisk symbol,
finally, is used to refer to a full set of pseudo data, y*,
or an individual pseudo datum, y*.

1An anonymous reviewer raised the point that the idd assumption often
fails and shared the empirical observation that standardized residuals
from the first column of a development triangle often appear to be from
a different distribution than the rest. We observe that this is not just a
typical empirical occurrence, but a mathematical truth: the standardized
Pearson residuals for GLMs with different expected (positive) means for
different observations cannot be identically distributed unless we assume
a gamma variance function V(R) = R2; this is clearly the case since the
standardized Pearson residuals for different observations have different
lower bounds.

14953-04_Hartl-3rdPgs.indd 62 8/9/18 10:06 AM

A Comparison of Resampling Methods for Bootstrapping Triangle GLMs

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 63

values are “expanded.” The proof that transformation
(2.4) preserves the mean is left as an easy exercise for
the reader. Figure 1 graphically represents the impact
of different values of c on a set of data points with
values of 4.5, 6.5, and 13 and a mean of 8.

If Xz
2 denotes the variance of z, it is also easy to

show that

cz zσ = σ′ . (2.5)2 2 2

So we can see that if we “squeeze” a set of val­
ues, we will reduce the variance. Conversely, if we
expand the values, we will increase the variance. For
split­linear rescaling, however, we apply transforma­
tion (2.4) to two disjoint subsets of the original data
set, so we need to consider the impact on the overall
variance resulting from the transformation on each
subset.

To be specific, let us assume that the original
resampling distribution, y*, has m data values and
mean R. Let us furthermore assume that we have par­
titioned y* into two subsets, yl* and yu*, with q and r

data values, respectively. The corresponding means
are Rl and Ru. For convenience we will assume that
the values in the lower subset are less than the val­
ues in the upper subset. Furthermore, we can assume
without loss of generality that the original data set
and both subsets are indexed in ascending order.
In particular, the first element of each subset can be
assumed to be the smallest element. The split­linear
transformation can be summarized by the following
equation,

y

y

l
y

c y y

c y y

l l l

u u u u

()

()
′ =

µ + − µ ∈

µ + − µ ∈ ′






*

* , if * *

* , if * *
, (2.6)

where cl and cu, are the scaling factors for the lower
and upper subset. Since transformation (2.4) preserves
the mean of each subset, the overall mean is also pre­
served. In A.1 we show that the variance of the trans­
formed resampling distribution can be expressed as

m

q qc

r rc
y

l l y

u u y

l

u

()
()

σ =
µ − µ + σ

+ µ − µ + σ







′

1
. (2.7)*

2

2 2 2

2 2 2

�

�

the described breakdown of linear Pearson residual
rescaling occurs, we can interpret this as saying that
this approximation is not good enough for this data
set, prompting one to look for alternatives.

2.3. Split-linear rescaling

Our goal is to avoid the breakdown of the resam­
pling scheme that results from zero or negative pseudo
data being generated. To this end we introduce a new
parameter, Umin, that defines the smallest allowable
pseudo data values as a percentage of the expected
mean. Conceptually this could be different for each
data point, but we use a ratio that is uniformly applied
to all data points. One might argue that just requiring
the pseudo data to be positive is sufficient, and that
introducing Umin is overly restrictive. At the same time,
since we are dealing with finite precision computer­
based simulations, we may get into numerical trouble
if we get too close to zero. Practitioners who want
to explore what happens at the limits are welcome to
choose very small values for Umin.

The intuitive idea behind split­linear rescaling is as
follows: if the standard Pearson residual rescaling pro­
cedure results in resampling values that are below Umin

times the expected mean value, we split the standard
Pearson residual resampling values into a lower set and
an upper set. Next we “squeeze” the lower resampling
values together, so that they no longer dip below Umin

times the expected mean value. The “squeezing”
operation does preserve the mean, but it will lower
the variance of the resampling distribution. To off­
set this, we apply a mean preserving “expansion”
operation to the upper resampling values.

We proceed by defining what we mean by “squeez­
ing” and “expanding.” Given any set of values, z,
with mean R, we can obtain a new set of values, ze,
that has the same mean. This is accomplished by
applying the following linear transformation to each
element z of z

z c z()′ = µ + − µ , (2.4)

where the scaling factor, c, is a positive constant. If
c < 1, we end up “squeezing” the values. If c # 1, the

14953-04_Hartl-3rdPgs.indd 63 8/9/18 10:06 AM

Variance Advancing the Science of Risk

64 CASUALTY ACTUARIAL SOCIETY VOLUME 11/ISSUE 1–2

Step 1 Find a suitable partition of y* such that

Rl # UminR.

Step 2 Calculate cl using the following formula

c
y

l
l

l l

= µ − π µ
µ −

.
1

�
min

Step 3 Calculate cu according to

c c
q

r
u l

y

y

l

u

()= + −
σ
σ

1 1 .2 *
2

*
2

In practice we proceed by finding a suitable parti­
tion of y* and a value of cl such that we satisfy the
condition that no value of y* drops below UminR. To
get a variance preserving split­linear transformation
we then set the right­hand side of equation (2.7) equal
to the variance of y* and solve the resulting equation
for cu. We summarize the general procedure for split­
linear rescaling as follows.

Step 0 Generate y* using Pearson residual rescal-

ing. If y1* v UminR, use y*—there is no need to

use split-linear rescaling.

c=1.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c=1.4

c=0.5

c=0.6

Figure 1. Impact of different values of C

14953-04_Hartl-3rdPgs.indd 64 8/9/18 10:06 AM

A Comparison of Resampling Methods for Bootstrapping Triangle GLMs

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 65

2.4. Sampling from a limited
and shifted Pareto distribution

We briefly discuss the justification for the method,
before presenting the mathematical properties of the
distribution.

2.4.1. Rationale for parametric resampling
The original idea of bootstrapping is that that the

residuals can be interpreted as a sample from the error
distribution, and that we can therefore use it to approx­
imate the error distribution itself. In the context of
development triangle GLMs, where we only have one
data point for each combination of covariate levels, this
assumption may be a little shaky. To see why bootstrap­
ping seems to work anyway, we note that from a pseudo
likelihood perspective (see chapter 9 in McCullagh and
Nelder 1989), the fitted values of the GLM only depend
on the assumed relationship between the fitted means
and the corresponding expected variances. I.e., the spe­
cific shape of the error distribution beyond the second
moment assumption does not affect the fitted param­
eter values, and we are dealing with a semi­parametric
model for the data. The residual rescaling procedure
ensures that for each data point we sample from a dis­
tribution with the correct mean­variance relationship.
Viewed this way, residual bootstrapping is just one way
to run a Monte Carlo simulation to determine the shape
of the sampling distribution of the model parameters.

Unless we strongly believe that the observed
residuals contain good information about the error
structure (beyond a way of estimating the dispersion
parameter), it seems equally valid to perform the
Monte Carlo simulation using another resampling dis­
tribution that satisfies the mean­variance relationship,
and is thus consistent with the semi­parametric model
assumption for the data that the original model fit is
based on. A more detailed discussion of the case for
parametric resampling in the context of development
triangle GLMs can be found on pages 16 and 17 of
Hartl (2010). In this subsection we present one such
resampling scheme that is efficient from a computa­
tional point of view and works well for small fitted
values and large dispersion factors.

Step 4 Generate y* by applying transformation (2.6)

y

y

l

u

y
c y y

c y y

l l l

u u u

()

()
′ =

µ + − µ ∈

µ + − µ ∈






*

* , if * *

* , if * *
. (2.8)

Proofs for the formulas given in equation (2.8) can
be found in A.2 and A.3. The condition in Step 1 that
Rl # UminR is necessary because the smallest value in the
lower set, y1*, gets “squeezed” towards Rl, so the trans­
formed value y1*e can only reach UminR if Rl # UminR.

We also observe that for Step 1 there can be more
than one of partition of y* such that Rl # UminR. So,
which one should we choose? One strategy might be
to simply take the first one that comes along, with
the smallest number of elements in y l*. The strategy
we are employing is to find the partition that makes
cu

2 − 1 as close to 1 − cl
2 as possible, by minimizing

the absolute difference between qXyl
*

2 and rXyu*
2 . This

heuristic decision is motivated by a notion that the
adjustment should be as evenly spread over the entire
distribution as possible, rather than just “bunching”
values in the left tail. Tracking qXyl

*
2 and rXyu*

2 proved
to be convenient because they can be updated recur­
sively as we move values from the upper set to the
lower set, and the optimal partition can be determined
without testing all possible partitions.

Finally, we note that there are two situations in which
the split­linear rescaling procedure does not work:
breakdowns may occur during Step 3 or during Step 4.
For Step 3 the breakdown happens if Xyu*

2 = 0. This
means that all the values in yu* are the same (including
the degenerate case where there are no values in yu*).
In this case we cannot expand the upper subset. Pass­
ing the Xyu*

2 # 0 hurdle, however, still leaves open the
possibility that the procedure breaks down in Step 4
because y u*1

e < UminR. This means that the smallest
value in yu* gets mapped to a value below UminR, thus
violating the very constraint we wanted to satisfy
by using split­linear rescaling. Working with real
data we have encountered both of the breakdowns
discussed, but we also have found that split­linear
resampling succeeds in many cases where linear
Pearson resampling fails.

14953-04_Hartl-3rdPgs.indd 65 8/9/18 10:06 AM

Variance Advancing the Science of Risk

66 CASUALTY ACTUARIAL SOCIETY VOLUME 11/ISSUE 1–2

mina c y

a
a

b
c y

ab a a
a

b
V y

()
() ()

− = π

− − =

− − − =

ˆ

1 ln ˆ

2 1 ln ˆ . (2.12)2 2
2

It is not possible to solve this non­linear system of
equations in closed form, but it can be reduced to the
following equation with one unknown

k
e+ γ + + γ − =γ1

1

2
0, (2.13)2

where k = V(ŷ)(1 − Umin)
−2 ŷ−2. A derivation of equa­

tion (2.13) is provided in A.5.
In A.6 we show that equation (2.13) has a unique

positive solution for all k # 0. For a brief discussion
on how to find the solution the reader is referred
to A.7. While it is always possible to use paramet­
ric resampling from a limited and shifted Pareto
distribution, we caution that the distribution may
become nearly degenerate for small values of k

(P(X = b − c) goes to 1) or nearly unlimited for large
values of k (b − c becomes large, and P(X = b − c)
goes to 0).

3. Relative performance

When considering the code needed to implement
a bootstrapping scheme, one can distinguish three
phases: initialization, Monte Carlo phase, and pro­
cessing of output. During initialization we perform
the initial model fit and create the data structures
needed to efficiently execute the resampling and
refitting during the Monte Carlo phase. Typically
we perform a bootstrapping simulation to get a
robust measure of the variance or a tail index such
as TVar. So, as a general rule, we want to run as
many Monte Carlo iterations as possible (given
time and memory constraints). For this reason the
time spent during initialization and processing of
output is small compared to the time spent during
the Monte Carlo phase. Therefore we restrict our­

2.4.2. Properties of the limited
and shifted Pareto distribution

We are only considering distributions with a Pareto
index of one. The cumulative distribution function is
given by

F

0

1

1

, (2.9)x

x c a
a

x c
a x c b

b x c

() =

+ <

−
+

≤ + <

≤ +










where 0 < a < b, and c � �. Note that this is a mixed
distribution with P(X = b − c)= a/b. The following
formulas for the expectation and variance are derived
in A.4:

X a
a

b
c

X ab a a
a

b

()
()

()

()

= − −

= − − −

E 1 ln ,

Var 2 1 ln . (2.10)2 2
2

This distribution has three parameters, which
generally allows us to match the required mean
and variance, while maintaining the minimum per­
centage of mean condition.Actually we employ two
strategies.

First, we argue heuristically that it is desirable
that a/b is small, but not too small. This ensures that
the distribution is largely continuous, while there is
also a reasonable chance that the maximum value is
predictably attained during a 10,000 or 50,000 run
simulation. By setting a/b = 0.001 (any other small,
but not too small value would do, as well) we end
up with

y a c V y a()= − =ˆ 7.908 , ˆ 1,936.467 , (2.11)2

so the parameters a, b, c can readily be calculated in
closed form (each fitted data point has its own set
of parameters). Often the distribution obtained using
this strategy will satisfy the minimum percentage of
mean condition (i.e. a − c v Uminŷ).

Second, if the first strategy fails to satisfy the min­
imum percentage of mean condition, we solve the
following system of equations:

14953-04_Hartl-3rdPgs.indd 66 8/9/18 10:06 AM

A Comparison of Resampling Methods for Bootstrapping Triangle GLMs

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 67

linear transformation (2.6) into one linear transforma­
tion (technically one transformation for the lower set
and one for the upper set). Details can be found in A.8.
We observe that only one line of code from the If . . .
then . . . else block will actually be executed for any
given data point, so the executed operations for split­
linear resampling are almost the same as linear Pearson
resampling, except for the comparison and branching
operation needed for the If . . . then . . . else block.

The memory requirements for limited Pareto
sampling are

Dim a(1 To n) As Double
Dim bmc(1 To n) As Double ‘ bmc = b minus c
Dim c(1 To n) As Double
Dim p(1 To n) As Double

The pseudo code for resampling the ith data point is

Function ResampleLimitedPareto(i As Integer)
As Double

Dim u As Double
u = RandUniform(0,1)
If u <= p(i) Then
Result = bmc(i)

Else
Result = a(i)/u – c(i)

End If
End Function (3.3)

This formula is simply the inverse transform
method applied to the CDF given by (2.9).

Note that a typical random number generator will
produce a uniform random number between 0 and 1.
Generating a random integer (between given bounds)
is usually accomplished as indicated in the pseudo
code above, even if a particular implementation may
hide this from the user by providing a RandInteger
function. For our operation counts in Table 1 we will
exclude the addition in RandInteger, because this can
be avoided by using 0­based instead of 1­based arrays.

3.2. Performance comparisons

Table 1 summarizes the memory requirements and
provides operation counts for each of the three meth­
ods. Please note that in the case of limited Pareto
sampling, the operation counts depend on the random
number generated, and therefore two columns of oper­
ation counts are provided. With probability (1 − p) the

selves to analyzing performance during the Monte
Carlo phase.

3.1. Pseudo code for resampling step

For all our methods we assume that the resampling
parameters were pre­computed and stored during
the initialization phase. Furthermore we assume that
there are m data points and r standardized residuals.

The memory requirements for linear Pearson resid­
ual resampling are

Dim Residual(1 To r) As Double
Dim Base(1 To n) As Double
Dim Scale(1 To n) As Double

The pseudo code for resampling the ith data point is

Function ResampleLinearPearson
(i As Integer) As Double

Dim j As Integer
j = 1 + int(RandUniform(0,1) * r)
‘ RandInteger(1,r)

Result = Base(i) + Scale(i) * Residual(j)
End Function (3.1)

The memory requirements for split­linear residual
resampling are

Dim Residual(1 To r) As Double
Dim FirstUp(1 To n) As Integer
Dim BaseLow(1 To n) As Double
Dim BaseUp(1 To n) As Double
Dim ScaleLow(1 To n) As Double
Dim ScaleUp(1 To n) As Double

The pseudo code for resampling the ith data point is

Function ResampleSplitLinear
(i As Integer) As Double

Dim j As Integer
j = 1 + int(RandUniform(0,1) * r)
‘ RandInteger(1,r)

If j < FirstUp(i)
Result = BaseLow(i) + ScaleLow(i)
* Residual(j)

Else
Result = BaseUp(i) + ScaleUp(i)
* Residual(j)

End If
End Function (3.2)

Note that by precomputing BaseLow, ScaleLow,
BaseUp, and ScaleUp we are effectively combining
the original linear Pearson rescaling with the split­

14953-04_Hartl-3rdPgs.indd 67 8/9/18 10:06 AM

Variance Advancing the Science of Risk

68 CASUALTY ACTUARIAL SOCIETY VOLUME 11/ISSUE 1–2

models. Data set (B) is presented in the triangle form
familiar to P&C actuaries in Pinheiro, Silva, and Cen­
teno (2003). Both triangles are included in appendix B
for reference purposes. Linear Pearson rescaling fails
for this second triangle (see Hartl 2010 for a detailed
discussion). We are using it to demonstrate that the
two alternative methods proposed in this paper do
extend the applicability of the bootstrapping approach
to triangle GLMs. To further demonstrate the flexibil­
ity of the GLM approach, the second model is fitted
to the last five diagonals of the triangle (instead of the
full triangle). Note that for data set B we only have 40
data points vs 55 data points for data set A (because
we are only using the most recent five diagonals).
In each case we are also sampling 45 future cells to
simulate the process error component.

All the test results cited in this paper were pro­
duced with a VBA for Excel application that is
available from the author on request. Because VBA
for Excel is an interpreted language that is embed­
ded in a complex environment, reliably testing
the performance is not straightforward. Since we
cannot control for the variation in the environment,
we have used a randomized sampling scheme, where
we executed a fixed number of test runs and randomly
chose which particular method to use for each test run.
We ran two different test scripts for each triangle. The
first test script (sampling) tested the resampling opera­
tion in isolation. Given our total number of test runs,
we expect about 3,333 runs for each method, where
each test run consists of resampling the triangle and
simulating the reserve runoff 100 times. The second
test script (full) tested the resampling methods in
the context of the full bootstrapping simulation (i.e.,
including refitting the model, projecting the reserve
based on the refitted model, and simulating the runoff
of the reserve). Again, we expect about 3,333 test runs
for each method, with 100 bootstrapping iterations
each. The scripts were run on the author’s Lenovo
X230 tablet (Intel Core i5, 2.6GHz, 4GB ram), under
Windows 7(64 bit), with Excel 2010.

Table 2 summarizes the average run time and the
standard deviation for 100 iterations, for each data

first column applies, and with probability p, the second
column applies. The “int()” row refers to the truncation
of the fractional part used in RandInteger; the “com­
parison” row refers the If . . . then . . . else block. For
the memory row, dbl refers to a 64 bit floating point
number, and int refers to a 32 bit integer (some systems
may allocate 64 bits for an integer).

The computational cost for the various operations
does depend on the programming language and plat­
form used. However, we can unambiguously con­
clude that split­linear rescaling requires slightly more
operations (one additional array access, and one
comparison) than linear Pearson rescaling. Compar­
ing linear Pearson rescaling to limited Pareto sam­
pling, we note that linear Pearson rescaling requires
an additional multiplication operation, while limited
Pareto sampling involves an additional comparison.
The complexity of the comparison is similar to a sub­
traction operation, so we expect that on most plat­
forms, limited Pareto sampling will perform slightly
better than linear Pearson rescaling. Limited Pareto
rescaling additionally benefits from the reduced com­
plexity in case we sample the upper limit.

To provide some concrete examples, we have tested
the methods on two actuarial development triangles.
The first data set (A) is a US Industry Auto paid loss
triangle taken from Friedland (2010, p. 107). This
triangle was chosen because all three methods work,
allowing us to benchmark them against each other.
The second data set (B) is taken from the appendix to
Taylor and Ashe (1983) and has been used by a num­
ber of authors to demonstrate stochastic reserving

Table 1. Memory requirement and operation counts

Linear
Pearson Split-Linear

Limited
Pareto

Memory (2n + r) w dbl
(4n + r) w dbl

+ n w int 4n w dbl

array access 3 4 3 2

RndUni() 1 1 1 1

int() 1 1 − −

dbl + or − 1 1 1 −

dbl * or { 2 2 1 −

comparison − 1 1 1

14953-04_Hartl-3rdPgs.indd 68 8/9/18 10:06 AM

A Comparison of Resampling Methods for Bootstrapping Triangle GLMs

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 69

England, P. D., and R. J. Verrall, “Stochastic Claims Reserving
in General Insurance,” British Actuarial Journal 8: 3, 2002,
pp. 443–518.

Gluck, S. M., and G. G. Venter, “Stochastic Trend Models in
Casualty and Life Insurance,” in Enterprise Risk Management
Symposium, 2009.

Friedland, J. F., Estimating Unpaid Claims Using Basic Techniques,
3rd ed., Arlington, Va.: Casualty Actuarial Society, 2010.

Hartl, T., “Bootstrapping Generalized Linear Models for Devel­
opment Triangles Using Deviance Residuals,” CAS E-Forum,
Fall 2010.

Hartl, T., “GLMs for Incomplete Development Triangles,” pre­
sented at the Casualty Loss Reserving Seminar, 2013.

McCullagh, P., and J. A. Nelder, Generalized Linear Models,
2nd ed., New York: Chapman and Hall, 1989.

Pinheiro, P. J. R., J. M. A. Silva, and M. D. L. Centeno, “Boot­
strap Methodology in Claim Reserving,” Journal of Risk and
Insurance 70: 4, Dec. 2003, pp. 701–714.

Taylor, G. C., and F. R. Ashe, “Second Moments of Estimates
of Outstanding Claims,” Journal of Econometrics 23: 1,
1983, pp. 37–61.

Appendix A

A.1. Derivation of equation (2.7):

The variance of y*e is given by

m
yy ∑()σ = ′ − µ′

1
* .*

2 2

This can be split into separate summations for
the lower and upper subset. After substituting the
expressions from equation (2.6) we get

m
c y

m
c y

y l l l l

u u u u

∑

∑

()

(()

()

)

σ = µ + − µ − µ

+ µ + − µ − µ

′
1

*

1
* . (A.1)

*
2 2

2

set and test script. All run times are in seconds and
pertain only to the Monte Carlo phase.

The VBA for Excel based performance compari­
son confirms the relative performance we expected
based on our operation counts in Table 1.

4. Conclusions

We presented two new methods for generating
pseudo data for bootstrapping a GLM. Split­linear
rescaling is a residual based resampling technique
that extends the class of triangle GLMs that can be
bootstrapped, but it can fail for specific triangles.
Sampling from a limited and shifted Pareto dis­
tribution is always possible (subject to practical
limitations when the distribution becomes almost
degenerate or effectively unlimited). Both methods
are computationally inexpensive and comparable to
linear Pearson residual rescaling. Further research
is needed to explore the sensitivity of bootstrapped
confidence intervals or tail measures to the resampling
distribution employed.

Acknowledgments

This paper was written and revised while the author
worked as an Assistant Professor at Bryant Univer­
sity, RI. The author is also grateful for the construc­
tive comments from the anonymous reviewers.

Bibliography
Davison, A. C., and D. V. Hinkley, Bootstrap Methods and

their Application, New York: Cambridge University Press,
1997.

Table 2. Performance statistics

Run time (seconds) per 100 iterations (sample size ~ 3,333)

Data – Script

Linear Pearson Split-Linear Limited Pareto

Avg StDev Avg StDev Avg StDev

A – sampling .035865 1.4732e-5 .036634 1.4646e-5 .034683 1.4305e-5

A – full .28042 8.1971e-5 .28123 8.0853e-5 .24674 8.0390e-5

B – sampling n/a n/a .030226 1.3084e-5 .028707 1.2344e-5

B – full n/a n/a .26993 8.1661e-5 .22490 7.7293e-5

14953-04_Hartl-3rdPgs.indd 69 8/9/18 10:06 AM

Variance Advancing the Science of Risk

70 CASUALTY ACTUARIAL SOCIETY VOLUME 11/ISSUE 1–2

which completes the derivation of the equation for
step 2 ■

A.3. Derivation of equation
for step 3 of (2.8):

Note that by letting cl = cu = 1 transformation (2.6)
maps y* onto itself.As a special case of equation (2.7)
we therefore get

m
q q r ry l y u yl u()() ()σ = µ − µ + σ + µ − µ + σ1

.*
2 2

*
2 2

*
2

Requiring the general transformation (2.6) to be
variance preserving (i.e., X2

y*e = X2
y*), thus leads to

m
q qc r rc

m
q q r r

l l y u u y

l y u y

l u

l u

()

()

() ()

() ()

µ − µ + σ + µ − µ + σ

= µ − µ + σ + µ − µ + σ

1

1
.

2 2
*

2 2 2
*

2

2
*

2 2
*

2

This expression can readily be simplified to yield

qc rc q rl y u y y yl u l u
σ + σ = σ + σ .2

*
2 2

*
2

*
2

*
2

Solving for cu we end up with

c c
q

r
u l

y

y

l

u

()= + −
σ
σ

1 1 ,2 *
2

*
2

completing the derivation of the equation for step 3 ■

A.4. Derivation of equation (2.10)

The support of the limited and shifted Pareto
random variable defined by (2.9) is (a − c, b − c],
with

x
a

x c
x a c b c

P X b c
a

b

()

()

()
()

=
+

∈ − −

= − =

f for , ,

.

2

The derivation of the formulas for the expected
value can be simplified by considering the random
variable Y = X + c (i.e., by reversing the shift). We
obtain

y
a

y
y a b Y b

a

b
() () ()= ∈ = =f for , , P .2

Note that the first summation ranges over the q
elements of y l* and the second summation ranges
over the r elements of yu*. For the time being, we
concentrate on simplifying the summation term
for the lower subset. We start by grouping all the
constant terms together, continue by expanding the
square, and then simplify

c y c

c y c y c c

c y q c c

q c

q c c c c y

q c c c y

q qc c y

q c y

q qc

l l l l l

l l l l l l l l l l

l l l l l l l

l l l

l l l l l l l l l l

l l l l l l l l

l l l l l

l l l l

l l yl

∑

∑

∑

∑

∑

∑

∑ ∑

()
()

()

()(

()

()()

)

() () ()

()

()

()()

() ()

()

()

()

+ µ − µ − µ

= + µ − µ − µ + µ − µ − µ

= + µ µ − µ − µ

+ µ − µ − µ

= µ − µ − µ µ + µ − µ − µ +

= µ − µ − µ µ − µ + µ +

= µ − µ − µ +

= µ − µ + − µ

= µ − µ + σ

*

* 2 *

* 2

2 *

*

*

*

.

2

2 2

2 2

2

2 2

2 2

2 2 2 2 2

2 2 2 2

2 2
*

2

An analogous derivation shows that

c y c u r rcu u u u u u u yl∑()() ()+ µ − µ − = µ − µ + σ* .
2 2 2

*
2

Substituting these last two expressions into equa­
tion (A.1) we end up with

m
q qc r rcy l l y u u yl u

()() ()σ = µ − µ + σ + µ − µ + σ′
1

,*
2 2 2

*
2 2 2

*
2

which completes the derivation of equation (2.7) ■

A.2. Derivation of equation
for step 2 of (2.8):

To guarantee the minimum percentage of mean
condition we require

y c yl l l l l()′ = µ + − µ = π µ* * .
1 1 min

Solving for cl we get

c
y y

l
l

l l

l

l l

= π µ − µ
− µ

= µ − π µ
µ −

min min

* *
,

1 1

14953-04_Hartl-3rdPgs.indd 70 8/9/18 10:06 AM

A Comparison of Resampling Methods for Bootstrapping Triangle GLMs

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 71

We can eliminate the first equation by setting
c = a − Uminŷ. Substituting U = (1 − Umin)ŷ, p = a/b, and
V = V(ŷ) leaves us with

a p a U

a

p
a a p V

()

()

− = +

− − − =

1 ln

2
1 ln .

2
2 2 2

Squaring the first equation and substituting into
the second, we can eliminate the second equation
by setting

p

a a U V

a

U

a

U

a

V

a

()
= + + + = + + +1

2
1

2 2
,

2 2

2

2

2 2

where the second expression is obtained by expand­
ing (a + U)2 and then dividing all terms by 2a2. This
leaves us with only one remaining equation to
satisfy

a a p a U− = +ln .

Note that at this point p is considered a function
of a. We eliminate the additive a term, apply the
exponential to both sides, and finally collect all terms
on the left to get the equivalent equation

p
eU a− =1

0.

Substituting the above expression for 1/p, L = U/a,
and k = V/U2 we finally arrive at

k
e+ γ + + γ − =γ1

1

2
0.2

Note that since U, a # 0, we are only interested in
solutions with L # 0. Also note that k # 0. This com­
pletes the derivation of equation (2.13) ■

A.6. Existence of a unique solution
to equation (2.13)

Our analysis is aided by thinking of the LHS of
equation (2.13) as defining a function G(L)

k
e()γ = + γ + + γ − γG 1

1

2
.2

For the expected value of Y we have

E f P

1

ln ln 1 ln .

2

Y y y dy b Y b

ay

y
dy b

a

b
a

y
dy a

a b a a a a
a

b

a

b

a

b

a

b

∫

∫ ∫

()

() ()() = + =

= + = +

= − + = −

For the second raw moment of Y we get

Y y y dy b Y b

ay

y
dy b

a

b
ady ab

a b a ab ab a

a

b

a

b

a

b

∫

∫ ∫

() () ()

()

= + =

= + = +

= − + = −

E f P

2 .

2 2 2

2

2
2

2

From this we readily obtain the formula for the
variance of Y:

Y Y Y

ab a a
a

b()
()() ()= −

= − − −

Var E E

2 1 ln .

2

2 2
2

Noting that X = Y − c implies E(X) = E(Y) − c,
and Var(X) = Var(Y), we can see that the following
formulas hold:

X a
a

b
c

X ab a a
a

b

()
()

()

()

= − −

= − − −

E 1 ln ,

Var 2 1 ln .2 2
2

This completes the derivation of equation (2.10) ■

A.5. Derivation of equation (2.13)

For convenience we repeat the system of equa­
tions (2.12)

a c y

a
a

b
c y

ab a a
a

b
V y

()
() ()

− = π

− − =

− − − =

ˆ

1 ˆ

2 1 ˆ2 2
2

ln

ln

min

14953-04_Hartl-3rdPgs.indd 71 8/9/18 10:06 AM

Variance Advancing the Science of Risk

72 CASUALTY ACTUARIAL SOCIETY VOLUME 11/ISSUE 1–2

stability or the speed of convergence. Also note that
the particular form of equation (2.13) has been chosen
to streamline the proof of the existence and unique­
ness of the solution to the system of equations (2.12).
Numerical methods for solving (2.12) may also work
with other equivalent representations (e.g., directly
solving for a) ■

A.8. Derivation of the formula
for pseudo code (3.2)

The linear Pearson rescaling transformation for
a GLM with variance function V(ŷ) and dispersion
factor K is given by

sy y y() ()= + φ* ˆ V ˆ Rnd ,i

while the split­linear transformation (2.6) is given
by

y
c y y

c y y

l l l

u u u

()

()
′ =

µ + − µ ∈

µ + − µ ∈







y

y

l

u

*
* ,if * *

* ,if * *
.

Without loss of generality we can assume that the
elements of s have been indexed in ascending order,
starting with index 1 for the smallest (i.e., most nega­
tive) residual. As before, we assume that yl* and yu*,
have q and r data values, respectively. We can com­
bine both transformations into one transformation
using the following definition:

y
s i q

s i q
l

l l l

u u l

′ =
+ ≤

+ >






*

base scale , if

base scale , if
.

The reader can easily verify that the parameters
for this version are given by the following formulas:

c c y

c y

c c y

c y

l l l l

l l

u u u u

u u

()

()

()

()

= − µ +

= φ

= − µ +

= φ

base 1 ˆ

scale V ˆ

base 1 ˆ

scale V ˆ .

This completes the derivation of the formula used
in pseudo code (3.2) ■

We also need the first derivative

k e() ()′ γ = + + γ − γG 1 1 ,

and the second derivative

k e()′′ γ = + − γG 1 .

We note the boundary conditions of G(0) =
Ge(0) = 0, while Gu(0) = k # 0.

Clearly Gu(ln(1 + k)) = 0, Gu(L) # 0 for 0 < L <
ln (1 + k), and Gu(L) < 0 for L # ln(1 + k). Given that
Ge(0) = 0, we can conclude that there exists a unique
value Lmax # ln(1 + k) such that Ge(Lmax) = 0, Ge(L) # 0
for 0 < L < Lmax, and Ge(L) < 0 for L # Lmax. Since we
also have G(0) = 0, the same argument also implies that
there exists a unique value Lroot # Lmax such that G(Lroot)
= 0, G(L) # 0 for 0 < L < Lroot, and G(L) < 0 for L # Lroot.

This establishes that Lroot is the unique solution to
equation (2.13) ■

A.7. Remarks on numerically
solving equation (2.13)

Using the definitions from Appendix A.6, we can
apply the Newton­Raphson method to solve equation
(2.13) using the iteration

i i
i

i

()
()

γ = γ − γ
′ γ+

G

G
.1

Without providing the details, we comment that
the above iteration is guaranteed to converge to
Lroot, provided we can find an initial guess such that
L0 # Lmax. Based on our analysis in Appendix A.6, we
know that Lroot # Lmax #ln(1 + k) and that Ge(L) < 0
if and only if L # Lmax. So a brute force strategy
for finding a suitable L0, is the following procedure
(pseudo code):

Step 0 L0 = ln(1 + k) e Initialize L0

Step 1 L0 = 2L0 e Double L0

Step 2 If Ge(L0) v 0 e Repeat until L0 # Lmax

then go back to Step 1.

In practice the basic Newton­Raphson algorithm
described here may be modified to increase numerical

14953-04_Hartl-3rdPgs.indd 72 8/9/18 10:06 AM

A Comparison of Resampling Methods for Bootstrapping Triangle GLMs

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 73

Appendix B

For reference we provide the data used to test the methods in section 3. Both data sets are given in incre­
mental format, organized as development triangles with rows corresponding to accident years and columns
corresponding to development years.

B.1. Triangle A

This data set is taken from Friedland (2010, p. 107). We divided the amounts by 1,000.

18,539 14,692 6,831 3,830 2,004 869 456 226 109 89

20,410 15,680 7,169 3,900 2,049 954 464 253 122

22,121 16,855 7,413 4,173 2,173 1,005 544 249

22,992 17,104 7,672 4,326 2,270 1,015 500

24,093 17,703 8,108 4,449 2,401 1,053

24,084 17,315 7,671 4,514 2,346

24,370 17,120 7,747 4,538

25,101 17,602 7,943

25,609 17,998

27,230

B.2. Triangle B

This data set is taken from the appendix of Taylor and Ashe (1983). Note that the original data set is provided
in claim count and severity format. We have rounded total paid claim amounts to the nearest integer.

357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

443,160 693,190 991,983 769,488 504,851 470,639

396,132 937,085 847,498 805,037 705,960

440,832 847,631 1,131,398 1,063,269

359,480 1,061,648 1,443,370

376,686 986,608

344,014

14953-04_Hartl-3rdPgs.indd 73 8/9/18 10:06 AM

