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ABSTRACT

This paper discusses an approach to the correlation prob-
lem in which losses from different lines of insurance are
linked by a common variation (or shock) in the parameters
of each line’s loss model. The paper begins with a sim-
ple common shock model and graphically illustrates the
effect of the magnitude of the shocks on correlation. Next
it describes some more general common shock models that
involve common shocks to both the claim count and claim
severity distributions. It derives formulas for the correla-
tion between lines of insurance in terms of the magnitude
of the common shocks and the parameters of the under-
lying claim count and claim severity distributions. Finally,
it shows how to estimate the magnitude of the common
shocks. A feature of this estimation is that it uses the data
from several insurers.
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The Common Shock Model for Correlated Insurance Losses

1. Introduction

In the study of insurer enterprise risk manage-
ment, “correlation” has been an important but
elusive phenomenon. Those who have tried to
model insurer risk assuming independence have
almost always understated the variability that is
observed in publicly available data. Most actu-
aries would agree that correlation is the major
missing link in the realistic modeling of insur-
ance losses.
This paper discusses an approach to the cor-

relation problem in which losses from different
lines of insurance are linked by a common vari-
ation (or shock) in the parameters of each line’s
loss model. Here is an outline of what is to fol-
low.

² A simple common shock model will graphi-
cally illustrate the effect of the magnitude of
the shocks on correlation.

² The paper will describe some more general
common shock models that involve common
shocks to both the claim count and claim sever-
ity distributions. The paper will derive formu-
las for the correlation between lines of insur-
ance in terms of the magnitude of the common
shocks and the parameters of the underlying
claim count and claim severity distributions.

² Finally, we will see how to estimate the mag-
nitude of the common shocks. A feature of this
estimation is that it uses the data from several
insurers.

One should note that the common shock model
is a kind of a “dependency” that causes correla-
tion. It is possible for highly dependent random
variables to be uncorrelated.

2. A simple common shock model

Let X1 and X2 be independent positive random
variables. Also let ¯, which is independent of X1
and X2, be a positive random variable with mean
1 and variance b. If b > 0, the random variables

Figure 1. X1 and X2 are independently drawn random
variables with a coefficient of variation (CV) equal to
0:1. ¯ is drawn from a distribution with b =Var[¯] = 0.
Thus ½= 0:00

Figure 2. X1 and X2 are independently drawn
random variables with CV = 0:1. ¯ was drawn from a
distribution with b =Var[¯] = 0:005. Thus ½= 0:33

¯X1 and ¯X2 tend to be larger when ¯ is large,
and tend to be smaller when ¯ is small. Hence
the random variables ¯X1 and ¯X2 are correlated.
Figures 1 through 4 illustrate this graphically for
the case in which X1 and X2 follow a gamma
distribution.
Let us refer to ¯ as the “common shock” and

refer to b as the magnitude of the common shock.
Figures 1 through 4 illustrate graphically that the
coefficient of correlation depends upon b and the
volatility of the gamma distributed random vari-
ables X1 and X2.
We now turn to deriving formulas for the co-

efficient of correlation between the random vari-
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Figure 3. X1 and X2 are independently drawn
random variables with CV = 0:1. ¯ was drawn from a
distribution with b =Var[¯] = 0:020. Thus ½= 0:66

ables ¯X1 and ¯X2. This derivation will be de-
tailed. It is worth the reader’s time to master
these details in order to appreciate much of what
is to follow.
Let us begin with the derivation of two general

equations from which to derive much of what
follows. These equations calculate the global co-
variance (or variance) in terms of the covariances
(or variances) that are given conditionally on a
parameter µ.

Cov[X,Y]

= E[X ¢Y]¡E[X] ¢E[Y]
= Eµ[E[X ¢Y j µ]]¡Eµ[E[X j µ]] ¢Eµ[E[Y j µ]]
= Eµ[E[X ¢Y j µ]]¡Eµ[E[X j µ] ¢E[Y j µ]]
+Eµ[E[X j µ] ¢E[Y j µ]]
¡Eµ[E[X j µ]] ¢Eµ[E[Y j µ]]

= Eµ[Cov[X,Y j µ]]+Covµ[E[X j µ],E[Y j µ]]:
(2.1)

An important special case of this equation oc-
curs when X = Y.

Var[X] = Eµ[Var[X j µ]] +Varµ[E[X j µ]]:
(2.2)

Now let us apply Equations (2.1) and (2.2) to
the common shock model given at the beginning
of this section.

Figure 4. X1 and X2 are independently drawn
random variables with CV = 0:2. ¯ was drawn from a
distribution with b =Var[¯] = 0:020. Thus ½= 0:33

Cov[¯X1,¯X2] = E¯[Cov[¯X1,¯X2 j ¯]]
+Cov¯[E[¯X1 j ¯],E[¯X2 j ¯]]

= E¯[¯
2Cov[X1,X2 j ¯]]

+Cov¯[¯E[X1],¯E[X2]]

= E¯[¯
2 ¢ 0]+E[X1] ¢E[X2]

¢Cov¯[¯,¯]

= E[X1] ¢E[X2] ¢b: (2.3)

Var[¯X1] = E¯[Var[¯X1 j ¯]]+Var¯[E[¯X1 j ¯]]

= E¯[¯
2 ¢Var[X1]] +Var¯[¯ ¢E[X1]]

= Var[X1] ¢E¯[¯2]+E[X1]2 ¢Var¯[¯]

= Var[X1] ¢ (1+ b) +E[X1]2 ¢ b:
(2.4)

Similarly:

Var[¯X2] = Var[X2] ¢ (1+ b) +E[X2]2 ¢ b:
(2.5)

The following equation defines the coefficient
of correlation of two random variables, ¯X1 and
¯X2.

½[¯X1,¯X2] =
Cov[¯X1,¯X2]p

Var[¯X1] ¢Var[¯X2]]
:

(2.6)
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Combining Equations (2.3) through (2.5) with
Equation (2.6) yields a simple expression for the
correlation coefficient of ¯X1 and ¯X2 if we give
X1 and X2 identical distributions with a common
coefficient of variation, CV.

½[¯X1,¯X2] =
b

(CV)2 ¢ (1+ b)+ b : (2.7)

The coefficients of correlation given in Figures
1 through 4 were calculated using Equation (2.7).
At this point we can observe that the common

shock model, as formulated above, implies that
the coefficient of correlation depends not only
on the magnitude of the shocks, but also on the
volatility of the distributions that receive the ef-
fect of the random shocks.

3. The collective risk model

The collective risk model describes the dis-
tribution of total losses arising from a two-step
process where: (1) the number of claims is ran-
dom; and (2) for each claim, the claim severity
is random. This section specifies a particular ver-
sion of the collective risk model. The next section
subjects both the claim count and claim severity
distributions to common shocks across different
lines of insurance and calculates the correlations
implied by this model.
It will be helpful to think of the “common

shocks” as either inflation or judicial trends that
affect two or more lines of insurance simulta-
neously. The more severe shocks such as those
caused by natural catastrophes are not the focus
of this paper.
Let’s begin by considering a Poisson distribu-

tion with mean ¸ and variance ¸ for the claim
count random variable N. Let Â be a random
variable with mean 1 and variance c. The claim
count distribution1 for this version of the collec-
tive risk model will be defined by the two-step

1If Â has a gamma distribution, it is well known that this claim
count distribution is the negative binomial distribution. None of
the results derived in this paper will make use of this fact.

process where (1) Â is selected at random; and
(2) the claim count is selected at random from a
Poisson distribution with mean Â¸. The mean of
this distribution is ¸. Let’s refer to the parameter
c as the contagion parameter.
Using Equation (2.2), one calculates the vari-

ance of N as:

Var[N] = EÂ[Var[N j Â]]+VarÂ[E[N j Â]]
= EÂ[Â¸]+VarÂ[Â¸]

= ¸+ c ¢¸2: (3.1)

Let Zi be a random variable for claim severity
for the ith claim. We will assume that each Zi is
identically distributed with mean ¹ and variance
¾2. For random claim count, N, let:

X = Z1 + ¢ ¢ ¢+ZN:
The mean of X is ¸¹. Using Equation (2.2) we

calculate the variance of X as:

Var[X] = EN[Var[X jN]]+VarN[E[X jN]]
= EN[N ¢¾2] +VarN[N ¢¹]
= ¸ ¢¾2 +¹2 ¢ (¸+ c ¢¸2)
= ¸ ¢ (¾2 +¹2)+ c ¢¸2 ¢¹2: (3.2)

In this paper, let us define the size of risk as the
expected loss of the risk. Let us also define the
following assumptions on how the parameters of
this model change with risk size.

1. The size of the risk is proportional to the ex-
pected claim count, ¸.

2. The parameters of the claim severity distribu-
tion, ¹ and ¾, are the same for all risk sizes.
Note that this implies that the size of risk will
be proportional to the expected claim count.

3. The contagion parameter, c, is the same for
all risk sizes.

I believe that this is appropriate in the context
of an insurer considering its volume in a particu-
lar line of business. It would not be appropriate in
other contexts, such as property insurance where
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Figure 5. Standard deviation of normalized loss ratios for the collective risk model ¹= 15,000 ¾ = 60,000
c= 0:01

increasing the size of an insured building will ex-
pose the insurer to a potentially larger insurance
claim.
I believe these assumptions are applicable

in the context of this paper, which is enterprise
risk management. As an insurer increases the
number of risks that it insures, its total expected
claim count, ¸, increases. If each additional risk
that it insures is similar to its existing risks, it
is reasonable to expect that ¹ and ¾ will not
change. One way to think of the contagion pa-
rameter, c, is as a measure of the uncertainty in
the claim frequency. I believe it is reasonable to
think this uncertainty applies to all risks simul-
taneously.
While a set of assumptions may sound reason-

able, ultimately one should empirically test the
predictions of such a model. Such a test will be
documented later in this paper.
Let us define the normalized loss ratio as the

ratio of the random loss X to its expected loss
E[X] = ¸ ¢¹. Defining it this way allows us to
remove the cyclic effects of premium in the usual
loss ratio. It is also worth noting that I did not
normalize the loss ratio with respect to standard
deviation.

Equation (3.3) shows that the standard devia-
tion of the normalized loss ratio, R = X=E[X] de-
creases asymptotically to

p
c as we increase the

size of the risk. Figure 5 illustrates this graphi-
cally.

Standard Deviation[R] =q
¸ ¢ (¾2 +¹2)+ c ¢¸2 ¢¹2

¸ ¢¹ ¡!
¸!1

p
c: (3.3)

4. Common shocks in the
collective risk model

This section applies the ideas underlying the
common shock model described in Section 2 to
the collective risk model described in Section 3.
Let us start with the claim count distributions.
Let N1 and N2 be two claim count random

variables with E[Ni] = ¸i and Var[Ni] = ¸i+ ci ¢
¸2i for i = 1 and 2.
Let ® be a random variable, which is indepen-

dent of N1 and N2 with E[®] = 1 and Var[®] = g.
Let us now introduce common shocks into the

joint distribution of N1 and N2 by selecting N1 and
N2 from claim count distributions with means ® ¢
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¸1 and ® ¢¸2 and variances ® ¢¸1 + c1 ¢ (® ¢¸1)2
and ® ¢¸2 + c2 ¢ (® ¢¸2)2, respectively Let’s cal-
culate the covariance matrix for N1 and N2.
Using Equation (2.2) to calculate the diagonal

elements yields:

Var[Ni] = E®[Var[Ni j ®]] +Var®[E[Ni j ®]]
= E®[® ¢¸i+ ci ¢®2 ¢¸2i ] +Var®[® ¢¸i]
= ¸i+ ci ¢¸2i ¢ (1+ g) +¸2i ¢ g
= ¸i+¸

2
i ¢ (ci+ g+ ci ¢ g): (4.1)

Using Equation (2.1) to calculate the off-diag-
onal elements yields:

Cov[N1,N2] = E®[Cov[N1,N2 j ®]]
+Cov®[E[N1 j ®],E[N2 j ®]]

= E®[0]+Cov®[® ¢¸1,® ¢¸2]
= g ¢¸1 ¢¸2: (4.2)

Now let’s add independent random claim se-
verities, Z1 and Z2 to our common shock model.
Here are the calculations for the elements of the
covariance matrix for the total loss random vari-
ables X1 and X2:

Var[Xi] = ENi [Var[Xi jNi]] +VarNi [E[Xi jNi]]
= ENi [Ni ¢¾2i ] +VarNi [Ni ¢¹i]
= ¸i ¢¾2i +¹2i ¢ (¸i+¸2i ¢ (ci+ g+ ci ¢ g))
= ¸i ¢ (¾2i +¹2i ) +¸2i ¢¹2i ¢ (ci+ g+ ci ¢g):

(4.3)

Cov[X1,X2] = E®[Cov[X1,X2 j ®]]
+Cov®[E[X1 j ®],E[X2 j ®]]

= E®[0]+Cov®[® ¢¸1 ¢¹1,® ¢¸2 ¢¹2]
= g ¢¸1 ¢¹1 ¢¸2 ¢¹2: (4.4)

Finally, let us multiply the claim severity ran-
dom variables, Z1 and Z2, by a random variable,
¯ with E[¯] = 1 and Var[¯] = b. Here are the cal-
culations for the elements of the covariance ma-
trix for the total loss random variables X1 and

X2:

Var[Xi] = E¯[Var[Xi j ¯]]+Var¯[E[Xi j ¯]]
= E¯[¸i ¢¯2 ¢ (¾2i +¹2i ) +¸2i ¢¯2 ¢¹2i
¢ (ci+g+ ci ¢ g)]+Var¯[¸i ¢¯ ¢¹i]

= (¸i ¢ (¾2i +¹2i ) +¸2i ¢¹2i ¢ (ci+ g+ ci ¢g))
¢E[¯2]+¸2i ¢¹2i ¢Var[¯]

= ¸i ¢ (¹2i +¾2i ) ¢ (1+ b)+¸2i ¢¹2i
¢ (ci+g+ b+ ci ¢ g+ ci ¢b+ g ¢ b
+ ci ¢g ¢ b): (4.5)

Cov[X1,X2] = E¯[Cov[X1,X2 j ¯]]
+Cov¯[E[X1 j ¯],E[X2 j ¯]]

= E¯[g ¢¸1 ¢¯ ¢¹1 ¢¸2 ¢¯ ¢¹2]
+Cov¯[¸1 ¢¯ ¢¹1,¸2 ¢¯ ¢¹2]

= g ¢¸1 ¢¹1 ¢¸2 ¢¹2 ¢E[¯2]
+¸1 ¢¹1 ¢¸2 ¢¹2 ¢Var[¯]

= ¸1 ¢¹1 ¢¸2 ¢¹2 ¢ (b+ g+ b ¢ g): (4.6)

The description of this version of the collective
risk model can be completed with the following
two assumptions:

1. b and g are the same for all risk sizes.

2. b and g are the same for all lines of insurance.

The parameters b and g represent parameter
uncertainty that applies across lines of insurance,
and it seems reasonable to assume that this un-
certainty is independent of the size of risk. The
second assumption keeps the math simple with-
out sacrificing the main themes of this paper. Ad-
mittedly, there are many other assumptions one
could make that are equally plausible. For exam-
ple, the bs and gs could vary by line of insurance.
In practice I have allowed g to vary by line of
insurance. It is left as an exercise to the reader
to show that you can replace g in Equations
(4.4) and (4.6) with

p
g1 ¢ g2 when the coeffi-

cient of correlation between ®1 and ®2 is equal
to one.
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Figure 6. Standard deviation of normalized loss ratios for the collective risk model ¹= 15,000 ¾ = 60,000 c= 0:01

The following example illustrates the implica-
tions of this model for normalized loss ratios as
we vary the size of risk. The example will as-
sume that ¹= 16,000, ¾ = 60,000 and c= 0:010
for each line of insurance. The additional param-
eters will be b = g = 0:001. The final sections
will show that these are reasonable choices of
the parameters.
First let us note that since b and g are small

compared to c, the introduction of b and g into
the model has little effect on the standard devia-
tion of the normalized loss ratio, although what
effect there is increases with the size of the risk.
This is illustrated by Figure 6.
However, the coefficient of correlation be-

tween normalized loss ratios R1 and R2, as de-
fined by

½[R1,R2] =
Cov[R1,R2]p
Var[R1] ¢Var[R2]

,

increases significantly as you increase the size
of the risk. In Figure 7, it is negligible for small
risks.
Actuaries often find that their expectations of

the coefficients of correlations are much higher.
My best rationale for these expectations is that

most expect a positive number between 0 and 1,
and 0.5 seems like a good choice.
Even so, these (perhaps) seemingly small cor-

relations can have a significant effect for a mul-
tiline insurer seeking to manage its risk as the
following shall now illustrate.
Let us consider the covariance matrix for an

insurer writing n lines of business:0BBBBB@
Var[X1] Cov[X1,X2] ¢ ¢ ¢ Cov[X1,Xn]

Cov[X2,X1] Var[X2] ¢ ¢ ¢ Cov[X2,Xn]

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
Cov[Xn,X1] Cov[Xn,X2] ¢ ¢ ¢ Var[Xn]

1CCCCCA
The standard deviation of the insurer’s total

losses, X1 + ¢ ¢ ¢+Xn, is the square root of the sum
of the elements of the covariance matrix. If b =
g = 0, this sum consists of the n variances along
the diagonal. If b or g6= 0, then there are n2¡ n
off-diagonal covariances included in the sum. As
n increases, so does the effect of even a “small”
correlation. This is illustrated in Figures 8 and 9.

5. An empirical test of the model

The collective risk model, as defined above,
makes predictions about how the volatility and
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Figure 7. Coefficient of correlation between normalized loss ratios of two equally sized risks for the collective risk
model ¹= 15,000 ¾ = 60,000 c= 0:01 b = g = 0:001

correlation statistics of normalized loss ratios
vary with insurer characteristics. These predic-
tions should, at least in principle, be observable
when one looks at a sizeable collection of insur-
ance companies. This section will demonstrate
that data that is publicly available from Schedule
P is consistent with the major predictions of this
model.
Data in Schedule P includes net losses, re-

ported to date, and net premium by major line of
insurance over a 10-year period. With Schedule
P data for several insurers, various statistics such
as standard deviations and coefficients of correla-
tion between lines of insurance were calculated.
Testing the model consisted of comparing these
statistics with available information about each
insurer.
Schedule P data presents several difficulties.

The discussion that follows describes ways that
Meyers, Klinker and Lalonde [3] dealt with these
issues.
Schedule P premiums and reserves vary in

largely predictable ways due to conditions that
are present in the insurance market. These con-

ditions are often referred to as the underwriting

cycle. The underwriting cycle contributes an ar-

tificial volatility to underwriting results that lies

outside the statistical realm of insurance risk. The

measures insurance managers take to deal with

the statistical realm of insurance risk, i.e., rein-

surance and diversification, are different than

those measures they take to deal with the un-

derwriting cycle.

We dealt with the additional volatility caused

by the underwriting cycle by using paid, rather

than incurred, losses and estimating the ultimate

incurred losses with industrywide paid loss de-

velopment factors. We also attempted to smooth

out differences in loss ratios that we deemed

“predictable.” Appendix A in Meyers et al. [3]

describes this process in greater detail.
After making the above adjustments, two other

difficulties remain. First, the use of industrywide
loss development factors removes the volatility
that takes place after the report date of the loss.
As such, we should expect the volatilities we
measure to understate the ultimate volatility. To
see this mathematically, consider Equation (2.2)
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Figure 8. Standard deviation of normalized loss ratios for the collective risk model for the sum of two equally
sized risks ¹= 15,000 ¾ = 60,000 c= 0:01

Figure 9. Standard deviation of normalized loss ratios for the collective risk model for the sum of ten equally
sized risks ¹= 15,000 ¾ = 60,000 c= 0:01

with µ as a random variable representing future
development. If we assume that the current loss
estimates equal the expected ultimate loss, the
second term in Equation (2.2) is the current vari-
ance, and the sum of the two terms is what we
expect to be the ultimate variance.
Second, Schedule P losses are reported net of

reinsurance. In addition, policy limits are not re-

ported. Rather than incorporate this information
directly into our estimation, we did sensitivity
tests of our model, varying limits and reinsurance
provisions within realistic scenarios. See Figures
10 and 11.
This example presents results for commer-

cial automobile liability insurance. I feel this
is a good choice because: (1) it is a shorter
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Figure 10. Commercial auto normalized loss ratios actual—Schedule P HiLim and LowLim from the collective risk
model

Figure 11. Commercial auto normalized loss ratios simulated from collective risk model

tailed line than general liability and the
underestimation of volatility will not be as
great; (2) the use of reinsurance is not as great
as it is in the general liability lines of insur-
ance; and (3) commercial auto is not as prone
to catastrophes as the property lines of insur-
ance.

5.1. Standard deviation of normalized
loss ratios vs. size of insurer

As illustrated in Figure 5, the collective risk
model predicts that the standard deviation of in-
surer normalized loss ratios should decrease as
the size of the insurer increases. In Figure 10 we
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Figure 12. Commercial auto and personal auto normalized loss ratios actual—Schedule P, predicted—collective
risk model

can see that this prediction is consistent with the
observed standard deviations calculated from the
Schedule P data described above. In this figure
we plotted the empirical standard deviation of
55 commercial auto insurers against the average
(over the 10 years of reported data) expected loss
for the insurer.2

Figure 10 also includes the standard deviations
predicted by the collective risk model. The se-
ries “LowLim” used claim severity distribution
parameters taken from a countrywide ISO claim
severity distributions evaluated at the $300,000
occurrence limit. In this series, c= 0:007, g =
0:0005, and b = 0, were selected judgmentally.
See Section 6 for commentary on selecting b
and g.
Now we (at ISO) know from data reported

to us that, depending on the subline (e.g., light
and medium trucks or long-haul trucks), typi-
cally 65% to 90% of all commercial auto insur-
ance policies are written at the $1 million policy

2Since the expected loss varies by each observation of annual losses,
the annual normalized loss ratios are not identically distributed ac-
cording to the collective risk model. I do not think this is a serious
problem here since the volume of business is fairly consistent from
year to year for the insurers selected in this sample.

limit. But since I also believed that the Sched-
ule P data understates the true volatility of the
normalized loss ratios, I selected the $300,000
policy limit for the test.
For the sake of comparison, the series “HiLim”

represents a judgmental adjustment that one
might use to account for problems with the
Schedule P data. Claim severity distribution pa-
rameters were taken from countrywide ISO claim
severity distributions evaluated at the $1 million
occurrence limit. In this series c= 0:010, g =
0:0010, and b = 0 were selected judgmentally.
Figures 10 and 11 also provide a compara-

ble plot of normalized loss ratios simulated from
a collective risk model, one per insurer, using
the same parameters used for the “LowLim” and
“HiLim” series. The two plots suggest that the
Schedule P data is well represented by the col-
lective risk model–for an individual line of in-
surance.

5.2. Coefficients of correlation vs. the
size of the insurer

As Figure 7 illustrates, a second prediction of

the collective risk model is that the coefficients
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Figure 13. Commercial auto and personal auto normalized loss ratios simulated and predicted from the collective
risk model

of correlation will increase with the size of the
insurer. In Figure 12, we plotted the empirical
coefficients of correlation between commercial
auto and personal auto for 38 insurers of both
lines against the average (over 10 years of ex-
perience reported for the two lines of insurance)
expected loss. A comparable plot based on simu-
lated data from the underlying model is in Figure
13.3

We observe that the coefficient of correlation
is a very volatile statistic for both the empirical
data and the simulated data which has a built-in
assumption consistent with our hypothesis. This
serves to illustrate the difficulty in measuring the
effect of correlation in insurance data.
To provide a deeper analysis of the correla-

tion problem, assume that the common shock
random variables ® and ¯ operate on all insurers
simultaneously. For random normalized loss
ratios R1 and R2 the covariance is calculated

3It may seem odd that the predicted correlation curve is not smooth.
It is not smooth because the horizontal axis is the average of the
commercial auto and the personal auto expected loss, while the
actual split between the two expected losses varies significantly
between insurers.

as

E[(R1¡ 1) ¢ (R2¡ 1)] =
Cov[X1,X2]
¸1 ¢¹1 ¢¸2 ¢¹2

= b+ g+ b ¢ g;
(5.1)

which is derived from Equation (4.5).
Now as already established, the standard devi-

ation of the normalized loss ratios decreases with
the size of the insurer. Thus the denominator of:

½[R1,R2] =
E[(R1¡ 1) ¢ (R2¡ 1)]
Std[R1] ¢Std[R2]

should decrease. If we can demonstrate with the
Schedule P data that the numerator does not de-
crease, we can conclude that the prediction that
coefficients of correlation will increase is consis-
tent with the Schedule P data. It is to this demon-
stration that we now turn.
In the test that (R1¡ 1) ¢ (R2¡ 1) was indepen-

dent of insurer size the data consisted of all
15,790 possible pairs of r1 and r2, and the asso-
ciated expected losses, taken from the same year
and different insurers. The line4 fit to the ordered

4I used a weighted least squares fit, using the inverse of the product
of the predicted standard deviations of the normalized loss ratios as
the weights. This gives the higher volume, and hence more stable,
observations more weight.
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pairs

(Average Size of the Insurer, (r1¡ 1) ¢ (r2¡ 1))
produced a slope of +1:95£ 10¡10. This slightly
positive slope means that an increasing coeffi-
cient of correlation is consistent with the Sched-
ule P data.
Equation (5.1) also provides us with a way

to estimate the quantity b+ g+ b ¢ g. One sim-
ply has to calculate the weighted average of the
15,790 products of (r1¡ 1) ¢ (r2¡ 1) = 0:00054.
Since the 15,790 observations are not indepen-
dent, the usual tests of statistical significance do
not apply. To test the statistical significance of
this result, 200 weighted averages were simu-
lated using the “LowLim” parameters (except
that b = g = 0) with the result that the highest
weighted average was 0.000318. Since the final
weighted average of 0.00054 is greater than all
the simulations generated under the null hypoth-
esis that b+ g+ b ¢ g = 0, the result is statistically
significant.
One final simulation with the “LowLim” pa-

rameters (except that b = 0 and g = 0:00054) cal-
culated 200 slopes results in a slope of 1:95£
10¡10, which was just below the 49th highest.
Thus the fitted slope would not be unusual if the
collective risk model is the correct model.

6. The role of judgment in
selecting final parameters

Historically, most actuaries have resorted to
judgment in the quantification of correlation.
This paper was written in the hope of supplying
some objectivity to this quantification. ISO has
worked on quantifying this correlation. ISO has
conducted analyses similar to the one described
above for several lines of business using both
Schedule P data and individual insurer data re-
ported to ISO. In the end, no data set is perfect
for the job, and some judgments must be made.
Here are some of the considerations made in se-
lecting the final models. Comments are always
welcome.

² First of all, the selection of the model itself is
subject to judgment. As noted above, there are
other ways of introducing the “common shock
idea” that are very likely to be consistent with
the data.

² We have reason to believe that the data we ob-
serve understates the ultimate variability since
there are some claims that have yet to be set-
tled. As a result we judgmentally increased the
c, b, and g parameters in the final model.

² Since the estimation procedure described pro-
vides an estimate of b+ g+ b ¢ g, it is impossi-
ble to distinguish between the claim frequency
common shocks as quantified by g, and the
claim severity common shocks as quantified
by b. A lot of work has been done with claim
severity and claim frequency trend, and one
can look to uncertainties in these trends when
selecting the final parameters.

Accounting data such as Schedule P may not
be the best source for such analyses, but if we
cannot see the effect of correlation in the ac-
counting data, I would ask, do we need to worry
about correlation? I believe that the analysis in
this paper demonstrates that we do need to con-
sider correlation between lines of insurance.
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