
The Chain Ladder and Tweedie
Distributed Claims Data

by Greg Taylor

ABSTRACT

The paper considers a model with multiplicative accident
period and development period effects, and derives the ML
equations for parameter estimation in the case that the dis-
tribution of each cell of the claims triangle is a general
member of the Tweedie family.
Thisyields someknownspecial cases, e.g., over-dispersed

Poisson (ODP) distribution (Tweedie parameter p= 1), for
which the chain ladder algorithm is known to provide max-
imum likelihood (ML) parameter estimates, and gamma
distribution (p= 2). The intermediate cases (1< p< 2)
represent compound Poisson cell distributions with gamma
severity distributions.
While ML estimates are not chain ladder for Tweedie

distributions other than ODP, the paper investigates why
they will be close to chain ladder under certain circum-
stances. It is also demonstrated that the ML estimates for
the general Tweedie case can be obtained by application
of the chain ladder algorithm to transformed data. This is
illustrated numerically.
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1. Introduction

The chain ladder is a widely used algorithm for
loss reserving. It is formulated in Mack (1993).
From its heuristic beginnings, it was shown to
give maximum likelihood (ML) estimates of
model parameters (Hachemeister and Stanard
1975; Mack 1991a; Renshaw and Verrall 1998)
when:

² observations are independently Poisson dis-
tributed; and

² their means are modeled as the product of a
row effect and a column effect.

This result was extended from the Poisson to
the over-dispersed Poisson (ODP) distribution by
England and Verrall (2002).
Mack (1991a) considered another model in

which observations were gamma distributed, and
gave a number of earlier references to the same
model. ML parameter estimates were obtained
which, while not identical to chain ladder es-
timates, have sometimes been found by subse-
quent authors (e.g., Wüthrich 2003) to be nu-
merically similar.
The ODP lies within the Tweedie family

(Tweedie 1984), a subset of the exponential dis-
persion family (Nelder and Wedderburn 1972).
Wüthrich (2003) made a numerical study of ML
fitting in the case of Tweedie distributed obser-
vations. Again the results were similar to chain
ladder estimation.
The purpose of the present very brief note is

to consider ML estimation in this Tweedie case,
to derive the earlier results as special cases of
it, and to indicate the reasons for the numerical
similarity of their results.

2. Preliminaries

2.1. Framework and notation

The data set will consist throughout of a tri-
angle of insurance claims data. Let i = 1,2, : : : ,n
denote period of origin, j = 1,2, : : : ,n denote de-

velopment period, and Yij ¸ 0 the observation in
the (i,j) cell of the triangle. The triangle con-
sists of the set fYij : i = 1,2, : : : ,n; j = 1,2, : : : ,n¡
i+1g of incremental claims data (paid losses,
claim counts, etc.). It is assumed that E[Yij] is
finite for each (i,j).
Define cumulative row sums

Sij =
jX
k=1

Yik: (2.1)

Further, let
PR(i) xij denote summation over the

entire row i of the triangle of quantities xij in-
dexed by i,j, i.e., over cells (i,j) with i fixed and
j = 1,2, : : : ,n¡ i+1. Similarly, let PC(j) denote
summation over the entire column j of the tri-
angle, and let

PD(k) denote summation over the
entire diagonal k.

2.2. Chain ladder

The chain ladder model is formulated by Mack
(1991b; 1993) as follows:

Assumption CL1.

E[Si,j+1 j Si1,Si2, : : : ,Sij] = Sijfj ,
j = 1,2, : : : ,n¡ 1, independently of i

(2.2)
for some set of parameters fj ; and also

Assumption CL2. Rows of the data triangle
are stochastically independent, i.e., Yij and Ykl are
independent for i 6= k.
It may be observed that (2.2) implies

E[Sij j Si1] = Si1f1f2 : : :fj¡1, (2.3)

which in turn implies

E[Yij] = ®i¯j (2.4)

for parameters ®i,¯j , where E[Yij] denotes the
unconditional mean of Yij , and

fj =
j+1X
k=1

¯k=
jX
k=1

¯k: (2.5)
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The derivation of Equation (2.4) is as follows:

E[Yij] = E[Sij ¡ Si,j¡1 j Si1]
= E[Si1f1f2 : : :fj¡2(fj¡1¡ 1)]

by (2.1) and (2.3), where the outer expectation
is taken with respect to Si1. Hence

E[Yij] = E[Si1]f1f2 : : :fj¡2(fj¡1¡ 1)
which is of form (2.4).
The chain ladder estimate of fj is

Fj =
n¡jX
i=1

Si,j+1

,n¡jX
i=1

Sij: (2.6)

The Fj may be converted to estimates ®̂i,
ˆ̄
j of

the ®i,¯j by means of the following relations:

ˆ̄
j = ¯1[F1 : : :Fj¡2(Fj¡1¡ 1)] (2.7)

subject to some linear constraint on the ¯j , such
as

nX
k=1

¯k = 1 (2.8)

and

®̂i = Si,n¡i+1

,
R(i)X ˆ̄

j : (2.9)

2.3. Exponential dispersion and Tweedie
families of distributions

2.3.1. Exponential dispersion family
The following family of log densities is called

the exponential dispersion family (EDF) (Nelder
and Wedderburn 1972):

l(y;°,¸) = c(¸)[y°¡ b(°)]+ a(y,¸)
(2.10)

for some functions a(:, :), b(:) and c(:) and pa-
rameters ° and ¸.
It may be shown that, for Y subject to this log

likelihood,

¹= E[Y] = b0(°), Var[Y] = b00(°)=c(¸):

(2.11)

2.3.2. Tweedie family
A sub-family of the EDF is that defined by the

relations:

c(¸) = ¸ (2.12)

Var[Y] = ¹p=¸ for some p· 0 or p¸ 1:
(2.13)

This is the Tweedie family of exponential disper-
sion likelihoods (Tweedie 1984). The restriction
on the moment relations (2.11) implies that

b0(°) = [(1¡p)(°+ k)]1=(1¡p) (2.14)

b(°) = (2¡p)¡1[(1¡p)(°+ k)](2¡p)=(1¡p)

(2.15)

for some constant k. This parameterization is
found, for example, in Jorgensen and Paes de
Souza (1994) and Wüthrich (2003) with k = 0.
Occasionally, the Tweedie family is defined as

above but over the parameter range 1< p < 2
(Mildenhall 1999; Kaas 2005). It is noteworthy
that a member of the family with one of these val-
ues of p is a compound Poisson distribution (Jor-
gensen and Paes de Souza 1994) with a gamma
severity distribution.
It follows from (2.11), (2.14), and (2.15) that

° = ¹1¡p=(1¡p)¡ k (2.16)

b(°) = ¹2¡p=(2¡p): (2.17)

3. Maximum likelihood estimation
for the Tweedie cross-classified
model

Consider the model (2.4), together with the as-
sumption that all Yij are stochastically indepen-
dent. Note that this is not the same as the chain
ladder model, as defined in Section 2, because
the latter is formulated in terms of conditional
expectations and does not make the same inde-
pendence assumption. Indeed, Assumption CL1
specifically postulates dependencies between ob-
servations from within the same row.
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Let Y denote the entire set fYijg of observa-
tions, and let l(Y) denote the log likelihood of Y
for some assumed distribution of the Yij , whose
parameters have been suppressed for conve-
nience. Suppose that each Yij has a Tweedie dis-
tribution defined by (2.12) and the following gen-
eralization of (2.13):

Var[Yij] = ¹
p
ij=¸wij (3.1)

i.e., ¸ is replaced by ¸=wij in (2.12). In com-
mon parlance wij is the weight associated with
Yij . This model will be called the Tweedie cross-
classified model.
While the Tweedie family allows a reasonably

general representation of insurance data, its re-
strictions should be recognized. First, it has a
short (exponential) tail for the case p¸ 1. Sec-
ond, all its cumulants, from the variance upward,
are related through p since the kth cumulant is a
multiple of b(k)(°), where the superscript denotes
differentiation (McCullagh and Nelder 1989, p.
44).
With the replacement ¸Ã ¸=wij just given, and

substitution of (2.16) and (2.17) into (2.10),

l(Y) =
X
f¸wij[yij[¹1¡pij =(1¡p)¡ k]¡¹2¡pij =(2¡p)]
+ a(yij ,¸)g (3.2)

where the summation runs over all observations
in the data set Y.
The ML equations with respect to the ®i are:

±L=±®i =
R(i)X
¸wij[yij¹

¡p
ij ¡¹1¡pij ]¯j = 0,

i = 1, : : : ,n (3.3)

where use has been made of (2.4). This may be
equivalently represented as follows:

LEMMA 3.1 The ML equations with respect to the
®i for the Tweedie cross-classified model are:

R(i)X
wij¹

1¡p
ij [yij ¡¹ij] = 0, i= 1, : : : ,n:

(3.4)

Similarly, the ML equations with respect to the ¯j
are:

C(j)X
wij¹

1¡p
ij [yij ¡¹ij] = 0, j = 1, : : : ,n:

(3.5)

Note that p is taken here as fixed, rather than esti-
mated. ML estimation of this parameter would re-
quire an additional equation. Equations (3:4) and
(3:5) are reminiscent of the estimating equations
of Fu and Wu (2007) who were concerned with a
cross-classified model in a ratemaking context.

COROLLARY 3.2 The case of ODP Yij is repre-
sented by p= 1, wij = 1. The ML equations are
then

R(i)X
[yij ¡¹ij] = 0, i= 1, : : : ,n (3.6)

C(j)X
[yij ¡¹ij] = 0, j = 1, : : : ,n: (3.7)

These imply the chain ladder estimation of the
®i,¯j set out in (2:6)—(2:9).

PROOF See Hachemeister and Stanard (1975),
Mack (1991a), or Renshaw and Verrall (1998).

COROLLARY 3.3 The case of gamma Yij is repre-
sented by p= 2. The ML equations are then

R(i)X
wij[yij=¹ij ¡ 1] = 0, i = 1, : : : ,n

(3.8)
C(j)X

wij[yij=¹ij ¡ 1] = 0, j = 1, : : : ,n:

(3.9)

Substitution of ®i¯j for ¹ij , followed by minor re-
arrangement, gives

®i = w
¡1
i:

R(i)X
wijyij=¯j , i = 1, : : : ,n

(3.10)

¯j = w
¡1
:j

C(j)X
wijyij=®i, j = 1, : : : ,n

(3.11)
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where

wi: =
R(i)X
wij (3.12)

w:j =
C(j)X

wij: (3.13)

These are essentially the results obtained by Mack
(1991a) for gamma-distributed cells.

REMARK 3.4 Mack’s assumption of a gamma
distribution is, in fact, an approximation to a
compound Poisson distribution in each cell of the
triangle in which each cell has a gamma sever-
ity distribution with the same shape parameter.
Mack notes that the shape parameter would need
to take a smallish value in order to attribute a
non-negligible probability to Yij in the vicinity
of zero.
As noted near the end of Section 2, the com-

pound Poisson with gamma severity distribution
may itself be accommodated within the Tweedie
family (with 1· p < 2) and so Mack’s assump-
tion of a gamma approximation in each cell could
be replaced by the exact compound Poisson by
means of suitable choice of p (< 2).

REMARK 3.5 The ML equations (3.6) and (3.7)
also show that the chain ladder estimates are mar-
ginal sum estimates in the ODP case (see Mack
1991a; Schmidt and Wünsche 1998). In the gen-
eral Tweedie case [Equations (3.4) and (3.5)],
while not equivalent to the chain ladder, they are
weighted marginal sum estimates.
This provides an indication of the reason why

past investigations have shown chain ladder es-
timates to be close to ML estimates in various
Tweedie cases. For example, this was a finding
of Wüthrich (2003).
To elaborate on this, write the general weight-

ed marginal sum equation corresponding to (3.4)
in the form

R(i)X
!ij[yij ¡ ¹̂ij] = 0 (3.14)

where the !ij are general weights and the term
¹̂ij recognizes that the solution of the equations

provides only an estimate of ¹ij . A parallel to the

following argument about (3.4) may be given in

relation to (3.5).

Now rewrite the left side of (3.14) as

R(i)X
!ij["ij + ´ij] (3.15)

where "ij = yij ¡¹ij and ´ij = ¹ij ¡ ¹̂ij , both of
which are random variables with zero means (as-

suming a correctly specified model).

Now consider the substitution of the solutions

¹̂ij of (3.14) in the unweighted form of the same

system of equations:

!i

R(i)X
[yij ¡ ¹̂ij]

= !i

R(i)X
["ij + ´ij]

=
R(i)X
!ij["ij + ´ij] +

R(i)X
(!i¡!ij)["ij + ´ij]

=
R(i)X
(!i¡!ij)["ij + ´ij] [by (3:14)]

(3.16)

where !i =
PR(i)!ij=(n¡ i+1).

The right side of (3.16) has a mean of zero

and a variance of
PR(i)(!i¡!ij)¾2ij where ¾2ij =

Var["ij + ´ij] = Var[yij ¡ ¹̂ij]. Hence the value of
(3.16) will be small if either or both of the fol-

lowing conditions hold:

² Weights vary little across a row;
² The variances of observations around values
fitted by (3.14) are small.

In this case, the solutions to (3.4) will also be

approximate solutions to the unweighted form:

R(i)X
[yij ¡ ¹̂ij] = 0

which is the chain ladder solution.

In summary, under the right conditions the

chain ladder will approximate the solution to the
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weighted marginal sum estimates given by (3.4)
and (3.5).
An example of this approximation is provided

by Wüthrich (2003), who made a numerical
study of ML fitting of the Tweedie cross-class-
ified model in which the parameters ®i, ¯j , ¸,
and p were all treated as free and the weights wij
as known. In the example, the wij varied compar-
atively little with i and j, and p was estimated to
be 1.17.
As pointed out just prior to Remark 3.5, this

parameter value is consistent with the assumption
of a compound Poisson distribution for each cell
of the triangle.
For this numerical example the weights !ij =

wij¹
p¡1
ij show not too much variation over the

triangle and the ML estimates of the Tweedie
cross-classified model are expected to approxi-
mate those of the standard chain ladder, as was
indeed found by Wüthrich.

4. Maximum likelihood estimation
for general Tweedie

Parameters of the general Tweedie cross-class-
ified model may be estimated by the use of GLM
software. However, an interesting special case
arises under the sole constraint that the weights
wij also have the multiplicative structure:

wij = uivj: (4.1)

Note that this includes the unweighted case wij
= 1.
The ML equations for estimation of the ®i,¯j

were derived as (3.4) and (3.5). Rewrite these
with the substitutions:

Zij = wij¹
1¡p
ij Yij (4.2)

ºij = wij¹
2¡p
ij = uivj(®i¯j)

2¡p = aibj

(4.3)where

ai = ui®
2¡p
i (4.4)

bj = vj¯
2¡p
j :L (4.5)

This yields

R(i)X
[zij ¡ ºij] = 0, i = 1, : : : ,n (4.6)

C(j)X
[zij ¡ ºij] = 0, i = 1, : : : ,n: (4.7)

Note that these are the same equations as (3.6)
and (3.7) in Corollary 3.2. Lemma 3.1 therefore
implies the following result.

LEMMA 4.1 Consider the Tweedie cross-class-
ified model with general (admissible) p and sub-
ject to (3:1) with constraint (4:1). ML estimates of
ai,bj (and hence of ®i,¯j , by (4:4) and (4:5)) are
obtained by application of the chain ladder algo-
rithm (2:6)—(2:9) to the data triangle Z = fZijg.

In the application of this result ¹ij = ®i¯j must
be known in order to formulate the “data” Zij ,
whereas ®i,¯j are estimands of the theorem.
However, a solution can be obtained by an it-
erative procedure.
Let a superscript (r) denote the rth iteration

of the estimate to which it is attached, e.g., ¹(r)ij .
Define

Z(r)ij = wij[¹
(r)
ij ]

1¡pYij (4.8)

º(r)ij = wij[¹
(r)
ij ]

2¡p = uivj(®
(r)
i ¯

(r)
j )

2¡p = a(r)i b
(r)
j :

(4.9)

Then define a(r+1)i ,b(r+1)j as the estimates ob-
tained in place of ai,bj when the chain ladder

algorithm is applied to the data triangle fZ(r)ij g
in place of Z. By this iterative means, obtain the
sequence of estimates fa(r)i ,b(r)j ,r = 0,1, : : :g, ini-
tiated at r = 0 by some simple choice, such as
setting a(r)i ,b

(r)
j equal to the estimates of ®i,¯j

given by the conventional chain ladder.
If this sequence converges, then the limit is

taken as an estimate of the ai,bj .
This procedure has been applied to the data

set in the Appendix with p= 2, and convergence
of the estimated loss reserve to an accuracy of
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0.05% in the estimated loss reserve obtained in 5
iterations. Convergence becomes slower as p in-
creases. For p= 2:4, 24 iterations were required
to achieve an accuracy of 0.1%.

5. The “separation method”

Taylor (1977) introduced the procedure that
subsequently became known as the “separation
method.” This produces parameter estimates for
a model of the form

E[Yij] = ®i+j¡1¯j , (5.1)

which is the parallel of (2.4), but with the ® pa-
rameter applying to diagonal i+ j¡ 1 rather than
row i.
The heuristic equations given by Taylor for pa-

rameter estimation were:

D(k)X
[yij ¡¹ij] = 0, k = 1, : : : ,n (5.2)

C(j)X
[yij ¡¹ij] = 0, j = 1, : : : ,n: (5.3)

It is evident that these equations yield marginal
sum estimates. Taylor (1977) gives the explicit
algorithm for generating estimates of the
®i+j¡1,¯j . This will be referred to as separation
method estimation, and is as follows:

®k =
D(k)X

Yij

,241¡ nX
j=n¡k

¯j

35 (5.4)

¯j =
C(j)X

Yij

,
nX
k=j

®k, (5.5)

these equations being applied alternately for k =
n, j = n, k = n¡ 1, etc.
The model resulting from replacement of (2.4)

by (5.1) in the Tweedie cross-classified model
will be referred to as the Tweedie separation
model. It is the same as the Tweedie cross-class-
ified model except for the interchange of rows
and diagonals, and so a result parallel to each of
those of Sections 3 and 4 is obtainable.

LEMMA 5.1 The ML equations with respect to the
®k,¯j for the Tweedie separation model are:

D(k)X
wij¹

1¡p
ij [yij ¡¹ij] = 0, i = 1, : : : ,n

(5.6)
C(j)X

wij¹
1¡p
ij [yij ¡¹ij] = 0, j = 1, : : : ,n:

(5.7)

COROLLARY 5.2 The case of ODP Yij is repre-
sented by p= 1, wij = 1. The ML equations are
then

D(k)X
[yij ¡¹ij] = 0, i = 1, : : : ,n (5.8)

C(j)X
[yij ¡¹ij] = 0, j = 1, : : : ,n: (5.9)

These imply the separation method estimation of
the ®k,¯j set out in (5:4) and (5:5).

REMARK 5.3 This result was known for the sim-
ple Poisson case since Verbeek (1972), actually
earlier than the corresponding result for the chain
ladder (Corollary 3.2).

COROLLARY 5.4 The case of gamma Yij is repre-
sented by p= 2. The ML equations are then

D(k)X
wij[yij=¹ij ¡ 1] = 0, i = 1, : : : ,n

(5.10)

C(j)X
wij[yij=¹ij ¡ 1] = 0, j = 1, : : : ,n:

(5.11)

REMARK 5.5 In the case of the general Tweedie
separation model, the separation method algo-
rithm (5.4) and (5.5) will approximate the ML
solution (5.6) and (5.7) if either or both of the
following conditions hold:

² Weights vary little over the triangle;
² The variances of observations around values
fitted by (5.6) and (5.7) are small.

LEMMA 5.6 Consider the Tweedie separation
model with general (admissible) p and subject to
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Table 1. Claim payment triangle

Claim payments ($) in development year
Accident
year 1 2 3 4 5 6 7 8 9 10 11 12 13

1983 1,897,289 5,200,926 6,766,124 5,390,019 1,495,905 2,031,888 2,493,553 506,813 128,100 75,943 308,205 8,891 8,813

1984 2,087,985 4,308,216 5,872,530 6,782,784 4,915,169 2,051,073 1,864,319 562,354 356,830 833,297 4,844 561,572

1985 1,490,677 4,476,085 4,992,179 8,358,920 4,697,517 3,502,695 850,298 2,684,057 727,265 3,400 397,917

1986 1,483,176 3,293,114 6,436,956 6,102,689 5,747,793 4,045,070 2,522,463 1,125,877 1,431,484 862,797

1987 1,392,209 4,130,422 4,838,069 6,746,366 5,949,455 3,748,639 2,854,290 1,001,874 738,291

1988 1,350,347 2,687,237 4,483,829 5,607,406 4,630,570 3,082,570 1,760,536 2,190,282

1989 1,777,107 4,026,788 4,038,537 5,375,214 5,109,038 3,723,188 3,122,941

1990 1,861,113 2,828,223 2,935,704 5,537,553 6,515,910 6,300,323

1991 2,236,165 3,848,454 4,554,935 6,457,862 5,572,385

1992 2,271,180 3,59,346 3,599,932 5,309,764

1993 2,822,819 4,834,966 7,362,328

1994 2,464,971 4,669,219

1995 2,725,355

(3:1) with constraint

wi+j¡1,j = ui+j¡1vj: (5.12)

Define by (4:2), and also define

ºi+j¡1,j = wi+j¡1,j¹
2¡p
i+j¡1,j

= ui+j¡1vj(®i+j¡1¯j)
2¡p = ai+j¡1bj

(5.13)where

ak = uk®
2¡p
k (5.14)

bj = vj¯
2¡p
j : (5.15)

ML estimates of ak,bj (and hence of ®k,¯j) are
obtained by application of the separation method
algorithm (5:4) and (5:5) to the data triangle Z =
fZijg.

6. Conclusion

As noted in the statement of purpose at the end
of Section 1, the purpose of this paper is largely
expository. In operational terms, however, Sec-
tion 4 provides a numerical procedure for ob-
taining parameter estimates for a Tweedie cross-
classified model for known p.
This procedure will often be numerically ef-

ficient. A parallel numerical procedure produces
parameter estimates for the Tweedie separation
model.

A referee suggested that ML estimation might
be carried out with respect to p as well as param-
eters ®i,¯j . This would extend ML estimation to
the case of the Tweedie cross-classified model
for unknown p.
The procedure in this case would consist of:

² Application of a univariate numerical search
procedure to maximize likelihood (3.2) with
respect to p; where

² for each trial value of p in this search, the pa-
rameters set f®i,¯jg is fixed as ML for that p.
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Appendix

Data for numerical example

The data triangle in Table 1 is extracted from
Appendix B.3.3 to Taylor (2000).
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