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Chain-Ladder Correlations
by Greg Taylor

AbSTRACT

Correlations of future observations are investigated within the 

recursive and non-recursive chain-ladder models. The recursive 

models considered are the Mack and over-dispersed Poisson 

(ODP) Mack models; the non-recursive models are the ODP 

cross-classified models. Distinct similarities are found between 

the correlations within the recursive and non-recursive mod-

els, but distinct differences also emerge. The ordering of cor-

responding correlations within the recursive and non-recursive 

models is also investigated.

KEYwORdS
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Also let

D D DK K K
c+ = ∪ .

In general, the problem is to predict DK
c  on the 

basis of observed D
K
.

The usual case in the literature (though often not 
in practice) is that in which J � K, so that the trape-
zoid becomes a triangle. The more general trapezoid 
will be retained throughout the present paper.

Define the cumulative row sums

 X Ykj ki
i

j

=
=
∑

1

 (2.1)

and the full row and column sums (or horizontal 
and vertical sums)

H Yk kj
j

J K k

=
=

− +( )

∑
1

1min ,

V Yj kj
k

K j

=
=

− +

∑
1

1

.  (2.2)

Also define, for k � K � J � 2, . . . , K, 

 R Y X Xk kj
j K k

J

kJ k K k= = −
= − +

− +∑
2

1,  (2.3)

R Rk
k K J

K

=
= − +
∑

2

.
 
 (2.4)

Note that R is the sum of the (future) observations 
in DK

c . It will be referred to as the total amount 
of outstanding losses. Likewise, R

k
 denotes the 

amount of outstanding losses in respect of accident 
period k. The objective stated earlier is to forecast 
the R

k
 and R.

Let denote
R k( )

∑ summation over the entire row k of

D
K
, i.e., for

j

J K k

=

− +( )

∑
1

1min ,

fixed k.

Similarly, let denote
C j( )

∑ summation over the entire

column of D
K
, i.e., for

k

K j

=

− +

∑
1

1

fixed j. For example,

(2.2) may be expressed as

V Yj kj

j

=
( )

∑
C

.

1. Introduction

The actuarial literature identifies two families of 
chain-ladder models categorized by Verrall (2000) 
as recursive and non-recursive models, respec-
tively. Although the model formulations are funda-
mentally different, both are found to yield the same 
maximum likelihood estimators of age-to-age factors 
and the same forecasts of loss reserve. The properties 
of these models are studied by Taylor (2011).

Despite the identical forecasts of the different 
models, their different formulations are liable to lead 
to different correlation structures. This means that 
the correlations can be regarded as providing one 
means of differentiating between recursive and non-
recursive models. The purpose of the present paper is 
the investigation of these correlation structures.

There is independence between rows in all the 
models considered, so the correlations of great-
est interest are those between future observations 
conditional on information up to a defined point of 
time, specifically Corr[X

k,j�m
, X

k,j�m�n
�X

kj
]
 
where X

kj
 

denotes cumulative claims experience (notifications, 
payments, etc.) up to and including development pe-
riod j in respect of accident period k.

2. Framework and notation
2.1. Claims data

Consider a K � J rectangle of incremental claims 
observations Y

kj
 with:

•   accident periods represented by rows and labeled 
k � 1, 2, . . . , K;
•   development periods represented by columns and 

labeled by j � 1, 2, . . . , J � K.

Within the rectangle, identify a development 
trapezoid of past observations

D   K kjY k K j J K k= ≤ ≤ ≤ ≤ − +( ){ }: min , .1 1 1and

The complement of this subset, representing fu-
ture observations is

D   K
c

kj

kj

Y k K J K k j J

Y K J

= ≤ ≤ − +( ) < ≤{ }
= − + <

: min ,

:

1 1

1

and

kk K K k j J≤ − + < ≤{ }  and 1 .
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For this family,

b p p p p( ) ( ) {[ ( ) ] }/� �= − + − −− −( ) −( )2 1 1 11 2 1  (2.11)

� �= + − −[ ( ) ] /( )1 1 1 1p p  (2.12)

�( ; , ) [ ( ) / ( )y y pp� � �= − −−1 1 1

− − − +−( ) / ( )] / ( , )� � �2 1 2p p c y  (2.13)

∂ ∂ = −− −� / ( ) / .� � � �y p p1  (2.14)

The notation Y Tw p~ , ,� �( )  will be used to mean 
that a random variable Y is subject to the Tweedie 
likelihood with parameters � �, , .p  The abbreviated 
form Y Tw p~ ( )  will mean that Y is a member of the 
sub-family with specific parameter p.

2.2.3. Over-dispersed Poisson family
The over-dispersed Poisson (ODP) family is the 

Tweedie sub-family with p � 1. The limit of (2.12) 
as p → 1 gives

 
E Y[ ] exp . � �  (2.15)

By (2.8) – (2.10),

 
Var Y[ ] . ��

 (2.16)

By (2.14),

 
∂ ∂ = −� / ( ) / .� � ��y

 (2.17)

The notation Y ODP~ ( , )� �  means Y ~  
Tw( , , )� � 1 .

3. Chain-ladder models
3.1. Heuristic chain ladder

The chain ladder was originally (pre-1975) de-
vised as a heuristic algorithm for forecasting out-
standing losses. It had no statistical foundation. The 
algorithm is as follows.

Define the following factors:

 ˆ / , ,,f X X j Jj k j
k

K j

kj
k

K j

= = −+
=

−

=

−

∑ ∑1
1 1

1 2 1, . . . , ..  (3.1)

Note that f̂ j  can be expressed in the form

 

ˆ / .,f w X Xj kj
k

K j

k j kj= ( )
=

−

+∑
1

1

 
(3.2)

Finally, let denote
T

∑
 
summation over the entire 

trapezoid of (k, j) cells, i.e.,

T R

∑ ∑ ∑∑∑

∑

= =

= =

=

− +( ) ( )

==

=

− +

j

J K k k

k

K

k

K

k

K j

1

1

11

1

1

min ,

.
CC j

j

J

j

J ( )

==
∑∑∑

11

2.2. Families of distributions

2.2.1. Exponential dispersion family
The exponential dispersion family (EDF) (Nelder 

and Wedderburn 1972) consists of those variables Y 
with log-likelihoods of the form

 � y y b a c y, , / ,� � � � � �( ) = − ( )  ( ) + ( )  (2.5)

for parameters � (canonical parameter) and � (scale 
parameter) and suitable functions a, b, and c, with a 
continuous, b differentiable and one-one, and c such 
as to produce a total probability mass of unity.

For Y so distributed,

E Y b[ ] = ′( )�  (2.6)

 Var Y a b[ ] = ( ) ′′ ( )� �  (2.7)

If � denotes E[Y], then (2.6) establishes a relation 
between � and �, and so (2.7) may be expressed in 
the form

 Var Y a V[ ] = ( ) ( )� �  (2.8)

for some function V, referred to as the variance 
function.

The notation Y EDF a b c~ , ; , ,� �( )  will be used to 
mean that a random variable Y is subject to the EDF 
likelihood (2.5).

2.2.2 Tweedie family
The Tweedie family (Tweedie 1984) is the sub-

family of the EDF for which

a � �( ) =   (2.9)

 V p pp� �( ) = ≤ ≥, .0 1 or  (2.10)



Variance Advancing the Science of Risk

118 CASUALTY ACTUARIAL SOCIETY VOLUME 5/ISSUE 2

3.2.2. ODP Mack model
Taylor (2011) defined the over-dispersed Poisson 

(ODP) Mack model as that satisfying assumptions 
(M1), (M2) and 

(ODPM3) For each k � 1,2, . . . , K
and j � 1,2, . . . , J � 1,

Y X ODP f Xk j kj j kj k j, ,| ~ ,+ +−( )( )1 11 �

where now f
j
 � 1.

Assumption (ODPM3) implies (M3a). More-
over, in the special case �

k, j�1
 � �

j�1
 indepen-

dent of k, (ODPM3) also implies (M3b) with 

� �j j jf
2

1 1= −( )+ .
It is evident that, for this model to be valid, it 

is necessary that all Y
k,j

 � 0. Note also that, under 
(ODPM3), X

kj
 � 0 implies that X

k, j�m
 � 0 for all 

m � 0. This means that, for each k, either Y
k1

 � 0 or 
X

kj
 � 0 for all j. 
A summary of these requirements in terms of the 

data array D
K
 is as follows. 

(R1) Y
kj
 � 0 for all Y

kj
 � D

K
.

(R2) For each k � 1, 2, . . . , K, either:
 (a) Y

k1
 � 0; or

 (b) Y
kj
 � 0 for all 1 � j � min(J, K � k � 1).

A data array satisfying these requirements will be 
called ODPM-regular.

Assumption (ODPM3) may be expressed in the 
following form, suitable for GLM implementation of 
the ODP Mack model:

Y X ODP X f wk j kj kj j k j, ,| ~ exp ln ln , /+ ++ −( ) ( )1 11 �

(3.9)

where

 
wk j k j, ,/ .+ +=1 1� �  (3.10)

In this form, the GLM of the Y
k, j�1

 has log link, off-
sets ln X

kj
, parameters ln(f

j
 � 1), and weights w

k, j�1
.

It is shown by Taylor (2011) that the chain-ladder 
estimates of age-to-age factors (3.1) are maximum 
likelihood for this model.

with

 
w X Xkj kj kj

k

K j

=
=

−

∑/
1  

(3.3)

i.e., as a weighted average of factors X
k, j�1

/X
kj
 for 

fixed j.
Then define the following forecasts of Ykj K

c∈D :

 ˆ ˆ ˆ ... ˆ ˆ .,Y X f f f fkj k K k K k K k j j= −( )− + − + − + − −1 1 2 2 1 1  (3.4)

Call these chain-ladder forecasts. They yield the 
additional chain-ladder forecasts:

 
ˆ ˆ ... ˆ

,X X f fkj k K k K k j= − + − + −1 1 1  
(3.5)

 
ˆ ˆ

,R X Xk kJ k K k= − − +1  (3.6)

 

ˆ ˆ .R Rk
k K J

K

=
= − +
∑

2  
(3.7)

3.2. Recursive models

A recursive model takes the general form

E X Xk j kj, |+ 1

= + −function of  and some parametersDk j 1  (3.8)

where D
k�j�1

 is the data sub-array of D
K
 obtained by 

deleting diagonals on the right side of D
K
 until X

kj
 is 

contained in its right-most diagonal.

3.2.1. Mack model
The Mack model (Mack 1993) is defined by the 

following assumptions.

(M1)  Accident periods are stochastically indepen-
dent, i.e., Y Yk j k j1 1 2 2

,  are stochastically inde-
pendent if k

1
 � k

2
.

(M2)  For each k � 1, 2, . . . , K, the X
kj
 ( j  varying) 

form a Markov chain.
(M3)  For each k � 1, 2, . . . , K and j � 1, 2, . . . , 

J � 1,
 (a)  E X X f Xk j kj j kj, |+  =1

 for some para-

 meters f
j
 > 0; and

 (b)  Var X X Xk j kj j kj[ | ], + =1
2�  for some para-

 meters � j
2 0 .
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4. Correlation between 
observations
4.1. Background common to recursive 
and non-recursive models

Consider the models defined in Sections 3.2 and 
3.3, and specifically the conditional covariance 
Cov X X X Xk j m k j m n k j k j1 1 2 2 1 1 2 2, , ,, ,+ + +

   with m � 0, n � 
0. The following lemma is immediate from assump-
tion (M1) or (ODPCC1).

Lemma 4.1. The following is true for each of the 
Mack, ODP Mack and ODP cross-classified models:

Cov X X X X kk j m k j m n k j k j1 1 2 2 1 1 2 2
0, , , ,, ,+ + +

  =  for 11 2≠ k .

In view of this result, attention will be focused on 
within-row covariances Cov X X Xk j m k j m n kj, ,,+ + +

  . 
This quantity will be denoted ck j m j m n j, , |   . It is eval-
uated as follows:

c E X E X Xk j m j m n j k j m k j m kj, , | , ,+ + + + += −  { }


  
× −{ 



} 

+ + + +X X X Xk j m n k j m n kj kj, ,Ε

 
= −  { }

 + +E X E X Xk j m k j m kj, ,

  
× −  { }





+ + + + +E X E X X X Xk j m n k j m n kj k j m kj, , ,

 
= −  { }

 + +E X E X Xk j m k j m kj, ,

  
×   −  { } 

+ + + + +E X X E X X Xk j m n k j m k j m n kj kj, , ,| .

(4.1)

4.2. Recursive models

4.2.1. Mack model
By recursive application of (M3a),

E X X f f f Xk j m n k j m j m n j m n j m j m, , ...+ + + + + − + + − + +
  = 1 2

and so 

E X X E X Xk j m n k j m k j m n kj, , ,+ + + + +
  −  

 = − 



{ }+ + − + + +f f X E X Xj m n j m k j m k j m kj1... ., ,  (4.2)

3.3. Non-recursive models

Taylor (2011) also defined the ODP cross-
classified model as that satisfying the following 
assumptions:

(ODPCC1)  The random variables Ykj K∈ +D  are 
stochastically independent.

(ODPCC2)  For each k � 1, 2, . . . , K and j � 1, 
2, . . . , J,

 (a) Y ODPkj kj kj~ ,� �( ) ;

 (b)  � � �kj k j  for some parameters 
ak j,�  0 ; and

 (c) 
1

1
J

j
j

β =∑

Assumption (ODPCC2b) may be expressed in the 
following form, suitable for GLM implementation of 
the ODP cross-classified model:

 
Y ODP wkj k j kj~ exp ln ln , / .� � �+( )( )  (3.11)

In this form, the GLM of the Y
kj
 has log link, pa-

rameters ln �
k
 and ln �

j
, and weights w

kj
 satisfying

 
wkj kj � �/ .  (3.12)

Assumption (ODPCC2b) removes one degree 
of redundancy from the parameter set that would  
otherwise be reflected by the aliasing of one param-
eter in the GLM.

It has long been known for the case �/w
kj
 � 1 

that the maximum likelihood forecasts of future 
Y

kj
 in this model are the same as the chain-ladder 

forecasts (3.5)–(3.7) (see, e.g., Hachemeister and 
Stanard 1975; Renshaw and Verrall 1998; Taylor 
2000). It is shown by England and Verrall (2002) 
that this result continues to hold in the more general 
case �/w

kj
 � � � 1.

Thus the ODP Mack and ODP cross-classified 
models produce the same maximum likelihood fore-
casts of loss reserves despite their fundamentally dif-
ferent formulations. This means that their respective 
correlation structures can be viewed as a means of 
differentiating between them.
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(d)  �k j m j m n j, ,     increases as any f
i
, j � 1 � i � j � 

m � n � 1 increases and � i
2  changes such that:

 � i
2 /f

i
 increases if j � i � j � m � 1; or

 � i
2 /f

i
 decreases if j � m � i � j � m � n � 1.

Proof.  (a) Follows from (4.6) and the fact that 
Bj m j m n j+ + + >,  

0 .

(b) By (4.7), write

 
Bj m j m n j   , 1

 

= + + + + −

+ + + −

�

�

j m n j m n j

j m n i i i j
i

f f

f f f f

2
1

2
1

2 2
1

…

... ...
==

+ − + + +

∑
+

j

j m j m j m n jB1 ,

> + + +Bj m j m n j, .
 

 The result then follows from (4.6).
(c) Obvious from (4.8).
(d)  Divide numerator and denominator of (4.7) by 

f f f fj m n j m j m j+ + − + + −1
2 2

1... ...  to obtain

B

f f f

j m j m n j

i i i j m
i j m

j m n

+ + +

−
−

+
−

= +

+ + −

=, |

( / ) ...� 2
1
1 1

11

1 1
2

1

∑

∑ + − +
=

+ −

f f fj m i i i
i j

j m

... ( / )�

and the result then follows from (4.6).

4.2.2. ODP Mack model
Expression (4.7) may be adapted to the case of 

the ODP Mack model with column-dependent scale 
parameter �

kj
 � �

j
. Section 3.2.2 notes that, in this 

case,

 � �j j jf
2

1 1= −( )+  (4.9)

and substitution of this result in (4.7) yields

B

f f f f

j m j m n j

i j m n i i i

+ + +

+ + + − + −

=
−( )

, |

... ...� 1 1
2

1
2

11 ff

f f f f

j
i j m

j m n

i j m n i i i

= +

+ + −

+ + + − + −

∑

−( )

1

1 1
2

1
2

11� ... ....
.

f j
i j

j m

=

+ −

∑
1

(4.10)

Special case. An interesting case arises when f
i
 � 

f, �
i�1

 � �, i j j j m n= + + + −, , ...,1 1. Then (4.10) 
becomes 

 B f f fj m j m n j
n n m

+ + +
−= −( ) −( ), .1 1  (4.11)

Substitution of (4.2) into (4.1) yields

c f f Var X Xk j m j m n j j m n j m k j m kj, , | ,... .+ + + + + − + +=  1  
(4.3)

The variance term here is evaluated by Mack 
(1993, p. 218) as

Var X X X f fk j m kj kj j m
i j

j m

i i, ...+ + −
=

+ −

+
  = ∑ 1

2
1

1
2 2� ff fi j−1... . (4.4)

Substitution of (4.4) into (4.3) yields

c f f X fk j m j m n j j m n j m kj j m
i j

j

, , | ... ...+ + + + + − + + −
=

= 1 1
2

++ −

+ −∑
m

i i i jf f f
1

1
2 2

1� ... .

(4.5)

It then follows that

Corr X X X
c

c
k j m k j m n kj

k j m j m n j

k j m

, ,
, , |

,

,+ + +
+ + +

+

  =

++ + + + + n j m n j k j m j m jc, | , , |

1

2

= + + + +

−
1

1

2Bj m j m n j,  (4.6)

where

B

f f f f

j m j m n j

j m n i i i j
i j m

j

+ + +

+ + − + −
= +=,

... ...1
2

1
2 2

1�
++ + −

+ + − + −
=

+ −

∑

∑

m n

j m n i i i j
i j

j m

f f f f

1

1
2

1
2 2

1

1

... ...
.

�

 (4.7)

An equivalent form is

B f fj m j m n j j m n j m+ + + + + − +

−
= ( ), | ...1

2 2 1

f f f f

f

j m n i i i j
i j m

j m n

j m

+ + − + −
= +

+ + −

+ −

∑ 1
2

1
2 2

1

1

... ...�

11
2

1
2 2

1

1

... ...
.

f f fi i i j
i j

j m

+ −
=

+ −

∑ �
 (4.8)

Theorem 4.2. Consider an ODPM-regular data ar-
ray subject to a Mack model, and consider a row 
k that is not identically zero. Let j,m,n be strictly 
positive integers and let �k j m j m n j, , |    denote 
Corr X X Xk j m k j m n kj, , ,+ + +

  . For a given schedule of 
values fi i,� 2{ }  each of the following propositions 
holds:

(a) 0 1< <+ + +�k j m j m n j, , | .

(b) � �k j m j m n j k j m j m n j, , | , , | .+ + + + + + +<1

(c)  
�k j m j m n j, , |    increases as any

 
� i j i j m2 1, ≤ ≤ + −  

increases, or any � i j m i j m n2 1, + ≤ ≤ + + −  
decreases. 
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 =
−( )

−

+ − +
= +

+ + −

−
+

∑ f f f

f

j m i i i
i j m

j m n

i i

...

[( )

1 1

1

1

1

1

�

� 11 1
1

1
1

1

] ...
.

f fi j m
i j

j m

+
−

+ −
−

=

+ −

∑
 (4.19)

  

Theorem 4.3. Consider an ODPM-regular data array 
subject to an O  cross-classified model, and con-
sider a row k that is not identically zero. Let j,m,n be 
strictly positive integers and let �k j m j m n j

DP

, , |    denote 
Corr X X Xk j m k j m n kj, ,,+ + +

  . For a given schedule of 
values � �i i,{ }  each of the following propositions 
holds:

(a) 0 1< <+ + +�k j m j m n j, , | .

(b) � �k j m j m n j k j m j m n j, , | , , | .+ + + + + + +<1

(c)  �k j m j m n j, , |    increases as any �
i
 or �

i
,  j � 1 � 

i � j � m increases, or any �
i
 or �

i
,  j � m � 1 � 

i � j � m � n decreases.
(d)  �k j m j m n j, , |    increases as any f

i
, j � 1 � i � 

j � m � n � 1 decreases and �
i�1

, i � j � 

1, . . . , j � m � 1 changes such that ( )1 1
1− −

+fi i�  
increases.

Proof. (a) Follows directly from (4.14).
(b)-(c) Follow directly from (4.15) and (4.16).
(d) Follows directly from (4.15) and (4.19).

It is interesting to compare the results of Theo-
rems 4.2(d) and 4.3(d). The former shows that, sub-
ject to the condition on the dispersion parameter, an 
increase in an f

i
 causes �k j m j m n j, , |    to increase in the 

Mack model, whereas the latter yields the opposite 
result in the ODP cross-classified model.

Special case. An interesting special case arises when 
�

i
 � �, independent of i. 
Then (4.14) reduces

 � � �k j m j m n j i
i j

j m n

i
i j

j m

, , .+ + + +
=

+ + −

+
=

+ −

= ∑∑2
1

1

1

1

 (4.20)

Special case. As in Section 4.2.2, the case f
i
 � f, 

�
i�1

 � �, i � j, j � 1, . . . , j � m � n � 1 is interest-
ing. Here, (4.18) yields

 D f f fj m j m n j
m n m

+ + + = −( ) −( ), 1 1  (4.21)

4.3. Non-recursive models

Once again consider �k j m j m n j, ,   . Note that 

X X Yk j m n k j m ki
i j m

j m n

, ,+ + +
= + +

+ +

= + ∑
1

where all terms on the right side are mutually sto-
chastically independent.

Therefore

c Var X Xk j m j m n j k j m kj, , ,+ + + +=    (4.12)

= +










= +

+

∑Var X Y Xkj ki
i j

j m

kj
1

= [ ]
= +

+

∑ Var Y
i j

j m

ki
1

 (4.13)

by (ODPCC1).
By (4.12),

�k j m j m n j k j m kj k j m n kjVar X X Var X X, , | , ,+ + + + + +=   2

 

= + +
=

+ −

+ +
=

+ + −

∑ ∑� � � �i i
i j

j m

i i
i j

j m n

1 1

1

1 1

1

.  (4.14)

by (4.13) and (ODPCC2a-b).
Thus 

 � j m j m n j j m j m n jD+ + + + + +

−
= +, | , |( )1

1

2  (4.15)

with

Dj m j m n j i i
i j m

j m n

i i
i j

j m

+ + + + +
= +

+ + −

+ +
=

+

= ∑, � � � �1 1

1

1 1

−−

∑
1

.  (4.16)

Equation (11) in Verrall (1991) shows that the f
j
 

and �
j
 are related as follows:

f j i
i

j

i
i

j

=
=

+

=
∑ ∑� �

1

1

1

/

or, equivalently, when account is taken of 
(ODPCC2c),

 �i
i i

r r
r

J

f f f

f f f
+

−

−
=

−=
−( )
−( )∑

1
1 1

1 1
1

1

1

1

...

...
 (4.17)

and this, combined with (4.16), gives

 D

f f f

j m j m n j

i i i
i j m

j m n

i

+ + +

+ −
= +

+ + −

+

=
−( )∑

,

...�

�

1 1 1

1

1

11 1 1

1

1f f fi i
i j

j m

... −
=

+ −

−( )∑
  (4.18)
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Theorem 4.4. Consider an ODPM-regular data array 
Dk

 , and a row k within it that is not identically zero. 
Then, for compatible ODP Mack and ODP cross-
classified models,

(a) f D B f fj m j m j m n j j m j m n j j m n j+ + + + + + + + + − +≤ ≤2
1

2
, | , |/ ... 11

2 .

(b)  � k j m j m n j, ,+ + + ≥1 . Hence

�k j m j m n j
R
, , |+ + + ≥

 
�k j m j m n j

NR
, , |   .

(c)  � k j m j m n j, ,+ + + →1  as j → �. Hence �k j m j m n j
R
, , | /  

 
�k j m j m n j

NR
, , |+ + + →1  as j → �.

Proof. (a) The largest multiplier of � �i i 1 1  in
  the numerator of (4.23) is f fj m n j m+ + − + +1

2
1

2...  (for 
i � j � m) while the smallest multiplier in 
the denominator is f fj m n j m+ + − +1

2 2...  (i � j � 
m � 1). By (4.16), this proves that

 
B D fj m j m n j j m j m n j j m+ + + + + + +

−≤, ,/ ( )2 1

 and hence the left inequality of (a).
   The right inequality is similarly proved 

by considering the case i � j � m � n � 1 
in the numerator of (4.23) and i � j in the 
denominator.

(b)  Since all f factors are not less than unity, it fol-
lows from (a) that

B Dj m j m n j j m j m n j+ + + + + +≤, , .

 This, combined with (4.6) and (4.15), yields

� �k j m j m n j
R

k j m j m n j
NR

, , | , , | .+ + + + + +≥

(c)  As j → �, f
i
 → 1 for all i � j in order that 

E X X f f fkj k K k K k K k j  = − + − + − + −, ...1 1 2 1  should con-
verge as j → �. It then follows from (a) that

D B jj m j m n j j m j m n j+ + + + + + → →∞, ,/ 1 as 

This, combined with (4.6) and (4.15), yields the 
stated result.

5. Conclusion

The ODP Mack model is a special case of the Mack 
model and there is a simple translation between their 
correlation structures (Section 3.2.2).

4.4. Comparison between recursive and 
non-recursive models

The present sub-section will compare the correla-
tions associated with the ODP Mack and ODP cross-
classified models with column dependent dispersion 
parameters �

kj
 � �

j
. For this purpose it will be as-

sumed that the two models are subject to the same 
schedule of values of f

j
, j � 1, 2, . . . , J � 1 and �

j
, 

j � 2, 3, . . . , J where, in the case of the ODP cross-
classified model, f

j
 is defined by the relation immedi-

ately preceding (4.17). The two models will then be 
said to be compatible.

Let �k j m j m n j
R
, , |    denote �k j m j m n j, , |    in the special 

case of the (recursive) ODP Mack model. Likewise, 
let �k j m j m n j

NR
, , |    apply to the (non-recursive) ODP 

cross-classified model.
Further, let � j m j m n j  , |  denote the ratio Dj m j m n j  , | /

Bj m j m n j  , | .
With subscripts suppressed, �R and �NR are related 

through � as follows. By (4.6),

B R= ( ) −1 1
2

� .

Then, by (4.15),

� � �NR R( ) = + ( ) −



{ }2 2

1 1 1 1

and hence

 � � �
�

�
�NR R R= + − ( )





−
1

2
2

1

2

1
1

.  (4.22)

For comparative purposes, it is useful to convert 
(4.6) and (4.10) for the ODP Mack model into a form 
involving �’s as in (4.14).

Note that (4.10) may be may be expressed in the 
alternative form 

B

f f f f f

j m j m n j

i j m n i i i

+ + +

+ + + − + −

=
−( )

,

... ...� 1 1
2

1
2

11 11

1

1 1
2

1
2

11

i j m

j m n

i j m n i i if f f f

= +

+ + −

+ + + − + −

∑

−( )� ... .... f
i j

j m

1

1

=

+ −

∑

=
+ + + + − +

= +

+ + −

+
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� �

i i j m n i
i j m

j m n

i i

f f1 1 1
2

1
2

1

1

( ... )

++ + + − +
=

+ −

∑ 1 1
2

1
2

1

( ... )f fj m n i
i j

j m  (4.23)

by (4.17).
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However, as the development period on which the 
correlation between future observations is condi-
tioned moves further into the development tail, the 
recursive and non-recursive correlations converge. 
Full details appear in Theorem 4.4.
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The respective correlation structures associated 
with the recursive and non-recursive models consid-
ered here show a number of similarities but also dis-
tinct dissimilarities.

Theorems 4.2 and 4.3 show that, in both cases, 
correlation decreases with increasing time separa-
tion of future observations. The same theorems show 
that, in both cases, correlations �k j m j m n j, , |    gener-
ally increase as the dispersion coefficients of obser-
vations (� i

2  for the Mack model, and �
i
 for the ODP 

Mack or ODP cross-classified model) up to time  
j � m increase and as the dispersion of observations 
beyond this decreases.

However, the dependency of correlations on the 
mean development factors f

i
 differs as between the 

recursive and non-recursive models. For full details, 
see Theorems 4.2(d) and 4.3(d). In broad terms, in-
creasing age-to-age factors cause correlations within 
the recursive models to increase and within the non-
recursive models to decrease, though these results 
are subject to side-conditions that involve interac-
tion between the age-to-age factors and dispersion 
coefficients.

If comparison is made between corresponding 
correlations in recursive and non-recursive models 
that are subject to consistent parameters, it is found 
that the recursive correlation is always the larger. 




