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ABSTRACT

Experience shows that U.S. risk-based capital measures do not

always signal financial troubles until it is too late. Here we pre-

sent an alternative, reasonable capital adequacy model that can be

easily implemented using data commonly available to company

actuaries. The model addresses the three most significant risks

common to property and casualty companies—namely, pric-

ing, interest rate, and reserving risk. Both row and column effects

are incorporated into the model. Rating agencies, company man-

agement, U.S. regulators, and European Solvency II regulators all

represent parties who should find this model useful. We suggest

revision of charges pertaining to these risks in the risk-based capi-

tal formula. The framework also provides loss reserve uncertainty

and margins under IASB accounting standards and net capital

estimation, which is useful when considering reinsurance pro-

gram consequences. European Solvency II regulations require a

one-year forward distribution of ultimate losses, which is easily

obtained. The model is applicable to all lines where triangulation

of data is feasible, including health and group life insurance.

KEYWORDS

Economic capital, risk capital, risk-based capital (RBC), 
VaR, CVaR, capital allocation
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ter of 2008, and more than $1 billion in the previous
four quarters (Triad Business Journal 2008). More-
over, when United Guaranty reorganized, it chose to
reinsure business written between 2005–2008 to get
it off of their books, suggesting that United Guaranty’s
troubles did not happen overnight, but instead over a
period of several years, culminating in 2008 (England
2012). Yet on July 9, 2008, Moody’s Investor Service
notes, “For UGRIC’s mortgage insurance portfolio
overall, capital adequacy on a risk-adjusted basis is
consistent with Moody’s double-A metrics, and the
company is currently well within regulatory limits”
(Moody’s Investors Service 2008). Also the North
Carolina Insurance Department did not take regula-
tory action until United Guaranty’s capital adequacy
problems were well known, and AIG had all but col-
lapsed. AIG was able to get a capital infusion and
chose to “save” United Guaranty, but many other pri-
vate mortgage insurance (PMI) companies did not fare
as well during the 2008 financial crisis. For example,
Triad Guaranty Insurance Corporation also collapsed,
and is now winding down as it placed its business in
run-off. If RBC were truly an effective indicator, one
would have expected it to indicate the possibility of
financial troubles sooner.

Most of those studying the topic agree that RBC
results present several shortcomings as a way of mod-
eling capital adequacy. Likewise, no agreement exists
in the literature about the best way to model capital
on a going-concern basis, the basis of most interest to
investors, for example.

In this paper, we focus on capital modeling issues.
Our purpose is to develop a reasonable capital ade-
quacy model that can be easily implemented using
data commonly available to company actuaries. The
flexible framework provided can be adapted to meet
the needs of rating agencies, company management,
and regulators. Our capital adequacy model is also
compatible with European Solvency II’s risk-based
economic capital framework.

The paper proceeds in the following way. In the
section that follows, we preface model development
by suggesting alternative ways of defining pricing

1. Introduction

The question of whether a property/casualty insur-
ance company possesses sufficient capital to continue
operating remains one of the most important problems
faced by insurance regulators, rating agencies, and
company management. The National Association of
Insurance Commissioners (NAIC) relies in part upon
risk-based capital standards to ensure that a company’s
capital remains adequate to support current and past
writings. Using conservative statutory accounting val-
uations, the risk-based capital requirements give reg-
ulators a tool to use in justifying prompt regulatory
action against a troubled company, action which does
not require a court order and helps limit the effect of a
potential insolvency (Lewis 1998). Risk-based capi-
tal (RBC) results might also be employed by a rating
agency as one measure of an insurance company’s
financial strength. Yet many times the tool simply has
not worked as envisioned, with capital inadequacy
not indicated by RBC until it was too late.

The near-collapse of AIG’s United Guaranty repre-
sents one of the more famous examples of RBC failure.
We use this as a case study for several reasons. First,
mortgage insurance is classified as a property-casualty
line and covered by RBC. Second, while having cer-
tain idiosyncrasies, private mortgage insurance (PMI)
is very much a property-casualty line of business, with
potentially extreme loss ratios and protracted written
premium development. Certain nuances are also found
in many other lines, such as warranty insurance, title
insurance, and workers compensation insurance, and
thus we feel that PMI represents the basis for an interest-
ing and insightful case study. Third, the recent housing
crisis impacted PMI companies and is therefore an
interesting and relevant indicator of RBC effectiveness.

In the months running up to United Guaranty’s
financial nosedive, RBC modeling showed redundant
capital levels. Regulators and rating agencies did not
understand that the company was financially troubled
until it was too late. According to an article published
in the Triad Business Journal on June 16, 2008,AIG’s
United Guaranty lost $352 million in the first quar-
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Interest rate risk. Most models calculate the vari-
ability of portfolio returns on an asset-by-asset basis
and then aggregate the risk. Instead, the risk is the mis-
match between investment income offset which under-
lies rates, and the actual interest income earned on loss
reserves and on (the loss portion of) unearned premium
reserves. Also, aggregating the risk usually requires
measuring a correlation matrix and that introduces
measurement errors due to the many extra param-
eters that are hard to estimate.

Interdependence. All risks are related through
time and are not independent. Many researchers model
these three risks separately and then combine them
using a correlation matrix. This often requires normal-
ity assumptions that are hard to justify in practice. Fur-
ther, as is the case with interest rate risk, this usually
requires measuring a correlation matrix and that intro-
duces measurement errors due to many extra param-
eters that are hard to estimate. The schematic flow of
risks for a 12-month policy year is shown below:

Time = 1 Time = 2 Time = 3 Time = Maturity

Pricing risk
Pricing,

Reserving &
Interest risk

Reserving &
Interest rate

risk

Losses paid:
no risk

A 12-month policy year spans two accident years
and losses from these two incurred accident years
lead to uncertainty in loss reserves (reserving risk).
The unearned premium and loss reserves are invested
at all times and result in interest rate risk. Pricing
risk vanishes after 24 months, once all premiums are
earned and all losses are incurred. Thus “risks” are
correlated at different times. In this paper we model
them together, without any explicit assumption of the
correlations between them.

Discussion. The current literature on capital model-
ing does not address the concerns we raise above. In
addition, there is currently no consensus on the sto-
chastic methods used to determine capital. For a com-
prehensive review of existing methods, the reader is
referred to Goldfarb (2006).

There are also many papers that deal with the sub-
set of risks that underlie capital. For example, reserv-
ing risk is discussed in many papers (e.g., see Mach

risk and interest rate risk that better capture the risks
presented by these two aspects of RBC. These risks,
combined with reserving risk, cannot be treated as
independent, and thus we model them together without
making assumptions about the correlations between
them. Section three includes a framework that links
to company reserves and can be updated as needed to
accommodate both different reserve parameters and
new data. The fourth section presents a two-effects
(row and column) model, including postulates and
two theorems, while section five applies the model to
common capital measures of value at risk and condi-
tional value at risk. A few applications of the model
are presented in section six. The seventh and final
section concludes the paper.

2. Capital modeling deficiencies

Of the risks considered by most capital adequacy
models, pricing, reserving, and interest rate risk seem
most important to most property/casualty insurance
companies. We examine definitions of these below.

Pricing risk. This refers to the risk that actual losses
differ from those anticipated in the rates. Contrary to
common perception, the nature of risk faced by insur-
ance companies is not the underlying losses. It is the
mismatch between loss provision in rates and the
actual losses. Traditional capital models fail to capture
this risk due to their focus on underlying losses and
their distributions.1

Reserving risk. This refers to the risk due to vari-
ability in loss reserves. Many models calculate capital
levels due to reserving risk with the assumption that
a certain method was used to set these reserves. In
practice, reserves can be hand selected. Regardless of
the methods used to select reserves, the reserving risk
must be captured. Many models work well for certain
methods of calculating reserves while actuaries often
use a combination of models as well as judgment
(Rehman and Klugman 2010).

1Such mismatch was severe in the case of PMI industry due to “even-
ness” of premium levels while experiencing extreme bouts of fluctua-
tions in house prices (claim levels).
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the square root rule ∑+
=
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k
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 Here, Ck refers to

the capital charge due to risk k. We limit our attention
to the three largest risks for most property casualty
insurance companies, namely, interest rate risk, pric-
ing risk, and reserving risk. Our framework presents
a different way of calculating charges for these three
risks, with the following four caveats in mind:

• We ignore the interest rate risk due to capital charges
themselves. In other words, we assume that capital
itself is placed in the safest possible investment.
This assumption can be removed, and the risk
incorporated into the model, but we chose not to
do so for the sake of simplicity.

• All data used to measure risk charges comes from
rate filings and annual statements. For example,
we use implied link ratios based on held reserves
(schedule P Part 2) and not indicated reserves (see
Appendix A). These link ratios are used to build data
triangles, discussed more completely in section 3.3.

• To build insurance risk triangles, we need actual
portfolio returns by calendar year. Under SAP
accounting, these equate to realized portfolio returns.

• Instead of three charges, a single charge is calcu-
lated and replaced in the RBC formula.

3.2. Economic capital: GAAP accounting

In accordance with “going concern” accounting
treatment, the insurance risk triangles rely upon indi-
cated link ratios. Portfolio returns, also employed in
building insurance risk triangles, reflect both real-
ized and unrealized gains. We again ignore interest
rate risk associated with economic capital itself, just
as we did with respect to risk capital above.

Also under GAAP accounting, the company should
combine capital charges due to other risks (e.g., credit
risks) into calculated capital. In most property casu-
alty insurance companies, such charges are typically
a much smaller part of total capital. Hence, we do not
discuss them further.

Moving forward, our discussion will be common
to both types of capital. One can obtain risk capital
versus economic capital by simply modifying the
dataset. Therefore, we will only use the term “capital”

1993). These models are often the basis of capital cal-
culation. As mentioned earlier, these papers calculate
reserving risk for a particular type of reserving model
while actual reserves are likely hand selected and based
on the many different methods deployed.

3. Capital framework

In this section, we set forth a framework for estimat-
ing required capital. The framework includes a model
that links to company reserves and can be updated as
needed to accommodate both different reserve param-
eters and new data. This pragmatic approach fits easily
with an actuarial department’s reserving framework.

We consider two versions of the model: an SAP-
based2 model for insurance regulators, and a GAAP-
based3 capital model useful for internal company
management and rating agencies. The respective
accounting treatments do influence model results,
which is why it is important to incorporate them
into our discussions. We do that explicitly in sec-
tions 3.1 and 3.2.

Before proceeding, we note that for solvency pur-
poses, the “required capital” derived under the two
different accounting treatments can each be com-
pared to the company’s balance sheet held capital.

3.1. Risk capital: SAP accounting

The risk-based capital (RBC) formula explicitly
incorporates six main risk charges (see Feldblum
1996).4 These charges are combined additively using

2The acronym SAP refers to Statutory Accounting Practices, accounting
rules that consider valuations on a “solvency” basis for insurance regula-
tory purposes. As compared to GAAP, valuations derived under SAP may
be lower, and thus, more conservative than those derived using GAAP.
3The acronym GAAP refers to Generally Accepted Accounting Princi-
ples, accounting rules that consider valuations on a “going concern” basis.
4The charges include off-balance sheet risks and risks from insurance
subsidiaries; invested asset risk for fixed income investments; invested
asset risk for equity, and real estate; counterparty (default) risk; reserv-
ing risk; and premium risk (CAS Research Working Party on Risk-Based
Capital Dependences and Calibration 2012). For a more complete dis-
cussion of how risk-based capital standards incorporate risk charges, see
“Solvency II Standard Formula and NAIC Risk-Based Capital (RBC),”
Report 3 of the CAS Risk-Based Capital (RBC) Research Working Par-
ties Issued by the RBC Dependencies and Calibration Working Party
(DCWP), published in the Casualty Actuarial Society E-Forum, Fall
2012, Volume 2, pp. 1–38.
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amount earned over time. At time 0, the insurance
company receives premium income, which becomes
earned as losses are incurred over the life of the
policy. Once all losses incur and premiums become
earned, unearned premium reserves for a given
policy year go to 0, and pricing risk disappears.
Thus the first column of Table 1 is always the UEPR
of respective policy years and represents the best
estimate of the losses at that time.6 This estimate
changes over time due to incurred losses.

• Reserving risk: Allocate direct accident year losses,
by age, to each policy year. Develop them to ulti-
mate using incurred accident year age to ulti-
mate development factors. These are then added
to the UEPR at each respective age. In this man-
ner we state the revised estimates of policy year
ultimate losses at each age.

• Interest rate risk: Begin by recognizing that interest
rates impact diagonal values only. Next, we need two
additional quantities, namely, the investment income
offset that underlies rates due to policyholder sup-
plied funds (by policy year) and the actual earned
portfolio interest rate underlying unearned premium
and loss reserves. If the actual interest rate proves
higher than expected, we decrease the diagonal to
reflect the added investment income. The converse is
also true. This way, all the diagonals become restated.
The last diagonal remains unchanged, since no data
for actual interest rate is available at this point. Thus,

henceforth. We now present the data structure for non-
catastrophic lines, and a complete discussion of adjust-
ments needed to put them into catastrophic insurance
risk triangles will follow.

3.3. Data structure: Non-catastrophic
insurance risk triangles

In Table 1, data is available for M (fixed) policy
years i = 2, 3 . . . M. Thus row entries in the table can
be obtained by varying i. However, for any fixed M
the quantity UM-i+1 provides only the last (diagonal)
column entry for row i. The value on the adjacent
diagonal would be UM-i. We do not introduce a vari-
able for the realized part of the rectangle, as our inter-
est lies in the unknown (missing) cells of the policy
year i, and we will be contented with just naming the
values by their specific symbols in the realized part.
The unrealized part, referenced by adding a subscript,
q = 1, 2 . . . i - 1, such that UM-i+1+q now references
future cells for row i. We explain below the steps to
prepare the dataset for any policy year (i.e., the real-
ized part). We jointly model interest rate, pricing,
and reserving risks by capturing them in a single data
triangle. Prepare the insurance risk triangle, shown
in Table 1, which consists of company’s “estimates”
of ultimate losses Ui tracked on a policy year basis,
by adding the following components:

• Pricing risk: Let (1-expense load)* written premium =
trimmed unearned premium reserves (UEPR),5 an

6Under SAP accounting, we would not use trimmed UEPR and use the
full written premium as UEPR.

Table 1. Insurance risk triangle: [M ë M + 1]

0 1 2 . . . M - i M - i + 1 . . . M - i M

1 U1,0 U1,1 U1,2 . . . U1,M-i U1,M-i+1 . . . U1,M-1 U1,M

2 U2,0 U2,1 U2,2 . . . U2,M-i U2,M-i+1 . . . U2,M-1

3 U3,0 U3,1 U3,2 . . . U3,M-i U3,M-i+1 . . .

. . . . . . . . . . . . . . . . . . . . .

i Ui,0 Ui,1 Ui,2 Ui,M-i Ui,M-i+1

i + 1 Ui+1,0 Ui+1,1 Ui+1,2 Ui+1,M-i

. . .

M UM,0 UM,1

5UEPR: We do not subtract the profit load (= underwriting profit provi-
sion + investment income offset) as that is also available to pay losses.
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tility in these ratios reflects the insurance risk faced
when writing the underlying policies. Larger absolute
values of the natural log ratios imply greater deviations
from previous estimates. Signs associated with errors
also may prove informative. For example, a finding of
negative policy year cumulative errors would imply
rate redundancy for the policy year.

Note that the insurance risk triangles depend on
charged premiums. They include any market adjust-
ments present in the loss costs underlying rate indi-
cations, such as schedule rating credits/debits or
experience rating modifications.

The non-catastrophe insurance risk and error tri-
angles described above can be constructed using data
commonly available to actuaries. Companies wishing
to determine economic capital and rating agencies
could prepare them for this purpose. Hence, these tri-
angles prove very pragmatic from an implementation
perspective.

From a practical standpoint, insurance risk triangles
are not available in annual statements. This is not a
shortcoming of the framework, since the true risk
faced by an insurance company is on a policy-year
basis because it is always “older” than accident year.
Current capital models often ignore the lag between
the two due to the fact that Schedule P is compiled
on an accident year basis and it’s easier to compile
data using accident year than mapping losses on a
policy-year basis. For precisely this reason, the capital
requirements fall short when the lag is significant—
especially in lines with significant pricing risk such as
property catastrophe. For lines where pricing risk is
insignificant, such as auto physical damage and auto

since the final diagonal remains unchanged, interest
rate risk adds uncertainty to cash flow timing only.

In GAAP accounting, capital gains/losses are part
of the calculation of “actual earned interest income”
underlying insurance risk triangles. For example, if
a bond portfolio underlying loss reserves decreases
in value due to increase in interest rates, the decrease
in value will lower the actual return on the policy-
holder–supplied funds and thus affect the diagonals
of the insurance risk triangles.

Another issue is related to the investment income
offset. The offset is set in advance for a policy year
and cannot be changed. For example, using new
money yields on policyholder supplied funds will
affect the actual portfolio return but not the invest-
ment income offset itself.

We assume that the triangle of errors contains all
policy years underlying the economic cycle con-
templated in the return period. Further, the loss data
should be available until maturity for those policy
years. Define:

Ui,M-i+1 = Insurance Risk amount for policy year i, esti-
mated at development age M - i + 1

ei,M-i+1 = Error for policy year i and development
interval (M - i, M - i + 1)

=− +
− +

−
e

U

U
i M i

i M i

i M i

ln ., 1
, 1

,

Below the Insurance Risk triangle presented in
Table 1, find a triangle of errors, ei in Table 2 that indi-
cates the extent of under- or over-pricing. The vola-

Table 2. Error triangle: [M ë M]

1 2 . . . M - i M - i + 1 . . . M - 1 M

1 e1,1 e1,2 . . . e1,M-i ei,M-i+1 . . . e1,M-1 e1,M

2 e2,1 e2,2 . . . e2,M-i e2,M-i+1 . . . e2,M-1

. . . . . . . . . . . . . . . . . .

i ei,1 ei,2 . . . ei,M-i ei,M-i+1

i + 1 ei+1,1 ei+1,2 . . . ei+1,M-i

. . . . . . . . . . . .

M eM,1
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are independent of other non-catastrophic events, the
dollar losses may not be independent due to macro
and micro economic variables, such as inflation. It
is also possible that geographies may create a rela-
tionship between catastrophic and non-catastrophic
losses simply due to different construction standards.
A univariate analysis ignores such covariance effects
or at least makes assumptions in quantifying them.

For the rest of the paper, we will assume non-
catastrophic insurance risk triangles with the under-
standing that catastrophic losses can be incorporated
into the model.

3.5. Discussion: Insurance risk triangle

In the section above, we consider how to construct
insurance risk triangles and error triangles. Other
variations exist, and we would like to devote atten-
tion to two of these, as well as to reflections on under-
writing cycles, before proceeding to a case study.

Instead of using incurred losses, we can use paid
losses to construct insurance triangles. When paid
losses are used we must use accident year paid ulti-
mate loss development factors as opposed to incurred
factors.7 The use of paid versus incurred depends on
the company’s situation. If the company sets case
reserves in a reasonable way, then incurred data
should be used, as it accurately reflects the company’s
reserving situation.

Instead of using direct written premiums and losses
to make insurance risk and error triangles, net written
premiums and losses may be employed, resulting in
a net insurance risk triangle. For such triangles we
also use net age to ultimate factors from net reserve
reviews. Use of direct or net insurance risk triangles
will lead to direct or net capital.

We now turn our attention to the issue of underwrit-
ing cycles embedded in the data. If the data contain a
complete underwriting cycle (peak and trough) then
the parameters measured from those data will encode
the strength of the cycle. The data triangles used in

liability, one can build insurance risk triangles using
accident year basis and ignore pricing risk (approxi-
mation). Hence, pragmatically, regulators may limit
data calls in the form of insurance risk triangles only
from companies suspected to be in trouble or lines of
business that have high pricing risk. This discussion
ties back to statements we made in section 3.1.

3.4. Incorporating catastrophic losses

Catastrophic losses refer to hit-and-miss events such
as hurricanes, where usual triangulation of data would
leave missing values. Hence, tornadoes may be non-
catastrophic in states such as Iowa where these occur
each year but the same would be catastrophic in Maine
where they are rare. With this definition, we now show
adjustments needed to non-catastrophic insurance risk
triangles in order to reflect catastrophic risk:

(1) Catastrophic models should be used to determine
losses on current exposures due to actual (not
modeled) historical catastrophes. This will pro-
vide the company with a long enough history of
data that captures cycles of such rare events. Still,
in many calendar years, one would expect no loss.

(2) These losses must be combined with non-
catastrophic losses to produce a “total” insur-
ance risk triangle. The non-catastrophic losses
should have the same number of years of policy
year history as catastrophic losses. This ensures
that there are no missing values in the triangle,
although in some calendar years we would have
“spikes” due to actual catastrophic losses.

(3) The starting expected loss (Figure 1, time 0)
includes charges for catastrophes.

There are several advantages of this model over
the current practice of determining capital for cata-
strophic losses separately and combining it with non-
catastrophic losses. First, it considers errors due to
pricing versus actual historical experience. This is in
contrast to using modeled losses to determine capi-
tal. Second, the model is multivariate and considers
covariance effects between catastrophic versus non-
catastrophic losses. Even if catastrophes themselves

7Another variation includes using quarterly as opposed to annual policy
periods. In that case, one needs to use quarterly accident year ultimate
loss development factors.
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3.7. Case study

We end section 3 by presenting data for line X.
The purpose of the case study is to help illustrate key
computational ideas described earlier in section 3.3,
as well as throughout the rest of the paper. As a prac-
tical matter, for variance/covariance calculation pur-
poses, an extra row is needed to ensure that the last
age (the last column in the triangle) has at least two
data points. Thus M = 10 and the policy year 2004 is
the extra row added.

4. Two effects model

Real-world changes often take place on a calendar
year basis. In Tables 1 and 2, the diagonals represent
calendar years. It is clear that any “calendar year effect”
will result in dependence of both policy years (rows)
and columns (development periods). From a mathe-
matical perspective, we cannot appeal to independence
arguments. Instead, we will develop our model with
recognition of both policy year (row effect) and devel-
opment interval (column effect) dependencies.

We present two distinct approaches to capital mea-
surement. The first, value at risk (VaR), provides a
percentile measure of risk tolerance. It requires capital
to be set so that there is a probability of insolvency. The
second, conditional value at risk (CVaR), specifies risk
tolerance at a given conditional expected excess loss.
The condition here is typically the VaR loss amount.
Hence, CVaR is always more conservative than VaR
for the same specified percentile a. Conditional value
at risk possesses a property of risk measures known as
coherence (see Artzner, Delbaen, et al. 1999), implying
compliance with a set of commonsense axioms. Value
at risk, lacking this property, can lead to perverse con-
sequences in some circumstances.

4.1. Model postulates

Table 2, the error triangle, presents half of the val-
ues present in a rectangle, the observed half, with the
rest of the values considered unobserved. Since our
randomness is due to unobserved values, we ignore

this paper will assume that at least one complete
underwriting cycle has been observed. All param-
eters estimated from this data will make the model
relative to this fact: the number of underwriting cycles
in the data.

Suppose that we are concerned with future under-
writing cycles impacting past business written on a
policy-year basis. Future underwriting cycles can be
driven by several factors, such as changes in laws,
external market competition, and the external busi-
ness environment (e.g., inflationary pressures). Com-
monly, actuaries adjust for future cyclical effects by
incorporating ancillary data. Our methodology per-
mits a way to readily incorporate such data.

3.6. Industry data

For capital modeling purposes, it’s not correct to
use industry data. It makes sense to combine esti-
mates using credibility if the estimates are measuring
the same quantity. In a capital measurement context,
the company’s data is a result of its unique exposures,
geography and other variables. Industry parameters
are based on a different data set. Also, a low volume
of data8 of the company is not a problem but rather a
reality that must impact parameter estimates. Third,
the confidence intervals of the parameter estimates
involving sample means and variances have reason-
ably low standard errors due to the strong law of large
numbers.

In cases where a complete triangle is not available,
such as a company with a rapidly changing busi-
ness mix for a given line or a new company with no
data, the only option may be ad hoc approaches such
as using parameters of a peer company of a similar
size. However, it’s never feasible to apply industry fac-
tors and “adjust” them to a particular company when
company-specific data is available. Similarly, industry
“factors” can be calculated based on the model and
applied to all companies, but such an approach would
not be recommended.

8We still require a complete triangle of data but for each policy year there
are fewer claim counts.
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This postulate proves unnecessary later, when we
use additional data. Hence, we relax it below in sub-
section 4.4 when we present Theorem 2, but retain it
for Theorem 1, presented in subsection 4.3.

4.2. Column effect: dependence
of development periods

Given our postulates, k = 1, 2 . . . i - 1

e
U

U
Ni M i k

i M i k

i M i k
i M i k i M i kln ,, 1

, 1

,
, 1 , 1

2∼ ( )= µ σ− + +
− + +

− +
− + + − + +

Thus, each future entry in the error triangle in
Table 2 is postulated as marginally normally dis-
tributed and the parameters vary by both rows and
columns. In the context of capital, half the rectangle
is observed and we are interested in the randomness
due to the remaining half of unobserved normally dis-
tributed error values.

For column effects, we will keep the policy year i
fixed and sum over the unobserved k = 1, 2 . . . i - 1
errors

∑ ∑

( )

= = =

= ∗

− + +
=

= −
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− +=
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e e
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1
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1
,
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Note that Ui,M is an unknown final policy year ulti-
mate loss, while Ui,M-i+1 is fixed and known. Due to
the normality assumption,

Table 2’s first row, as it is assumed to be complete.9

We postulate that the unobserved errors {ei,M-i+1}2≤i≤M

are multivariate normally distributed.10 Additionally,
for estimation purposes, we make the following two
assumptions about Table 2:

(i) For any given column, the errors have the same
marginal variance. This assumption permits
the use of a sample variance as an estimate of the
marginal population variance.

(ii) Pairs of errors in any two columns have the same
covariance. This permits the use of a sample cova-
riance as an estimate of the population covariance.

The last two postulates are necessary for calibra-
tion of the parameters. However, note the following
caveats. First, sample estimates should be updated
as new data emerges each year. Second, the old
“completed rows” from the insurance risk triangle
in Table 1 greatly enhance accuracy in estimation and
should be retained. We note a third postulate since it
will be used to derive Theorem 1:

(iii) For any given column, the errors have the same
marginal mean. This permits the use of a sample
mean as an estimate of the population mean.

Table 4. Error triangle

Log Ratio 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10

2004 -9.0% -49.8% -1.4% -2.4% -12.1% -6.7% -6.8% -10.2% -6.0% -4.8%

2005 -9.3% -55.2% -10.6% -15.7% -13.0% -8.4% -14.2% -9.7% -7.1% -5.4%

2006 -9.1% -49.1% -19.0% -12.7% -10.3% -17.5% -13.1% -12.1% -8.7%

2007 -9.5% -50.6% -12.9% -11.2% -19.4% -16.4% -15.9% -12.6%

2008 -9.7% -49.4% -11.5% -18.8% -18.4% -15.7% -12.4%

2009 -7.9% -44.1% -22.4% -15.3% -15.6% -9.8%

2010 -7.3% -45.0% -15.0% -14.4% -12.2%

2011 -7.8% -41.9% -15.9% -11.2%

2012 -7.3% -44.2% -15.2%

2013 -7.3% -43.7%

2014 -6.1%

9Adding extra rows will later help in estimation (especially for late devel-
opment periods with few entries in columns) as we will estimate quanti-
ties using columns in Table 2.
10The theoretical rationale for this is discussed in Rehman and Klugman
(2010).
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values from Table 2. Thus ∑ µ − + +
=

= −

i M i k
k

k i

, 1
1

1

 accumulates

these means for future development periods for a
given policy year i. Table 7’s cumulative column
shows the results.
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For a fixed i the “column covariance matrix,”
namely {cov(ei,M-i+k+1, ei,M-i+l+1)}k,l

; k, l ∈ {1, 2 . . . i - 1}
can be estimated using the observed half rectangle
of errors (Table 2). The result is shown in Table 5.

For example, the (2–3, 3–4) entry is calculated
using Table 4 and taking covariance of columns:

Error 2–3 3–4

2004 -1.4% -2.4%

2005 -10.6% -15.7%

2006 -19.0% -12.7%

2007 -12.9% -11.2%

2008 -11.5% -18.8%

2009 -22.4% -15.3%

2010 -15.0% -14.4%

2011 -15.9% -11.2%

2012 -15.2%

Covariance 0.2%

Note that s 2
2014 is the sum of all entries in Table 5

except 0–1 row/column; s 2
2013 is the sum of all entries

after deleting the first two rows and columns, etc.
Table 6 shows these results.

Similarly, for a fixed i, the error means µi,M-i+k+1 can
be estimated by averaging each column of observed

Table 5. Column covariance matrix

Var-Cov Matrix 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10

0–1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1–2 0.00% 0.20% -0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2–3 0.00% -0.10% 0.30% 0.20% 0.00% 0.10% 0.10% 0.10% 0.10% 0.00%

3–4 0.00% 0.00% 0.20% 0.20% 0.10% 0.10% 0.10% 0.00% 0.00% 0.00%

4–5 0.00% 0.00% 0.00% 0.10% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00%

5–6 0.00% 0.00% 0.10% 0.10% 0.00% 0.20% 0.10% 0.10% 0.10% 0.00%

6–7 0.00% 0.00% 0.10% 0.10% 0.00% 0.10% 0.10% 0.00% 0.00% 0.00%

7–8 0.00% 0.00% 0.10% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00%

8–9 0.00% 0.00% 0.10% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00%

9–10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 6. Variances

PY Variance

2014 3.30%

2013 3.30%

2012 1.80%

2011 1.00%

2010 0.90%

2009 0.10%

2008 0.00%

2007 0.00%

2006 0.00%

2005 0.00%

Table 7. Estimation of error means

PY Error Mean Cumulative

2006 -5.09% -5.09%

2007 -7.26% -12.35%

2008 -11.13% -23.49%

2009 -12.50% -35.98%

2010 -12.41% -48.40%

2011 -14.43% -62.83%

2012 -12.73% -75.56%

2013 -13.76% -89.32%

2014 -47.29% -136.60%
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Here V is the sum of observed values along the
diagonal of the insurance risk triangle (Table 1) for all
open years and the weights are the relative proportion
in each policy year. If the error random variables ei

are close to zero, consider the following Taylor series
approximations:
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The approximate log-ratio has a normal distribu-
tion and, thus, U has an approximate lognormal dis-
tribution. The variance of the normal distribution is
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The estimation of Var(ei) was discussed under col-
umn effect. The second term is due to dependence of
policy years (row effect). For 2 ≤ i < j and using (1),
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From (1) since Ui,M-i+1 is considered fixed, Ui,M will
have a lognormal distribution,
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The above follows from (2). We can therefore esti-
mate the policy year distribution.

4.3. Row effect: Dependence 
of policy years

Our goal is to sum across all policy years and
determine the distribution of

U Ui M
i

i M

.,
2

∑=
=

=

Since Ui,M is lognormal, we have a sum of log-
normal random variables. There is no closed form dis-
tribution for U but simulation techniques can be used
to determine the exact distribution (Appendix B). We
provide closed-form results in this section that are
approximations. These approximations are generally
quite good. From (1), the total loss for all policy years
can be written as
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i j M

e e i C ii j i ij j

2 , ,
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[ ]( )≤ ≤
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The above bilinear form simply sums up all ele-
ments of matrix Cij. This form is convenient since
when i = j we get variances. Putting this information
in a matrix form gives us the covariance matrix of
errors by policy year,

i C ii ij j M x M
M i j

. (11)1 1
, 2

{ }Σ = ′
[ ]

( ) ( )− −
≥ ≥

Table 8 gives an example of the matrix.
The [2011, 2012] entry is explained in Appendix C.

Table 7 reported µ′ under “cumulative mu” column
and r ′ is shown in Table 9. Using equation (4)

for the scalar ∑= − +
=

=

V Ui M i
i

i M

, 1
2

and based on the above

we have now shown the following result,

Theorem 1
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4.4. Incorporating future conditions

We discussed postulate (iii) earlier in subsection 4.2.
This postulate can be relaxed if we want to consider
additional data from outside of the model. This situ-
ation may arise, for example, if management wants
to incorporate its estimates of future conditions in the
capital framework.

Suppose that we know expected policy year losses
(Table 9) from standard actuarial techniques or com-
pany projections.
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The covariance matrix {cov(ei,M-i+k+1, ej,M-j+m+1)}k,m

is not square and hence we cannot assume any sym-
metry. Similar to the estimation of Var(ei), the double
sum is over the unobserved values and can be esti-
mated from the error triangle (Table 2) using column
data. For fixed i, j we need to calculate the sum of all
possible covariance between future columns of these
policy years. To illustrate if M = 8, for policy years i = 3
and j = 4, we would calculate covariance of these
pairs of columns and then add {k = 1, 2; m = 1, 2, 3}:

(i) 2x(6,5), (7,7), 2x(6,7),

(ii) (7,7).

The process is computationally feasible and takes
a few seconds on average computers and reason-
ably sized triangles (to see how this might be exe-
cuted using R, see Appendix C). Next, to simplify
our notation, we will express our result in matrix
form. Let
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Note that in the matrix notation we can obtain all
variances and covariance as follows:
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Theorem 2, since in practical cases ∑
=

=

Li M
i

i M

,
2

 is

available.

(ii) The variance component r ′ Sr is based on his-
torical data alone and changes only as the data
changes. In the actuarial and regulatory con-
texts, this situation will usually happen once a
year when the model is updated.

5. Capital measurement

The aforementioned property of coherence makes
the CVaR approach appealing. However, the VaR
lacks this property, laying the user open to counter-
productive choices in capital management. This short-
coming seems important to mention because of VaR’s
widespread use, as well as the fact that its use is man-
dated by some proposed regulatory régimes.

5.1. Value at risk (VaR) capital

Using (12), we define

∑= − ′Σ + ′Σ
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U L
r r

z r rVaR
i M

i

i M

: exp ln
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(15), 1
2

H := Held loss reserves11 + Held unearned premium
reserves (line) + Policy year cumulative paid loss to
date

I := Future investment income on held loss and
unearned premium reserves

N11

We mentioned in Section (2) the usefulness of incor-
porating future conditions in the capital framework.

Here ∑
=

=

Li M
i

i M

,
2

 provides a way to incorporate these

beliefs. Based on the above we have now shown the
following result:

Theorem 2
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The above is justified, since

L
r r r r

L E Ui M
i

i M

i M
i

i M

exp ln
2 2

.,
2

,
2

∑ ∑ ( )− ′Σ + ′Σ



 = =

=

=

=

=

Comments:

(i) The use of Theorem 2 alleviates the need to
estimate the vector µ. Henceforth we will use

Table 8. Covariance matrix by policy year

PY 2014 2013 2012 2011 2010 2009 2008

2014 4.29% 4.24% 3.30% 2.45% 2.13% 1.35% 0.64%

2013 4.24% 4.37% 3.30% 2.45% 2.13% 1.34% 0.66%

2012 3.30% 3.30% 2.58% 1.91% 1.60% 0.96% 0.44%

2011 2.45% 2.45% 1.91% 1.48% 1.23% 0.70% 0.33%

2010 2.13% 2.13% 1.60% 1.23% 1.10% 0.63% 0.32%

2009 1.35% 1.34% 0.96% 0.70% 0.63% 0.37% 0.16%

2008 0.64% 0.66% 0.44% 0.33% 0.32% 0.16% 0.07%

2007 0.43% 0.42% 0.27% 0.17% 0.18% 0.10% 0.04%

2006 0.11% 0.10% 0.07% 0.03% 0.03% 0.02% 0.00%

Table 9. Expected policy year losses

PY Reported Factor Ultimate r

2006 50,838,495 0.99 50,330,111 2.6%

2007 77,760,719 1.01 78,538,326 4.0%

2008 100,766,488 1.02 102,781,818 5.2%

2009 106,221,802 1.06 112,595,111 5.5%

2010 191,177,996 1.08 206,472,236 9.9%

2011 230,494,139 1.10 253,543,552 11.9%

2012 371,411,907 1.19 441,980,170 19.2%

2013 320,125,168 1.20 384,150,202 16.6%

2014 485,477,383 1.36 660,249,241 25.1%

Total 1,934,274,098 2,290,640,766 100.0% 11Use indicated reserves under GAAP.
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be a distribution for each line separately and one
for the combined lines, too. The fact that data is
“less volatile” in the sense of lower sample variances
obtained from the data is not a “problem” but a reality
that in many cases the company faces lower volatility
in its overall loss experience than any single line. In
cases where a line’s mix is changing rapidly, it’s pos-
sible to simulate ultimate losses (for all policy years)
for that line and then combine it using covariance
matrix. We do not provide details in the paper but the
calculations are similar to Appendix B. Beliefs about
future development of losses on these policy years

can be incorporated through ∑
=

=

Li M
i

i M

,
2

 while emerging

data will capture estimation of variance parameters.

5.3. Capacity

Capacity := Sum of individual line capital - Total
capital for all lines combined

Thus, capacity results from diversification across
lines. Positive capacity lowers the capital requirement
of the company and thus enhances solvency.

5.4. Conditional value at risk
(CVaR) capital

The capital can also be measured as a function of
conditional expected cost in excess of a given dol-
lar amount d. This is called conditional value at risk
(CVaR) capital and is a more general case of tail
value at risk (TVaR) capital, which requires a certain

The full value capital under VaR is given by

C U H IVaR VaR: . (16)= − −

Note that the future investment income on held
loss and unearned premium reserves should be done
at the appropriate interest rate. For risk-based capi-
tal, we would use SAP accounting rules and for eco-
nomic capital, we would use GAAP accounting rules.
In both cases, we would use the current asset mix.

We assume that capital gets invested in risk-free
assets. To find discounted capital, we discount using
the risk-free rate and the duration determined from
the insurance risk triangle. This duration reflects the
runoff of both loss reserves and unearned premium
reserves.

The undiscounted capital calculation (z1-a = 1.96)
is shown in Table 10, where we have not subtracted I.

The capital is sensitive to the variance parameter.
In particular, smaller companies/lines will generate
larger variances and larger capital requirements.

5.2. Value at risk (VaR) capital
for multiple lines

Suppose that there are two lines of business. Each
can be analyzed separately using the method previ-
ously outlined. However, it is likely that the results
for the lines are not independent.

We can combine the data (losses in Table 1) from
the two lines into a single triangle and analyze it using
the methods of this paper. When finished, there will

Table 10. Capital calculation

PY Reported Ultimate Variance Capital

2006 50,838,495 50,330,111 2.161945% 732,243,777

2007 77,760,719 78,538,326

2008 100,766,488 102,781,818

2009 106,221,802 112,595,111

2010 191,177,996 206,472,236

2011 230,494,139 253,543,552

2012 371,411,907 441,980,170

2013 320,125,168 384,150,202

2014 485,477,383 660,249,241

Total 1,934,274,098 2,290,640,766
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the ultimate loss. This can be obtained by noting that
one-year forward means that k = m = 1 and the matrix
Cij reduces to a scalar.

There are no “fixed” models prescribed in Sol-
vency II and a model can be filed for approval. The
current model has several advantages. First, it pro-
vides a nice way to measure “1 year” risk which is
key to Solvency II. Second, the model ties back to
reserve reviews, which is important to regulators.
Third, the model is mathematically justified, sim-
ple to understand and applicable across all types on
property liability insurers (including niche lines such
as private mortgage insurance) which is also impor-
tant to regulators. The last point is important, as no
special models have to be created for niche lines.

6.2. Loss reserve uncertainty

The model presented represents an enhancement of
Rehman and Klugman (2010) where accident years
were assumed to be independent. To see the connec-
tion with our model, suppose instead of using insur-
ance risk triangles we used accident year triangles
where diagonals are ultimate selected losses. Under
SAP, these will be Schedule P Part 2 (includes bulk
and IBNR reserves) while for GAAP, these will come
from historical company reserve reviews.

In this case, the data contains only reserving risk,
which means that capital is only due to this single
source of risk. Theorems 1 and 2 will provide the dis-
tribution of U. The mean of U in Theorem 1 has an
interesting interpretation in this case. It corrects the
“biases” of the actuary when selecting the ultimate
losses. Once the parameters q and w are known, we
can determine the following measures:

Reserve margins. Under International Account-
ing Standards Board (IASB) reserve margins are now
required. These margins consist of amounts or cush-
ions above held capital amounts. Using CVaR and

choice of d explained below. Note that, as a con-
sequence of the positive lognormal support, U ≥ 0.
Using the CVaR definition,

U E U U d
f x dx

f x dx

f x dx

F d

U

d

d
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For a given d the above denotes the stress value
of the loss for all policy years combined. Extension
to multiple lines can be accomplished using the total
company-wide data. The approach is similar to VaR.

= − −C U H ICVaR CVaR: (18)

To illustrate, suppose d is based on VaR-based per-
centile UVaR given by equation (15). This special case
of CVaR is called TVaR and is more conservative
than VaR,

d U L
r

z r rVaR
i M

i

i M

exp ln
2

. (19),
2

1∑= = − ′Σ + ′Σ



=

=

−α

A comparison of VaR versus CVaR capital for the
same parameters is given in Table 11.

6. Applications

The model presented is versatile and rich in appli-
cations to other important areas. We discuss some of
these below.

6.1. European Solvency II regulation

European regulation for insurance companies (Sol-
vency II) requires a one-year forward distribution of

Table 11. Capital comparison

Approach q w2 Capital (dollars) Stress level

VaR 21.5413 2.161945% 732,243,777 a = 5%

CVaR 21.5413 2.161945% 909,072,096 d = 3,022,884,543
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relations between them. We present a two-effects
(row and column) model, including postulates and
two theorems, as well as common capital measures
of value at risk and conditional value at risk.

We follow our discussion of model development
with mention of three significant applications: Euro-
pean Solvency II regulation, loss reserve uncertainty
and margins under IASB accounting standards—
which generalizes the work of Rehman, Klugman
(2010), and net capital estimation, which is useful
when considering reinsurance program consequences.
European Solvency II regulations require a one-year
forward distribution of ultimate losses, easily obtained
using the model.

The current approach would have resulted in much
higher capital requirements for PMI companies, such
as AIG United Guaranty. It is due to inherent historical
volatility in housing data where home prices undergo a
“bad patch” for several years in a row—often region-
ally and result in extremely large loss ratios for PMI
companies. The “bad patch” leads correlated years
of losses and the traditional models as well as RBC
underestimate this “effect.” Coupled with this, PMI
have significant pricing risk as premiums are earned
over a long period of time13 and the insurance risk tri-
angle will capture this pricing risk. In traditional acci-
dent year models, this pricing risk would be ignored
and hence cause underestimation of true risk.

Current risk-based capital frameworks used by U.S.
insurance regulators and rating agencies often fail
to signal capital deficiency problems until it is too
late. In this paper, we propose an alternative model
that relies on data commonly available to actuaries.
The framework allows for a modified calculation of
risk-based capital amounts under statutory accounting
rules, as well as the computation of economic capi-
tal amounts using going concern accounting rules.
Thus, it should be useful to companies, regulators,
and rating agencies alike. The model accommodates
the European Solvency II framework as well.

VaR approaches described above, we can determine
the stress value of U. Equation (16) is modified in
this case:

H := Held loss reserves12 + Accident year cumula-
tive paid loss to date.

The full value reserve margin under VaR is given by

C U HVaR VaR: . (20)= −

Reserve confidence intervals. These are obtained
from the confidence interval of U minus cumulative
paid losses.

6.3. Net capital

Net capital := Direct capital - Ceded capital.
If the VAR approach is used to set capital, then za

for the direct and ceded analysis should be the same.
Likewise, for the CVaR, d should be calculated using
a consistent percentile.

An alternative to the above approach is to conduct
a net analysis directly using net written premiums
and net losses in the data step. In that case, the net
capital can be estimated directly.

7. Conclusion

In this paper, we develop a reasonable capital ade-
quacy framework that can be easily implemented using
data commonly available to company actuaries. The
flexible framework provided can be adapted to meet
the needs of rating agencies, company management
and regulators and updated along with annual reserve
reviews. Our capital adequacy model is also compati-
ble with European Solvency II’s risk-based economic
capital framework.

Our framework captures pricing risk, interest rate
risk and reserving risk more accurately than RBC risk
charges and we recommend replacing current cal-
culation of RBC risk charges. These risks cannot
be treated as independent, and thus we model them
together without making assumptions about the cor-

12Use indicated reserves under GAAP.

13Policyholder pays premiums as long as the mortgage stays and loan to
value ratio is greater than 80%.
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Appendix A. Calculating Implied
Link Ratios

When the selected ultimate losses and the incurred
triangle are given the implied link ratios can be gleaned
from the data.

Example

AQ 3 6 9 12
Selected
Ultimate

2000 Q1 100 120 180 200 200

2000 Q2 120 160 200 250

2000 Q3 150 200 300

2000 Q4 200 400

Solution:

Development
to Age
Intervals

Implied Age to
Ultimate Factor

Development
Intervals

Implied Age
Link Ratio

3–Ult 400/200 = 2.00 3–6 2/1.5 = 1.33

6–Ult 300/200 = 1.50 6–9 1.5/1.25 = 1.2

9–Ult 250/200 = 1.25 9–12 1.25/1.00 = 1.25

12–Ult 200/200 = 1.00 12–Ultimate 1.00/1.00 = 1

The model relies on construction of incurred insur-
ance risk triangles and corresponding error triangles
using direct premiums written to estimate direct capi-
tal. However, we also show that, with some minor mod-
ifications, paid insurance risk triangles can be used.
Also, if net triangles are employed, estimates of net
capital can be produced.

The methodology presented permits incorporation
of ancillary data, something that actuaries often do
to adjust for future changes in laws, external market
competition, and inflationary pressures, all of which
can drive future underwriting cycles. Thus, the model
enables actuaries to adjust past data for future cycles.

To assist the reader in understanding how the model
can be implemented, we provide a case study in sub-
section 3.5. For the same reason, we include four
appendices. Appendix A shows how to calculate
implied link ratios. Appendix B provides some impor-
tant model details useful in working with simulated
data, if using total line losses, distributed as lognormal,
prove problematic. Appendix C gives programming
language R code used to estimate covariance matri-
ces by policy year. We hope that these enhancements
prove helpful to the reader when implementing the
accompanying framework. Finally Appendix D shows
capital allocation results for companies that wish to
deploy them.
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The joint distribution of Ui,M; i ∈ {1, 2 . . . M} is
multivariate lognormal and we wish to simulate losses
from this distribution. It’s standard to simulate from
the multivariate normal distribution above and then take
exponents of the values. To simulate from multivariate
normal, we need the covariance matrix of ln Ui,M,

Cov U Ui M j M i j M
ln , ln ., , 2 ,( ){ } [ ]≤ ≤

Now from (1),

U U
U e

U e

U U
U e

U e

i M j M
i M i i

j M j j

i M j M
i M i i

j M j j
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From Table 1, we note that Ui,M-i+1 is constant,

U U e ei M j M i jcov ln , ln cov , ., ,( ) ( )=

From (10) and (11) we recognize,

U Ui M j M i j M
cov ln , ln ., , 2 ,( ){ }Σ = [ ]≤ ≤

Thus, after estimating S, we can resort to simula-
tion instead of closed form results.

Appendix B. Simulation

While policy year losses are postulated to be log-
normal, the total line losses are only approximately
lognormal. This approximation can be troubling when
cumulative errors are large (by individual policy year)
and the Taylor approximation is not good.

Our approach is not dependent on the lognormal
approximation. One can work with simulated data by
policy year to arrive at the line losses and the com-
pany total losses. That way, the lognormal approxi-
mation is not required.

We will not provide details on how to simulate in
this paper—details can be found in any standard statis-
tical textbook. Goldfarb (2006) also provides a review
for capital allocation (under both VaR and CVaR mea-
sures) using simulation-based methods. However, we
will provide the key details relevant to our model.
Equation (3) provides the starting point where mar-
ginal (policy year) distributions are known:

U N
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Table C1. Errors

Index PY 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10

2004

1 2005

2 2006

j = 3 2007

4 2008 1 2 3

5 2009

6 2010

i = 7 2011

8 2012 a b c d e f g

9 2013

10 2014

Appendix C. Covariance Matrix by Policy Year
Schematic flow of matrix Cij entries
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Table C2. Covariance calculations

cov (a,1) cov (b,1) cov (c,1) . . . cov (g,1)

cov (a,2) cov (b,2) cov (c,2) . . . cov (g,2)

cov (a,3) cov (b,3) cov (c,3) . . . cov (g,3)

Table C4. Errors

5–6 6–7

-6.7% -6.8%

-8.4% -14.2%

-17.5% -13.1%

-16.4% -15.9%

-15.7% -12.4%

-9.8%

Covariance 0.10%

Table C3. Calculations

3–4 4–5 5–6 6–7 7–8 8–9 9–10

4–5 0.06% 0.12% 0.05% 0.06% 0.02% -0.01% 0.00%

5–6 0.11% 0.05% 0.22% 0.10% 0.07% 0.08% 0.01%

6–7 0.15% 0.06% 0.10% 0.12% 0.03% 0.04% 0.02%

7–8 0.01% 0.02% 0.07% 0.03% 0.02% 0.01% 0.00%

8–9 0.06% -0.01% 0.08% 0.04% 0.01% 0.02% 0.00%

9–10 0.04% 0.00% 0.01% 0.02% 0.00% 0.00% 0.00%

The error columns covariance calculations underlying matrix Cij are shown in Table C2.

Calculations underlying Table 8

Calculation for Cij matrix with i = 7 [for policy years 2004–2011], j = 8 and cov(ei, ej) = i ′iCijij = 1.91% = sum
of entries is shown in Table C3. It matches the [2011, 2012] entry in Table 8.

The calculation underlying the cell [5–6, 6–7] is
shown in Table C4.

R Code used to generate Table 8

‘Data file is attached with the paper’

data <- read.csv(file.choose(), header = TRUE)
attach(data)

SumVCov <- matrix(nrow=10, ncol =10)
for(i in 2:11)
{

for(j in 2:11)

{
CoVar <- matrix(nrow =10, ncol=10)
for (k in i:11)

 {
for (w in j:11)

  {
  CoVar[k-i+1,w-j+1] = cov(assign
(paste(“K”,k,sep= “”),assign(paste(“Interval”,
k,sep= “”),subset(data, Interval = = paste
(“Interval_”,k,sep= “”)))[,2]),assign(paste
(“W”,w,sep= “”),assign(paste(“Interva
l”,w,sep= “”),subset(data, Interval = =
paste(“Interval_”,w,sep= “”)))[,2]),use= 
“pairwise.complete.obs”)
  }
 }
 SumVCov[i-1,j-1]= sum(CoVar,na.rm=
TRUE)

}
}
SumVCov
write.table(SumVCov, file.choose(), sep= “\t”
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Allocation of capital using CVaR approach

Using the development under CVaR in this paper
we need to solve a such that
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The line conditional value at risk,
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The economic capital for the line is given by

EC U H Ik
CVAR

k
CVAR

k k .= − −

Appendix D. Capital Allocation

Some practitioners do capital allocations so that line
capitals are additive and equal the total. We show both
VaR and CVaR approaches under equal percentile cap-
ital allocation since we know the line parameters and
total company parameters.

Equal percentile allocation of capital
using VaR approach

The total economic capital for all lines combined
is allocated to each line using equal percentile alloca-
tion (VaR approach). For example suppose if qk, w2

k,
q and w2 are parameters for line and total distribu-
tions for ultimate insurance risk

U N U Nk k kln , & ln , .2 2∼ ∼( ) ( )θ ω θ ω

Given a total economic capital stress percentile
from a standard normal distribution z, one can solve
the line stress percentile l such that

zk k
k

exp exp .∑ ( ) ( )θ + λω = θ + ω

The line value at risk,

Uk
VAR

k kexp .( )= µ + λω

The economic capital for the line is given by

EC U H Ik
VAR

k
VAR

k k .= − −
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