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ABSTRACT

This paper presents a bootstrap approach to estimate the

prediction distributions of reserves produced by the Mu-

nich chain ladder (MCL) model. The MCL model was in-

troduced by Quarg and Mack (2004) and takes into account

both paid and incurred claims information. In order to pro-

duce bootstrap distributions, this paper addresses the appli-

cation of bootstrapping methods to dependent data, with

the consequence that correlations are considered. Numeri-

cal examples are provided to illustrate the algorithm and the

prediction errors are compared for the new bootstrapping

method applied to MCL and a more standard bootstrapping

method applied to the chain ladder technique.
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1. Introduction
Bootstrapping has become very popular in sto-

chastic claims reserving because of the simplic-

ity and flexibility of the approach. One of the

main reasons for this is the ease with which it

can be implemented in a spreadsheet in order to

obtain an approximation to the estimation error

of a fitted model in a statistical context. Further-

more, it is also straightforward to extend it to

obtain the approximation to the prediction error

and the predictive distribution of a statistical pro-

cess by including simulations from the underly-

ing distributions. Therefore, bootstrapping is a

powerful tool for the most popular subject for

reserving purposes in general insurance, the pre-

diction error of the reserve estimates. It should

be emphasized that to obtain the predictive dis-

tribution, rather than just the estimation error, it

is necessary to extend the bootstrap procedure by

simulating the process error. It is also important

to realize that bootstrapping is not a “model,”

and therefore it is important to ensure that the

underlying reserving models are correctly cali-

brated to the observed data. In this paper, we do

not address the issue of model checking, but sim-

ply show how a bootstrapping procedure can be

applied to the Munich chain ladder model.

In the area of non-life insurance reserving,

there are primarily two types of data used. In

addition to the paid claims triangle, there is fre-

quently a triangle of incurred data also available.

The traditional approach is to fit a model to either

paid or incurred claims data separately, and one

of the most popular methods in this context is the

chain ladder technique. While we do not believe

that this is the most appropriate approach for all

data sets, it has retained its popularity for a num-

ber of reasons. For example, the parameters are

understood in a practical context; it is flexible;

and it is easy to apply. This paper concentrates on

methods which have a chain ladder structure, and

in this context, two types of approaches exist:

deterministic methods such as chain ladder, and

the recently developed stochastic chain ladder re-

serving models. When the chain ladder technique

is used (either as a deterministic approach or us-

ing a stochastic model), one set of data will be

omitted–either the paid or the incurred data can

be used, but not both at the same time. Obviously,

this does not make full use of all the data avail-

able and results in the loss of some information

contained in those data.

This leads us to consider whether it is possible

to construct a model for both data sets, and to a

consideration of the dependency between the two

run-off triangles. A related issue also arises when

traditional methods are applied separately to each

triangle, which produces inconsistent predicted

ultimate losses. In response, Quarg and Mack

(2004) proposed a different approach within a

regression framework, considering the likely cor-

relations between paid and incurred data. Quarg

and Mack (2004) called this new method the

Munich chain ladder (MCL) model. It is this

model that is the subject of this paper, and we

show how the predictive distribution may be es-

timated using bootstrapping. Thus, in this paper

an adapted bootstrap approach is described, com-

bined with simulation for two dependent data

sets. The spreadsheets used in this paper can be

used in practice for any data sets, and are avail-

able on request from the authors.

The paper is set out as follows. Section 2

briefly describes the MCL model using a nota-

tion appropriate for this paper. In Section 3, the

basic algorithm and methodology of bootstrap-

ping is explained. Section 4 shows how to obtain

the estimates of the prediction errors and the em-

pirical predictive distribution using the adapted

bootstrapping and simulation methods. In Sec-

tion 5, two numerical examples are provided, in-

cluding the data from Mack (1993) as well as

some real London market data. Finally, Section 6

contains a discussion and conclusion.
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2. The Munich chain ladder
method
The MCL model aims to produce a more con-

sistent prediction of ultimate claims when model-

ing both paid and incurred claim data. It is spe-

cially designed to deal with the correlation be-

tween paid and incurred claims. The traditional

models, such as the chain ladder model, some-

times produce unsatisfactory results by ignoring

this dependence. It should be emphasized that

the paid and incurred claims from the same cal-

endar years are not correlated. It is that the paid

claims (incurred claims) are correlated with the

incurred claims (paid claims) from the next (pre-

vious) calendar year.

The fundamental structure of the MCL model

is the same as Mack’s distribution-free chain lad-

der model (Mack 1993). In other words, the chain

ladder development factors in the MCL model

are obtained by Mack’s distribution-free ap-

proach. However, the MCL model adjusts the

chain ladder development factors using the corre-

lations between the observed paid and incurred

claims. The adjusted chain ladder development

factors therefore become individual not only for

different development years but also for differ-

ent accident years. The adjustment is explained

in more detail in Sections 2.1 and 2.2.

2.1. Notation and assumptions

For ease of notation, we assume that we have

a triangle of data. Although the data could be

classified in different ways, we refer to the rows

as “accident years” and the columns as “devel-

opment years.”

Denote CPij as cumulative paid claims and C
I
ij

as cumulative incurred claims occurred in acci-

dent year i, development year j, where 1· i · n
and 1· j · n¡ i+1 for the observed data. The
aim of the chain ladder technique and of MCL

is to estimate the data up to development year n.

This produces estimates for CPij and C
I
ij , where

1· i · n and n¡ i+2· j · n, and we therefore

refer to the complete rectangle of data in the as-

sumptions: 1· i, j · n.
Mack’s distribution-free chain ladder method

models the pattern of the development factors,

which are defined as FPij = C
P
i,j+1=C

P
ij , for paid

claims and FIij = C
I
i,j+1=C

I
ij , for incurred claims.

Also the ratios of paid divided by incurred claims

and the inverse are introduced as Qij = C
P
ij =C

I
ij

and Q¡1ij = C
I
ij=C

P
ij , respectively.

Furthermore, define the observed data for

accident year i, up to development year k as Pi(k)

= fCPij : j · kg, Ii(k) = fCIij : j · kg and Bi(k) =
fCPij ,CIij : j · kg, for paid claims, incurred claims
and both, respectively.

The following assumptions are taken from

Quarg and Mack (2004), Section 2.1.2.

Assumption A (Expectations)

(A1) For 1· j · n there exists a constant fPj
such that (for i= 1, : : : ,n)

E[FPij j Pi(j)] = fPj :
This assumption is for paid claims. It is neces-

sary to make another analogous assumption for

incurred claims since both data sets are taken into

account.

(A2) For 1· j · n, there exists a constant fIj
such that (for i= 1, : : : ,n)

E[FIij j Ii(j)] = fIj :
In order to analyze the two run-off triangles

dependently, the following assumptions are also

required.

(A3) For 1· j · n, there exists a constant q¡1j
such that (for i= 1, : : : ,n)

E[Q¡1ij j Pi(j)] = q¡1j :
(A4) For 1· j · n, there exists a constant qj

such that (for i= 1, : : : ,n)

E[Qij j Ii(j)] = qj:
Note that assumptions (A3) and (A4) will ap-

ply that imply that Qij is constant, which is con-

tradictory–see Section 3.1.2 of Mack and Quarg

(2004) for a discussion of this point.
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Assumption B (Variances)

(B1) For 1· j · n, there exists a constant ¾Pj
such that (for i= 1, : : : ,n)

Var[FPij j Pi(j)] =
(¾Pj )

2

CPij
:

Again, the analogous assumption for the in-

curred claims is made as follows.

(B2) For 1· j · n, there exists a constant ¾Ij
such that (for i= 1, : : : ,n)

Var[FIij j Ii(j)] =
(¾Ij )

2

CIij
:

Also, for the ratios of incurred to paid and

vice versa, the following variance assumptions

are made.

(B3) For 1· j · n, there exists a constant ¿Pj
such that (for i= 1, : : : ,n)

Var[Q¡1ij j Pi(j)] =
(¿Pj )

2

CPij
:

(B4) For 1· j · n, there exists a constant ¿ Ij
such that for (i= 1, : : : ,n)

Var[Qij j Ii(j)] =
(¿ Ij )

2

CIij
:

Assumption C (Independence) The usual as-

sumptions for individual triangles are as follows:

(C1) The random variables pertaining to dif-

ferent accident years for paid claims, i.e., fCP1j j
j = 1,2, : : : ,ng, : : : ,fCPnj j j = 1,2, : : : ,ng, are sto-
chastically independent.

(C2) The random variables pertaining to dif-

ferent accident years for incurred claims, i.e.,

fCI1j j j = 1,2, : : : ,ng, : : : ,fCInj j j = 1,2, : : : ,ng,
are stochastically independent.

In fact, a stronger assumption is used (see Sec-

tion 3.2 of Quarg and Mack 2004), which is in-

dependence of accident years across both paid

and incurred claims:

(C3) The random sets fCP1j ,CI1j j j =1,2, : : : ,ng
, : : : ,fCPnj ,CInj j j = 1,2, : : : ,ng, are stochastically
independent.

Using assumptions A to C, the Pearson resid-

uals used in the MCL model can be defined as

shown in Equations (2.1) to (2.4). These residu-

als are a crucial part of the bootstrapping proce-

dures described in Section 4.

rPij =
FPij ¡E[FPij j Pi(j)]q
Var[FPij j Pi(j)]

, (2.1)

rQ
¡1

ij =
Q¡1ij ¡E[Q¡1ij j Pi(j)]q

Var[Q¡1ij j Pi(j)]
, (2.2)

rIij =
FIij ¡E[FIij j Ii(j)]q
Var[FIij j Ii(j)]

, (2.3)

rQij =
Qij ¡E[Qij j Ii(j)]q
Var[Qij j Ii(j)]

: (2.4)

Assumption D (Correlations)

(D1) There exists a constant ½P such that (for

1· i, j · n)
E[rPij j Bi(j)] = ½PrQ

¡1
ij : (2.5)

The following equation states that the constant

½P is in fact the correlation coefficient between

the residuals. Note that since the residuals have

variance 1, the correlation is equal to the covari-

ance. The proof can be found in Quarg and Mack

(2004).

Cov[rPij ,r
Q¡1
ij j Pi(j)] = Corr[rPij ,rQ

¡1
ij j Pi(j)]

= Corr[FPij ,Q
¡1
ij j Pi(j)] = ½P

(2.6)

Quarg and Mack (2004) derives expected MCL

paid development factors adjusted by the corre-

lation as shown in Equation (2.7).

E[FPij j Bi(j)]

= E[FPij j Pi(j)] +
vuut Var[FPij j Pi(j)]
Var[Q¡1ij j Pi(j)]

£Corr[FPij ,Q¡1ij j Bi(j)](Q¡1ij ¡E[Q¡1ij j Pi(j)]):
(2.7)
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(D2) Analogous to assumption (D1), for the

incurred claims it is assumed that there exists a

constant ½I such that (for 1· i, j · n)
E[rIij j Bi(j)] = ½IrQij : (2.8)

Similarly, the constant ½I measures the corre-

lation coefficient or the covariance between the

residuals. i.e.,

Cov[rIij ,r
Q
ij j Bi(j)] = Corr[rIij ,rQij j Bi(j)]

= Corr[FIij ,Qij j Bi(j)] = ½I

(2.9)

Hence, the expected MCL incurred develop-

ment factors adjusted by the correlation can be

derived as follows:

E[FIij j Bi(j)]

= E[FIij j Ii(j)]+
vuut Var[FIij j Ii(j)]
Var[Qij j Ii(j)]

£Cov[FIij ,Qij j Bi(j)](Qij ¡E[Qij j Ii(j)]):
(2.10)

2.2. Unbiased estimates of the
parameters

In this section, we summarize the unbiased es-

timates of the parameters derived by Quarg and

Mack (2004). For the paid data, estimates are

required for the parameters of the development

factors, the variances and also the correlation co-

efficient.

The estimates of the paid development factor

parameters can be interpreted as weighted aver-

ages of the observed development factors FPij or

Q¡1ij , using C
P
ij as the weights

f̂Pj =

Pn¡j
i=1 C

P
i,j+1Pn¡j

i=1 C
P
ij

=

n¡jX
i=1

CPijPn¡j
i=1 C

P
ij

FPij

(2.11)
and

q̂¡1j =

Pn¡j+1
i=1 CIijPn¡j+1
i=1 CPij

=

n¡j+1X
i=1

CPijPn¡j+1
i=1 CPij

Q¡1ij :

(2.12)

The unbiased estimates of the variances are as

follows:

(¾̂Pj )
2 =

1

n¡ j¡ 1
n¡jX
i=1

CPij (F
P
ij ¡ f̂Pj )2

(2.13)
and

(¿̂ Pj )
2 =

1

n¡ j
n¡j+1X
i=1

CPij (Q
¡1
ij ¡ q̂¡1j )2

(2.14)
Hence the Pearson residuals are

rPij =
FPij ¡ f̂Pj
¾̂Pj

q
CPij (2.15)

and

rQ
¡1

ij =
Q¡1ij ¡ q̂¡1j

¿̂Pj

q
CPij : (2.16)

Finally, the estimate of the correlation coeffi-

cient is given in Equation (2.17).

½̂P =

P
i,j r

Q¡1
ij rPijP

i,j(r
Q¡1
ij )2

: (2.17)

Similarly, for incurred data, the estimates of

the development factor parameters can be inter-

preted as weighted averages of the development

factors FIij or Qij , using C
I
ij as the weights:

f̂Ij =

Pn¡j
i=1 C

I
i,j+1Pn¡j

i=1 C
I
ij

=

n¡jX
i=1

CIijPn¡j
i=1 C

I
ij

FIij

(2.18)
and

q̂j =

Pn¡j+1
i=1 CPijPn¡j+1
i=1 CIij

=

n¡j+1X
i=1

CIijPn¡j+1
i=1 CIij

Qij:

(2.19)

Also, the unbiased estimates for the variance

parameters are as follows:

(¾̂Ij )
2 =

1

n¡ j¡ 1
n¡jX
i=1

CIij(F
I
ij ¡ f̂Ij )2:

(2.20)
and

(¿̂ Ij )
2 =

1

n¡ j
n¡j+1X
i=1

CIij(Qij ¡ q̂j)2:

(2.21)
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Hence the Pearson residuals are

rIij =
FIij ¡ f̂Ij
¾̂Ij

q
CIij (2.22)

and

rQij =
Qij ¡ q̂j
¿̂ Ij

q
CIij: (2.23)

And finally, the estimate of the correlation co-

efficient is given in Equation (2.24).

½̂I =

P
i,j r

Q
ij r

I
ijP

i,j(r
Q
ij )
2
: (2.24)

Assumptions A in Section 2.1 have defined the

expectations of the development factors, given

just the data in the respective triangles. In or-

der to produce a single estimate based on the

data from both paid and incurred data, Quarg

and Mack (2004) also considers the expectations

of the development factors given both triangles,

and defines E[FPij j Bi(j)] = ¸Pij and E[FIij j Bi(j)]
= ¸Iij . Using plug-in estimates from Equations

(2.11) to (2.17), the estimates of the paid MCL

development factors are calculated using Equa-

tion (2.7):

ˆ̧P
ij = f̂

P
j + ½̂

P
¾̂Pj
¿̂Pj
(Q¡1ij ¡ q̂¡1j ): (2.25)

Similarly, plug-in estimates from Equations

(2.18) to (2.24) are used in Equation (2.10) so

that the estimates of the incurred development

factors are

ˆ̧ I
ij = f̂

I
j + ½̂

I
¾̂Ij
¿̂ Ij
(Qij ¡ q̂j): (2.26)

3. Bootstrapping and claims
reserving

Bootstrapping is a simulation-based approach

to statistical inference. It is a method for produc-

ing sampling distributions for statistical quan-

tities of interest by generating pseudo samples,

which are obtained by randomly drawing, with

replacement, from observed data. It should be

emphasized that bootstrapping is a method rather

than a model. Bootstrapping is useful only when

the underlying model is correctly fitted to the

data, and bootstrapping is applied to data which

are required to be independent and identically

distributed. The bootstrapping method was first

introduced by Efron (1979) and a good introduc-

tion to the algorithm can be found in Efron and

Tibshirani (1993).

For the purpose of clarity we begin by giving

a general bootstrapping algorithm and briefly re-

viewing previous applications of bootstrapping

to claims reserving. In Section 4, we show how

an algorithm of this type can be applied to the

MCL. Suppose we have a sample ~X and we re-

quire the distribution of a statistic μ̂. The follow-

ing three steps comprise the simplest bootstrap-

ping process:

1. Draw a bootstrap sample ~XB1 = fXB1 ,XB2 , : : : ,
XBn g1 from the observed data ~X = fX1,X2, : : : ,
Xng.

2. Calculate the statistic of interest μ̂B1 for the

first bootstrap sample ~XB1 = fXB1 ,XB2 , : : : ,XBn g1.
3. Repeat steps 1 and 2 N times.

By repeating steps 1 and 2 N times, we obtain

a sample of the unknown statistic μ̂, calculated

fromN pseudo samples, i.e.,~μB = fμ̂B1 , μ̂B2 , : : : , μ̂BNg.
When N ¸ 1000, the empirical distribution con-
structed from ~μB = fμ̂B1 , μ̂B2 , : : : , μ̂BNg can be taken
as the approximation to the distribution for the

statistic of interest μ̂. Hence all the quantities of

the statistic of interest μ̂ can be obtained, since

such a distribution contains all the information

related to μ̂.

The above bootstrapping algorithm can be ap-

plied to the prediction distributions for the best

estimates in stochastic claims reserving. England

and Verrall (2007) contains an excellent review

of the application. In addition, Lowe (1994),

England and Verrall (1999) and Pinheiro (2003)

are also good resources for more details. Eng-

land and Verrall (2007) showed how bootstrap-

ping can be used for recursive models, follow-
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ing from the earlier papers (England and Verrall

1999; England 2002) which applied bootstrap-

ping to the over-dispersed Poisson model.

It should be noted here that the Pearson resid-

uals are commonly used rather than the origi-

nal data in the generalized linear model (GLM)

framework. The Pearson residuals are required

in order to scale the response variables in the

GLM so that they are identically distributed. This

is necessary because the bootstrap algorithm re-

quires that the response variables are indepen-

dent and identically distributed.

Other papers in the actuarial literature that con-

sider triangles of dependent data include Taylor

and McGuire (2007) and Kirschner et al. (2008).

It should be noted here that a model taking ac-

count of all information available could be very

valuable, even when the data is dependent in

practice. The dependence makes it difficult to

calculate the prediction error theoretically. For

these reasons, we believe that adopting bootstrap

method for these models is worthy of investiga-

tion, particularly in order to obtain the predictive

distribution of the estimates of outstanding lia-

bilities.

4. Bootstrapping the Munich chain
ladder model
This section considers bootstrapping the MCL

model. In Section 4.1 we describe the method-

ology and in Section 4.2 we give the algorithm

that is used.

4.1. Methodology
The method of bootstrapping stochastic chain

ladder models can be seen in a number of dif-

ferent contexts. England and Verrall (2007) cat-

egorize the models as recursive and nonrecur-

sive and show how bootstrapping methods can

be applied in either case. Since we are dealing

with recursive models here, we follow England

and Verrall and consider the observed develop-

ment link ratios rather than the claims data them-

selves. In other words, for Mack’s distribution-

free chain ladder model the link ratios Fij are

randomly drawn against Xij , noting that

E[Fij j Xij] = E
"
Xi,j+1
Xij

¯̄̄̄
¯ Xij

#
= fj:

Here, Xij is used to represent observed claims

data in general. Note that the bootstrap estimates

of the development factors fBj which are obtained

by taking weighted averages of the bootstrapped

observed link ratios FBij , use Xij rather than X
B
ij

as the weights.

However, this method cannot be simply ex-

tended to the MCL method, since this model is

designed for dealing with two sets of correlated

data, the paid and incurred claims. This means

that it is not possible to use the normal bootstrap

approach because the independence assumption

cannot be met.

In order to address the problem of how to

adapt the existing bootstrap approach in order to

cope with the MCL method for dependent data

sets, the consideration of the correlation is cru-

cial. It should be noted that the correlation which

is observed in the data represents real depen-

dence between the paid and incurred claims, and

the model is specifically designed for this depen-

dence. Therefore, it should remain unchanged

within any resampling procedure. The straight-

forward solution is to draw samples pairwise so

that the correlation between the two dependent

original data sets will not be broken when gen-

erating a sampling distribution for a statistic of

interest.

Obviously, when bootstrapping the recursive

MCL method, the residuals of the paid and in-

curred link ratios are required instead of the

raw data. The question arises of how to deal

with these residuals in order to meet the require-

ment of not breaking the observed dependence

between paid and incurred claims. The answer

is to group all four sets of residuals calculated

in the MCL method, i.e., the paid and incurred
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development link ratios, the ratios of incurred

over paid claims from the previous years, and its

inverse, individually. There are two reasons for

this. First, the paid claims (incurred claims) are

correlated to the incurred to the paid claims ratio

(paid to incurred claims ratio) from the previous

year, and doing this will preserve the required

dependence. Second, the correlation coefficient

of paid and incurred claims is equal to the corre-

lation coefficient of those residuals, as stated in

Equations (2.6) and (2.10).

Thus, in the case of the paid claims data, the

triangles (which have the same dimensions) con-

taining the residuals of the observed paid link

ratios and the residuals of the ratios of incurred

over paid (except the first column), are paired

together. The same procedure is used for the in-

curred claims data. We do this for convenience,

even though the ratios of the paid over incurred

claims and the inverse give the same information.

Note that these ratios should remain unchanged

when pairing them with paid and incurred claims

with the same dimensions. The consequence of

this is that all four sets of residuals for paid, in-

curred link ratios and the ratios of incurred over

paid claims and the inverse are all grouped to-

gether. (Note here that an alternative approach

would be to group three sets of residuals: the

residuals of the paid and incurred link ratios and

either the residuals of the paid over incurred ra-

tios or the inverse. This would produce the same

results as grouping four sets of residuals, as the

residuals of paid over incurred ratios and the in-

verse can always be calculated from each other.

However, it is simpler to group the four sets, as

the calculation of the fourth set of residuals is

naturally skipped in this case.)

This combines the four residuals triangles into

one new triangle that consists of these grouped

residuals and we name it as the grouped resid-

ual triangle. In each unit from this triangle of

quadruples, the residuals are from the same ac-

cident and development year and correspond to

paid and incurred claims. Therefore, the new tri-

angle of quadruples contains all the information

available and meanwhile maintains the observed

dependence.

When applying bootstrapping, this triangle is

considered as the observed sample. The new gen-

erated pseudo samples are obtained by random

drawing, with replacement, from the triangle of

quadruples.

The resampled incurred and paid triangles can

be obtained by separating the pairs in the pseudo

sample generated as above and backing out the

residual definition. The MCL approach can then

be applied to calculate all the statistics of inter-

est for the resampled paid and incurred triangles,

i.e., the correlation coefficient for paid and in-

curred, the paid and incurred development fac-

tors, the ratios of paid over incurred or the in-

verse, and the variances. Finally, adjusting the

paid and incurred development factors by the

correlation coefficient using the MCL approach,

the bootstrapped MCL reserve estimates are ob-

tained. This completes a single bootstrap itera-

tion.

Again, the bootstrap method provides only

the estimation error of the MCL method. In

order to include the prediction error and esti-

mate the predictive distribution for the MCL esti-

mates of outstanding liabilities, an additional step

is added at the end of each bootstrap iteration,

which is to add the process variance to the esti-

mation error.

Note that we apply the final simulation for the

process variance to paid and incurred claims, in-

dependently. This is because, for a particular ac-

cident and development year, paid and incurred

claims are actually independent. Under the as-

sumptions of the MCL model, paid (incurred)

claims are only correlated with previous incurred

(paid) claims, and the forecasts produced by the

bootstrapping will pick up this dependency.

In order to obtain a reasonable approximation

to the predictive distribution, at least 1000 pseudo

samples are required. For each of the pseudo
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samples, the row totals and overall total of out-

standing liabilities are stored so that the sample

means, sample variances and the empirical dis-

tributions can be calculated and plotted. They

are taken as the approximations to the best es-

timates of outstanding liabilities, the prediction

errors and the predictive distributions of the out-

standing liabilities. Also, an estimate of any re-

quired percentile and confidence interval can be

calculated from the predictive distribution.

In order to satisfy the assumption that the sam-

ple is identically distributed in the bootstrapping

procedure, the Pearson residuals are calculated

and used. As in England and Verrall (2007), we

use the Pearson residuals of the observed de-

velopment factors rather than those for the ac-

tual claims, since we are using recursive mod-

els. Note that a bootstrap bias correction is also

needed, and the simplest way to do this is to mul-

tiply the residuals by
p
(n¡ j)=(n¡ j¡ 1).

In addition to drawing the grouped sample for

bootstrapping correlated data sets, there are also

two other practical points that should be men-

tioned. The first is to note that the fitted values

are obtained by starting from the final diagonal

in each triangle and working backwards, by di-

viding by the development factors. The second

is that the zero residuals which appear in both

triangles are also left out.

4.2. Algorithm

This section provides the algorithm, step by

step, which is needed in order to implement the

bootstrap process introduced in Section 4.1.

– Apply the MCL method to both the cumula-

tive paid and incurred claims data to obtain

the residuals for all four sets of ratios: the

paid, incurred link ratios, the paid over in-

curred ratios and the reverse. They can be

obtained from following equations:

rPij =
FPij ¡ f̂Pj
¾̂Pj

q
CPij ,

rQ
¡1

ij =
Q¡1ij ¡ q̂¡1j

¿̂ Pj

q
CPij ,

rIij =
FIij ¡ f̂Ij
¾̂Ij

q
CIij and

rQij =
Qij ¡ q̂j
¿̂ Ij

q
CIij :

– Adjust the Pearson residual estimates by mul-

tiplying by
p
(n¡ j)=(n¡ j¡ 1) to correct the

bootstrap bias.

– Group all four residuals together, i.e., rPij , r
Q¡1
ij ,

rIij and r
Q
ij . We write this as Uij = f(rPij ), (rQ

¡1
ij ),

(rIij), (r
Q
ij )g.

– Start the iterative loop to be repeated N times

(N ¸ 1000). This consists of the following
steps:

1. Randomly sample from the grouped resid-

uals with replacement, denoted as UBij =

f(rPij )B, (rQ
¡1

ij )B , (rIij)
B , (rQij )

Bg, from the group-

ed triangle so that a pseudo sample of the

grouped residuals is created.

2. Calculate the pseudo samples of the four

triangles for the paid, incurred link ratios, the

ratios of paid over incurred and the inverse by

inverting the Pearson residuals definition as

follows:

(FPij )
B =

(rPij )
B¾̂Pjq
CPi,j

+ f̂Pj ,

(Q¡1ij )
B =

(rQ
¡1

ij )B¿̂Pjq
CPi,j

+ q̂¡1j ,

and

(FIij)
B =

(rIij)
B¾̂Ijq
CIi,j

+ f̂Ij ,

(Qij)
B =

(rQij )
B¿̂ Ijq
CIi,j

+ q̂j :

3. Calculate the CPi,j-weighted and CIi,j-

weighted average of the bootstrap paid and
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incurred development factors as follows:

(f̂Pj )
B =

n¡jX
i=1

CPi,jPn¡j
i=1 C

P
i,j

(FPij )
B ,

(q̂¡1j )
B =

n¡j+1X
i=1

CPijPn¡j+1
i=1 CPij

(Q¡1ij )
B

and

(f̂Ij )
B =

n¡jX
i=1

CIi,jPn¡j
i=1 C

I
i,j

(FIij)
B ,

(q̂j)
B =

n¡j+1X
i=1

CIijPn¡j+1
i=1 CIij

(Qij)
B:

Note that the weights used here are from the

original data sets and not from the pseudo

samples.

4. Calculate the corresponding correlation

coefficient for the resampled data using the

pseudo residuals (rPij )
B , (rQ

¡1
ij )B, (rIij)

B and

(rQij )
B as follows,

(½̂P)B =

P
i,j(r

Q¡1
ij )B(rPij )

BP
i,j((r

Q¡1
ij )B)2

and

(½̂I)B =

P
i,j(r

Q
ij )
B(rIij)

BP
i,j((r

Q
ij )
B)2

:

5. Calculate the variances for the bootstrap

data as follows:

((¾̂Pj )
2)B =

1

n¡ j¡ 1
n¡jX
i=1

CPij ((F
P
ij )

B ¡ (f̂Pj )B)2

((¿̂ Pj )
2)B =

1

n¡ j¡ 1
n¡jX
i=1

CPij ((Q
¡1
ij )

B ¡ (q̂¡1j )B)2

((¾̂Ij )
2)B =

1

n¡ j¡ 1
n¡jX
i=1

CIij((F
I
ij)
B ¡ (f̂Ij )B)2

((¿̂ Ij )
2)B =

1

n¡ j¡ 1
n¡jX
i=1

CIij((Qij)
B ¡ (q̂j)B)2:

Note that all the sums here are from 1 to n¡ j
because the last diagonals of paid to incurred

(and incurred to paid) are not included in the

resampling procedure.

6. Calculate the bootstrap development fac-

tors adjusted by the correlation coefficient

between the pseudo samples as follows:

( ˆ̧Pij)
B = (f̂Pj )

B +(½̂P)B
(¾̂Pj )

B

(¿̂ Pj )
B
((Q¡1ij )

B ¡ (q̂¡1j )B)

and

( ˆ̧ Iij)
B = (f̂Ij )

B +(½̂I)B
(¾̂Ij )

B

(¿̂ Ij )
B
((Qij)

B ¡ (q̂j)B),

for the resampled bootstrap paid and incurred

run-off triangles, respectively.

7. Simulate a future payment for each cell in

the lower triangle for both paid and incurred

claims, from the process distribution with the

mean and variance calculated from the previ-

ous step. To do this, the following steps are

required:

² For the one-step-ahead predictions from
the leading diagonal, a normal distribution

is assumed, i.e., for 2· i · n,
XPi,n¡i+2 »Normal(( ˆ̧Pi,n¡i+1)BXPi,n¡i+1,

((¾̂Pn¡i+1)
2)BXPi,n¡i+1)

for paid claims and

XIi,n¡i+2 »Normal(( ˆ̧ Ii,n¡i+1)BXIi,n¡i+1,
((¾̂In¡i+1)

2)BXIi,n¡i+1)

for incurred claims.

² For the two-step-ahead predictions up to
the n-step-ahead predictions, normal dis-

tributions are still assumed, but with the

mean and variance calculated from previ-

ous predictions instead of from the observ-

ed data, i.e., for 3· k · n and n¡ k+3·
j · n,
XPkl »Normal(( ˆ̧Pi,l¡1)BX̂Pk,l¡1, ((¾̂Pl¡1)2)BX̂Pk,l¡1)

for paid claims, and

XIkl »Normal(( ˆ̧ Ii,l¡1)BĈIk,l¡1, ((¾̂Il¡1)2)BX̂Ik,l¡1)

for incurred claims.
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Table 1. Paid claims from Quarg and Mack (2004)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

i = 1 576 1804 1970 2024 2074 2102 2131
i = 2 866 1948 2162 2232 2284 2348
i = 3 1412 3758 4252 4416 4494
i = 4 2286 5292 5724 5850
i = 5 1868 3778 4648
i = 6 1442 4010
i = 7 2044

Table 2. Incurred claims from Quarg and Mack (2004)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

i = 1 978 2104 2134 2144 2174 2182 2174
i = 2 1844 2552 2466 2480 2508 2454
i = 3 2904 4354 4698 4600 4644
i = 4 3502 5958 6070 6142
i = 5 2812 4882 4852
i = 6 2642 4406
i = 7 5022

8. Sum the simulated payments in the future

triangle by origin year and overall, to give

the origin year and total reserve estimates re-

spectively.

9. Store the results, and return to the start of

the iterative loop.

5. Examples

This section illustrates the bootstrapping ap-

proach to the MCL and uses two numerical ex-

amples to assess the results. The first example

uses the data from Quarg and Mack (2004). Ex-

ample 2 uses market data from Lloyd’s which

have been scaled for confidentiality reasons.

These data relate to aggregated paid and incurred

claims for two Lloyd’s syndicates, categorized at

risk level.

Example 1 is included in order to illustrate the

results for the original set of data used by Quarg

and Mack (2004). The purpose of example 2 is

to illustrate that the MCL model does not neces-

sarily provide better results in all situations. Our

results indicate that it performs better when the

data have less inherent variability and are less

“jumpy.”

Table 3. A Comparison of methods for reserves projected on
paid and incurred claims

Bootstrap MCL Mack

Paid Incurred Paid Incurred Paid Incurred

i = 1 0 43 0 43 0 43
i = 2 37 94 35 96 32 97
i = 3 109 131 103 135 158 88
i = 4 277 321 269 326 331 277
i = 5 299 296 289 302 407 191
i = 6 657 651 646 655 919 465
i = 7 5492 5646 5505 5606 4063 6380

Overall Total 6871 7182 6846 7163 5911 7540

Table 4. Comparison of bootstrap prediction errors for MCL
and CL Mack chain ladder methods

MCL Mack

Paid Incurred Paid Incurred

i = 1 0 0 0 0
i = 2 5 5 15 9
i = 3 48 70 53 82
i = 4 61 86 68 105
i = 5 72 104 72 117
i = 6 215 208 289 216
i = 7 735 716 897 869

Overall Total 776 782 991 980

EXAMPLE 1. In this section, we apply the boot-

strapping methodology with 10,000 bootstrap

simulations to the data from Quarg and Mack

(2004).

Tables 1 and 2 show the data. In order to il-

lustrate the nature of the run-off of the data, Fig-

ures 1 and 2 are the plots of the data from Ta-

bles 1 and 2, respectively. From Figures 1 and

2, it can be seen that the data are stable and not

excessively spread out.

The results of applying the bootstrap method-

ology described in this paper are shown be-

low, and are compared with the results from

the straightforward chain ladder technique and

Mack’s method for the prediction errors. Table 3

shows that the theoretical MCL reserves (from

Quarg and Mack 2004) and the mean of the boot-

strap distributions, together with the chain ladder

reserves when the triangles are considered sep-

arately. It can be seen that the bootstrap means

are close to the theoretical values, for both the

paid and incurred claims.
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Figure 1. Paid claims

Figure 2. Incurred claims

Figure 3. Comparison of predictive distributions of overall reserves
for CL and MCL reserves for paid and incurred claims

Table 4 displays the bootstrap prediction error

of the MCL reserves projected by both paid and

incurred claims. Also shown are the prediction

errors for the Mack method. It can be seen that

the MCL prediction errors are lower than those

of the Mack method.

Since the purpose of the MCL method is to

use more data to improve the estimation of the

reserves, it is expected that the prediction errors

should be lower than the Mack model. This is

confirmed for these data by Table 5, which shows

that the prediction error, as a percentage of the re-

serve, is lower for the MCL reserves than the pre-

diction error of CL the reserves from the Mack

model.

In Figure 3, the distributions of the MCL and

CL reserve projections for paid and incurred

claims are plotted. Figure 3 shows that the paid

and incurred best reserve estimates are very close

when using the MCL approach. In contrast, the
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Table 5. Comparison of bootstrap prediction errors % for
MCL and CL methods

MCL Mack

Paid Incurred Paid Incurred

i = 1 — 0% — 0%
i = 2 14% 5% 45% 9%
i = 3 44% 53% 33% 93%
i = 4 22% 27% 21% 38%
i = 5 24% 35% 18% 61%
i = 6 33% 32% 31% 46%
i = 7 13% 13% 22% 14%

Total 11% 11% 17% 13%

paid and incurred best reserve estimates projected

by the chain ladder method are much further

apart. Furthermore, the CL method provides a

much more spread-out distribution than the MCL

approach, in the case of both paid and incurred

claims.

EXAMPLE 2. In this section, a set of aggregate

data from Lloyd’s syndicates is considered. In

this case, the data are not as stable or well-be-

haved and the results are quite different. Tables 6

and 7 show the data, which are plotted in Fig-

Table 6. Scaled aggregate paid claims at risk level from Lloyd’s Market

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

i = 1 1139 5680 6906 7069 7205 7350 7421 7487 7506 7518
i = 2 1101 6223 8038 8652 9064 9249 9343 9421 9455
i = 3 1215 8058 10593 11638 12346 12784 12978 13161
i = 4 949 5324 7608 8257 8719 8972 9103
i = 5 638 4107 6367 7099 7489 7586
i = 6 647 4166 6231 7029 7335
i = 7 1198 4660 7303 7791
i = 8 1194 6540 9251
i = 9 1248 6062
i = 10 1083

Table 7. Scaled aggregate incurred claims at risk level from Lloyd’s Market

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

i = 1 2170 6941 7709 7403 7452 7508 7514 7547 7555 7563
i = 2 2184 7822 9182 9368 9445 9520 9508 9547 9585
i = 3 2759 10947 12649 12947 13090 13283 13328 13360
i = 4 1958 8398 9814 9800 9306 9370 9272
i = 5 1376 6177 7699 7799 7984 7904
i = 6 1464 5861 7546 7679 7687
i = 7 2405 6385 8151 8234
i = 8 3128 8772 10265
i = 9 2980 8045
i = 10 2722

ures 4 and 5. It can be seen from these figures

that the data are much more unstable and more

spread out compared with the previous two ex-

amples.

The MCL method still produces consistent ul-

timate loss predictions for this data set, as shown

in Table 8. However, the prediction error con-

tained in Table 9, estimated by the bootstrap

MCL approach, appears not to offer such an im-

provement as was seen in Example 1.

Table 10 shows a comparison of the predic-

tion errors as a percentage of the reserve, and

again it can be seen that the results do not in-

dicate that the MCL method is a significant im-

provement over the CL model. The conclusion

from this is that although the MCL method uses

more data, and should be expected to produce

lower prediction errors, this is not always the

case in practice. We believe that the reason for

this is that the assumptions made by the MCL

method–the specific dependencies assumed–

are not as strong as expected in this case. A

conclusion from this is that the data have to be
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Figure 4. Scaled paid claims from Lloyd’s Market

Figure 5. Scaled incurred claims from Lloyd’s Market

Table 8. Comparison of methods for reserves projected on
paid and incurred claims

Bootstrap MCL CL

Paid Incurred Paid Incurred Paid Incurred

i = 1 0 45 0 45 0 0
i = 2 24 138 19 139 15 15
i = 3 78 245 71 245 63 62
i = 4 146 236 139 237 143 142
i = 5 252 357 246 354 220 215
i = 6 383 455 373 454 400 395
i = 7 590 614 579 624 829 825
i = 8 1345 1355 1318 1366 1850 1820
i = 9 3758 3811 3707 3787 4081 4042
i = 10 9874 9962 9740 9840 8765 8698

Overall Total 16451 17218 16192 17092 16367 16214

examined carefully before the MCL method is

applied.

This conclusion is reinforced by Figure 6,

which shows the predictive distributions.

5. Conclusion
This paper has shown how a bootstrapping ap-

proach can be used to estimate the predictive

distribution of outstanding claims for the MCL

model. The model deals with two dependent data

sets, the paid and incurred claims triangles, for

Table 9. Comparison of bootstrap prediction errors for MCL
and CL methods

MCL CL

Paid Incurred Paid Incurred

i = 1 0 0 0 0
i = 2 10 10 2 2
i = 3 16 32 11 11
i = 4 32 27 39 38
i = 5 47 62 43 44
i = 6 78 97 92 96
i = 7 204 249 166 168
i = 8 324 372 391 382
i = 9 573 592 987 973
i = 10 1762 1818 1940 1963

Overall Total 1911 1994 2277 2305

general insurance reserving purposes. We believe

that bootstrapping is well-suited for these pur-

poses from a practical point of view, since it

avoids complicated theoretical calculations and

is easily implemented in a simple spreadsheet.

This paper adapts the method by taking account

of the dependence observed in the data and re-

sampling pairwise.

A number of examples have been given, which

show that the MCL model does not always pro-

duce superior results to the straightforward chain
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Figure 6. Comparison of predictive distributions of CL and
MCL reserves predicted on paid and incurred claims

Table 10. Comparison of bootstrap prediction errors for MCL
and CL methods using scaled data

MCL CL

Paid Incurred Paid Incurred

i = 1 — — — —
i = 2 43% 7% 69% 14%
i = 3 21% 13% 27% 18%
i = 4 22% 11% 28% 27%
i = 5 19% 17% 20% 20%
i = 6 20% 21% 23% 24%
i = 7 35% 41% 20% 20%
i = 8 24% 27% 21% 21%
i = 9 15% 16% 23% 24%
i = 10 18% 18% 22% 23%

Overall Total 12% 12% 14% 14%

ladder model. As a consequence, we believe that

it is important for the data to be carefully checked

to test whether the dependency assumptions of

the MCL model are valid for each data set be-

fore it is applied.
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