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Analysis of Bivariate Excess Losses
by Jiandong Ren

ABSTRACT

The concept of excess losses is widely used in reinsurance and

retrospective insurance rating. The mathematics related to it has

been studied extensively in the property and casualty actuarial lit-

erature. However, it seems that the formulas for higher moments

of the excess losses are not readily available. Therefore, in the

first part of this paper, we introduce a formula for calculating

the higher moments, based on which it is shown that they can be

obtained directly from the Table of Insurance Charges (Table M).

In the second part of the paper, we introduce the concept of

bivariate excess losses. It is shown that the joint moments of

bivariate excess losses can be computed through methods similar

to the ones used in the univariate case. In addition, we provide

examples to illustrate possible applications of bivariate excess

loss functions.
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2. Univariate excess losses

We begin by introducing some notations and basic
facts.

2.1. Preliminaries

Let X be a random loss variable taking non-negative
values and have cumulative distribution function F
and survival function S. Then the limited loss up to
a retention level d is defined by

X
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The excess loss over a limit d is defined by
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It is well known that the expected value of the lim-
ited loss is given by (see, for example, Lee 1988)

X S u dud d
. (1)0 0

E ∫( ) ( )=

Due to the importance of (1), we next give a short
proof of it. The method used in the proof can be
readily extended to the bivariate situation.

Proof: First of all, it is easy to verify that

∫ ( )= > ,0 0
X I X u dud d

where I(.) is an indicator function that is equal to
one when its arguments are true and zero otherwise.
Then we have that
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1. Introduction

The concept of excess losses is widely used in
reinsurance and retrospective insurance rating. The
mathematics of it has been studied extensively in the
property and casualty insurance literature. See, for
example, Lee (1988) and Halliwell (2012). The first
moment of the excess losses has been tabulated into
the Table of Insurance Charges (Table M) for use in
the NCCI retrospective rating plan. Higher moments
of excess losses can be used to measure the volatility
of excess losses. However formulas for them are not
readily available in the property casualty actuarial
literature. One could refer to Section 2 of Miccolis
(1977) for some discussions. In fact, the formulas for
calculating higher moments of excess losses do exist
in the literature of stochastic orders, where the nth
moment of excess losses is named the nth order stop-
loss transform (see, for example, Hürlimann 2000).
Therefore, in the first part of this paper, we introduce
the simple formulas for calculating higher moments
of the excess losses to the property casualty actuarial
literature. More importantly, using a detailed numer-
ical example, we show that the higher moments can
be obtained directly from Table M.

In the second part of this paper, we introduce the
concept of bivariate excess losses, which has its origin
in the reliability theory literature. See, for example,
Zahedi (1985) and Gupta and Sankaran (1998). In
the context of stochastic ordering, Denuit, Lefevre,
and Shaked (1998) presented a formula for the joint
moments of multivariate excess losses. In this paper,
we show that the joint moments of bivariate excess
losses can be computed through methods similar to
the ones used in the univariate case. We provide
examples to illustrate possible applications of bivar-
iate excess loss functions.

The remaining parts of the paper are organized
as follows. Section 2 introduces formulas for higher
moments of excess losses and show how they may
be computed using Table M. Section 3 presents the
theory of bivariate excess losses. Section 4 provides
examples and Section 5 concludes.
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If the distribution of the underlying loss X is
known, then one could compute E [(Xl

∞)k] for any
integer k using Proposition 2.1 iteratively. More
importantly, we point out that since Table M in fact
lists values of R1(l), one may compute Rk(l), k > 1
directly from it recursively, in a similar fashion as
one would compute R1(l) from the survival func-
tion S(l). This way, E [(Xl

∞)k], k ≥ 1 can be obtained
directly from Table M. We next show the method
with a numerical example.

Example 2.1:
Consider problem 4 of Brosius (2002). Let X rep-

resent the loss ratio for a homogeneous group of
insureds; it is observed to have values 30%, 45%,
45% and 120%, respectively. Let Y = X/E (X) be the
corresponding entry ratios and thus take values 0.5,
0.75, 0.75, 2. Table M, constructed using the method
described in Brosius (2002), gives the mean excess
loss function of Y:

R r Y r .1 E[ ]( ) = ∞

Then the second moment of the excess losses
E [(Xl

∞)2] may simply be obtained by numerically
integrating R1(r) and multiplying the result by 2.
Realizing that R1(r) is piecewise linear between
entry ratio values, the numerical integration is imple-
mented by

∑ ( )( ) ( )( ) = + ∆ + + + ∆ ∆
≥

1

2
,2

1 1

0

R r
R r k R r k

k

where D is the interval between entry ratio values.
Table 1 shows the details of the calculation. The

third column is the Table M charge, the fourth column
(R2 in layer), corresponding to an entry ratio r, is cal-

culated by
R r R r

2
1 1( )( ) + + ∆ ∆, where D is the interval

Because Xl
d = Xl

0 – Xd
0, we have for the layered

losses that
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For the excess losses,
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2.2. Higher moments of excess losses

Higher moments of the excess loss Xl
∞ can be

obtained using the following Proposition.

Proposition 2.1. Let

R l Xl , (4)1 E[ ]( ) = ∞

and for i ≥ 1, let
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The proof of the proposition was obtained in
Denuit, Lefevre, and Shaked (1998) and Hürlimann
(2000), and it is included here for the completeness
of this paper.

Proof:
We use mathematical induction. For i = 1, Equa-

tion (6) is true by definition. Assume that it is true
for i, then
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Similar to Formula (2) for the univariate case, we
have the following formula for the first joint moment
of the layered losses Xlx

dx
 and Y ly

dy
.

Proposition 3.1
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Proof: As in (2.1), first notice that
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where Sx and Sy denote the marginal survival func-
tion of X and Y respectively. A somewhat similar
formula can be found in Dhaene and Goovaerts
(1996).

between entry ratios, which is 0.25 in the example.
The fifth column (R2(r)) is the cumulative summation
of the fourth column. The last column is just the fifth
one multiplied by 2.

This example shows the important fact that the
higher moments of the excess losses can be obtained
directly from Table M. No other information is
needed!

The second moment of the layered losses E [(Xd
l)

2
]

is also of interest. We have
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The first two terms of (8) can be obtained from
Table M, as shown in the previous example. The last
term can again be obtained from Table M by apply-
ing Equation (12) derived in Section 3.

3. Bivariate excess losses

Let (X, Y ) be a pair of random loss random vari-
ables with joint distribution function F(x, y) = P(X ≤ x,
Y ≤ y) and joint survival function S(x, y) = P (X > x,
Y > y).

Table 1. Calculating higher moments of excess losses using Table M

Entry Ratio (r) # of Risks R1(r) R2 in Layer R2(r) E[(Y r
∞)2]

0 0 1 0.21875 0.671875 1.34375

0.25 0 0.75 0.15625 0.453125 0.90625

0.5 1 0.5 0.1015625 0.296875 0.59375

0.75 2 0.3125 0.0703125 0.1953125 0.390625

1.0 0 0.25 0.0546875 0.125 0.25

1.25 0 0.1875 0.0390625 0.0703125 0.140625

1.5 0 0.125 0.0234375 0.03125 0.0625

1.75 0 0.0625 0.0078125 0.0078125 0.015625

2.0 1 0 0 0 0
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where Sx(.) denotes the survival function for X. Then
for two non-overlapping layers (d1, l1) and (d2, l2) of
X with d2 ≥ l1, we have
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which is Equation (39) of Miccolis (1977).
As mentioned in Section 2.2, Formula (12) is use-

ful in computing the second moment of layered
losses Xl

d. In fact, applying it to (8) yields
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2 2 2
X X X l d Xd

l
d l lE E E E

Notice that all three terms on the right-hand side
of (14) can be obtained from Table M.

Another formula to compute the second moment
of the layer losses is:
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which agrees with Equation (14).

As shown in Denuit, Lefevre, and Mesfioui (1999),
higher joint moments of the bivariate excess losses
can be computed using the following result.

Proposition 3.2
Let
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Proof:
We again use mathematical induction. For i = j = 1,

the statement is true by Proposition 3.1. Assume that
it is true for i, j, then
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The derivation for Ri,j+1(lx, ly) is symmetric. 

Similar to Section 2, Proposition 3.2 can be used
to construct a bivariate Table M to tabulate the joint
moments of the bivariate excess losses. Example 4.2
in the next section provides an illustration.

In the rest of this section, we show that Proposi-
tion 3.2 may shed some light on the joint moments
of the amount in different layers of a random loss.
To this end, setting X = Y, we have

[ ] [ ]( ) ( )
( )( )

= > > = >
=

, , max ,

max , ,

S u v X u Y v X u v

S u vx

P P
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One might wonder how the dependence between
(Xl

∞) and (Yl
∞) varies with the retention level l. For

illustration, we assume that α = 3, q1 = 5, q2 = 10
and calculated the correlation coefficients between
Xl

∞ and Y l
∞

( ) ( ) ( ) ( )
( ) ( )

= −∞ ∞
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∞ ∞
,corr X Y

X Y X Y
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l l
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for different values of l. The relationship between
the correlation coefficients and the retention level l

is illustrated in Figure 1. It shows that for this par-
ticular joint distribution, the correlation coefficient
decreases to some limit as the retention level l

increases.

4. Numerical examples

In this section, we present three examples. In the first
example, we derive formulas for the joint moments of
excess losses for a bivariate Pareto distribution. In the
second example, we show that a bivariate Table M can
be constructed to tabulate the covariances between
layers of losses from two lines of businesses. In the
third example, we apply the formulas derived herein
to study the interactions between per-occurrence and
stop-losses limits when they coexist in an insurance
policy.

Example 1: Bivariate Pareto Distribution
Following Wang (1998), assume that there exists a

random parameter L such that for i = 1, 2, Xi |L = l
are independent and exponentially distributed with
rate parameter l/qi. Then the conditional joint sur-
vival function is given by

S x x eX X

x x
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Assume that L follows a Gamma (α, 1) distribution
with moment generating function ML(t) = (1 – t)–α.
Then the unconditional distribution of (X1, X2) is a
bivariate Pareto with the joint survival function

S x y
x y
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+
θ
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1 2

As an extension of univariate Pareto distributions,
bivariate Pareto distributions are useful in modeling
bivariate losses with heavy tails. From the joint sur-
vival function (16), we have that
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In addition, the next equations are easily obtained
and will be used in the following example.
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Figure 1. The correlation between X l
Ç and Y l

Ç 
as a function of l
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An insurance company, XYZ, has been asked to
provide a per-occurrence coverage of $50,000 excess
of d0 and then a stop-loss coverage on an aggregate
basis of $500,000 excess of d1.

As an actuary of XYZ, you are trying to deter-
mine an optimal combination of d0 and d1, so that your
objective function—the ratio between the expected pay-
ments and the standard deviation of the payments—is
maximized. Notice that the expected payments can
be considered as a proxy for the expected under-
writing profits assuming a risk loading level, and
the standard deviation of the payments of course
may represent the risk level. Therefore, the objec-
tive function bears some resemblance to the Sharpe
ratio (Bodie, Kane, and Marcus 2010) used in port-
folio analysis.

We introduce the following notations to math-
ematically describe the problem. The monetary unit
we use is in thousands of dollars. Let the amount that
ABC has to pay per occurrence be denoted by

Z Z ZA
d

d= + +
∞ .0 50

0

0

Let the amount that XYZ has to pay per occurrence
be denoted by

Z ZX d
d= + .50

0

0

Let

∑=
=

.,
1

V ZX i
i

N

denote the aggregate amount that XYZ pays for the
per-occurrence coverage and let

U ZA i
i

N

∑=
=

.,
1

be the aggregate amount ABC pays after the per-
occurrence coverage but before the stop-loss cover-
age. Then the total amount XYZ has to pay under the
insurance treaty is given by

= + ,
1

1W V Ud
l

where l1 = d1 + 500.

Example 2: A bivariate Table M
This example shows that a bivariate Table M can

be constructed for the bivariate excess losses in a
similar way to the univariate Table M.

Assume that one observes a sample of a pair of
bivariate loss ratio random variables (X, Y ) as shown
in Table 2.

To compute the joint moments of the bivariate excess
of losses E(X∞

dx
Y ∞

dy
), we basically need to construct their

empirical joint survival function and then numerically
implement the double integration in Equation (9).
The detailed steps are shown in a companion Excel
table (http://www.variancejournal.org/issues/10-02/
Exel-table-Ren-paper.xlsx). The Excel table is easy
to use, for example, E [X∞

dx
Y ∞

dy
] is simply given by the

value in column J and the row with loss ratio values
dx and dy. If it is desired to calculate the higher joint
moments of X∞

dx
 and Y ∞

dy
, one can proceed to do some

more numerical integrations in the spreadsheet.

Example 3: Per-occurrence and stop-loss
coverage

This example follows the one in Section 2 of Homer
and Clark (2002) with some modifications. Assume
that the size of Workers Compensation losses from
a fictional large insured ABC, denoted by Z, follow a
Pareto distribution with the survival function

( ) = +
θ







−α

1 ,S x
x

where α = 3 and q = $100,000. Assume that the num-
ber of losses N follows a negative binomial distribu-
tion with the probability generating function (see, for
example, Klugman, Panjer, and Willmot 2012)

P z zN
r( )( )( ) = − β − −1 1 ,

where β = 0.2 and r = 25.

Table 2. Sample of bivariate loss ratios

X 0.6 0.8 1.2 1.4

Y 0.4 0.6 1.4 1.6

14730-01_Ren-3rdPgs.indd   201 6/11/18   10:48 AM



Variance Advancing the Science of Risk

202 CASUALTY ACTUARIAL SOCIETY VOLUME 10/ISSUE 2

tion than the (d0, d1) = (200, 1500) combination. There-
fore, the former is inefficient.

5. Conclusions

We first showed that higher moments of excess losses
may be obtained from Table M. Then we showed that
the joint moments of bivariate excess losses can also
be obtained in a similar fashion. These techniques are
useful in reinsurance and retrospective insurance rating
when losses from two sources of risks are considered.
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Our goal is to select values of d0 and d1 so that the
objective function E[W]/sW, where sW stands for the
standard deviation of W, is maximized.

To solve the problem, we could apply the follow-
ing steps:

1. Assign some values to d0 and d1.

2. Construct a matrix containing the joint probabil-
ity distribution function of (U, V ). This can be
obtained by applying the bivariate fast Fourier
transform (FFT) method as proposed in Homer
and Clark (2002).

3. Construct a matrix for the joint survival function,
S(U,V), from the matrix for the joint probability func-
tion obtained in step 2. Construct two vectors con-
taining values for the marginal survival functions
SU and SV, respectively.

4. Construct vectors containing values of the func-
tions R1(l) and R2(l) for random variables U and V

by applying Equations (4) and (5) to the cor-
responding survival functions SU and SV. Then
compute E[V ], E[Ul1

d1
], E[V2], and E[(Ul1

d1
)2] using

Equations (6) and (15).

5. Construct a matrix containing values of the func-
tion R11 from S(U,V) using Equation (10) and com-
pute E [U l1

d1
V ] by applying (11).

6. Compute the mean and variance of W = U l1
d1

+ V

using quantities obtained in steps 4 and 5, then

evaluate the objective function
W

W

[ ]
σ
E

.

7. Repeat steps 1–6 for different values of d0 and d1

and compare the values of the objective function.

Tables 3, 4, and 5 shows values of E[W], sW and

the objective function
W

W

[ ]
σ
E

 for some combinations

of d0 and d1, respectively. It appears that when the per-
occurrence entry point d0 is low and the stop-loss
coverage entry point d1 is high, the objective func-
tion is maximized. In addition, the tables can be used
to detect inefficient combinations of d0 and d1. For
example, the (d0, d1) = (250, 1000) combination results
in lower expected losses but a higher standard devia-

Table 3. The expected value of W (in thousands)

d0\d1 500 1000 1500 2000 2500

50 60.5477 51.4147 50.1536 49.8230 49.7006

100 36.9328 25.5104 24.0836 23.7256 23.5960

150 28.3191 15.3471 13.8257 13.4540 13.3209

200 24.6302 10.5683 8.9845 8.6046 8.4696

250 22.8897 8.0352 6.4053 6.0201 5.8840

300 22.0208 6.5733 4.9065 4.5175 4.3806

Table 4. The standard deviation of W (in thousands)

d0\d1 500 1000 1500 2000 2500

50 86.2705 56.5318 50.3110 48.4753 47.7640

100 83.5429 45.7247 36.9180 34.2140 33.1540

150 82.5044 40.6877 29.9994 26.5188 25.1145

200 81.8811 38.0508 26.0496 21.9057 20.1714

250 81.4313 36.5486 23.6461 18.9579 16.9179

300 81.0813 35.6331 22.1120 16.9900 14.6755

Table 5. The ratio of the mean and the standard deviation of W

d0\d1 500 1000 1500 2000 2500

50 0.7018 0.9095 0.9969 1.0278 1.0405

100 0.4421 0.5579 0.6524 0.6934 0.7117

150 0.3432 0.3772 0.4609 0.5073 0.5304

200 0.3008 0.2777 0.3449 0.3928 0.4199

250 0.2811 0.2198 0.2709 0.3175 0.3478

300 0.2716 0.1845 0.2219 0.2659 0.2985
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