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Bias-Variance Tradeoff:  
A Property-Casualty 

Modeler’s Perspective
by Joshua Brady and Donald R. Brockmeier

ABSTRACT

The concept of bias-variance tradeoff provides a mathematical 

basis for understanding the common modeling problem of under-

fitting vs. overfitting. While bias-variance tradeoff is a standard  

topic in machine learning discussions, the terminology and 

application differ from that of actuarial literature. In this paper 

we demystify the bias-variance decomposition by providing a 

detailed foundation for the theory. Basic examples, a simula-

tion, and a connection to credibility theory are provided to help 

the reader gain an appreciation for the connections between the 

actuarial and machine learning perspectives for balancing model 

complexity. In addition, we extend the traditional bias-variance 

decomposition to the GLM deviance measure.
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2.  Model complexity  
and optimal fit

The data upon which a model is built is called 
the “training” data or training partition. But since 
we seek a model that’s truly predictive, we are less 
concerned about how accurately a model estimates 
the training partition than how the model performs 
on fresh data that was not used in model building. 
Typically, in one way or another, a portion of the 
available data (the “test” or “holdout” partition) is set 
aside, not used in model training, and used strictly 
to assess the model’s performance on unseen data. 
The model’s prediction accuracy on the test partition 
is an estimate of its future performance after imple-
mentation. A common measurement of the overall 
accuracy of a model’s prediction is the mean squared 

error (MSE), also known as the prediction error.  
If we denote the dependent variable in a dataset of  
n points as y, the covariates (collectively) as x, and 
our particular model estimator as g(x),

n
y g xi i

i
∑( )( )= −MSE

1
.2

The MSEs of the training and test partitions are 
called the training error and test error, respectively.

As discussed by Hastie, Tibshirani, and Friedman 
(2009), improvement in the training error is a major 
factor in our decision to add terms or nodes to our 
model. So, necessarily, as we dig deeper and deeper 
into the training data and fit the model ever more 
closely to the training partition, the training error 
continues to fall. But as depicted in Figure 1, the same 
is true of the test error only to a point.

As the model becomes more complex, “overfitting” 
(or “overfit”) begins to occur when random variations 
(noise) in the training partition are misinterpreted as 
true relationships or “regularities” (signal). An overfit 
model usually has too many parameters, or variables 
that are defined with excess complexity. As such, 
while it fits the training data very well (actually, 

1.  Introduction

Judging by the two popular CAS guides on 
GLMs, the actuarial community’s thoughts on vari-
able selection and model validation have evolved 
in recent years. While the goals of modeling have 
always been to develop good estimators of future 
experience and to isolate the signal amidst the noise, 
our prevailing methods of model-building have 
evolved. Anderson et  al. (2007) was initially pub-
lished in the early years of actuarial modeling when 
predictive analytics was terra incognita in much 
of the industry. It rightly emphasized fundamental 
considerations, such as parameter-estimate standard 
errors, deviance (“type III”) tests, consistency testing 
of individual variables, and common sense.

As the actuarial community noted the devel
opments in “statistical learning,” such subjects as 
overfitting, data partitioning (train/test or train/test/
validate), and cross-validation began to creep more 
and more into our seminars and literature, and were 
added in the most recent general GLM “guide,” 
Goldburd, Khare, and Tevet (2016). Regardless 
of the method, however, considerable judgment 
and “art” are involved in building truly predictive 
models, as opposed to merely complex descriptive  
formulae. A foremost concern in this regard is avoid-
ing overfitting.

Overfitting is a normal tendency for analytical 
types, and actuaries are no exception. We are naturally 
predisposed to examine model-trial after model-
trial, sometimes straining to squeeze that last bit of  
intelligence from our data. Few are the modelers 
who, at least at some point in their career, have been 
immune from overfitting. While overfitting (or, in 
a more positive sense, optimally fitting a model) is 
well understood on a conceptual level, the mathe-
matical implications of over- or underfitting may not 
be as well appreciated. The concept of bias-variance 
tradeoff can greatly enhance our understanding of 
the dynamics of overfitting and assist in selecting an 
optimal predictive model.
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necessarily an optimal fit of the underlying signal 
(predictiveness).

Test error is a better estimate of predictiveness than 
training error, and training error is a poor estimate 
of test error. So even though some of the principal 
diagnostics used during the model-building process 
(parameter-estimate standard errors, deviance tests, 
etc.) are driven by our training partition, we need to 
focus on the test error in assessing predictiveness.

3.  Irreducible and explainable  
test error

For a given point in the test partition, our observ-
able total prediction error (the error we can see) is 
y − g(x). In seeking to better understand the sources 
of this error, it can be expressed as the sum of two 
sources: irreducible error and explainable error.

It helps at this point to postulate the existence of 
a true function, f (x)1, that underlies (or generates) 

too well), the overfit model “generalizes” poorly to 
the test partition. The model becomes too sensitive 
and reactive to small fluctuations in the training 
data. Even with the proper number of parameters, 
models fit using typical techniques, such as OLS 
regression or un-regularized GLMs, can perform 
poorly on new, unseen data. As characterized by 
Fortmann-Row (2012), there is a certain “sweet spot” 
in model complexity between underfit and overfit 
where the model’s performance on unseen data is 
optimized.

So what are we really trying to do when we model? 
Despite our mindfulness of the need to “separate 
signal from noise,” it might be easy to think that 
the goal of modeling is to develop an estimator for a 
set of observed data. It is not. Our goal as modelers  
is to develop an estimator for the signal underlying  

the observed data to the best of our ability. Our 
techniques, in one fashion or another, are founded 
upon the idea of optimizing some loss function, such 
as minimizing squared error or maximizing likeli-
hood. But given a particular dataset (that is, a parti
cular instance of all possible datasets), minimizing 
squared error (in the strict sense) might produce an 
optimal fit of the particular training partition, but not 
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Figure 1.  Training and test error vs. model complexity

1While it might be more conventional to denote the model g(x), an 
estimator of f (x), as f̂ (x), a distinct letter was chosen for the notation in 
this paper to foster easier visual distinction between the true function 
and estimator.
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3.	 Some error is irreducible. A portion of our  
prediction error not only cannot be explained  
by our model, but we must take steps to avoid  
trying to capture it in our model to avoid over- 
fitting.

4.  Expected value in the context  
of bias-variance tradeoff

Before we dive into a detailed discussion of 
bias and variance, we first lay the groundwork for 
exactly what is meant by expectation in the context 
of bias-variance tradeoff. In practice we are given 
a single training sample (X1, Y1) on which to fit a 
model g. Perhaps in an alternate reality we may 
have been given a different training sample (X2, Y2)  
on which to train g. Let ℱ represent the entire  
sample space, that is, the set of all possible training 
samples. We often denote the expectation of g(x) 
as ℱ[g(x)] to emphasize that the expectation of 
g(x) is over the entire sampling space ℱ. This is a 
subtle, but crucial, notion for the proper apprecia-
tion of the expected value of the model estimate 
in understanding bias-variance tradeoff. At certain 
points in this discussion, this subscript is omitted 
for simplicity.

Ultimately, our goal is to fit a model that will 
perform best on unseen data. Let the space (X, Y ) 
represent the holdout set on which to test the perfor-
mance of our model. We assume that there is some 
true relationship f (x) = [y |x] between the target 
variable and covariates. It is assumed that our hold-
out sample (X, Y ) is independent of our sampling 
space ℱ. In practice, this independence assumption 
often does not hold, although violation rarely results 
in poor-performing models.

Suppose we have some loss function, L(g(x), y), 
measuring the error of the model at a point (x, y). 
We would like to know the expected error over all 
training sets and over the distribution of the test 
point (x, y). That is, when we write [L(g(x), y)] 
the expectation is implicitly over the space of sample 
sets ℱ on which the model g is fitted and over the 

the dependent variable in the observed data. We can 
express the prediction error as:

y g x y f x f x g x[ ] [ ]( ) ( ) ( ) ( )− = − + −

The first component, y − f (x), is irreducible error: 
the difference between the observed target value 
and the true functional value of that point. This error is 
due to randomness intrinsic to the phenomenon itself. 
It is the natural error that is out of reach and that 
cannot be explained by any model.

The second component is the explainable error: 
the difference between the true functional value 
and the value estimated by our particular model for 
the particular point in question. This error reflects 
the fact that our limited training data does not fully 
represent all possible datasets, and it reveals the 
inability to produce an optimal estimator given limited 
data. Presumably, with infinite data and ideal esti-
mation techniques, the explainable error could be 
eliminated.

This distinction between irreducible error and 
explainable error helps us focus on the real goal of 
modeling: to develop an estimator for the signal . . . 
the regularities or the true form . . . underlying the 
observable data. From this perspective there are 
three facts of life for modelers to accept and manage:

1.	 There is no such thing as infinite data. Any  
dataset of any size falls short of representing the 
totality of the true signal. We are always working 
with limited data, and our model needs to operate 
on data unseen.

2.	 No modeling technique (or ensemble of tech-
niques) is perfect. There will always be a gap 
between the best estimator we can fashion and 
the true function.2

2In fact, even the true predictors are unknown. The predictors within our 
grasp are most likely correlates, albeit useful correlates, (or correlates  
of correlates of correlates . . .) of any true predictive variable. This 
becomes pertinent (sometimes painfully so) when we’re tasked with 
explaining to a client or product manager the appropriateness of (what 
are perceived as) mysterious and arcane variables in our models, such as 
ratios derived from census data that are associated with a policy by the 
policy’s zip code or census tract.
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However, if multiple training datasets and model 
parameterizations could be amassed, one could 
approximate [g(x)].

The explainable error, f (x) − g(x), can now be 
expressed as the sum of two components that are 
particularly relevant to our deliberation:

 f x g x f x g x g x g x[ ]( ) [ ]( )( ) ( ) ( ) ( ) ( ) ( )− = − + −

As noted in Definition 4.1, the negative of the first 
component, [g(x)] − f (x), the difference between 
the expected prediction of the model and the value we 
are trying to predict (i.e., the true functional value), 
is the bias at point (x, y). Bias quantifies the error 
of the model (the algorithm, estimator or functional 
form, in a general sense) prediction from the true 
value. Consistent with Definition 4.2, the square of 
the negative of the second term, (g(x) − [g(x)])2, 
is the point’s contribution to the model’s variance.

It is important to note that the exact meaning  
of the term “bias” in this context is different than 
its classical definition. In the classical context,  
a statistic, or estimator, is said to be “unbiased” if 
it equals a population parameter. In a modeling or 
machine-learning context, bias refers to the differ-
ence between the expected prediction of a particular 
model and the point value it is intended to predict. 
The latter definition is presumed in this paper unless 
otherwise noted.

As illustrated by Hastie, Tibshirani, and Friedman 
(2009) and Fortmann-Row (2012), the bullseye dia-
gram in Figure 2 helps clarify the preceding explana-
tions of bias and variance.

The center of the target represents perfect predic-
tion of the true value at a test point (x, y), while the 
portions of the target away from its center represent 
predictions with error. Each point represents one 
manifestation of the estimator, or model, given its 
particular training dataset. The extent to which the 
various points cluster tightly represents the variance 
of the estimator. The extent to which the center 
of the point cluster approximates the center of the  
target represents the bias of the estimator. The top-
left bullseye shows a scatter of points with both  

distribution of y given x. Specifically we can express 
the expectation as

L g x y L g x y x

L g x y x

y x

y x

[ ]

[ ]
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With the above framework, we now define bias and 
variance for a model as follows:

Definition 4.1.  (Bias) Let ℱ = {(X, Y )} be the 
space of training sets for fitting model g. The bias 
associated with a model g at a test point (x, y) is 
given by

g x g x y x g x y x

g x f x

f x [ ] [ ] [ ] [ ]

[ ]

( ) ( ) ( )

( ) ( )

= − = −

= −

( ) ℱ

ℱ

  



Bias

,

where f (x) = [y |x].

Definition 4.2.  (Variance) The variance of a 
model g at a point x is given by

ℱ ℱ   g x g x g x g x[ ] [ ][ ]( ) [ ]( )( ) ( ) ( ) ( )− = − .2 2

5.  The expected value of the 
model estimate, bias, and variance

Any particular model under consideration is but 
one manifestation of that model (or specifically, one 
manifestation of that functional form or algorithm), 
based on the data upon which it was trained, which 
as we’ve seen is one particular instance, or sample,  
of training data among the multitude of possible 
sample training datasets in our sampling space ℱ. 
As such, there is a distribution of possible model 
estimates. Accordingly, for any particular observed 
point, (x, y), we can speak of the expected value 
of g(x), or [g(x)]. [g(x)], then, is the expected 
prediction of the model (or expected value of the 
“estimator”) for observed point (x, y).

Like the true prediction, f (x), the expected pre-
diction of the model, [g(x)], is of a speculative, or 
conjectural, nature; it cannot be directly measured. 
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The components of the above equation are recog-
nizable, as the total test prediction error [(y − g(x))2] 
is the sum of . . . 

Irreducible squared error: [(y − f (x))2]
Squared bias: ([g(x)] − f (x))2

and the variance of the estimator: [(g(x) − [g(x)])2]

As noted, while the first component, irreducible 
error (random noise in the observed data with respect 
to its true value) is beyond our control and reach, the 
two components of explainable error can be manipu-
lated to achieve an optimal model.

In terms of model complexity, underfit models  
tend to have high bias and low variance, while over-
fit models tend to have low bias with high variance 
(low reliability in the face of new data). When start-
ing with a moderately overfit model, the “sweet spot” 
of optimal predictiveness can be obtained by reduc-
ing model complexity, thereby enhancing reliability 
(reducing variance) at the cost of greater bias: the 
so-called “bias-variance tradeoff.”

It’s interesting at this point to reflect on how this 
concept of inviting bias into our model might be 
met with resistance, especially by actuaries who first 
learned statistics before the machine-learning era. 
Many statistics courses emphasized the benefits of 
unbiased estimators (in the classical sense of the 
term) to the virtual exclusion of all others, and essen-
tially rewarded the quest for a tighter and tighter fit 
of the data. In essence, while this education did a 
good job training us to produce high-quality descrip-
tive statistics, it may have failed to anticipate today’s 
greater appreciation of predictive analysis.

To illustrate these ideas we consider two simple 
models, a fully-parameterized model and an intercept 
model. For the fully-parameterized model we assume 
there is a single covariate labeled x with no other 
differentiating information considered by the model. 
In the case of multiple covariates, we can form 
the Cartesian product of all available covariates to 
arrive at a fully-parameterized model that considers  
all available information. We assume that it is possible 
(but not required) for each unique value of x to  

high bias and high variance: they tend to be at a 
distance from the true value and are broadly dis-
persed. The bottom-left bullseye similarly depicts 
a model with high bias at this value of x, but having  
low variance among the various possible model esti
mates. The bullseyes on the right illustrate low bias, 
where the points cluster around a center that accu-
rately predicts the true value. The bottom-right 
bullseye exemplifies the modeler’s goal: an estimator 
algorithm that accurately predicts its true value with 
high reliability.

6.  Decomposition of the expected 
squared prediction error

The preceding division of prediction error into 
irreducible error and explainable error, and the  
further division of explainable error into bias and 
variance components, assist us in better understand-
ing the components of MSE on unseen (test) data.  
As derived in Appendix A, test prediction error can 
be decomposed as follows:

  

 

y g x y f x g x f x

g x g x[ ]
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Figure 2.  Visual depiction of bias and variance
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would be zero at the zip code level, the direct use of 
zip code would result in very high variance.

Example 6.2 (Intercept Model) The other simple 
model is the intercept model. That is, g(x) = y– over 
the entire sample set.

Bias:

The bias for the intercept model is given by

ℱ ℱ   g x y x y y x[ ] [ ] [ ] [ ]( ) − = − ,

which clearly is biased except when ℱ[y–] = [y |x].

Variance:

The variance of the intercept model can be expressed 
as follows:

   g x g x y y[ ] [ ][ ]( ) [ ]( )( ) ( )− = −2 2

This is the variance of the population mean, which is 
relatively stable except on small data sets. Of course 
a constant model g(x) = c would have zero variance, 
but this is a less interesting model, as it has no depen-
dence on the data.

As an illustration of these two extreme models, 
consider a simple situation in which f (x) = 2x, the set 
of x values consists of the first five positive integers, 
and we have three training samples, each consisting of 
three randomly-generated y values for each value of x.

Table  1 shows the squared bias and the sample 
variance for each unique value of x for each of the 
three samples. The sample variance, given by (g(x) –  
[g(x)])2, is used to illustrate the contributions to 
variance by each model.

As noted above, for the fully parameterized model 
[g(x)] = [y |x] which equals f (x). For the intercept 
model, each sample’s g(x) = y–, and [g(x)] = ℱ[y–]. 
This illustrates that the fully parameterized model 
is unbiased, as compared to the considerable bias 
of the intercept model. The variance, on the other 
hand, is substantially lower for the simpler intercept  

be sampled multiple times. The model is simply  
the average of the observations over each level of the 
covariate. For example, suppose our single covariate 
is whether an insured has been claims-free in the past 
three years. That is, x ∈{Yes, No}. In this simple case 
we presume to have multiple observations for both 
of the values “Yes” and “No.” The fitted model for 
“Yes” would be the average of observations for the 
claims-free insureds.

Example 6.1 (Fully-Parameterized Model) The 
fully-parameterized model is defined as g(x) = 
avg(y |x). That is, our prediction at x is simply the 
average of y over x on the training set. For each 
value of x we have a unique prediction.3

Bias:

Clearly this estimate is unbiased at the granu-
larity of covariate x as ℱ[g(x)] = ℱ[avg(y |x)] = 
avg(ℱ[y |x]) = avg(y|x[y |x]) = [y |x]. The key idea 
is that ℱ[y |x] = y|x[y |x]. That is, the expected value 
of the average of y |x over ℱ is the expected value 
of y |x.

Variance:

As the model has a separate parameter for each 
value of x, the resulting variance at a particular x is 
[([g(x)] − g(x))2] = [([y |x] − avg(y |x))2]. This 
is simply the variance of avg(y |x) over ℱ. When the 
covariate x has many values, we would generally 
expect the variance to be very high. An example of 
such a model would be the direct use of zip code as 
the covariate in a territorial model. While the bias 

3Importantly the fully-parameterized model is different from what is 
referred to as a saturated model. With a saturated model each observa-
tion is assigned the value of the observed target value. In fact, multiple 
observations corresponding to the same value of covariate x generally 
will not have the same observed value y; thus, the saturated model cannot 
in general be used to make predictions on unseen data. Saturated models 
do have their use for calculating a likelihood-based deviance measure of 
model fit. In this case, a saturated model is “evaluated” on whichever set 
is being used for goodness-of-fit evaluation.
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of the four models and for any particular x-value 
along the curve, the vertical difference between  
the sample value and the model-fit value is the  
prediction error, or y − g(x). The difference between 
the observed sample value and the true function is 
irreducible error, y − f (x), and the difference between 
the true functional value and the model-fit value,  
or f (x) − g(x), is the explainable error.

In the strict sense of the term, since this illustration 
involves only a single sample, we cannot measure the 
bias, the definition of which is based on the expected 
value of the estimator and the true functional value. 
However, if we assume for the purpose of illustration 
that each of the particularly-parameterized models in 
Figure 4 is representative of its expected value, this 
exhibit illustrates the relationship between bias and 
model complexity. The simplest model (of order of 1,  
or “g1”) has high bias along most of the curve, that 
is, it fits the true function poorly. The third-order 
polynomial, “g3,” begins to form itself to the true 
function better but still has observable bias. The 
higher-order polynomials, “g5” and “g9,” appear to 
fit the true function very well, exhibiting low bias for 

model, reflecting the stability of the sample mean. 
This example illustrates extremes that may be 
encountered between fitting an overly simple model 
and an over-parameterized model. As we discuss in 
section 9, the intercept model does not always have 
lower variance than a more complex “fully param-
eterized” model.

7.  A simulation

The following simulation (patterned after the simu-
lation in Stansbury 2013) exemplifies the dynamics 
of bias-variance tradeoff within a family of models 
of various levels of complexity.

Assume that we know the “true” function that 
generates our observable data, as shown in Figure 3.

Figure  4 shows a sample of points, or training 
data, generated from the true function (“Ftrue”) with 
noise, as well as a series of polynomials of various 
orders (models) parameterized to the sample.

This allows us to visualize the decomposition of 
the prediction error into irreducible and explainable 
error. In terms of the preceding discussion, for any 

Table 1.  Illustration of Examples 6.1 and 6.2

Training 
Sample

Fully-Parameterized Model Intercept Model

x f(x) = 2x y1 y2 y3 g(x) E[g(x)] Sq. Bias Variance g(x) E[g(x)] Sq. Bias Variance

1 1 2 0.8 2.8 3.2 2.3 2 0 0.090 6.5 6 16 0.230

2 4 3.9 5.9 3.8 4.5 4 0 0.250 6.5 6 4 0.230

3 6 5.1 4.9 7.1 5.7 6 0 0.090 6.5 6 0 0.230

4 8 10.2 8.3 10.3 9.6 8 0 2.560 6.5 6 4 0.230

5 10 11.3 10.2 9.4 10.3 10 0 0.090 6.5 6 16 0.230

2 1 2 2.1 2.7 0.7 1.8 2 0 0.028 5.9 6 16 0.018

2 4 4.5 3.6 5.3 4.5 4 0 0.218 5.9 6 4 0.018

3 6 6.8 4.0 6.7 5.8 6 0 0.028 5.9 6 0 0.018

4 8 8.0 9.3 7.9 8.4 8 0 0.160 5.9 6 4 0.018

5 10 7.4 8.4 10.6 8.8 10 0 1.440 5.9 6 16 0.018

3 1 2 1.9 –0.4 0.7 0.7 2 0 1.604 5.7 6 16 0.111

2 4 6.3 2.5 5.0 4.6 4 0 0.360 5.7 6 4 0.111

3 6 4.8 5.9 4.9 5.2 6 0 0.640 5.7 6 0 0.111

4 8 5.8 7.4 8.8 7.3 8 0 0.444 5.7 6 4 0.111

5 10 9.4 10.3 11.7 10.5 10 0 0.218 5.7 6 16 0.111

Sample Means: 0 0.548 8 0.120
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f(x) = x*sin(x)+sin(3*x)+0.3*sin(10*x)+2
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Figure 3.  Bias-variance tradeoff simulation: the “true function”
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Figure 4.  Bias-variance tradeoff simulation: the “true function”
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models has high bias for most x values, the tight clus-
tering of the individual fits demonstrates the model’s 
low variance.

As noted previously, and as shown in Figure 6, if the 
model’s complexity is increased slightly (to a power 
of two), the bias is lessened somewhat compared to 
the simplest model. However, the individual fits are 
not as tightly clustered as in Figure 5, demonstrating 
the higher variance of the more complex estimator.

Appendix B contains all such illustrations from 
polynomial orders one through ten, wherein one can 
observe the general decrease in bias and increase in 
variance as model complexity increases. Figure  7 
shows the most complex model.

The approximated expected value of the estimator 
is practically coincident with the true function, indi-
cating that bias has been almost eliminated by fitting 
the training data to an extreme. But the variance of the 
estimator is disturbingly large. This image portrays the 
changeability of an overfit model’s re-parameterization 
on new data, such as a recent policy year.

Figure 8 summarizes the prediction error of both 
the training and test samples, as well as the squared 
bias and variance of the test data, for each of the 
models. The training prediction error decreases as 

the preponderance of x-values. If we’re simply look-
ing to optimize bias, we might conclude that the higher 
the order (the greater the complexity), the better.

But while the preceding example may demonstrate 
how bias varies with model complexity based on this 
single sample of training data, it gives us no insight 
into either bias in the strict sense, [g(x)] − f (x), or 
the variance of the estimator, [(g(x) − [g(x)])2]. To 
accomplish that, the simulation must be expanded 
to involve multiple training samples (and their cor-
responding test samples), allowing estimation of the 
expected value of the estimators.

Fifty datasets of forty points each were randomly 
generated, and split into training and test sets of 
thirty and ten points, respectively. Polynomial models 
of orders one through ten were fit to each training 
set. In the real world we’re left to work with a single 
“instance” (a single sample), so this is like being able 
to peer into fifty “parallel universes.”

Figure 5 demonstrates the fifty simulated instances 
of the simplest polynomial model with fifty thin 
blue lines. The thicker green line in the middle of 
the cluster of the fifty instances is the mean of the 
fifty fits, providing an estimate of the expected value 
of the estimator, or [g(x)]. While this simplest of 

Polynomial Order = 1
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Figure 5.  The simplest model: high bias and low variance
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Polynomial Order = 2
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Figure 6.  Slight increase in complexity: less bias, more variance

Polynomial Order = 10
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Figure 7.  Most complex model: virtually no bias, high variance
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f y
y b

c y( ) ( ) ( )θ φ = θ − θ
φ

+ φ







, exp ,

We do not go into detail here, but we note that q is 
a function of the linear predictor. That is, we can 
write q = q(Xβ), where X is the design matrix for 
the model and β are the model coefficients. We have 
omitted the weights from this formulation for nota-
tional simplicity. See Ohlsson and Johansson (2010) 
or McCullagh and Nelder (1989) for a comprehen-
sive treatment.

For some distributions (e.g., Poisson), the dis-
persion parameter φ is taken to be 1 and we have 
a single-parameter distribution. When the disper-
sion parameter is applicable the general form above 
has two parameters. In practice we often treat φ as 
fixed and known with regard to estimating the coef-
ficients of the model. How can this be? Importantly, 
the maximum likelihood estimate of q is independent 
of φ. If one wishes to perform likelihood ratio tests 
or estimate the covariance of the coefficients then φ 
must be estimated.

As shown in Jørgensen (1992), every distribution 
in the exponential family is fully determined by the 

model complexity increases. The test prediction error 
(the error on unseen data), however, decreases until 
the polynomial order is from four to six, then steadily 
increases for the most complex models, suggesting that 
the noise in the training data is being misinterpreted 
as signal. The squared bias measured on the test data 
decreases even to the sixth order and is minimal for the 
higher orders. The variance of the estimator increases 
progressively with model complexity. As the para
meterizations are influenced increasingly by noise in  
the training data, the estimator becomes less and less 
stable. The “sweet spot” appears to be around the fourth 
order, where bias and variance are both modest in size. 
This exhibit clearly shows how, if one were working 
with a model of higher order, simplifying the model 
would result in less variability in the estimator at a 
price of increased bias: the bias-variance tradeoff.

8.  Decomposition formula  
for deviance

Actuaries rarely model insurance data assuming 
a normal distribution. Generally a distribution from 
the two-parameter exponential family is relied upon.

Bias-Variance TradeOff v. Model Complexity

Polynomial Order (Model Complexity)
101 2 3 4 5 6 7 8 9

0.100

0.075

0.050

0.025

0.000

TrainError TestError BiasSq_test Variance_test

Figure 8.  Prediction error, squared bias and variance by model
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d y y( ) ( )µ = − µ, .2

For the Poisson distribution,

d y y ylog
y

( )µ = µ − +
µ







, .

Before proceding, we discuss the concept of mini-
mizing the expected deviance for model g at a 
point x. We refer to this is the deviance-minimizing 
estimator.

Definition 8.1.  The deviance-minimizing esti
mator, g̃(x) for model g at x is defined as

g x d h g x
h

[ ]( ) ( )( )= ℱ� argmin , .

That is, the deviance-minimizing estimator for 
model g is the value, h, that minimizes the expected 
deviance relative to fitted values g(x) over all sam-
pled data sets ℱ. To help motivate this definition, 
recall that the deviance for the normal distribution 
evaluated at (h, g(x)) is d(h, g(x)) = (h − g(x))2. 
Suppose we wanted to find the value of h that mini-
mizes ℱ[(h − g(x))2]. As this is simply the expected 
squared difference between h and g(x) over ℱ, the 
minimum value is given by the expected value of 
g(x). That is, h = ℱ[g(x)] minimizes the expected 
squared difference ℱ[(h − g(x))2]. With this example, 
we see that the deviance-minimizing estimator is a 
generalization of the property that the mean mini-
mizes expected squared error. In Appendix C we 
present examples of deviance-minimizing estimators 
for common distributions.

Theorem 8.2. (Deviance Decomposition) As  
demonstrated in Appendix C, with the above defini-
tion of the deviance-minimizing estimator we can 
decompose the expected deviance for a model g at 
a test value (x, y) as

�

�

 



d y g x d y f x d f x g x

d g x g x[ ]

[ ] [ ] ( )

( )

( )( ) ( )( ( ) ( )

( ) ( )

= +

+

, , ,

, .

variance relationship linking the variance of y by 
function, v, of the mean. That is,

y v[ ] [ ]= φ µVar ,

where µ = [y |x].
Using the variance relationship we can define the 

deviance at a point y with parameter µ as

d y
y t

v t
t

y

∫( )
( )

µ = −
µ

, 2 d .

This is referred to as the unscaled deviance. The 
scaled deviance is given by

d y d y( ) ( )µ =
φ

µ* ,
1

, .

In this section we will primarily work with the 
unscaled deviance. If we assume φ is fixed and con-
stant then the results in this section for the unscaled 
deviance also hold for the scaled deviance.

The above integral-based formula for deviance is 
discussed in Anderson, et al. (2007). More common 
in the literature is the log-likelihood based defini-
tion of deviance, which is given by the difference 
between the saturated model and the fitted model. 
For our purposes the integral-based formula is more a 
convenient representation. In Appendix C we briefly 
show the equivalence between the two formulations.

The total deviance is the sum of the deviance over 
the data set:

D d yi i∑( ) ( )µ = µy, , .

Deviance has the following properties:

1.	 d(y, y) = 0
2.	 d(y, µ) > 0 for y ≠ µ
3.	 The deviance increases as µ moves away from y. 

That is, d(y, µ2) > d(y, µ1) for µ2 > µ1 > y and  
µ2 < µ1 < y.

That is, deviance is a loss function that has larger 
penalties as µ moves away from y. For the normal dis-
tribution the deviance is the standard squared error:
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This structure may look familiar. In credibility  
theory, s2 is the within variance and a2 is the between 
variance.

Before moving further with the connection to cred-
ibility, let us consider the two simple models from 
Examples 6.1 and 6.2. For the fully-parameterized 
model, suppose we estimate y |x by

y x g x avg y x yx( ) ( ) ( )= = =ˆ ,1

that is, the average of the sample for each of the two 
levels of x. For the intercept model, y |x is estimated 
by the population average without regard to the 
levels of x. That is, ŷ(x) = g2 (x) = y–.

The expected MSE is calculated for each of the 
models. As mentioned above, we assume both levels 
of x are sampled equally on each training set of size n. 
The MSE of the fully parameterized model is

MSE g x y g x
n

[ ][ ]( )( ) ( )( )= − = σ +





  1
2

.1 1
2 2

Similarly for the intercept model g2

MSE g x a
n

( )[ ]( )( ) = σ + +





 1
1

.2
2 2

Suppose we had to choose just between these two 
options. Assuming the covariate has true signal we 
would generally assume that parameterized models 
would outperform an intercept model, but are there 
times when we would prefer the intercept model g2 
over the fully parameterized model g1? Focusing on the 
test partition, we consider the conditions under which:

MSE g x MSE g x

a
n n

( )

[ ] [ ]( )( ) ( )( )<

⇔ σ + +





< σ +





 

1
1

1
2

.

2 1

2 2 2

Solving for n, we find:

n
a

< σ − 1.
2

2

Our inspiration for the above decomposition comes 
from Hansen and Heskes (2000). As compared to 
Hansen and Heskes (2000), we provide a further 
refinement of the sum of bias and irreducible error. 
Additionally we provide a more detailed derivation 
(Appendix C). The first term is the expected devi-
ance between the observed target value and the true 
functional value at that point. This is analogous to 
irreducible error in the MSE bias-variance decom-
position. The second term is the deviance of the true 
functional value relative to the deviance-minimizing 
estimator, which is a measure of bias. The third term 
is the expected value of the deviance between the 
fitted model and the deviance-minimizing estimator 
of the model, which is a generalization of variance.

The deviance decomposition theorem shows that 
the principle of bias-variance tradeoff applies, not 
just for MSE, but in a more generalized setting where 
deviance is used to evaluate goodness-of-fit.

9.  Example illustrating the 
connection to credibility

Credibility theory, as developed by Bühlmann, 
introduces a biased estimator that is a blend between 
the raw estimate and the population average. This 
blend is chosen such that the estimator has the best 
expected performance on new data. Using a simple 
example below, we illustrate the connection between 
Bühlmann credibility and bias-variance tradeoff.

Let x be a covariate with two levels {u,d} where 
the target y is normally distributed with mean plus or 
minus a. Specifically we assume:

y x u a

y x d a[ ]

[ ]= =

= = −





As u and d are equally likely, we assume the  
conditional variance is

y x[ ] = σVar .2

As a consequence the unconditional variance of y is

y a[ ] = σ +Var .2 2
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Z
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n
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= +

+ + σ
1

1
2

2

The key point is that credibility in the above context 
attempts to find the optimal balance between the 
error contributed by bias and variance. If we had an 
infinite sample on which to build our model, then the 
unbiased model would perform best out of sample. 
Of course, we are restricted to finite samples that 
are often much smaller than we would prefer.

10.  Practical application

Here we briefly offer some advice on how to 
apply the concept of bias-variance tradeoff in prac-
tice. A complete treatment of these topics would 
fill volumes, among which there are already excel-
lent resources, such as Goldburd, Khare, and Tevet 
(2016), James et al. (2013), and Hastie, Tibshirani, 
and Friedman (2009).

Given the focus of this paper, it may be surpris-
ing that it is unlikely that one would even attempt to 
quantify bias or variance in practice. Decomposing 
the expected test error into irreducible error, bias, and 
variance is generally not possible or even desirable. 
The modeler usually has little knowledge of the true 
population being sampled, and so it is not possible 
to ascertain either the expected value of the model 
estimate nor the true expected target value.

Our goal is to develop a model that has the best 
predictive power on unseen data. That is, we are 
concerned with minimizing the out-of-sample test 
error. How much the irreducible error, bias, and vari-
ance contribute to the total error is not important. 
Why, then, should we be concerned with the bias-
variance tradeoff? Most important is that familiarity 
with the dynamics of bias-variance tradeoff helps 
build the modeler’s intuition regarding the tradeoffs 
associated with model complexity. This intuition is 
further developed by considering illustrations such 
as the simulation in Section 7 and the credibility 
example in Section 9. These examples help build 
a modeler’s understanding of the techniques and 
decisions that produce better models.

We recognize the familiar Bühlmanns k = s2/a2.  
It may seem surprising that there are any cases  
for which the intercept model gives superior test 
performance over the fully parameterized model. For 
example, if s2 = 10a2, then we would need at least 
10 observations in order to prefer y–x to the entire 
sample average y–.

To understand this better, we consider the tradi
tional credibility weighting between the two estimates.

y g x y Z Z yZ x ( )( )= = + −ˆ 1

As shown in Appendix D, the expected MSE can be 
derived as

MSE g a Z

n
Z a Z

Z

( )( )

[ ] ( )

( )

( ) = σ + −

+ σ + σ + −

 1

1
2 1

2 2 2

2 2 2 2

Notice that the MSE has been written in the form of 
the bias-variance decomposition, where

•	 Irreducible error = s2

•	 Squared Bias = a2(1 − Z)2

•	 Variance = 
n

1
(2s2 Z + (s2 + a2) (1 − Z)2)

For the fully parameterized model (Z = 1) the 
estimator is unbiased with variance 2s2/n. For the 
intercept model (Z = 0) the estimator is biased with:

•	 Squared Bias = a2

•	 Variance = 
n

1
(s2 + a2 )

Generally we prefer unbiased models over biased 
models, but we must also consider the contribution 
to the total test error by the variance. While y–x may 
be an unbiased model, it is possible for y–x to have 
higher variance than y–. In fact, that is the case when 
a2 < s2. The idea is that when there is a large amount 
of noise, reducing variance is more important than 
eliminating bias.

Naturally, the next question to ask is for what  
Z is the MSE minimized? Taking the derivative of 
[MSE(gZ)] and setting equal to 0, we recover a 
familiar Bühmann-style credibility formula.
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reducing the bias while increasing variance. In 
this category we include such considerations as 
which covariates enter the model, grouping levels 
of categorical variables, introducing polynomial 
powers, binning continuous variables, and intro-
ducing interaction terms. As described in Anderson 
et al. (2007), consistency-testing individual covari-
ates can assist in eliminating those with the most 
unstable relationships to the dependent variable. 
This is accomplished by examining each potential 
covariate’s interaction with a “time” variable, or 
with some other categorical variable that provides 
a meaningful partition of the book of business.

2.	 Credibility: Once a covariate is selected for 
inclusion in a model, it may be determined that 
the “raw” estimated coefficient is not optimal. 
Complexity can be adjusted further by choosing 
a balance between the coefficients fitted by least-
squares regression vs. not including the covariate. 
Aside from traditional credibility approaches, 
models that implement a coefficient-blending 
approach are mixed-effects models as discussed 
in Frees, Derrig, and Meyers (2014) and elastic-net  
models as discussed in James, Witten, Hastie, 
and Tibshirani (2013) and Hastie, Tibshirani, 
and Friedman (2009). From a model-complexity 
perspective, reducing coefficient credibility cor-
respondingly reduces model complexity. At first 
glance this may seem odd, as there are still the 
same number of parameters in the model (i.e.,  
traditional degrees of freedom). But by constrain-
ing the “freedom” of the parameters, partial cred-
ibility effectively reduces complexity.

3.	 Bagging (or, bootstrap aggregation): Essentially, 
the model is built multiple times on subsamples 
of the dataset. A popular application of bagging 
is with Random Forests, in which many trees 
are fit and averaged. Generally, while fitting a 
single full tree greatly overfits the data, the vari-
ance associated with a single tree can be reduced 
by averaging many trees, where each tree is fit 
on a subset of the data (sample bagging) and a 
subset of covariates (feature bagging). By tun-
ing parameters such as the number of trees, the  

A single holdout dataset is often employed to 
help optimize model performance on unseen data, but 
there are concerns with this approach. If a modeler 
tests multiple models on a single holdout set, he or 
she may begin to overfit the holdout data. Further-
more, reserving part of the data for testing/validation 
reduces the amount of data available for model train-
ing, possibly resulting in fewer ascertained patterns 
and less confidence in the selected structure.

As an alternative to a single holdout set, cross-
validation is considered to be a standard method for 
assessing holdout performance (Hastie, Tibshirani, 
and Friedman 2009). Briefly, in n-fold cross valida-
tion the training set is divided into n parts of approx
imately equal size. For the ith part the model is fit to 
the remaining n-1 parts collectively, and the resulting 
prediction error is computed on the ith part, which 
serves as a partial holdout set. The n partial-prediction-
error totals are then aggregated to estimate the total 
test prediction error. Cross-validation has the impor-
tant advantage over traditional holdout sets in that 
all the data is used to build and test the model. In 
an extension of this technique called k-times n-fold 
cross-validation, the cross-validation procedure is 
repeated k times using a different random partition-
ing each time. Within this framework we are simply 
focused on reducing the MSE as measured through 
cross-validation. The error contributed by noise, 
bias, or variance is still unknown.

When parameter estimation is discussed, it is tradi
tionally suggested that it is preferable for estimates 
to have zero bias. But as noted above, bias is not the 
only contributor to test error. Specifically, this means 
bias is not necessarily something to be avoided, as 
long as the reduction in variance is greater than the 
increase in bias.

As suggested in Section 2, models with high com-
plexity tend to overfit, and models with low com-
plexity tend to underfit. The following considerations 
may assist the modeler in finding the “sweet spot” of 
an optimal fit:

1.	 Variable Selection: Adding parameters to a model 
generally increases model complexity, usually  
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Appendices

A.  Decomposition of test prediction error

As noted in Section 6, test prediction error can be 
decomposed into its irreducible error, squared bias 
and variance components as follows:

y g x y f x g x f x

g x g x[ ]

[ ] [ ] [ ]( )

[ ]( )

( )( ) ( )( ) ( ) ( )

( ) ( )

− = − + −

+ −
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 
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2 2

Irreducible Error

2

Squared Bias

2

Variance

The following derivation mirrors that of  
Vijayakumar (2007). For simplicity, g(x) is denoted 
as g, and f (x) is denoted as f. The proof hinges on the 
following identities:

By definition we have

 y f[ ] = .

As the distribution of y is independent of the sam-
pling distribution ℱ

   yg y g f g[ ] [ ] [ ] [ ]= = .

subsampling percentage of the observations, and the 
subsamples of covariates, the modeler can control 
the balance between bias and variance. Interest-
ingly, fitting a greater number of trees actually 
reduces model complexity. This may seem counter-
intuitive, since fitting a greater number of trees 
sounds like we are making the model more com-
plicated. In fact, we are reducing the complexity 
as the model is more constrained. That is, with 
more trees being averaged, the model is less able 
to overfit the data.

4.	 Boosting: Boosting attacks the ensemble problem  
from a different perspective as compared to 
bagging. Instead of taking the average of a large 
number of fitted models, a large number of “weak 
learners” are employed serially, each one work-
ing off of the residuals of the previous iteration. 
While each iteration does not learn the data very 
strongly, the combination of the weak learners  
may result in a strong learner. The modeler can 
tune parameters such as the learning rate, the 
number of iterations, and the subsampling of 
observations and covariates. In the past few years 
tree-based boosting algorithms, such as xgboost, 
have become recognized as some of the most 
powerful machine-learning models.
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The first term, [( f − [g])2], is squared bias, and 
the second term, [([g] − g)2], is the variance of the 
estimator. The cross-product term’s reduction to zero 
is apparent in its expansion:
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Combining these identities we arrive at the stated 
decomposition.

B.  Graphs of simulated  
polynomial models

This appendix contains the graphs of polynomial 
fits of order one through ten from the simulation 
discussed in Section 7.

First we expand the total test prediction error:
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2

Noting that f is deterministic, the last term is 
found to be 0 as

fy f gy gf

f f gf gf

[ ]( )[ ] [ ] [ ]− − +

= − − + =

   

0

2

2 2

Thus, we find

  y g y f f g[ ] [ ] [ ]( ) ( ) ( )− = − + − ,2 2 2

which is the familiar breakdown of test prediction 
error into irreducible error and explainable error. The 
second term (the MSE between the true function and 
the model-estimator) can be further expanded:

Polynomial Order = 1
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Figure 9.



Bias-Variance Tradeoff: A Property-Casualty Modeler’s Perspective 

VOLUME 13/ISSUE 2	 CASUALTY ACTUARIAL SOCIETY	 225

Polynomial Order = 2
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Figure 10.

Polynomial Order = 3
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Polynomial Order = 4
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Figure 12.

Polynomial Order = 5

1.000.750.500.250.00

1.5

2.0

2.5

3.0

3.5

y

x

Ftrue Individual fits Mean of all fits

Figure 13.



Bias-Variance Tradeoff: A Property-Casualty Modeler’s Perspective 

VOLUME 13/ISSUE 2	 CASUALTY ACTUARIAL SOCIETY	 227

Polynomial Order = 6
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Figure 14.

Polynomial Order = 7
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Figure 15.
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Polynomial Order = 8
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Figure 16.

Polynomial Order = 9
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ness, we briefly show equivalence here. In Anderson 
et al. (2007), it is stated that the forms are equivalent.

As shown in Ohlsson and Johansson (2010), the 
parameters q and function b are related to the mean 
and variance function through the following identities:

b b( ) ( )′ θ = µ ⇒ θ = ′ µ−1

b b
Var y

v( ) [ ]( ) ( )′′ ′ µ =
φ

= µ−1

Denote the two forms of deviance as follows. The 
integral deviance:

d y
y t

v t
t

y

∫( )
( )

µ =
φ

−
µ

,
2

d .1

The likelihood deviance, which is twice the differ-
ence of the saturated model and the fitted model:

d y loglik y y loglik y

y y b y y b

yb y b b y

yb b b
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θ − θ − θ µ + θ µ

=
φ

′ −
φ

′

−
φ

′ µ +
φ

′ µ

− −

− −

, 2 , ,

2

2 2

2 2

2

1 1
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C.  Bias-variance decomposition  
of deviance

Following McCullagh and Nelder (1989) we 
assume that the distribution y (given x) is from the 
exponential family

f y
y b

c y( ) ( ) ( )θ φ = θ − θ
φ

+ φ







, exp , .

As shown in Jørgensen (1992), every distribution in 
this exponential family is fully determined by the 
variance relationship linking the variance of y to a 
function, v, of the mean. That is,

y v[ ] ( )= φ µVar ,

where µ = [y].
We can write the deviance in terms of the distribu-

tion’s variance relationship as

d y
y t

v t
t

y

∫( )
( )

µ = −
µ

, 2 d .

Note that we are working with the unscaled deviance. 
The scaled deviance is given by d* = d/φ.

Most resources on GLMs do not rely on the above 
representation of deviance. More common is the  
likelihood-based definition of deviance. For complete-

Polynomial Order = 10
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deviance-minimizing estimator. Assume v(t) = t p. 
Applying the conclusion the Lemma 13.1, we obtain 
the following results:

g

g p

g p

g pp p[ ]

{ }[ ]
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
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 − −







�

0

exp ln 1

1

.

1
1

1

Consider the case of the canonical link. As we have 
used g to denote the fitted model in this paper, we 
let q denote the link function for our GLM. That is,  
g = q–1 (h), where h is the linear predictor. We have the 
following intuitive result that the deviance-minimizing 
estimator is equal to the inverse link of the expected 
value of the linear predictor

g

p

p

pp

{ }

[ ]

[ ]

[ ]

=

η =

η =

η >











−







�

0

exp 1

1

.

1

1

In fact this relationship holds in general for all 
distributions.

Corollary 13.2. Let q represent the link for the 
fitted GLM. For the canonical link q, the deviance-
minimizing estimator equals

g q [ ]( )= η− � .1

Proof. The key is that the canonical link satisfies 

q
v

( )
( )

′ µ =
µ

1
. Substituting q′ into the result of 

Lemma 13.1 and applying the fundamental theorem of 
calculus, we naturally arrive at the relationship for g̃.

We can think of the deviance-minimizing estimator 
is an average on the space transformed by the variance 
function v and link q.

We now state and prove the main theorem of this 
appendix.

Next we differentiate d1 and d2 with respect to 
parameter µ.

d y
y

v
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( )µ
µ = −

φ
− µ
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d

d
,

2
1
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As the derivatives are equal, the two forms differ 
by an additive constant. Evaluating both deviances 
at µ = y, we find that the constant is zero, showing 
equivalence.

Lemma 13.1. Define the deviance-minimizing 
estimator of model g at point x as

g x d h g x
h

[ ]( ) ( )( )= � argmin , .

Then,

v t
dt

g x

g x

∫ ( )


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

=
( )

( )


� 1
0.

Proof. We drop x for simplicity. As g̃ is the mini-
mizer of [d(h, g)] we have

g
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t

g

g

∫ ( )
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=
�

��d

d
d 0.

We assume that the distribution associated with the 
sampling space is regular enough to interchange the 
derivative and expectation. Assuming v(t) is continuous 
we can apply the Leibniz integral rule to find

g
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While Lemma 13.1 is a necessary technical result, 
we also gain a method in which to calculate the 
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As y and the sampling distribution, ℱ, are distributed 
independently, we can reduce the first term above to 
zero using Lemma 13.1.

y g

v t
t f g

v t
t

g

g

g

g

∫ ∫( )
( )

( )
−





= − 





= d
1

d 0.

Final comments on the deviance decomposition:

The above decomposition relied on the unscaled 
deviance, which does not include the dispersion 
parameter φ. If φ is assumed fixed and known, then 
the above decomposition extends to the scaled devi-
ance. This may not seem like a reasonable assump-
tion to make, but we note two important points. First 
the traditional squared error, (y − g(x))2, for normal 
regression implicitly ignores the dispersion param-
eter s2. Thus, when we consider the bias-variance 
tradeoff in the context of normally distributed data, 
we are implicitly assuming the dispersion param
eter s2 is fixed and constant. Further, one can form 
a quasi-likelihood as discussed in McCullagh and 
Nelder (1989). With a quasi-likelihood, a dispersion 
parameter only needs to be estimated in order to pro-
duce inferential statistics. If the modeler is simply 
interested in goodness of fit relative to the prescribed 
deviance function, then the dispersion parameter is 
unnecessary.

D.  Example illustrating the connection  
to credibility—derivation of the expected 
mean squared error

Given the distribution described in Section 9,  
calculate the expected mean squared error for

g x y Z Z yZ x ( )( ) = + −1 .

We compute the expected test error at test point  
(x, y) where x = u. From the symmetry of the random 
variable y it follows that the expected test error is 
the same for x = d. We assume each training set is of 
size n and that we sample u and d equally.

Theorem 13.3 (Deviance Decomposition) The 
expected deviance for estimator g at a test point  
(x, y) can be decomposed as follows

d g x y d y f x d f x g x

d g x g x[ ]
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where g̃(x) = argminh[d(h, g(x))] is the deviance-
minimizing estimator.

Proof. We omit the multiplicative 2 and x for 
notational simplicity. Using basic properties of inte-
grals, we write
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For the second component we note that [y] = f (x) and 
importantly that the expectation relative to sampling 
distribution is independent of f, y, and g–. Thus,
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Finally, for the third component:
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Next we compute Var[gZ |x = u]:
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We investigate each of these parts in detail:
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Putting all the pieces together, we observe:
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Rearranging and simplifying, we arrive at the desired 
form
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We further simplify the above equation using the 
following identities.

From the problem statement
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The unconditional variance of y can be derived as 
follows. Recall that we assume a 50/50 sampling 
between u and d.
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As the sampling distribution is independent of the 
test distribution, Cov(y, gZ |x = u) = 0. Taking the 
expectation of gZ
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And so
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