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A Bayesian Approach to Excess 
of Loss Pure Premium Rating

by Jack Barnett

ABSTRACT

This paper demonstrates a Bayesian approach for estimating 

loss costs associated with excess of loss reinsurance programs. 

The main features of this approach are that (1) prior severity dis-

tributions are adjusted for historical emergence patterns under-

lying the experience data, (2) maximum likelihood estimation 

is used to estimate a ground-up loss ratio for each prior severity 

distribution, (3) a posterior severity distribution is derived using 

a Bayesian approach, and (4) a posterior ground-up loss ratio 

is derived using a Bayesian approach. This paper illustrates a 

simple implementation of the approach and tests the model by 

simulating from known frequency and severity distributions 

and fitting the model to the simulated “data.”

KEYWORDS

Bayesian estimation, maximum likelihood estimation,  
emergence patterns, exposure curves



A Bayesian Approach to Excess of Loss Pure Premium Rating

VOLUME 13/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 55

inappropriate inferences that are consistent with 
the likelihood—this type of prior might be called a 
weakly informative prior; and (3) prior distributions 
that are uniform, or nearly so, and basically allow 
the information from the likelihood to be interpreted 
probabilistically—such priors are noninformative 
priors or maybe, in some cases, weakly informative. 
The approach taken here uses a weakly informative 
prior for the prior severity distributions. The prior 
loss ratio distribution is implied by the prior severity 
distributions (as described in section 5).

When significant claim volume is available, accu-
rate severity distributions can be estimated by using 
empirical methods, nonparametric statistics, or maxi-
mum likelihood methods (Klugman, Panjer, and 
Willmot 2009). When little or no data is available, 
actuaries may rely on an exposure curve. There are 
numerous approaches for deciding upon an expo-
sure curve. For example, one can use an external 
curve acquired from a statistical agency or an inter-
nal curve developed from a similar business line. In 
the limiting case, where there is no data, the Bayesian 
approach defaults to the average of the prior distribu-
tions. In such cases, with little or no data, it becomes 
useful to calibrate prior severity distributions to agree 
with the exposure curve selected for the underlying 
insured. In such a case, we prefer an informative prior. 
As the volume of claim data grows, it becomes less 
critical for the average of the priors to agree with the 
exposure curve selected for the underlying insured. 
This paper does not assume that an exposure curve 
underlying the insured risk is available. A Bayesian 
approach is most useful when we are between the two 
extremes of no data and a significant volume of data. 
The posterior severity distribution can be viewed as a 
nonlinear weighing of data and prior curves.

Prior to the application of the model, it will be 
assumed that the premium is on level and losses have 
been properly adjusted for trends and changes in 
attachment points and limits. Improper adjustments 
may lead to estimates with greater error.

Section 2 outlines how the severity distribution 
and the likelihood function can be adjusted for age 
of claim. This is accomplished through estimating 

1. Introduction

When pricing excess of loss (XOL) programs, 
many reinsurance and large account pricing actu-
aries may rely on assumptions that are difficult to 
support. This is particularly true when the actuary 
is uncertain of the underlying exposure or of which 
exposure curve(s) to use. An additional complication 
arises when the reinsurer does not receive all indi-
vidual claims in the reinsurance submission, because 
claims are typically reported only above some trun-
cation point. Finally, maximum likelihood estima-
tion (MLE) and, by extension, Bayesian analysis 
is generally not amenable to modeling long-tailed 
lines of business in which claims tend to develop 
upward or downward over time. This paper attempts 
to solve all of these problems within a single coher-
ent framework.

Meyers (2005) provides a Bayesian methodology 
for estimating loss costs associated with high layers. 
An introduction to the methodology can be found 
as a solution to the COTOR Challenge. It’s been 
many years in the making, but Meyers’ solution to 
the COTOR Challenge was a primary motivation 
for much of the work I have done here. Follow-
ing his solution to the COTOR Challenge, Meyers 
offers solutions to address what he feels are two  
serious shortcomings of the methodology: (1) the way 
in which prior severity models were developed and  
(2) the effect of settlement time on ultimate value. 
These are major issues for which this paper offers 
two more solutions. Finally, the framework presented 
here includes a Bayesian estimate (the mean of the 
posterior loss ratio distribution) for the ground-up 
loss ratio. Actuarial literature is relatively absent any 
discussion of Bayesian loss ratios for XOL rating.

Gelman (2006) distinguishes three categories of  
priors: (1) prior distributions giving numerical infor-
mation that is crucial to estimation of the model—
such a prior would be a traditional informative prior, 
which might come from a literature review or explic-
itly from an earlier data analysis; (2) prior distributions 
that are not supplying any controversial information 
but are strong enough to pull the data away from 
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the maximum policy limit). Let [F(cj;q) − F(cj−1;q)] 
represent the proportion of ultimate claims in the band 
cj to cj-1, given the distribution F and parameter q. 
The grouped likelihood function is given by the 
expression

L F c F c; ; , (1)j j
n

j 1
j∏ [ ]( ) ( )( )q = q − q−

where nj is the number of claims in the band. Note 
that the proportion of claims for the reported data 
will differ from ultimate claim counts by the emer-
gence pattern. In other words, the relative proportion 
of claims reported in each band is the following:

x F c F c% Reported ; ; . (2)j j j 1[ ]( ) ( )q − q−

For reported claims, the proportion of claims in each 
band is

x F c F c
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The denominator is simply a normalizing constant so 
that the probabilities sum to unity.

The adjusted likelihood function for reported 
claims is 

L x F c F c
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Exhibit 2.1 illustrates one way we might simulate 
reported claim counts from a lognormal distribution 
with an underlying emergence pattern. Only 10 of 
30,000 simulations are displayed. Column (2) repre-
sents an ultimate claim value. At any point in time, 
the estimated claim value may be more, or less, than 
the ultimate value. We are assuming an emergence 
pattern as shown in column (9). Smaller claims, from  
$0 to $100K, are assumed to be reported more quickly. 
We assume that 90% of all claims less than $100K 
have been reported and that of the largest claims, only 
60% have been reported. It is common for reinsurers  

claim count emergence patterns from various sizes of 
loss triangles and applying these patterns directly to 
the likelihood function. Section 3 examines 24 sever-
ity distributions used as priors for Bayesian analy-
sis purposes. Using “only” 24 curves is a relatively 
simple implementation of the approach. The curves 
are not meant to be prescriptive but are selected for 
illustrative purposes.

Section 4 describes the assumptions and sample 
data (one simulation) underlying the model. Section 5  
describes the process of estimating an underly-
ing loss ratio for each curve using MLE. Section 6 
describes the calculation of the posterior weight for 
each curve. Section 7 describes a Bayesian approach 
for estimating the ground-up loss ratio weighting 
over all MLE estimates, also called the mean of the 
posterior loss ratio distribution. Section 8 compares 
Bayesian claim count estimates with experience and 
MLE estimates for 200 sets of data (simulations). 
Section 9 summarizes and concludes.

2. Adjusting the likelihood function

The likelihood function is the probability of 
observing the specified data, given a hypothetical 
value of the parameter. In the example presented 
here, the data is the number of reported claims in each 
layer and the hypothetical parameter is a hypothetical 
severity distribution. The MLE estimate is the distri-
bution yielding the highest probability of obtaining 
the observed reported claim counts, weighted over 
all layers. However, in the case of liability business, 
data is immature. Ultimate claim counts by layer will 
generally not be the same as reported claim counts 
by layer. In general, curves fitted to reported and to 
ultimate claim counts utilizing MLE will not pro-
duce the same parameter estimates.

Reported claims may be available, but can we get 
the severity distribution for ultimate claims? The 
form of the likelihood function used in this paper 
is based on grouped data. Let a range of possible  
values be partitioned as c0 < c1 < . . . ck, where c0 is 
the smallest possible value in the model (i.e., the trun-
cation point) and ck is the largest possible value (i.e., 
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tion, and we are well on our way to implementing a 
Bayesian approach. Why not just use adjusted MLE 
rather than a Bayesian approach? Because we usu-
ally don’t see 25,655 reported claims [the total of 
column (8) in Exhibit 2.2]. Fewer claims leads to 
greater parameter uncertainty underlying the MLE 
estimates. For smaller portfolios, Bayesian estimates 
utilizing the mean of the posterior distribution are 
less impacted by random variation than are MLE 
estimates. Krishnamurthy (2017) provides an illus-
tration of and explanation for this case. However, 
the adjusted MLE does seem especially well suited 
for pricing very large portfolios or creating exposure 
curves for individual lines of business.

3. Prior distributions

For this paper, we implement just 24 severity dis-
tributions as priors. Exhibit 3.1 displays the param-
eters and some statistics for the 24 curves. The mean 
of the prior distribution is an equal weighted aver-
age of the curves, labeled “PRIOR (AVG)” (the 
excess severity is also weighted by the probability 
of a claim’s exceeding the truncation point, $100K). 

to examine separately the incurred and paid claim 
count triangles by size of loss. To convert ultimate 
counts to reported counts, we first augment the emer-
gence pattern, shown in column (3). A unit-uniform 
random variable is generated, shown in column (4). 
If the random variable is less than the emergence pat-
tern [i.e., if column (4) < column (3)], the claim is 
considered reported [column (5) = 1]. If the claim 
is reported, it is shown in column (6). At this point, 
roughly 90% of the claims less than $100K show up 
as reported claims in column (6), while only 60% of 
the claims from $2M to $4M show up as reported.

Exhibit 2.2 illustrates the application of equation (4) 
to the reported claim counts simulated in Exhibit 2.1. 
In practice, it is typical to minimize the negative log-
likelihood function, –ln[L(q)] = Sj nj ln[(3)]. Mini-
mizing column (9) produces the parameters shown 
in the upper left of the exhibit. We can see that the 
fit is in close agreement with the underlying severity 
parameters, or “actual.”

So what does this exercise tell us? It tells us that 
if we have reported claim amounts (counts) and an 
estimate of the emergence pattern, we can replicate 
the parameters of the underlying severity distribu-

µ: 10.42
σ: 2.12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Random
Variable

Reported
(1=Yes/0=No)

Emergence
PatternSimulation Rand() Loss

Emergence
Pattern Reported cj-1 cj

1 0.379 17,451 0.90 0.295 1 17,451 0 100,000 0.90
2 0.942 930,844 0.70 0.943 0 100,000 250,000 0.80
3 0.068 1,412 0.90 0.837 1 1,412 250,000 500,000 0.75
4 0.766 155,793 0.80 0.303 1 155,793 500,000 1,000,000 0.70
5 0.566 47,743 0.90 0.546 1 47,743 1,000,000 2,000,000 0.65
6 0.344 14,327 0.90 0.638 1 14,327 2,000,000 4,000,000 0.60
7 0.226 6,789 0.90 0.397 1 6,789
8 0.247 7,843 0.90 0.381 1 7,843 Maximum Policy Limit
9 0.763 152,775 0.80 0.955 0
10 0.967 1,656,936 0.65 0.939 0

Exhibit 2.1. One way to simulate reported claim counts from a lognormal distribution with an underlying 
emergence pattern
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claims above some truncation, say $100K.1 To cali-
brate the curves as shown in Exhibit 2.2, and in gen-
eral, the following procedure can be utilized. Examine 
the company’s exposure curves. What are the lowest 
and highest probabilities indicated by the curves for 
the highest layer, $5M × $5M? The prior severity 
distributions should span the low and high probabili-
ties indicated by the curves. For the exposure curves 
available to me, a range from 1% to 9% was suffi-
cient. These figures represent the proportion of claim 
counts above $5M, given only claims above $100K. 
Next, I’ve judgmentally selected three scale param-
eters: 9, 10, and 11. With the given scale parameters, 
I use Excel’s solver to find the shape parameters to 
match the target probabilities shown in Exhibit 3.1, 
column (14). In practice, I suggest using more than 
three scale parameters and extending the range of 
probabilities beyond the highest and lowest indicated 
by the exposure curves. Extending the ranges reduces 
the bias that may result when rating an account that 
tests the extremes of the prior severity curves.

“ACTUAL” denotes the statistics associated with 
the lognormal curve in section 2. It should be noted 
that statistics and probabilities for the prior curves 
are net of any insurer attachment/limit profile. 
These figures can be calculated easily in most expo-
sure rating models. For the implementation here,  
I have selected lognormal curves for prior distribu-
tions. Although we may be unsure of the underlying 
stochastic process, I have found that in most cases 
this choice of prior produces a reasonable estimate 
of the underlying severity distribution even when 
the underlying process is not lognormal. However, 
using priors that better match the distributional 
form generally produces estimates with lower vari-
ance and bias. I suggest that readers identify the 
most appropriate distribution underlying their data 
and use priors that match that distribution. This 
exposition uses expressions and calculations for 
the lognormal distribution. MLE is one possible 
approach for identifying the distribution. Given  
the same number of parameters, one could select 
the distribution that produces the greatest value  
of the likelihood function.

How might prior severity distributions be con-
structed? Assume we are pricing a $5M excess $5M 
layer on a per-occurrence basis and receive only 

Exhibit 2.2. Application of equation (4) to reported claim counts simulated in Exhibit 2.1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

layer
probabilties

F(cj;θ) - F(cj-1;θ)
Emergence

Pattern
F(cj;θ)
upper

F(cj-1;θ)
lower

Reported
Claims

njcj-1 cj (4)x(1) ln(6)

negative-
log likelihood

-(7)*(8)
0 100,000 0.90 0.000 0.694 0.694 0.625 0.734 -0.309 18831 5823.933

100,000 250,000 0.80 0.694 0.826 0.132 0.106 0.124 -2.087 3187 6651.261
250,000 500,000 0.75 0.826 0.897 0.071 0.053 0.062 -2.773 1593 4416.801
500,000 1,000,000 0.70 0.897 0.944 0.047 0.033 0.039 -3.252 982 3193.341

1,000,000 2,000,000 0.65 0.944 0.973 0.028 0.018 0.021 -3.834 574 2205.323
2,000,000 4,000,000 0.60 0.973 1.000 0.027 0.016 0.019 -3.947 488 1926.150

Maximum Policy Limit 1.000 0.851 1.000 25655 24216.808

Normalizing Constant Minimize this

µ̂ 10.43

σ̂ 2.12

(5)/
constant

1For reinsurance, it is uncommon to receive claims at such a low threshold 
(though I have personally seen all claims for medical malpractice and 
legal liability lines). However, for large account pricing, it is common to 
receive all claims. The truncation here is for illustrative purposes only.
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therefore estimated. This paper suggests an approach 
to estimating these patterns, but that is not a goal 
of the model. Losses are reported more quickly for 
lower layers than for higher layers. The variation 
around the expected pattern for each age is modeled 
as lognormal with a sigma of 50%. After emergence 
patterns are simulated for each age, they are scaled 
so that the patterns add up to unity for each acci-
dent period. Exhibit 4.2 displays the reported claims, 
ultimate claims, estimated emergence pattern, and 
actual emergence pattern for the $3M × $2M layer. 
Since each year has identical exposure, the incre-
mental claim count pattern can be calculated simply 
as the incremental number of claims reported in the 
lag period (the development period) divided by the 
years of data for that age. For example, in the triangle 
shown in Exhibit 4.2, one claim is reported from age 
1 to age 2 (over accident periods 2007 through 2015). 
This results in .111 claims expected to emerge from 
age 1 to age 2 (1 claim over 9 years). For 10 years of 
data, 5 claims have been reported to date, 7 ultimate 
claims have been simulated, and we estimate 2.46 
claims incurred but not reported (IBNR). The esti-
mated percentage reported for the $3M × $2M layer 
is 67.1% (5/[5 + 2.46]). The 67.1% will be the $3M 
× $2M contribution to adjust the 24 severity distri-
butions to a reported level. Exhibit 4.3 displays the 
simulated loss ratio, reported claims, IBNR claims, 
ultimate claims, and estimated emergence pattern 
(percentage reported) for all the layers. The simulated 
loss ratio is an unknown parameter, which the Bayes-
ian framework will estimate. The reported claims  
and the ultimate claims are totals over 10 years. Col-
umn (4), “Ultimate,” represents an “experience” or 
“emergence” estimate. The Bayesian estimate will be 
compared with this estimate.

The adjustment of the severity distributions to 
a reported basis from an ultimate basis is shown 
in Exhibit 4.4. At the top left of the exhibit is the 
emergence pattern, or percentage reported, in each 
layer (see Exhibit 4.1). Examining layer probabilities 
reveals that adjusting the distributions shifts some 
probability from the higher-attaching layers to the 
lower-attaching layers.

4. Assumptions and “data”

The following discussion assumes an identical 
severity distribution for each risk. This is an appropri-
ate assumption for testing the efficacy of the model. 
The underlying ground-up loss ratio for each risk will 
vary. Since each risk is of identical severity, the impact 
of the loss ratio is felt through the frequency of claims.

In the example that follows, “data” will be the 
result of one simulation, to which we fit the model. 
We simulate an emergence pattern, a ground-up loss 
ratio, and the size of claim(s). The Bayesian approach 
will simultaneously fit both the severity distribution 
and the ground-up loss ratio. We examine 10 years 
of losses with the following additional assumptions: 
a $6M premium is written each year, and the loss ratio 
is drawn from a lognormal distribution with mean 
100% and coefficient of variation 20.2% (σ = .2).2  
Size of loss is drawn from a lognormal distribution 
with parameters as shown in Exhibit 2.1, μ = 10.42 
and σ = 2.12. Maximum loss size (the policy limit) 
is $10M. The expected annual number of ground-up  
claims over all risks is 22.8 ($6M divided by an 
expected severity of $262,713). However, for each 
risk, the expected frequency varies as a function of 
the underlying loss ratio. We assume that the reinsurer 
receives only those claims above $100K (due to trun-
cation: T = $100K). Given this lognormal assump-
tion, roughly 6.9 claims per year are in excess of 
$100K (69 claims over 10 years). Based on simulated 
emergence patterns, roughly 78% of these claims are 
reported. The percentage reported declines as the 
size of loss increases. Frequency is simulated from 
a negative binomial distribution with a variance-to-
mean ratio of 1 + cL, with c = .013 and where L is the 
expected number of ground-up claims.

Exhibit 4.1 displays the expected emergence pat-
tern for each of the layers (bands) of loss. The emer-
gence patterns are unknown parameters and are 

2Since the underlying loss ratio is 100%, the premium in this example 
is equal to the pure premium (i.e., the amount necessary to pay losses).
3In my experience, c = .01 is a reasonable estimate of ‚“contagion.” The 
model is robust to the choice of c.
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Age Age Age Age Age Age Age Age Age Age
Layer 1 2 3 4 5 6 7 8 9 10

35,000 x 100,000 0.501 0.177 0.096 0.063 0.045 0.034 0.027 0.022 0.019 0.016
50,000 x 135,000 0.454 0.178 0.103 0.070 0.052 0.040 0.033 0.027 0.023 0.020
65,000 x 185,000 0.437 0.178 0.105 0.072 0.054 0.043 0.035 0.029 0.025 0.022

250,000 x 250,000 0.421 0.177 0.107 0.074 0.056 0.045 0.037 0.031 0.027 0.024
500,000 x 500,000 0.341 0.171 0.114 0.085 0.068 0.057 0.049 0.043 0.038 0.034

1,000,000 x 1,000,000 0.266 0.158 0.117 0.094 0.080 0.069 0.062 0.056 0.051 0.047
3,000,000 x 2,000,000 0.199 0.141 0.115 0.100 0.089 0.081 0.075 0.070 0.066 0.063
5,000,000 x 5,000,000 0.134 0.117 0.107 0.101 0.097 0.094 0.091 0.088 0.086 0.084

Expected Emergence Patterns

Exhibit 4.1. Expected emergence patterns

cumulative to date: 3,000,000 x 2,000,000

Expected Incremental Emergence:
Expected Cumulative Emergence:

Estimated Emerged Claims: Total (1)/Total (3) 0.671
Actual Emerged Claims: Total (1)/Total (4) 0.714

(4)
Simulated
Ultimate

0
2
1
1
0
0
1
0
1
1

7

(1)
Reported
to date

0
2
1
1
0
0
1
0
0
0

5

Year
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

OLP
6,000,000
6,000,000
6,000,000
6,000,000
6,000,000
6,000,000
6,000,000
6,000,000
6,000,000
6,000,000

age 1
0
0
0
0
0
0
0
0
0
0

age 2
0
1
0
0
0
0
0
0
0

0.111
0.746

age 3
0
1
0
0
0
0
1
0

0.125
0.635

age 4
0
1
0
1
0
0
1

0.143
0.510

age 5
0
1
1
1
0
0

0.167
0.367

age 6
0
2
1
1
0

0.200
0.200

age 7
0
2
1
1

0.000
0.000

age 8
0
2
1

0.000
0.000

age 9
0
2

0.000
0.000

age 10
0

0.000
0.000

(2)
IBNR

Claims
0.000
0.000
0.000
0.000
0.000
0.200
0.367
0.510
0.635
0.746

2.456

0.000
2.000
1.000
1.000
0.000
0.200
1.367
0.510
0.635
0.746

7.456

(3)
Expected
Ultimate

Exhibit 4.2. Reported claims, ultimate claims, estimated emergence pattern, and actual emergence 
pattern, $3M ë $2M layer

Simulated Loss Ratio: 133.4%

(1) (2) (3) (4) (5) (6)

Frequency[Parameter]

Layer Reported

35,000 x 100,000 17

50,000 x135,000 13

65,000 x 185,000 10

250,000 x 250,000 15

500,000 x 500,000 9

1,000,000 x 1,000,000 11

3,000,000 x 2,000,000 5

5,000,000 x 5,000,000 1

Total: 81

IBNR

1.98

1.76

1.57

2.79

2.08

4.01

2.46

0.67

17.32

Ultimate, or

“Experience

Estimate”

(2)+(3)

18.98

14.76

11.57

17.79

11.08

15.01

7.46

1.67

98.32

Percentage

Reported, or

“Emergence

Pattern”

(2)/(4)

89.6%

88.1%

86.4%

84.3%

81.2%

73.3%

67.1%

60.0%

82.4%

Underlying

“ACTUAL”

14.48

13.82

11.75

21.46

14.20

8.45

5.41

2.78

92.34

Exhibit 4.3. Simulated loss ratio, reported claims, IBNR claims, ultimate claims,  
and estimated emergence pattern, all layers
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(1990) describe expressions that modify the ground-
up VTM ratio as we move into higher layers. We can 
view the dispersion in the ground-up claim count as 
the result of independent Poisson random variables, 
each with a different underlying mean. We assume 
the mean is gamma distributed, with parameters A 
and B calibrated to produce the observed ground-
up claim count and VTM ratio. Expressions are as 
follows:

Ground-up claim counts = A/B

VTM ratio = (1 + B)/B

Ground-up parameters are B = 1/(VTM − 1)

A = (Ground-up counts) ë (VTM − 1)

As we move into higher layers, Patrik and Mashitz 
proceed to show that the scale parameter B → B/
(probability of attaching). The expression for the 
VTM above gets updated as B gets transformed. The 
probability of attaching is calculated directly from 
the prior severity distribution.

Exhibit 5.1 takes us through the calculations for 
curve #1 (see Exhibit 2.2 for parameters). The MLE 
estimate shown on line (2), 97.8%, minimizes the 
negative log-likelihood function on line (22). The 
negative binomial density function on line (19) eval-
uates the probability of observing the actual number 
of reported claims, given the number of expected 
reported claims and the VTM ratio. The expected 
number of claims is a function of the ground-up loss 
ratio. An identical calculation is performed for each 
curve.

6. Posterior weights for the 
severity distribution

The severity likelihood function depends on two 
expressions. The first expression is equation (4) above, 
the adjusted likelihood function. The second expres-
sion will be described below.

It is quite common that only claims in excess of 
some given truncation are submitted to a reinsurer. In 

5. MLE estimate for the ground-up 
loss ratio

For each curve, we can calculate the probability 
of a claim’s exceeding the truncation (T = $100K), 
along with the ground-up and excess claim severities. 
Given a ground-up loss ratio, it is possible to estimate 
the ground-up claim count and the number of claims 
in excess of a given truncation point. Recall that we 
started our example (or analysis) with an estimate 
of the total on-level premium for all years. Apply-
ing a loss ratio produces total loss, total ground-up 
claim counts, and the number of claims above the 
truncation.

Also for each curve, given a loss ratio, we can 
estimate the expected number of claims in each 
layer. Applying the emergence pattern (Exhibit 4.3) 
to these counts gives us the expected number of 
reported claims in each layer. We can assume a fre-
quency distribution for each layer and solve for the 
loss ratio that maximizes the likelihood of observ-
ing the reported claim counts in each layer, given 
the expected number of reported claims in each 
layer. Under this framework, we can view the loss 
ratio as a parameter of the frequency distribution. 
For the ground-up claim counts, we assume a nega-
tive binomial distribution with a variance-to-mean 
(VTM) ratio of 1 + cL, with c = .01 and where L  
is the number of ground-up claims as a function of 
the MLE. The model is robust to the choice of c. 
The maximum likelihood function is the product of 
eight frequency distributions normalized for prob-
ability in each band; the probability in each band 
can be found in Exhibit 4.3, columns (16) through 
(23). Normalizing assures us that the total probabil-
ity summed over the eight frequency distributions 
is 100%. Normalizing doesn’t affect the MLE for 
each curve, but it does affect the relative likeli-
hood between curves, which in turn influences the 
ground-up loss ratio (i.e., the mean of the posterior 
loss ratio distribution) weighted over all curves 
(more in section 7).

The VTM ratio generally declines as we move up 
into successively higher layers. Patrik and Mashitz 
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display ground-up weights and excess weights. 
Equation (5) states the posterior weight as propor-
tional to the product of the probability of the data 
given the model, also called the likelihood, and the 
prior probability. Since prior weights are equal, 
posterior weights are proportional to the likelihood 
function.

Posterior model data Probability data model

Prior model (5)

{ } { }
{ }
∝

×

Ground-up weights are necessary to calculate 
ground-up statistics such as ground-up severity, 
while excess weights are used to calculate excess 
statistics. For informational purposes, the MLE for 
each curve is shown in column (28). One can see 
that the likelihood of the MLE, and thus the weights, 
declines as the MLE deviates from the ELR. The 
likelihood function in column (24) may potentially 
create numerical underflow problems. One possible 
way of handling this is by taking logarithms of each 
term in the likelihood function, adding the absolute 
value of the smallest log-likelihood value to each 
log-likelihood value, exponentiating the results, and 
then normalizing.

Exhibit 6.3 displays the posterior severity distri-
bution. To create Exhibit 6.3, we append columns 
(26) and (27) from Exhibit 6.2 to Exhibit 2.2. The 
last row of columns (7) through (14) of Exhibit 6.3 
represents the posterior severity distribution, con-
ditioned on claims greater than the truncation. It 
is important to note that given the statistics in the 
last row of columns (3) through (6), and an estimate  
for the ground-up loss ratio, claim count estimates 
for the eight bands can be produced. We will refer to 
these claim count estimates as Bayesian claim count 
estimates, or Bayesian estimates. It is also instructive 
to note that curve #12 produces the greatest likeli-
hood (posterior weight) of generating the observed 
data. Looking back at Exhibit 2.2, we can see that 
compared with the other curves, the parameters and 
statistics for curve #12 are relatively close to the 
underlying, or ACTUAL.

many instances, a severity distribution that appears 
to be a good candidate (fit) from an excess perspec-
tive may not be a good candidate from a ground-up 
perspective. Why does this matter? Because in many 
instances, curves that seem to fit well just above the 
truncation point do not adequately capture the tail 
of the underlying severity distribution. A curve that 
fits well on an excess basis might imply a loss ratio 
significantly or implausibly different than expected. 
Therefore, we examine the MLE for the ground-up 
loss ratio. If the MLE is significantly different than 
the expected loss ratio (ELR), the curve is not a 
good candidate for the underlying severity distribu-
tion. The ELR can be the result of a detailed anal-
ysis for the individual risk, or it can be the result 
of an industry study. Given estimates of the ELR, 
uncertainty surrounding the ELR, and the process 
risk underlying the frequency and severity assump-
tions, we can calculate the likelihood of observing 
the MLE. This is the second expression mentioned 
above.

For our case study, we assume that ground-up tri-
angles are not available, and we utilize a mean indus-
try loss ratio of 100%, with individual risks varying 
around this mean loss ratio. We will assume a log-
normal distribution with σ = 40%. Our estimate of 
the dispersion around the ELR is considerably wider 
than the underlying 20%. Again, we will assume the 
MLE is lognormally distributed with mean 100% 
and σ ≈ (.42 + process variance).5, where the pro-
cess variance is calculated assuming the underlying 
ELR of 100%. For the likelihood, we calculate the 
density of the MLE using the parameters above. For 
this calculation, we use Excel’s built-in function 
LOGNORM.DIST. Exhibit 6.1 takes us through the 
calculation for curve #1. The calculation assumes 
that the premium charged for excess losses mirrors 
the ELR. A discussion of each term used to calcu-
late the process variance is beyond the scope of this 
paper. However, analytical expressions are defined 
in Exhibit 6.1. We use simulation to validate the pro-
cess variance.

Exhibit 6.2 displays the posterior weight for 
each severity distribution. Columns (26) and (27) 



Variance Advancing the Science of Risk

66 CASUALTY ACTUARIAL SOCIETY VOLUME 13/ISSUE 1

E
st

im
at

ed
 A

nn
ua

l o
n-

le
ve

l p
re

m
iu

m
:

6,
00

0,
00

0 
(1

)
E

xp
ec

te
d 

Lo
ss

 r
at

io
:

10
0.

0%
(2

) 
S

ee
 E

xh
ib

it 
2,

 C
ol

um
n 

(6
) 

E
xc

es
s 

Lo
ss

 P
er

ce
nt

ag
e:

64
.7

%
(3

);
 (

1)
x(

2)
x(

3)
E

xc
es

s 
Lo

ss
 E

[S
]:

3,
88

1,
16

0 
(4

);
 (

1)
x(

2)
x(

3)
X

:
R

an
do

m
 v

ar
ia

bl
e 

re
pr

es
en

tin
g 

si
ze

 o
f l

os
s

E
xc

es
s 

S
ev

er
ity

 E
[X

]:
39

3,
60

5 
(5

);
 S

ee
 E

xh
ib

it 
2,

 C
ol

um
n 

(3
)

N
:

R
an

do
m

 v
ar

ia
bl

e 
re

pr
es

en
tin

g 
nu

m
be

r 
of

 e
xc

es
s 

cl
ai

m
s.

E
xp

ec
te

d 
E

xc
es

s 
C

la
im

 C
ou

nt
s 

E
[N

]:
9.

86
1 

(6
);

 (
4)

/(
5)

S
:

R
an

do
m

 v
ar

ia
bl

e 
re

pr
es

en
tin

g 
to

ta
l l

os
s

V
ar

[N
]:

10
.8

33
(7

);
 =

 (
6)

 x
 [1

+
 c

 x
(6

)]
, c

=
.0

1
T

:
T

ru
nc

at
io

n,
 $

10
0K

E
[X

|x
>

T
]:

49
3,

60
5 

(8
);

 (
5)

+
T

P
L:

M
ax

im
um

 P
ol

ic
y 

Li
m

it,
 $

10
M

E
[X

2 ]:
1.

34
E

+
11

(9
);

 =
 (

E
X

P
(2

*µ
+

0.
5*

(2
*σ

)^
2)

*N
O

R
M

S
D

IS
T

((
LN

(P
L)

-µ
)/

σ-
2*

σ)
)/

(N
O

R
M

S
D

IS
T

((
LN

(P
L)

-µ
)/

σ)
)+

(P
L^

2)
*(

1-
LO

G
N

O
R

M
.D

IS
T

(P
L,

µ 2
σ,

1)
)

E
[X

|x
>T

]2 :
2.

44
E

+
11

(1
0)

; (
8)

2

F
2(

T
) 

[s
ec

on
d 

m
om

en
t d

is
tr

ib
ut

io
n 

fu
nc

tio
n]

:
5.

93
E

+
08

(1
1)

; =
 E

X
P

(2
*m

+
(4

*σ
^2

)/
2)

*N
O

R
M

S
D

IS
T

((
LN

(T
)-

µ)
/σ

-2
*σ

)

P
ro

ba
bi

lty
 o

f a
tta

ch
in

g:
11

.7
%

(1
2)

; S
ee

 E
xh

ib
it 

2,
 C

ol
um

n 
(5

)

E
[X

2 |x
>

T
]:

1.
14

E
+

12
(1

3)
; [

(9
)-

(1
1)

]/(
12

)
V

ar
(X

):
8.

95
E

+
11

(1
4)

; (
13

)-
(1

0)

P
ro

ce
ss

 v
ar

ia
nc

e,
 V

ar
(S

)
1.

15
E

+
13

(1
5)

; [
(6

)x
(1

4)
+

(7
)x

(1
0)

].5

E
xp

er
ie

nc
e 

pe
rio

d 
in

 y
ea

rs
:

10
(1

6)
N

or
m

al
iz

in
g 

co
ns

ta
nt

:
0.

84
7

(1
7)

; S
ee

 E
xh

ib
it 

5,
 C

ol
um

n 
(1

5)
S

ta
nd

ar
d 

D
ev

ia
tio

n 
of

 th
e 

E
xc

es
s 

Lo
ss

 R
at

io
:

30
.0

%
(1

8)
; S

Q
R

T
{(

15
)/

[(
16

)x
(1

7)
]}

 / 
[(

4)
/(

2)
]

σ 1
:

29
.3

%
(1

9)
; S

Q
R

T
(L

N
((

18
)^

2/
(1

^2
)+

1)
)

P
ar

am
et

er
 U

nc
er

ta
in

ty
, σ

2:
40

.0
%

(2
0)

T
ot

al
 V

ar
ia

nc
e:

24
.6

%
(2

1)
; (

19
)2  +

 (
20

)2

S
ta

nd
ar

d 
D

ev
ia

tio
n,

 σ
T
:

49
.6

%
(2

2)
; S

Q
R

T
(2

1)

µ:
-1

2.
3%

(2
3)

; L
N

(1
)-

0.
5*

(2
2)

^2

M
LE

:
0.

97
8

(2
3)

Li
ke

lih
oo

d 
M

LE
|E

xp
ec

te
d 

LR
 a

nd
  t

ot
al

 v
ar

ia
nc

e:
0.

80
6

(2
4)

; L
O

G
N

O
R

M
.D

IS
T

(M
LE

,µ
,σ

T
,0

)

V
ar

(S
) 

= 
E

[N
]V

ar
(X

) 
+ 

V
ar

(N
)E

[X
]2

Ex
hi

bi
t 

6.
1.

 L
ik

el
ih

oo
d 

of
 t

he
 M

LE
, g

iv
en

 t
he

 E
LR

 a
nd

 t
ot

al
 v

ar
ia

nc
e 

fo
r 

cu
rv

e 
#1



A Bayesian Approach to Excess of Loss Pure Premium Rating

VOLUME 13/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 67

9.
57

E
-7

2
0.

80
6

0.
00

81
0.

00
41

97
.8

%
4.

56
E

-7
1

0.
70

2
0.

03
12

0.
01

70
10

6.
0%

1.
57

E
-7

0
0.

57
6

0.
08

13
0.

04
80

11
6.

8%
3.

68
E

-7
0

0.
43

7
0.

13
38

0.
08

56
13

1.
0%

5.
54

E
-7

0
0.

30
0

0.
12

74
0.

08
85

14
9.

6%
4.

89
E

-7
0

0.
18

3
0.

06
29

0.
04

75
17

4.
2%

2.
25

E
-7

0
0.

09
6

0.
01

40
0.

01
15

20
6.

9%
4.

58
E

-7
1

0.
04

3
0.

00
12

0.
00

10
25

0.
5%

2.
31

E
-7

1
0.

83
5

0.
01

12
0.

01
03

96
.4

%
8.

65
E

-7
1

0.
72

0
0.

03
45

0.
03

31
10

5.
3%

2.
36

E
-7

0
0.

58
3

0.
07

31
0.

07
33

11
6.

8%
4.

49
E

-7
0

0.
43

6
0.

09
92

0.
10

40
13

1.
5%

5.
54

E
-7

0
0.

29
5

0.
07

92
0.

08
70

15
0.

7%
4.

09
E

-7
0

0.
17

7
0.

03
35

0.
03

86
17

5.
6%

1.
61

E
-7

0
0.

09
3

0.
00

65
0.

00
79

20
8.

6%
2.

87
E

-7
1

0.
04

1
0.

00
05

0.
00

06
25

2.
4%

5.
45

E
-7

1
0.

83
8

0.
01

49
0.

02
43

97
.4

%
1.

45
E

-7
0

0.
71

2
0.

03
33

0.
05

50
10

6.
9%

2.
90

E
-7

0
0.

56
8

0.
05

23
0.

08
77

11
8.

9%
4.

13
E

-7
0

0.
41

8
0.

05
41

0.
09

20
13

4.
1%

3.
95

E
-7

0
0.

27
9

0.
03

40
0.

05
86

15
3.

6%
2.

32
E

-7
0

0.
16

6
0.

01
17

0.
02

05
17

8.
8%

7.
57

E
-7

1
0.

08
6

0.
00

20
0.

00
35

21
1.

9%
1.

17
E

-7
1

0.
03

8
0.

00
01

0.
00

02
25

5.
7%

T
ot

al
:

1.
00

00
1.

00
00

* 
C

ur
ve

 #
1:

9.
57

E
-7

2 
=

 (
.2

31
^1

7)
(.

19
7^

13
)(

.1
49

^1
0)

(.
22

7^
15

)(
.1

16
^9

)(
.0

50
^1

1)
(.

02
3^

5)
(.

00
7^

1)
 #

:
W

ei
gh

ts
 a

re
 n

or
m

al
iz

ed
 to

 s
um

 to
 u

ni
ty

.

S
ee

 E
xh

ib
it 

5

S
ee

 E
xh

ib
it 

4B

(2
3)

5,
00

0,
00

0 
x

5,
00

0,
00

0
0.

00
7

0.
01

0
0.

01
3

0.
01

8
0.

02
5

0.
03

5
0.

04
9

0.
06

7
0.

00
7

0.
01

0
0.

01
3

0.
01

9
0.

02
6

0.
03

5
0.

04
9

0.
06

7
0.

00
7

0.
01

0
0.

01
3

0.
01

9
0.

02
6

0.
03

5
0.

04
9

0.
06

8

(2
2)

3,
00

0,
00

0 
x

2,
00

0,
00

0
0.

02
3

0.
02

7
0.

03
3

0.
03

9
0.

04
7

0.
05

5
0.

06
4

0.
07

4
0.

02
5

0.
03

0
0.

03
5

0.
04

2
0.

05
0

0.
05

8
0.

06
8

0.
07

8
0.

02
8

0.
03

3
0.

04
0

0.
04

7
0.

05
5

0.
06

4
0.

07
3

0.
08

3

11
13

.6
%

(2
1)

1,
00

0,
00

0 
x

1,
00

0,
00

0
0.

05
0

0.
05

6
0.

06
2

0.
06

9
0.

07
6

0.
08

4
0.

09
1

0.
09

8
0.

05
5

0.
06

1
0.

06
7

0.
07

4
0.

08
1

0.
08

9
0.

09
6

0.
10

2
0.

06
3

0.
07

0
0.

07
6

0.
08

3
0.

09
0

0.
09

7
0.

10
3

0.
10

9

9
11

.1
%

(2
0)

50
0,

00
0 

x
50

0,
00

0
0.

11
6

0.
12

3
0.

12
9

0.
13

6
0.

14
2

0.
14

7
0.

15
1

0.
15

3
0.

12
5

0.
13

2
0.

13
8

0.
14

4
0.

14
9

0.
15

3
0.

15
6

0.
15

8
0.

14
2

0.
14

7
0.

15
2

0.
15

7
0.

16
1

0.
16

3
0.

16
5

0.
16

5

15
18

.5
%

(1
9)

25
0,

00
0 

x
25

0,
00

0
0.

22
7

0.
22

9
0.

23
0

0.
23

0
0.

22
9

0.
22

6
0.

22
1

0.
21

4
0.

23
6

0.
23

7
0.

23
7

0.
23

5
0.

23
3

0.
22

9
0.

22
3

0.
21

6
0.

24
9

0.
24

8
0.

24
6

0.
24

3
0.

23
9

0.
23

3
0.

22
6

0.
21

7

10
12

.3
%

(1
8)

65
,0

00
 x

18
5,

00
0

0.
14

9
0.

14
6

0.
14

2
0.

13
8

0.
13

3
0.

12
8

0.
12

2
0.

11
5

0.
14

8
0.

14
5

0.
14

1
0.

13
6

0.
13

2
0.

12
6

0.
12

0
0.

11
3

0.
14

6
0.

14
2

0.
13

8
0.

13
3

0.
12

8
0.

12
3

0.
11

6
0.

10
9

13
16

.0
%

(1
7)

50
,0

00
 x

13
5,

00
0

0.
19

7
0.

19
0

0.
18

2
0.

17
4

0.
16

5
0.

15
6

0.
14

6
0.

13
5

0.
18

9
0.

18
2

0.
17

5
0.

16
7

0.
15

9
0.

15
0

0.
14

1
0.

13
1

0.
17

7
0.

17
0

0.
16

4
0.

15
6

0.
14

9
0.

14
1

0.
13

2
0.

12
3

17
21

.0
%

(1
6)

35
,0

00
 x

10
0,

00
0

0.
23

1
0.

22
0

0.
20

8
0.

19
5

0.
18

3
0.

17
0

0.
15

7
0.

14
3

0.
21

4
0.

20
4

0.
19

3
0.

18
2

0.
17

1
0.

16
0

0.
14

8
0.

13
6

0.
18

8
0.

17
9

0.
17

1
0.

16
2

0.
15

3
0.

14
4

0.
13

5
0.

12
5

R
ep

or
te

d 
C

la
im

s
%

 D
is

tr
ib

ut
io

n

S
ee

 E
xh

 2
(5

)

P
ro

ba
bi

lit
y

>
$1

00
K

0.
11

7
0.

12
6

0.
13

7
0.

14
8

0.
16

1
0.

17
5

0.
19

0
0.

20
8

0.
21

3
0.

22
2

0.
23

2
0.

24
3

0.
25

4
0.

26
7

0.
28

0
0.

29
5

0.
37

8
0.

38
3

0.
38

9
0.

39
4

0.
40

0
0.

40
5

0.
41

2
0.

41
8

5
6.

2%
1

1.
2%

(2
7)

E
xc

es
s

P
os

te
rio

r 
W

gt
s

(2
4)

x(
25

) 
#

(2
6)

G
ro

un
d 

U
p

P
os

te
rio

r 
W

gt
s

(2
4)

x(
25

)/
(5

) 
#

(2
5)

Li
ke

lih
oo

d 
of

M
LE

 g
iv

en
E

LR
 &

 T
ot

 V
ar

(2
4)

G
ro

up
 

Li
ke

lih
oo

d
F

un
ct

io
n*

(2
8)

M
LE

%
 R

ep
o

rt
ed

 x
 [

F
(c

j;p
) 

- 
F

(c
j-

1;
p)

]/
N

o
rm

al
iz

in
g

 C
o

n
st

an
t

Ex
hi

bi
t 

6.
2.

 P
os

te
ri

or
 w

ei
gh

ts
 f

or
 s

ev
er

ity
 d

is
tr

ib
ut

io
ns



Variance Advancing the Science of Risk

68 CASUALTY ACTUARIAL SOCIETY VOLUME 13/ISSUE 1

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

E
xc

es
s

S
ev

er
ity

P
ro

ba
bi

lit
y

%
 L

os
s>

T
35

,0
00

 x
50

,0
00

 x
65

,0
00

 x
25

0,
00

0 
x

50
0,

00
0 

x
1,

00
0,

00
0 

x
3,

00
0,

00
0 

x
5,

00
0,

00
0 

x

S
ev

er
ity

G
ro

un
d 

U
p

>
$1

00
K

[3
]X

[5
]/[

4]
10

0,
00

0
13

5,
00

0
18

5,
00

0
25

0,
00

0
50

0,
00

0
1,

00
0,

00
0

2,
00

0,
00

0
5,

00
0,

00
0

39
3,

60
5

71
,1

66
0.

11
7

64
.7

%
0.

21
9

0.
18

9
0.

14
6

0.
22

8
0.

12
1

0.
05

8
0.

02
9

0.
01

0

45
3,

17
3

83
,1

62
0.

12
6

68
.9

%
0.

20
7

0.
18

2
0.

14
2

0.
22

9
0.

12
8

0.
06

4
0.

03
5

0.
01

4

52
7,

51
0

98
,8

33
0.

13
7

73
.0

%
0.

19
5

0.
17

3
0.

13
8

0.
22

9
0.

13
4

0.
07

1
0.

04
1

0.
01

9

62
1,

17
1

11
9,

60
1

0.
14

8
77

.0
%

0.
18

2
0.

16
5

0.
13

3
0.

22
8

0.
13

9
0.

07
9

0.
04

9
0.

02
6

74
0,

29
7

14
7,

52
3

0.
16

1
80

.7
%

0.
16

9
0.

15
5

0.
12

8
0.

22
5

0.
14

4
0.

08
6

0.
05

8
0.

03
5

89
3,

19
2

18
5,

60
5

0.
17

5
84

.1
%

0.
15

6
0.

14
5

0.
12

1
0.

22
0

0.
14

8
0.

09
4

0.
06

7
0.

04
8

1,
09

1,
15

9
23

8,
28

6
0.

19
0

87
.2

%
0.

14
2

0.
13

5
0.

11
4

0.
21

3
0.

15
1

0.
10

1
0.

07
8

0.
06

6

1,
34

9,
63

4
31

2,
19

5
0.

20
8

89
.8

%
0.

12
9

0.
12

3
0.

10
7

0.
20

4
0.

15
2

0.
10

7
0.

08
9

0.
09

0

41
3,

78
1

12
7,

33
2

0.
21

3
69

.1
%

0.
20

2
0.

18
2

0.
14

5
0.

23
7

0.
13

1
0.

06
3

0.
03

1
0.

01
0

47
3,

57
3

14
4,

93
1

0.
22

2
72

.6
%

0.
19

1
0.

17
4

0.
14

1
0.

23
6

0.
13

7
0.

07
0

0.
03

7
0.

01
4

54
7,

98
8

16
7,

40
4

0.
23

2
76

.0
%

0.
18

0
0.

16
6

0.
13

6
0.

23
5

0.
14

2
0.

07
7

0.
04

4
0.

01
9

64
1,

52
9

19
6,

47
0

0.
24

3
79

.3
%

0.
16

9
0.

15
8

0.
13

1
0.

23
2

0.
14

7
0.

08
4

0.
05

2
0.

02
6

76
0,

28
1

23
4,

55
3

0.
25

4
82

.5
%

0.
15

8
0.

14
9

0.
12

6
0.

22
8

0.
15

1
0.

09
2

0.
06

1
0.

03
5

91
2,

48
5

28
5,

09
1

0.
26

7
85

.4
%

0.
14

6
0.

13
9

0.
11

9
0.

22
2

0.
15

5
0.

09
9

0.
07

1
0.

04
8

1,
10

9,
37

9
35

3,
01

5
0.

28
0

88
.1

%
0.

13
4

0.
12

9
0.

11
2

0.
21

5
0.

15
6

0.
10

6
0.

08
2

0.
06

6

1,
36

6,
33

6
44

5,
45

9
0.

29
5

90
.4

%
0.

12
1

0.
11

9
0.

10
4

0.
20

5
0.

15
6

0.
11

2
0.

09
3

0.
09

0

44
7,

75
4

22
8,

30
4

0.
37

8
74

.2
%

0.
17

6
0.

16
9

0.
14

2
0.

24
9

0.
14

7
0.

07
3

0.
03

5
0.

01
0

50
7,

55
0

25
3,

20
8

0.
38

3
76

.8
%

0.
16

8
0.

16
2

0.
13

8
0.

24
6

0.
15

2
0.

08
0

0.
04

2
0.

01
4

58
1,

70
9

28
4,

37
9

0.
38

9
79

.5
%

0.
15

9
0.

15
5

0.
13

3
0.

24
3

0.
15

6
0.

08
7

0.
04

9
0.

01
9

67
4,

65
8

32
3,

84
2

0.
39

4
82

.1
%

0.
15

0
0.

14
7

0.
12

8
0.

23
8

0.
16

0
0.

09
4

0.
05

8
0.

02
6

79
2,

39
9

37
4,

37
9

0.
40

0
84

.6
%

0.
14

1
0.

13
9

0.
12

2
0.

23
3

0.
16

3
0.

10
1

0.
06

7
0.

03
5

94
3,

08
6

43
9,

83
4

0.
40

5
86

.9
%

0.
13

1
0.

13
0

0.
11

6
0.

22
5

0.
16

4
0.

10
8

0.
07

7
0.

04
8

1,
13

7,
86

8
52

5,
55

8
0.

41
2

89
.1

%
0.

12
1

0.
12

1
0.

10
9

0.
21

7
0.

16
4

0.
11

4
0.

08
8

0.
06

6

1,
39

2,
04

8
63

9,
04

4
0.

41
8

91
.1

%
0.

11
1

0.
11

2
0.

10
1

0.
20

6
0.

16
2

0.
11

9
0.

09
9

0.
09

0

65
1,

16
3

26
1,

63
2

0.
26

9
66

.9
%

0.
15

4
0.

14
6

0.
12

4
0.

22
7

0.
15

2
0.

09
3

0.
06

3
0.

04
1

70
9,

95
2

26
2,

71
3

0.
30

3
81

.9
%

0.
15

7
0.

15
0

0.
12

7
0.

23
2

0.
15

4
0.

09
1

0.
05

9
0.

03
0

66
9,

54
7

19
3,

39
8

0.
23

2
80

.2
%

0.
16

6
0.

15
6

0.
13

0
0.

23
2

0.
14

9
0.

08
6

0.
05

4
0.

02
8

C
ur

ve 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
R

IO
R

:

A
C

T
U

A
L:

P
O

S
T

E
R

IO
R

:

(2
7)

E
xc

es
s

P
os

te
rio

r 
W

gt
s

0.
00

41

0.
01

70

0.
04

80

0.
08

56

0.
08

85

0.
04

75

0.
01

15

0.
00

10

0.
01

03

0.
03

31

0.
07

33

0.
10

40

0.
08

70

0.
03

86

0.
00

79

0.
00

06

0.
02

43

0.
05

50

0.
08

77

0.
09

20

0.
05

86

0.
02

05

0.
00

35

0.
00

02

(2
6)

G
ro

un
d 

U
p

P
os

te
rio

r 
W

gt
s

0.
00

81

0.
03

12

0.
08

13

0.
13

38

0.
12

74

0.
06

29

0.
01

40

0.
00

12

0.
01

12

0.
03

45

0.
07

31

0.
09

92

0.
07

92

0.
03

35

0.
00

65

0.
00

05

0.
01

49

0.
03

33

0.
05

23

0.
05

41

0.
03

40

0.
01

17

0.
00

20

0.
00

01

[F
(c

j;p
) 

- 
F

(c
j-1

;p
)]

P
R

IO
R

 (
av

er
ag

es
) 

fo
r 

co
lu

m
n

s 
7 

th
ru

 1
4 

ar
e 

w
ei

g
h

te
d

 b
y 

p
ro

b
ab

ili
ti

es
 in

 c
o

lu
m

n
 (

5)
.

P
O

S
T

E
R

IO
R

 (
av

er
ag

es
) 

fo
r 

co
lu

m
n

s 
7 

th
ru

 1
4 

ar
e 

w
ei

g
h

te
d

 b
y 

co
lu

m
n

 (
27

).

Ex
hi

bi
t 

6.
3.

 P
os

te
ri

or
 s

ev
er

ity
 d

is
tr

ib
ut

io
n



A Bayesian Approach to Excess of Loss Pure Premium Rating

VOLUME 13/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 69

lying frequency/parameter) than does the experience 
estimate. An experience approach is more respon-
sive to the reported claims in the layer and is thus 
more responsive to random variation. Exhibit 4.3 
shows that only 1 claim has been reported at the  
5 ë 5 layer, while the true underlying frequency is  
2.78 claims. Thus, experience rating is too respon-
sive to the reported claim counts. Where reported 
claims are higher than the underlying expected 
reported claims, experience rating tends to produce 
an estimate that is too high. Where reported claims 
are lower than the underlying expected reported 
claims, experience rating tends to produce an esti-
mate that is too low. A Bayesian approach takes into 
account experience in all layers and does not over-
react to random variation to the degree that experi-
ence rating does.

8. Bayesian estimates versus MLE 
and experience estimates

Exhibit 8.1 displays an extract of Bayesian, MLE,  
and experience fits (estimates) for 200 sets of 
simulated data; 200 is enough simulations to be an 
effective illustration of expected results. The MLE 
approach utilizes parameters as estimated by the 
methods discussed above: specifically, the adjusted 
likelihood function, as in equation (3), and the MLE 
estimate for the ground-up loss ratio, as shown in sec-
tion 5. The calculations for simulation 1 can be found 
in appendix A. We use estimated emergence patterns 
for the experience estimates.4 For ease of exposi-
tion, only the top three layers for each approach are 
shown. Columns (1) through (3) are Bayesian claim 
count estimates, columns (4) through (6) are MLE 
estimates, and columns (6) through (9) are experience 
estimates. Each set of claim count estimates relies on 

7. The ground-up loss ratio  
(mean of the posterior loss  
ratio distribution)

As described in section 5, an MLE estimate for 
the ground-up loss ratio is derived for each curve. 
We can view these estimates as a set of priors, all 
initially receiving equal weight. As with the severity 
distribution, the likelihood of each MLE estimate 
depends on two expressions. The first expression 
can be found on line (21) of Exhibit 5.1. However, 
instead of transforming the likelihood to a negative 
log-likelihood, we will rely directly upon the like-
lihood function. To convert the 43.1159 negative 
log-likelihood found in Exhibit 5.1, we change sign 
and exponentiate: e−43.1159 = 1.884E – 19. The second 
expression is described below.

The eight frequency distributions, one for each 
layer, are a function of the MLE. As with a severity  
distribution, a frequency distribution that may be 
a good candidate for the excess frequency may not 
be a good candidate for the underlying ground-up 
frequency. Again, if the MLE is significantly differ-
ent than the ELR, the MLE is not a good candidate 
for the underlying frequency distribution. Whereas 
process risk should be recognized when identify-
ing which severity curves could potentially produce 
the observed data, the expected process risk under-
lying each curve should not be reflected when cal-
culating the likelihood of the MLE given the ELR  
and the surrounding uncertainty (i.e., the parameter 
uncertainty). Our second expression reflects only 
this parameter uncertainty. As described above, we 
assume an industry loss ratio of 100% with individual  
risks lognormally distributed and σ = 40%.

Exhibit 7.1 displays the calculation of the ground-up 
loss ratio, which is a weighted average over all MLEs. 
In this example, the underlying, or ACTUAL, loss ratio 
is 133.4%, while the posterior loss ratio is 146.1%.

Exhibit 7.2 ties together the posterior severity dis-
tribution in Exhibit 6.3 with the mean of the poste-
rior loss ratio distribution in Exhibit 7.1 to arrive at 
Bayesian claim count estimates. We can see that the 
Bayesian count better mirrors ACTUAL (the under-

4For layers without any claims reported over the entire experience period, 
we use the emergence pattern of the layer immediately below. However, 
for experience rating purposes, this method would overstate the expected 
claim counts in higher layers. In these instances, the ratio of probability 
in the higher layer to that in the lower layer is applied to the expected 
claim counts in the lower layer. We use the probabilities associated with 
the posterior severity distribution.
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Exhibit 7.1. Mean of the posterior loss ratio distribution
(3)

Likelihood of

MLE given

ELR & Parameter Risk

1.009

0.886

0.718

0.519

0.321

0.162

0.063

0.018

1.029

0.897

0.718

0.512

0.313

0.156

0.060

0.017

1.015

0.872

0.687

0.481

0.289

0.142

0.054

0.015

=SUMPRODUCT{(1),(4)}

*: Likelihood=LOGNORM.DIST(MLE, µ, σ, 0) where: µ = -.08, σ = .40%

Curve

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

POSTERIOR LR:

(1)

MLE

97.8%

106.0%

116.8%

131.0%

149.6%

174.2%

206.9%

250.5%

96.4%

105.3%

116.8%

131.5%

150.7%

175.6%

208.6%

252.4%

97.4%

106.9%

118.9%

134.1%

153.6%

178.8%

211.9%

255.7%

146.1%

(2)

Frequency 

Likelihood

Function

1.884E-19

1.552E-18

8.996E-18

3.473E-17

8.316E-17

1.128E-16

7.672E-17

2.216E-17

5.328E-19

3.381E-18

1.533E-17

4.705E-17

9.126E-17

1.024E-16

5.895E-17

1.481E-17

1.579E-18

6.957E-18

2.250E-17

5.070E-17

7.455E-17

6.565E-17

3.088E-17

6.623E-18

(4)

Posterior

weights

(2)x(3)/Σ(2)x(3)

0.001

0.006

0.027

0.074

0.110

0.075

0.020

0.002

0.002

0.012

0.045

0.099

0.117

0.066

0.015

0.001

0.007

0.025

0.063

0.100

0.089

0.038

0.007

0.000

the same estimated emergence pattern. We also show 
the underlying, Bayesian, and MLE loss ratios. The 
underlying loss ratio is the simulated loss ratio, while 
the Bayesian and MLE loss ratios are estimates.  
The last column, (13), is the underlying frequency for 
the $5M ë $5M layer for each simulated set of data. 
This is the parameter we are attempting to estimate.

The average of the Bayesian loss ratios shown in 
Exhibit 8.1 is 105.8%, while the underlying param-
eter for these 200 simulations is 98.6%. Some of this 
loss ratio bias is due to the choice of prior curves; 
however, the bias may also “force” expected counts 
to more closely mirror reported counts. It is diffi-
cult to come up with general rules for constructing 
prior severity distributions. Not only can the choice 

of curves reduce or increase bias, but it also affects 
variance. This trade-off should be tested in the devel-
opment of prior curves. MLE loss ratios exhibit less 
bias than Bayesian loss ratios, but their mean square 
error is significantly greater.

The “actual” number of claims for each layer is 
shown in column (13). “Actual” represents the underly-
ing parameter, not the actual simulated counts. Simu-
lation 1 represents estimates for the sample data. For 
each simulation, any deviation from “actual” is due 
to process risk. The goal of any model is to produce 
estimates that are both unbiased and have minimum 
variance. Exhibit 8.1 shows that the experience and 
MLE estimates tend to have slightly lower bias but 
much higher variance than the Bayesian estimates. 
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Exhibit 8.4 is a head-to-head comparison/ 
competition of all three approaches.

9. Summary and conclusions

XOL rating generally requires an exposure curve,  
a loss ratio, and a credibility procedure to weight expe-
rience and exposure estimates. In many instances, at 
least one and sometimes all three of these parameters 
are judgmentally selected. Just as experience or MLE 
estimates can overreact/overfit to random variation 
in the data, so can actuarial judgment. When we see 
higher-than-expected loss, we tend to pick conser-
vatively. When we see lower-than-expected loss, we 
are optimistic. The author believes that relying on 
judgment may produce results no more accurate, and 
possibly even less so, than the experience and MLE 
approaches presented in this paper. Another draw-
back of approaches that utilize too much judgment is 
that they are difficult to monitor or recalibrate.

This paper provides a Bayesian framework for 
XOL rating. There are many possible variations on 
the approach provided here, each providing possible 
advantages and/or disadvantages. These variations 
include the family of prior distributions, how the 
curves are calibrated, the number of layers utilized, 
and the introduction of credibility into the procedure. 
The approach taken here can be viewed as a starting 
point, or “Barnett approach.”

The author believes that a single set of prior sever-
ity distributions allows for the development of a 
model that could be monitored for performance and 
recalibrated over time (a technical price can be con-
structed and compared with actual results to poten-
tially recalibrate the model). Based on the volume of 
losses simulated in the exhibits above, in my opinion,  
it is preferable to develop a single set of prior sever-
ity distributions that fit well to a wide range of 
potential losses (severity distributions) and produce 
results similar to those above.5

It is worth noting that in some instances, actuaries 
will price higher layers by applying increased limit 
factors (ILFs) to lower layers, where there is more 
experience. In this case, Exhibit 8.1 suggests that 
pricing would be improved by applying the ILF to 
the Bayesian estimate for the lower layer. However, 
deciding which ILF to utilize still requires judgment, 
while a Bayesian framework is objective in nature.

Exhibits 8.2 and 8.3 are pricing exercises of the 
Bayesian framework contrasted against the experience 
and MLE approaches. We assume that an insured will 
select the lowest of the prices offered in the market. 
For the 200 simulations, we assume 0% expense and 
profit loads. For calculating pure premium, the expe-
rience approach utilizes experience frequency and the 
actual underlying severity. For the Bayesian approach, 
severity is a posterior weighted average of the individ-
ual severities for each curve. For the MLE approach, 
severity can be calculated directly. For contrasting 
the Bayesian and experience approaches, using actual 
severity for the experience rate is conservative. The 
simulations have been sorted in descending order of 
loss ratio and separated into five quintiles, allowing us 
to do some testing to determine whether the Bayesian 
model is picking up differences in loss ratio.

Based on the 200 simulations found in Exhibits 8.2  
and 8.3 (showing only the first 10 simulations), if a 
competitor were to use rates indicated by the experi-
ence and MLE approaches, it would write less busi-
ness at a significantly higher loss ratio. We can also 
see that the Bayesian approach does a reasonably 
good job of reflecting loss ratio differences. Recall 
that we assume an ELR of 100% with a parameter 
coefficient of variation of 40%. For risks with the 
highest loss ratios, the top 20%, the model estimate 
is 130.2%, while the actual is 128.9%. This should 
alleviate some concern regarding adverse selection. 
There are 40 simulations in each quintile. The profit 
or loss is the sum of all simulations in the quintile. 
The other statistics are averages for the quintile. We 
can see that the Bayesian loss ratio tracks the under-
lying loss ratio reasonably well, and that a Bayesian 
underwriting profit is produced for each quintile.

5 In my private work, I have done so. Promulgating prior severity distri-
butions here may be considered anticompetitive.
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Markov chain Monte Carlo (MCMC) models, actu-
aries can estimate the uncertainty associated with 
expected outcomes. It is the author’s hope that read-
ers can embed the Bayesian approach presented here 
within an MCMC framework.

On a final note, the technical price should be con-
sidered a lower bound. If a competitor’s price is sig-
nificantly above the technical price, one need only 
price below the competitor’s price to write the busi-
ness. In a head-to-head competition with experience 
rating, Bayesian profitability would be even more 
pronounced than shown in Exhibit 8.1.
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Readers may be tempted to develop separate sets 
of curves for different risks, or lines of business, so I 
offer a word of caution: try to develop an objective set 
of standards that clearly define under what circum-
stances each risk will be assigned to a set of curves. 
Otherwise, a technical price is difficult to moni-
tor and recalibration becomes problematic. Another 
issue with separate sets of curves is bias. Presumably, 
separate sets are developed to capture differences in 
severity potential. A risk that is not properly assigned 
could potentially lead to greater bias. However, if 
risks are properly assigned, we generally find an esti-
mate with lower mean square error.

It should be noted that biased low estimates can 
still be profitable relative to traditional pricing tech-
niques, suggesting that narrow priors with some bias 
are acceptable. However, this is a function of the rel-
ative variance. If a competitor can produce unbiased 
estimates with comparable variance, it is likely that 
the biased low portfolio will be unprofitable.

Even if the risk exposure is well known and an 
exposure curve is available, a Bayesian approach may 
be preferable if the exposure curve is not properly 
constructed. Improperly constructed curves may lead 
to bias in all business priced. A Bayesian approach 
could be preferable even when a properly constructed 
exposure curve is available. Recall that an exposure 
curve may be accurate for all risks in aggregate, but 
it is unlikely that all risks share the same underlying 
severity propensity.

The error statistics presented in this paper are a 
function of known underlying parameters. In prac-
tice, we do not know the underlying severity and loss 
ratio distributions. With the emergence of Bayesian 
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Appendix A. MLE estimates

µ̂ 9.328

σ̂ 2.484

Fit

cj-1 cj

100,000 135,000
135,000 185,000
185,000 250,000
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Exhibit A.1. MLE estimate: Lognormal parameters
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