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ABSTRACT

This paper demonstrates a Bayesian approach for estimating
loss costs associated with excess of loss reinsurance programs.
The main features of this approach are that (1) prior severity dis-
tributions are adjusted for historical emergence patterns under-
lying the experience data, (2) maximum likelihood estimation
1s used to estimate a ground-up loss ratio for each prior severity
distribution, (3) a posterior severity distribution is derived using
a Bayesian approach, and (4) a posterior ground-up loss ratio
is derived using a Bayesian approach. This paper illustrates a
simple implementation of the approach and tests the model by
simulating from known frequency and severity distributions
and fitting the model to the simulated “data.”
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1. Introduction

When pricing excess of loss (XOL) programs,
many reinsurance and large account pricing actu-
aries may rely on assumptions that are difficult to
support. This is particularly true when the actuary
is uncertain of the underlying exposure or of which
exposure curve(s) to use. An additional complication
arises when the reinsurer does not receive all indi-
vidual claims in the reinsurance submission, because
claims are typically reported only above some trun-
cation point. Finally, maximum likelihood estima-
tion (MLE) and, by extension, Bayesian analysis
is generally not amenable to modeling long-tailed
lines of business in which claims tend to develop
upward or downward over time. This paper attempts
to solve all of these problems within a single coher-
ent framework.

Meyers (2005) provides a Bayesian methodology
for estimating loss costs associated with high layers.
An introduction to the methodology can be found
as a solution to the COTOR Challenge. It’s been
many years in the making, but Meyers’ solution to
the COTOR Challenge was a primary motivation
for much of the work I have done here. Follow-
ing his solution to the COTOR Challenge, Meyers
offers solutions to address what he feels are two
serious shortcomings of the methodology: (1) the way
in which prior severity models were developed and
(2) the effect of settlement time on ultimate value.
These are major issues for which this paper offers
two more solutions. Finally, the framework presented
here includes a Bayesian estimate (the mean of the
posterior loss ratio distribution) for the ground-up
loss ratio. Actuarial literature is relatively absent any
discussion of Bayesian loss ratios for XOL rating.

Gelman (2006) distinguishes three categories of
priors: (1) prior distributions giving numerical infor-
mation that is crucial to estimation of the model—
such a prior would be a traditional informative prior,
which might come from a literature review or explic-
itly from an earlier data analysis; (2) prior distributions
that are not supplying any controversial information
but are strong enough to pull the data away from
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inappropriate inferences that are consistent with
the likelihood—this type of prior might be called a
weakly informative prior; and (3) prior distributions
that are uniform, or nearly so, and basically allow
the information from the likelihood to be interpreted
probabilistically—such priors are noninformative
priors or maybe, in some cases, weakly informative.
The approach taken here uses a weakly informative
prior for the prior severity distributions. The prior
loss ratio distribution is implied by the prior severity
distributions (as described in section 5).

When significant claim volume is available, accu-
rate severity distributions can be estimated by using
empirical methods, nonparametric statistics, or maxi-
mum likelihood methods (Klugman, Panjer, and
Willmot 2009). When little or no data is available,
actuaries may rely on an exposure curve. There are
numerous approaches for deciding upon an expo-
sure curve. For example, one can use an external
curve acquired from a statistical agency or an inter-
nal curve developed from a similar business line. In
the limiting case, where there is no data, the Bayesian
approach defaults to the average of the prior distribu-
tions. In such cases, with little or no data, it becomes
useful to calibrate prior severity distributions to agree
with the exposure curve selected for the underlying
insured. In such a case, we prefer an informative prior.
As the volume of claim data grows, it becomes less
critical for the average of the priors to agree with the
exposure curve selected for the underlying insured.
This paper does not assume that an exposure curve
underlying the insured risk is available. A Bayesian
approach is most useful when we are between the two
extremes of no data and a significant volume of data.
The posterior severity distribution can be viewed as a
nonlinear weighing of data and prior curves.

Prior to the application of the model, it will be
assumed that the premium is on level and losses have
been properly adjusted for trends and changes in
attachment points and limits. Improper adjustments
may lead to estimates with greater error.

Section 2 outlines how the severity distribution
and the likelihood function can be adjusted for age
of claim. This is accomplished through estimating
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claim count emergence patterns from various sizes of
loss triangles and applying these patterns directly to
the likelihood function. Section 3 examines 24 sever-
ity distributions used as priors for Bayesian analy-
sis purposes. Using “only” 24 curves is a relatively
simple implementation of the approach. The curves
are not meant to be prescriptive but are selected for
illustrative purposes.

Section 4 describes the assumptions and sample
data (one simulation) underlying the model. Section 5
describes the process of estimating an underly-
ing loss ratio for each curve using MLE. Section 6
describes the calculation of the posterior weight for
each curve. Section 7 describes a Bayesian approach
for estimating the ground-up loss ratio weighting
over all MLE estimates, also called the mean of the
posterior loss ratio distribution. Section 8 compares
Bayesian claim count estimates with experience and
MLE estimates for 200 sets of data (simulations).
Section 9 summarizes and concludes.

2. Adjusting the likelihood function

The likelihood function is the probability of
observing the specified data, given a hypothetical
value of the parameter. In the example presented
here, the data is the number of reported claims in each
layer and the hypothetical parameter is a hypothetical
severity distribution. The MLE estimate is the distri-
bution yielding the highest probability of obtaining
the observed reported claim counts, weighted over
all layers. However, in the case of liability business,
data is immature. Ultimate claim counts by layer will
generally not be the same as reported claim counts
by layer. In general, curves fitted to reported and to
ultimate claim counts utilizing MLE will not pro-
duce the same parameter estimates.

Reported claims may be available, but can we get
the severity distribution for ultimate claims? The
form of the likelihood function used in this paper
is based on grouped data. Let a range of possible
values be partitioned as ¢, < ¢, <. .. ¢, where ¢, is
the smallest possible value in the model (i.e., the trun-
cation point) and ¢, is the largest possible value (i.e.,
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the maximum policy limit). Let [F(c;0) — F(c;0)]
represent the proportion of ultimate claims in the band

¢ to c;

1> given the distribution F and parameter 6.

The grouped likelihood function is given by the
expression

L(9)=Hj[F(cj;e)—F(cjfl;e)]"/, M

where n; is the number of claims in the band. Note
that the proportion of claims for the reported data
will differ from ultimate claim counts by the emer-
gence pattern. In other words, the relative proportion
of claims reported in each band is the following:

% Reported x[F(cj;G)— F(cAH;G)]. (2)

For reported claims, the proportion of claims in each
band is

% Reported x[F(cj;G)—F(c.fl;O)]/

J

2., % Reported, x[F(c;:0)=F(c,:0)] (3
The denominator is simply a normalizing constant so
that the probabilities sum to unity.
The adjusted likelihood function for reported
claims is

L(8)= Hj{% Reported x[F(cj;G)— F(Cj_l;e)]/

Z‘]_% Reported x[F(Cj;e)— F(Cj—ﬁe)]}n/ :
(4)

Exhibit 2.1 illustrates one way we might simulate
reported claim counts from a lognormal distribution
with an underlying emergence pattern. Only 10 of
30,000 simulations are displayed. Column (2) repre-
sents an ultimate claim value. At any point in time,
the estimated claim value may be more, or less, than
the ultimate value. We are assuming an emergence
pattern as shown in column (9). Smaller claims, from
$0 to $100K, are assumed to be reported more quickly.
We assume that 90% of all claims less than $100K
have been reported and that of the largest claims, only
60% have been reported. It is common for reinsurers
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Exhibit 2.1. One way to simulate reported claim counts from a lognormal distribution with an underlying

emergence pattern

Actual
u 10.42
c: 2.12
(1) (2 3 4) ®) (6) @) ®) )
Emergence Random Reported Emergence
Simulation Rand() Loss Pattern Variable (1=Yes/0=No) Reported Cj-1 Cj Pattern
1 0.379 17,451 0.90 0.295 1 17,451 0 100,000 0.90
2 0.942 930,844 0.70 0.943 0 100,000 250,000 0.80
3 0.068 1,412 0.90 0.837 1 1,412 250,000 500,000 0.75
4 0.766 155,793 0.80 0.303 1 155,793 500,000 1,000,000 0.70
5 0.566 47,743 0.90 0.546 1 47,743 1,000,000 2,000,000 0.65
6 0.344 14,327 0.90 0.638 1 14,327 2,000,000 0.60
7 0.226 6,789 0.90 0.397 1 6,789
8 0.247 7,843 0.90 0.381 1 7,843 Maximum Policy Limit
9 0.763 152,775 0.80 0.955 0
10 0.967 1,656,936 0.65 0.939 0

to examine separately the incurred and paid claim
count triangles by size of loss. To convert ultimate
counts to reported counts, we first augment the emer-
gence pattern, shown in column (3). A unit-uniform
random variable is generated, shown in column (4).
If the random variable is less than the emergence pat-
tern [i.e., if column (4) < column (3)], the claim is
considered reported [column (5) = 1]. If the claim
is reported, it is shown in column (6). At this point,
roughly 90% of the claims less than $100K show up
as reported claims in column (6), while only 60% of
the claims from $2M to $4M show up as reported.

Exhibit 2.2 illustrates the application of equation (4)
to the reported claim counts simulated in Exhibit 2.1.
In practice, it is typical to minimize the negative log-
likelihood function, —In[L(8)] = %; n; In[(3)]. Mini-
mizing column (9) produces the parameters shown
in the upper left of the exhibit. We can see that the
fit is in close agreement with the underlying severity
parameters, or “actual.”

So what does this exercise tell us? It tells us that
if we have reported claim amounts (counts) and an
estimate of the emergence pattern, we can replicate
the parameters of the underlying severity distribu-
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tion, and we are well on our way to implementing a
Bayesian approach. Why not just use adjusted MLE
rather than a Bayesian approach? Because we usu-
ally don’t see 25,655 reported claims [the total of
column (8) in Exhibit 2.2]. Fewer claims leads to
greater parameter uncertainty underlying the MLE
estimates. For smaller portfolios, Bayesian estimates
utilizing the mean of the posterior distribution are
less impacted by random variation than are MLE
estimates. Krishnamurthy (2017) provides an illus-
tration of and explanation for this case. However,
the adjusted MLE does seem especially well suited
for pricing very large portfolios or creating exposure
curves for individual lines of business.

3. Prior distributions

For this paper, we implement just 24 severity dis-
tributions as priors. Exhibit 3.1 displays the param-
eters and some statistics for the 24 curves. The mean
of the prior distribution is an equal weighted aver-
age of the curves, labeled “PRIOR (AVG)” (the
excess severity is also weighted by the probability
of a claim’s exceeding the truncation point, $100K).
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Exhibit 2.2. Application of equation (4) to reported claim counts simulated in Exhibit 2.1

Fit (Estimate)
p 10.43 M ) @) (4) (%) (6) @) ®) )
6 2.12
layer Reported negative-
Emergence  F(c;.1;6) F(c;:6) probabilties (5)/ Claims  log likelihood
Cit G Pattern lower upper  F(c;8) - F(cp.1:6)  (4)x(1) constant In(6) n; -(7)*(8)

0 100,000 0.90 0.000 0.694 0.694 0.625 0.734 -0.309 18831 5823.933
100,000 250,000 0.80 0.694 0.826 0.132 0.106 0.124 -2.087 3187 6651.261
250,000 500,000 0.75 0.826 0.897 0.071 0.053 0.062 -2.773 1593 4416.801
500,000 1,000,000 0.70 0.897 0.944 0.047 0.033 0.039 -3.252 982 3193.341

1,000,000 2,000,000 0.65 0.944 0.973 0.028 0.018 0.021 -3.834 574 2205.323

2,000,000 (74,000,000 0.60 0.973 1.000 0.027 0.016 0.019 -3.947 488 1926.150

Maximum Policy Limit 1.000 1.000 25655 24216.808
Normalizing Constant Minimize this

“ACTUAL” denotes the statistics associated with
the lognormal curve in section 2. It should be noted
that statistics and probabilities for the prior curves
are net of any insurer attachment/limit profile.
These figures can be calculated easily in most expo-
sure rating models. For the implementation here,
I have selected lognormal curves for prior distribu-
tions. Although we may be unsure of the underlying
stochastic process, I have found that in most cases
this choice of prior produces a reasonable estimate
of the underlying severity distribution even when
the underlying process is not lognormal. However,
using priors that better match the distributional
form generally produces estimates with lower vari-
ance and bias. I suggest that readers identify the
most appropriate distribution underlying their data
and use priors that match that distribution. This
exposition uses expressions and calculations for
the lognormal distribution. MLE is one possible
approach for identifying the distribution. Given
the same number of parameters, one could select
the distribution that produces the greatest value
of the likelihood function.

How might prior severity distributions be con-
structed? Assume we are pricing a $5M excess $5M
layer on a per-occurrence basis and receive only
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claims above some truncation, say $100K.! To cali-
brate the curves as shown in Exhibit 2.2, and in gen-
eral, the following procedure can be utilized. Examine
the company’s exposure curves. What are the lowest
and highest probabilities indicated by the curves for
the highest layer, $5M x $5M? The prior severity
distributions should span the low and high probabili-
ties indicated by the curves. For the exposure curves
available to me, a range from 1% to 9% was suffi-
cient. These figures represent the proportion of claim
counts above $5M, given only claims above $100K.
Next, I've judgmentally selected three scale param-
eters: 9, 10, and 11. With the given scale parameters,
I use Excel’s solver to find the shape parameters to
match the target probabilities shown in Exhibit 3.1,
column (14). In practice, I suggest using more than
three scale parameters and extending the range of
probabilities beyond the highest and lowest indicated
by the exposure curves. Extending the ranges reduces
the bias that may result when rating an account that
tests the extremes of the prior severity curves.

'For reinsurance, it is uncommon to receive claims at such a low threshold
(though T have personally seen all claims for medical malpractice and
legal liability lines). However, for large account pricing, it is common to
receive all claims. The truncation here is for illustrative purposes only.
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4. Assumptions and “data”

The following discussion assumes an identical
severity distribution for each risk. This is an appropri-
ate assumption for testing the efficacy of the model.
The underlying ground-up loss ratio for each risk will
vary. Since each risk is of identical severity, the impact
of the loss ratio is felt through the frequency of claims.

In the example that follows, “data” will be the
result of one simulation, to which we fit the model.
We simulate an emergence pattern, a ground-up loss
ratio, and the size of claim(s). The Bayesian approach
will simultaneously fit both the severity distribution
and the ground-up loss ratio. We examine 10 years
of losses with the following additional assumptions:
a $6M premium is written each year, and the loss ratio
is drawn from a lognormal distribution with mean
100% and coefficient of variation 20.2% (¢ = .2).2
Size of loss is drawn from a lognormal distribution
with parameters as shown in Exhibit 2.1, @ = 10.42
and ¢ = 2.12. Maximum loss size (the policy limit)
is $10M. The expected annual number of ground-up
claims over all risks is 22.8 ($6M divided by an
expected severity of $262,713). However, for each
risk, the expected frequency varies as a function of
the underlying loss ratio. We assume that the reinsurer
receives only those claims above $100K (due to trun-
cation: T = $100K). Given this lognormal assump-
tion, roughly 6.9 claims per year are in excess of
$100K (69 claims over 10 years). Based on simulated
emergence patterns, roughly 78% of these claims are
reported. The percentage reported declines as the
size of loss increases. Frequency is simulated from
a negative binomial distribution with a variance-to-
mean ratio of 1 + ¢L, with ¢ =.01° and where L is the
expected number of ground-up claims.

Exhibit 4.1 displays the expected emergence pat-
tern for each of the layers (bands) of loss. The emer-
gence patterns are unknown parameters and are

2Since the underlying loss ratio is 100%, the premium in this example
is equal to the pure premium (i.e., the amount necessary to pay losses).
In my experience, ¢ = .01 is a reasonable estimate of ,“contagion.” The
model is robust to the choice of c.
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therefore estimated. This paper suggests an approach
to estimating these patterns, but that is not a goal
of the model. Losses are reported more quickly for
lower layers than for higher layers. The variation
around the expected pattern for each age is modeled
as lognormal with a sigma of 50%. After emergence
patterns are simulated for each age, they are scaled
so that the patterns add up to unity for each acci-
dent period. Exhibit 4.2 displays the reported claims,
ultimate claims, estimated emergence pattern, and
actual emergence pattern for the $3M x $2M layer.
Since each year has identical exposure, the incre-
mental claim count pattern can be calculated simply
as the incremental number of claims reported in the
lag period (the development period) divided by the
years of data for that age. For example, in the triangle
shown in Exhibit 4.2, one claim is reported from age
1 to age 2 (over accident periods 2007 through 2015).
This results in .111 claims expected to emerge from
age 1 to age 2 (1 claim over 9 years). For 10 years of
data, 5 claims have been reported to date, 7 ultimate
claims have been simulated, and we estimate 2.46
claims incurred but not reported (IBNR). The esti-
mated percentage reported for the $3M x $2M layer
is 67.1% (5/[5 + 2.46]). The 67.1% will be the $3M
X $2M contribution to adjust the 24 severity distri-
butions to a reported level. Exhibit 4.3 displays the
simulated loss ratio, reported claims, IBNR claims,
ultimate claims, and estimated emergence pattern
(percentage reported) for all the layers. The simulated
loss ratio is an unknown parameter, which the Bayes-
ian framework will estimate. The reported claims
and the ultimate claims are totals over 10 years. Col-
umn (4), “Ultimate,” represents an “experience” or
“emergence” estimate. The Bayesian estimate will be
compared with this estimate.

The adjustment of the severity distributions to
a reported basis from an ultimate basis is shown
in Exhibit 4.4. At the top left of the exhibit is the
emergence pattern, or percentage reported, in each
layer (see Exhibit 4.1). Examining layer probabilities
reveals that adjusting the distributions shifts some
probability from the higher-attaching layers to the
lower-attaching layers.
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Exhibit 4.1. Expected emergence patterns

Expected Emergence Patterns

Age Age Age Age Age Age Age Age Age Age
Layer 1 2 3 4 5 6 7 8 9 10

35,000 x 100,000 0.501 0.177 0.096 0.063 0.045 0.034 0.027 0.022 0.019 0.016
50,000 x 135,000  0.454 0.178 0.103 0.070 0.052 0.040 0.033 0.027 0.023 0.020
65,000 x 185,000  0.437 0.178 0.105 0.072 0.054 0.043 0.035 0.029 0.025 0.022
250,000 x 250,000 0.421 0.177 0.107 0.074 0.056 0.045 0.037 0.031 0.027 0.024
500,000 x 500,000  0.341 0.171 0.114 0.085 0.068 0.057 0.049 0.043 0.038 0.034
1,000,000 x 1,000,000  0.266 0.158 0.117 0.094 0.080 0.069 0.062 0.056 0.051 0.047
3,000,000 x 2,000,000  0.199 0.141 0.115 0.100 0.089 0.081 0.075 0.070 0.066 0.063
5,000,000 x 5,000,000 0.134 0.117 0.107 0.101 0.097 0.094 0.091 0.088 0.086 0.084

Exhibit 4.2. Reported claims, ultimate claims, estimated emergence pattern, and actual emergence
pattern, $3M x $2M layer

cumulative to date: 3,000,000 x 2,000,000 (1) @) (©) (4)
Reported IBNR Expected  Simulated
Year OLP age 1 age2 age3 age4 age5 age6 age7 age8 age9 agel10 to date Claims Ultimate Ultimate
2007 6,000,000 0 0 0 0 0 0 0 0 0 0 0 0.000 0.000 0
2008 6,000,000 0 1 1 1 1 2 2 2 2 2 0.000 2.000 2
2009 6,000,000 0 0 0 0 1 1 1 1 1 0.000 1.000 1
2010 6,000,000 0 0 0 1 1 1 1 1 0.000 1.000 1
2011 6,000,000 0 0 0 0 0 0 0 0.000 0.000 0
2012 6,000,000 0 0 0 0 0 0 0.200 0.200 0
2013 6,000,000 0 0 1 1 1 0.367 1.367 1
2014 6,000,000 0 0 0 0 0.510 0.510 0
2015 6,000,000 0 0 0 0.635 0.635 1
2016 6,000,000 0 0 0.746 0.746 1
Expected Incremental Emergence: 0.111  0.125 0.143 0.167 0.200 0.000 0.000 0.000  0.000 5 2.456 7.456 7
Expected Cumulative Emergence: 0.746 0.635 0.510 0.367 0.200 0.000 0.000 0.000 0.000

Estimated Emerged Claims: Total (1)/Total (3)  0.671
Actual Emerged Claims: Total (1)/Total (4)  0.714

Exhibit 4.3. Simulated loss ratio, reported claims, IBNR claims, ultimate claims,
and estimated emergence pattern, all layers

Simulated Loss Ratio:  133.4%

(1 @) 3) ) (5) ®)
Percentage
Ultimate, or Reported, or
“Experience “Emergence  Underlying
Estimate” Pattern” Frequency[Parameter]
Layer Reported IBNR (2)+(3) (2)/(4) “ACTUAL”
35,000 x 100,000 i 1.98 18.98 89.6% 14.48
50,000 x135,000 13 1.76 14.76 88.1% 13.82
65,000 x 185,000 10 1.57 11.57 86.4% 11.75
250,000 x 250,000 15 2.79 17.79 84.3% 21.46
500,000 x 500,000 9 2.08 11.08 81.2% 14.20
1,000,000 x 1,000,000 11 4.01 15.01 73.3% 8.45
3,000,000 x 2,000,000 5 2.46 7.46 67.1% 5.41
5,000,000 x 5,000,000 1 0.67 1.67 60.0% 2.78
Total: 81 17.32 98.32 82.4% 92.34
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5. MLE estimate for the ground-up
loss ratio

For each curve, we can calculate the probability
of a claim’s exceeding the truncation (T = $100K),
along with the ground-up and excess claim severities.
Given a ground-up loss ratio, it is possible to estimate
the ground-up claim count and the number of claims
in excess of a given truncation point. Recall that we
started our example (or analysis) with an estimate
of the total on-level premium for all years. Apply-
ing a loss ratio produces total loss, total ground-up
claim counts, and the number of claims above the
truncation.

Also for each curve, given a loss ratio, we can
estimate the expected number of claims in each
layer. Applying the emergence pattern (Exhibit 4.3)
to these counts gives us the expected number of
reported claims in each layer. We can assume a fre-
quency distribution for each layer and solve for the
loss ratio that maximizes the likelihood of observ-
ing the reported claim counts in each layer, given
the expected number of reported claims in each
layer. Under this framework, we can view the loss
ratio as a parameter of the frequency distribution.
For the ground-up claim counts, we assume a nega-
tive binomial distribution with a variance-to-mean
(VTM) ratio of 1 + cL, with ¢ = .01 and where L
is the number of ground-up claims as a function of
the MLE. The model is robust to the choice of c.
The maximum likelihood function is the product of
eight frequency distributions normalized for prob-
ability in each band; the probability in each band
can be found in Exhibit 4.3, columns (16) through
(23). Normalizing assures us that the total probabil-
ity summed over the eight frequency distributions
is 100%. Normalizing doesn’t affect the MLE for
each curve, but it does affect the relative likeli-
hood between curves, which in turn influences the
ground-up loss ratio (i.e., the mean of the posterior
loss ratio distribution) weighted over all curves
(more in section 7).

The VTM ratio generally declines as we move up
into successively higher layers. Patrik and Mashitz
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(1990) describe expressions that modify the ground-
up VTM ratio as we move into higher layers. We can
view the dispersion in the ground-up claim count as
the result of independent Poisson random variables,
each with a different underlying mean. We assume
the mean is gamma distributed, with parameters A
and B calibrated to produce the observed ground-
up claim count and VTM ratio. Expressions are as
follows:

Ground-up claim counts = A/B
VTM ratio = (1 + B)/B
Ground-up parameters are B=1/(VIM - 1)
A = (Ground-up counts) X (VITM — 1)

As we move into higher layers, Patrik and Mashitz
proceed to show that the scale parameter B — B/
(probability of attaching). The expression for the
VTM above gets updated as B gets transformed. The
probability of attaching is calculated directly from
the prior severity distribution.

Exhibit 5.1 takes us through the calculations for
curve #1 (see Exhibit 2.2 for parameters). The MLE
estimate shown on line (2), 97.8%, minimizes the
negative log-likelihood function on line (22). The
negative binomial density function on line (19) eval-
uates the probability of observing the actual number
of reported claims, given the number of expected
reported claims and the VIM ratio. The expected
number of claims is a function of the ground-up loss
ratio. An identical calculation is performed for each

curve.

6. Posterior weights for the
severity distribution

The severity likelihood function depends on two
expressions. The first expression is equation (4) above,
the adjusted likelihood function. The second expres-
sion will be described below.

It is quite common that only claims in excess of
some given truncation are submitted to a reinsurer. In
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many instances, a severity distribution that appears
to be a good candidate (fit) from an excess perspec-
tive may not be a good candidate from a ground-up
perspective. Why does this matter? Because in many
instances, curves that seem to fit well just above the
truncation point do not adequately capture the tail
of the underlying severity distribution. A curve that
fits well on an excess basis might imply a loss ratio
significantly or implausibly different than expected.
Therefore, we examine the MLE for the ground-up
loss ratio. If the MLE is significantly different than
the expected loss ratio (ELR), the curve is not a
good candidate for the underlying severity distribu-
tion. The ELR can be the result of a detailed anal-
ysis for the individual risk, or it can be the result
of an industry study. Given estimates of the ELR,
uncertainty surrounding the ELR, and the process
risk underlying the frequency and severity assump-
tions, we can calculate the likelihood of observing
the MLE. This is the second expression mentioned
above.

For our case study, we assume that ground-up tri-
angles are not available, and we utilize a mean indus-
try loss ratio of 100%, with individual risks varying
around this mean loss ratio. We will assume a log-
normal distribution with ¢ = 40%. Our estimate of
the dispersion around the ELR is considerably wider
than the underlying 20%. Again, we will assume the
MLE is lognormally distributed with mean 100%
and 6 = (.4? + process variance)?, where the pro-
cess variance is calculated assuming the underlying
ELR of 100%. For the likelihood, we calculate the
density of the MLE using the parameters above. For
this calculation, we use Excel’s built-in function
LOGNORM.DIST. Exhibit 6.1 takes us through the
calculation for curve #1. The calculation assumes
that the premium charged for excess losses mirrors
the ELR. A discussion of each term used to calcu-
late the process variance is beyond the scope of this
paper. However, analytical expressions are defined
in Exhibit 6.1. We use simulation to validate the pro-
cess variance.

Exhibit 6.2 displays the posterior weight for
each severity distribution. Columns (26) and (27)
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display ground-up weights and excess weights.
Equation (5) states the posterior weight as propor-
tional to the product of the probability of the data
given the model, also called the likelihood, and the
prior probability. Since prior weights are equal,
posterior weights are proportional to the likelihood
function.

Posterior {model |data } oc Probability { data|mo del}

X Prior{model} &)

Ground-up weights are necessary to calculate
ground-up statistics such as ground-up severity,
while excess weights are used to calculate excess
statistics. For informational purposes, the MLE for
each curve is shown in column (28). One can see
that the likelihood of the MLE, and thus the weights,
declines as the MLE deviates from the ELR. The
likelihood function in column (24) may potentially
create numerical underflow problems. One possible
way of handling this is by taking logarithms of each
term in the likelihood function, adding the absolute
value of the smallest log-likelihood value to each
log-likelihood value, exponentiating the results, and
then normalizing.

Exhibit 6.3 displays the posterior severity distri-
bution. To create Exhibit 6.3, we append columns
(26) and (27) from Exhibit 6.2 to Exhibit 2.2. The
last row of columns (7) through (14) of Exhibit 6.3
represents the posterior severity distribution, con-
ditioned on claims greater than the truncation. It
is important to note that given the statistics in the
last row of columns (3) through (6), and an estimate
for the ground-up loss ratio, claim count estimates
for the eight bands can be produced. We will refer to
these claim count estimates as Bayesian claim count
estimates, or Bayesian estimates. It is also instructive
to note that curve #12 produces the greatest likeli-
hood (posterior weight) of generating the observed
data. Looking back at Exhibit 2.2, we can see that
compared with the other curves, the parameters and
statistics for curve #12 are relatively close to the
underlying, or ACTUAL.
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7. The ground-up loss ratio
(mean of the posterior loss
ratio distribution)

As described in section 5, an MLE estimate for
the ground-up loss ratio is derived for each curve.
We can view these estimates as a set of priors, all
initially receiving equal weight. As with the severity
distribution, the likelihood of each MLE estimate
depends on two expressions. The first expression
can be found on line (21) of Exhibit 5.1. However,
instead of transforming the likelihood to a negative
log-likelihood, we will rely directly upon the like-
lihood function. To convert the 43.1159 negative
log-likelihood found in Exhibit 5.1, we change sign
and exponentiate: ¢=*!'% = 1 .884E — 19. The second
expression is described below.

The eight frequency distributions, one for each
layer, are a function of the MLE. As with a severity
distribution, a frequency distribution that may be
a good candidate for the excess frequency may not
be a good candidate for the underlying ground-up
frequency. Again, if the MLE is significantly differ-
ent than the ELR, the MLE is not a good candidate
for the underlying frequency distribution. Whereas
process risk should be recognized when identify-
ing which severity curves could potentially produce
the observed data, the expected process risk under-
lying each curve should not be reflected when cal-
culating the likelihood of the MLE given the ELR
and the surrounding uncertainty (i.e., the parameter
uncertainty). Our second expression reflects only
this parameter uncertainty. As described above, we
assume an industry loss ratio of 100% with individual
risks lognormally distributed and ¢ = 40%.

Exhibit 7.1 displays the calculation of the ground-up
loss ratio, which is a weighted average over all MLEs.
In this example, the underlying, or ACTUAL, loss ratio
is 133.4%, while the posterior loss ratio is 146.1%.

Exhibit 7.2 ties together the posterior severity dis-
tribution in Exhibit 6.3 with the mean of the poste-
rior loss ratio distribution in Exhibit 7.1 to arrive at
Bayesian claim count estimates. We can see that the
Bayesian count better mirrors ACTUAL (the under-
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lying frequency/parameter) than does the experience
estimate. An experience approach is more respon-
sive to the reported claims in the layer and is thus
more responsive to random variation. Exhibit 4.3
shows that only 1 claim has been reported at the
5 X 5 layer, while the true underlying frequency is
2.78 claims. Thus, experience rating is too respon-
sive to the reported claim counts. Where reported
claims are higher than the underlying expected
reported claims, experience rating tends to produce
an estimate that is too high. Where reported claims
are lower than the underlying expected reported
claims, experience rating tends to produce an esti-
mate that is too low. A Bayesian approach takes into
account experience in all layers and does not over-
react to random variation to the degree that experi-
ence rating does.

8. Bayesian estimates versus MLE
and experience estimates

Exhibit 8.1 displays an extract of Bayesian, MLE,
and experience fits (estimates) for 200 sets of
simulated data; 200 is enough simulations to be an
effective illustration of expected results. The MLE
approach utilizes parameters as estimated by the
methods discussed above: specifically, the adjusted
likelihood function, as in equation (3), and the MLE
estimate for the ground-up loss ratio, as shown in sec-
tion 5. The calculations for simulation 1 can be found
in appendix A. We use estimated emergence patterns
for the experience estimates.* For ease of exposi-
tion, only the top three layers for each approach are
shown. Columns (1) through (3) are Bayesian claim
count estimates, columns (4) through (6) are MLE
estimates, and columns (6) through (9) are experience
estimates. Each set of claim count estimates relies on

“For layers without any claims reported over the entire experience period,
we use the emergence pattern of the layer immediately below. However,
for experience rating purposes, this method would overstate the expected
claim counts in higher layers. In these instances, the ratio of probability
in the higher layer to that in the lower layer is applied to the expected
claim counts in the lower layer. We use the probabilities associated with
the posterior severity distribution.
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Exhibit 7.1. Mean of the posterior loss ratio distribution

Q) 3) 4
Frequency Likelihood of Posterior
Likelihood MLE given weights
Curve MLE Function ELR & Parameter Risk (2)x(3)/Z(2)x(3)
1 97.8% 1.884E-19 1.009 0.001
2 106.0% 1.552E-18 0.886 0.006
3 116.8% 8.996E-18 0.718 0.027
4 131.0% 3.473E-17 0.519 0.074
5 149.6% 8.316E-17 0.321 0.110
6 174.2% 1.128E-16 0.162 0.075
7 206.9% 7.672E-17 0.063 0.020
8 250.5% 2.216E-17 0.018 0.002
9 96.4% 5.328E-19 1.029 0.002
10 105.3% 3.381E-18 0.897 0.012
11 116.8% 1.533E-17 0.718 0.045
12 131.5% 4.705E-17 0.512 0.099
13 150.7% 9.126E-17 0.313 0.117
14 175.6% 1.024E-16 0.156 0.066
15 208.6% 5.895E-17 0.060 0.015
16 252.4% 1.481E-17 0.017 0.001
17 97.4% 1.579E-18 1.015 0.007
18 106.9% 6.957E-18 0.872 0.025
19 118.9% 2.250E-17 0.687 0.063
20 134.1% 5.070E-17 0.481 0.100
21 153.6% 7.455E-17 0.289 0.089
22 178.8% 6.565E-17 0.142 0.038
23 211.9% 3.088E-17 0.054 0.007
24 255.7% 6.623E-18 0.015 0.000
POSTERIOR LR: 146.1% =SUMPRODUCT{(1),(4)}
*: Likelihood=LOGNORM.DIST(MLE, yu, &, 0) where: u =-.08, ¢ = .40%

the same estimated emergence pattern. We also show
the underlying, Bayesian, and MLE loss ratios. The
underlying loss ratio is the simulated loss ratio, while
the Bayesian and MLE loss ratios are estimates.
The last column, (13), is the underlying frequency for
the $5M X $5M layer for each simulated set of data.
This is the parameter we are attempting to estimate.
The average of the Bayesian loss ratios shown in
Exhibit 8.1 is 105.8%, while the underlying param-
eter for these 200 simulations is 98.6%. Some of this
loss ratio bias is due to the choice of prior curves;
however, the bias may also “force” expected counts
to more closely mirror reported counts. It is diffi-
cult to come up with general rules for constructing
prior severity distributions. Not only can the choice

70 CASUALTY ACTUARIAL SOCIETY

of curves reduce or increase bias, but it also affects
variance. This trade-off should be tested in the devel-
opment of prior curves. MLE loss ratios exhibit less
bias than Bayesian loss ratios, but their mean square
error is significantly greater.

The “actual” number of claims for each layer is
shown in column (13). “Actual” represents the underly-
ing parameter, not the actual simulated counts. Simu-
lation 1 represents estimates for the sample data. For
each simulation, any deviation from “actual” is due
to process risk. The goal of any model is to produce
estimates that are both unbiased and have minimum
variance. Exhibit 8.1 shows that the experience and
MLE estimates tend to have slightly lower bias but
much higher variance than the Bayesian estimates.
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It is worth noting that in some instances, actuaries
will price higher layers by applying increased limit
factors (ILFs) to lower layers, where there is more
experience. In this case, Exhibit 8.1 suggests that
pricing would be improved by applying the ILF to
the Bayesian estimate for the lower layer. However,
deciding which ILF to utilize still requires judgment,
while a Bayesian framework is objective in nature.

Exhibits 8.2 and 8.3 are pricing exercises of the
Bayesian framework contrasted against the experience
and MLE approaches. We assume that an insured will
select the lowest of the prices offered in the market.
For the 200 simulations, we assume 0% expense and
profit loads. For calculating pure premium, the expe-
rience approach utilizes experience frequency and the
actual underlying severity. For the Bayesian approach,
severity is a posterior weighted average of the individ-
ual severities for each curve. For the MLE approach,
severity can be calculated directly. For contrasting
the Bayesian and experience approaches, using actual
severity for the experience rate is conservative. The
simulations have been sorted in descending order of
loss ratio and separated into five quintiles, allowing us
to do some testing to determine whether the Bayesian
model is picking up differences in loss ratio.

Based on the 200 simulations found in Exhibits 8.2
and 8.3 (showing only the first 10 simulations), if a
competitor were to use rates indicated by the experi-
ence and MLE approaches, it would write less busi-
ness at a significantly higher loss ratio. We can also
see that the Bayesian approach does a reasonably
good job of reflecting loss ratio differences. Recall
that we assume an ELR of 100% with a parameter
coefficient of variation of 40%. For risks with the
highest loss ratios, the top 20%, the model estimate
is 130.2%, while the actual is 128.9%. This should
alleviate some concern regarding adverse selection.
There are 40 simulations in each quintile. The profit
or loss is the sum of all simulations in the quintile.
The other statistics are averages for the quintile. We
can see that the Bayesian loss ratio tracks the under-
lying loss ratio reasonably well, and that a Bayesian
underwriting profit is produced for each quintile.

VOLUME 13/ISSUE 1

Exhibit 8.4 is a head-to-head comparison/
competition of all three approaches.

9. Summary and conclusions

XOL rating generally requires an exposure curve,
alossratio, and a credibility procedure to weight expe-
rience and exposure estimates. In many instances, at
least one and sometimes all three of these parameters
are judgmentally selected. Just as experience or MLE
estimates can overreact/overfit to random variation
in the data, so can actuarial judgment. When we see
higher-than-expected loss, we tend to pick conser-
vatively. When we see lower-than-expected loss, we
are optimistic. The author believes that relying on
judgment may produce results no more accurate, and
possibly even less so, than the experience and MLE
approaches presented in this paper. Another draw-
back of approaches that utilize too much judgment is
that they are difficult to monitor or recalibrate.

This paper provides a Bayesian framework for
XOL rating. There are many possible variations on
the approach provided here, each providing possible
advantages and/or disadvantages. These variations
include the family of prior distributions, how the
curves are calibrated, the number of layers utilized,
and the introduction of credibility into the procedure.
The approach taken here can be viewed as a starting
point, or “Barnett approach.”

The author believes that a single set of prior sever-
ity distributions allows for the development of a
model that could be monitored for performance and
recalibrated over time (a technical price can be con-
structed and compared with actual results to poten-
tially recalibrate the model). Based on the volume of
losses simulated in the exhibits above, in my opinion,
it is preferable to develop a single set of prior sever-
ity distributions that fit well to a wide range of
potential losses (severity distributions) and produce
results similar to those above.’

> In my private work, I have done so. Promulgating prior severity distri-
butions here may be considered anticompetitive.
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Readers may be tempted to develop separate sets
of curves for different risks, or lines of business, so |
offer a word of caution: try to develop an objective set
of standards that clearly define under what circum-
stances each risk will be assigned to a set of curves.
Otherwise, a technical price is difficult to moni-
tor and recalibration becomes problematic. Another
issue with separate sets of curves is bias. Presumably,
separate sets are developed to capture differences in
severity potential. A risk that is not properly assigned
could potentially lead to greater bias. However, if
risks are properly assigned, we generally find an esti-
mate with lower mean square error.

It should be noted that biased low estimates can
still be profitable relative to traditional pricing tech-
niques, suggesting that narrow priors with some bias
are acceptable. However, this is a function of the rel-
ative variance. If a competitor can produce unbiased
estimates with comparable variance, it is likely that
the biased low portfolio will be unprofitable.

Even if the risk exposure is well known and an
exposure curve is available, a Bayesian approach may
be preferable if the exposure curve is not properly
constructed. Improperly constructed curves may lead
to bias in all business priced. A Bayesian approach
could be preferable even when a properly constructed
exposure curve is available. Recall that an exposure
curve may be accurate for all risks in aggregate, but
it is unlikely that all risks share the same underlying
severity propensity.

The error statistics presented in this paper are a
function of known underlying parameters. In prac-
tice, we do not know the underlying severity and loss
ratio distributions. With the emergence of Bayesian

VOLUME 13/ISSUE 1

Markov chain Monte Carlo (MCMC) models, actu-
aries can estimate the uncertainty associated with
expected outcomes. It is the author’s hope that read-
ers can embed the Bayesian approach presented here
within an MCMC framework.

On a final note, the technical price should be con-
sidered a lower bound. If a competitor’s price is sig-
nificantly above the technical price, one need only
price below the competitor’s price to write the busi-
ness. In a head-to-head competition with experience
rating, Bayesian profitability would be even more
pronounced than shown in Exhibit 8.1.
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Appendix A. MLE estimates

Exhibit A.1. MLE estimate: Lognormal parameters

Fit M () (©) (4) (6) (6) @) ®) ©)
i 9.328
5 2.484
layer
probabilties Reported  negative-
Emergence  F(c;.1;0) F(c;;0)  [F(c;6) - F(c.1:0)) (5)/ Claims  log likelihood
Cju1 Cj Pattern lower upper  [1-F(100,000;6)]  (4)x(1) constant In(6) nj -(7)*(8)
100,000 135,000 0.896 0.810 0.841 0.1634 0.146 0.177 -1.731 17 29.421
135,000 185,000 0.881 0.841 0.870 0.1516 0.133 0.162 -1.823 13 23.696
185,000 250,000 0.864 0.870 0.894 0.1260 0.109 0.132 -2.026 10 20.260
250,000 500,000 0.843 0.894 0.937 0.2248 0.190 0.229 -1.472 15 22.082
500,000 1,000,000 0.812 0.937 0.965 0.1472 0.120 0.145 -1.933 9 17.398
1,000,000 2,000,000 0.733 0.965 0.981 0.0892 0.065 0.079 -2.537 11 27.902
2,000,000 5,000,000 0.671 0.981 0.993 0.0605 0.041 0.049 -3.015 5 15.073
5,000,000 10,000,000 0.600 0.993 1.000 0.0373 0.022 0.027 -3.610 1 3.610
Totals:  1.0000 0.826 1.000 81 159.442
constant
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