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A Comparison: Some Approximations 
for the Aggregate Claims Distribution
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ABSTRACT

Several approximations for the distribution of aggregate claims 

have been proposed in the literature. In this paper, we have 

developed a saddlepoint approximation for the aggregate claims 

distribution and compared it with some existing approximations, 

such as NP2, gamma, IG, and gamma-IG mixture. Numerical 

comparisons are made with the exact results, in terms of relative 

errors, for various combinations of claim count and claim size 

distributions. The saddlepoint approximation gives very satis-

factory accuracy, followed by gamma-IG mixture approximation 

in all the applications considered in this paper.
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Here, we have considered only four of them, which 
are NP2, gamma, IG, and gamma-IG mixture approx
imations. The NP2 approximation provided by Pesonen 
(1969) and the gamma approximation introduced 
by Bohman and Esscher (1963) are well known 
to the actuarial community. Chaubey et al. (1998) 
introduced IG and gamma-IG mixture approxima-
tions to aggregate claims distribution. They com-
pared these approximations with NP2 and gamma 
approximations for some choices of the distributions 
of claim counts and claim sizes. The authors stated  
that the gamma-IG mixture approximation uniformly 
improves the accuracy, especially in the tails. How-
ever, this approximation requires numerical evalua-
tion of incomplete gamma functions. Seri and Choirat 
(2015) have studied a number of approximations for 
compound Poisson processes only and discussed 
their findings. Alhejaili and Abd-Elfattah (2013) dis-
cussed the saddlepoint approximation, introduced 
by Lugannani and Rice (1980), for some stopped-
sum distributions, and noted that the approximation 
shows a great accuracy compared to exact distri-
bution. Recently, Thiagarajah (2017) has studied 
extensively the saddlepoint approximation to the tail 
probabilities of aggregate claims for various com-
binations of claim counts and claim severity distri-
butions. The author has compared the approximate 
tail probabilities with the exact probabilities, and 
concluded that the accuracy of this approxima-
tion is quite good in all applications considered in  
the paper.

The paper is organized as follows: In Section 2 
we present a brief description of five of the above 
approximations to the cumulative distribution func-
tion of aggregate claims. In Section 3, we compare 
the accuracy of these approximations numerically in 
terms of relative errors for various combinations of 
claim count and claim size distributions. The relative  
error is computed as (approximate probability – exact 
probability)/exact probability. If the exact probabil-
ities are not available analytically, we obtain them 
through simulations. In that case, we first generate a 
random number N from a claim count distribution, 

1.  Introduction

Aggregate claim distributions have been widely 
discussed in the actuarial literature. For example, 
see Heckman and Meyers (1983), Teugels (1985), 
Pentikäinen (1987), Papush et  al. (2001), Hardy 
(2004), and Reijnen et al. (2005). In the context of 
insurance theory, the aggregate claims can be viewed 
as a sum of individual claim amounts for a random 
number of claim counts over a fixed time-period. In 
other words, it can be represented as a sum (S) of 
individual claim amounts X1, X2, . . . , XN, where N is 
the random number of claim counts over a fixed time 
period. Conditional on N = n, the random variables 
X1, X2, . . . , XN are assumed to be positive, mutually 
independent, and identically distributed. It is also 
assumed that the common distribution of Xi’s is inde-
pendent of N. One can easily write the cumulative 
distribution function (c. d. f ) of aggregate claims 
random variable (S) as
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The computation of this compound distribution func-
tion or corresponding tail probability or probability 
density function is generally quite cumbersome. For  
most combinations of distributions of N and the Xi’s, 
the exact distribution of S is not available analyti-
cally, but the above distributional values may be 
obtained numerically. For discrete severity distribu-
tions, one often uses the well-known recursive method 
introduced by Panjer (1981) to evaluate the aggre-
gate claims distribution. For exponential severities, 
simple analytical results for exact probabilities can 
easily be obtained (Klugman et al. 2012). For other 
cases, the computation in (1.1) requires tedious 
numerical integrations. In this situation, one often 
prefers to use an approximate distribution to avoid 
the computational complexity of distributional values.  
Several approximations have been developed and 
studied by many authors in the actuarial literature.  
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and then generate N random values from a claim 
size distribution. The aggregate claim amount (S ) is 
taken as the sum of those N values. Each probability 
is based on one hundred thousand replications. The 
final section contains the conclusion.

2.  Approximations

In this section, we provide five approximations for 
the distribution of the aggregate claims. We need 
mean, variance, skewness, or kurtosis of the aggre-
gate claims distribution for these approximation 
methods. These quantities can easily be obtained from 
the cumulant generating function, which is the natural 
logarithm of the moment generating function. Let us 
denote the cumulant generating function (c.g.f ) of S 
as CS(t). Then, we can write the mean = µS = CS

(1)(0),  
the variance = sS

2 = µ2(s) = CS
(2)(0), the third central  

moment µ3(s) = CS
(3)(0), and the fourth central moment 

µ4(s) = CS
(4)(0) + 3(CS

(2)(0))2 . Now, we express the 

skewness as 
s

s
S

( )
( )
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3

2
3

 and the kurtosis as 

s

s
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4
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.

2.1.  NP2 approximation

Using the well-known central limit theorem, one 
can approximate the aggregate claims distribution by 
a normal distribution. This method works only for a 
large volume of risks. Pesonen (1969) provided the 
following expression, which is called normal power 
(NP2) approximation, as an adjustment to the normal 
approximation:
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where Z
x s
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σ

 and γS is the skewness of S. The  

µS and sS are the mean and the standard deviation 
of S. Pentikäinen (1977) claims that this approxima-
tion method gives very satisfactory results, provided 

that the skewness of the distribution of interest is 
very small.

2.2.  Gamma approximation

Bohman and Esscher (1963) discussed this 
approximation, which is based on incomplete gamma 
function. Here, the aggregate claims distribution  
is approximated by a simple gamma distribution. An  
improvement to the simple gamma distribution is 
referred to as the gamma approximation, which is 
given in (2.2).
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2 . Seal (1977) com-

mented that the NP2 method should be abandoned  
in favor of this gamma approximation. Gendron and 
Crépeau (1989) claimed that this approximation 
provides satisfactory results when the claim size 
distribution is inverse Gaussian. Pentikäinen (1977)  
stated that both NP2 and gamma approximations 
provide similar outcomes, and both are acceptable 
approximations when the skewness of the aggregate 
claims distribution is less than two.

2.3.  IG approximation

Chaubey et al. (1998) proposed this approximation, 
which was developed by matching the moments, as 
in the previous two methods. They approximated the 
random variable S by a shifted IG(m, b) distribu-
tion by matching the first three central moments. 
This means

CF x G x xm b( ) ( )≈ − , (2.3), 0

where G is the cumulative probability of the shifted IG 
distribution. The parameters m and b can be written as 
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2 , and x0 = CS
(1)(0) − m. 

The authors claim that the approximation is almost 
as good as the gamma approximation. 
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2.4.  Gamma-IG mixture approximation

Chaubey et al. (1998) also introduced this approx-
imation as a weighted average of gamma and IG 
approximations. The approximation was given as

CF x wCF x w CF x( ) ( ) ( )( )≈ + −1 , (2.4)1 2

where w S F

F F

=
κ − κ
κ − κ

2

1 2

, and k stands for kurtosis. This 

is an improvement of the accuracy of both gamma 
and IG approximations.

2.5.  Saddlepoint approximation

Lugannani and Rice (1980) introduced a method 
based on the saddlepoint technique, which can be 
applied to continuous and discrete distributions. It 
is a simple and accurate approximation for distri-
bution function, which avoids any integration. For 
continuous severity distributions of Xi’s, the saddle-
point approximation to the cumulative distribution 
function of S can be written as
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where F and j are the respective cumulative distri-
bution function and the probability density function 
of a standard normal random variable, µ is the mean 
of the distribution, w t tx C tS{ }( ) ( )= −ˆ sgn ˆ 2 ˆ ˆ , and  
u t C tS ( )= ( )ˆ ˆ ˆ2 . The saddlepoint t̂ = t̂(x) is the unique 
solution to the equation CS

(1)( t̂ ) = x. For more mathemat-
ical details of this approximation, we refer the readers 
to Lugannani and Rice (1980) and Daniels (1987).

3.  Some compound distributions

3.1.  Poisson-gamma distribution (k, `, p)

In this example, the number of claims has a Poisson  
distribution with parameter l, and the common 
severity distribution is gamma with parameters α 

and q. The cumulant generating function (c.g.f.) of S 
and its first derivative are as follows:

C t t tS [ ]( ) ( )= λ − θ − < θ−α1 1 , 1 (3.1)

C t tS ( ) ( )= λαθ − θ( ) ( )− α+1 . (3.2)1 1

Expression in (3.2) yields the saddlepoint t̂  as 
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1
. From (3.1), we obtain the first 

four moments which are given as µs = lαq; µ2(s) =  
lα(α + 1)q2; µ3(s) = lα(α + 1)(α + 2)q3; µ4(s) =  
lα(α + 1)[(α + 2)(α + 3) + 3lα(α + 1)]q4. Figures 1 
and 2 display the cumulative (CF) and the tail prob-
abilities (SF) for different parameter combinations. 
Figures 3 and 4 illustrate the relative errors for those 
combinations. For all cases, the approximation (2.5) 
gives excellent results, followed by gamma-IG mix-
ture approximation.

3.2.  Poisson-IG distribution (k, l, p)

In this example, the claim count random variable 
(N) follows a Poisson distribution with parameter l, 
and the common severity random variable (X ) has 
inverse Gaussian distribution with parameters µ and q, 
defined as in Klugman et al. (2012). The c.g.f of S 
and its first derivative are

C t v tS ( )( ) = λ θ
µ
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. The saddlepoint, t̂ = t̂(x), can 

be obtained by solving the following equation 
numerically:

v v x+ θ
µ

= θ
µ

−
λµ







ln

2
ln . (3.5)



Variance Advancing the Science of Risk

194	 CASUALTY ACTUARIAL SOCIETY	 VOLUME 13/ISSUE 2

Exact1
NP21
Gam1
IG1

saddle1
G_IG1

Exact2
NP22
Gam2
IG2

saddle2
G_IG2

Exact4
NP24
Gam4
IG4

saddle4
G_IG4

Exact3
NP23
Gam3
IG3

saddle3
G_IG3

CDF(x)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0 1 2 3 4 5 6 7 98 10 11 12 13 14
x

 λ = 2.5, α = 2.0, θ = 1.0

CDF(x)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0 1 2 3 4 5 6 7 98 10
x

 λ = 5.0, α = 0.8, θ = 1.0

CDF(x)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

2 3 4 5 6 7 98 10 11 12 13 14 15 16 17 18 19 20 21
x

 λ = 5.0, α = 2.0, θ = 1.0

CDF(x)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0 1 2 3 4 5 6 7
x

 λ = 2.5, α = 0.8, θ = 1.0

Figure 1.  CF: Poisson-gamma (k, `, p)

Figure 2.  SF: Poisson-gamma (k, `, p)
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Figure 2.  SF: Poisson-gamma (k, `, p) (Continued)
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Figure 3.  CF relative error: Poisson-gamma (k, `, p)
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imations given in (2.4) and (2.5) are seen to have 
remarkably small relative errors for all cases.

3.3.  Binomial-gamma distribution  
(m, q, `, p)

In this example, the number of claims random vari-
able follows a binomial distribution with parameters m  
and q. The common severity random variable has a  
gamma distribution with parameters α and q. The 
c.g.f. of S and its first derivative are given as

C t m q q t tS { }( ) ( )= − + − θ < θ−αln 1 1 , 1 (3.6)

C t mq
t

q q t
S ( ) ( )

( )
= αθ − θ

− + − θ






( )
−α−

−α
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Equation (3.3) yields the following quantities:
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Figures  5 and 6 present the cumulative and the  
tail probabilities for various parameter choices of 
frequency and severity distributions. Figures 7 and 8  
display the relative errors for those cases. The approx-
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Figure 4.  SF Relative error: Poisson-gamma (k, `, p)
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Figure 6.  SF: Poisson-IG (k, l, p)
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Figure 6.  SF: Poisson-IG (k, l, p) (Continued)

Figure 7.  CF relative error: Poisson-IG (k, l, p)

0 1 2 3 4 5 6 7 98
x

SF(x)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

2 30 1 4 5 6 7 98
x

λ = 5, µ = 0.8, θ = 2

Exact4
NP24
Gam4
IG4

saddle4
G_IG4

SF(x)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

λ = 5, µ = 0.4, θ = 1.45

Exact3
NP23
Gam3
IG3

saddle3
G_IG3



A Comparison: Some Approximations for the Aggregate Claims Distribution

VOLUME 13/ISSUE 2	 CASUALTY ACTUARIAL SOCIETY	 199

where d1 = (α + 1)(α + 2) – 3α(α + 1)q and d2 =  
(α + 1){(α + 2)(α + 3) – α(7α + 11)q + 12 α2q2}. 
Figures 9 and 10 present the cumulative and the tail 
probabilities for various choices of parameter values. 
Figures 11 and 12 depict the relative errors for those 
combinations. The outcomes are the same as in the 
previous applications. When α = 1, the above dis-
tribution modifies to binomial exponential (m, q, q). 
The c.g.f. of S and its derivative reduce to
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The saddlepoint, t̂  = t̂ (x), can be obtained numeri-
cally from
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The required moments obtained from (3.6) are as 
follows:
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Figure 8.  SF Relative error: Poisson-IG (k, l, p)
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Figure 10.  SF: Binomial gamma (m, q, `, p)
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Figure 10.  SF: Binomial gamma (m, q, `, p) (Continued)
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The saddlepoint equation leads to the explicit solution
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The analytical expression for the cumulative prob-
ability of S, which can easily be obtained from 
(1.1), is
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Cumulative and tail probabilities, along with the 
relative errors of the approximations, are presented 
in Figures  13 and 14. The exact probabilities are 
obtained from (3.12). As can be seen in the previous 
examples, the results in Figures 13 and 14 indicate 
that the saddlepoint approximation gives very satis-
factory accuracy.

3.4.  NB-exponential distribution (r, a, p)

In this example, frequency distribution is nega-
tive binomial with parameters r and β, and the 
common severity distribution is exponential with 
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Figure 14.  SF and relative errors: binomial exponential (m, q, p)
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Figures 15 and 16 present the comparison of all five 
approximations. The exact probability is computed 
based on the analytical expression given in (3.16). 
The outcomes in Figures 15 and 16 reveal that the 
approximation given in (2.5) outperforms the other 
four, followed by the gamma-IG mixture approxi-
mation provided in (2.4). Corresponding results  
for geometric-exponential distribution (β, q) can 
be obtained by letting r = 1.

4.  Conclusions

The purpose of this paper is to compare the accu-
racy of the saddlepoint approximation, introduced by 
Lugannani and Rice (1980), with four other approxi-
mations to the distribution of aggregate claims. The 
approximate cumulative probabilities and tail prob-
abilities have been computed for several compound 
distributions, and are compared with the exact results 
in terms of relative errors. Based on the results in 
Figures 1–16, it is clear that the saddlepoint approxi-
mation gives very satisfactory accuracy, followed 
by the gamma-IG mixture approximation in all of 
the examples considered. The gamma and the IG 
approximations behave in a similar manner. The NP2 
approximations consistently produce higher relative 
errors compared to the other four. Suppose claim 
amounts distribution is gamma or inverse Gaussian. 
The saddlepoint approximation is simple and easy to 

parameter q. The c.g.f. of S and its first derivative 
can be written as
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Equation (3.14) yields an explicit saddlepoint solution:
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Equation (3.13) yields the following moments:
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The following analytical expression for the cumula-
tive probability can be obtained from (1.1):
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Figure 14.  SF and relative errors: binomial exponential (m, q, p) (Continued)
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Figure 16.  SF and relative errors: NB-exponential (r, a, p)
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compute with great accuracy, requiring only the first 
three derivatives of the cumulant generating function.
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