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Interplay between Epidemiology and Actuarial Modeling 

Runhuan Feng, Ph.D., FSA, CERA; Longhao Jin, MS;  

and Sooie-Hoe Loke, Ph.D. 

________________________________________________________________________ 

Abstract 
In an era where rapidly evolving situations is the new normal, collaboration between multiple disciplines offers a 
concerted effort and provides a comprehensive perspective in tackling problems and challenges. In this essay, we 
illustrate various modeling tools and key ideas used in epidemiology that can be applied to the insurance framework. 
Specifically, we give an overview of the compartmental models, network models, and agent-based models, and 
discuss their applications to epidemic and cyber insurance coverages.  
 
Keywords. Compartmental model, network models, agent-based models, epidemic, reserve level, cyber insurance 

             

1. INTRODUCTION 

The actuarial profession is constantly evolving. The age of big data has prompted actuaries to learn 

and apply the state-of-the-art predictive analytics methods and machine learning techniques from non-

traditional fields. The current COVID-19 pandemic has changed the world in many ways, and in the 

insurance industry, has prompted us to think about the challenges posed in the profession and ways 

to address these problems.  

Written from an academic perspective, the goal of this essay is to discuss several modeling tools 

from epidemiology and how they can be applied to an insurance setting. Rather than reinventing the 

wheel, actuarial researchers and practitioners could take advantage of a wide variety of epidemic 

models developed in the medical literature to estimate the evolution of mortality and morbidity rates 

during a pandemic. We believe that many of these models can be easily adapted for actuarial 

applications. As both actuaries and epidemiologists share a common interest in using advanced 

mathematical tools to model risk, we hope that this essay motivates actuarial researchers to utilize 

these models as building blocks to study insurance coverages targeting infectious diseases. 

In the following sections, we present three distinct levels of modeling in epidemiology and describe 

their applications to insurance modeling. We begin with widely used compartmental models, including 

both deterministic and stochastic versions. This first level of modeling assumes homogeneous mixing, 

that is, everyone in the population is equally likely to be susceptible and infectious regardless of age, 

sex, social structure, etc. The next level of modeling is called contact network models, where the 

individuals are connected by links to describe interactions between them. Finally, we discuss agent-

based models which are microscopic models used to simulate real-world complex patterns. Within 

each model, we provide a list of references in epidemiology as well as in actuarial science. 
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Infected Susceptible Removed 

2. COMPARTMENTAL MODELS 

Consider a population of size N(t) which is indexed by time t. The basic framework of 

compartmental models is to classify the entire population into several distinct compartments or 

categories. We illustrate this idea via the well-known SIR model based on the seminal work of 

Kermack and McKendrick (1927). Consider the following three compartments: Susceptible, Infected, 

and Removed. There are many variations of the SIR model, so in what follows we lay out the 

assumptions for the most basic SIR model. First, there are no births or immigration, which implies 

that N(t) = N , and the population mixes homogeneously. Second, there is an infection rate β and a 

recovery rate α. In other words, 1/β is the average time between contacts and 1/α is the average time 

until removal. Finally, once recovered (or removed), an individual is immune and can no longer spread 

the disease. The following figure summarizes some of the assumptions in the model: 

    β                                                 α 

 

This gives rise to the following system of differential equations: 

S’(t) = – β S(t) I(t) (2.1) 
I’(t) = β S(t) I(t)  – α I(t) (2.2) 

where S(t) and I(t) are the number of susceptible and infected individuals, respectively. The number 

of removed individuals is thus N – S(t) – I(t). 

A main concern in epidemiology modeling is whether a disease will spread upon its introduction. 

Observe from (2.2) that the disease will spread (i.e., I’ (t) is positive) if βS(t) – α > 0 and the disease 

will die out if βS(t) – α < 0. This motivates the relevance of a key quantity called the effective (or 

general) reproductive number, given by Rt = βS(t)/α, which represents the average number of 

secondary infections due to a single infectious individual at a given time t. It is also worth noting that 

β/α is the average number of contacts by an infected person with others before removal. When t = 0, 

R0 (read as R-naught) is known as the basic reproduction number, which is a common measure used 

to determine if a disease will spread out during the early phase of the outbreak. If R0 > 1, the disease 

will start to spread, but not if R0 < 1.  Zhao et al. (2020) gave a preliminary estimate of R0 of the 

coronavirus to be between 2.24 and 3.58. 

More details regarding the SIR model as well as other compartmental models like SIS (Susceptible-

Infected-Susceptible) and SEIR (Susceptible-Exposed-Infected-Removed) can be found in classic 

monographs such as Anderson and May (1992), Brauer and Castillo-Chavez (2012), and Diekmann et 

al. (2012). For a more recent account of developments in mathematical epidemiology, see Brauer 

(2017). The aforementioned monographs also discussed heterogeneous mixing models (incorporating 
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age, social structure, etc.) as well as cross-population models. 

2.1 Insurance Application 

Using the basic SIR model, Feng and Garrido (2011) proposed several insurance policies and 

models to quantify infection risk using actuarial methodologies. For example, susceptible individuals 

pay premiums at a constant rate π and once infected, the insurer will pay hospitalization benefits, say 

at a constant rate of 1. For this particular policy, the insurer’s reserve level is 

V(π ,t)= π ∫ 𝑠(𝑥)𝑑𝑥
𝑡

0
− ∫ 𝑖(𝑥)𝑑𝑥

𝑡

0
, (2.3) 

where s(t) = S(t)/N and i(t) = I(t)/N. In analyzing the reserve, there are four possible shapes of graph 

(as a function of time) and it was recently discovered that these shapes are closely linked to the 

effective reproduction number, Rt, as summarized in the following table: 

Shape of V(π,t) Interval for values of π 

Increasing concave At least (1/RT) – 1 

Increasing concave-then-convex Between (1/Rtm) – 1 and  (1/RT) – 1 

Nonmonotonic concave-then-convex Between (1/R0) – 1 and  (1/Rtm) – 1 

Nonmonotonic convex Between 0 and (1/R0) – 1 

 

Here, T is the time of the disease-free state (i.e., I(T ) = 0) and the exact expression of Rtm is 

provided in Feng and Garrido (2011). It is interesting to note that a related quantity from the table, 

namely 1 – 1/R0, is called the herd immunity threshold (see Fine et al. (2011)). 

This  deterministic  insurance  model  was  later  extended  to  a  stochastic  one  by Lefèvre et  al.  

(2017), which provided many elegant results on integral functionals using martingale arguments.  The 

work of Lefèvre et al.  (2017)  in  stochastic  SIR  insurance  model  has since  opened  the  door  to  

many  classical  problems  in probability.  Lefèvre and Picard (2018a) generalized the SIR  model  to  

a  controlled  epidemic  model,  where  the infectious  will  be  isolated  by  health  organizations  to 

ease  the  severity  of  the  disease  and  studied  the  representation  of  epidemic  outcomes  and  path  

integrals in  terms  of  pseudo-polynomials. Lefèvre and Simon (2018) considered cross-infection 

between two linked populations. A general approach to study Laplace transforms of these integral 

functionals was developed by Lefèvre and Picard (2018b). More recently, Lefèvre and Simon (2019) 

proposed a general block-structured Markov processes for epidemic modeling. For a thorough 

discussion of stochastic epidemic models and methods for their statistical analysis, see Andersson and 

Britton (2012). 
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In terms of other deterministic insurance models, Perera (2017) considered the control strategy in 

the simple SIR model as well as the variation of the premium with respect to the model parameters. 

Nkeki and Ekhaguere (2020) constructed the SIDRS model and studied its insurance applications. 

Billard and Dayananda (2014b) and Billard and Dayananda (2014a) developed a multi-stage 

HIV/AIDS model considering non-disease death in each compartment, where the waiting time 

distribution is used to measure the total amount of time one individual holds in one state. Not only 

that premiums are defined by different insurance functions, but health-care cost adjustments are also 

included. Shemendyuk et al. (2019) investigated the deterministic and stochastic SIR models with 

multiple centers and migration fluxes. The optimal health-care premium is determined by considering 

different vaccine allocation strategies. Optimal resource allocation and contingency planning were also 

addressed in Chen et al. (2020). 

3. NETWORK MODELS 

To capture the interactions among individuals while still preserving some aspects of the 

compartmental models, one can use a network model. Using the language of graph theory, the 

individuals are known as vertices or nodes and are connected by edges or links, which indicate 

relationships between various vertices. Some common metrics used to describe a network include 

shortest path length, degree distribution, and clustering coefficient. Epidemiologists have a long 

history of using network models to study diseases. An extensive survey by Pastor-Satorras et al. (2015) 

describes various types of network models used in epidemiology and highlights recent major results 

in the field. While network-based models have desirable and complex properties that cannot be 

replicated by equation-based models, network models are computationally challenging and often result 

in high-dimensional data analysis (see Pellis et al. (2015)). For general study of the structure and 

dynamics of network models, as well as their applications in various disciplines, Boccaletti et al. (2006) 

and Newman (2003) are excellent reads. 

3.1 Risk Network and Cyber Insurance 

Böhme et al. (2017) provided a framework of cyber risk modeling and assessment. In contrast with 

the frequency and severity analysis of conventional risks, cyber risk is analyzed in the cybersecurity 

literature by a chain of causality from cyber risk factors such as threats, vulnerabilities, controls, and 

assets to financial losses. Each cyber incident is viewed as a threat acting on an objective’s 

vulnerabilities. Companies can place technical controls to remove or reduce vulnerabilities. An 

incident is turned into a loss when attacks hit assets. The contagion of cyber risk is characterized by a 

network model, under which each firm is represented by a node and all nodes are interconnected by 

physical and social links. An example of cyber risk dependency is the propagation of malware through 
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a network of interconnected computers. The specific dependence structure can be modeled by graph 

topology. Such topological models originated in epidemiological literature to model the transmission 

of infectious diseases and are extended in the context of cybersecurity to the spread of computer virus. 

The causality approach based on network models, which is well studied in the cybersecurity 

literature, is fundamentally different from the trend analysis based on historical claims data in the 

actuarial literature.  It has been argued in Böhme et al. (2017) that historical data  is  of  limited  use  

due  to  the  fast-changing  nature of  cyber  technology  development. Therefore, further research is 

needed to combine actuarial analysis with cybersecurity framework in cyber risk quantification and 

modeling. 

4. AGENT-BASED MODELS 

The decisions of one person in a group can vastly affect the final outcome of the whole group. 

Therefore, when it comes to a community-scale activity, it is important to consider the competing 

strategies among all individuals. For those scenarios, an agent-based model (ABM) performs 

exceptionally well. Formally, it is a data-driven, simulation-based model that captures individual (or 

agent) level actions and view the community as a complex adaptive system. Zhou (2013) pointed out 

that ABMs bring insight of how to model agent’s behavior, how to understand the learning process 

of an agent, and how to quantify the complex interactions among all the agents.  Palin et al. (2008) 

elaborated on the main features of ABMs, namely (i) there are finitely many types of agents following 

different rules, (ii) agents are allowed to learn, combine, and evolve during the process, (iii) there will 

be positive or negative feedback from the agents’ action, (iv) agents make contact with the 

environment and the environment will also be affected by the actions of the agents. As noted in Niu 

(2016), there are three types of ABMs, namely homogeneous ABM (where the agents are uniform and 

follow the same decision rules but have different parameters), heterogeneous ABM (where there are 

different types of agents communicating within the same environment), and agent-based queuing 

model (ABM that applies queuing theory). 

4.1 Insurance Application 

In order to make a comparison among insurance companies with similar business volume, Taylor 

(2008) built a dynamic model based on the model framework that each insurer is an agent. Moreover, 

applying advanced machine learning technique, Parodi (2012a, b) categorized the actuarial problems 

into different machine learning frameworks and applied computational intelligence methods to 

insurance business. 

In light of the current pandemic, we propose a possible case study using ABMs. Suppose the insurer 
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is interested in the number of confirmed and death cases in the United States for the coming fall. To 

model complex human behaviors and social phenomenon such as stay-at-home orders, social 

distancing, and mask wearing culture, ABMs are robust enough to incorporate these features. 

Historical data can be used to estimate the parameters in the ABM and subsequently one can simulate 

multiple scenarios based on these fitted parameters. Circling back to the insurance example in Section 

2.1, these results can then be used to analyze how much reserve the insurance company will need for 

future benefit payments and what is the fair premium amount for the policyholder to pay 

corresponding to each level of the reproduction number. 

5. CONCLUSIONS 

This essay highlights the interplay between actuarial science and epidemiology and provides 

literature review of recent results. The marriage of modeling techniques from the two areas may 

revolutionize the way we quantify and model epidemic insurance and the way we organize cyber 

insurance. We hope to point to new sources of inspiration for actuaries working in areas of risk 

modeling and assessment of dynamically evolving populations. We envision actuaries adding these 

epidemiological models and techniques into their growing toolkits for risk modeling and analysis. 
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Auto Insurance: Strategic Shift Required for Acquiring and 
Retaining the Right Customers in a Post COVID-19 World 

Swarnava Ghosh and Aditya 

 ____________________________________________________________________________________________  

Motivation. This paper was written in response to a ‘Call for Papers’ on COVID-19 
Method. This essay relies on external research and what we have experience in interacting with our 
insurance clients.  
Conclusions. Devising the best pricing strategies for customers will be critical for success particularly in 
regard to auto insurance premiums, and insurers will have to apply sharply focused customer segmentation in 
order to develop relevant auto insurance marketing strategies that resonate on an individual level in the post 
COVID world. 

Keywords. Pricing Models, Recovery, Macroeconomic Data, Segmentation 

 ____________________________________________________________________________________________  

The impact of the COVID-19 outbreak has been devastating for the global economy, and with 
many countries in extended lockdown, there has been a seismic shift in customer behavior and 
business operations. As of July 10, US auto insurers such as Allstate, Farmers Insurance, Geico, The 
Hartford, Liberty Mutual, Progressive, Nationwide, State Farm, and USAA are expecting to return 
$14 billion to policyholders via refunds, discounts, dividends and credits.[1] Auto Insurance market 
is likely to see significant changes to the current business models in the coming months, with 
significant impact on revenues across the industry such as decrease in premium volume, delay in 
payments without penalty, and change in valuation and loss-recognition systems.  

There are several factors at play contributing to a decline in revenues for the sector. The first is a 
sharp decline in automobile sales leading to a fall in number of new auto insurance policies. Vehicle 
sales in US for August’2020 declined close to 20% (YoY) whereas the total January-August 2020 
sales were down by 23%. [2] Insurance companies oversee a dramatic change in customer behavior. 
With partial or full loss of income, people will be more hesitant to spend, leading to a sharp decline 
in automobile sales and a reduction in the number of new insurance contracts.  

Secondly, with the world in lockdown and most offices adopting work from home policies, people 
are going out only for essentials. This has drastically reduced travel and automobile usage, For 
example, in the US, Cumulative Travel for 2020 changed by -14.5%.[3] 

Thirdly, the mandatory grace period provided by insurance regulators for the payment of premium 
installments, can lead to more defaults in payment. This has also in turn reduced the amount of 
premiums received for auto Insurance. For instance, in the US, the Washington Office of Insurance 
Commissioner has provided grace periods for nonpayment of premiums and waived the fees 
associated with non-payment of premiums.[4] 

To mitigate the impact of these revenue-reducing drivers, auto insurers need to make systematic 
changes in their current business strategy and adopt robust measures to optimize customer 
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experience, minimize losses from new business, and improve retention while maintaining 
profitability. Some key objectives that these measures should address are: 

• Defending and growing market share by retaining and acquiring customers 

• Offering superior customer service 

• Improving loss ratios  

• Lowering cost of acquisition and servicing 

Insurers can meet these objectives by following a four-step strategy driven by effective use of data 
and analytics across the value chain of the organization.  

  

Step1: Sourcing the Right Data 

It is critical to bring in the right data sources (both internal and external) so that insurers can execute 
the next 3 steps and make timely strategic decisions based on key recovery indicators. COVID-19-
specific insights can be extracted using internal data points like telematics data and driving behavior, 
customer interactions, and Mid Term Adjustments during the pandemic, and by categorizing 
customers into sub-groups like essential/non-essential workers. External data sources such as 
mobility data, macroeconomic indicators, consumer behavior data, business activity, and recovery 
trends can be used to enrich the existing models for better business insights.  

For instance, movement of people is highly correlated with vehicle usage, hence, mobility data can 
be a leading indicator of economic and business activity recovery. Some of the public sources which 
can be utilized for the same include Google Mobility Data, Apple Mobility Report etc. 

Similarly, since forecasts for major macroeconomic indicators are widely tracked, insurers can use 
them to predict how Auto Insurance premiums may behave over the years. Employment rate has 
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the highest correlation with Auto Insurance GWP, but it is a lagging indicator. Household 
Disposable Income mimics the GWP numbers very closely. 

Likewise, based on how businesses perceive the economic threat of the COVID-19 crisis, there will 
be a direct impact on the volume of exports and imports, which will in turn impact the auto 
insurance business as well. Therefore, the Business Confidence Index can be leveraged here as it has 
the highest correlation with auto insurance GWP and its behavior over the years has closely 
resembled GWP trends. 

Customer behavior and sentiment can be tracked using indexes like Consumer Confidence Index 
(CCI) and Consumer Price Index (CPI), which show the degree of optimism consumers feel 
surrounding the country’s economy. Analyzing consumer behavior and sentiment can help insurers 
price accordingly and improve loss recognition models. In particular, CCI is a good indicator to feed 
into pricing models as it has a strong correlation with GWP numbers and closely resembles 
consumer’s behavioral changes due to the pandemic. Other external indicators such as employment 
rate and household savings can also be used.  

Step 2: Segmenting the Customer Base 

In the post pandemic world, it is critical that insurers identify the right customers for their products 
to match the risk appetite and offer the best combination of channel, proposition, risk coverage, and 
customer experience. Insurers should be looking at their existing and prospective customer base and 
re-evaluating their target segments. It is essential to evaluate the needs and preferences of customers 
at each stage of their journey, and correlate these across marketing, sales & service, underwriting, 
policy administration and claims. 

The fundamentals of segmentation for auto insurance customers have not changed, but several 
parameters have now become key to the segmentation process in a post COVID-19 world. These 
key parameters will be governed by requirements for travel and vehicle usage, relative risk of 
infection and financial strength of certain groups of customers.  

With many people furloughed or out of jobs, employment status and type have become key 
categorical variables for segmentation. A distinction between essential versus non-essential workers 
has also become extremely critical with respect to future auto insurance requirements. As an 
example, customer segmentation using job category could look like: 

a. Increased Mobility – Frontline Workers (24%) 

b. Quick Return to Normal – Outdoor Activities (47%) 

c. Slow Recovery – Hospitality & Travel (10%) 

d. Work From Home – IT & Professional Services (19%) 

A combined financial stress score created for the financial stress of individuals can be another key 
indicator for segmentation. It can consider different parameters such as affluence in the area of 
home address, primary source of income, job profile, stability of the employment sector, previous 
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payment history (including any deferred payments during COVID19 crisis). This score can also help 
determine the propensity to buy add-on coverages and premium products.  

Lastly, age is also a critical segmentation parameter. Since the impact of the virus is quite 
disproportionate based on different age groups, certain age groups (mostly above 50) are expected to 
stay in isolation longer and hence will have significantly reduced demand for auto insurance, which 
will also impact claim scenarios. 

These new segmenting attributes could drive different marketing, servicing and pricing strategies for 
different groups of customers based on their incremental or reduced driving needs, propensity to 
buy different coverages and their unique risk factors. When using these attributes, one must be 
careful to avoid sensitive attributes in pricing models that might lead to discriminatory pricing. 
However, it is critical to align these segments to the right pricing strategy. A three-tier pricing 
strategy will align with most customer needs. This includes usage-based pricing, traditional pricing, 
and discounted pricing. 

1. Usage Based Pricing: A low fixed premium with a variable usage-based premium 
calculated every cycle. 

2. Traditional Pricing: The standard pricing strategy with a fixed premium for standard 
coverage allocated over the policy period. 

3. Discounted Pricing: A fixed premium pricing with a lower premium providing only basic 
coverage. 

Once a new customer segment is created, it is also important to perform price sensitivity analysis for 
each segment to position different products and coverages appropriately surrounding that sensitivity.  

Step 3: Projecting Recovery  

In the past, auto insurance premiums have shown strong correlation with a few macroeconomic 
indicators, business activities and customer indicators. Today, insurers must track these indicators in 
real time to project what the future holds in their road to recovery.  

The data can be used for projecting premiums, recovery trends, and market sentiments. For 
example, it has been seen that employment rates have a direct correlation to household spending 
and an indirect correlation to household savings - which further translates to auto sales and impacts 
mew auto insurance contracts. 

Additionally, due to changes in risk factors and the financial appetite, there will be a significant shift 
in the lifetime value of different customer segments. This will require an overlay of different 
behavioral and financial trends over existing CLTV models to make them more robust and dynamic 
so that they are able to capture COVID-19 related uncertainties.  

To increase CLTV, there will also be a shift towards a bundle approach rather than singular 
products. The bundle approach will streamline the process for customers as they can buy different 
policies from a single insurer.  
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Furthermore, customers from different segments will be impacted differently by COVID-19, and 
their risk appetites and financial outlooks will change. This shift will have a major impact on 
response and conversion models that have been built on historical data and which are becoming 
obsolete.  

Insurers will need to assess the impact of the new normal and incorporate new variables and data 
modeling practices. This will see inclusion of real time data, application of telematics and use of 
advanced Machine Learning techniques like Generative Adversarial Networks (GANs).  

Step 4: Creating a Targeted Offering 

In the long term, the behavioral and operational changes associated with the pandemic will impact 
not only the way fundamental risk assessment is done for technical pricing, but also the way retail 
price and premiums are determined by insurers. The size of the auto insurance market will likely 
contract, and insurers will be looking to defend and grow their market share. The industry will need 
to constantly innovate and come up with novel targeted offerings that can help acquire and retain 
the most profitable set of customers. 

The starting point of this will be a refreshment of pricing models. The frequency of claims is 
trending downwards in recent months, but the claims are more severe in nature; [5] which means 
that many loss cost models will require refreshing in order to incorporate the new scenarios. 
Therefore, personal line insurers will need to incorporate newer data points emerging from greater 
use of technology, including telematics and IOT devices. 

Additionally, while Machine Learning and AI have made significant progress in areas such as claims 
and marketing, adoption has been quite low in pricing due to challenges around definition and 
reinforcement of biases in machine learning models. Insurers are now able to capture significant 
amount of customer data which can be combined with advanced machine learning models to better 
evaluate customer risk profiles and provide customized prices to their customers. The current 
traditional GLM models can go only so far due to limited accuracy and prediction power. .This will 
help insurers reduce losses and improve customer retention.  

Pricing teams on the other hand will need to adopt a rapid experimentation approach for getting 
results faster, while also experimenting with different methodologies in an agile manner.  

In terms of refresh frequency, typically core pricing models are not refreshed frequently and only 
marginal changes are done. However, in a rapidly changing insurance landscape, it is imperative to 
increase the frequency of model refreshes. 

Also, for machine learning based pricing model deployment, it is critical to set up a flexible and 
scalable technology architecture that can ingest data and provide outputs in near real time in order to 
satisfy the complex requirements of personal lines insurers.  

The second major point is the new insurance offers/discounts that will be provided to the customer. 
This is vital because how insurance firms treat their customers now is likely to create a long-lasting 
perception in the market. Insurers that understand the plight of the people and implement fair and 
balanced reforms in their pricing and premium practices will be rewarded in the long run. However, 
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there are multiple methods of calculating and offering the discounts to the end customer. Some of 
the common methodologies are: 

• Flat Discounts  

• Flat Personalized Discounts  

• Premium Proportionate Discounts 

• Premium & Claim Proportionate Discounts 

Lastly, Insurers can take other proactive steps to create additional value for their customers, such as 
utilizing any spare capacity in their sales, service and claim contact centers to keep in touch with 
tenured and elderly customers in these difficult times to inquire about their well-being. Making the 
necessary changes in customer journeys to make them more streamlined and digital is also an 
additional value add. 

In conclusion, COVID-19 is unlike any challenge humanity has faced in the recent past, and the 
economic impact has been unprecedented. Like all sectors, insurance recognizes the need to be agile 
and to use new data to project recovery so that it can understand the behavioral and financial 
changes customers are experiencing. Devising the best pricing strategies for customers will be critical 
for success particularly in regard to auto insurance premiums, and insurers will have to apply sharply 
focused customer segmentation in order to develop relevant auto insurance marketing strategies that 
resonate on an individual level. 
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Everyone Can Assist in the Battle Against COVID-19: 
A CAS Member’s Experience 

Kwok Ching Ng 
 ___________________________________________________________________________________  

The author of this short essay is a member of the State of Vermont COVID-19 modeling team. The main 
purpose of this essay is to share the author’s experience serving in the team and to show how, with some initial 
investments in learning the basic domain knowledge, any actuary, or person with quantitative and/or critical 
thinking skills, can add value in the fight against COVID-19 or other pandemics that might arise in the future. 
The essay also describes the composition of the Vermont modeling team and what it does in assisting the 
Governor and his cabinet in making COVID-19 policy decisions. Opinions expressed in this essay are strictly the 
author’s. 

 ___________________________________________________________________________________  

THE VERMONT COVID-19 MODELING TEAM 

As of mid-October 2020, the State of Vermont arguably had the best track record amongst all 50 states 
since the beginning of the pandemic for the control and mitigation of COVID-19. It had the lowest COVID-
19 death rate, the lowest infection rate, and some of the lowest positivity rates amongst all 50 states. “This 
should be the model for the country, how you've done it," Dr. Anthony Fauci said in a recent video press 
conference that Vermont Governor Phil Scott held with the state’s media. Dr. Fauci also said that being a rural 
state does not automatically guarantee a better outcome (1) (2). In fact, we could all see how COVID-19 
proliferated in the Upper Midwest and other rural states in September and October. The credit for Vermont’s 
success can be attributed to the Governor and his staff, which early on decided to follow science and advice 
from State Health Commissioner Dr. Mark Levine, State Epidemiologist Dr. Patsy Kelso, and others including 
the faculty of the University of Vermont Medical School. The Governor held press conferences at least two 
times a week in which he and the heads of various state government agencies/departments informed the public 
of what had been happening and the reasons for imposing specific interventions, as well as reasons for 
subsequent relaxations. Most of all, Vermonters overwhelmingly trust their state government to make the right 
decisions and largely comply accordingly.  

Because all the state’s epidemiologists were more than fully occupied with their duties and could not spare 
time or resources to do COVID-19 modeling, the Commissioner of Financial Regulation, Mike Pieciak, a 
securities lawyer by training, was asked by the Governor to head up the COVID-19 modeling team in March. 
A few weeks later, the Deputy Commissioner of Insurance, Kevin Gaffney, who hired me six years before, 
recommended to Mike that I join his team (while retaining my existing duties). At that time, the only other 
member of the team was Isaac Dayno, who is a Harvard graduate trained in the liberal arts but with experience 
in organizing facilities for people with HIV or hepatitis, as well as experience in running political campaigns. 
As I soon learned, his skillset is important because messaging is a very important part of any public health 
campaign. A few weeks later, we hired a rising senior from Yale, Ryan Taggard, majoring in Mathematics and 
Data Science. Ryan’s Python programming skills, especially in data collection and graphics, quickly proved to 
be indispensable in making Mike’s weekly presentation to the public come “alive” – with supporting data from 
around the country. A few weeks after Ryan’s arrival, an epidemiologist, Mary-Kate Mohlman, finally joined 
our team on an as-available basis. Needless to say, having her assistance was a big win. Later still, we began to 
work with John Adams, the Director of Vermont Center for Geographic Information, to provide us with 
periodic mobility graphical analyses using SafeGraph mobile phone data. The resolution of SafeGraph’s data is 
an order of magnitude higher than those in Google Mobility Reports. 
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The roles and tasks of the modeling team evolved over time. From the start, Commissioner Pieciak sought 
advice from various reputable COVID-19 modeling teams around the country – including Columbia, 
Northeastern, IHME and Oliver Wyman, among others. All those modeling teams provide state by state 
projections of COVID-19 confirmed case counts and death counts with intervals of a few weeks to a few 
months. We would feature one or two modelers’ projections in the weekly press conference presentation, along 
with COVID-19 related Vermont data. Of particular importance were COVID-19 projections under various 
degrees of non-pharmacological intervention scenarios – such as closure of schools, child-care programs, 
restaurants, bars, gyms, salons and spas; compliance with Stay Home Stay Safe; and suspension of all in-person 
business operation, etc., for all businesses and not-for-profit entities.  

THE SIR MODEL 

Right from the start, I knew I had to acquire as much domain knowledge of epidemiology as quickly as 
possible. I began to read about SIR models – from basic introductions to dozens and dozens of journal papers 
in epidemiology. It soon became clear to me that all the COVID-19 non-pharmacological interventions that 
the country, and in fact the whole world, were considering using can be traced back to, or get their hints from, 
the SIR models.  

I learned that there are many infectious disease models; some are deterministic (SIR, SEIR), and some are 
stochastic. The most complex ones are network models. The most common one, the SIR model, has been 
around since the 1930s but still works amazingly well. Common graphical illustration of an epidemic from the 
beginning to the end based on a simple SIR framework looks like the following:  
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The model is a dynamic system governed by the following differential equations (5): 

 
where N is the population size of a closed population, β is the effective contact rate of the disease, γ is the 

decay rate of the disease, and S(t), I(t), and R(t), respectively, represent the number of susceptible, infectious, 
and removed (includes those recovered or dead) individuals in the population at time t.  

The effective contact rate β is determined by β = Ƭ x µ, where Ƭ is the number of exposures per unit of 
time, and µ is the probability of infection from each occasion of exposure. Clearly, non-pharmaceutical 
interventions such as social distancing, mask wearing, frequent hand washing, closure of businesses, closure of 
schools, quarantine, etc., are all efforts to either lower Ƭ, or µ, or both, thereby reducing β, which in turn lowers 
the rate of infection or disease transmission – according to the equation for dI/dt above.  

I have included some additional information about the SIR model in the Appendix of this essay. There are 
many journal articles on infectious disease modeling. For example, see (5) for the basic SIR model, (6) for an 
application of an SEIR model, (7) for an example of a Markovian stochastic SIR model, and (8) for a lengthy 
discussion of SIR Network models (not an easy reading, though).  

A NEW METHOD FOR ESTIMATING ACTIVE (INFECTIOUS) CASE 
COUNT  

At the early stage of the pandemic, measures of an epidemic’s reproduction number (commonly referred to 
as R0 and Rt) were of great interest to many people. I read papers on the subject and then requested the state’s 
COVID-19 Data Team (who are all epidemiologists) in the Vermont Health Department to provide me with 
“infector-infectee pairs” data. This information would allow me to create a “Serial Interval Distribution” – one 
of the input requirements for arriving at estimates of Rt. Basically, the data gives a collection of the number of 
days between symptom onset of a given infector and symptom onset of the person infected by that infector. 
That is, the data is a (surrogate) frequency distribution of the number of days required for an infector to pass 
the virus to an infectee - usually in a family setting or in the workplace. I was provided with 50 pairs (many 
journal articles use 25 to 40 pairs) and found that a two-parameter Gamma distribution provides a good fit to 
the data. It should be noted that epidemiologists tend to use Gamma or Lognormal for Serial Distributions. 
Weeks later I proposed to “off-label” use this distribution as the primary tool for measuring infectiousness by 
state and counties within a state, turning it into a critical tool for Vermont’s travel quarantine policy and for 
assessing how infectious Vermont’s neighboring states are at any point in time. 

During the middle of May, when the Northeast states’ infection rate began to improve, Vermont Governor 
Scott wanted to partially open Vermont to tourists from the Northeast. He and his cabinet, with consultation 
from the Health Department and Commissioner Pieciak, settled on a threshold of 400 “active cases” per million 
population. Residents of counties with active cases lower than that could travel to Vermont without quarantine. 
It was then up to the modeling team (us) to figure out how to calculate active case counts. This was not a trivial 
task. At the time, many states did not publish active cases by county. Even more concerning, we did not know 
how each state defines/computes active cases, as there was and still is no uniform standard. What we needed 
was a uniform measuring methodology to be applied to all states and all counties within states. Our own Health 
Department’s procedure is to consider an infected person “active” until 30 days after symptom onset, or sooner 
if the infected person was clinically determined to have “recovered.” In their modeling, Oliver Wyman, on the 
other hand, simply considers a person “active” during the 14-day period from onset. We were about to adopt 
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Oliver Wyman’s method, but the “Serial Interval Distribution” clearly tells us that an infected person is most 
infectious during the early days of symptom onset, becoming progressively less so. By the 10th day after onset, 
the person’s infectiousness becomes very low. Counting a person infected yesterday and someone who was 
infected 10 days ago both as “active,” is not a good measuring system for the purpose of differentiating degrees 
of infectiousness among counties. On the other hand, using the area under the Serial Interval Distribution as 
“a unit of life-time infectiousness” (or life-time viral load for that person’s COVID-19 epoch), a newly infected 
person would be carrying the highest amount of virus to be shed – 1.00 unit. A person infected 5 days ago 
would have significantly less “life-time viral load” remaining to be shed, say 0.4 unit. Hence one minus the 
cumulative distribution (1 - F(t)) of the Serial Interval Distribution (the fitted Gamma distribution) 
corresponding to the number of days (t) after a person’s symptom onset, gives us the life-time viral load unit 
remaining for that person’s COVID-19 epoch. As it turns out, this approach for measuring “active cases” had 
never been used anywhere before.  

Initially, this approach was met with some skepticism, as it should. However, people gradually began to see 
the merits of the approach. Later, we presented it to two professors at Columbia and Northeastern, respectively, 
and got concurrences from them. We also got very positive comments from public health modelers in 
Massachusetts. I also tested the methodology using an SIR simulation model in the public domain (SimInf), 
and found the two produced quite similar, but not exact, results in terms of number of infectious people 
remaining at successive points along the timeline. As I read more journal articles, I found that an even more 
theoretically correct distribution for our purpose would be the convolution of the Serial Interval Distribution 
and the incubation period distribution. But it has been said, perfect is the enemy of good. One week after I 
submitted the initial version of this essay to the CAS, we received an unexpected e-mail from Professor Ronald 
Lasky at Dartmouth College informing us that Dartmouth would like to use our approach for estimating active 
cases. It was gratifying to see our methodology being adopted by an institution such as Dartmouth. See links 
in the References section to the documentation of our methodology (3) and our weekly presentation (4). 

RANDOM TESTING NOT EFFECTIVE IN IDENTIFYING THE 
INFECTED BUT ASYMPTOMATIC  

Another “discovery” I made during the last several months was, while random COVID-19 surveillance 
testing could tell us the prevalence of COVID-19 infections in a geographic area, it has a very low expected 
positivity rate and therefore could be diverting limited resources away from the very important tasks of 
identifying infected individuals who are symptomatic for quarantine, and from the state to follow up with 
contact tracing. On the other hand, the positivity rate from testing symptomatic people for COVID-19 is almost 
always an order of magnitude higher than from performing surveillance testing on people with no symptoms, 
including asymptomatic individuals. This accidental “discovery” occurred when I was trying to help answer a 
critic of our active case estimation methodology. Using binomial approximation of Poisson, I concluded that:  

With a relatively low population infection rate, conducting random surveillance COVID-19 testing has very 
little chance of identifying infected individuals, symptomatic or not. In the case of Vermont, the 7,000 tests 
performed per week in July were expected to only identify approximately two infected individuals or less, per 
week. Clearly, that would not be an efficient use of COVID-19 testing resources if test kits are in short supply, 
or future supplies are highly uncertain.  

The main reason why Vermont had 30+ to 50+ positive cases identified per week in June to July was due 
to “self-selecting” or “self-selection” bias either because symptomatic individuals went to get tested/see a 
doctor, or contact tracing triggered the need for a test. 

This highlights the reality that while surveillance testing is useful for determining the prevalence of COVID-
19 in a state or a county, it offers very little help in identifying asymptomatic infected individuals for the purpose 
of stopping them from infecting others. This would still be true even if we increased total testing per week, say 
fivefold to 35,000, in Vermont. We will have to rely on other means to control spread by such individuals, such 
as requiring everyone to wear face masks because, by definition, we cannot tell that a person is infected if the 
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person happens to be of the asymptomatic type. Only testing can tell that. However, we do not have the 
resources to test everyone who is asymptomatic on a regular basis. The CDC’s best guess is that 20% to 50% 
of all those who are infected are asymptomatic.  

I passed on my observations to the team/the Commissioner. A few days later July 24th, the Governor 
announced a mask wearing mandate - to be effective August 1st. It was something he had been reluctant to do 
for some time because he preferred educating the public over mandates. Also, during that same week, the 
Health Department stopped encouraging people with no symptoms to get a COVID-19 test, presumably to 
conserve test kits. I have no way of knowing the extent, if any, to which my conclusions contributed to those 
decisions. No doubt, a lot of considerations and inputs from experts and advisers were examined before such 
key decisions were made, including the fact that at that time COVID-19 was surging along the Eastern 
Seaboard, marching toward Vermont. The important thing to me was that those were right decisions. 

OLIVER WYMAN AS VERMONT COVID-19 CONSULTANT 

Even though Vermont experienced only small increases in confirmed COVID-19 cases after the Memorial 
Day and July 4th holidays, there were serious concerns about schools and colleges reopening as September was 
approaching. State officials saw elevated risks further down the road from large gatherings during major 
holidays such as Thanksgiving, Christmas, and New Year’s; from visitors during the Vermont ski season; and 
from winter weather in general, when people stay indoors much more. By the middle of August, Commissioner 
Pieciak decided to enter into a formal agreement with Oliver Wyman (OW) to provide our team with COVID-
19 analyses specific to Vermont in weekly video conference calls. This hugely increased our modeling 
bandwidth as by that time OW had already been providing COVID-19 consulting services to other entities 
across the country for several months. Their team consists of a well-known leader in financial industry 
modeling, an epidemiologist, a medical doctor, consultants from their Health & Life Sciences and Financial 
Services arms, plus software-programming staff. I found OW’s analyses and advice helpful and generally well-
thought-out, and innovative at times. I especially like their COVID-19 health risk scorecard by state and their 
analysis on the necessary conditions and timeline for the country to get back to normalcy. See a link to OW’s 
COVID-19 projections by state (open access) in the References section (9).  

In September, like many modelers, OW was developing tools for sizing up the potential impacts from school 
and college reopenings. OW provided some guidance and relevant information to us, but no projections. As 
time passed, it was becoming clear to all that, thanks to the efforts of all Vermont school districts, colleges and 
universities, and support from the state government, Vermont’s K-12 and higher education were doing very 
well in absolute terms and, in comparison to Vermont’s nearby states, in terms of having low positive COVID-
19 case count per capita. The challenging thing for our team was in securing timely information from all the 
different school districts, colleges, and universities each week, which we then consolidated and presented at the 
Governor’s press conference every Tuesday. Our focus next turned to Thanksgiving. 

MODELING POTENTIAL IMPACT OF THANKSGIVING GATHERINGS 

Around mid-November, the Governor’s office asked Commissioner Pieciak to review a “COVID-19 Event 
Risk Assessment Planning Tool” that the Georgia Institute of Technology (Georgia Tech) made available online 
(10) (11). The Commissioner asked Ryan and me to review the tool and share our opinions with him. In 
addition, he also wanted to see if the tool could be helpful in analyzing scenarios around Thanksgiving.  

My conclusion was that the risk assessment tool relies very heavily on one estimator: The probability that 
one or more attendees in a large gathering of size N are already infected with COVID-19 when they arrive. 
That probability is a function of gathering size and the state’s COVID-19 prevalence on any given day. 
However, once the event size reaches 100% for the said probability for a given state, the tool provides no 
distinctions between all larger event sizes. In particular, it does not provide any framework for estimating how 
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many new infections could take place during the gathering for progressively larger events, which is a very 
important consideration for risk assessment and planning purposes. 

Conceptually, the missing piece could be approximately modelled by this formula: Expected Number of 
New Infections During the Gathering = N x PSCt x ARN, where N is the gathering size; PSCt is the probability 
of an attendee arriving on date t from state S, county C at the event, already infected; and ARN is the “Attack 
Rate,”- which represents the proportion of people expected to be newly infected during an event of size N. 
The next step was to estimate PSCt. I chose to estimate that by the number of active (infectious) case count 
divided by population corresponding to state S, county C, on date t. Active case count came from the 
methodology described earlier in this essay. Estimating Attack Rates was much harder. Given that Thanksgiving 
was only seven days away, I decided to rely on empirical data as a starting point and then used an exponential 
curve in guiding my selections of AR for various sizes N. The empirical data came from various COVID-19 
outbreaks traced back to large gatherings such as weddings, church services, birthday parties, etc., reported in 
the news over the previous few months. The size of the gathering and the number of attendees who got infected 
were included in those news reports.  

For estimating the potential impact of large Thanksgiving gatherings on COVID-19 transmission, 
Commissioner Pieciak sent me historical surveys by Pew Research Center and YouGov of Thanksgiving family 
gathering sizes, as well as some less detailed surveys done earlier in 2020. The percentage of such gatherings 
with guests from out of state was available too. Some of those surveys were done at the national level, and 
some just for the Northeast Region. Such was the data we could obtain.  

After merging and distilling the above information, I estimated the expected new COVID-19 infections due 
to Thanksgiving gatherings in 2020 - with and without invited guests, based on different assumptions about the 
extent of voluntary curtailment in inviting non-family members for Thanksgiving. The conclusion: new 
infections could be 4 to 6 times higher, relative to having no invited guests for Thanksgiving.  

The Commissioner then asked me to send the model and results to Oliver Wyman for feedback. Two days 
later OW arrived with their own estimates, which turned out to be very similar to ours. Their approach was 
similar to ours too, except they used tools that they had already compiled/built for estimating the “Attack 
Rates” more scientifically: room dimensions, ventilation rate, duration of gathering, mask wearing, breathing 
volume rate, exhalation rate, etc., are in the model. See the link for “COVID-19 Indoor Safety Guideline” by 
researchers from MIT on how these considerations affect COVID-19 transmissions in the References section 
(12). Our findings were included in Commissioner Pieciak’s presentation at the Governor’s November 24th 
press conference. The intent was to reinforce the message, numerically, that the consequences from large 
Thanksgiving gatherings could be very severe, with the hope that most Vermont households would keep their 
gatherings small.  

EVERYONE CAN ASSIST IN THE BATTLE AGAINST COVID-19 

The modelling I described above could be comfortably performed by most actuaries. An actuary with more 
advanced skills than me in programming and modeling might have done more. Within our team, neither the 
Commissioner (a lawyer), nor Isaac, who has a degree in History, have much prior quantitative training. Yet 
they have a good grasp of the pandemic and are deeply involved with the state’s daily battle with COVID-19. 
Clearly actuaries, statisticians, data scientists, economists, physicists, engineers … all have the capacities to help 
solve problems on the quantitative side of COVID-19. The world just does not have enough epidemiologists 
and doctors right now, so do not hesitate to take a deep dive into learning basic epidemiology and then help in 
any way that you can. We do not know what the future holds. 
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APPENDIX 

Regarding the SIR model, I would suggest that once you have acquired some understanding of how the 
model works, say from (5), you would want to move on to read (or skim) as many other COVID-19 related 
articles on epidemiology as your schedule permits. Most epidemiology journals around the world offer free 
access to everyone during this pandemic. I would also highly recommend trying out the R package SimInf: An 
R Package for Data-Driven Stochastic Disease Spread Simulations. Vary the input SIR parameters and see how 
each epidemic unfolds. I used SimInf to test our Active (Infectious) Case Count methodology by running many 
hypothetical epidemics. The Infectious counts generated by SimInf and our Active (Infectious) Case Counts 
were in good agreement over the course of most hypothetical epidemics. The following is an example:  

 

REPRODUCTION NUMBER R0 AND Rt 
The most comprehensive paper on Reproduction Number R is in (13) by The Royal Society. You would be 

better off spending time reading that paper than reading most other papers on R. I quote from the first page 
of the paper: 

“R0 represents the basic reproduction number, which is the number of secondary infections generated from 
an initial case at the beginning of an epidemic, in an entirely susceptible population. In contrast, Rt is the 
reproduction number at time t since the start of the epidemic. As more individuals are infected or immunised, 
Rt captures the number of secondary infections generated from a population consisting of both 
naïve/susceptible and exposed/immune individuals and therefore it both changes in value over time and will 
always be less than R0.” 
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It is important to know the same virus can have different R0 depending on where the virus is taking hold. 
The R0 for COVID-19 is expected to be different in the metropolitan areas of the US than, say, Fairbanks, 
Alaska, or Mongolia. This is because R0 is partly determined by the biology of the virus, and partly driven by 
how people live and interact.  

To estimate Rt, read the paper by Anne Cori et al. (2013) (14). There is also a corresponding online app for 
estimating Rt called EpiEstim App, and an R package called EpiEstim. 
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Examining the COVID-19 Impact on Human Capital  

Mark Maenche, ACAS, MAAA, CIC, CRM 
______________________________________________________________________________ 

 
Abstract. The following essay is a response to the CAS call for essays on the topic of COVID-19.  The essay 
focuses on the impacts that COVID-19 has on the broad categories of individual well-being and work.  After 
illuminating these impacts, three areas of human capital management are suggested for the consideration of 
property-casualty leadership. 
 
Keywords. COVID-19, Human Capital 

            ______ 

1. INTRODUCTION 

2020! Wow - what a year this is shaping up to be! Massive brush fires in Australia, the tragic death 
of an NBA superstar, a Presidential election…the list could go on and on. Looming over all the 
events that could be listed is the COVID-19 pandemic. Societal shutdowns and governmental stay-
at-home orders have significantly affected the way businesses operate, including the Property and 
Casualty (P&C) insurance industry. P&C insurers are not only faced with protecting their financial 
statements but also managing the physical and mental well-being of their employees. The 
ramifications of COVID-19 on the P&C insurance industry’s human capital will be felt for years to 
come and identifying solutions at this moment in time is a significant challenge for industry leaders. 

The companies that comprise the P&C insurance industry employ approximately 650,000 people,  
according to the Bureau of Labor Statistics as of June 2020. These employees create economic value 
based on their experience and skill. This is the essence of human capital. It is an intangible asset 
made up of many different characteristics and qualities of the individual employees. Education, 
training, intelligence, health, and loyalty are all examples of such characteristics that may be 
contemplated when attempting to define human capital for a firm [1].  

2. COVID-19 IMPACTS ON HUMAN CAPITAL 

COVID-19 has caused the P&C insurance industry to encounter a diverse set of challenges that 
affect human capital. Human capital is intangible and difficult to quantify under ideal circumstances, 
making these new challenges presented by COVID-19 hard to assess and daunting to analyze. 
Consider these impacts on human capital:  
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2.1 Well-Being 
In April and May of this year the American Psychological Association conducted a survey on 

stress which indicated that U.S. adults were approximately 20% more stressed this year as compared 
to the average stress level reported in 2019 [2].  Fear of themselves or a family member contracting 
COVID-19 and the government’s response to the pandemic were significant drivers of this stress. 
Different employees will handle stress in a variety of ways, but it seems likely that the mental health 
effects could hinder productivity at work. An article in Human Resource Executive indicates that 
62% of workers report losing at least one hour a day in productivity due to COVID- 19-related 
stress, with 32% losing more than two hours per day [3]. 

Virtually anyone whose job could be done from home is now working from home.  The potential 
for employees to experience ergonomic problems has substantially increased. It seems reasonable to 
assume that most P&C insurance industry employers had not previously provided an optimal 
workspace setup for each employee’s home. To immediately do so in light of COVID-19 is, most 
likely, cost prohibitive. Therefore, employees have been left to figure out what works best for them. 
How many people have been working from the couch or at the dining room table for the past six 
months? What is the number of Zoom meetings undertaken in less than ideal lighting? 

A reduction in physical activity due to lockdowns and social distancing has undetermined long-
term ramifications. A study published in June showed that the United States had a 15% decrease in 
step count within 15 days of the declaration of the pandemic [4].   The CDC recommends that 
adults get at least 150 minutes of moderate-intensity physical activity per week.  This leads to many 
benefits as described by Janet Fulton, Ph.D., of CDC’s Division of Nutrition, Physical Activity, and 
Obesity.  She said, “Being physically active has many benefits, including reducing a person’s risk of 
obesity, heart disease, type 2 diabetes, and some cancers. And on a daily basis, it can help people feel 
better and sleep better [5].”   Decreased physical activity for employees can lead to potential 
increases in healthcare costs for employers.   Sample text for this section. 

2.2 Work 
The switch to remove work opens the door to the potential for long-term working from home. 

This is a result of a number of factors: (1) Cost of real estate - since COVID-19 has forced so many 
within the P&C insurance industry to work from home, the need for physical real estate must be 
contemplated. (2) Social distancing requirements and limits on number of people inside buildings - 
gathering many employees at a single location is not allowed in some parts of the country and 
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discouraged most everywhere else at this time.  (3) Expansion of the talent pool – an insurer could 
theoretically hire from anywhere in the world.  (4) Demand – current or potential employees may be 
unwilling to join the team unless remote work is an option.  In order to retain/secure the best talent 
employers may need to continue using the work-from-home model.  In May, performance 
marketing company Fluent published a study from data gathered online that indicated 59% of 
employees would continue to work from home once restrictions are lifted if given the option to do 
so [6]. 

The restrictions for social distancing have reduced the ability for P&C insurance industry 
professionals to get in front of customers due to limitations on travel. This includes salespeople 
meeting with buyers purchasing insurance policies, claims adjustors administering claims, and 
marketing representatives conversing with their clients. The decrease in sales contacts could cause 
repercussions as the sales funnel is populated with fewer buyers. Claim settlement times may 
increase affecting the timing of loss payouts. Thankfully, the internet has allowed industry 
professionals to continue to perform these functions, albeit in a limited fashion. With this transition 
P&C practitioners are having to learn new technological skills on the fly. 

3. AREAS OF HUMAN CAPITAL MANAGEMENT TO ADDRESS 

As demonstrated above, there have been a myriad of impacts on human capital in 2020 thanks to 
COVID-19. Companies within the P&C insurance industry must engage in thinking critically about 
these issues in order to retain a strong operational infrastructure and preserve their financial stability. 
With this in mind, three areas of human capital management for P&C insurance leadership should 
be top priority: communication, engaging civically, and investing wisely.  

3.1 Communication 
There is a business maxim that says: “when in doubt, over-communicate.” Communication is 

vital to all business organizations. How much more so in times like these where uncertainty 
abounds! Lack of communication from leadership leaves employees to speculate about the future 
and creates insecurity and the stress described above. Taking a pro-active approach to communicate 
with employees builds trust and provides people with insight about potential changes on the 
horizon. Preparing mentally for a change is much easier than having it invade with no warning. Even 
when management does not know exactly what to say, P&C industry executives will benefit from 
communication with those in their charge. In doing so, the leader is displaying compassion and 
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demonstrating that the manager is thinking about the consequences for those who are affected by 
any actions undertaken. Beyond individual conversations with employees, some practical suggestions 
might include employee listening initiatives, gathering opinions from various individuals throughout 
an organization, and company town-hall-style events (via Zoom of course!). 

3.2 Civic Engagement 
The circumstances presented by this pandemic require that business leaders engage civically with 

local and state jurisdictions to stay abreast of changes to the regulatory landscape. Executives and 
actuaries in the P&C insurance industry are attempting to project the future. However, no one could 
have forecasted what 2020 has thrown at us. The widespread nature of COVID- 19 has been 
unprecedented in recent times. Many of the organizations in the P&C insurance industry are spread 
across several geographic areas. This has complicated operational responses and makes it difficult to 
know what a proper outlook on business in the future should be. Regulators may implement laws 
affecting how the P&C insurance industry adjudicates claims or interacts with its own employees. 
Civic engagement will enable employers to stay informed so that they can provide the training and 
education their employees need. 

3.3 Investment in Employees 
There is no doubt that the financial impact on business due to COVID-19 has been immense. 

Since March, there have been almost daily headlines detailing workers being laid off as companies 
across the nation have had to lay off thousands upon thousands of people. At the end of September, 
insurance giant Allstate indicated it would lay off 3,800 employees. Financial strain can have a 
significant impact on the morale and psyche of the team that are so important to the success of an 
insurer. Challenging circumstances like these put pressure on management to invest wisely to 
preserve human capital. Offering personal financial management education could be a relatively 
inexpensive way to assist. Consideration of health-based incentives could protect long-term 
healthcare costs.  It may be necessary to find creative teambuilding activities to help alleviate 
employees’ fear that they are next to be laid off. Looking for options to increase productivity in a 
way that will increase return on investment should be considered as well. There is no doubt that 
balancing the obligations of an insurer during this time is difficult. Insurance executives who figure 
out a way to maintain financial strength while also prudently investing in their employees will benefit 
over the long-term. 
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COVID-19 Models for Third- and Fourth-Party General 
Liability and Directors & Officers 

Julie Menken, ACAS 

1. INTRODUCTION 

The highly contagious coronavirus, SARS-COV-2, and resulting respiratory illness COVID-19 

has resulted in more than 152.5 million confirmed cases and nearly 3.2 million deaths across 237 

countries as of May 3, 2021. While the ultimate severity of the pandemic remains uncertain, the 

current litigation environment in the United States indicates the possibility of mass litigation 

resulting from introduction of the virus via travel, failure to contain the virus and prevent spread of 

disease. Pandemic severity here is defined as the total damage from the virus which includes the 

number of U.S. deaths, the number of severe cases resulting in hospitalization, and ultimate 

healthcare costs of those severe cases. Such an event challenges (re)insurers to quantify and manage 

their exposure to 3rd and fourth-party pandemic losses. Exposure-based pandemic scenarios assist in 

this endeavor by stipulating mass litigation events that could arise from the pandemic and estimate 

the potential economic damages by company and industry. The following essay is meant to serve as 

commentary on how pandemic liability models are built and the factors considered regarding line of 

business specific COVID-19 liability models. 

1.1 Scenarios Context 

The basis of SARS-COV-2 scenarios requires building an epidemiological and exposure model 

which estimates the number of fatalities and hospitalizations under varying assumptions of the 

ultimate severity of the pandemic.  A key estimate, the total number of COVID-19 fatalities, will 

depend on the success of public health measures in controlling the spread of the virus, the 

emergence of treatments for COVID-19, and how quickly a vaccine can be developed and deployed. 

As of the writing of this essay, the FDA has approved emergency use of three vaccines, however, 

the effectiveness of the vaccine to lower pandemic severity depends on public trust and willingness 

to get vaccinated, a significant public health hurdle to overcome. Pandemic liability models should 

consider a variety of data sources to build the basis for its scenarios including CDC, IHME, and 

WHO data sources, among other sources of information to project number of deaths and COVID-

19-specific healthcare costs by age and industry. Projected U.S. fatalities under each pandemic 

severity level of the liability model should be allocated among residents of long-term care facilities, 

workers in essential industries, workers in non-essential industries, and non-workers. Industry and 
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company specific damages vary by estimated employee count and risk level.  

1.2 Objective 

Models for COVID-19 liability will differ based on third-party versus fourth-party coverages due 

to differences in how these mass litigation events have typically played out in the U.S. court system. 

In this essay, we discuss both and the precedent set by asbestos mass litigation and how this may 

factor into future pandemic liability lawsuits.  

2. THIRD-PARTY TAKE-HOME LIABILITY SCENARIOS 

A key segment of third-party pandemic liability models considers mass litigation scenarios 

regarding liability for “take-home coronavirus” exposures whereby workers contract the virus in 

workplace and then infect their family members and/or co-habitants. Household members sickened 

with COVID-19 then sue the employers of infected workers for damages.  

While the first official case of COVID-19 in the U.S. was detected in Washington state on 

January 19, 2020, epidemiologists believe the virus was circulating in major cities weeks before. As 

the number of cases and deaths accelerated in late February and early March, city and state officials 

enacted “stay-at-home” orders which closed many businesses, banned public and private gatherings, 

and directed residents to remain home for all but essential travel. However, there was significant 

variation in how and when businesses responded to the pandemic. Some businesses put social 

distancing practices in place or closed entirely prior to the enactment of stay-at-home orders. Others 

continued to operate as normal until directed to close by public health authorities. Essential 

businesses ranging from grocery stores to construction sites to hospitals continued to operate 

through the stay-at-home orders. 

Businesses that continue operations during the pandemic have potential to contribute to the 

spread of SARS-COV-2. Workers may contract the virus from their co-workers or customers. 

Workers who contract the virus in the course of employment may be able to claim Workers’ 

Compensation benefits depending on the jurisdiction. Some workers could also file personal injury 

lawsuits against their employers if they believe their employers were negligent in exposing them to 

the virus.  

The focus of 3rd party pandemic scenarios are on the emergence of lawsuits filed by individuals 

who alleged they contracted COVID-19 from a co-habitant who was infected with SARS-COV-2 at 

work. These take-home coronavirus plaintiffs argue that the employer was negligent in exposing the 

worker, and subsequently themselves, to the virus and sue for damages associated with COVID-19, 

including medical costs, lost wages, and pain and suffering. Under this scenario, take-home 
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coronavirus lawsuits emerge in a wide range of industries including nursing homes, meatpacking, 

construction, public transportation, food service, and essential retail operations such as grocers and 

building supply stores. Individual lawsuits are consolidated in federal and state multidistrict 

litigations. Industry-by-industry, juries in bellwether cases hold defendants liable for take-home 

coronavirus plaintiffs’ injuries and award damages. While a global settlement is not possible due to 

the diversity of defendants, a general case management strategy emerges that is employed widely to 

achieve efficient settlements for thousands of pending cases.  

From this base scenario description, models may target three levels of pandemic severity and 

three levels of propensity to recover damages, considering the uncertainty vaccine rollouts and mask 

adherence to public health recommendations as well as the state-by-state legal considerations of 

duty. All scenarios include an estimate for the percent of COVID-19 hospitalizations and deaths 

which are attributable to take-home exposures. It is not known how likely it is that these injured 

individuals will file lawsuits and recover damages. Plaintiffs face difficulties in establishing that their 

infections resulted from a given employer’s negligence and furthermore that the employer acted 

negligently and should be held liable. Workers’ Compensation, health insurance, and possibly a 

government-administered essential worker victims’ compensation fund offers alternative 

mechanisms for compensation that may dampen litigation claim rates. The uncertainty surrounding 

alternative compensation mechanisms is also reflected in the levels of propensity to recover.  

Estimates identify over 200 industries with exposure to take-home coronavirus lawsuits. Scenario 

losses distribute losses among these industries in proportion to a qualitative measure of ease of virus 

spread and quantitative estimates of industry employment. Damages are distributed to companies 

within those industries in proportion to estimated employment. Curated and established portfolio 

modeling software would apply an insurance model to the pandemic liability scenarios and allow 

clients to run their general liability and umbrella portfolios against the scenarios to receive an 

estimate of their COVID take-home liability exposure.  

In the current U.S. litigation environment, there is a non-insignificant probability that the United 

States court system will experience mass litigation from coronavirus injuries. Precedent for take-

home exposure litigation was established with asbestos litigation whereby injured family members 

successfully sued the employer of the family member who brought home asbestos fibers on their 

clothes. Cases of asbestos-related disease from such second-hand exposure are well documented and 

some have resulted in successful litigation against the initial employer. Such take-home exposure can 

be used as precedent in 3rd-party take-home COVID-19 mass litigation lawsuits. The first take-

home COVID-19 lawsuit was filed in May 2020 in Illinois. As of May 3, 2021, fifteen take-home 

coronavirus infection complaints have been filed, most alleging damages based on a negligence 

theory but some on a public nuisance theory, which has also been seen in asbestos cases. Given 
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observations of these early cases building on each other as test cases, the expectation is that we will 

see more of these take-home liability lawsuits in the years to come.  

3. FOURTH-PARTY LIABILITY SCENARIOS 

The second segment of pandemic scenarios envisions state governments filing suit against airline 

carriers and cruise lines alleging their negligent actions resulted in introduction and spread of SARS-

COV-2 in the United States. The resulting lawsuits in this scenario class seek to recover costs of 

treating COVID-19 patients under state Medicaid programs. The fourth-party scenarios will have 

the same underlying epidemiological and exposure model as the third-party scenarios. The difference 

here is in the defendants and the mechanisms of mass litigation. 

The United States enacted travel restrictions to and from China on January 31 and to and from 

Europe on March 12, but hundreds of thousands of travelers entered the U.S. before international 

air travel was effectively suspended worldwide, allowing the virus to be widely introduced to major 

population centers in the US. State and local governments, compelled to mobilize a response to the 

pandemic in the absence of federal government action, have at the same witnessed steep declines in 

their tax revenues and their budgets have been hit hard by the coronavirus. The Tax Policy Center 

estimates state government revenue will decrease by $200 billion across fiscal years 2020 and 2021 

relative to pre-pandemic forecasts. The decline in state government revenue has resulted in massive 

budget shortfalls that, in the absence of aid from the federal government, can only be addressed by 

reducing expenditures and raising additional revenue. At the same time, state governments are being 

forced to spend additional resources to expand emergency and hospital services to care for the 

hundreds of thousands of individuals who have been sickened by the virus.  

With fourth-party pandemic liability, the model may contemplate a scenario by which state 

attorneys general file suit in state and federal courts seeking to recover the cost of treating COVID-

19 patients by state Medicaid programs. The lawsuits name 60 air carriers and cruise lines who may 

have brought infected travelers into the United States between the time when the coronavirus was 

first known to be a major public health threat and when the United States effectively suspended 

international travel. These companies are alleged to have downplayed the seriousness of the health 

threat, continuing to operate “business as usual,” and not taking precautions commensurate with the 

risk such as discouraging non-essential travel, aggressively screening passengers for signs of illness 

prior to boarding, mandating all passengers wear masks, limiting occupancy, and disinfecting all 

surfaces between flights.  

Individual state lawsuits are consolidated in federal multidistrict litigation. Juries in bellwether 

trials are persuaded that defendants’ disregard of the public health threat posed by coronavirus 
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accelerated the introduction and spread of the virus in the United States resulting in greater public 

health expenditures than would have materialized had these companies acted with an appropriate 

level of care in the early days of the pandemic. Juries hold defendants liable for the costs they 

imposed on public health insurance programs awarding several state plaintiffs hundreds of millions 

of dollars in compensatory and punitive damages. A global structured settlement modelled after the 

Tobacco Master Settlement Agreement is eventually reached between all plaintiffs and defendants 

with settlements allocated across defendants according to estimates of the number of passengers 

disembarking with coronavirus.  

Fourth-party litigation operates by different standards of liability than do third-party suits. As 

such, the lawsuits do not consider individual cases against essential businesses, but rather, lawsuits 

against major players who can be deemed responsible for introducing the virus to the U.S. by failing 

to heed warnings in early days. In this way, the defendants in these scenarios will be lower in number 

with a greater percentage of loss allocation to each. Allocation to the estimated defendants in fourth-

party scenarios will be based on extent of travel and date of first actions take to stop the spread of 

the virus via travel restrictions. Fourth party pandemic liability models may use international 

passenger statistics for cruise ships and airlines as a basis for potential loss allocation to insureds. 

Fourth-party scenarios also should contemplate the capacity to bear loss and market cap of the 

potential defendants. In particular, 4th party liability scenarios may also consider the issue of 

international conventions which limit liability for airline carriers.3 

4. D&O AND OTHER CONSIDERATIONS 

A third segment of pandemic liability scenarios should also consider is event-driven D&O, which 

have been increasing in recent years. Event-driven securities litigation involves operational risks 

which are not appropriately disclosed to investors and then a later event reveals the issue and causes 

the stock value to tumble. Mass tort litigation can serve as the vehicle for revealing the undisclosed 

operational risk, and therefore the same scenarios described for general liability can simultaneously 

trigger D&O events.  As a result, there is significant risk of cross-line clash that casualty insurers 

face, and it is necessary to prepare companies by understanding their exposure not only to COVID-

19 general liability but also the potential for them to see litigation across lines of business.  

When mass torts cause a clash of underlying general liability and D&O losses, D&O is the 

“caboose” of the liability train. Using recent examples outside of COVID-19 of mass torts against 

opioids manufacturers and distributors, 3M and other PFAS manufacturers and users, Monsanto 

and J&J, event-based securities litigation can be modeled for potential COVID GL-D&O clash risk. 

Models for such risk will quantify the risk by estimating the size of the resulting event, the potential 
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range of shareholder damages, and the range of shareholder recoveries. To estimate shareholder 

damages models would estimate share price movements and reflect known historical patterns of 

shareholder recoveries. While the details of a COVID19 D&O model may differ from the 

underlying GL model, the underlying pandemic severity assumptions are consistent and clash 

between lines of business contemplated. Considering the litigation uncertainty and pandemic 

severity uncertainty, COVID19 liability models help provide estimates for the extent of insurer 

exposure both within and across lines of business. 
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Abstract

Actuaries use loglinear trend regularly. However, there are several aspects of trend that are
not common knowledge among actuaries. Three key issues are: the loglinear model for trend
is not the only model for trend; it is affected by uncertainty arising from the loss development
process; and, there is not much in the actuarial literature creating formal mathematics-based
credibility formulas for trend. Two alternatives involving the effects of random drift on expected
losses in addition to the effects of trend are presented. One including the point-by-point error
associated with regression, and one without it, are presented. Further, there are alternate
algorithms for computing trend. Trend estimation is discussed in all three contexts and using
those alternate algorithms. An evaluation of the impact of loss development uncertainty on
trend is provided. Corresponding credibility formulas for trend are provided as well.

Introduction

The loglinear trend process is well established. But for certain situations, the standard algorithm
may be unwieldy. For example, when using the linear regression approach, determining the uncer-
tainty in the trend formula engendered by the underlying uncertainty the loss development may be
challenging. Further, the regression formula for determining trend using the logarithms of the data
points, involves a very specific model of trend. In effect, it assumes that there is a constant trend
effecting each year to year step, but the data points are affected by error values with a common vari-
ance σ2. That may not reflect the reality of the data. So, within this paper, optimum trend models
are presented, alternate algorithms for calculating the trend under each formula are presented, and
some situations in which the alternate algorithms are useful to actuaries are presented.

2 Models of Trend and the Corresponding Formulas for Estimat-
ing Trend

Many actuaries use regression-based loglinear trend. However, as mentioned earlier, it has several
features that may not be obvious, and it contains an exposure to loss development uncertainty.

2.1 A Comment on the “Log” Part of “Loglinear” Trend

Most of the common models of loss cost inflation/trend recognize that inflationary forces are better
modeled by nonlinear models. In effect, because trend is believe to compound, inflationary models
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with assumptions like those used in compound interest are typically used. So, the cost level of the
losses at some time may be modeled by some C(t) = exp(a+ bt) (where, elsewhere in this paper, a
may not be constant from time to time). Therefore, it is helpful to work with the natural logarithm
of the cost level ln(C(t)) = a+ bt to get data that has a simplified, linear, character.

Of course, in most cases, the actual values of C(t) for various t’s are not available. Rather the
(often) annual historical loss severities “f(t)”, loss frequencies “n(t)”, pure premiums “π(t)”, or
annual loss ratios “LR(t)”, present in the data are what is available. They can be expected to
differ from the true underlying expected severities, frequencies, etc. by some error amount.

The next issue to resolve would be deciding which probability distribution best reflects that
range of that error. The Central Limit Theorem provides a rationale for the normal distribution,
since a number of claim values are added together, then divided by the number of exposures.
However, the normal distribution produces negative as well as positive values, so it is not always a
realistic model for a trend driven by any sort of loss cost inflation. The lognormal distribution, on
the other hand, is based on a geometric rather than arithmetic version of the Central Limit Theorem.
Essentially, the lognormal error scenario is presumed to involve a large number of (positive) error
terms that are multiplied by, not added to, the true costs. Therefore, the lognormal approach
does not produce negative values. Further, the lognormal error is more consistent with trending
and loss development calculations. So it is used (via it’s σ parameter) throughout the remainder
of this paper. Additionally, the geometric/multiplicative lognormal error approach underlies the
loglinear trend that is used so often by so many actuaries1. Recognizing all those considerations,
the lognormal modelof the trend will be used in much of this analysis.

Since the lognormal generates random variables that are exponential functions of normal distri-
butions, one is left with a generalized trending equation, say for pure premium, of π(t) = exp(a+bt),
where the constant exp(a) and the growth factor exp(b) may each be subject to error and other
randomness. Taking logarithms of the π(t), etc. values produces a much-more tractable linear-type
model ln(π(t)) = a+bt. So, throughout the remainder of this paper the focus will be on the simpler,
linear type, algorithms. Thus, although the ultimate goal is to estimate the trend, the majority of
this paper will cover the slope of the regression line.

2.2 The Loglinear Trend Model: Constant Trend with Process Error

Of course, the loglinear trend approach is the workhorse trend estimation method used by casualty
actuaries. Nevertheless, there are aspects of it that may be of interest.

2.2.1 The Basic Approach Used in Loglinear Trend

To clarify the discussion in subsection 2.1, the classic loglinear trend involves the following under-
lying analysis:

1. There is an underlying constant geometric trend factor 1 + T that causes the underlying
expected pure premiums (E[π(t)]’s), expected severities, or whatever else is being analyzed
to grow exponentially (E[π(t+ 1)] = (1 + T )E[π(t)]) as t increases.

2. Of course, if the expected losses above from item 1 were known, determining the trend would
be trivial. However, in practice, few trend datasets are that perfect. So, it is then assumed

1Admittedly, though, that is more of an endorsement by the crowd than the result of statistical principles.
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that even though the expected losses have a perfect pattern, the data are subject to some
error2 that acts independently, but with a common variance, on each value. So, each of the
π’s is considered to be the true data E[π(t)] multiplied by one of a series of equal independent
lognormal distributions “M(t)”, all with mean “1” (unity) and having identical coefficient of
variation “v”. So, each historic loss ratio, etc. value is π(t) = M(t)E[π(t)].

3. The logarithmic transformation reduces the results of number 2 to a set of ln (M(t)E[π(t)]) =
ln(π(0)) + t ln(1 + T ) + ln(M(t)). That is a constant, a slope multiplied by time t, and a set
of identical normally distributed process error3 terms, each with mean zero. After estimating
the optimum values of the slope and constant with regression, the projection of any future
point π(t+ s) may be found using that line formula and computing the exponential function
on the results.

4. That format involves fitting a constant and a slope so that the constant plus the product
of a slope and time minimizes the sum of squared differences between the fitted values at
the various times and the actual data points4. It amounts to using regression to determine
y = a+ tb given the historical data points5 (the y1, y2, ..., yk) and independent time variables
t1, t2, ..., tk.

5. To simplify the notation, the remainder of this section will simply focus on expressing the
regression using t’s and y’s.

Then, the linear model with process error assumes that the logarithms of the expected cost
level, the E[yi]’s, indeed lie on a line and follow

E[yi] = a+ bti. (1)

But, the available historical data is different from the true expected cost levels, and each
regression data point yi differs from the underlying E[yi] by some normally distributed error,
err(i) = E[yi]− yi. The err(i)’s, per the model, all are expected to be independent of one another
and have the same variance, σ2. So, yi = E[yi]− err(i) for all i, and

yi = a+ bti − err(i); for all i. (2)

Of course, much of the basics of linear regression are part of the basic education of casualty
actuaries. But the material above is presented in order to provide complete clarity on the exact
assumptions underlying loglinear regression. This will also set up the approach to be used for other
models of trend.

2For example, this might be process or parameter error.
3In the mathematics,this is referred to as “‘observation error”. This is potentially a broad definition of process

error that would include any independent error variables sharing a common variance and a common mean of zero.
4Minimizing the sum of squared differences would, per the mathematics of the normal distribution, amount to the

maximum likelihood estimator of the constant ln(π(0)) and the slope ln(1 + T )
5Normally, n would be used for the number of points, but it was already used to denote the number of points,

but it has already been used to represent the frequency. So, “k” will denote the the number of historical data points
used in the regression underlying the trend.
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2.2.2 The “Weights” Assigned to the Regression Data Points

The next step is to look at the “objective” function that the trend estimate is designed to minimize.
The underlying likelihood that a set of points y1, ..., yk are generated from a given a and b, is a
constant, times the exponential function, of the negative of

k∑
i=1

(yi − a− bti)2

σ2
. (3)

So, minimizing that sum of squared differences maximizes the probability that the historical y’s
could arise from expected costs that follow the trend line.

Unsurprisingly, this devolves to finding an a and b that minimize a sum of squared errors. But,
surprisingly, it does not depend on σ2. One may begin with the covariance formula for the slope,
and not yet specify that the times used in the regression are regular annual, quarterly, etc. Then,
focusing on the averages, ȳ of the yi’s and t̄ of the ti’s, the slope may be written as

b =

∑k
i=1(ti − t̄)(yi − ȳ)∑k

i=1(ti − t̄)2
=

∑k
i=1(ti − t̄)yi∑k
i=1(ti − t̄)2

=
k∑
i=1

ti − t̄∑k
j=1(tj − t̄)2

yi (4)

(noting that the constant ȳ in the first term is multiplied by some values that add to zero.)
Therefore, the slope b is just a linear combination of the values in the regression data. Further,

theory of sums of series indicates that the denominator is equal to k3−k
12 . The values from below

the mean t̄ of time are negative, the others are positive. The simpler expression for the slope is

b =

k∑
i=1

ti − t̄
k3−k
12

yi. (5)

Of course, in practice the ti’s are consecutive years, consecutive quarters, or something similar.
Hence, it makes sense to focus on examples using consecutive and evenly spaced times.

As an example, lets say the values from 2011, 2012, 2013, 2014, and 2015 are to be used to
estimate the slope. t̄ is clearly 2013=year 3. The value of the denominator is k3−k

12 is (53− 5)/12 =
10, treating 2011 as year one. Further, the “k” “weights” starting from that of 2011, are -2/10,
-1/10, 0, 1/10, 2/10 = -.2, -.1, 0, .1, .2. Note the linear progression stemming from equation (4),
and the symmetry up to a minus sign. Both are general characteristics when the times are year to
year, quarter, to quarter, etc. without breaks.

It is easy to see that the midpoint t̄ of the numbers ti = i = 1, 2, ..., k is k+1
2 . So, the “weights”

for computing the slope from annual data may simply be stated as

12
i− k+1

2

k3 − k
= 6

2i− k − 1

k3 − k
. (6)

Thus, the slope is really just a difference of “weighted sums”6 of the y values. One may also

note that the values 12
i− k+1

2
k3−k , 12

j− k+1
2

k3−k have constant denominators, so the points further from

6The slope is not a weighted average of the values. It rather a difference between weighted sums. One may see
that the “weights” sum to zero, since the value i − (k + 1)/2 at i is always the negative of the value (k + 1)/2 − i on
the opposite side at (k + 1) − ii − (k + 1)/2 at the time on the opposite side (k + 1) − i − (k + 1)/2 of the center at
(k + 1)/2.

The Secret Life of Trend—Including Other Models for Estimating Trend and Credibility for Trend

4Casualty Actuarial Society E-Forum, Spring 2021 



Figure 1: “Weights” (Multipliers) Underlying All Ten Point Regressions

the center, where |i − k+1
2 | is larger, have greater influence. For further illustration, consider the

“weights” underlying ten point regression, They are shown in Figure 2.2.2.
One may readily see that the endpoints receive the largest weight. Also, the “weights” are

symmetric, excepting that, as before, the earlier “before trend has happened” values are negatives,
while the later “after trend had happened” values are positive. Thus, the trend is based on the
difference between those groups of points. However, having the point-by-point values allows for a
more advanced analysis, as will be shown in the next section.

2.2.3 The Impact of Loss Development Uncertainty

The last section sets the stage for an analysis of the impact of loss development uncertainty on
trend. Consider a regression slope computed using five points. The middle point has zero weight,
the first two have negative weight, and points four and five have positive weight. Arguably, either
all the negative or all the positive values can be thought of as determining the slope. Between points
four and five, the last, and the most developed7 data point is point five, which has two-thirds of
the positive weight. For a ten point slope, the last point has 36% of the positive weight.

If one has perspective on the development uncertainty in the data to be trended, and the
uncertainties in the various points are statistically independent, one may estimate the variance of
the slope due to development uncertainty. If an estimated value has a standard deviation of the
possible ultimate losses of φ, then the the standard deviation of its logarithm may be estimated by
γ = φ × dlog

dx (µ) = φ
µ , or the coefficient of variation of the distribution of possible ultimate losses.

Given that the various points’ uncertainties are independent, one need only multiply the resulting
values (squared, for variance) by the squares of the weights in equation (9) to get the consequential
variance of the trend estimate across possible actual values of the ultimate losses.

In many cases, the variances of the logarithms of the ultimate losses, etc. may be directly
estimated (and be statistically independent), perhaps by using the approach in Hayne 1985. Then
the total variance of the error in the slope estimate due to loss development uncertainty is simply
the sum of the variances due to development at the various years, etc., each multiplied by the
square of the corresponding ”weight”

7Exactly how much development is involved of course depends on the line of business, perhaps the class of business,
etc.
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36

∑k
i=1 γ

2
i (2i− k − 1)2

(k3 − k)2
(7)

(where each γ2i is the variance of the logarithm of the ith data point.)
As one may see, this could sometimes be quite substantial . On the other hand, though,

the result above does not reflect the full error variance associated with the slope estimate from
regression. The regression result is also only an estimate, thus the error it makes predicting the
slope is also part of the total error variance of the resulting slope.

If one has a fairly good handle on the variance of the process error, the results may be improved
some by switching from the standard regression to “weighted regression”. Weighted regression
in this case may be illustrated by the goal or objective function it seeks to minimize. Standard
regression minimizes the squared differences between the points on the line and the data values.
Weighted regression, weights are assigned to each of the squared differences. They correspond to
the total variance (process and loss development) affecting each point. Thus one would seek8

k∑
i=1

(a+ bi− yi)2

σ2 + γ2i
= min. (8)

Another alternative is to use calendar year trend, which requires no loss development. However,
one must weigh that against its susceptibility to say, a claims department’s decision to close a large
percentage of their inventory in one of the calendar years (and how much that might distort the
trend) and the fact that the data is from somewhat older accident/report years.

2.2.4 The Weights (Yes Weights) of the Year-to-Year Differences in the Regression
Data

Section 2.2.2 provided the “weights” for determining the slope as a linear combination of the data
points. The next step is to show that the estimated slope from consecutive times t = 1, 2, ...., k is
a weighted average of the year-to-year increases yi+1 − yi. The first step in computing the weights
involves noting that, when k is odd, the weight w1 for y2− y1 must match (be the negative of) the
subsection 2.2.2 point-by-point type weight for y1 of

−6
k − 1

k3 − k
. (9)

A moment’s review of the sums will show that the weight wi applied to yi − yi−1 must equal the

“weight” from section 2.2.2 for the point yi in isolation, or
(

i.e. 62i−k+1
k3−k

)
less wi−1. The provides

a point-by-point formula for the wi’s.
That formula for the wi’s may be solved, and the resulting weights for the one year slopes are

wi = 6
i(k − i)
k3 − k

for each yi+1 − yi. (10)

The corresponding weights for the nine one year slopes in ten point regression are shown in
Figure 2.2.4.

8As information, extensions to some popular spreadsheet software packages that perform this calculation are
available at present if one does not wish to use a goal seek solution routine to compute this.
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Figure 2: Common (All Ten Point Regressions) Weights for the Nine One Year Slopes in the Data

These weights (wi’s) have a very important property—they sum to unity. Thus, the projected
linear trend (slope) b is really just a weighted average of the year-to-year slopes in the data. So the
original external projected trend ratio T+1 = exp(b) will be a geometric average of the year-to-year
growth values in that data. The same weights will be used, but they will represent exponents for
the various year-to-year growth values within the geometric average. Further, one should note that
although the weights for individual points yi are larger as one moves away from the center of the
experience period, the weights for the yi+1 − yi’s are larger near the center of the period.

2.2.5 Summary of the Results for Regression

In conclusion, the regression slope (logarithm of the trend value) may be expressed as a difference
between weighted sums of the loss, etc. values, or as a weighted average of the year-to-year changes.
That leads to an estimate of the effect of loss development uncertainty on the fitted slope. Further,
it is well known that the optimum prediction under regression to some period k + j is a straight
average (identical weights of 1/k) of the y values, plus the calculated slope times the number of
years from the mean time t̄ to the future period. As shown above, for this annual data, both
the beginning point and the slope to future periods are weighted values of the y’s. So any linear
projection to some future period k + j may be expressed as a weighted sum/linear function of the
y’s.

est(yk+j) =

k∑
i=1

[
1

k
+

(
k + 1

2
+ j

)
6(2i− k + 1)

k3 − k

]
ŷi. (11)

(Essentially, the yi
k sum to the mean of the yi’s. The k+1

2 trends from the mean time associated
with the mean of the yi’s to the time associated with the last data point. Lastly, the j term moves
it to the future time period desired for the projection.)

Overall, one may see that the standard loglinear trend algorithm is based on computing a
straight average for the starting point and a weighted average for the trend.
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2.3 The Trend with Random Drift Model: Varying Trend but no Process Error

The loglinear approach deals with situations where the true underlying expected loss values for
each year are not completely known, but the underlying trend is constant. The trend with random
drift case involves perfectly known expected loss values. However, in addition to the trend, those
expected losses “drift” in a random way.

This is really another use for a model that is widely employed by some other financial service
providers. Use of that model, geometric Brownian motion, to reflect changing costs is not new. It
is commonly used in the investment community as a model of risk-adjusted stock price evolution.
It has already been used in the actuarial world in Boor 1993 and McNichols and Rizzo 2012.

Basically, it assumes that the cost, etc. levels C(t) are affected by a constant trend (T as
always). However, the cost level is also buffeted by constant but random changes, so that from
year to year its logarithm is changed by a random selection from a normal distribution (in addition
to the long-term slope). The effects of these changes are cumulative in that all the prior changes
are embedded in each value. In the transformed distribution ln(C(t)) values at time s and time t
differ not only by the logarithm of the trend, but also by some value from a normal distribution
with some variance parameter δ2. It may be written

ln(C(t))− ln(C(s)) = (t− s) ln(1 + T ) + (t− s)δN(0, 1) (12)

(where N(0, 1), in a slight abuse of notation (for clarity), represents a sample from the standard
normal distribution).

One may describe δN(0, 1) as “random drift”. Since it is linear now, it is associated with the
slope of a line rather than with the compounding trend in the original trend data. So, this is “slope
with random drift” rather than “trend with random drift”. Notably in this linear case, in each set
of intervals (s, t) and (u, v) that do not overlap (other than at the endpoints), the samples from
the normal distribution are independent.

Figure 2.3 contains an example of what the expected loss ratio (in this case,without process
variance, also the historical losses). might look like in this scenario.

That means that the yearly slopes y2−y1, y3−y2, ..., yk−yk−1, (yi = ln(C(i)) are all independent
samples of the slope b = ln(1 + T ). Since there are k − 1 samples, the slope estimate using the
year-to-year changes is clearly

est(b) =
1

k − 1

k∑
i=2

yi − yi−1 (13)

One may note that any i not on the top or bottom of the range, is included in both yi+1 − yi
and yi−yi−1. So most of the terms cancel, leaving a slope estimate for these historical points under
slope with random drift of

est(b) =
1

k − 1
(yk − y1). (14)

In effect, the weights for the points are − 1
k−1 for y1,

1
k−1 for yk, and zero for the other points.

To finish the linear portion of this analysis, one may note that slope with random drift is well-
known to be “Markov” or “memoryless”. That means that for times after the last data point at k,
yk alone is the best point for making future predictions. y1, y2, ...yk−1 would only be useful when yk 
and perhaps additional values are not known. So, whereas predicting future values using regression
in equation (11) involved using middle of the time values at the starting point, slope with random
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Figure 3: Example of Expected Loss Ratios Buffeted by Random Drift

drift predictions begin with the most recent data point yk. So the linear slope with random drift
estimate for y at time k + j is

est(yk+j) = yk +
j

k − 1
(yk − y1) =

j + k − 1

k − 1
yk −

j

k − 1
y1 (15)

Unlike the regression system, translating the slope with random drift formulas back to the
needed trend with random drift values (C(i)’s) is easy. Equation (14), based on the difference
between the last point and the first point becomes a ratio, And the multiplier 1

k−1 becomes an

exponent, generating the k − 1st root of 1 + T =
(
C(k)
C(1)

) 1
k−1

. And per the Markov property

est (C(t+ j)) = C(k)×
(
C(k)
C(1)

) j
k−1

.

2.4 Trend with Both Random Drift and Process Error

Contrary to the assumptions of the last two sections, sometimes trend is influenced both by random
drift and process error. This section presents a model to use in such a situation.

2.4.1 Explanation of the Model

The previous models each include a core assumption that could sometimes be an unrealistic . Often
trend data from very large datasets that would seem to be susceptible to the trend with random
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drift view of subsection 2.3 appear to be a little different from what the theory would suggest. For
example, consider the consumer price index data in Table 1, where one would expect little process
error. Process error would create a situation where very large increases or decreases in the trend
could come from more extreme errors. In that case, a large decrease in the annual trend would be
followed by a large increase and vice versa. One cannot determine conclusively from the data, but
the changes in the trend from 2008 to 2009, 2009 to 2010, and 2010 to 2011 do suggest that some
process error (perhaps arising from the data collection process) is present.

Table 1: Year-to Year Trend Rates in Consumer Price Index (All Urban Consumers

Value at 12/31 Change
of Year CPI in CPI

2006 210.800
2007 210.036 -0.36 %
2008 210.228 0.09 %
2009 215.949 2.72 %
2010 219.179 1.50 %
2011 225.612 2.94 %
2012 229.601 1.77 %
2013 233.049 1.50 %
2014 234.812 0.76 %
2015 236.565 0.75 %

As one may see, the trend rates in the CPI data are fairly volatile. Further, it is possible that
the dynamics of the consumer price index involve even more complexity. Therefore it is reasonable
to question whether or not the loglinear trend model really captures the structure of the data it is
applied to. The concern with trend with random drift is more direct. One may also see that the
trend with random drift assumption that none of the points contain process error of any sort, is
suboptimal for datasets subject to process risk.

Therefore, an approach that recognizes both the process, etc. risk that makes the data points
imperfect representations of the underlying costs and also accommodates drift-type volatility from
year to year is needed. The approach begins with the trend with random drift process consistent
with

E [ln (C(i+ 1))] = E [ln (C(i))] + ln(1 + T ) + δN(0, 1) (16)

(with the notation abusing N(0, 1) terms representing independent standard normal samples for
each of the various intervals (i, i+ 1)).

Thus, E [ln (C(i+ 1))] follows the slope with random drift paradigm. But, rather than the pure
random drift involved in subsection 2.3, this scenario also includes the process error included in
subsection 2.2. Specifically, one may state that

yi = E [ln (C(i))] + σN(0, 1) (17)
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Figure 4: Example of Random Drift/Process Variance Combination

(with the N(0, 1) terms independent among the various indices i = 1, 2, ..., k).
Figure 2.4.1 illustrates this scenario. Both the expected loss ratios that are subject to random

drift and the historical loss ratios, that combine random drift and process variance, are shown.
With this understanding, one my start to develop methods for estimating the slope from the

historical data. That will be pursued in the next section.

2.4.2 Finding the Key Variances

Considering the presence of both types of volatility, the goal is to find the a and b that are most
consistent with the data. To do that, one must first define an error function or objective function
to minimize. The most obvious approach would be to take a page from the playbook of the other
two situations and seek the slope that is consistent with the lowest possible variance. However,
in this case there are actually two variances, both the process variance from subsection 2.2 and
the drift variance from subsection 2.3. So one must consider what combination of those should be
minimized.

For illustration, note that σ and δ (actually σ2 and δ2) may be estimated using historical data.
Per Boor 20159, once the slope is removed σ2 and δ2 may be computed using

E
[∑k−1

i=1 (yi+1 − yi)2 − (yk − y1)2
]

2(k − 2)
= σ2, (18)

9To facilitate its use, be aware that in the referenced paper the “yi’s’ were labeled as “Si”s to limit conflicts among 
variable names.
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and
E
[
(k − 1)(yk − y1)2 −

∑k−1
i=1 (yi+1 − yi)2 − (yk − y1)2

]
(k − 1)(k − 2)

= δ2. (19)

where each yj is the value of the linear (generally, log-transformed) value for the jth year, month,
etc.

However, when one attempts to simultaneously estimate the slope, process error variance σ2,
and drift variance δ2, the problem tends to become too unwieldy to perform reliably, at least per per
a few methods employed by the author. Therefore, one may suggest using the trend with random
drift approach when the values appear to be fairly compact around a curve, the approach of this
section when there is a similar non-linear appearance, but the values are not compact around the
curve, and the regression approach otherwise, at least as a starting point.

2.4.3 Estimating the Slope

On the other hand, if reasonable estimates of σ2 and δ2, may be made, then it as least possi-
ble to provide an estimate for the slope. The idea involves estimating the underlying “expected
loss”10/slope with random drift/no process error path, then use the standard slope with random
drift estimate of the slope of the expected values, [(most recent point) − (first point)]/(k − 1), of
the slope from subsection 2.3.

To do so, it is helpful to define the best approximation point-by-point as e1, e2, .. etc. These
are to be computed/estimated, along with the variance of each of them around the unknown true
expected losses/cost level (the τi’s) at each time. For example, at the first data value y1, the only
information available is the value y1, so that would be the estimate e1 of the first point. Its variance
around the true value11 on the underlying path of the expected values of losses would be σ2, which
can be set as the initial value τ21 .

For the second value along the path, we have two estimators, e1 + b and y2. The expected
prediction variance of y2, with respect to the value of the underlying expected losses would logically
be it’s variance from the those losses, or σ2. The expected squared prediction error generated by
e1 + b would be the squared error inherent in e1, or the process variance σ2, plus the inherent
volatility as one moves from year to year along the path, δ2. Since the two may generally be
thought to be independent, the variance of the error between the estimate e1 + b and the true value
along the path is δ2 + σ2.

That begins the iteration. Since the expected squared error e1 makes predicting the expected
value is τ21 = σ2, and the drift along the path is independent of the process error, the error e1 + b
makes (where b is the currently unknown slope) in predicting the second true point on the path
adds one year of random drift to make τ21 + δ2 the error variance of e1 + b in predicting the second
point on the path. The error variance of y2 would be σ2. A formula from best estimate credibility
(see Boor 1992) indicates that for these two independent estimators, the best estimate results from

10This could also be expected frequency, severity, etc
11The language is key here. In this case, the mean of e1 is equal to the actual underlying first point on the path 

the expected losses follow as they drift. However, if they did not match, the expected squared error predicting the
initial point on the path would have to include the squared difference between the mean of e1 and the mean of that
initial point along with the variance of e1. Considering that all the distributions used in this section are presumed to
be unbiased and independent, per Boor 1993, it should not be an issue. However, it is mentioned for completeness
and clarity.
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weighting each one by the expected squared prediction error of the other12. Therefore, the (best)
estimated value of the second point on the path the expected losses underlying the data actually
followed is

e2 =
σ2(e1 + b) + (τ21 + δ2)y2

τ21 + δ2 + σ2
. (20)

Since the two components are (clearly) independent, the variance of the result above is just the
result of multiplying the variances of the two by the scalar multipliers (like credibilities). A little
algebra results in in a formula for the error variance of e2 of

τ2 =
σ2 × (τ21 + δ2)

τ21 + δ2 + σ2
. (21)

Those may be generalized into recursive formulas for the e’s and τ ’s

ei+1 =
σ2(ei + b) + (τ21 + δ2)yi+1

τ2i + δ2 + σ2
. (22)

τi+1 =
σ2 × (τ2i + δ2)

τ2i + δ2 + σ2
. (23)

Of course, since that formula assumes that one already knows the slope, it is not directly useful
for estimating the slope. However, it may be used indirectly. In the regression model, the slope is set
so that squared residuals between the fitted line and the actual points are minimized. So, it would
be logical to seek the value of b for which the iterations of equations (22) and (23) generate the least
squared residuals between the best estimate ei’s and the actual points (yi’s). Table 2 illustrates the
process when a 10% exponential trend is accompanied by process error corresponding to σ2 = .005
after the logarithmic transform and drift variance δ2 = .002, also in the logarithmic transformed
data. Of course, the exponential/trend with random drift data is first converted to a linear system
using logarithms so that all the variables are on a linear basis. Then the calculations mentioned
earlier are carried out in Table 2. Lastly, the spreadsheet software searches for the value in medium
gray of the slope that minimizes the sum of squared differences between the data points and the
best estimate of the points along the underlying path. That, after conversion to loglinear trend,
forms the trend estimate.

The historical values and the estimated points on the path are shown in Figure 2.4.3.
One could question whether the fairly high accuracy (estimate of 9.85% vs. an actual 10.0%) of

this method is due to the larger slope predominating over the two variances. Therefore, the same
calculations were done for a trend rate of 3% in Table 3.

The sums of squared differences in Table 3 match Table 2 because the data to be analyzed
was the same, up to the slope, in both examples. However, notice that even the estimate of the
lower 3% trend was very, very good. For full perspective, though, in the experience of the author
if the data looks like it complies with the regression assumptions, typically this only provides a
marginal improvement in accuracy over the regression estimate. Further, as the number of data
points increases, the various methods are more and more prone to yield similar trend estimates.
This method may be more useful when the process variance is very small, when the pattern of the
data points contains a curve, hump, or something else inconsistent with the regression assumptions,

12If the reader is so inclined, one may verify that the formula works in this instance by using Bayesian methods.
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Table 2: Estimation of Underlying Slope With Both Random Drift and Process Error When Actual
Value (10%) is Larger than the Standard Deviations

Constants:
A. σ2 = 0.0050, σ = .0706 (considered known)
B. δ2 = 0.0020, δ = .0447 (considered known)

Exponential Trend = 10.00%, Slope of Logs = 9.53% (both to be found)

(1) (2) (3)=[Prior (6)] (4)=[Prior (7) (5)=(4)+B. (6)={[(3)+b]A.+(1)(5)} (7) = (5)×A. (8)=((2)-(3))2

/{A. +(5)} /(A.+(5)
“S” “e” Current Point Incoming Drift Outgoing Difference

Simulated Natural Log Est of Expected Variance Variance to Value of Data Point S
Year Loss Ratio of Loss Ratio Loss Level “τ” Next e Next e τ and e

1 101.3 % 0.0128 0.0128 0.0050 0.0070 0.1034 0.0029 0.00000
2 110.4 % 0.0987 0.1034 0.0029 0.0049 0.1925 0.0025 0.00002
3 120.6 % 0.1876 0.1925 0.0025 0.0045 0.3128 0.0024 0.00002
4 140.0 % 0.3365 0.3128 0.0024 0.0044 0.4383 0.0023 0.00056
5 159.3 % 0.4657 0.4383 0.0023 0.0043 0.4822 0.0023 0.00075
6 155.1 % 0.4389 0.4822 0.0023 0.0043 0.6342 0.0023 0.00188
7 198.2 % 0.6843 0.6342 0.0023 0.0043 0.6619 0.0023 0.00251
8 183.1 % 0.6047 0.6619 0.0023 0.0043 0.7690 0.0023 0.00328
9 218.2 % 0.7803 0.7690 0.0023 0.0043 0.8587 0.0023 0.00013

10 235.2 % 0.8551 0.8587 0.0023 0.0043 0.00001

b=Estimated Slope of Logs= 9.40% Sum of Differences Between Loss Level Path and Data Points= .00916
T=Est Loglinear Trend= 9.85%

or there are fewer data points. These alternate views are also better suited to situations where one
expects that the underlying trend changed significantly during the time period of the data.

In conclusion, while there is a workable formula for estimating the variance structure given
knowledge of the trend, there is also a workable formula for estimating the trend given the variance
structure. However, the author is not aware of any good approach to estimate both simultaneously.
Nevertheless, in certain situations, investing the time needed to execute this method can yield
better accuracy in the slope estimate.

3 Limited Fluctuation Credibility for Trend

Now that formulas that relate the trend calculations to individual points are available (at least for
regression and pure trend with random drift), it is possible to develop credibility formulas that are
designed specifically for trend. The two versions for limited fluctuation credibility follow.

3.1 What Would a (Limited Fluctuation) Credibility Formula for Trend Look
Like?

When considering credibility for trend, it is relevant to begin with the core goal of the given
credibility process. Although actuaries typically think of limited fluctuation credibility in terms of
claim counts, it is really about the rate, trend, etc. not changing too much unless the data clearly
indicate that a given change is needed. For example, for the common 1082 standard, the objective
is to not allow pure randomness in the data to arbitrarily change rates by more than 5% (up or
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Figure 5: Historical Values and Estimated Path of Expected Loss Ratio From Table 2

down), unless the data indicate such a change is needed. Further, since any amount of loss can
conceivably happen, “the data indicate such a change is needed” is defined as “There is a 10%
(or less) chance that the credibility-adjusted result will randomly create more than a 5% change.”
Those requirements are not based on claim counts, claim counts are merely a convenient way to
compute the credibility.

So, in the case of limited fluctuation credibility, the stated goal is that probability that random
chance causes losses to exceed some threshold ± R is limited to some suitably low probability p.
So, the goal is to find (or estimate) the pth and 1−pth percentiles of the distribution of possible
trends. Then one may appropriately throttle the distribution with a credibility factor Z so that
Z × F−1

trend(p) ≥ −R and Z × F−1
trend(1 − p) ≤ R, where F−1

trend(p) is the pth percentile of the
distribution of possible changes in trend.

3.2 Limited Fluctuation Credibility with Regression-Based Trend

Subsection 3.1 allows one the opportunity to define a general credibility formula for the regression
slope. Such a formula would depend on the variances, not on claim counts. Specifically, it is well
known that approximately 90% of the probability in the normal distribution is within 1.645 standard
deviations (up or down) of the mean (note that for purposes of considering pure randomness, the

mean would be “no change”). So if Z is set to be (maximum acceptable change in slope) ÷
(1.645 ×CV (linear slope))(where CV denotes the coefficient of variation of the slope estimate, the
standard deviation divided by the mean), the criteria underlying the 1082 standard (90% chance
of no change beyond the maximum acceptable change) will be fulfilled by credibility weighting the
slope with some very reliable ancillary data. However, that does require one to know the variance
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Table 3: Estimation of Underlying Slope With Both Random Drift and Process Error When Actual
Value (3%) is Smaller than the Standard Deviations

Constants:
A. σ2 = 0.0050, σ = .0706 (considered known)
B. δ2 = 0.0020, δ = .0447 (considered known)

Exponential Trend = 3.00%, Slope of Logs = 2.96% (both to be found)

(1) (2) (3)=[Prior (6)] (4)=[Prior (7) (5)=(4)+B. (6)={[(3)+b]A.+(1)(5)} (7) = (5)×A. (8)=((2)-(3))2

/{A. +(5)} /(A.+(5)
“S” “e” Current Point Incoming Drift Outgoing Difference

Simulated Natural Log Est of Expected Variance Variance to Value of Data Point S
Year Loss Ratio of Loss Ratio Level “τ” Next e Next e τ and e

1 1.013 % 0.0128 0.0128 0.0050 0.0070 0.0363 0.0029 0.00000
2 1.034 % 0.0330 0.0363 0.0029 0.0049 0.0603 0.0025 0.00001
3 1.058 % 0.0561 0.0603 0.0025 0.0045 0.1124 0.0024 0.00002
4 1.149 % 0.1393 0.1124 0.0024 0.0044 0.1695 0.0023 0.00072
5 1.225 % 0.2027 0.1695 0.0023 0.0043 0.1570 0.0023 0.00110
6 1.116 % 0.1101 0.1570 0.0023 0.0043 0.2336 0.0023 0.00220
7 1.336 % 0.2898 0.2336 0.0023 0.0043 0.2074 0.0023 0.00315
8 1.155 % 0.1445 0.2074 0.0023 0.0043 0.2442 0.0023 0.00397
9 1.290 % 0.2543 0.2442 0.0023 0.0043 0.2682 0.0023 0.00010

10 1.301 % 0.2633 0.2682 0.0023 0.0043 0.00002

b=Estimated Slope of Logs= 2.82% Sum of Differences Between Between Loss Level Path and Data Points= .00916
T=Est Loglinear Trend= 2.86%

of the fitted slope around the true slope.
It should then be clear that the main challenge in determining credibility for the regression slope

that underlines the trend is finding the percentiles of the distribution of possible slopes. However,
since the regression assumptions suggest a normal distribution, only the standard deviation is
actually needed. Thankfully, a standard statistic is available to identify the standard deviation.
Using the special additional regression option available in a common spreadsheet software package,
one may compute the key statistic needed. After first taking logarithms of the CPI data in Table
1, the spreadsheet option produces (as approximately excerpted from the regression output).

Table 4: Excerpt from Supplementary Information Spreadsheet Software Provided in Loglinear
Regression of Table 1 Data

ANOVA

df SS, MS F

Regression 1 0.01965 0.01965 173.0653602
Residual 8 0.00091 0.00011
Total 9 0.02056

Coefficients Standard Error, t Statistic p value

Intercept -25.62411 2.35860 -10.86411 4.55693E-06
X Variable 0.01543 0.00117 13.15543 1.06096E-06

The values in gray are the the mean (fitted) slope and the standard error (error standard
deviation) of the regression slope. Thus, the 1082-equivalent credibility calculation for the linear
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regression would be 5%/(1.645 ∗ (.00117/.01543)) = 40%
However, the credibility of the final trend T of the actual CPI values is slightly different. To

estimate the trend in the original CPI data, one must invert the logarithm and convert the trend
factor 1 + T = exp (slope) to the trend rate T = exp (slope) − 1. That affects the relative error
(which is supposed to, under the 1082 standard, be 5% or less) through the magnification or
shrinkage generated by the exponential function, as well as the denominator used in computing
the relative error. The magnification or shrinkage multiplier would be generated by the derivative
of exp (x) − 1, or exp (x) at x = .01543. The value is 1.01555. Then, since T = exp (.01543) −
1 = .01555, the 5% relative error allowed in determining the slope translates to relative error of
5%× 1.0155× .01543/.01555 ≈ 5.04%. So the 5% threshold still essentially holds in this example.
However, it is relevant to complete this final check to be certain that the credibility fulfills its
function appropriately.

3.3 Limited Fluctuation Credibility with Trend with Random Drift

Just as in loglinear trend, the key to limited fluctuation credibility for trend with random drift
trend lies in computing the variance, specifically, the variance between the computed slope and the
actual slope. In this case, the process is much more straightforward. In say, ten years, of data there
are nine year-to-year slopes. It is not difficult to calculate the variance of those slopes. Then, since
the estimate of the trend with random drift is simply the average of those nine slopes, all one need
do is divide the variance of the individual slopes by nine. That estimates the variance of the error
in the slope estimate, and the remaining process mirrors that used in subsection 3.2.

3.4 Usefulness of Limited Fluctuation Credibility for Trend

Of course, once it is computed, limited fluctuation credibility can be used in a wide variety of
situations. This can be used when the complement of credibility benchmark is countrywide trend
for the line of business, or when it is the trend in last year’s rate review. The flexibility and
(comparative) ease of computing this are offset somewhat by the fact that it does not result in
the most accurate estimate of trend. The methods of the next section will focus on accuracy, but
consequently the formulas are less robust.

4 Best Estimate Credibility for Loglinear Regression

As noted in Boor 1992, best estimate credibility depends not just on how well the data predicts
the loss costs, it also depends on how well (or poorly) the complement of credibility benchmark
predicts the loss costs. It further depends on whether or not the prediction errors generated by
the data and the benchmark are correlated. If one is using countrywide trend as a benchmark,
one might expect the errors to be uncorrelated. However, if one is using the trend generated last
year as a benchmark, one might expect substantial correlation. Therefore, the two approaches are
analyzed in separate sections.

4.1 Best Estimate Credibility with External Benchmark Data

Per Boor 1992, best estimate credibility is a function of the error each statistic (dataset) makes in
predicting the underlying quantity being estimated (in this case, the slope underlying the trend).
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For two predictors that make uncorrelated errors, the credibility weight of one statistic is propor-
tional to the squared error generated by the other statistic. One might expect that, say, trend
computed from countrywide data would make prediction errors that are largely uncorrelated with
those generated by the trend data of a small state. In general, most benchmarks tend to make
prediction errors that are unrelated to the those made using a dataset with lesser volume. So that
simpler, no covariance, formula would apply.

The next step that is required is to estimate the expected squared errors associated with the
two predictors (the slope computed from the subject data and the benchmark slope). However, as
discussed in subsection 3.2, that may be begun, for both the target data and the benchmark, by
using the standard errors of the two slopes obtained in the regression process.

For the subject data, that suffices to produce an estimate of the squared error. However, the
squared error the benchmark makes in estimating the subject slope solely requires another term,
because the benchmark and the subject data simply have different underlying slopes. Therefore, the
squared error the benchmark makes is more than just variance from the regression fit. That amount,
at least in this characterization, is a constant bias13 rather than variance. It does contribute to the
squared error, though. It is not hard to see that the expected squared error is equal to the variance
of the predictor plus the square of that bias.

Now, one may only know the actual bias by knowing the underlying slopes that are being
estimated. However, one could use the difference between the slope of the subject data and the
slope of the benchmark data to estimate the bias. Then the credibility of the slope in the subject
data is:

Z(subject data) = [
standard error2(benchmark) + (difference of slopes)2

]
/
[
standard error2(subject data) + standard error2(benchmark) + (difference of slopes)2

]
.

For example, When the Table 1 data is loglinearly regressed, the slope is 0.01543 and the
standard error is 0.012. If one could then identify a benchmark to supplement this (CPI) data,
and it had a slope of .017 and standard error of .003, the the credibility of the CPI data would

be .0032+(.01543−.017)2
.0122+.0032+(.01543−.017)2 = 74%. Thus, given the regression output, this is not a challenging

calculation.
It should be apparent that this general approach will also work with the slope with random drift

using the variance of year-to-year changes formula from subsection 3.3. Details are not provided as
the formula should also be apparent.

Of course, at this point, with either trend scenario, a credibility weighted estimate of the slope is
produced, but what is actually needed is the exponential-based trend. The procedure for converting
the expected squared error in the slope to that in the exponential trend has already been discussed
in subsection 3.2. Alternately, one may simply perform the credibility calculation on the regression
slopes, and then convert the result to a trend by applying the exponential function to the slope
and subtracting unity.

13Technically “bias”, although it does not have the strong negative connotation associated with bias that distorts
the results—as this improves the results.
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4.2 Best Estimate Credibility When Updating Loglinear Regression

In updating trend, the complement of credibility is either last year’s trend or last year’s slope. It
seems logical to use the same credibility for each. In contrast to the uncorrelated nature of the
errors in external benchmarks with internal data, last year’s slope uses much of the same actual
data as the subject data. So, then Boor 1992 indicates (after some algebra) that the optimum
credibility for the slope is

Z(subject data) =[
standard error2(old slope) + (difference of slopes)2 − covariance(new slope,old)

]
/[

standard error2(new slope) + standard error2(old slope) + (difference of slopes)2

−2× covariance(new slope,old)] .

(24)

The next issue to be resolved, then, is that of estimating the covariance between this year’s
slope and last year’s slope. The first tool lies in some additional output of the regression calculated
earlier using spreadsheet software. The data in Table 5 also comes from the regression on the Table
1 CPI data.

Table 5: Additional Excerpt from Supplementary Information Spreadsheet Software Provides in
Loglinear Regression of Table 1 Data

Multiple R 0.97766
R Square 0.95582
Adjusted R Square 0.95029
Standard Error 0.01066
Observations 10

The standard error in gray is the standard deviation of the “residuals”, or differences between
the fitted curve and the data points. Combining this with the weights from equation (9) in sub-
section 2.2, that are effectively used in computing the slope, one may see that the variance of each
(independent) point/residual and weight combination is equal to the square of the weight times the
standard error squared. To show that this works note this alternate computation of the previously
provided (Table 4) standard error of the slope.√√√√.010662 ×

k∑
i=1

(
6

2i− k − 1

k3 − k

)2

= .00117. (25)

The goal, though, is to compute the covariance of this year’s slope with last year’s slope. That
may be done in a similar fashion. It is not hard to see that the first year in the current trend period
was the second year in last year’s trend period, and so on. Then, if we further define rnew to be 
the standard error in the new regression and rold to be that of the prior regression, one may obtain 
(after some algebra) the following formula for the covariance
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Cov(new slope,old slope) =
k−1∑
i=1

rnewrold × 6
2i− k − 1

k3 − k
× 6

2i− k + 1

k3 − k
.

= rnewrold × 12
k − 3

k(k3 − k)
.

(26)

Note that this is essentially a constant, identical across all updates and data used in k period
regression, times the product of the two standard errors.

One may also note that this does not completely resolve the updating credibility problem. It
works when the complement of credibility term is last year’s slope, but not when it is the credibility
weighted average of several prior years that updating would have generated last year. However,
that problem is fairly complex. Per H. Gerber and D. Jones 1975, when these sort of covariances
exist, successive updates potentially, perhaps likely, require changes in the credibility mix of older
years to be truly optimal. So, each credibility-weighted average could easily contain a very different
set of weights, with no guiding formula to simplify constructing the covariance. Likely, there is still
some view of what is optimal that would accommodate this particular situation. Hopefully, this
provides a first step. Further, in context the formulas of this subsection could conceivably be used
to provide a proxy for the full updating credibility.

5 Summary

A detailed analysis of the trend, and associated linear slope, calculations was presented. Three
alternate scenarios for the underlying process driving the trend were presented, along with some
guidance for estimating the trend in each case. How often they produce materially different trends is
not known at present, but might represent an opportunity for further analysis. Lastly, using details
of the analyses of the trend process in this article, credibility formulas on both a limited fluctuation
and best estimate basis were provided. Those formulas focused primarily or conventional regression
trend, but form a template for the trend with random drift as well.
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The Pareto-Gamma Mixture 

Greg McNulty, FCAS 
 
________________________________________________________________________ 

Abstract: In this paper we will review some established properties and derive some new properties of a 
Pareto distribution with fixed scale whose unknown shape parameter is Gamma distributed. Namely: 

• that Gamma is a conjugate prior to the Pareto distribution 
• the formula for the posterior parameters of the Gamma given observed data 
• a closed form for the CDF of the Pareto-Gamma mixture 
• that the mean and all higher moments of the distribution are infinite 
• a formula for the moments of the limited expected value of a random variable following this 

distribution 
• the intractability of the closed form 

 
Keywords: Pareto distribution, Gamma distribution, Conjugate prior, Bayesian statistics, Reinsurance 
pricing 

             

1. INTRODUCTION 

Our company recently performed a study comparing the exposure based large loss models 
for a long-tailed line of business across a number of reinsurance cedents. The industry curves 
indicated losses excess of a common threshold followed a Pareto distribution with the scale 
parameter varying by cedent. Fitting a distribution to the sample of shape parameter values 
showed that they approximately followed a Gamma probability distribution. 

Hoping to benefit from the simple formulas of a conjugate prior relationship for a Bayesian 
model (and avoid more a difficult programming exercise using R) we found in the Wikipedia 
entry for “conjugate prior” [1] that Gamma was indeed conjugate prior to the Pareto. 
However, unlike for almost every other such pair of distributions, the closed form of the 
posterior predictive distribution was not given. We wondered if this was because it was not 
available or did not exist. 

It turns out the closed form does exist, and this paper will show a derivation relying at times 
on other well-established facts rather than providing full mathematical proofs. We will also 
explain why the mean and all higher moments of the distribution are infinite. Finally, we will 
derive the formula for powers of the limited expected value of x, although we will find them 
to be of limited usefulness.  

Please note, different texts and tools will use different parameterizations of the gamma 
distribution. This document attempts to be self-consistent using the definition in Section 2.2. 
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2. CONJUGATE PRIOR RELATIONSHIP 

Proofs will be supplied for each step, but the reasoning is as follows: the Pareto distribution 
is “log-Exponential”; Gamma is conjugate prior to the Exponential distribution; the conjugate 
prior relationship is preserved under the log transformation; therefore Gamma is conjugate 
Prior to “log-Exponential”, aka the Pareto distribution. 

2.1 Pareto is “Log-Exponential” 
To see this, let’s just write the PDF of a random variable whose log is exponentially 

distributed: 

𝑓𝑓(ln (𝑥𝑥)) ~ 𝑒𝑒−𝜆𝜆∗ln(𝑥𝑥) = 𝑥𝑥−𝜆𝜆 

To be a little more precise, we could start with the CDF of the Pareto: 

𝐹𝐹(𝑥𝑥) = 1 − �
𝑥𝑥
𝜃𝜃
�
−𝜆𝜆

; 𝑥𝑥 > 𝜃𝜃 

Now we can transform x into a random variable supported on [0,∞) by letting 𝑦𝑦 =
ln (𝑥𝑥/𝜃𝜃). Then we would have: 

𝐹𝐹(𝑦𝑦) = 1 − (𝑒𝑒𝑦𝑦)−𝛼𝛼 =  1 − 𝑒𝑒−𝛼𝛼𝑦𝑦 

This is the CDF of the exponential distribution, meaning a Pareto distributed random 
variable’s scaled natural log is exponentially distributed. We also see here the relationship 
between the parameters of the distributions, namely being equal under the correct 
parameterizations. 

2.2 Gamma is Conjugate Prior to Exponential 
For this section we will use Bayes’ Theorem: 

𝑝𝑝(𝜃𝜃|𝑥𝑥) ~ 𝑝𝑝(𝑥𝑥|𝜃𝜃) ∗ 𝑝𝑝(𝜃𝜃) 

where x represents the data and θ represents the model parameters. We use the following 
parameterizations of the Exponential and Gamma distributions: 

𝑓𝑓(𝑥𝑥; 𝜆𝜆) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥 

Γ(𝑥𝑥;𝛼𝛼,𝛽𝛽) ~ 𝑥𝑥𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑥𝑥 
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In this case conjugate prior would mean that if x is Exponentially distributed, and 𝑝𝑝(𝜆𝜆) is 
Gamma distributed, then 𝑝𝑝(𝜆𝜆|𝑥𝑥) is also Gamma distributed. Note that by x we mean a set of 
n observations of the random variable, which could also be denoted {𝑥𝑥𝑖𝑖}. Then we have: 

𝑝𝑝(𝑥𝑥|𝜃𝜃) =  �𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥𝑖𝑖
𝑖𝑖

 

Using Bayes’ Theorem: 

𝑝𝑝(𝜆𝜆|𝑥𝑥) ~� �𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥𝑖𝑖
𝑖𝑖

� ∗ 𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜆𝜆 

=   𝜆𝜆𝛼𝛼+𝑛𝑛−1 ∗ 𝑒𝑒−(𝛽𝛽+∑𝑥𝑥𝑖𝑖)𝜆𝜆 

~ Γ(𝜆𝜆;𝛼𝛼 + 𝑛𝑛,𝛽𝛽 + ∑𝑥𝑥𝑖𝑖) 

So, the posterior distribution of the Exponential parameter is again Gamma distributed, 
and we also have expressions for the posterior parameters of the Gamma distribution. 

2.3 Conjugate Prior Relationship Preserved Under Logarithm 
Now we can show that Gamma is a conjugate prior to the Pareto distribution. Suppose x 

is Pareto distributed: 

𝐹𝐹(𝑥𝑥) = 1 − �
𝑥𝑥
𝜃𝜃
�
−𝜆𝜆

; 𝑥𝑥 > 𝜃𝜃 

Further suppose the Pareto α is Gamma distributed: 

Γ(𝜆𝜆;𝛼𝛼,𝛽𝛽) ~ 𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜆𝜆 

Typically, the Pareto parameter shape parameter is called “alpha”, but in order to avoid 
confusion with the Gamma parameter we choose a different letter. Let’s again apply the 
transformation 𝑦𝑦 = ln (𝑥𝑥/𝜃𝜃). Then we see y is Exponentially distributed according to: 

𝐺𝐺(𝑦𝑦) = 1 − 𝑒𝑒−𝜆𝜆𝑦𝑦 

Now suppose we observe a set {𝑥𝑥𝑖𝑖}. This is equivalent to a set {𝑦𝑦𝑖𝑖} =  {ln (𝑥𝑥𝑖𝑖/𝜃𝜃)}. Because 
Gamma is conjugate prior to the Exponential, we know the posterior distribution is: 

𝑝𝑝(𝜆𝜆|{𝑦𝑦𝑖𝑖})~ Γ(𝜆𝜆;𝛼𝛼 + 𝑛𝑛,𝛽𝛽 + ∑𝑦𝑦𝑖𝑖)  

But the 𝜆𝜆 of the Exponential is the same as the 𝜆𝜆 of the Pareto. We know that the Bayesian 
posterior distribution is Gamma and we can rewrite the above equation as:  
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𝑝𝑝(𝜆𝜆|{𝑥𝑥𝑖𝑖})~ Γ(𝜆𝜆;𝛼𝛼 + 𝑛𝑛,𝛽𝛽 + ∑ ln(𝑥𝑥𝑖𝑖/𝜃𝜃)) 

Which means that Gamma is conjugate prior to the Pareto. 

3. CLOSED FORM OF THE MIXTURE 

We use the same logarithm transformation of a Pareto distributed variable into an 
Exponentially distributed variable to access the simpler derivation of the closed form for the 
Gamma-Exponential mixture. 

3.1 Gamma-Exponential Mixture 
Suppose we have that: 

𝑓𝑓(𝑥𝑥; 𝜆𝜆) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥 

g(𝜆𝜆;𝛼𝛼,𝛽𝛽) =
𝛽𝛽𝛼𝛼

Γ(𝛼𝛼)
 𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜆𝜆 

In other words, x is Exponentially distributed, with the rate parameter itself a variable 
which is Gamma distributed. Can we obtain a closed form for this mixture, i.e. a formula for 
f(x) unconditional on 𝜆𝜆 that does not contain integrals? 

The derivation below was posted on StackExchange [2] courtesy of user “heropup”: 

𝑓𝑓(𝑥𝑥) =  � 𝑓𝑓(𝑥𝑥|𝜆𝜆)
∞

0
∗ 𝑔𝑔(𝜆𝜆)𝑑𝑑𝜆𝜆 

= � 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥
∞

0

𝛽𝛽𝛼𝛼

Γ(𝛼𝛼) 𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜆𝜆𝑑𝑑𝜆𝜆 

=
𝛽𝛽𝛼𝛼

Γ(𝛼𝛼) � 𝜆𝜆𝛼𝛼𝑒𝑒−(𝛽𝛽+𝑥𝑥)𝜆𝜆𝑑𝑑𝜆𝜆
∞

0
 

The integral now looks similar to the Gamma function, so we use the substitution 𝑢𝑢 =

(𝛽𝛽 + 𝑥𝑥) ∗ 𝜆𝜆. Note that the limits of the integral do not change since this is just a scalar multiple 

and both x and 𝛽𝛽 are positive. Continuing from above: 

=
𝛽𝛽𝛼𝛼

Γ(𝛼𝛼) � �
𝑢𝑢

𝛽𝛽 + 𝑥𝑥
�
𝛼𝛼
𝑒𝑒−𝑢𝑢

𝑑𝑑𝑢𝑢
𝛽𝛽 + 𝑥𝑥

∞

0
 



The Pareto-Gamma Mixture 
 

Casualty Actuarial Society E-Forum, Spring 2021  5 

=
𝛽𝛽𝛼𝛼

Γ(𝛼𝛼) �
1

𝛽𝛽 + 𝑥𝑥
�
𝛼𝛼+1

� 𝑢𝑢𝛼𝛼𝑒𝑒−𝑢𝑢𝑑𝑑𝑢𝑢
∞

0
 

=
𝛽𝛽𝛼𝛼

Γ(𝛼𝛼) �
1

𝛽𝛽 + 𝑥𝑥
�
𝛼𝛼+1

Γ(𝛼𝛼 + 1) 

Using the identity Γ(𝛼𝛼 + 1) = 𝛼𝛼 ∗ Γ(𝛼𝛼) we find: 

𝑓𝑓(𝑥𝑥) =
𝛼𝛼𝛽𝛽𝛼𝛼

(𝛽𝛽 + 𝑥𝑥)𝛼𝛼+1 

=  
𝛼𝛼
𝛽𝛽
�1 +

𝑥𝑥
𝛽𝛽
�
−(𝛼𝛼+1)

 

This is the PDF of the Lomax distribution. It is essentially a standard Pareto distribution 

except the values are the amount in excess of the scale or threshold, which in this case is 𝛽𝛽. If 

the reader wishes to align these distributions with the Pareto types [4], then the standard Pareto 

refenced above is Type I, and the Lomax is a special case of Type II having 𝜇𝜇 = 0. 

3.2 Gamma-Pareto Mixture 
We showed before that the Pareto is “Log-Exponential”. Suppose we have a Pareto 

distributed random variable x with a fixed scale or threshold, but the Pareto shape or 𝜆𝜆 

parameter is Gamma distributed. We have: 

𝐹𝐹(𝑥𝑥) = 1 − �
𝑥𝑥
𝜃𝜃
�
−𝜆𝜆

; 𝑥𝑥 > 𝜃𝜃 

g(𝜆𝜆;𝛼𝛼,𝛽𝛽) =
𝛽𝛽𝛼𝛼

Γ(𝛼𝛼)
 𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜆𝜆 

Using the substitution 𝑦𝑦 = ln (𝑥𝑥/𝜃𝜃), from the previous section we know that y, 

unconditional on 𝜆𝜆, is Lomax distributed with parameters 𝛼𝛼,𝛽𝛽. Referencing Wikipedia for the 

CDF of the Lomax [3], we have: 

𝐹𝐹(𝑥𝑥) =  1 − �1 +
ln �𝑥𝑥𝜃𝜃�
𝛽𝛽

�

−𝛼𝛼

 

Note that the PDF would not just be plugging the substitution into the PDF of the Lomax 
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for y. The PDF is the derivative of the CDF, and so must contain an x somewhere due to the 

logarithm term. For completion, taking the derivative we obtain: 

𝑓𝑓(𝑥𝑥) =  𝛼𝛼 �1 +
ln �𝑥𝑥𝜃𝜃�
𝛽𝛽

�

−(𝛼𝛼+1)

∗
𝜃𝜃
𝛽𝛽𝑥𝑥

4. MOMENTS AND LIMITED EXPECTED VALUES

The introduction mentions that the mean and all moments of the “Log-Lomax” 
distribution are infinite. We can see this in two ways. First, we recall that the Pareto 
distribution only has a finite mean for shape parameter 𝜆𝜆  > 1. For this mixture, we have a 
certain probability of all 𝜆𝜆 ’s from zero to infinity. Since there is a positive probability of 
having 𝜆𝜆  ≤ 1, then the overall mean of the mixture must be at least that probability times 
infinity, hence it is infinite. The argument applies for all higher moments since the 𝑘𝑘 𝑡𝑡 ℎ 
moment of a Pareto only exists for 𝜆𝜆  > 𝑘𝑘 . 

The other way to see (which is actually the same reason mathematically) is that the PDF 
decays like: 

𝑓𝑓(𝑥𝑥) ~ 
1

𝑥𝑥 ln(𝑥𝑥)𝛼𝛼+1 

Obviously if we multiply by 𝑥𝑥𝑘𝑘 for integer 𝑘𝑘 > 1, then this quantity actually increases, 

giving an infinite integral. But even for 𝑘𝑘 = 1, i.e. the mean, the quantity ln(𝑥𝑥)𝛼𝛼+1 grows 

more slowly than x for any positive α, hence we have for large enough R: 

�
1

ln(𝑥𝑥)𝛼𝛼+1 𝑑𝑑𝑥𝑥
∞

𝑅𝑅
≥ �

1
𝑥𝑥
𝑑𝑑𝑥𝑥

∞

𝑅𝑅
= ∞ 

4.1 Limited Expected Value 

Even though the mean and moments are infinite, the limited expected values must 

obviously be finite. Especially if we are interested in reinsurance pricing applications, typical 

quantities of interest would be the expected loss, average severity, and standard deviation of 
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losses in a layer. Those can all be derived from the moments of the limited expected value of 

x.  

Again suppose: 

𝐹𝐹(𝑥𝑥) =  1 − �1 +
ln �𝑥𝑥𝜃𝜃�
𝛽𝛽

�

−𝛼𝛼

 

We then calculate the limited expected value: 

𝐸𝐸((𝑥𝑥 ∧ 𝐿𝐿)𝑘𝑘) =  � min(𝑥𝑥, 𝐿𝐿)𝑘𝑘 ∗ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

𝜃𝜃
 

=  � 𝑥𝑥𝑘𝑘
𝛼𝛼𝜃𝜃
𝛽𝛽𝑥𝑥

�1 +
ln �𝑥𝑥𝜃𝜃�
𝛽𝛽

�

−(𝛼𝛼+1)

𝑑𝑑𝑥𝑥
𝐿𝐿

𝜃𝜃
+ 𝐿𝐿𝑘𝑘 ∗ 𝑆𝑆(𝐿𝐿) 

For the second term we use the CDF formula from above: 

𝐿𝐿𝑘𝑘 ∗ 𝑆𝑆(𝐿𝐿) = 𝐿𝐿𝑘𝑘 �1 +
ln �𝐿𝐿𝜃𝜃�
𝛽𝛽

�

−𝛼𝛼

 

The first term can be expressed as: 

𝛼𝛼𝜃𝜃
𝛽𝛽
� 𝑥𝑥𝑘𝑘−1 �1 +

ln �𝑥𝑥𝜃𝜃�
𝛽𝛽

�

−(𝛼𝛼+1)

𝑑𝑑𝑥𝑥
𝐿𝐿

𝜃𝜃
 

=
𝛼𝛼𝜃𝜃
𝛽𝛽
� 𝑥𝑥𝑘𝑘−1𝛽𝛽𝛼𝛼+1 �𝛽𝛽 + ln �

𝑥𝑥
𝜃𝜃
��

−(𝛼𝛼+1)

𝑑𝑑𝑥𝑥
𝐿𝐿

𝜃𝜃
 

= 𝛼𝛼𝜃𝜃𝛽𝛽𝛼𝛼 � 𝑥𝑥𝑘𝑘−1 �𝛽𝛽 + ln �
𝑥𝑥
𝜃𝜃
��

−(𝛼𝛼+1)

𝑑𝑑𝑥𝑥
𝐿𝐿

𝜃𝜃
 

To simplify the integral, we make the substitution:  

𝑢𝑢 = 𝑘𝑘(𝛽𝛽 + 𝑙𝑙𝑛𝑛(𝑥𝑥/𝜃𝜃)) 

This gives us: 
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𝑑𝑑𝑢𝑢 =  
𝑘𝑘𝜃𝜃
𝑥𝑥
𝑑𝑑𝑥𝑥 ⇒ 𝑑𝑑𝑥𝑥 =

𝑥𝑥
𝑘𝑘𝜃𝜃

𝑑𝑑𝑢𝑢  

𝑥𝑥 = 𝜃𝜃𝑒𝑒𝑢𝑢/𝑘𝑘−𝛽𝛽 

𝑥𝑥 = 𝜃𝜃 ⇒ 𝑢𝑢 = 𝜃𝜃𝑒𝑒𝜃𝜃/𝑘𝑘−𝛽𝛽 

𝑥𝑥 = 𝐿𝐿 ⇒ 𝑢𝑢 = 𝜃𝜃𝑒𝑒𝐿𝐿/𝑘𝑘−𝛽𝛽 

Substituting those into the integral we get: 

𝛼𝛼𝜃𝜃𝛽𝛽𝛼𝛼 � 𝑥𝑥𝑘𝑘−1(𝑢𝑢/𝑘𝑘)−(𝛼𝛼+1) 𝑥𝑥
𝑘𝑘𝜃𝜃

𝑑𝑑𝑢𝑢
𝜃𝜃𝑒𝑒𝐿𝐿/𝑘𝑘−𝛽𝛽

𝜃𝜃𝑒𝑒𝜃𝜃/𝑘𝑘−𝛽𝛽
 

=  
𝛼𝛼𝛽𝛽𝛼𝛼

𝑘𝑘𝛼𝛼+2
� 𝑥𝑥𝑘𝑘(𝑢𝑢)−(𝛼𝛼+1)𝑑𝑑𝑢𝑢
𝜃𝜃𝑒𝑒𝐿𝐿/𝑘𝑘−𝛽𝛽

𝜃𝜃𝑒𝑒𝜃𝜃/𝑘𝑘−𝛽𝛽
 

=  𝛼𝛼𝛽𝛽𝛼𝛼 � (𝜃𝜃𝑒𝑒𝑢𝑢/𝑘𝑘−𝛽𝛽)𝑘𝑘(𝑢𝑢)−(𝛼𝛼+1)𝑑𝑑𝑢𝑢
𝜃𝜃𝑒𝑒𝐿𝐿/𝑘𝑘−𝛽𝛽

𝜃𝜃𝑒𝑒𝜃𝜃/𝑘𝑘−𝛽𝛽
 

=  𝛼𝛼𝛽𝛽𝛼𝛼𝜃𝜃𝑘𝑘𝑒𝑒−𝑘𝑘𝛽𝛽 � 𝑒𝑒𝑢𝑢𝑢𝑢−(𝛼𝛼+1)𝑑𝑑𝑢𝑢
𝜃𝜃𝑒𝑒𝐿𝐿/𝑘𝑘−𝛽𝛽

𝜃𝜃𝑒𝑒𝜃𝜃/𝑘𝑘−𝛽𝛽
 

Unfortunately, the integral part of the expression above does not have a closed form. It 

can be approximated numerically, or as we show below it can be expressed as a difference of 

values in the Incomplete Gamma Function (whose values themselves are numerically 

approximated). 

Plugging the results back into the original expression for the limited expected value we 

obtain: 

𝐸𝐸((𝑥𝑥 ∧ 𝐿𝐿)𝑘𝑘) =  𝛼𝛼𝛽𝛽𝛼𝛼𝜃𝜃𝑘𝑘𝑒𝑒−𝑘𝑘𝛽𝛽 � 𝑒𝑒𝑢𝑢𝑢𝑢−(𝛼𝛼+1)𝑑𝑑𝑢𝑢
𝜃𝜃𝑒𝑒𝐿𝐿/𝑘𝑘−𝛽𝛽

𝜃𝜃𝑒𝑒𝜃𝜃/𝑘𝑘−𝛽𝛽
+ 𝐿𝐿𝑘𝑘 �1 +

ln �𝐿𝐿𝜃𝜃�
𝛽𝛽

�

−𝛼𝛼

 

4.2 Incomplete Gamma Function 
 

The unsolvable integral from above is of the form: 
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� 𝑒𝑒𝑥𝑥𝑥𝑥−𝑐𝑐
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑥𝑥 

This looks very similar to the Gamma function. One could imagine substituting 𝑢𝑢 = −𝑥𝑥 

and getting: 

� 𝑒𝑒−𝑢𝑢(−𝑢𝑢)−𝑐𝑐
−𝑎𝑎

−𝑏𝑏
𝑑𝑑𝑢𝑢 

Suspending disbelief momentarily, let’s assume all the integrals and quantities involved exist 

and are finite. If the lower incomplete gamma function, defined by: 

Γ(𝑎𝑎, 𝑥𝑥) =  � 𝑒𝑒−𝑡𝑡𝑡𝑡𝑎𝑎−1𝑑𝑑𝑡𝑡
∞

𝑥𝑥
 

existed for negative values of x, then we could “simplify” the unsolvable integral above as:  

� 𝑒𝑒−𝑢𝑢(−𝑢𝑢)−𝑐𝑐
−𝑎𝑎

−𝑏𝑏
𝑑𝑑𝑢𝑢 = (−1)−𝑐𝑐 � 𝑒𝑒−𝑢𝑢𝑢𝑢−𝑐𝑐

−𝑎𝑎

−𝑏𝑏
𝑑𝑑𝑢𝑢 

= (−1)−𝑐𝑐(Γ(−𝑐𝑐 + 1,−𝑏𝑏) − Γ(−𝑐𝑐 + 1,−𝑎𝑎)) 

The two questions we need to ask are: is this true, and is this helpful? The problem with 

this being true is that we would need to know that Γ(𝑎𝑎, 𝑥𝑥) exists for negative x. Gautschi [3, 

pp. 3-4] references earlier works (that were unavailable to this author) on the incomplete 

gamma function which define: 

𝛾𝛾∗(𝑎𝑎, 𝑥𝑥) =  
𝑥𝑥−𝑎𝑎

Γ(𝑎𝑎)
𝛾𝛾(𝑎𝑎, 𝑥𝑥) 

where: 

γ(𝑎𝑎, 𝑥𝑥) =  � 𝑒𝑒−𝑡𝑡𝑡𝑡𝑎𝑎−1𝑑𝑑𝑡𝑡
𝑥𝑥

0
=  Γ(𝑎𝑎) − Γ(𝑎𝑎, 𝑥𝑥) 

and show that 𝛾𝛾∗is real valued for real a and x and exists for x<0. It’s well established that 

gamma functions can be extended to negative a values (excluding negative integers) using 

recurrence relations arising from integration by parts.  

Putting these results together, we can see how the (−1)−𝑐𝑐 term of our expression will be 
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cancelled out by the 𝑥𝑥−𝑎𝑎 term in the definition of 𝛾𝛾∗(𝑎𝑎, 𝑥𝑥) to show that the representation of 

the integral by the incomplete gamma function will exist and be real. 

But is this useful? Unfortunately, no for a couple of reasons. First, not all tools, programs 

and packages return values for negative arguments of the incomplete gamma function. Sage 

(available through cocalc.org) and some online calculators do, but standard packages in R and 

Python do not. Secondly, the size of some of the terms becomes large enough that the accuracy 

of the program used becomes questionable. Even in a simple example tested, the 𝛼𝛼𝛽𝛽𝛼𝛼𝜃𝜃𝑘𝑘𝑒𝑒−𝑘𝑘𝛽𝛽 

term became something on the order of 1070, and this was after attempting to use multiple 

tools, some of which returned an overflow error. Should we really trust if a program tells us 

1.234 … ∗ 1070 − 1.234 … ∗ 1070 = 42? 

However useful or not, the closed form formula for limited moments of the Pareto-

Gamma mixture is given by the following: 

𝐸𝐸((𝑥𝑥 ∧ 𝐿𝐿)𝑘𝑘) =  𝛼𝛼𝛽𝛽𝛼𝛼𝜃𝜃𝑘𝑘𝑒𝑒−𝑘𝑘𝛽𝛽(−1)−(𝛼𝛼+1) �Γ �−𝛼𝛼,−𝜃𝜃𝑒𝑒
𝐿𝐿
𝑘𝑘−𝛽𝛽� − Γ �−𝛼𝛼,−𝜃𝜃𝑒𝑒

𝜃𝜃
𝑘𝑘−𝛽𝛽�� 

+𝐿𝐿𝑘𝑘 �1 +
ln �𝐿𝐿𝜃𝜃�
𝛽𝛽

�

−𝛼𝛼

 

Due to these constraints, the author recommends approximating quantities of interest by 

simulating random draws and taking a sample average. Take care however not to do this with 

quantities whose true value is infinite, e.g. the uncapped mean of the mixture.  

5. CONCLUSION 

The Pareto-Gamma mixture can arise in the context of Bayesian models for large losses. 

We have shown some properties of the distribution, and derived closed form formulas for 

some quantities of interest, although unfortunately some of them are not of practical use. 

Hopefully the availability of this information can aid and encourage the recognition of 

parameter risk in large loss modeling, or perhaps the discovery of a similar model matching 

empirical data, but with more tractable formulas for quantities of interest. 
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1 Introduction

1.1 Overview

In one of his seminal works, Stephen W. Philbrick proposed an elegant solution to
the complex problem of modeling claims amounts in excess layers. The elegance
is the result of the following:

• He proposed a single parameter distribution to model claim layers where
there may be limited amounts of data. Having only a single parameter
maximizes the degrees of freedom of the model.

• The maximum likelihood estimator of the parameter has a straightforward
derivation.

• Actuaries are able to easily calculate severity values of interest.

The solution involved the use a Pareto Type I distribution for claims above an
excess threshold. Philbrick referred to this distribution as the ”Single Parameter
Pareto” (referred to as the SPP throughout this paper).

This paper expands on Philbrick’s work in several ways by providing the following:

In the remainder of this section, we reintroduce the SPP.

The Single Parameter Pareto Revisited

Rajesh Sahasrabuddhe

January 21, 2021

Abstract

In his paper in the 1985 Proceedings of the Casualty Actuarial Society, 
Stephen W. Philbrick [Philbrick 1985] proposed the use of the Single 
Parameter Pareto distribution to model excess layer claim severity dis-
tributions. In this paper, we reintroduce the distribution. We provide 
guidance as to when it is appropriate to model claims using the Single 
Parameter Pareto and offer a new approach to estimate its parameter and 
identify the appropriate threshold.
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In Section 2, we describe a test to determine when it is appropriate to model
claims using the SPP. We extend this test to support the determination
(rather than selection) of the excess claims threshold and determination of
the Pareto parameter. We conclude this section with a recipe for analysis.

In Section 3, we review the Pareto parameter. We explore the relationships
of the parameter to both the excess loss threshold and cost levels.

In Section 4, we discuss actuarial applications of the SPP and parameter
values less than 1.

In Section 5, we provide concluding remarks.

In Appendix A, we present an errata to Philbrick.

In Appendix B, we provide a review of the various formulæ related to the
SPP including supporting derivation.

In Appendix C, we provide the R code supporting the figures included in this
paper.

1.2 Preliminaries

Philbrick’s SPP is a special case of the Pareto Type I distribution which has the
following cumulative distribution function:

F (x) = 1−
(
k

x

)a

(1.2.1)

The scale parameter (k) in the Pareto Type I is not necessary in the SPP because
the data are scaled. As such the SPP is equivalent to a Pareto Type I with
scale parameter equal to 1 that is fit to transformed data. We then invert the
transform to calculate quantities of interest.

1.3 The Single Parameter

Readers of Philbrick are often confused by the reference to the single parameter.
After all, in Section III Philbrick initially presents the Pareto with two parameters
(as we present in Equation 1.2.1), k and a, and then later adds that claims
should be “normalized” by dividing by the “selected lower bound.”

This presentation leaves many readers not understanding how the lower bound,
k, “lost” its parameter status. Philbrick explains that this is because:

Although there may be situations where this value must be estimated,
in virtually all insurance applications this value will be selected in
advance. (Philbrick, Section III)

The Single Parameter Revisited
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We offer the alternative view that users of the SPP model should consider the
process of normalizing the claims to be a transformation of the data rather than
the application of a parameter. An analogous transformation occurs when we
take (natural) logarithms. When we do that, we do not consider the base of the
logarithm (e) to be a parameter. Similarly, we should not consider the lower
bound to be a parameter.

To improve the clarity of this concept, we present Table 1 comparing the more
traditional two parameter Pareto Type I and the SPP. We denote the raw claim
amounts as observations of the random variable C and the normalized claim
amounts as Z1.

Distribution Pareto Type I SPP

Random Variable
Observed Normalized

Claim Claims
Amount C Amount Z

Transformation
Not Z = g(C)

Applicable g(C) = C/lower bound

Parameters k > 0 (scale); a > 0 (shape) q > 0 (shape)

Domain [k, ∞] [1, ∞]

Density a
ka

Ca+1
qz−(q+1)

Table 1: The Pareto Type I and the SPP

The support of both the Pareto Type I and the SPP distribution are claims in
excess of a threshold. The support for the former is all claim amounts greater
than k. The support of the latter is all claim amounts greater than the lower
bound which results in the normalized claim amounts greater than 1.

We can now work with model forms in the space of Z and then use g−1 to
transform back into the space of C. We can also now present the density and
distribution functions.

f(z) = qz−(q+1) (1.3.2)

F (z) = 1− z−q (1.3.3)

In Appendix B.1, we provide the derivation of the distribution function (Equation
(1.3.3)).

1Later in this paper, we advocate an approach that requires plotting data on an x, y
coordinate system. We use C and Z to avoid confusion with that coordinate system.

The Single Parameter Revisited
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2 When is it appropriate to use the SPP?

Philbrick introduced the SPP as a distribution to model excess claims. As such,
the most common actuarial use of the SPP is in the modeling of claims in the
tail of a distribution which is of interest when the tail is said to be “thick” or
“heavy.” Of course, the terms ‘thick” or “heavy” have no formal definition.

The simplicity/elegance of the SPP has had the unintended consequence that
the SPP is widely-used without an assessment to determine if and where the
data follow a Pareto distribution. (We note that Philbrick did not include
such an assessment.) We propose an “assessment approach” (as compared
to Philbrick’s “selection approach”) in this paper. We begin by applying our
proposed approach to normalized data. We then extend the concept to data
that is not normalized. We recommend that latter approach for actuaries to use
in fitting the Pareto model.

2.1 The Zipf Plot

Specifically, we note that Pareto-distributed data plot as a straight line on a
Zipf plot[Cirillo 2013].

To construct a Zipf plot, we plot the (empirical) survival function on the y-axis
and the data points on the (transformed) x-axis. Both axes are on a log2 scale.

y-values From Equation (1.3.3), we recognize that the survival function is
1− (1− z−q) = z−q and the natural logarithm of the survival function is
−q ln z.

x-values We note that the x values of the Zipf plot are ln z

We represent the linear relationship 3 of the y and x values as:

−q log z ∼ b1 log z (2.1.4)

Simplifying Equation 2.1.4, we have the straightforward observation that the
coefficient of log z on the right hand side of the relationship (i.e., b1) represents 
an estimator for the negative of the Pareto parameter (i.e., −q).

2.2 Zipf Plot Example Normalized Pseudo Data

In this section, we demonstrate the use of the Zipf plot using normalized pseudo 
data. We refer to this data as normalized consistent with the Philbrick definition 
raw values have been divided by the selected lower bound.

2All reference to logarithms that I include throughout this paper are natural logarithms. 
3This notation indicates that the left side of the ∼ is a function of the right side of the ∼ 

without specifying any possible other terms of the relationship.
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To generate that pseudo data, we assume that each of n observed points is located
at the midpoint of evenly-spaced probability intervals4 . That is, the empirical
distribution and survival functions for the ith ordered point, (z(i), i ∈ [1, n])
are:

F (zi) =
i− 0.5

n
(2.2.5)

S(zi) =
n− i+ 0.5

n
. (2.2.6)

From Equation (1.3.3), we recognize that associated normalized data points,
z have values S(zi)

(−1/q). Also, importantly, we use z(1) to represent the first
observed value. We later discuss the significance of z(0).

Then pseudo data points on the Zipf plot are:

(xi, yi) = (ln z(i), ln(
n− i+ 0.5

n
))

where we now use z(i) to indicate the i-th order statistic of the data sample.

Then, we can use linear modeling tools to facilitate calculation of slope of line
through the data points using ordinary least squares.

For the normalized data, using the following logic, we understand that the
constant in the relationship (that is, the y-intercept) is, by definition, 0:

• Since the x-axis represents values of the log(z), we denote the minimum
z-value as z(0).

• F (z(0)) = 0;S(z(0)) = 1

• The y-value at z(0) is ln(S(z(0)) which is equal to ln 1 = 0.

Similarly we understand that z(0) = 1 results in an x-value = ln(z(0)) = 0. We 
now recognize that the line fit to the point on the Zipf-plot passes through the 
origin.

We present Zipf plots using 100 pseudo-data points at q values of 0.5, 1.0, 1.5 
and 2.0 in Figure 1 and include the least squares fitted line and the associated 
regression coefficient. In Appendix C.1, we present the R code used to generate 
Figure 1 which includes a function that can be used to generate Zipf-plots 
(adapted from [Cirillo 2013]).

2.3 The Lower Bound

Suppose however that the data were not normalized by a selected lower bound 
(we will denote that lower bound as B here). Then, we multiply each of the

4We emphasize that this is pseudo data meant only to support the reader’s replication 
of the example. We acknowledge that this is not the only means through which one could 
generate pseudo data. In practice, we assume that the reader would be applying the recipe to 
observed data.
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Figure 1: Zipf Plots

x-values in Figure 1 by B, and the lns of the x-values would move rightward by
lnB. We can now see that we have returned to our original claim amounts C.
More importantly however, the constant in the linear relationship between ln c
and ln S(z) = ln S(c) is no longer 0 since the c(0) is now B rather than 0.

We can now use the linear relationship to solve for the x-value at which the
y-value of the fitted line is equal to 0 (i.e., the x-intercept).

That is, we evaluate lnS(c) = β0 + β1 log(c) at c(0).

lnS(c(0)) = β0 + β1 ln(x(0))

ln 1 = β0 + β1 ln(c(0))

0 = β0 + β1 ln(c(0))

c(0) = exp(−β0/β1)

Readers should recognize that we do not observe c(0); c(1) is our first observed 
value. The linear model provides statistical support for the threshold which in 
Philbrick was selected

2.4 Analysis Recipe

The elegance and stated purpose (modeling of excess layers) of the SPP invite 
its use without an evaluation of the appropriateness of the model. Key findings 
of this research paper are as follows:

Identify if and where data are Pareto-distributed Actuaries should use 
Zipf plots to understand first which data regions are indeed Pareto dis-

The Single Parameter Revisited
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tributed. That is, the actuary should identify the range of data that
exhibits a linear pattern on a Zipf plot. Statistical evaluation of linearity
is outside the scope of this paper. However, we would suggest the follow-
ing initial tests. (Note that below, we recommend a reevaluation of this
assumption)

• a plot of the residuals of linear model as a function of fitted values

• a visual analysis

If the data do not appear to be linear on a Zipf plot, a Pareto model should
not be selected.

If the data are (reasonably) linear in a certain region, the actuary, should
then discard all data points outside the region of linearity.

Determine threshold and Pareto-parameter The actuary should then use
the results of a linear model fit through the the remaining points (and only
those points) of the Zipf-plot to parameterize that model. (This Zipf plot
will differ from the initial plot as the empirical survival function will be
calculated using only the retained data.)

• The negative of the covariate of ln c should be used as the estimator
for the q parameter. (We explore advantages of this estimator to the
maximum likelihood estimator in the next section.)

• the ratio of the negative of the intercept of the linear model and the
covariate of ln c represents the value at which the data begin to be
Pareto distributed.

• We can (and should) use tools (e.g., autocorrelation of residuals) that
we use to statistically evaluate linear models to determine whether
the data are indeed Pareto distributed (i.e., linear).

• The linear model output includes the standard error of the covariate
(i.e., parameter uncertainty).

Application The actuary can then return to the presentation in Philbrick for
formulæ relevant for modeling.

Actuarial judgment Actuaries should continue to apply judgment where ap-
propriate throughout the process including but not limited to, assigning
predictive value to underlying data points and in interpreting and using
the modeling results.

Application of actuarial judgment is particularly important in addressing
the practical issues that we discuss in Section 2.4.1.

The Single Parameter Revisited
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2.4.1 Practical Issues

In executing this recipe in practice, there is one primary issue that we have
encountered. That is, data are never perfectly Pareto-distributed as are the data
in Figure 1. Specifically data will generally display some level of non-linearity.
That is, data will typically display a concave down or concave up pattern.

Concave Downward Data that is concave downward will yield an indicated
threshold that is greater than the initially selected threshold.

Concave Upward Data that is concave upward will produce an indicated thresh-
old that is less that the initially selected threshold.

We have offer the following options for responding to this issue.

Re-select and Refit We could reexamine the data and identify a new value
above which data are Pareto-distributed. We could then refit the linear
model. This would be an iterative process.

Exclude individual data We could also exclude (inappropriately) influential
points in fitting the model.

Accept the model In our experience, in many cases that data exhibit the
patterns described, the indicated Pareto-parameter only changes slightly
as we apply one of the two prior approached. So, we could retain the
Pareto-parameter from the model but use judgment that considers both
the model and the data in selecting the threshold value.

Actuaries should use professional judgment in the selection of which of these
options to use.

The Single Parameter Revisited
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3 The Pareto Parameter

Pseudo data plotted on Zipf plot also provides an important tool to help us
understand the relationship between the data and the Pareto model. In this
section, we use those tools to understand the following:

• Why the linear model produces a more robust estimator for the Pareto pa-
rameter.

• The effect of trend on the parameter and the lower bound.

3.1 Parameter Estimation

We now compare the approach that we present to Philbrick’s approach to
estimating the Pareto parameter.

• The maximum likelihood estimator (MLE) presented in Philbrick is:

q =
n∑
lnx

. (3.1.7)

We should recognize that the MLE is simply the reciprocal of the mean of
lnx.

• Option 2 is to use the coefficient of the linear model described in Section
2. For convenience, we will refer to this estimator as the CLM (coefficient
of linear model).

We evaluate these alternatives considering the practical issues of missing data 
related to the estimation of the parameter. Specifically, we should understand 
that our observations may not be a representative sample of the claims that 
would be generated by a phenomenon that produces Pareto-distributed data.

To understand the effect on the parameter, we first consider situations where we 
only observed certain data points but that all possible data points are perfectly 
Pareto distributed. (That is, there is no process variance in the underlying data 
generation.) In Figure 2, we present an example where there are potentially 20 
observed points (our population) and between 5 and 15 points are not observed 
in the samples (our samples). We generate all possible combinations under these 
conditions. In the upper panel, we plot the mean indicated parameter using MLE 
and CLM; in the lower panel, we plot the standard deviation of the indicated 
parameters.

We note that neither approach perfectly reproduces the underlying parameter. 
However, we did note that for many different values of the true parameter, the 
CLM resulted in an estimate closer to the actual value. We performed this 
analysis through simulation and present the underlying R code in Appendix C. 
Intuitively however we can recognize that a model (as is the basis for the CLM)

The Single Parameter Revisited

Casualty Actuarial Society E-Forum, Spring 2021 9



6 8 10 12 14

1.
5

2.
0

2.
5

3.
0

Unobserved Data (out of 20)

M
ea

n 
In

di
ca

te
d 

q MLE
CLM
Actual

6 8 10 12 14

0.
4

0.
8

Unobserved Data (out of 20)

S
D

 In
di

ca
te

d 
q MLE

CLM

Figure 2: Comparison of Parameter Estimation Models

will help to extract signal from the data whereas an average (as this the basis 
for the MLE) effectively does not distinguish between noise and signal.

3.2 Trend

Philbrick espouses that the Pareto parameter should not be adjusted for claims 
inflation. That is, he argues that claims inflation results in frequency trend as 
more claim enter the “Pareto layer” but that there is no change to the SPP 
severity model.

With our recommended assessment approach, this is no longer intuitive or 
desirable. That is, Philbrick is implying that claims “become” Pareto-distributed 
once they trend to values above the threshold but that data is not Pareto-
distributed below the threshold. In our approach, the use of the Zipf-plots 
maximizes the data used in our modeling. We identify the threshold above which 
all claims (which we presume have been appropriately adjusted to a common 
cost level) are Pareto-distributed. The Philbrick approach implies different levels 
of trend on either side of the threshold and that the trends acts in a way as to 
“push” claims over the threshold so as to preserve the Pareto parameter. While 
there is certainly a possibility that all these conditions are met, we view the 
simultaneous existence of all conditions as unlikely.

More specifically, we view ”cost-leveling” as a separate modeling choice for the
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actuary. That modeling is outside the scope of this paper. Using the linear
model-based approach to determining the Pareto parameter and the threshold,
and assuming that each claim is subject to the same rate of trend, each claim
in the Pareto-distributed portion of the data would move right (inflationary
trend) or left (deflationary trend) by an amount equal to the ln of the trend
adjustment. The x-intercept (that is the threshold value) would similarly shift
and the y-coordinates would not change. Similarly the covariate would not
change.
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4 Actuarial Application

4.1 Parameter Values

To provide context to the Pareto parameter, we first review the application of
the SPP.

We can use Equation (4.1.8), to calculate the limited expected value through b
as presented in Appendix B.3 as:5

E[X; b] =
q − b1−q

q − 1
(4.1.8)

In that derivation, there is no restriction that q > 1 as exists in the determination
of the unlimited mean presented in Equation (B.2.14). That is, we recognize that,
although the limited expected value is undefined, expected values are defined
when we have an upper limit (such as a policy limit). Moreover, In Section IV.,
Philbrick indicates that:

... but most actual data suggests that the tail of the Pareto is still
somewhat too thick at extremely high loss amounts. In other words,
the theoretical density at high loss amounts is larger than empirical
experience tends to indicate. Rather than discard the Pareto, it is
easier to postulate that the distribution is censored or truncated
at some high, but finite, value. As we have seen earlier, any upper
limitation (either censorship point or truncation point) will produce
formulæ for the mean claim size that are finite for all possible values
of q.

As such, users of the SPP need not “fear” q values less than 1 for most insurance 
applications.

4.2 Claim Costs by Layer

Estimating claims for an excess policy is, of course, likely the most common use
of the SPP. This was also a focus of Section III of Philbrick. For the expected 
claim amount for the layer between AP and L, we have:

5Philbrick used b to refer to both the “lower bound” and the policy limit. We will not do 
that in this paper primarily for clarity as using a variable to represent the lower bound implied 
at least the possibility that the lower bound was a parameter. Conveniently, it also allows us 
to use the traditional policy notation as attaching at AP through limit L with the resulting 
layer width equal to L − AP .
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E[X;AP,L] =
q − L1−q

q − 1
− q −AP 1−q

q − 1

=
AP 1−q − L1−q

q − 1
(4.2.9)

4.3 Policy Claims Estimate

The purpose of the Philbrick calculation was likely to demonstrate that the
average claim size in the layer between AP and L was equal to the expected
value of claims limited to L/AP net of the lower bound but multiplied by AP .
The latter is calculated as Equation (4.1.8) −1 which simplifies to:

1− b1−q

q − 1
×AP (4.3.10)

We can demonstrate that using Equation (4.2.9) and the survival function as
follows:

AP 1−q − L1−q

q − 1

S(AP )
=

AP 1−q − L1−q

q − 1

AP−q

=
1

q − 1
× AP

AP
× AP 1−q − L1−q

AP−q

=
AP

q − 1
× AP 1−q − L1−q

AP 1−q

=
AP

q − 1
×

(
1−

(
L

AP

)1−q
)

=
1− (L/AP )1−q

q − 1
×AP (4.3.11)

As mentioned, the most common actuarial application of the SPP is to estimate
the number of claims, their average value and the resulting aggregate claim
amount to a policy. We summarize those formulæ for N ground-up claims in
Table 2.

The Single Parameter Revisited

Casualty Actuarial Society E-Forum, Spring 2021 13



Number of Claims S(AP ) = N ×AP−q

Average Value of Individual Claims
1− (L/AP )1−q

q − 1
×AP

Aggregate Claim Amount N × AP 1−q − L1−q

q − 1

Table 2: Policy Analysis

5 Concluding Remarks

Our goal with this paper was to provide additional guidance in deploying
Philbrick’s elegant solution to a complex problem. Our guidance supplements
Philbrick with data visualization and model fitting that we expect would produce
more robust solutions to the application of the Single Parameter Pareto in
modeling excess claim layers.
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Appendices

A Errata

In reviewing Philbrick, we noted two typographical errors and one calculation
error. These are discussed below.

A.1 Philbrick Errata #1

In the application of formula (4.1.8), we should understand that there is a minor
typographical error in Philbrick. The second paragraph following Equation (6)
appears on Page 56 and includes the following:

b = 20× (500, 000/25, 000)

which should be

b = 20 = 500, 000/25, 000

A.2 Philbrick Errata #2

Starting at the bottom of Page 58 and extending to Page 59, Philbrick presents
an example with a q parameter of 1.5 and expected claim count of 7 that results
in the following (where S(x) represents the survival function):

F (4) = 1− 4−1.5

F (4) = 7/8

S(4) = 1− F (4) = 1/8

E[n] = 7

E[n;x > 4] = 7× S(4) = 7/8 (A.2.12)

(It is unfortunate that, in this example both E[n;x > 4] and S(4) both equal
7/8.)

E[X] =
1.5

1.5− 1

E[X] = 3
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E[X; 4] =
1.5− 41−1.5

1.5− 1

E[X; 4] =
1.5− 4−0.5

0.5

E[X; 4] =
1.5− .5

0.5
E[X; 4] = 2

The average severity of claims in the layer is (E[X]− E[X; 4])/S(4) = 8. Using
the frequency calculated in Equation (A.2.12), we estimate claims in the layer
to be 8× 7/8 = 7 which agrees with Philbrick’s calculation.

The error occurs when the example is extended to calculate claims in the layer
from AP = 3 to L = 7.5. Using the approach above, we have the following:

E[X; 3] = 1.845299

E[X; 7.5] = 2.269703

F (3) = 0.8075499

S(3) = 0.1924501.

We have average claim amounts in the layer at

E[X; 7.5]− E[X; 3]

1− F (3)
= 2.205267

which agrees with Philbrick’s calculation of “net average claim size” on Page
59. However, the corresponding frequency should be 7 × S(3) = 1.347151
and resulting expected claims in the layer of 2.970827. The purpose of the
F (87, 500/75, 000) = F (2.5) term in the frequency calculation is not entirely
clear to this author.

A.3 Philbrick Errata #3

Equation (11) indicates that “nth moment of the Pareto distribution with no

upper limit is”
q

q + n
. Then, in Equation (12) the second moment is represented

in the calculation of variance by
q

q − n
and of course we have the calculation of

mean (first moment, n = 1) as
q

q − 1
. We can see the error in Equation (11).
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B Derivation of Forumulæ

B.1 SPP Cumulative Distribution Function

F (x) =

∫ x

1

f(x) dx

=

∫ x

1

qx−(q+1) dx

= q

∫ x

1

x−(q+1) dx

= q
1

−(q + 1) + 1
x−q

∣∣∣x
1

= q
1

−q
x−q

∣∣∣x
1

= −x−q
∣∣∣x
1

= −x−q − (−1−q)

F (x) = 1− x−q (B.1.13)

B.2 Expected Values

E[X] =

∫ ∞
1

xf(x) dx

=

∫ ∞
1

xqx−(q+1) dx

= q

∫ ∞
1

x−q dx

= q
1

−q + 1
x−q+1

∣∣∣∞
1

=
q

1− q
x−q+1

∣∣∣∞
1

E[X] =
q

1− q
1

xq−1

∣∣∣∞
1

(B.2.14)

We can see that for x = 1 (the lower limit of integration) equation (B.2.14)

evaluates to
q

1− q
. However for x =∞ (the upper limit of integration), we have

the following6:

6In the limit as x→∞, the expression evaluates to −
q

q + 1
. However evaluated at ∞, the

expression is undefined.
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q

1− q
1

xq−1
=


0, if q > 1

undefined, if q = 1

∞, if q < 1

and therefore we have:

E[X] =


0− q

1− q
, if q > 1

undefined, if q = 1

∞, if q < 1

or more simply:

E[X] =


q

q − 1
, if q > 1

undefined, if q ≤ 1
(B.2.15)
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B.3 SPP Limited Expected Value

The limited expected value is calculated as:

E[X; b] =

∫ b

1

xf(x) dx+ b(1− F (b))

=

∫ b

1

xqx−(q+1) dx+ b(1− F (b))

= q

∫ b

1

x−q dx+ b(1− F (b))

= q
1

−q + 1
x−q+1

∣∣∣b
1

+ b(1− F (b))

=
q

1− q
1

xq−1

∣∣∣b
1

+ b(1− F (b))

=
q

1− q

[
1

bq−1
− 1

1q−1

]
+ b

[
1− (1− b−q)

]
=

q

1− q

[
1

bq−1
− 1

]
+ b

[
b−q
]

=
q

q − 1

[
1− 1

bq−1

]
+ b1−q

=
q

q − 1

[
1− b1−q

]
+ b1−q

=
1

q − 1

[
q − qb1−q + (q − 1)b1−q

]
=

1

q − 1

[
q − b1−q

]
=
q − b1−q

q − 1
(B.3.16)
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B.4 Maximum Likelihood Estimator for Parameter

The negative log-likelihood (NLL) function given data D = x1 . . . xn is defined
as:

L(q) =
n∏

i=1

fxi

NLL = −
n∑

i=1

ln(fxi)

NLL = −
n∑

i=1

ln(qx
−(q+1)
i )

NLL = −
n∑

i=1

[
ln q + lnx

−(q+1)
i

]
NLL = −

n∑
i=1

[
ln q − (q + 1) lnxi

]
NLL = −n ln q +

n∑
i=1

(q + 1) lnxi

NLL = −n ln q + (q + 1)

n∑
i=1

lnxi

We can calculate the MLE of q by taking partial derivatives and setting equal to
0.

0 =
∂

∂q

−n ln q + (q + 1)

n∑
i=1

lnxi


0 = −n1

q
+

n∑
i=1

lnx

n∑
i=1

lnx =
n

q

q =
n∑n

i=1 lnx
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C R Code

We present the R code used to generate Figure 1 and Figure 2 below.

C.1 R Code for Figure 1

zipfplot <- function(data) {

data <- x_values

data <- sort(as.numeric(data)) #sorting data

y <- 1 - ppoints(data) # computing 1-F(x)

plot(x = data, y = y, log = ’xy’, xlab = ’x on log scale’,

ylab = ’1-F(x) on log scale’)

}

n_points <- 100

y_vals <- ( n_points - (n_points:1) + 2 / n_points ) /

n_points

par(mfrow = c(2,2))

x_vals <- y_vals

lapply(X = c(0.5, 1, 1.5, 2), FUN = function(q){

#q <- 2

plot(x = log(x_vals ^ (-1/q)), y = log(y_vals),

xlab = ’log(x)’,

ylab = ’log(S(x))’, sub = paste0(’q = ’, q))

fit <- lm(log(y_vals) ~ log(x_vals ^ (-1/q)) + 0)

abline(fit, col = ’red’)

text(x = 0, y = -4, labels = paste0(’reg. coeff = ’,

round(fit$coefficient, 1)),

adj = 0)

})
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C.2 R Code for Figure 2

# This may take a reasonably long time to run!

missing_pts <- 5:15

n_points <- 20

scale <- 200000

q <- 2

y_vals <- (n_points - (n_points:0)) / n_points

y_vals <- (y_vals[1:(length(y_vals) - 1)] +

y_vals[2:length(y_vals)]) / 2

x_values <- (1 - y_vals) ^ (-1 / q)

rm(y_vals)

mle <- lapply(X = missing_pts, FUN = function(missing) {

no_sampled_points <- n_points - missing

combn(x = x_values, m = no_sampled_points,

FUN = function(sampled_points) {

no_sampled_points / sum(log(sampled_points))

}

)

})

clm <- lapply(X = missing_pts, FUN = function(missing){

no_sampled_points <- n_points - missing

combn(x = x_values, m = no_sampled_points,

FUN = function(sampled_points) {

sampled_points <- sampled_points[order(sampled_points)]

y_vals <- (no_sampled_points - (no_sampled_points:0) ) /

no_sampled_points

y_vals <- (y_vals[1:(length(y_vals) - 1)] +

y_vals[2:length(y_vals)]) / 2

y_vals <- 1 - y_vals

-lm(log(y_vals) ~ log(sampled_points) + 0)$coefficient

}
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)

})

clm_mean <- sapply(clm, mean, simplify = TRUE)

mle_mean <- sapply(mle, mean, simplify = TRUE)

clm_sd <- sapply(clm, sd, simplify = TRUE)

mle_sd <- sapply(mle, sd, simplify = TRUE)

save(clm, mle, clm_mean, clm_sd, mle_mean, mle_sd,

file = ’./param_test.RData’)

par(mfrow = c(2, 1))

plot(x = missing_pts, y = sapply(mle, mean, simplify = TRUE),

ylab = ’Mean Indicated q’,

xlab = ’Number of Unobserved Data Points (out of 20)’,

type = ’n’, ylim = c(1.5, 3))

abline(h = 2, lty = ’solid’)

points(x = missing_pts, y = mle_mean, col = ’red’)

lines(x = missing_pts, y = mle_mean, col = ’red’,

lty = ’dotted’)

points(x = missing_pts, y = clm_mean, col = ’blue’)

lines(x = missing_pts, y = clm_mean, col = ’blue’,

lty = ’dotted’)

legend(’topleft’, legend = c(’MLE’, ’CLM’, ’Actual’),

lty = c(’dotted’, ’dotted’, ’solid’), pch = c(1, 1, NA),

col = c(’red’,’blue’, ’black’), bty = ’n’)

plot(x = missing_pts, y = sapply(mle, sd, simplify = TRUE),

ylab = ’SD Indicated q’,

xlab = ’Number of Unobserved Data Points (out of 20)’,

type = ’n’)

points(x = missing_pts, y = sapply(mle, sd, simplify = TRUE),

col = ’red’)

lines(x = missing_pts, y = sapply(mle, mean, simplify = TRUE),

col = ’red’, lty = ’dotted’)

points(x = missing_pts, y = sapply(clm, sd, simplify = TRUE),

col = ’blue’)

lines(x = missing_pts, y = sapply(clm, sd, simplify = TRUE),

col = ’blue’, lty = ’dotted’)

legend(’topleft’, legend = c(’MLE’, ’CLM’),

lty = c(’dotted’, ’dotted’),

pch = c(1, 1), col = c(’red’,’blue’), bty = ’n’)

The Single Parameter Revisited

Casualty Actuarial Society E-Forum, Spring 2021 23



References

[1] Pasquale Cirillo. “Are Your Data Really Pareto Distributed?” In: Physica
A: Statistical Mechanics and its Applications 392 (23 2013), pp. 5947–5962.
url: https://arxiv.org/abs/1306.0100.

[2] Stephen W. Philbrick. “A Practical Guide to the Single Parameter Pareto
Distribution”. In: Proceedings of the Casualty Actuarial Society LXXII
(1985), pp. 44–84.

The Single Parameter Revisited

Casualty Actuarial Society E-Forum, Spring 2021 24



Casualty Actuarial Society E-Forum, Spring 2021 1 

IFRS17 Measurement of Property & Casualty 
Insurance Contracts 

Brett Ward, BEc, FIAA 

 _______________________________________________________________________________________________  

Abstract: IFRS 17 introduces the concept of a risk adjustment that compensates insurers for the uncertainty about the 
amount and timing of the cash flows that arise from non-financial risks. The method for its calculation is not prescribed 
and several options are emerging, including value at risk and cost of capital. This paper recalls (Myers & Cohn, 1981) to 
provide a cost of capital approach that has desirable characteristics including relative ease of implementation, risk 
adjustment margins that are fully diversified and additive from granular levels, alignment with pricing bases and 
recognition of a uniform return on allocated capital. 

 _______________________________________________________________________________________________  

1. INTRODUCTION 

1.1. New accounting standard 

IFRS17 Insurance Contracts will replace IFRS4 for annual reporting periods from 1 January 2023 in setting 

out principles for the recognition, measurement, presentation and disclosure of insurance contracts. A 

further objective is to achieve greater consistency in financial reporting for life, health and property & 

casualty insurers, as well as greater consistency with other industries. 

IFRS17 Paragraph 32 requires that measurement using the General Measurement Model (GMM) of 

insurance contracts on initial recognition be the total of: 

(a) the fulfilment cash flows, which comprise: 

(i) estimates of future cash flows; 

(ii) an adjustment to reflect the time value of money and the financial risks related to the future 

cash flows; and 

(iii) a risk adjustment for non-financial risk. 

(b) the contractual service margin. 

Remeasurement at reporting periods after contract inception follows similar principles. IFRS17 also 

includes a simplified Premium Allocation Approach (PAA) for the measurement of insurance contracts 

where the coverage period is one year or less. It is expected that many insurers will adopt the PAA for their 

property & casualty insurance contracts. 

A key change that the IFRS17 measurement approach represents to property & casualty insurers is the 

use of the risk adjustment (RA) and the contractual service margin (CSM) to determine the recognition of 

profit. 

This paper describes an approach to measurement of a property & casualty insurance contract that 

satisfies the requirements of IFRS17. 
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1.2. Insurance contract cashflows 

Before exploring measurement of insurance contracts under IFRS17, it is useful to define the key 

cashflows that arise and understand their nature and purpose. The following diagram explores the cashflows 

associated with a typical property & casualty insurance contract between an insurer and policyholder. Also 

included are the cashflows involving the shareholder who supports the insurance contract with capital and 

receives a return. Each cashflow, marked with a letter, is discussed in some detail below. 

 

A. As cashflows are uncertain in their timing and ultimate amount, capital is needed to act as a buffer 

against adverse cashflow movements and enable the insurer to continue to fulfil its insurance contract 

liabilities and provide services. Cashflow A represents an injection into the insurer of capital by 

shareholders that will be allocated to support each insurance contract. For the purpose of this paper, 

there are two elements of capital allocated, that for insurance risk and that for the operational risk of 

the services the insurer provides. 

B. An insurer and a policyholder enter into an insurance contract where the policyholder will be paid 

losses they may incur from insured events. Policyholders also receive a range of services associated 

with their contract that include distribution, product design & underwriting, claim handling, supply 

chain access and corporate services that support the operation of the insurer. The policyholder will 

pay a total premium, cashflow B, to the insurer in exchange for the insurance contract. 

Diagram 1: Property & Casualty Insurance Contract Cashflows
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C. Services within the contract may be provided by the insurer or a range of external suppliers. The 

expense of services may be incurred prior to inception of the contract (such as product design), 

during the process of inception (such as distribution and underwriting) or after inception (such as 

claim handling and supply chain access). The service providers are compensated for their expenses 

by cashflow C. 

D. Services may also receive a contractual service or profit margin, cashflow D, should they have 

provided value or utility to the policyholder in excess of the service expense that the policyholder 

was prepared to pay for. This profit ought to be released to the service proportional to service 

delivery. Before the profit is released though, a portion is paid as tax. This profit also includes the 

return on operational risk capital allocated to the insurance contract. 

The value at inception of service expenses and contractual service margin, cashflows C and D, are referred 

to in this paper as the Services component of the total premium. 

E. Policyholders experiencing a loss receive a payment, cashflow E. Although insured events will 

typically need to arise during the coverage time boundaries of the insurance contract, losses may be 

paid some time afterwards. 

F. Policyholders need to reward, being cashflow F, the shareholder for the risk associated with the 

capital allocated to the contract for insurance risk. This is referred to as a risk adjustment. A portion 

of the risk adjustment is paid as tax. 

G. Policyholders also need to compensate, cashflow G, the shareholder for tax that the insurer incurs 

on the investment income earned by the insurance risk capital. Shareholders would otherwise 

experience an extra layer of tax compared to investing directly in those same market assets. To make 

it at least a neutral proposition (before considering risk) to inject capital into an insurer compared to 

investing directly in the market, policyholders compensate the shareholder for this extra layer of tax 

through additional premium. As this additional premium is also taxed, the policyholder needs to 

provide a grossed-up compensation such that when tax is applied, the residual exactly compensates 

the tax on investment income on the insurance risk capital. 

To illustrate the tax compensation component further, assume that a shareholder could invest $1,000 

directly in an asset that provides an investment income of $70. Instead, this shareholder has decided to 

provide their funds to an insurer who now acquires the same asset in addition to writing insurance contracts. 

The investment income of $70 will be taxed in the hands of the insurer. Assuming the corporate tax rate is 

30%, then this means the insurer pays $21 in tax leaving $49 to pass on to the shareholder. This is not 

acceptable to the shareholder who expects that the investment income on their $1,000 would be at least $70 

plus a reward for risk from the insurance contracts. The policyholder is therefore required to compensate 

the shareholder for the $21 paid as tax through paying an additional premium. As premium is taxed, then 

the policyholder pays an additional premium amount equal to a grossed-up amount of $21 ÷ (1─30%) = $30. 
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Hence the $30 of additional premium is taxed at 30%, leaving $21 to add to the after-tax investment income 

of $49 thus providing a total of $70 for the shareholder – the same return as investing directly in the asset. 

The value at inception of losses, the risk adjustment and tax compensation, cashflows E, F and G, are 

referred to in this paper as the Insurance risk component of the total premium. 

H. The insurance contract cashflows C, D, E, F & G are not all paid at the point of inception. The total 

premium less any cashflows that occur at inception will be invested and produce investment income 

as cashflow H over time. This investment income has been allowed for in the present value of the 

insurance contract cashflows and is hence absorbed in the fulfilment of those cashflows. 

I. Insurance risk capital is invested to produce an investment income as cashflow I. This investment 

income will be subject to tax, which is compensated for by the policyholder through cashflow G. 

J. The final cashflow J represents the total return on insurance risk capital and is the sum of cashflows 

F, G and I – less the tax that is payable on all three of these cashflows. This total return has an 

expectation at inception of the contract of being equal to the weighted average cost of capital for the 

shareholder. If it were a lower return, then shareholders would look for other opportunities that did 

meet their cost of capital expectations. A higher return may be unfair on the policyholder who would 

be paying a higher premium than would be required to attract enough capital to support the risk in 

the contract. 

1.3. The impact of tax on insurance contracts and insurance risk capital 

The impact of tax on an insurance contract and capital allocated is significant. Tax scales down all 

cashflows in the same way a reinsurance quota share contract in the proportion of the corporate tax rate 

would take a share of all cashflows. Tax hence scales down the capital required to support an insurance 

contract compared to a tax-free environment. 

To illustrate this further, assume an insurer underwrites two identical insurance contracts where one is in 

a tax-free environment, but the other is in an environment with a corporate tax rate of 30%. Suppose the 

insurance risk capital needed to support the contract in the tax-free environment is $1,000, for one year, and 

the risk adjustment component of the premium is $50. The shareholder receiving this risk adjustment 

therefore earns a 5% return on capital for assuming the risk under the insurance contract. The shareholder 

will also earn investment income through investment of the capital, but this is omitted in this simplified 

example. In the environment with the 30% corporate tax rate, all the insurance contract cashflows are scaled 

down 30%. It is as though the insurance contract is (1-30%) = 70% of the size of the contract in the tax-free 

environment. The shareholder is therefore required to inject only 70% of the capital in the taxed environment 

compared to the tax-free environment, or 70% × $1,000 = $700. The risk adjustment component of $50 is 

also taxed at 30% and hence the shareholder receives $35 that remains a 5% return on the $700 of capital 

injected. The return for the risk assumed is the same in the tax free and taxed environments, but the capital 
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required is lower in the taxed environment to the extent of the corporate tax rate. The policyholder pays the 

same risk adjustment of $50 regardless of the level of the corporate tax rate. 

1.4. Recognition of profit 

A role of measurement under a financial reporting accounting standard is to recognise profit in proportion 

to the provision of insurance risk capital and delivery of services. Three elements to this profit have been 

identified: 

• Risk adjustment: a cashflow from the policyholder to the shareholder to compensate for the risk within 

the insurance contract that has been conferred upon the supporting insurance risk capital. 

• Tax compensation: a cashflow from policyholder to shareholder to compensate for an additional layer 

of tax on investment income on insurance risk capital that arises within the insurer.  

• Contractual service margin: a cashflow from the policyholder to service providers to reward utility 

received from the services provided under the insurance contract and includes a return on operational 

risk capital allocated to the contract. 

Along with other fulfilment cashflows, these three elements of profit also need to be measured for 

appropriate recognition against insurance risk capital and services.  

Under IFRS17, the total premium (cashflow B in the diagram above) and the present value of all cashflows 

specific to the insurance contract (cashflows C, D, E, F & G) are essentially deemed to be equivalent at 

inception. The CSM is the balancing item that makes the cashflows sum to the total premium, so long as it 

is positive. If it would otherwise be negative, then the contract is considered onerous and a loss is recognised. 

2. SUGGESTED APPROACH TO MEASUREMENT OF INSURANCE 
CONTRACTS 

An insurance contract is considered in this paper to have two components that may be measured 

separately: 

• Insurance risk: being the exchange of loss cashflows for a premium between policyholder and insurer; 

and 

• Services: being services that are delivered to the policyholder for a price. These services could include 

such categories as distribution, product & underwriting, claim handling, supply chain and corporate. 

These two measurement components collectively fulfil the requirements of IFRS17 paragraph 32. 

A proposed approach to measurement of an insurance contract is demonstrated in the main body of this 

paper with a practical example. Cashflows are generated that are then shown in an IFRS17 GMM format. 

There remain some aspects of the profit and loss, balance sheet and accounting disclosures that are open to 

interpretation, hence the final approach may differ from what is proposed here. 
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Insurance contracts may also be measured using the PAA if their coverage period is one year or less. A 

simplification of the GMM formula proposed above is also provided that complies with the requirements of 

the PAA. The proposed simplification may be demonstrated to be materially similar to that of the GMM. 

Included in Appendix A is the derivation and justification of all formulae used in the practical example. 

3. FULFILMENT OF CASHFLOWS FOR THE INSURANCE RISK 
COMPONENT 

3.1. Proposed General Measurement Model for the insurance risk component 

The proposed GMM approach that complies with IFRS17 Paragraph 32(a) in respect of the cashflows 

from the insurance risk component of a contract, from the time of inception until extinguishment, is 

equivalent to: 

• Present value of uncertain future loss cashflows, discounted at a risk adjusted 

rate; plus 

• Present value of the tax on investment income on insurance risk capital, grossed-

up for tax and discounted at a ‘risk free’ rate. 

The ‘risk free’ rate for the purpose of this paper is defined as that consistent with IFRS17 paragraph 36. 

This is the approach for the determination of a fair premium for an insurance risk component of a 

contract described by (Myers & Cohn, 1981). When certain conditions are met, the Myers & Cohn (MC) 

approach simplifies to the above. This is demonstrated in the Appendix. 

3.2. Risk adjusted discount rate 

The Capital Assets Pricing Model (CAPM) provides a useful and widely understood approach for deriving 

an appropriate risk adjusted rate to discount cashflows as follows: 

𝑟𝐿 = 𝑟𝑓 + 𝛽𝐿(𝑟𝑚 − 𝑟𝑓) 

Where: 

• rL is the risk adjusted discount rate to apply to uncertain loss cashflows; 

• rf is the risk-free rate, which in the present context allows for the term structure and illiquid nature 

of the cashflows (IFRS17 paragraph 36); 

• rm is the expected market return; and 

• βL is the CAPM ‘Beta’ for the uncertain losses. 
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3.3. Compensation for tax on insurance risk capital 

To be at least indifferent about injecting capital into an insurer, shareholders need to be compensated for 

tax on investment income on insurance risk capital that an insurer will incur. A compensation for tax is 

therefore included as the second part to the proposed measurement approach. 

3.4. Insurance contract assumptions 

Assumptions for the insurance risk component of an insurance contract are given in the following table 

and discussed further below. These assumptions are made to illustrate the measurement of insurance 

liabilities approach and their derivation is beyond the scope of this paper. 

 

• A risk-free rate of 3.0% p.a. has been assumed. This is the assumed earning rate for the invested loss 

reserves and other balances and the risk-free rate for the CAPM calculations of expected returns. 

The risk-free rate is that inherent in an asset portfolio that replicates the expected cashflows with 

reference to the term structure and its illiquid nature, but with no risk. This risk-free rate itself requires 

comprehensive consideration under IFRS17 paragraph 36 which is beyond the scope of this paper. 

It may be thought of, for example, as a curve of forward discount rates based on sovereign cash and 

bonds plus an illiquidity premium. However, for the purpose of this paper, this rate will be referred 

to simply as the ‘risk free’ rate. 

• A market risk premium of 6.0% p.a. has been assumed, which is equal to (𝑟𝑚 − 𝑟𝑓). This will be 

utilised to assess required discount rates and earning rates under the CAPM framework.  

• Loss cashflows are assumed to have a CAPM Beta of -0.2. 

• Capital (pre-tax effect) in respect of insurance risk at any point in time is assumed to be 50% of loss 

reserves in a tax-free environment. 

• A single corporate tax rate of 30% is assumed. 

• Capital is assumed to be invested in a portfolio that has a CAPM Beta of 0.5.  

• A coverage period of 1 year has been assumed for the insurance contract, which is common for a 

property & casualty contract. The PAA will hence also be illustrated. 

Table A: Insurance assumptions
3.0%  p.a. Time Losses

6.0%  p.a. 1 150.00   

(0.20)  2 300.00   

30.0%  3 200.00   

50.0%  of discounted loss reserves 4 100.00   

0.50   5 50.00   

1 year

1.8%  p.a.

6.0%  p.a.

Capital (post tax effect) 35.0% of discounted loss reserves

Coverage period

Risk free rate

Market risk premium

Loss cashlow β

Tax rate

Capital (pre tax effect)

Capital investment β

Risk adjusted rate

Capital return rate

Derived values



IFRS17 Measurement of Property & Casualty Insurance Contracts 

Casualty Actuarial Society E-Forum, Spring 2021 8 

• Risk adjusted rate to apply when discounting losses is 3.0% -0.2×6.0% = 1.8%. This hence includes 

a risk adjustment of -1.2% against the risk-free rate. 

• Capital return rate is the annual rate of investment income earned by capital. This is also assessed 

using the CAPM formula and is equal to 3.0% +0.5×6.0% = 6.0% 

• Capital (post tax effect) is the insurance risk capital requirement in a tax-free environment reduced 

for the corporate tax rate and is hence equal to 35% = 50% × (1 - 30%). 

• A total of $800 of losses are expected to arise under the insurance contract, payable at the end of the 

year in the pattern shown. 

3.5. Insurance profit before tax 

Using the assumptions above, the measurement of the insurance contract before tax is illustrated in the 

following table. An explanation for each column is provided. This includes only the loss cashflows and 

investment income on loss reserves with tax and earnings on insurance risk capital considered in a later table. 

All cashflows occur at the time indicated which is measured in years from inception of the insurance contract. 

 

1. The insurance premium for the losses component only is $765.26 and is equal to the discounted 

value of loss payments at the risk adjusted rate of 1.8%. It is assumed that the premium charged for 

the insurance risk component of the contract is exactly this figure. Column (9) contains the set of 

risk adjusted discount factors such that the premium is equal to columns (2)×(9). 

2. Loss payments that are made at the end of each year per the assumptions. 

3. Discounted loss reserves are equal to the present value of future loss payments discounted at the risk 

adjusted rate. This is also equal to columns (2)×(9), but just for the loss payments expected in future 

years. 

4. Movement in discounted loss reserves is the annual movement of column (3). 

5. Underwriting profit/(loss) is equal to (1)+(2)+(4). This is a traditional measure of insurance contract 

performance. 

Table B: Insurance profit before tax

Time

Insurance 

premium 

(losses only)

Loss 

payments

Discounted 

loss 

reserves

Movement 

in 

discounted 

loss 

reserves
Underwriting 

profit/(loss)

Investment 

income on 

loss 

reserves

Insurance 

profit

'Risk free' 

discount 

factors

Risk 

adjusted 

discount 

factors

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0 765.26   (765.26)  (765.26)  0.00   0.00   

1 (150.00)  (629.03)  136.23   (13.77)  22.96   9.18   0.9709   0.9823   

2 (300.00)  (340.35)  288.68   (11.32)  18.87   7.55   0.9426   0.9649   

3 (200.00)  (146.48)  193.87   (6.13)  10.21   4.08   0.9151   0.9479   

4 (100.00)  (49.12)  97.36   (2.64)  4.39   1.76   0.8885   0.9311   

5 (50.00)  49.12   (0.88)  1.47   0.59   0.8626   0.9147   
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6. Investment income on loss reserves is equal to 3% multiplied by the opening balance for the year of 

discounted loss reserves from column (3). 

7. Insurance profit is equal to (5) + (6). 

8. Risk free discount factors, calculated here for use throughout the worked example and equal to 

(1+3.0%)-Time. 

9. Risk adjusted discount factors, calculated here for use throughout the worked example and equal to 

(1+1.8%)-Time. 

The insurance profit that emerges each year is equivalent to the risk adjustment, being the negative of the 

Beta of liabilities times the market risk premium, (-1)×(-0.2)×6% = 1.2%, multiplied by the opening loss 

reserves.  

3.6. Capital, Tax and Tax investment income compensation 

Thus far, the operation of the risk adjustment has been demonstrated for losses. In this section, tax is 

considered and the compensation for tax that is incurred on expected investment returns on insurance risk 

capital.  

 

10. Insurance risk capital (reduced for tax effect) is 35% multiplied by the loss reserves discounted at the 

risk adjusted rate from column (3). 

11. Investment income on capital is equal to the capital at the beginning of the year in column (10) 

multiplied by the expected earning rate for capital investments of 6%. 

12. Tax balance for capital investment income is the compensation that is charged to the policyholder as 

an additional premium component and released to compensate for tax on the investment income. 

This is equal to the present value using the risk-free discount rates of the expected future tax payable 

on the investment income on insurance risk capital, grossed up for tax. Hence it is equal to columns 

(11) × 30%÷(1-30%) × (8). 

13. Movement in tax balance equals the annual movement of column (12). 

Table C: Capital, Tax and Tax on investment income compensation

Time

Insurance 

risk capital 

(reduced for 

tax effect)

Investment 

income on 

capital

Tax balance 

capital 

investment 

income

Movement 

in tax 

balance

Investment 

income on 

tax balance

Total profit 

before tax Tax

Total profit 

after tax

Return on 

capital

(10) (11) (12) (13) (14) (15) (16) (17) (18)

0 267.84   (16.38)  (16.38)  0.00   0.00   0.00   

1 220.16   16.07   (9.98)  6.40   0.49   32.14   (9.64)  22.50   8.40%  

2 119.12   13.21   (4.62)  5.36   0.30   26.42   (7.93)  18.49   8.40%  

3 51.27   7.15   (1.70)  2.92   0.14   14.29   (4.29)  10.01   8.40%  

4 17.19   3.08   (0.43)  1.27   0.05   6.15   (1.85)  4.31   8.40%  

5 1.03   0.43   0.01   2.06   (0.62)  1.44   8.40%  
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14. Investment income on tax balance equals the risk-free rate of 3% multiplied by the opening tax 

balance for the year from column (12). 

15. Total profit before tax equals the insurance profit plus investment income on insurance risk capital 

plus the movement in the tax balance plus investment income on the tax balance; hence columns 

(7)+(11)+(13)+(14). 

16. Tax is 30% of column (15). 

17. Total profit after tax equals columns (15) + (16). 

18. Return on capital equals column (17) divided by the opening balance of capital from column (10). 

The policyholder pays both the premium for losses as well as the tax balance in respect of the insurance 

risk component of the contract, a total of $781.63 = $765.26 + $16.38 (rounding). 

The tax compensation, including its investment income and tax of itself, exactly equals the tax on 

insurance risk capital investment income each year. That is 30% × (11) = (1-30%) × [(13) + (14)]. 

The return on insurance risk capital after tax each year is equal to 6.0% from capital investment income, 

with the tax on this income compensated for, plus the risk adjustment. Capital being 50% of loss reserves 

before the tax effect means that the annual 1.2% risk adjustment in loss reserves becomes 1.2% ÷ 50% = 

2.4%. Hence the total return on capital is 8.4% and this emerges each year provided that, as per this worked 

example, capital is a constant proportion of loss reserves discounted at the risk adjusted rate for the duration 

of loss cashflows. 

3.7. Internal Rate of Return 

The reconciliation of the internal rate of return (IRR) for the insurance risk capital supporting the 

insurance risk component of the contract is shown in the following table. 

 

19. Movement in capital is the annual change in the insurance risk capital requirement shown in column 

(10). It reveals the initial injection of capital to support the contract and its subsequent release. 

20. Total profit after tax is a repeat of column (17). 

Table D: Shareholder IRR

Time

Movement 

in capital

Total profit 

after tax

Shareholder 

cashflow

(19) (20) (21)

0 (267.84)  0.00   (267.84)  

1 47.68   22.50   70.18   

2 101.04   18.49   119.53   

3 67.86   10.01   77.86   

4 34.08   4.31   38.38   

5 17.19   1.44   18.63   

Internal rate of return 8.40%  
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21. Shareholder cashflow equals columns (19) + (20), which shows the injection the shareholder makes 

at inception and the return of that capital plus after-tax profit in subsequent years. 

The internal rate of return of column (21) is 8.4%. This is an unsurprising result given the uniform annual 

return on capital of 8.4% from column (18). 

3.8. Reconciliation to the weighted average cost of capital of the insurer 

As a small but important aside, it can be shown that the return on insurance risk capital and IRR for this 

insurance contract of 8.4% p.a. is equivalent to the weighted average cost of capital (WACC) of the insurer. 

In order to do this, it is assumed that the insurer is in a steady state, continuously writing the one identical 

insurance contract each year. The balance sheet for this steady state insurer is shown in the following table. 

 

22. The insurance risk capital of the insurer is equal to the sum of the capital required to support one 

contract at inception, one at year 1, one at year 2 and so on. Hence the capital required in a steady 

state of five active contracts is equal to the sum of column (10). This capital is invested in a portfolio 

with an assumed CAPM Beta of 0.5. 

23. Loss reserves in a steady state equal the sum of column (3). As the assets backing the loss reserves 

are assumed to be invested in risk free assets, the CAPM Beta is zero. 

24. The tax balance in a steady state is equal to the sum of column (12). As the assets backing the tax 

balance are assumed to be invested in risk free assets, the CAPM Beta is zero. 

25. Loss reserves in a steady state equal the sum of column (3). Loss reserves have a CAPM Beta of  

-0.2. As loss payments are tax deductible, the Beta is multiplied by the tax effect of (1-30%) such that 

the liability Beta on the balance sheet is -0.14. 

26. The tax balance in a steady state is equal to the sum of column (12). The tax balance has a CAPM 

Beta of zero. 

27. The net assets have a weighted average Beta of 0.9. This is found by multiplying the Betas by the 

balance sheet amount, taking the sum and dividing by the net assets. 

Table E: Steady state balance sheet

Assets Beta

Capital (22) 675.58   0.50   

Loss reserves (23) 1,930.23   0.00   

Tax balance (24) 33.11   0.00   

Liabilities

Loss reserves (25) (1,930.23)  (0.14)  

Tax balance (26) (33.11)  0.00   

Net assets (27) 675.58   0.90   

Weighted average cost of capital (28) 8.40%  
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28. The WACC is then found by applying the CAPM formula to arrive at 8.4% = 3.0% + 0.9×6.0%. 

As is revealed in this table, the WACC of the insurer equates to the IRR of the contract within a CAPM 

framework. Under this framework, an insurer may potentially work backwards from its observed market 

Beta to determine an overall loss cashflow CAPM Beta for its insurance contracts for use in the risk adjusted 

rate formula. However, if the insurer undertakes other activities such as insurance services, then this needs 

to be considered if decomposing an observed CAPM Beta for the insurer to source components. 

It was not necessary to assume a steady state; choosing an individual year of a single contract also produces 

the same result. 

4. FULFILMENT OF CASHFLOWS FOR SERVICES AND THE 
CONTRACTUAL SERVICE MARGIN 

4.1. Proposed General Measurement Model approach for services for property & 
casualty insurers 

The proposed measurement that complies with IFRS17 Paragraph 32 in respect of the services provided 

within an insurance contract, from the time of inception until extinguishment, is equivalent to: 

• Present value of expense cashflows for future services to be provided under the 

contract, discounted at a risk adjusted rate; plus 

• A contractual service margin, which equals the restated CSM as of inception plus 

risk free investment income multiplied by the proportion that the risk (of losses) 

in any remaining coverage period bears to the total coverage period risk. 

Expense services cashflows may be risk free in the sense that they are contracted to be provided at a 

certain time for a certain cost. Other services may be subject to risk. For example, claim handling services 

are relative to the claim frequency and complexity and duration of claim which is often indicated by the 

average claim size. It is not unusual for property & casualty insurers to assume that claim handling expenses 

are proportional to losses in quantum and risk. 

Five services are defined for the worked example that include distribution, product & underwriting, claim 

handling, supply chain and corporate. These services have no particular meaning under IFRS17, but they 

illustrate a range of timing in incurring these expenses either before contract inception, at inception, during 

the coverage period or beyond the coverage period. The general model invites detailed cashflow projection 

of service expenses and a release of profit margins that can be attributable to those services proportional to 

their delivery.  

This does not appear to be the case for property & casualty insurers. Under IFRS17, insurers are essentially 

deemed to provide just the one service under their contracts – coverage of insured events during the coverage 

period. Profit, being any amount in excess of what is put aside for contract fulfilment, risk adjustment and 

tax compensation is considered collectively to be CSM relative to the one service of risk coverage. The CSM 



IFRS17 Measurement of Property & Casualty Insurance Contracts 

Casualty Actuarial Society E-Forum, Spring 2021 13 

is therefore released through the coverage period proportional to the risk of insured events, being completely 

recognised by the end of the coverage period. Perhaps in due course the standards will reflect a release of 

CSM proportional to the true nature of the services the insurer provides. This may result in profit relating to 

acquisition expenses being released at inception, a portion of profit during the coverage period and a final 

portion of profit released in proportion to claim handling and related services. 

The CSM cannot be negative. Should it be, then the contract is onerous, and a loss recorded to the extent 

that the measurement with a zero CSM exceeds the total premium. 

If, prior to the end of the contract period, projected fulfilment cashflows change, then the CSM as of 

inception is reassessed to again be the difference between total premium and the present value of all 

fulfilment cashflows. The measurement of CSM continues relative to this reassessed figure. 

These service modules are typically all necessary for an insurance contract but are not necessarily all 

provided by the insurer who provides the insurance risk component. A broker or retailing partner may 

distribute the product for example. The service modules also require operational risk capital to support them. 

In this worked example, it is assumed that the insurer provides all five service modules to the insurance 

contract and accounts for them appropriately under IFRS17. Admittedly, the worked example of a 1-year 

coverage period does not strongly illustrate the CSM concept that would require wholesome consideration 

for insurance products such as lenders’ mortgage insurance. 

4.2. Expense assumptions 

The expense assumptions for the five services for the worked example are shown in the following table. 

 

29. The expenses for distribution, product & underwriting and corporate are assumed to be fixed 

amounts and the service is provided at inception. The two services of claim handling and supply 

chain are assumed to be provided as losses are paid, proportional to those losses.  

30. This is the assumed profit margin percentage of total premium that is charged for the service. 

Table F: Services expense and profit assumptions

Services Expense

Profit 

margin of 

total 

premium

(29) (30)

Distribution 100.00   2.50%

Product & UW 40.00   1.00%

Claim handling 5.00% of losses 1.20%

Supply chain 1.00% of losses 1.00%

Corporate 22.50   0.50%

Operational risk capital 45.0% of expenses
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The operational risk capital assumption of 45% of expenses is also expressed prior to the tax effect. Post 

tax effect the allocated operational risk capital is 31.5% = 45% × (1 - 30%). 

4.3. Total premium 

With the expense assumptions now defined, the total premium for the insurance contract is shown in the 

following table. 

 

31. The present value of losses at the risk-free rate is equal to the losses from column (3) multiplied by 

the risk-free discount rates in column (8). This is done to show the extent of risk adjustment from 

discounting at the risk adjusted rate which is shown as a profit item at row (38). 

32. Distribution expenses per assumption above, incurred at inception. 

33. Product & underwriting expenses per assumption above, incurred at inception. 

Table G: Total premium 

Premium Proportion

Losses

PV of losses (risk free) (31) 743.42   70.43%

Expenses

Distribution (32) 100.00   

Product & UW (33) 40.00   

Claim handling (risk free) (34) 37.17   

Supply chain (risk free) (35) 7.43   

Corporate (36) 22.50   

Total expenses (37) 207.11   19.62%

Profit items

Risk adjustment on losses (38) 21.84   

PV of tax on income on capital (39) 16.38   

Total insurance risk margin (40) 38.22   3.62%

Risk adjustment on CH & SC (41) 1.31   0.12%

Distribution (42) 26.39   2.50%

Product & UW (43) 10.55   1.00%

Claim handling (44) 12.67   1.20%

Supply chain (45) 10.55   1.00%

Corporate (46) 5.28   0.50%

Contract service margin (47) 65.44   6.20%

Total profit (48) 104.97   9.94%

Total premium (49) 1,055.49   
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34. Claim handling is assumed to be 5% of losses and carries the same risk. Shown here is 5% of the 

risk-free discounted value of losses with the risk adjustment included in row (39). 

35. Supply chain is assumed to be 1% of losses and carries the same risk. Shown here is 1% of the risk-

free discounted value of losses with the risk adjustment included in row (39). 

36. Corporate expenses per assumption above, incurred at inception. 

37. Total expenses equal the sum of rows (32) through (36). 

38. Risk adjustment on losses. This is the difference in the present value of losses between using the risk 

adjusted rate and the risk-free rate.  

39. Present value of tax on insurance risk capital investment income as calculated earlier in column (12) 

at time zero.  

40. Total insurance risk margin on insurance risk capital equals rows (38) + (39). 

41. Risk adjustment on claim handling and supply chain. This is the difference in the present value of 

claim handling and supply chain expenses between using the risk adjusted rate and the risk-free rate. 

42. Distribution profit margin, percentage of total premium. 

43. Product & underwriting profit margin, percentage of total premium. 

44. Claim handling profit margin, percentage of total premium. 

45. Supply chain profit margin, percentage of total premium. 

46. Corporate profit margin, percentage of total premium. 

47. Contract service margin equals the sum of rows (42) through (46). 

48. Total profit equals rows (40) + (41) + (47). 

49. Total premium for the insurance contract, which equals rows (31) + (37) + (48). 
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4.4. Expense reserves and contract service margin 

The recognition of expenses and profit on expenses for the service modules are show in the following 

table. 

 

50. Services premium component is the total charge included in the total premium for the contract 

services and equal to rows (37) + (41) + (47). In practice, it would typically be calculated backwards 

from the total premium at row (49) less the insurance risk component that equals the losses (31), the 

risk adjustment on losses (38) and the tax compensation (39).  

51. Distribution, Product & Underwriting and Corporate expenses are assumed to arise at contract 

inception and are equal to rows (41) + (42) + (45). 

52. Claim handling expenses are equal to 5% of loss payments from column (2). 

53. Claim handling reserve is 5% of loss reserves from column (3). 

54. Supply chain expenses are equal to 1% of loss payments from column (2). 

55. Supply chain reserve is 1% of loss reserves from column (3). 

Table H: Service expenses

Time

Services 

premium 

component

Distribution; 

Product & 

UW; 

Corporate

Claim 

handling

Claim 

handling 

reserve Supply chain

Supply chain 

reserve

Contract 

service 

margin

(50) (51) (52) (53) (54) (55) (56)

0 273.86   (162.50)  (38.26)  (7.65)  (65.44)  

1 (7.50)  (31.45)  (1.50)  (6.29)  

2 (15.00)  (17.02)  (3.00)  (3.40)  

3 (10.00)  (7.32)  (2.00)  (1.46)  

4 (5.00)  (2.46)  (1.00)  (0.49)  

5 (2.50)  (0.50)  

Time

Investment 

income on 

services 

balances Services profit

Operational 

risk capital

Investment 

income on 

operational 

risk capital

Total services 

profit

Tax on total 

services profit

Total services 

profit after 

tax

(57) (58) (59) (60) (61) (62) (63)

0 0.00   51.19   0.00   0.00   0.00   

1 2.36   66.97   2.84   3.07   70.04   (21.01)  49.03   

2 1.13   0.45   5.67   0.17   0.62   (0.19)  0.44   

3 0.61   0.25   3.78   0.34   0.59   (0.18)  0.41   

4 0.26   0.11   1.89   0.23   0.33   (0.10)  0.23   

5 0.09   0.04   0.11   0.15   (0.04)  0.10   
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56. Contract service margin at inception equals the service premium component from column (50) less 

the expenses at inception from column (51) less the present value of future service expenses from 

columns (53) and (55). This balance plus accrued investment income is released over the coverage 

period proportional to the risk of insured events. In this worked example, the CSM is assumed to be 

released uniformly over the coverage period of 1 year such that it is zero at time 1. 

57. Investment income on services balances equals the risk free rate of 3.0% multiplied by the opening 

balances from columns (53) and (55) plus one half of the contract service margin in column (56) year 

1 only given the assumption of being uniformly released during that year. 

58. Services profit equals the sum of columns (50) through (57) plus the opening balances from columns 

(53) and (55). 

59. Operational risk capital equals the capital to expense ratio of 45% multiplied by the tax effect of (1-

30%) multiplied by expenses incurred in the coming year from columns (51), (52) and (54). 

60. Investment income on operational risk capital is equal to the investment return on capital of 6.0% 

multiplied by the opening balance for operational risk capital from column (59). 

61. Total services profit equals columns (58) + (60). 

62. Tax on total services profit equals 30% of column (61). 

63. Total services profit after tax equals columns (61) + (62). 

5. IFRS 17 GENERAL MEASUREMENT MODEL PRESENTATION 

5.1. Introduction 

This section presents the cashflows of the worked example from Tables A through H in an IFRS 17 

format for: 

• The Insurance Contracts Liability (ICL) which is a balance sheet item that includes the reserves and 

balances associated with the claim fulfilment cashflows of the insurance contract; and 

• The Profit & Loss including the items associated with the insurance contract. 

Following this section, the PAA will be explored.  

Included as Appendix B to this paper are the Profit & Loss statements from the insurance contract 

cashflows from Tables A through H, but presented under two alternative accounting bases: 

• AASB1023 which is applicable in Australia where a key difference to the IFRS17 GMM is the use of 

a risk margin that provides a chosen probability of ultimate sufficiency of the reserves; and 

• USGAAP which is applicable in the US where the loss reserves are undiscounted. 

It may be of use to reference a familiar presentation of the Profit & Loss to appreciate the differences 

with IFRS17. The difference in profit recognition between the bases will then be summarised in the last 

section of this paper. 
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5.2. Summary of Insurance Contract Liabilities, General Measurement Model 

The following table brings together the various reserves and balances over the cashflow duration of the 

insurance contract. In total it forms the ‘Insurance Contract Liabilities’ item on the balance sheet. 

 

  

Table I: Summary of Insurance Contract Liabilities, General Measurement Model

Loss reserves 0 1 2 3 4

   Undiscounted loss reserve (800.00)  (650.00)  (350.00)  (150.00)  (50.00)  

   Risk free discount 56.58   34.28   15.81   5.78   1.46   

   Risk adjustment (21.84)  (13.31)  (6.16)  (2.26)  (0.57)  

   Discounted loss reserve (765.26)  (629.03)  (340.35)  (146.48)  (49.12)  

Tax compensation balance

   Undiscounted tax compensation balance (17.37)  (10.48)  (4.82)  (1.76)  (0.44)  

   Risk free discount 0.99   0.50   0.20   0.06   0.01   

   Risk adjustment 0.00   0.00   0.00   0.00   0.00   

   Discounted tax compensation balance (16.38)  (9.98)  (4.62)  (1.70)  (0.43)  

Claim handling reserves

   Undiscounted claim handling reserve (40.00)  (32.50)  (17.50)  (7.50)  (2.50)  

   Risk free discount 2.83   1.71   0.79   0.29   0.07   

   Risk adjustment (1.09)  (0.67)  (0.31)  (0.11)  (0.03)  

   Discounted claim handing reserve (38.26)  (31.45)  (17.02)  (7.32)  (2.46)  

Supply chain reserves

   Undiscounted supply chain reserve (8.00)  (6.50)  (3.50)  (1.50)  (0.50)  

   Risk free discount 0.57   0.34   0.16   0.06   0.01   

   Risk adjustment (0.22)  (0.13)  (0.06)  (0.02)  (0.01)  

   Discounted supply chain reserve (7.65)  (6.29)  (3.40)  (1.46)  (0.49)  

Insurance Contract Liabilities

   Undiscounted ICL (865.37)  (699.48)  (375.82)  (160.76)  (53.44)  

   Risk free discount 60.97   36.84   16.96   6.19   1.56   

   Risk adjustment (23.15)  (14.11)  (6.53)  (2.40)  (0.61)  

   Discounted ICL (827.55)  (676.76)  (365.40)  (156.96)  (52.49)  

   Contract service margin (65.44)  

   Total ICL (892.99)  (676.76)  (365.40)  (156.96)  (52.49)  

Summary of risk adjustment discount

Undiscounted risk adjustment (24.55)  (14.82)  (6.82)  (2.49)  (0.62)  

Risk free discount 1.40   0.71   0.29   0.09   0.02   

Discounted risk adjustment (23.15)  (14.11)  (6.53)  (2.40)  (0.61)  

Time
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There is quite an amount of necessary detail here to capture all items of loss reserve, tax balance, risk 

adjustments, service expenses and contract service margin. However, many of the blocks of information 

above are all based on simple multiples of the loss reserve cashflows given the nature of the assumptions 

made. For example: 

• The discounted tax compensation balance is proportional to the loss reserve risk adjustment; and 

• All cashflows for expenses and the contract services margins are percentages of the loss reserve 

cashflows. 

Expressing the risk adjustment as the difference between using a risk adjusted discount rate and the risk-

free rate reveals a risk adjustment that technically has no cashflow. Shown at the bottom of Table I above is 

a constructed risk-free discount unwind for the risk adjustment for use in IFRS17 reporting. This is found 

by working backwards from the projected last risk adjustment calculation and adding in the unwind each 

year. 
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5.3. Profit & Loss, General Measurement Model 

Utilising the cashflows developed previously, the IFRS17 profit and loss that brings together the insurance 

risk and services components is assembled below: 

 

As required under IFRS17, no profit is recognised at the inception of the insurance contract. The 

mechanism of the risk adjustment, tax compensation and contractual service margin recognises profit 

proportional to the provision of insurance risk capital by the shareholder and the provision of services. 

Table J: IFRS 17 Profit & Loss, General Measurement Model

0 1 2 3 4 5

Insurance Revenue 1,055.49   

Insurance service expense (1,055.49)  82.06   13.66   7.39   3.18   1.07   

   Losses paid (150.00)  (300.00)  (200.00)  (100.00)  (50.00)  

   Undiscounted loss reserve mvt (800.00)  150.00   300.00   200.00   100.00   50.00   

   Discount mvt on loss reserves 56.58   (22.30)  (18.47)  (10.03)  (4.33)  (1.46)  

   Discount unwind 22.30   18.47   10.03   4.33   1.46   

   Risk adjustment mvt (21.84)  8.53   7.15   3.90   1.69   0.57   

   Undiscounted tax compensation mvt (17.37)  6.89   5.66   3.06   1.32   0.44   

   Discount mvt on tax compensation 0.99   (0.49)  (0.30)  (0.14)  (0.05)  (0.01)  

   Discount unwind 0.49   0.30   0.14   0.05   0.01   

   Distribution (100.00)  

   Product & UW (40.00)  

   Corporate (22.50)  

   Contract service margin mvt (65.44)  65.44   

   Claim handling (7.50)  (15.00)  (10.00)  (5.00)  (2.50)  

   Undiscounted claim handling mvt (40.00)  7.50   15.00   10.00   5.00   2.50   

   Discount mvt on claim handling 2.83   (1.12)  (0.92)  (0.50)  (0.22)  (0.07)  

   Discount unwind 1.12   0.92   0.50   0.22   0.07   

   Risk adjustment mvt (1.09)  0.43   0.36   0.19   0.08   0.03   

   Supply chain (1.50)  (3.00)  (2.00)  (1.00)  (0.50)  

   Undiscounted supply chain mvt (8.00)  1.50   3.00   2.00   1.00   0.50   

   Discount mvt on supply chain 0.57   (0.22)  (0.18)  (0.10)  (0.04)  (0.01)  

   Discount unwind 0.22   0.18   0.10   0.04   0.01   

   Risk adjustment movement (0.22)  0.09   0.07   0.04   0.02   0.01   

   Total risk adjustment unwind 0.69   0.42   0.20   0.07   0.02   

Insurance service result 0.00   82.06   13.66   7.39   3.18   1.07   

Insurance finance income/ (expense) (24.83)  (20.30)  (10.96)  (4.71)  (1.57)  

Investment income 44.95   33.68   18.45   8.01   2.72   

   Loss reserves + balances 25.81   20.30   10.96   4.71   1.57   

   Shareholder capital 19.14   13.38   7.49   3.30   1.14   

Investment result 20.12   13.38   7.49   3.30   1.14   

Profit before tax 0.00   102.18   27.04   14.88   6.48   2.21   

Income tax 0.00   (30.66)  (8.11)  (4.46)  (1.95)  (0.66)  

Profit for the period 0.00   71.53   18.93   10.42   4.54   1.55   

Time
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One of the key aspects in which the IFRS17 Profit & Loss differs from other standards that report an 

‘underwriting result’ is that the discount unwind is credited to the ‘Insurance service result’ with an exact 

offset revealed as an ‘Insurance finance expense’. A similar outcome would be achieved within current 

accounting standards by moving investment income on technical provisions into the underwriting result. 

This change means that the investment result is therefore the sum of: 

• Investment income on capital; plus 

• Investment income on the CSM; plus 

• Market risk included in the investment strategy for assets supporting the ‘Insurance Contract 

Liabilities’ (which is zero under the assumptions of the worked example in this paper). 

6. IFRS 17 PREMIUM ALLOCATION APPROACH 

6.1. Proposed simplification of measurement for the PAA 

The PAA may be applied to insurance contracts that have a coverage period of one year or less. At a 

reporting date, it enables insurance contracts that are currently within their coverage period to measure 

liabilities associated with the remaining coverage as a proportion of the premium less acquisition costs. The 

proportion represents the risk (of losses) in the remaining coverage period relative to the total coverage 

period risk. The PAA essentially replaces the concept of CSM. 

Even if the PAA is adopted, incurred claims are measured in the same manner as they are under the 

GMM. Despite this, the opportunity is taken here to propose a simpler measurement approach for incurred 

claims that complements the PAA and reduces the extent of detailed cashflows that the GMM invites. 

The proposed simplified measurement of incurred claims only that complies with IFRS17 Paragraph 32 for 

an insurance contract, including both insurance risk and services components, is: 

• Present value of uncertain future loss cashflows, discounted at a ‘risk free’ rate; 

plus 

• Present value of claim handling and other service expenses, discounted at a ‘risk 

free’ rate; plus 

• An adjustment for risk. 

The ‘risk free’ rate is defined as that consistent with IFRS17 paragraph 36. 
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6.2. Adjustment for risk 

A proposed adjustment for risk combines the concepts of a risk adjustment on all cashflows and tax 

compensation on investment income on insurance risk capital into the one calculation as follows: 

• Present value of future loss cashflows discounted at the risk adjusted rate less the present value of 

loss cashflows discounted at the risk-free rate; multiplied by 

• An RA modifier that is equal to: 

1 +
𝜏𝜅𝑟𝐾

(1 − 𝜏)(𝑟𝑓 − 𝑟𝐿)
+ 𝛾 

Where: 

• τ is the tax rate, assumed to be 30% in the present worked example; 

• κ is the insurance risk capital post tax effect expressed as a ratio of loss reserves discounted at the 

risk adjusted rate, assumed to be 35%; 

• rK is the expected return on capital, assumed to be 6.0%; 

• rf is the risk-free rate, assumed to be 3.0% and in the present context allows for the term structure 

and illiquid nature of the cashflows (IFRS17 paragraph 36); 

• rL is the risk adjusted discount rate to apply to uncertain loss cashflows, assumed to be 1.80%; 

• γ is the claim handling and supply chain service expense allowance, expressed as a proportion of loss 

payments and is assumed to be 6.0%; and 

In the present example, the RA modifier is equal to: 

1 +
0.30 × 0.35 × 0.06

(1 − 0.30) × (0.030 − 0.018)
+ 0.06 = 1.810 

It is a condition of the RA modifier that the insurance risk capital allocated to the insurance contract is 

maintained as a constant proportion of the loss reserves discounted at the risk adjusted rate from inception 

of the insurance contract until the loss cashflows cease. 
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6.3. Insurance contract liabilities, Premium Allocation Approach 

Using the proposed measurement approach under the PAA, the insurance contract liabilities are given in 

the following table. 

 

The risk adjustment calculation does not readily produce a cashflow pattern and it is not proportional to 

another cashflow such as loss payments. Hence the risk-free discount and undiscounted risk adjustment need 

to be determined working backwards from the last risk adjustment to impute a risk-free discount as with the 

GMM. 

Table K: Summary of Insurance Contract Liabilities, Premium Allocation Approach

Loss reserves 0 1 2 3 4

   Undiscounted loss reserve (800.00)  (650.00)  (350.00)  (150.00)  (50.00)  

   Risk free discount 56.58   34.28   15.81   5.78   1.46   

   Discounted loss reserves (743.42)  (615.72)  (334.19)  (144.22)  (48.54)  

Claim handling reserves

   Undiscounted projected claim handling (48.00)  (39.00)  (21.00)  (9.00)  (3.00)  

   Risk free discount 3.39   2.06   0.95   0.35   0.09   

   Discounted claim handing (44.61)  (36.94)  (20.05)  (8.65)  (2.91)  

Risk adjustment

   Undscounted risk adjustment (41.92)  (25.30)  (11.64)  (4.25)  (1.07)  

   Risk free discount 2.40   1.21   0.49   0.15   0.03   

   Discounted risk adjustment (39.53)  (24.09)  (11.15)  (4.09)  (1.04)  

Insurance Contract Liabilities

   Undscounted (889.92)  (714.30)  (382.64)  (163.25)  (54.07)  

   Risk free discount 62.37   37.55   17.25   6.28   1.57   

   Discounted loss reserves (827.55)  (676.76)  (365.40)  (156.96)  (52.49)  

Time
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6.4. Profit & Loss, Premium Allocation Approach 

The IFRS17 Profit & Loss utilising the PAA is as follows. 

 

A somewhat simpler Profit & Loss with reduced cashflows yet remaining identical in profit recognition 

to the GMM under the conditions and assumptions of the proposed measurement approach. 

7. PROFIT RECOGNITION PATTERN 

7.1. Profit under different accounting standards 

A key difference between accounting standards is the pattern in which profit is recognized. 

In the table and chart below, the after-tax profit pattern for the insurance contract from the IFRS17 

worked example (Tables A through L) is compared with the profit pattern produced under two alternative 

Table L: IFRS 17 Profit & Loss, Premium Allocation Approach

0 1 2 3 4 5

Insurance Revenue 1,055.49   

Insurance service expense (1,055.49)  82.06   13.66   7.39   3.18   1.07   

   Premium less acquisition costs (892.99)  892.99   

   Discount unwind 24.83   

   Losses paid (150.00)  (300.00)  (200.00)  (100.00)  (50.00)  

   Undiscounted loss reserve movement (650.00)  300.00   200.00   100.00   50.00   

   Discount movement on loss reserves 34.28   (18.47)  (10.03)  (4.33)  (1.46)  

   Discount unwind 18.47   10.03   4.33   1.46   

   Distribution (100.00)  

   Product & UW (40.00)  

   Corporate (22.50)  

   Claim handling (9.00)  (18.00)  (12.00)  (6.00)  (3.00)  

   Undiscounted claim handling movement (39.00)  18.00   12.00   6.00   3.00   

   Discount movement on claim handling 2.06   (1.11)  (0.60)  (0.26)  (0.09)  

   Discount unwind 1.11   0.60   0.26   0.09   

   Undiscounted risk adjustment movement (25.30)  13.66   7.39   3.18   1.07   

   Discount movement on risk adjustment 1.21   (0.72)  (0.33)  (0.12)  (0.03)  

   Discount unwind 0.72   0.33   0.12   0.03   

Insurance service result 0.00   82.06   13.66   7.39   3.18   1.07   

Insurance finance income/ (expense) (24.83)  (20.30)  (10.96)  (4.71)  (1.57)  

Investment income 44.95   33.68   18.45   8.01   2.72   

   Loss reserves + balances 25.81   20.30   10.96   4.71   1.57   

   Shareholder capital 19.14   13.38   7.49   3.30   1.14   

Investment result 20.12   13.38   7.49   3.30   1.14   

Profit before tax 0.00   102.18   27.04   14.88   6.48   2.21   

Income tax 0.00   (30.66)  (8.11)  (4.46)  (1.95)  (0.66)  

Profit for the period 0.00   71.53   18.93   10.42   4.54   1.55   

Time
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accounting standards: AASB1023 and USGAAP. The Profit & Loss statements under accounting standards 

AASB1023 and USGAAP are presented in Appendix B as Tables B1 and B2 respectively. 

 

64. Investment income on capital after tax, equals column (11) × (1-30%). 

65. Tax compensation equals column (11) × 30%. 

66. Risk adjustment after tax, equals column (7) × (1-30%). 

67. CSM after tax, equal to column (63). 

68. Total profit after tax (IFRS17), equals columns (64) + (65) + (66) + (67). 

69. Total profit after tax (AASB1023), taken from Appendix B, Table B1. 

70. Total profit after tax (USGAAP), taken from Appendix B, Table B2. Note that a 30% tax rate has 

been used for comparative purposes. 

The same information is presented in the following chart. 

Table M: Recognition of profit after tax

Time

Investment 

income on 

capital

Tax 

compensation

Risk 

adjustment CSM

Total profit 

after tax 

(IFRS17)

Total profit 

after tax 

(AASB1023)

Total profit 

after tax 

(USGAAP)

(64) (65) (66) (67) (68) (69) (70)

1 11.25   4.82   6.43   49.03   71.53   43.39   63.65   

2 9.25   3.96   5.28   0.44   18.93   31.63   23.83   

3 5.00   2.14   2.86   0.41   10.42   20.08   13.03   

4 2.15   0.92   1.23   0.23   4.54   9.73   5.65   

5 0.72   0.31   0.41   0.10   1.55   4.51   1.91   

Profit after tax arising from
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Chart 1: Comparison of profit recognition between IFRS17, AASB1023 & USGAAP 

 

 

7.2. Comparison to AASB1023 

Industry practice under AASB1023 is to adopt a risk margin as part of total outstanding claim liabilities 

that provides a chosen probability of sufficiency (PoS). The PoS is the proportion of all possible scenario 

outcomes for future loss payments and associated expenses for which the total outstanding claim liabilities 

ultimately proves adequate to have met. 

The PoS in practice for large listed property & casualty insurers in Australia is typically about 90%. Risk 

margins of this PoS will generally exceed the cost of capital and service profit margins included in the total 

premium that delays the recognition of profit relative to the proposed IFRS17 measurement approach. 

7.3. Comparison to USGAAP 

USGAAP measures loss and loss adjustment expense reserves on an undiscounted basis. This means the 

profit that is deferred beyond the coverage period is the investment income on the reserves with the 

underwriting result expected to be zero through the runoff of loss and loss adjustment expense cashflows. 

Given the prevailing low levels of risk-free investment return, the USGAAP approach currently releases 

profit somewhat similarly to IFRS17. The risk adjustment and tax compensation under IFRS17 defers profit 

to a marginally lesser extent than the 3% assumed risk free rate. 
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Appendix A: IFRS17 application of the Myers & Cohn formula 

9. CONTEXT 

(Myers & Cohn, 1981) develops a formula for determining a fair premium, which is an initial measurement 

of the cashflows associated with an insurance contract. This formula aligns to the key principles of IFRS17 

paragraph 32(a), namely it: 

• considers estimates of future cash flows related to the contract; 

• adjusts these cashflows to reflect the time value of money and the financial risks related to the future 

cash flows; and 

• includes a risk adjustment for non-financial risk. 

This Appendix shows that the proposed approach to the measurement of insurance contracts included in 

this paper is a special case of the Myers & Cohn (MC) formula. There are two conditions needed in order to 

support a simplified MC formula to measure insurance contracts: 

• that there is a single corporate tax rate applied to cashflows of the insurer; and 

• the proposed formula and approach to measurement of the insurance contract is applied separately 

to losses and tax balances until all cashflows associated with the contract cease. 

If a third condition is met, it will be also demonstrated that this special case of the MC formula is 

equivalent to the internal rate of return (IRR) approach where the IRR is equivalent to the weighted average 

cost of capital (WACC) within a capital assets pricing model (CAPM) framework. This third condition is: 

• that insurance risk capital allocated to the contract is a constant proportion of loss reserves 

discounted at a risk adjusted rate from inception until loss cashflows cease. 

In environments where the conditions are not met, then the formulae will not be applicable without 

adjustment and there may not be equivalence of the IRR to WACC. 

10. NOTATION 

First, notation is defined for a simplified model of an insurance risk contract, meaning the exchange of 

uncertain losses for a fixed premium. 

t = 0, …, T Time periods from the date of contract inception with cashflows generally occurring 

at integer time t. 

P The insurance risk component premium of the insurance contract. 

Lt Expected losses paid to the policyholder under the insurance contract at time t. 

Losses are assumed to be payable from time t = 1, …, T. 

rf Risk free rate of return per period. 

rm Expected rate of return of the market per period. 
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βL The CAPM Beta of losses. 

rL Risk adjusted discount rate per period applicable to the losses. 

Kt Insurance risk capital requirement, post tax effect, for the insurance contract at time 

t. Note that Kt may be any reasonable amount relative to the risk of the contract at time 

t that is consistent with the risk appetite of the insurer. This excludes operational risk 

capital that supports insurance services. 

βK The weighted average CAPM Beta of the investments that make up the capital Kt. 

rK The expected return per period on invested capital. 

τ The corporate tax rate. 

λ The constant proportion of insurance risk capital to loss reserves discounted at the 

risk adjusted rate – should this approach to capital allocation be adopted. 

βi The CAPM Beta for the insurer’s insurance risk capital, equivalent to the Beta for a 

share in the insurer that provides contracts with insurance risk only. 

 

Second, notation is added in respect of the Services component of the insurance contract. 

ρ Coverage period for the insurance contract that runs from 𝑡 = 0 → 𝜌, where 1 ≤

𝜌 ≤ 𝑇. 

𝜑(𝑡) Probability distribution function reflecting insured risk within the coverage period, 

where ∫ 𝜑(𝑡). 𝑑𝑡 = 1
𝜌

𝑡=0
. 

α Acquisition service expense amount incurred at inception of the insurance contract. 

ξ Profit margin on acquisition services as a proportion of acquisition service expenses. 

γ Claim handling and other services related to claim fulfilment as a proportion of loss 

payments. 

η Claim handling and other services profit margin as a proportion of the claim handling 

and other service expenses. 

St The contract service margin at time t. 

 

The generic present value function for cashflows Xt at discount rate rx is defined as follows: 

 
∑

𝑋𝑦

(1 + 𝑟𝑥)𝑦−𝑡

𝑇

𝑦=𝑡+1

= 𝜈𝑡(𝑋; 𝑟𝑥) = 𝜈𝑡
𝑋 

(1) 

 

With the discount rate made clear if the final abbreviated form above is used. 
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11. FULFILMENT OF CASHFLOWS FOR THE INSURANCE RISK 
COMPONENT 

11.1. Myers & Cohn formula for a fair premium; the initial measurement of an 
insurance contract 

(Myers & Cohn, 1981) proposes the following formula to determine a fair premium that adds two 

components to  the present value of losses to allow for compensation of tax. 

 𝑃 = 𝑃𝑉(𝐿) + 𝑃𝑉(𝑈𝑊𝑃𝑇) + 𝑃𝑉(𝐼𝐵𝑇) (2) 

 

That is, a fair premium and hence initial measurement of an insurance risk contract at inception equals 

the sum of: 

• Present value of losses (L); 

• Tax on the present value of underwriting profit components (UWPT); and 

• Present value of tax on the investment income of the investible balance of reserves, other balances 

plus capital (IBT). 

The difference in definition between UWPT being the tax applied to present values and the IBT being a 

present value of tax is significant and implications are explored later. 

The notation for the MC formula is abbreviated as follows such that the three premium components can 

be used more conveniently: 

 𝑃 = 𝑃𝐿 + 𝑃𝑈 + 𝑃𝐵 (3) 

 

The discount rates used to determine the present value are related to the risk associated with each 

cashflow. Loss related cashflows are discounted at the risk adjusted rate rL whereas premium and tax 

cashflows are discounted at the risk-free rate rf. 

11.2. Present value of losses with risk adjustment for non-financial (insurance) risk 

In the absence of tax, the MC approach defines a fair premium as the present value of losses using a risk 

adjusted discount rate. Using the notation and function defined above, the formula is as follows.  

 
𝑃𝑉(𝐿) = 𝑃𝐿 = ∑

𝐿𝑡

(1 + 𝑟𝐿)𝑡

𝑇

𝑡=1

= 𝜈0(𝐿; 𝑟𝐿) 
(4) 

 

The CAPM framework has applicability in providing a suitable discount rate rL for IFRS17 compliance 

purposes as follows: 

 𝑟𝐿 = 𝑟𝑓 + 𝛽𝐿(𝑟𝑚 − 𝑟𝑓) (5) 
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If βL is negative, meaning that losses have an inverse covariance to market returns, then the discount rate 

is less than the risk-free rate thus creating a profit for shareholders for the risk they are assuming. 

11.3. Compensation adjustments for tax on underwriting and investment income 

The underwriting and investment income tax associated with the premium and losses will be dealt with 

first before considering the tax on investment income on insurance risk capital. 

An insurer is (presently) taxed on its underwriting profit, that is, premium less losses for an insurance 

contract (P-L). Losses are paid over multiple periods and insurers are required to hold reserves for future 

loss payments. Consequently, premium is recognised as revenue not necessarily at the time of underwriting 

the contract but in a pattern that is determined by the movement in loss reserves. If we define P* as the 

pattern of recognition of premium over multiple periods, then the MC adjustment for underwriting tax may 

be expressed as follows: 

 𝑃𝑉(𝑈𝑊𝑃𝑇) = 𝑃𝑈 = 𝜏[𝜈0(𝑃
∗; 𝑟𝑓) − 𝜈0(𝐿; 𝑟𝐿)] (6) 

 

Note that the star superscript (*) will be used to indicate the recognition pattern for any premium item 

that appears in the tax adjustments. 

An insurer is also taxed on its investment income. Leaving aside insurance risk capital for the moment, 

investment income is earned on loss reserves, which, for period t, is equal to 𝑟𝑓𝜈𝑡−1(𝐿; 𝑟𝐿). If the sum of 

the underwriting and investment income tax balances is nonzero then this will itself earn investment income 

and attract tax. It is assumed that the loss reserves are invested in risk free assets replicating the expected 

loss cashflows, hence the present value of the tax on investment income on loss reserves is: 

 𝑃𝑉(𝐼𝐵𝑇) = 𝑃𝐵 = 𝜏𝐼0
𝐿 + 𝜏𝐼0

𝑈𝐵

= 𝜏 [∑
𝑟𝑓𝜈𝑡−1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

] + 𝜏 [∑
𝑟𝑓𝜈𝑡−1(𝑃

𝑈∗ + 𝑃𝐵∗; 𝑟𝑓)

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

] 

(7) 

 

Where the notation 𝜏𝐼0
• refers to the present value at contract inception, discounted at the risk-free rate, 

of the future expected tax on risk free investment returns for the reserves or balances indicated. 

The partially complete MC formula, still excluding consideration of tax of investment income on 

insurance risk capital, is as follows: 

 𝑃 = 𝜈0(𝐿; 𝑟𝐿) + 𝜏[𝜈0(𝑃
∗; 𝑟𝑓) − 𝜈0(𝐿; 𝑟𝐿)] + 𝜏𝐼0

𝐿 + 𝜏𝐼0
𝑈𝐵  (8) 

 

The MC formula can become somewhat iterative, particularly if the underwriting tax rate differs from the 

tax rate on investment income. The underwriting tax compensation has the property of being equal to the 

tax of the present value of all amounts recognised in the underwriting result including itself. The underwriting 
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and investment income tax balances also generate further investment income and tax. The original MC 

formula is quite simply stated at equation (2) and, in that form, lends itself to mathematical solving similar 

to the IRR method. Nevertheless, under the present conditions including a single corporate rate of tax, the 

formula simplifies. 

Separating P* into its component parts, the MC formula becomes: 

 𝑃 = 𝜈0(𝐿; 𝑟𝐿) + 𝜏[𝜈0(𝑃
𝐿∗; 𝑟𝑓) − 𝜈0(𝐿; 𝑟𝐿) + 𝜈0(𝑃

𝑈∗; 𝑟𝑓) + 𝜏𝐼0
𝐿∗ + 𝜏𝐼0

𝑈∗] + 𝜏𝐼0
𝐿

+ 𝜏𝐼0
𝐵𝑈 (9) 

 

Extract the following three terms from equation (9): 

 𝜏𝜈0(𝑃
𝐿∗; 𝑟𝑓) + 𝜏𝐼0

𝐿 − 𝜏𝜈0(𝐿; 𝑟𝐿) (10) 

 

For simplicity, 𝜈𝑡(𝐿; 𝑟𝑓) will also be expressed as 𝜈𝑡
𝐿, noting the discount rate is rL. Expanding the terms, 

equation (10) becomes: 

 
𝜏 ∑

(𝜈𝑡−1
𝐿 − 𝜈𝑡

𝐿)

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

  +   𝜏 ∑
𝑟𝑓𝜈𝑡−1

𝐿

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

  −   𝜏𝜈0
𝐿 

(11) 

 

In combining the summations, successive terms for 𝜈1
𝐿 …𝜈𝑇−1

𝐿  eliminate leaving the ν0 terms to also 

eliminate as follows: 

 
𝜏 ∑

(𝜈𝑡−1
𝐿 + 𝑟𝑓𝜈𝑡−1

𝐿 − 𝜈𝑡
𝐿)

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

  −   𝜏𝜈0
𝐿 

(12) 

 

 
𝜏 ∑[

𝜈𝑡−1
𝐿

(1 + 𝑟𝑓)
𝑡−1 −

𝜈𝑡
𝐿

(1 + 𝑟𝑓)
𝑡]

𝑇

𝑡=1

  −   𝜏𝜈0
𝐿 

(13) 

 

 𝜏𝜈0
𝐿   −   𝜏𝜈0

𝐿  =   0 (14) 

 

Hence: 

 𝜈0(𝑃
𝐿∗; 𝑟𝑓) − 𝜈0(𝐿; 𝑟𝐿) = −𝐼0

𝐿 (15) 

 

This indicates that the investment income at the risk-free rate appears as a negative item in the 

underwriting tax compensation. This is a tax deduction in the form of the risk-free discount ‘unwind’ on the 

loss reserves that appears in the underwriting result. 



IFRS17 Measurement of Property & Casualty Insurance Contracts 

Casualty Actuarial Society E-Forum, Spring 2021 33 

Extracting the underwriting tax term from equation (9): 

 𝑃𝑈 = 𝜏[𝜈0(𝑃
𝐿∗; 𝑟𝑓) − 𝜈0(𝐿; 𝑟𝐿) + 𝜈0(𝑃

𝑈∗; 𝑟𝑓) + 𝜏𝐼0
𝐿∗ + 𝜏𝐼0

𝐵𝑈∗] (16) 

 

Substituting in equation (15): 

 𝑃𝑈 = 𝜏[−𝐼0
𝐿 + 𝜈0(𝑃

𝑈∗; 𝑟𝑓) + 𝜏𝐼0
𝐿∗ + 𝜏𝐼0

𝐵𝑈∗] (17) 

 

Equation (17) is solved with 𝑃𝑈 = −𝜏𝐼0
𝐿 such that 𝑃𝐵 = 𝜏𝐼0

𝐿 and the tax balances sum to zero, thus: 

 𝑃𝑈 = 𝜏[−𝐼0
𝐿 − 𝜏𝐼0

𝐿∗ + 𝜏𝐼0
𝐿∗] = −𝜏𝐼0

𝐿 (18) 

 

The MC formula then simplifies to: 

 𝑃 = 𝜈0(𝐿; 𝑟𝐿) − 𝜏𝐼0
𝐿 + 𝜏𝐼0

𝐿 (19) 

 

 𝑃 = 𝜈0(𝐿; 𝑟𝐿) (20) 

 

Simply the present value of losses discounted at the risk adjusted rate. 

While it seems considerable effort to demonstrate that the MC formula tax compensations include an 

underwriting tax discount unwind deduction that offsets the tax payable on the investment income for loss 

reserves; what is not compensated for is also of importance. 

At first glance, it appears as though the MC formula would compensate for all tax payable by the insurer; 

that the total profit from an insurance contract is the same as if no tax applied. It is common to read 

comments about the MC approach, including from Myers & Cohn themselves, that the fair premium includes 

the present value of the tax burden on the insurer’s underwriting and investment income. However, this is not quite the 

case. The MC formula does not compensate shareholders in respect of all tax compared to a tax-free 

environment. There are two aspects of profit for which shareholders are not compensated for: 

• Insurance risk adjustment. As losses are discounted at the risk adjusted rate in the underwriting tax 

compensation calculation, the risk adjustment emerges in the underwriting result without 

compensation and is therefore taxed. This is appropriate. As losses are tax deductible, the taxing 

authority is in effect a quota share partner and hence receives the appropriate share of the risk 

adjustment. As the net risk for the shareholder has been reduced, the risk adjustment net of tax is an 

appropriate return and no compensation from the policyholder is required. 

• Investment risk on loss reserves and tax balances. Insurers often leverage investment risk on the loss reserves 

and other balances, particularly credit risk and duration mismatch risk. The risk, profit and tax are all 

borne by the shareholder and no compensation from the policyholder is required. 



IFRS17 Measurement of Property & Casualty Insurance Contracts 

Casualty Actuarial Society E-Forum, Spring 2021 34 

11.4. Compensation for tax on investment income on insurance risk capital  

The taxing of investment income earned on capital represents an extra layer of taxation. Shareholders 

could otherwise invest the capital directly into the investments made by the insurer. By investing in an insurer, 

the shareholder experiences another layer of tax on investment income received by the insurer before it is 

ultimately distributed to the shareholder. In order to be at least indifferent about investing in an insurer to 

enable insurance contracts to be underwritten, shareholders need to be compensated for this extra layer of 

taxation. 

Using the present notation and the assumption that cashflows occur at the end of each period t, the 

insurance risk capital that is required during period t that is required to support the uncertain loss reserves is 

equal to Kt-1 which is the capital at the start of and for the duration of period t. This is assumed to have an 

expected return in each period of 𝑟𝐾 = 𝑟𝑓 + 𝛽𝐾(𝑟𝑚 − 𝑟𝑓). 

The tax compensation required in each period t is equal to 𝜏𝑟𝐾𝐾𝑡−1. The balance that delivers this 

compensation will also be subject to underwriting tax as well as income tax on investment earnings and needs 

to be ‘grossed up’ to allow for this. Although given the single corporate tax rate, this could be done intuitively 

by taking the present value of 𝜏𝑟𝐾𝐾𝑡−1 and using a 1 (1 − 𝜏) ⁄  gross up factor. A more detailed approach is 

taken here, including showing the MC formula components. 

Insurers will have a strategic asset allocation to apply to its capital that will have a market Beta, βK. The 

MC formula is agnostic to the Beta of capital and compensates the actual extent of the extra layer of taxation 

despite this being expectedly higher the higher the Beta. There is hence no strategic asset allocation 

considered other than fair by the MC formula.  

Commencing with the last period of cashflows that occur at time T, the tax balance at the start of the 

period plus investment income needs to exactly deliver: 

• underwriting tax on the part of the balance recognised in the period, which is all of the remaining 

balance for the last period T; 

• tax on investment income earned by the balance; and 

• the actual compensation on the tax on insurance risk capital investment income. 

This is shown in equation (21). To simplify notation, the present value (risk free rate) at time t of the 

future tax balance cashflows in respect of the tax on the investment income on investment risk capital is 

denoted as 𝜈𝑡
𝜃. 

 𝜈𝑇−1
𝜃 (1 + 𝑟𝑓) − 𝜏𝜈𝑇−1

𝜃 − 𝜏𝑟𝑓𝜈𝑇−1
𝜃 − 𝜏𝑟𝐾𝐾𝑇−1 = 0 (21) 

 

Which can be arranged as follows: 

 𝜈𝑇−1
𝜃 (1 + 𝑟𝑓)(1 − 𝜏) = 𝜏𝑟𝐾𝐾𝑇−1 (22) 
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𝜈𝑇−1

𝜃 =
𝜏𝑟𝐾𝐾𝑇−1

(1 − 𝜏)(1 + 𝑟𝑓)
 

(23) 

 

The preceding period is then added, which is in the same form as equation (21), except that: 

• The underwriting tax is on the movement in the balance that occurs during period T-1; and 

• The outcome of the opening tax balance together with the period T-1 cashflows needs to deliver the 

required tax balance at the end of the period. 

Hence the tax balance activity for period T-1 may be expressed as: 

 𝜈𝑇−2
𝜃 (1 + 𝑟𝑓) − 𝜏(𝜈𝑇−2

𝜃 − 𝜈𝑇−1
𝜃 ) − 𝜏𝑟𝑓𝜈𝑇−2

𝜃 − 𝜏𝑟𝐾𝐾𝑇−2 = 𝜈𝑇−1
𝜃  (24) 

 

Then, rearranging to determine 𝜈𝑇−2
𝜃 : 

 𝜈𝑇−2
𝜃 (1 + 𝑟𝑓)(1 − 𝜏) = 𝜏𝑟𝐾𝐾𝑇−2 + 𝜈𝑇−1

𝜃 (1 − 𝜏) (25) 

 

 
𝜈𝑇−2

𝜃 (1 + 𝑟𝑓)(1 − 𝜏) = 𝜏𝑟𝐾𝐾𝑇−2 +
𝜏𝑟𝐾𝐾𝑇−1

(1 + 𝑟𝑓)
 

(26) 

 

 
𝜈𝑇−2

𝜃 =
𝜏𝑟𝐾𝐾𝑇−2

(1 − 𝜏)(1 + 𝑟𝑓)
+

𝜏𝑟𝐾𝐾𝑇−1

(1 − 𝜏)(1 + 𝑟𝑓)
2 

(27) 

 

 
𝜈𝑇−2

𝜃 =
𝜏𝑟𝐾

1 − 𝜏
∑

𝐾𝑦−1

(1 + 𝑟𝑓)
𝑦−(𝑇−2)

𝑇

𝑦=𝑇−1

 
(28) 

 

Adding back all preceding periods of t, the tax balance required to include in the premium to compensate 

for the tax on investment income on insurance risk capital is: 

 
𝜈0

𝜃 =
𝜏𝑟𝐾

1 − 𝜏
∑

𝐾𝑡−1

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

 
(29) 

 

The tax compensation for investment income on insurance risk capital can also be expressed as the 

present value of the tax payments for inclusion in the MC formula as follows: 

 
𝜈0

𝜃 = 𝜏 ∑
(𝜈𝑡−1

𝜃 − 𝜈𝑡
𝜃)

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

+ 𝜏 ∑
𝑟𝑓𝜈𝑡

𝜃

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

+ 𝜏𝑟𝐾 ∑
𝐾𝑡−1

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

 
(30) 
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The first term is the underwriting tax that arises as the balance is recognised in the underwriting result. 

The second term represents the tax on the investment income on the balance itself. The last term is the 

compensation for the tax on insurance risk capital investment income. These three terms could be added to 

equation (19) to retain the original form of the MC formula with underwriting and investment income tax 

components. 

The first two terms of equation (30), observing equations (11)-(14) equate to 𝜏𝜈0
𝜃. Thus equation (30) is 

shown to equate to the same tax balance as shown in equation (29) as follows: 

 
𝜈0

𝜃 = 𝜏𝜈0
𝜃 + 𝜏𝑟𝐾 ∑

𝐾𝑡−1

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

 
(31) 

 

 
𝜈0

𝜃 =
𝜏𝑟𝐾

1 − 𝜏
∑

𝐾𝑡−1

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

 
(32) 

 

11.5. Simplified MC formula and measurement of insurance contracts 

If we bring together equations (20) and (29) then we have the simplified MC formula for determining a 

fair premium: 

 
𝑃 = ∑

𝐿𝑡

(1 + 𝑟𝐿)𝑡

𝑇

𝑡=1

+
𝜏𝑟𝐾

1 − 𝜏
∑

𝐾𝑡−1

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

 
(33) 

 

The formula may also be applied to measure the insurance contract throughout the duration of the loss 

cashflows. If we define Mt as the measurement of the insurance contract at time t, the formula generalises 

to: 

 
𝑀𝑡 = ∑

𝐿𝑦

(1 + 𝑟𝐿)𝑦−𝑡

𝑇

𝑦=𝑡+1

+
𝜏𝑟𝐾

1 − 𝜏
∑

𝐾𝑦−1

(1 + 𝑟𝑓)
𝑦−𝑡

𝑇

𝑦=𝑡+1

 
(34) 

 

To this point, the simplified forms of the MC formula in equations (33) and (34) has been relaxed as to 

the basis for determining the insurance risk capital requirement 𝐾𝑡. Note that for the next sections dealing 

with an equivalence of IRR and WACC, the condition of allocated insurance capital being a constant 

proportion of loss reserves discounted at the risk adjusted rate is asserted. 

11.6. WACC for the insurer within a CAPM framework 

The balance sheet for an insurer, similar to most companies, may be simply represented as: 

 Capital = Assets −  Liabilities (35) 
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Under a CAPM framework, the market Betas weight across the balance sheet as follows: 

 𝛽𝐶𝑎𝑝𝑖𝑡𝑎𝑙 .Capital = 𝛽𝐴𝑠𝑠𝑒𝑡𝑠.Assets −  𝛽𝐿𝑖𝑎𝑏.Liabilities (36) 

 

Under the simplified model of an insurer presented in this Appendix, some of the assets and liabilities on 

the balance sheet are risk free with a zero Beta. The non-zero Beta asset and liability items on the balance 

sheet at time t are: 

• Insurance risk capital asset portfolio. This has the value of Kt that is invested in an asset portfolio with a 

Beta of βK.  

• Loss reserve liability. The loss reserves have a Beta of 𝛽𝐿 although the loss reserves are weighted by 

(1 − 𝜏) to allow for the impact of the tax deduction for losses. 

Other items on the balance sheet are assumed to have a zero Beta and these include assets backing loss 

reserves and tax balance items. 

At this point, the condition that the required amount of insurance risk capital is proportional to 

discounted loss reserves at the risk adjusted rate is asserted as follows: 

 𝐾𝑡 = 𝜆(1 − 𝜏) 𝜈𝑡(𝐿; 𝑟𝐿) (37) 

 

The insurance risk capital factor λ refers to that applicable in a tax-free environment and hence needs to 

be adjusted for the impact of the corporate tax rate applicable in the environment under consideration. In 

utilising some of the formulae, it may be more convenient to utilise 𝜅 = 𝜆(1 − 𝜏) where κ is the insurance 

risk capital post the tax effect and a more observable figure on the balance sheet of an insurer, subject to 

allowing for operational risk or other capital elements that may form part of capital for an insurer 

The Beta of the insurer, βi, is determined using equation (36) as follows, again making use of 𝜈𝑡
𝐿 as being 

the present value of future loss cashflows discounted at the risk adjusted rate: 

 𝛽𝑖𝜆(1 − 𝜏)𝜈𝑡
𝐿 = 𝛽𝐾𝜆(1 − 𝜏)𝜈𝑡

𝐿 − 𝛽𝐿(1 − 𝜏)𝜈𝑡
𝐿 (38) 

 

 𝛽𝑖 = 𝛽𝐾 −
𝛽𝐿

𝜆
⁄  (39) 

 

This looks somewhat intuitive. The overall Beta for an insurer is equivalent to the Beta of the assets the 

capital is invested in, less the liability Beta grossed up for the ratio of loss reserves to capital. However, the 

ratio λ is not observed on the actual balance sheet owing to tax effects that need to be grossed-up for. 
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In the way the model has been defined, particularly insurance risk capital being a constant ratio of loss 

reserves, the Beta for the insurer remains constant through the duration of cashflows for the insurance 

contract. 

The WACC for the insurer may then be found using the standard CAPM formula with βi. 

11.7. Return on capital and the IRR 

We now evaluate the profit that is recognised by the proposed measurement of insurance contracts 

approach. 

The first component is straightforward. In each period t, insurance risk capital earns rK based on an 

investment allocation with a market Beta of βK. Tax on insurance risk capital investment income is 

compensated for by the tax balance included with the premium and released appropriately through the 

measurement approach. 

In addition, the risk adjustment emerges as profit and is subject to tax without compensation from the 

policyholder. As established earlier, there is no net tax on risk free investment income on loss reserves. In 

each period t, the risk adjustment hence emerges as follows: 

• A change in the loss reserve balance; less 

• Losses paid at the end of the period; plus 

• Investment income at the risk-free rate on the opening balance of loss reserves. 

The after-tax profit emergence of the risk adjustment in any given period t is therefore: 

 [(𝜈𝑡−1
𝐿 − 𝜈𝑡

𝐿) − 𝐿𝑡 + 𝑟𝑓𝜈𝑡−1
𝐿 ](1 − 𝜏) (40) 

 

The closing loss reserve balance can be expressed in terms of the opening balance adjusted for the 

discount rate and losses paid: 

 𝜈𝑡
𝐿 = 𝜈𝑡−1

𝐿 (1 + 𝑟𝐿) − 𝐿𝑡 (41) 

 

Substituting equation (41) into (40): 

 [(𝜈𝑡−1
𝐿 − 𝜈𝑡−1

𝐿 (1 + 𝑟𝐿) + 𝐿𝑡) − 𝐿𝑡 + 𝑟𝑓𝜈𝑡−1
𝐿 ](1 − 𝜏) (42) 

 

Simplifies to: 

 𝜈𝑡−1
𝐿 (𝑟𝑓 − 𝑟𝐿)(1 − 𝜏) (43) 

 

Then the return on capital for period t, which is defined here as ri, is as follows: 
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𝑟𝑖 = 𝑟𝑘 +

𝜈𝑡−1
𝐿 (𝑟𝑓 − 𝑟𝐿)(1 − 𝜏)

𝐾𝑡−1
 

(44) 

 

 
𝑟𝑖 = 𝑟𝑘 +

𝜈𝑡−1
𝐿 (𝑟𝑓 − 𝑟𝐿)(1 − 𝜏)

𝜆(1 − 𝜏)𝜈𝑡−1
𝐿  

(45) 

 

 𝑟𝑖 = 𝑟𝑘 +
𝑟𝑓 − 𝑟𝐿

𝜆
 (46) 

 

Then solving for βi: that is implied in ri using the CAPM formula: 

 
𝑟𝑓 + 𝛽𝑖(𝑟𝑚 − 𝑟𝑓) = 𝑟𝑓 + 𝛽𝐾(𝑟𝑚 − 𝑟𝑓) +

𝑟𝑓 − 𝑟𝑓 − 𝛽𝐿(𝑟𝑚 − 𝑟𝑓)

𝜆
 (47) 

 

Hence, we again arrive at: 

 𝛽𝑖 = 𝛽𝐾 −
𝛽𝐿

𝜆
⁄  (48) 

 

Thus, the return on capital equates to WACC and is the same for all periods of t. It follows that the IRR 

for the insurance contract is also WACC. This is a desirable outcome for a measurement approach and a 

useful property of allocating insurance risk capital proportional to loss reserves discounted at a risk adjusted 

rate. 

12. SERVICES COMPONENT AND THE CONTRACTUAL SERVICE MARGIN 
(CSM) 

Expenses associated with services provided with an insurance contract and their profit are now added to 

the measurement formula. Per the notation defined above, expenses for these services have been simply 

defined as having an acquisition component that arises at the inception of the insurance contract and a 

component that is proportional to loss payments related to the claim fulfilment services. Each service also 

has an explicit profit margin that is charged to the policyholder as part of the premium. 

Building the service expenses into premium formula (33): 

 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑚𝑖𝑢𝑚

= ∑
𝐿𝑡

(1 + 𝑟𝐿)𝑡

𝑇

𝑡=1

[1 + 𝛾(1 + 𝜂)] + 𝛼(1 + 𝜉)

+
𝜏𝑟𝐾

1 − 𝜏
∑

𝐾𝑡−1

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

 
(49) 
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The expenses and profit associated with the claim fulfilment service are also subject to the risk adjustment 

under these assumptions. 

The contract service margin component at inception is therefore equal to: 

 
𝑆0 = 𝛾𝜂 ∑

𝐿𝑡

(1 + 𝑟𝐿)𝑡

𝑇

𝑡=1

+ 𝛼𝜉 
(50) 

 

IFRS17 requires that the contact service margin be recognized proportional to the risk of insured events 

during the coverage period; the pattern of risk during the coverage period defined here as 𝜑(𝑡). Hence 

measurement during the coverage period will include a portion of the contract service margin given by: 

 𝑆𝑡 = max {0  |  𝑆0
′(1 + 𝑟𝑓)

𝑡
∫ 𝜑(𝑡). 𝑑𝑡

𝜌

𝑡
 ; for 𝑡 < 𝜌} (51) 

 

Where 𝑆0
′  indicates any reassessment to time t of the initial contract service margin if loss or expense 

cashflows have been updated to reflect current information. The contract service profit parameters would 

be adjusted to equate total premium to the present value of cashflows, although cannot be less than zero. 

If risk is assumed to be uniform through the coverage period, and the number of periods over which the 

coverage extends is a small number, then a useful simplification may be: 

 
𝑆𝑡 = max {0  |  𝑆0

′(1 + 𝑡𝑟𝑓)
(𝜌 − 𝑡)

𝜌   ; for 𝑡 < 𝜌} (52) 

 

Hence the measurement of the insurance contract at time t after inception is: 

 
𝑀𝑡 = ∑

𝐿𝑦

(1 + 𝑟𝐿)𝑦−𝑡

𝑇

𝑦=𝑡+1

[1 + 𝛾] +
𝜏𝑟𝐾

1 − 𝜏
∑

𝐾𝑦−1

(1 + 𝑟𝑓)
𝑦−𝑡

𝑇

𝑦=𝑡+1

+ 𝑆𝑡 
(53) 

 

Under IFRS17, several items within the Profit & Loss and disclosures may require calculation of items 

utilizing both risk-adjusted and risk-free rates to explicitly identify the risk adjustment. 

13. A SIMPLIFICATION OF THE TAX COMPENSATION 

A simplification of the tax compensation is possible if the condition that the required amount of insurance 

risk capital is proportional to discounted loss reserves at the risk adjusted rate is asserted. 

Starting again with the base MC formula for premium using simplified notation: 

 𝜈0(𝐿; 𝑟𝐿) + 𝜈0
𝜃 (54) 
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The risk adjustment may be separated against the risk-free discount rate as follows: 

 𝜈0(𝐿; 𝑟𝑓) + (𝜈0(𝐿; 𝑟𝐿) − 𝜈0(𝐿; 𝑟𝑓)) + 𝜈0
𝜃 (55) 

 

Expanding the last term and expressing the insurance risk capital relative to the discounted loss reserves, 

noting that the (1 − 𝜏) term eliminates: 

 
𝜈0(𝐿; 𝑟𝑓) + (𝜈0(𝐿; 𝑟𝐿) − 𝜈0(𝐿; 𝑟𝑓)) + 𝜏𝜆𝑟𝐾 ∑

𝜈𝑡−1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

 
(56) 

 

If we take the last summation from equation (56): 

 
∑

𝜈𝑡−1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

 
(57) 

 

Then this simplifies as follows: 

 1

(1 + 𝑟𝑓) − (1 + 𝑟𝐿)
[∑

(1 + 𝑟𝑓)𝜈𝑡−1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
𝑡 − ∑

(1 + 𝑟𝐿)𝜈𝑡−1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
𝑡

𝑇

𝑡=1

𝑇

𝑡=1

] 
(58) 

 

Expanding the summation terms: 

 

1

𝑟𝑓 − 𝑟𝐿

[
 
 
 
 
 
 
 
 

(1 + 𝑟𝑓)𝜈0(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
−

(1 + 𝑟𝐿)𝜈0(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)

+
(1 + 𝑟𝑓)𝜈1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
2 −

(1 + 𝑟𝐿)𝜈1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
2

+
(1 + 𝑟𝑓)𝜈2(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
3 −

(1 + 𝑟𝐿)𝜈2(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
3

+⋯ ]
 
 
 
 
 
 
 
 

 

(59) 

 

Then, nothing that (1 + 𝑟𝐿)𝜈𝑡(𝐿; 𝑟𝐿) = 𝐿𝑡+1 + 𝜈𝑡+1(𝐿; 𝑟𝐿): 

 

1

𝑟𝑓 − 𝑟𝐿

[
 
 
 
 
 
 
 
 𝜈0(𝐿; 𝑟𝐿) −

𝐿1 + 𝜈1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)

+
𝜈1(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
−

𝐿2 + 𝜈2(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
2

+
𝜈2(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
2 −

𝐿3 + 𝜈3(𝐿; 𝑟𝐿)

(1 + 𝑟𝑓)
3

+⋯ ]
 
 
 
 
 
 
 
 

 

(60) 
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The successive negative and positive terms for 𝜈1(𝐿; 𝑟𝐿)… 𝜈𝑇−1(𝐿; 𝑟𝐿) eliminate leaving behind 𝜈0(𝐿; 𝑟𝐿) 

and losses 𝐿1 …𝐿𝑇 discounted at the risk free rate: 

 (𝜈0(𝐿; 𝑟𝐿) − 𝜈0(𝐿; 𝑟𝑓))

(𝑟𝑓 − 𝑟𝐿)
 

(61) 

 

Substituting equation (61) into equation (56), the MC formula simplifies to: 

 
𝜈0(𝐿; 𝑟𝑓) + (𝜈0(𝐿; 𝑟𝐿) − 𝜈0(𝐿; 𝑟𝑓)) [1 +

𝜏𝜆𝑟𝐾
𝑟𝑓 − 𝑟𝐿

] 
(62) 

 

Adding in service expense and contract service margin, the measurement at time t after inception of the 

insurance contract is: 

 
𝑀𝑡 = 𝜈𝑡(𝐿; 𝑟𝑓)[1 + 𝛾] + (𝜈𝑡(𝐿; 𝑟𝐿) − 𝜈𝑡(𝐿; 𝑟𝑓)) [1 +

𝜏𝜆𝑟𝐾
𝑟𝑓 − 𝑟𝐿

+ 𝛾] + 𝑆𝑡 
(63) 

 

Which appears more in the form of a central estimate including expenses discounted at the risk-free rate 

together with a risk adjustment and the contract service margin. This particular risk adjustment has three 

components expressed relative to the risk adjustment on discounted losses: 

• The risk adjustment on losses itself; plus 

• The tax compensation for investment income on insurance risk capital; plus 

• The risk adjustment on claim handling and other expenses. 

In the worked example included in the main body of the paper, formula (63) above is utilized with the 

substitution of 𝜆 = 𝜅
(1 − 𝜏)⁄  introduced earlier. 
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Appendix B: Alternative accounting standard 
Profit & Loss statements 

14. INTRODUCTION 

This Appendix includes Profit & Loss statements that utilise the worked example cashflows developed in 

Table A through H in this paper and presents the Profit & Loss statements under alternative accounting 

standards. 

14.1. AASB1023 (Australia) 

There is one alternative assumption required in order present the AASB1023 Profit & Loss statement. 

Practice under AASB1023 is to adopt a risk margin as part of total outstanding claim liabilities that provides 

a chosen probability of sufficiency (PoS). The PoS is the proportion of all possible outcomes for future loss 

payments and associated expenses for which the total outstanding claim liabilities ultimately proves adequate 

to have met. 

It is assumed that the adopted risk margin is 10% of losses and claim handling and supply chain expenses 

discounted at the risk-free rate. Capital and investment income on capital has been assumed to be the same 

as per the IFRS17 worked example for simplicity. 
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The risk margin is typically selected to provide a PoS in the range of 75-90%. This results in a risk margin 

that will typically be in excess of the margins under IFRS17 that results in a slower recognition of profit. 

14.2. US GAAP 

Under US GAAP, loss and loss adjustment expense reserves are inflated but undiscounted. This creates 

an implicit margin equivalent to the amount of risk-free discount that would be applicable to cashflows. The 

lower the prevailing level of risk-free rates, the faster is the recognition of profit under US GAAP. 

Capital and investment income on capital has been assumed to be the same as per the IFRS17 worked 

example for simplicity. The corporate tax rate assumption of 30% has also been maintained for comparative 

purposes. 

Table B1: Profit & Loss, AASB1023 Approach

0 1 2 3 4 5

   Written premium 1,055.49   

   Unearned premium mvt (1,055.49)  1,055.49   

Earned premium 0.00   1,055.49   

   Losses paid (150.00)  (300.00)  (200.00)  (100.00)  (50.00)  

   Discounted loss reserve mvt (615.72)  281.53   189.97   95.67   48.54   

   Claim handling (9.00)  (18.00)  (12.00)  (6.00)  (3.00)  

   Discounted claim handling mvt (36.94)  16.89   11.40   5.74   2.91   

   Discounted risk margin mvt (65.27)  29.84   20.14   10.14   5.15   

Claims expense (876.93)  10.26   9.51   5.56   3.60   

   Distribution (100.00)  

   Product & UW (40.00)  

   Corporate (22.50)  

   Deferred acquisition costs 162.50   (162.50)  

Underwriting expense 0.00   (162.50)  

Underwriting result 0.00   16.06   10.26   9.51   5.56   3.60   

Investment income on technical provisions 26.79   21.54   11.69   5.04   1.70   

Insurance profit 0.00   42.85   31.80   21.20   10.60   5.30   

Investment income on shareholder's funds 19.14   13.38   7.49   3.30   1.14   

Profit before tax 0.00   61.99   45.18   28.69   13.90   6.44   

Income tax 0.00   (18.60)  (13.55)  (8.61)  (4.17)  (1.93)  

Profit after tax 0.00   43.39   31.63   20.08   9.73   4.51   

Time
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Table B2: Profit & Loss, USGAAP Approach

0 1 2 3 4 5

   Premiums written 1,055.49   

   Unearned premium mvt (1,055.49)  1,055.49   

Premiums earned 0.00   1,055.49   

   Losses paid (150.00)  (300.00)  (200.00)  (100.00)  (50.00)  

   Undiscounted loss reserve mvt (650.00)  300.00   200.00   100.00   50.00   

   Loss adjustment expenses (9.00)  (18.00)  (12.00)  (6.00)  (3.00)  

   Undiscounted loss adjustment mvt (39.00)  18.00   12.00   6.00   3.00   

Losses and loss adjustment expenses incurred (848.00)  0.00   0.00   0.00   0.00   

   Distribution (100.00)  

   Product & UW (40.00)  

   Corporate (22.50)  

   Deferred acquisition costs 162.50   (162.50)  

Underwriting expenses 0.00   (162.50)  

Underwriting result 0.00   44.99   0.00   0.00   0.00   0.00   

Investment income on reserves 26.79   20.67   11.13   4.77   1.59   

Investment income on shareholder's funds 19.14   13.38   7.49   3.30   1.14   

Profit before tax 90.92   34.05   18.62   8.07   2.73   

Income tax (27.28)  (10.21)  (5.59)  (2.42)  (0.82)  

Profit after tax 63.65   23.83   13.03   5.65   1.91   

Time
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