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1 Introduction

1.1 Overview

In one of his seminal works, Stephen W. Philbrick proposed an elegant solution to
the complex problem of modeling claims amounts in excess layers. The elegance
is the result of the following:

• He proposed a single parameter distribution to model claim layers where
there may be limited amounts of data. Having only a single parameter
maximizes the degrees of freedom of the model.

• The maximum likelihood estimator of the parameter has a straightforward
derivation.

• Actuaries are able to easily calculate severity values of interest.

The solution involved the use a Pareto Type I distribution for claims above an
excess threshold. Philbrick referred to this distribution as the ”Single Parameter
Pareto” (referred to as the SPP throughout this paper).

This paper expands on Philbrick’s work in several ways by providing the following:

In the remainder of this section, we reintroduce the SPP.
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Abstract

In his paper in the 1985 Proceedings of the Casualty Actuarial Society, 
Stephen W. Philbrick [Philbrick 1985] proposed the use of the Single 
Parameter Pareto distribution to model excess layer claim severity dis-
tributions. In this paper, we reintroduce the distribution. We provide 
guidance as to when it is appropriate to model claims using the Single 
Parameter Pareto and offer a new approach to estimate its parameter and 
identify the appropriate threshold.
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In Section 2, we describe a test to determine when it is appropriate to model
claims using the SPP. We extend this test to support the determination
(rather than selection) of the excess claims threshold and determination of
the Pareto parameter. We conclude this section with a recipe for analysis.

In Section 3, we review the Pareto parameter. We explore the relationships
of the parameter to both the excess loss threshold and cost levels.

In Section 4, we discuss actuarial applications of the SPP and parameter
values less than 1.

In Section 5, we provide concluding remarks.

In Appendix A, we present an errata to Philbrick.

In Appendix B, we provide a review of the various formulæ related to the
SPP including supporting derivation.

In Appendix C, we provide the R code supporting the figures included in this
paper.

1.2 Preliminaries

Philbrick’s SPP is a special case of the Pareto Type I distribution which has the
following cumulative distribution function:

F (x) = 1−
(
k

x

)a

(1.2.1)

The scale parameter (k) in the Pareto Type I is not necessary in the SPP because
the data are scaled. As such the SPP is equivalent to a Pareto Type I with
scale parameter equal to 1 that is fit to transformed data. We then invert the
transform to calculate quantities of interest.

1.3 The Single Parameter

Readers of Philbrick are often confused by the reference to the single parameter.
After all, in Section III Philbrick initially presents the Pareto with two parameters
(as we present in Equation 1.2.1), k and a, and then later adds that claims
should be “normalized” by dividing by the “selected lower bound.”

This presentation leaves many readers not understanding how the lower bound,
k, “lost” its parameter status. Philbrick explains that this is because:

Although there may be situations where this value must be estimated,
in virtually all insurance applications this value will be selected in
advance. (Philbrick, Section III)

The Single Parameter Revisited

Casualty Actuarial Society E-Forum, Spring 2021 2



We offer the alternative view that users of the SPP model should consider the
process of normalizing the claims to be a transformation of the data rather than
the application of a parameter. An analogous transformation occurs when we
take (natural) logarithms. When we do that, we do not consider the base of the
logarithm (e) to be a parameter. Similarly, we should not consider the lower
bound to be a parameter.

To improve the clarity of this concept, we present Table 1 comparing the more
traditional two parameter Pareto Type I and the SPP. We denote the raw claim
amounts as observations of the random variable C and the normalized claim
amounts as Z1.

Distribution Pareto Type I SPP

Random Variable
Observed Normalized

Claim Claims
Amount C Amount Z

Transformation
Not Z = g(C)

Applicable g(C) = C/lower bound

Parameters k > 0 (scale); a > 0 (shape) q > 0 (shape)

Domain [k, ∞] [1, ∞]

Density a
ka

Ca+1
qz−(q+1)

Table 1: The Pareto Type I and the SPP

The support of both the Pareto Type I and the SPP distribution are claims in
excess of a threshold. The support for the former is all claim amounts greater
than k. The support of the latter is all claim amounts greater than the lower
bound which results in the normalized claim amounts greater than 1.

We can now work with model forms in the space of Z and then use g−1 to
transform back into the space of C. We can also now present the density and
distribution functions.

f(z) = qz−(q+1) (1.3.2)

F (z) = 1− z−q (1.3.3)

In Appendix B.1, we provide the derivation of the distribution function (Equation
(1.3.3)).

1Later in this paper, we advocate an approach that requires plotting data on an x, y
coordinate system. We use C and Z to avoid confusion with that coordinate system.
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2 When is it appropriate to use the SPP?

Philbrick introduced the SPP as a distribution to model excess claims. As such,
the most common actuarial use of the SPP is in the modeling of claims in the
tail of a distribution which is of interest when the tail is said to be “thick” or
“heavy.” Of course, the terms ‘thick” or “heavy” have no formal definition.

The simplicity/elegance of the SPP has had the unintended consequence that
the SPP is widely-used without an assessment to determine if and where the
data follow a Pareto distribution. (We note that Philbrick did not include
such an assessment.) We propose an “assessment approach” (as compared
to Philbrick’s “selection approach”) in this paper. We begin by applying our
proposed approach to normalized data. We then extend the concept to data
that is not normalized. We recommend that latter approach for actuaries to use
in fitting the Pareto model.

2.1 The Zipf Plot

Specifically, we note that Pareto-distributed data plot as a straight line on a
Zipf plot[Cirillo 2013].

To construct a Zipf plot, we plot the (empirical) survival function on the y-axis
and the data points on the (transformed) x-axis. Both axes are on a log2 scale.

y-values From Equation (1.3.3), we recognize that the survival function is
1− (1− z−q) = z−q and the natural logarithm of the survival function is
−q ln z.

x-values We note that the x values of the Zipf plot are ln z

We represent the linear relationship 3 of the y and x values as:

−q log z ∼ b1 log z (2.1.4)

Simplifying Equation 2.1.4, we have the straightforward observation that the
coefficient of log z on the right hand side of the relationship (i.e., b1) represents 
an estimator for the negative of the Pareto parameter (i.e., −q).

2.2 Zipf Plot Example Normalized Pseudo Data

In this section, we demonstrate the use of the Zipf plot using normalized pseudo 
data. We refer to this data as normalized consistent with the Philbrick definition 
raw values have been divided by the selected lower bound.

2All reference to logarithms that I include throughout this paper are natural logarithms. 
3This notation indicates that the left side of the ∼ is a function of the right side of the ∼ 

without specifying any possible other terms of the relationship.
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To generate that pseudo data, we assume that each of n observed points is located
at the midpoint of evenly-spaced probability intervals4 . That is, the empirical
distribution and survival functions for the ith ordered point, (z(i), i ∈ [1, n])
are:

F (zi) =
i− 0.5

n
(2.2.5)

S(zi) =
n− i+ 0.5

n
. (2.2.6)

From Equation (1.3.3), we recognize that associated normalized data points,
z have values S(zi)

(−1/q). Also, importantly, we use z(1) to represent the first
observed value. We later discuss the significance of z(0).

Then pseudo data points on the Zipf plot are:

(xi, yi) = (ln z(i), ln(
n− i+ 0.5

n
))

where we now use z(i) to indicate the i-th order statistic of the data sample.

Then, we can use linear modeling tools to facilitate calculation of slope of line
through the data points using ordinary least squares.

For the normalized data, using the following logic, we understand that the
constant in the relationship (that is, the y-intercept) is, by definition, 0:

• Since the x-axis represents values of the log(z), we denote the minimum
z-value as z(0).

• F (z(0)) = 0;S(z(0)) = 1

• The y-value at z(0) is ln(S(z(0)) which is equal to ln 1 = 0.

Similarly we understand that z(0) = 1 results in an x-value = ln(z(0)) = 0. We 
now recognize that the line fit to the point on the Zipf-plot passes through the 
origin.

We present Zipf plots using 100 pseudo-data points at q values of 0.5, 1.0, 1.5 
and 2.0 in Figure 1 and include the least squares fitted line and the associated 
regression coefficient. In Appendix C.1, we present the R code used to generate 
Figure 1 which includes a function that can be used to generate Zipf-plots 
(adapted from [Cirillo 2013]).

2.3 The Lower Bound

Suppose however that the data were not normalized by a selected lower bound 
(we will denote that lower bound as B here). Then, we multiply each of the

4We emphasize that this is pseudo data meant only to support the reader’s replication 
of the example. We acknowledge that this is not the only means through which one could 
generate pseudo data. In practice, we assume that the reader would be applying the recipe to 
observed data.
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Figure 1: Zipf Plots

x-values in Figure 1 by B, and the lns of the x-values would move rightward by
lnB. We can now see that we have returned to our original claim amounts C.
More importantly however, the constant in the linear relationship between ln c
and ln S(z) = ln S(c) is no longer 0 since the c(0) is now B rather than 0.

We can now use the linear relationship to solve for the x-value at which the
y-value of the fitted line is equal to 0 (i.e., the x-intercept).

That is, we evaluate lnS(c) = β0 + β1 log(c) at c(0).

lnS(c(0)) = β0 + β1 ln(x(0))

ln 1 = β0 + β1 ln(c(0))

0 = β0 + β1 ln(c(0))

c(0) = exp(−β0/β1)

Readers should recognize that we do not observe c(0); c(1) is our first observed 
value. The linear model provides statistical support for the threshold which in 
Philbrick was selected

2.4 Analysis Recipe

The elegance and stated purpose (modeling of excess layers) of the SPP invite 
its use without an evaluation of the appropriateness of the model. Key findings 
of this research paper are as follows:

Identify if and where data are Pareto-distributed Actuaries should use 
Zipf plots to understand first which data regions are indeed Pareto dis-
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tributed. That is, the actuary should identify the range of data that
exhibits a linear pattern on a Zipf plot. Statistical evaluation of linearity
is outside the scope of this paper. However, we would suggest the follow-
ing initial tests. (Note that below, we recommend a reevaluation of this
assumption)

• a plot of the residuals of linear model as a function of fitted values

• a visual analysis

If the data do not appear to be linear on a Zipf plot, a Pareto model should
not be selected.

If the data are (reasonably) linear in a certain region, the actuary, should
then discard all data points outside the region of linearity.

Determine threshold and Pareto-parameter The actuary should then use
the results of a linear model fit through the the remaining points (and only
those points) of the Zipf-plot to parameterize that model. (This Zipf plot
will differ from the initial plot as the empirical survival function will be
calculated using only the retained data.)

• The negative of the covariate of ln c should be used as the estimator
for the q parameter. (We explore advantages of this estimator to the
maximum likelihood estimator in the next section.)

• the ratio of the negative of the intercept of the linear model and the
covariate of ln c represents the value at which the data begin to be
Pareto distributed.

• We can (and should) use tools (e.g., autocorrelation of residuals) that
we use to statistically evaluate linear models to determine whether
the data are indeed Pareto distributed (i.e., linear).

• The linear model output includes the standard error of the covariate
(i.e., parameter uncertainty).

Application The actuary can then return to the presentation in Philbrick for
formulæ relevant for modeling.

Actuarial judgment Actuaries should continue to apply judgment where ap-
propriate throughout the process including but not limited to, assigning
predictive value to underlying data points and in interpreting and using
the modeling results.

Application of actuarial judgment is particularly important in addressing
the practical issues that we discuss in Section 2.4.1.

The Single Parameter Revisited
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2.4.1 Practical Issues

In executing this recipe in practice, there is one primary issue that we have
encountered. That is, data are never perfectly Pareto-distributed as are the data
in Figure 1. Specifically data will generally display some level of non-linearity.
That is, data will typically display a concave down or concave up pattern.

Concave Downward Data that is concave downward will yield an indicated
threshold that is greater than the initially selected threshold.

Concave Upward Data that is concave upward will produce an indicated thresh-
old that is less that the initially selected threshold.

We have offer the following options for responding to this issue.

Re-select and Refit We could reexamine the data and identify a new value
above which data are Pareto-distributed. We could then refit the linear
model. This would be an iterative process.

Exclude individual data We could also exclude (inappropriately) influential
points in fitting the model.

Accept the model In our experience, in many cases that data exhibit the
patterns described, the indicated Pareto-parameter only changes slightly
as we apply one of the two prior approached. So, we could retain the
Pareto-parameter from the model but use judgment that considers both
the model and the data in selecting the threshold value.

Actuaries should use professional judgment in the selection of which of these
options to use.

The Single Parameter Revisited
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3 The Pareto Parameter

Pseudo data plotted on Zipf plot also provides an important tool to help us
understand the relationship between the data and the Pareto model. In this
section, we use those tools to understand the following:

• Why the linear model produces a more robust estimator for the Pareto pa-
rameter.

• The effect of trend on the parameter and the lower bound.

3.1 Parameter Estimation

We now compare the approach that we present to Philbrick’s approach to
estimating the Pareto parameter.

• The maximum likelihood estimator (MLE) presented in Philbrick is:

q =
n∑
lnx

. (3.1.7)

We should recognize that the MLE is simply the reciprocal of the mean of
lnx.

• Option 2 is to use the coefficient of the linear model described in Section
2. For convenience, we will refer to this estimator as the CLM (coefficient
of linear model).

We evaluate these alternatives considering the practical issues of missing data 
related to the estimation of the parameter. Specifically, we should understand 
that our observations may not be a representative sample of the claims that 
would be generated by a phenomenon that produces Pareto-distributed data.

To understand the effect on the parameter, we first consider situations where we 
only observed certain data points but that all possible data points are perfectly 
Pareto distributed. (That is, there is no process variance in the underlying data 
generation.) In Figure 2, we present an example where there are potentially 20 
observed points (our population) and between 5 and 15 points are not observed 
in the samples (our samples). We generate all possible combinations under these 
conditions. In the upper panel, we plot the mean indicated parameter using MLE 
and CLM; in the lower panel, we plot the standard deviation of the indicated 
parameters.

We note that neither approach perfectly reproduces the underlying parameter. 
However, we did note that for many different values of the true parameter, the 
CLM resulted in an estimate closer to the actual value. We performed this 
analysis through simulation and present the underlying R code in Appendix C. 
Intuitively however we can recognize that a model (as is the basis for the CLM)
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Figure 2: Comparison of Parameter Estimation Models

will help to extract signal from the data whereas an average (as this the basis 
for the MLE) effectively does not distinguish between noise and signal.

3.2 Trend

Philbrick espouses that the Pareto parameter should not be adjusted for claims 
inflation. That is, he argues that claims inflation results in frequency trend as 
more claim enter the “Pareto layer” but that there is no change to the SPP 
severity model.

With our recommended assessment approach, this is no longer intuitive or 
desirable. That is, Philbrick is implying that claims “become” Pareto-distributed 
once they trend to values above the threshold but that data is not Pareto-
distributed below the threshold. In our approach, the use of the Zipf-plots 
maximizes the data used in our modeling. We identify the threshold above which 
all claims (which we presume have been appropriately adjusted to a common 
cost level) are Pareto-distributed. The Philbrick approach implies different levels 
of trend on either side of the threshold and that the trends acts in a way as to 
“push” claims over the threshold so as to preserve the Pareto parameter. While 
there is certainly a possibility that all these conditions are met, we view the 
simultaneous existence of all conditions as unlikely.

More specifically, we view ”cost-leveling” as a separate modeling choice for the
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actuary. That modeling is outside the scope of this paper. Using the linear
model-based approach to determining the Pareto parameter and the threshold,
and assuming that each claim is subject to the same rate of trend, each claim
in the Pareto-distributed portion of the data would move right (inflationary
trend) or left (deflationary trend) by an amount equal to the ln of the trend
adjustment. The x-intercept (that is the threshold value) would similarly shift
and the y-coordinates would not change. Similarly the covariate would not
change.
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4 Actuarial Application

4.1 Parameter Values

To provide context to the Pareto parameter, we first review the application of
the SPP.

We can use Equation (4.1.8), to calculate the limited expected value through b
as presented in Appendix B.3 as:5

E[X; b] =
q − b1−q

q − 1
(4.1.8)

In that derivation, there is no restriction that q > 1 as exists in the determination
of the unlimited mean presented in Equation (B.2.14). That is, we recognize that,
although the limited expected value is undefined, expected values are defined
when we have an upper limit (such as a policy limit). Moreover, In Section IV.,
Philbrick indicates that:

... but most actual data suggests that the tail of the Pareto is still
somewhat too thick at extremely high loss amounts. In other words,
the theoretical density at high loss amounts is larger than empirical
experience tends to indicate. Rather than discard the Pareto, it is
easier to postulate that the distribution is censored or truncated
at some high, but finite, value. As we have seen earlier, any upper
limitation (either censorship point or truncation point) will produce
formulæ for the mean claim size that are finite for all possible values
of q.

As such, users of the SPP need not “fear” q values less than 1 for most insurance 
applications.

4.2 Claim Costs by Layer

Estimating claims for an excess policy is, of course, likely the most common use
of the SPP. This was also a focus of Section III of Philbrick. For the expected 
claim amount for the layer between AP and L, we have:

5Philbrick used b to refer to both the “lower bound” and the policy limit. We will not do 
that in this paper primarily for clarity as using a variable to represent the lower bound implied 
at least the possibility that the lower bound was a parameter. Conveniently, it also allows us 
to use the traditional policy notation as attaching at AP through limit L with the resulting 
layer width equal to L − AP .
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E[X;AP,L] =
q − L1−q

q − 1
− q −AP 1−q

q − 1

=
AP 1−q − L1−q

q − 1
(4.2.9)

4.3 Policy Claims Estimate

The purpose of the Philbrick calculation was likely to demonstrate that the
average claim size in the layer between AP and L was equal to the expected
value of claims limited to L/AP net of the lower bound but multiplied by AP .
The latter is calculated as Equation (4.1.8) −1 which simplifies to:

1− b1−q

q − 1
×AP (4.3.10)

We can demonstrate that using Equation (4.2.9) and the survival function as
follows:

AP 1−q − L1−q

q − 1

S(AP )
=

AP 1−q − L1−q

q − 1

AP−q

=
1

q − 1
× AP

AP
× AP 1−q − L1−q

AP−q

=
AP

q − 1
× AP 1−q − L1−q

AP 1−q

=
AP

q − 1
×

(
1−

(
L

AP

)1−q
)

=
1− (L/AP )1−q

q − 1
×AP (4.3.11)

As mentioned, the most common actuarial application of the SPP is to estimate
the number of claims, their average value and the resulting aggregate claim
amount to a policy. We summarize those formulæ for N ground-up claims in
Table 2.
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Number of Claims S(AP ) = N ×AP−q

Average Value of Individual Claims
1− (L/AP )1−q

q − 1
×AP

Aggregate Claim Amount N × AP 1−q − L1−q

q − 1

Table 2: Policy Analysis

5 Concluding Remarks

Our goal with this paper was to provide additional guidance in deploying
Philbrick’s elegant solution to a complex problem. Our guidance supplements
Philbrick with data visualization and model fitting that we expect would produce
more robust solutions to the application of the Single Parameter Pareto in
modeling excess claim layers.
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Appendices

A Errata

In reviewing Philbrick, we noted two typographical errors and one calculation
error. These are discussed below.

A.1 Philbrick Errata #1

In the application of formula (4.1.8), we should understand that there is a minor
typographical error in Philbrick. The second paragraph following Equation (6)
appears on Page 56 and includes the following:

b = 20× (500, 000/25, 000)

which should be

b = 20 = 500, 000/25, 000

A.2 Philbrick Errata #2

Starting at the bottom of Page 58 and extending to Page 59, Philbrick presents
an example with a q parameter of 1.5 and expected claim count of 7 that results
in the following (where S(x) represents the survival function):

F (4) = 1− 4−1.5

F (4) = 7/8

S(4) = 1− F (4) = 1/8

E[n] = 7

E[n;x > 4] = 7× S(4) = 7/8 (A.2.12)

(It is unfortunate that, in this example both E[n;x > 4] and S(4) both equal
7/8.)

E[X] =
1.5

1.5− 1

E[X] = 3
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E[X; 4] =
1.5− 41−1.5

1.5− 1

E[X; 4] =
1.5− 4−0.5

0.5

E[X; 4] =
1.5− .5

0.5
E[X; 4] = 2

The average severity of claims in the layer is (E[X]− E[X; 4])/S(4) = 8. Using
the frequency calculated in Equation (A.2.12), we estimate claims in the layer
to be 8× 7/8 = 7 which agrees with Philbrick’s calculation.

The error occurs when the example is extended to calculate claims in the layer
from AP = 3 to L = 7.5. Using the approach above, we have the following:

E[X; 3] = 1.845299

E[X; 7.5] = 2.269703

F (3) = 0.8075499

S(3) = 0.1924501.

We have average claim amounts in the layer at

E[X; 7.5]− E[X; 3]

1− F (3)
= 2.205267

which agrees with Philbrick’s calculation of “net average claim size” on Page
59. However, the corresponding frequency should be 7 × S(3) = 1.347151
and resulting expected claims in the layer of 2.970827. The purpose of the
F (87, 500/75, 000) = F (2.5) term in the frequency calculation is not entirely
clear to this author.

A.3 Philbrick Errata #3

Equation (11) indicates that “nth moment of the Pareto distribution with no

upper limit is”
q

q + n
. Then, in Equation (12) the second moment is represented

in the calculation of variance by
q

q − n
and of course we have the calculation of

mean (first moment, n = 1) as
q

q − 1
. We can see the error in Equation (11).
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B Derivation of Forumulæ

B.1 SPP Cumulative Distribution Function

F (x) =

∫ x

1

f(x) dx

=

∫ x

1

qx−(q+1) dx

= q

∫ x

1

x−(q+1) dx

= q
1

−(q + 1) + 1
x−q

∣∣∣x
1

= q
1

−q
x−q

∣∣∣x
1

= −x−q
∣∣∣x
1

= −x−q − (−1−q)

F (x) = 1− x−q (B.1.13)

B.2 Expected Values

E[X] =

∫ ∞
1

xf(x) dx

=

∫ ∞
1

xqx−(q+1) dx

= q

∫ ∞
1

x−q dx

= q
1

−q + 1
x−q+1

∣∣∣∞
1

=
q

1− q
x−q+1

∣∣∣∞
1

E[X] =
q

1− q
1

xq−1

∣∣∣∞
1

(B.2.14)

We can see that for x = 1 (the lower limit of integration) equation (B.2.14)

evaluates to
q

1− q
. However for x =∞ (the upper limit of integration), we have

the following6:

6In the limit as x→∞, the expression evaluates to −
q

q + 1
. However evaluated at ∞, the

expression is undefined.

The Single Parameter Revisited

Casualty Actuarial Society E-Forum, Spring 2021 17



q

1− q
1

xq−1
=


0, if q > 1

undefined, if q = 1

∞, if q < 1

and therefore we have:

E[X] =


0− q

1− q
, if q > 1

undefined, if q = 1

∞, if q < 1

or more simply:

E[X] =


q

q − 1
, if q > 1

undefined, if q ≤ 1
(B.2.15)
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B.3 SPP Limited Expected Value

The limited expected value is calculated as:

E[X; b] =

∫ b

1

xf(x) dx+ b(1− F (b))

=

∫ b

1

xqx−(q+1) dx+ b(1− F (b))

= q

∫ b

1

x−q dx+ b(1− F (b))

= q
1

−q + 1
x−q+1

∣∣∣b
1

+ b(1− F (b))

=
q

1− q
1

xq−1

∣∣∣b
1

+ b(1− F (b))

=
q

1− q

[
1

bq−1
− 1

1q−1

]
+ b

[
1− (1− b−q)

]
=

q

1− q

[
1

bq−1
− 1

]
+ b

[
b−q
]

=
q

q − 1

[
1− 1

bq−1

]
+ b1−q

=
q

q − 1

[
1− b1−q

]
+ b1−q

=
1

q − 1

[
q − qb1−q + (q − 1)b1−q

]
=

1

q − 1

[
q − b1−q

]
=
q − b1−q

q − 1
(B.3.16)
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B.4 Maximum Likelihood Estimator for Parameter

The negative log-likelihood (NLL) function given data D = x1 . . . xn is defined
as:

L(q) =
n∏

i=1

fxi

NLL = −
n∑

i=1

ln(fxi)

NLL = −
n∑

i=1

ln(qx
−(q+1)
i )

NLL = −
n∑

i=1

[
ln q + lnx

−(q+1)
i

]
NLL = −

n∑
i=1

[
ln q − (q + 1) lnxi

]
NLL = −n ln q +

n∑
i=1

(q + 1) lnxi

NLL = −n ln q + (q + 1)

n∑
i=1

lnxi

We can calculate the MLE of q by taking partial derivatives and setting equal to
0.

0 =
∂

∂q

−n ln q + (q + 1)

n∑
i=1

lnxi


0 = −n1

q
+

n∑
i=1

lnx

n∑
i=1

lnx =
n

q

q =
n∑n

i=1 lnx
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C R Code

We present the R code used to generate Figure 1 and Figure 2 below.

C.1 R Code for Figure 1

zipfplot <- function(data) {

data <- x_values

data <- sort(as.numeric(data)) #sorting data

y <- 1 - ppoints(data) # computing 1-F(x)

plot(x = data, y = y, log = ’xy’, xlab = ’x on log scale’,

ylab = ’1-F(x) on log scale’)

}

n_points <- 100

y_vals <- ( n_points - (n_points:1) + 2 / n_points ) /

n_points

par(mfrow = c(2,2))

x_vals <- y_vals

lapply(X = c(0.5, 1, 1.5, 2), FUN = function(q){

#q <- 2

plot(x = log(x_vals ^ (-1/q)), y = log(y_vals),

xlab = ’log(x)’,

ylab = ’log(S(x))’, sub = paste0(’q = ’, q))

fit <- lm(log(y_vals) ~ log(x_vals ^ (-1/q)) + 0)

abline(fit, col = ’red’)

text(x = 0, y = -4, labels = paste0(’reg. coeff = ’,

round(fit$coefficient, 1)),

adj = 0)

})
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C.2 R Code for Figure 2

# This may take a reasonably long time to run!

missing_pts <- 5:15

n_points <- 20

scale <- 200000

q <- 2

y_vals <- (n_points - (n_points:0)) / n_points

y_vals <- (y_vals[1:(length(y_vals) - 1)] +

y_vals[2:length(y_vals)]) / 2

x_values <- (1 - y_vals) ^ (-1 / q)

rm(y_vals)

mle <- lapply(X = missing_pts, FUN = function(missing) {

no_sampled_points <- n_points - missing

combn(x = x_values, m = no_sampled_points,

FUN = function(sampled_points) {

no_sampled_points / sum(log(sampled_points))

}

)

})

clm <- lapply(X = missing_pts, FUN = function(missing){

no_sampled_points <- n_points - missing

combn(x = x_values, m = no_sampled_points,

FUN = function(sampled_points) {

sampled_points <- sampled_points[order(sampled_points)]

y_vals <- (no_sampled_points - (no_sampled_points:0) ) /

no_sampled_points

y_vals <- (y_vals[1:(length(y_vals) - 1)] +

y_vals[2:length(y_vals)]) / 2

y_vals <- 1 - y_vals

-lm(log(y_vals) ~ log(sampled_points) + 0)$coefficient

}
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)

})

clm_mean <- sapply(clm, mean, simplify = TRUE)

mle_mean <- sapply(mle, mean, simplify = TRUE)

clm_sd <- sapply(clm, sd, simplify = TRUE)

mle_sd <- sapply(mle, sd, simplify = TRUE)

save(clm, mle, clm_mean, clm_sd, mle_mean, mle_sd,

file = ’./param_test.RData’)

par(mfrow = c(2, 1))

plot(x = missing_pts, y = sapply(mle, mean, simplify = TRUE),

ylab = ’Mean Indicated q’,

xlab = ’Number of Unobserved Data Points (out of 20)’,

type = ’n’, ylim = c(1.5, 3))

abline(h = 2, lty = ’solid’)

points(x = missing_pts, y = mle_mean, col = ’red’)

lines(x = missing_pts, y = mle_mean, col = ’red’,

lty = ’dotted’)

points(x = missing_pts, y = clm_mean, col = ’blue’)

lines(x = missing_pts, y = clm_mean, col = ’blue’,

lty = ’dotted’)

legend(’topleft’, legend = c(’MLE’, ’CLM’, ’Actual’),

lty = c(’dotted’, ’dotted’, ’solid’), pch = c(1, 1, NA),

col = c(’red’,’blue’, ’black’), bty = ’n’)

plot(x = missing_pts, y = sapply(mle, sd, simplify = TRUE),

ylab = ’SD Indicated q’,

xlab = ’Number of Unobserved Data Points (out of 20)’,

type = ’n’)

points(x = missing_pts, y = sapply(mle, sd, simplify = TRUE),

col = ’red’)

lines(x = missing_pts, y = sapply(mle, mean, simplify = TRUE),

col = ’red’, lty = ’dotted’)

points(x = missing_pts, y = sapply(clm, sd, simplify = TRUE),

col = ’blue’)

lines(x = missing_pts, y = sapply(clm, sd, simplify = TRUE),

col = ’blue’, lty = ’dotted’)

legend(’topleft’, legend = c(’MLE’, ’CLM’),

lty = c(’dotted’, ’dotted’),

pch = c(1, 1), col = c(’red’,’blue’), bty = ’n’)
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