
Casualty Actuarial Society E-Forum, Spring 2021 1 

Interplay between Epidemiology and Actuarial Modeling 

Runhuan Feng, Ph.D., FSA, CERA; Longhao Jin, MS;  

and Sooie-Hoe Loke, Ph.D. 

________________________________________________________________________ 

Abstract 
In an era where rapidly evolving situations is the new normal, collaboration between multiple disciplines offers a 
concerted effort and provides a comprehensive perspective in tackling problems and challenges. In this essay, we 
illustrate various modeling tools and key ideas used in epidemiology that can be applied to the insurance framework. 
Specifically, we give an overview of the compartmental models, network models, and agent-based models, and 
discuss their applications to epidemic and cyber insurance coverages.  
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1. INTRODUCTION 

The actuarial profession is constantly evolving. The age of big data has prompted actuaries to learn 

and apply the state-of-the-art predictive analytics methods and machine learning techniques from non-

traditional fields. The current COVID-19 pandemic has changed the world in many ways, and in the 

insurance industry, has prompted us to think about the challenges posed in the profession and ways 

to address these problems.  

Written from an academic perspective, the goal of this essay is to discuss several modeling tools 

from epidemiology and how they can be applied to an insurance setting. Rather than reinventing the 

wheel, actuarial researchers and practitioners could take advantage of a wide variety of epidemic 

models developed in the medical literature to estimate the evolution of mortality and morbidity rates 

during a pandemic. We believe that many of these models can be easily adapted for actuarial 

applications. As both actuaries and epidemiologists share a common interest in using advanced 

mathematical tools to model risk, we hope that this essay motivates actuarial researchers to utilize 

these models as building blocks to study insurance coverages targeting infectious diseases. 

In the following sections, we present three distinct levels of modeling in epidemiology and describe 

their applications to insurance modeling. We begin with widely used compartmental models, including 

both deterministic and stochastic versions. This first level of modeling assumes homogeneous mixing, 

that is, everyone in the population is equally likely to be susceptible and infectious regardless of age, 

sex, social structure, etc. The next level of modeling is called contact network models, where the 

individuals are connected by links to describe interactions between them. Finally, we discuss agent-

based models which are microscopic models used to simulate real-world complex patterns. Within 

each model, we provide a list of references in epidemiology as well as in actuarial science. 
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Infected Susceptible Removed 

2. COMPARTMENTAL MODELS 

Consider a population of size N(t) which is indexed by time t. The basic framework of 

compartmental models is to classify the entire population into several distinct compartments or 

categories. We illustrate this idea via the well-known SIR model based on the seminal work of 

Kermack and McKendrick (1927). Consider the following three compartments: Susceptible, Infected, 

and Removed. There are many variations of the SIR model, so in what follows we lay out the 

assumptions for the most basic SIR model. First, there are no births or immigration, which implies 

that N(t) = N , and the population mixes homogeneously. Second, there is an infection rate β and a 

recovery rate α. In other words, 1/β is the average time between contacts and 1/α is the average time 

until removal. Finally, once recovered (or removed), an individual is immune and can no longer spread 

the disease. The following figure summarizes some of the assumptions in the model: 

    β                                                 α 

 

This gives rise to the following system of differential equations: 

S’(t) = – β S(t) I(t) (2.1) 
I’(t) = β S(t) I(t)  – α I(t) (2.2) 

where S(t) and I(t) are the number of susceptible and infected individuals, respectively. The number 

of removed individuals is thus N – S(t) – I(t). 

A main concern in epidemiology modeling is whether a disease will spread upon its introduction. 

Observe from (2.2) that the disease will spread (i.e., I’ (t) is positive) if βS(t) – α > 0 and the disease 

will die out if βS(t) – α < 0. This motivates the relevance of a key quantity called the effective (or 

general) reproductive number, given by Rt = βS(t)/α, which represents the average number of 

secondary infections due to a single infectious individual at a given time t. It is also worth noting that 

β/α is the average number of contacts by an infected person with others before removal. When t = 0, 

R0 (read as R-naught) is known as the basic reproduction number, which is a common measure used 

to determine if a disease will spread out during the early phase of the outbreak. If R0 > 1, the disease 

will start to spread, but not if R0 < 1.  Zhao et al. (2020) gave a preliminary estimate of R0 of the 

coronavirus to be between 2.24 and 3.58. 

More details regarding the SIR model as well as other compartmental models like SIS (Susceptible-

Infected-Susceptible) and SEIR (Susceptible-Exposed-Infected-Removed) can be found in classic 

monographs such as Anderson and May (1992), Brauer and Castillo-Chavez (2012), and Diekmann et 

al. (2012). For a more recent account of developments in mathematical epidemiology, see Brauer 

(2017). The aforementioned monographs also discussed heterogeneous mixing models (incorporating 
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age, social structure, etc.) as well as cross-population models. 

2.1 Insurance Application 

Using the basic SIR model, Feng and Garrido (2011) proposed several insurance policies and 

models to quantify infection risk using actuarial methodologies. For example, susceptible individuals 

pay premiums at a constant rate π and once infected, the insurer will pay hospitalization benefits, say 

at a constant rate of 1. For this particular policy, the insurer’s reserve level is 

V(π ,t)= π ∫ 𝑠(𝑥)𝑑𝑥
𝑡

0
− ∫ 𝑖(𝑥)𝑑𝑥

𝑡

0
, (2.3) 

where s(t) = S(t)/N and i(t) = I(t)/N. In analyzing the reserve, there are four possible shapes of graph 

(as a function of time) and it was recently discovered that these shapes are closely linked to the 

effective reproduction number, Rt, as summarized in the following table: 

Shape of V(π,t) Interval for values of π 

Increasing concave At least (1/RT) – 1 

Increasing concave-then-convex Between (1/Rtm) – 1 and  (1/RT) – 1 

Nonmonotonic concave-then-convex Between (1/R0) – 1 and  (1/Rtm) – 1 

Nonmonotonic convex Between 0 and (1/R0) – 1 

 

Here, T is the time of the disease-free state (i.e., I(T ) = 0) and the exact expression of Rtm is 

provided in Feng and Garrido (2011). It is interesting to note that a related quantity from the table, 

namely 1 – 1/R0, is called the herd immunity threshold (see Fine et al. (2011)). 

This  deterministic  insurance  model  was  later  extended  to  a  stochastic  one  by Lefèvre et  al.  

(2017), which provided many elegant results on integral functionals using martingale arguments.  The 

work of Lefèvre et al.  (2017)  in  stochastic  SIR  insurance  model  has since  opened  the  door  to  

many  classical  problems  in probability.  Lefèvre and Picard (2018a) generalized the SIR  model  to  

a  controlled  epidemic  model,  where  the infectious  will  be  isolated  by  health  organizations  to 

ease  the  severity  of  the  disease  and  studied  the  representation  of  epidemic  outcomes  and  path  

integrals in  terms  of  pseudo-polynomials. Lefèvre and Simon (2018) considered cross-infection 

between two linked populations. A general approach to study Laplace transforms of these integral 

functionals was developed by Lefèvre and Picard (2018b). More recently, Lefèvre and Simon (2019) 

proposed a general block-structured Markov processes for epidemic modeling. For a thorough 

discussion of stochastic epidemic models and methods for their statistical analysis, see Andersson and 

Britton (2012). 
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In terms of other deterministic insurance models, Perera (2017) considered the control strategy in 

the simple SIR model as well as the variation of the premium with respect to the model parameters. 

Nkeki and Ekhaguere (2020) constructed the SIDRS model and studied its insurance applications. 

Billard and Dayananda (2014b) and Billard and Dayananda (2014a) developed a multi-stage 

HIV/AIDS model considering non-disease death in each compartment, where the waiting time 

distribution is used to measure the total amount of time one individual holds in one state. Not only 

that premiums are defined by different insurance functions, but health-care cost adjustments are also 

included. Shemendyuk et al. (2019) investigated the deterministic and stochastic SIR models with 

multiple centers and migration fluxes. The optimal health-care premium is determined by considering 

different vaccine allocation strategies. Optimal resource allocation and contingency planning were also 

addressed in Chen et al. (2020). 

3. NETWORK MODELS 

To capture the interactions among individuals while still preserving some aspects of the 

compartmental models, one can use a network model. Using the language of graph theory, the 

individuals are known as vertices or nodes and are connected by edges or links, which indicate 

relationships between various vertices. Some common metrics used to describe a network include 

shortest path length, degree distribution, and clustering coefficient. Epidemiologists have a long 

history of using network models to study diseases. An extensive survey by Pastor-Satorras et al. (2015) 

describes various types of network models used in epidemiology and highlights recent major results 

in the field. While network-based models have desirable and complex properties that cannot be 

replicated by equation-based models, network models are computationally challenging and often result 

in high-dimensional data analysis (see Pellis et al. (2015)). For general study of the structure and 

dynamics of network models, as well as their applications in various disciplines, Boccaletti et al. (2006) 

and Newman (2003) are excellent reads. 

3.1 Risk Network and Cyber Insurance 

Böhme et al. (2017) provided a framework of cyber risk modeling and assessment. In contrast with 

the frequency and severity analysis of conventional risks, cyber risk is analyzed in the cybersecurity 

literature by a chain of causality from cyber risk factors such as threats, vulnerabilities, controls, and 

assets to financial losses. Each cyber incident is viewed as a threat acting on an objective’s 

vulnerabilities. Companies can place technical controls to remove or reduce vulnerabilities. An 

incident is turned into a loss when attacks hit assets. The contagion of cyber risk is characterized by a 

network model, under which each firm is represented by a node and all nodes are interconnected by 

physical and social links. An example of cyber risk dependency is the propagation of malware through 
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a network of interconnected computers. The specific dependence structure can be modeled by graph 

topology. Such topological models originated in epidemiological literature to model the transmission 

of infectious diseases and are extended in the context of cybersecurity to the spread of computer virus. 

The causality approach based on network models, which is well studied in the cybersecurity 

literature, is fundamentally different from the trend analysis based on historical claims data in the 

actuarial literature.  It has been argued in Böhme et al. (2017) that historical data  is  of  limited  use  

due  to  the  fast-changing  nature of  cyber  technology  development. Therefore, further research is 

needed to combine actuarial analysis with cybersecurity framework in cyber risk quantification and 

modeling. 

4. AGENT-BASED MODELS 

The decisions of one person in a group can vastly affect the final outcome of the whole group. 

Therefore, when it comes to a community-scale activity, it is important to consider the competing 

strategies among all individuals. For those scenarios, an agent-based model (ABM) performs 

exceptionally well. Formally, it is a data-driven, simulation-based model that captures individual (or 

agent) level actions and view the community as a complex adaptive system. Zhou (2013) pointed out 

that ABMs bring insight of how to model agent’s behavior, how to understand the learning process 

of an agent, and how to quantify the complex interactions among all the agents.  Palin et al. (2008) 

elaborated on the main features of ABMs, namely (i) there are finitely many types of agents following 

different rules, (ii) agents are allowed to learn, combine, and evolve during the process, (iii) there will 

be positive or negative feedback from the agents’ action, (iv) agents make contact with the 

environment and the environment will also be affected by the actions of the agents. As noted in Niu 

(2016), there are three types of ABMs, namely homogeneous ABM (where the agents are uniform and 

follow the same decision rules but have different parameters), heterogeneous ABM (where there are 

different types of agents communicating within the same environment), and agent-based queuing 

model (ABM that applies queuing theory). 

4.1 Insurance Application 

In order to make a comparison among insurance companies with similar business volume, Taylor 

(2008) built a dynamic model based on the model framework that each insurer is an agent. Moreover, 

applying advanced machine learning technique, Parodi (2012a, b) categorized the actuarial problems 

into different machine learning frameworks and applied computational intelligence methods to 

insurance business. 

In light of the current pandemic, we propose a possible case study using ABMs. Suppose the insurer 
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is interested in the number of confirmed and death cases in the United States for the coming fall. To 

model complex human behaviors and social phenomenon such as stay-at-home orders, social 

distancing, and mask wearing culture, ABMs are robust enough to incorporate these features. 

Historical data can be used to estimate the parameters in the ABM and subsequently one can simulate 

multiple scenarios based on these fitted parameters. Circling back to the insurance example in Section 

2.1, these results can then be used to analyze how much reserve the insurance company will need for 

future benefit payments and what is the fair premium amount for the policyholder to pay 

corresponding to each level of the reproduction number. 

5. CONCLUSIONS 

This essay highlights the interplay between actuarial science and epidemiology and provides 

literature review of recent results. The marriage of modeling techniques from the two areas may 

revolutionize the way we quantify and model epidemic insurance and the way we organize cyber 

insurance. We hope to point to new sources of inspiration for actuaries working in areas of risk 

modeling and assessment of dynamically evolving populations. We envision actuaries adding these 

epidemiological models and techniques into their growing toolkits for risk modeling and analysis. 
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