

Chaire Co-operators en analyse des risques actuariels

How much telematics information do insurers need for claim classification?

Casualty Actuaries of Greater New York Spring 2021 Meeting

Francis Duval May 12th 2021

Université du Québec à Montréal

Research question

When has an insurer collected enough information about an insured's driving habits?

General idea

- ► Development of a claim classification model using telematics data.
- Development of a method based on claim classification to determine when telematics information becomes redundant.

Motivations

- An insurer wishes to keep a minimum of telematic information on its policyholders for reasons of :
 - Confidentiality
 - Data storage
- But still wants to take advantage of this information, for instance, to avoid adverse selection.

VIN	Trip ID	Starting time	Arrival time	Distance	Maximum speed
А	1	2016-04-09 15:23:55	2016-04-09 15:40:05	10.0	72
А	2	2016-04-09 17:49:33	2016-04-09 17:57:44	4.5	68
÷	÷	:	:	:	:
A	3312	2019-02-11 18:33:07	2019-02-11 18:54:10	9.6	65
В	1	2016-04-04 06:54:00	2016-04-04 07:11:37	14.0	112
В	2	2016-04-04 15:20:19	2016-04-04 15:34:38	13.5	124
÷	÷	:	:	:	:
В	2505	2019-02-11 17:46:47	2019-02-11 18:19:22	39.0	130
С	1	2016-01-16 15:41:59	2016-01-16 15:51:35	3.3	65
÷	-	:	:	:	÷

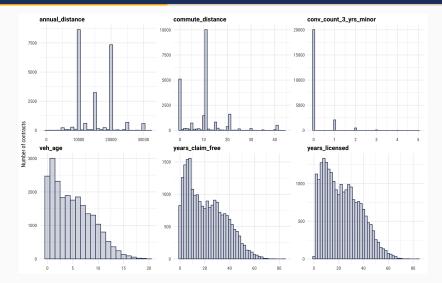
Extract from the trip database

These are the only telematics data we have. All telematics features are derived from these 4 measurements.

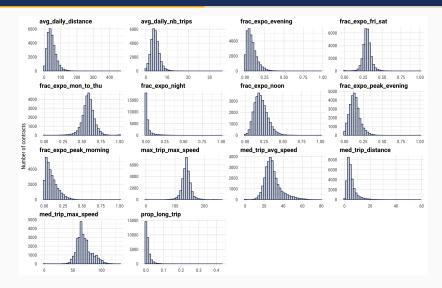
VIN	Contract start date	Contract end date	Classic covariate #1		Claim(s) indicator
А	2015-01-09	2016-01-09	F		0
А	2016-01-09	2017-01-09	F		1
А	2017-01-09	2018-01-09	F		0
В	2015-12-14	2016-12-14	М		0
В	2016-12-14	2017-12-14	М		0
С	2015-04-26	2016-04-26	F		1
С	2016-04-26	2017-04-26	F		0
С	2017-04-26	2018-04-26	F		0
:		:		÷	:

Extract from the contract database

- Linking of the 2 datasets on the basis of the VIN and the start/end dates of the contract.
- Expansion of the contract database with 14 telematics features calculated using the trip dataset.


Classic features – Categorical

Preprocessing :

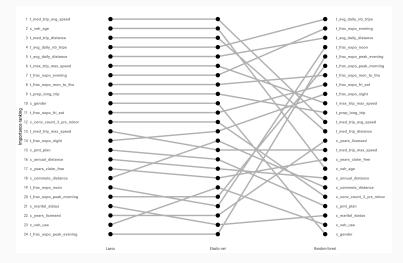

Lump rare categories \longrightarrow target encode \longrightarrow normalize \longrightarrow Yeo-Johnson transform

Classic features – Numeric

 $\begin{array}{l} \textbf{Preprocessing:} \\ \textbf{Normalize} \longrightarrow \textbf{Yeo-Johnson transform} \end{array}$

Telematics features

Preprocessing : Normalize \longrightarrow Yeo-Johnson transform


Classification algorithms

We consider 3 classification algorithms :

- ► Lasso logistic regression
- ► Elastic-net logistic regression
- ► Random forest

	Optimal hyperparameters			ters		
Models	λ	α	p^*	n*	AUC (5-fold cross-validation)	AUC (testing set)
Lasso	$2.31 imes 10^{-4}$	-	_	_	0.6373 ^(0.0052)	0.6189
Elastic-net	2.98×10^{-3}	0	-	-	0.6377 ^(0.0049)	0.6176
Random forest	-	-	1	39	0.6004 ^(0.0064)	0.5889
Lasso (with interactions)	1.18×10^{-3}	-	-	-	0.6350 ^(0.0050)	0.6214
${\sf Elastic-net} \ ({\sf with} \ {\sf interactions})$	1.52×10^{-2}	0	-	-	0.6359 ^(0.0046)	0.6198

Feature importance

- ▶ Top 10 features are almost all telematics.
- Some of the most important features are t_avg_daily_nb_trips, t_avg_daily_distance, t_med_trip_avg_speed, t_max_trip_max_speed, t_frac_expo_evening and t_frac_expo_mon_to_thu and c_veh_age.

A glimpse at lasso logistic regression

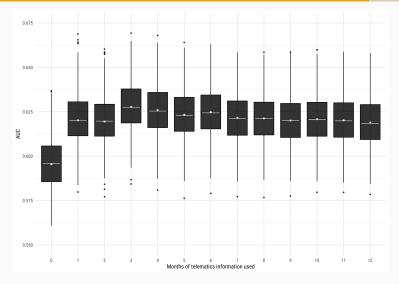
Loss function

$$L(\beta, \mathbf{y}) = -\frac{1}{n} \sum_{i=1}^{n} \{ y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i) \} + \lambda \sum_{j=1}^{p} |\beta_j|, \text{ where } p_i = \frac{1}{1 + e^{-\mathbf{x}_i^\top \beta}}$$

Estimation

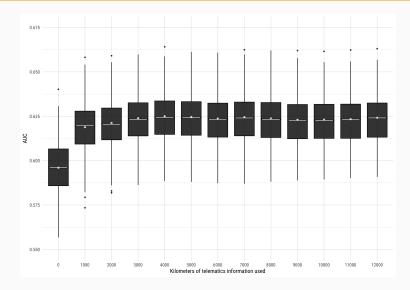
We find the β coefficients that minimize the loss function, which is equivalent to minimizing the negative of the log-likelihood with a constraint on the sum of the absolute values of the coefficients :

$$\widehat{\beta}^{\text{lasso}} = \arg\min_{\beta} \left\{ -\frac{1}{n} \sum_{i=1}^{n} y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i) \right\} \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le s$$


Prediction

 \blacktriangleright Same prediction formula as a non-penalized logistic regression, but using lasso coefficients $\hat{\beta}^{\text{lasso}}$:

$$\widehat{y}_i = \frac{1}{1 + e^{-\mathbf{x}_i^\top \widehat{\boldsymbol{\beta}}^{\text{lasso}}}}$$


- Create k versions of the telematics features using varying amounts of trip summaries for each vehicle.
- 2 Create k classification datasets derived from these k versions of telematics features and the classic features plus a classification dataset with only classic features. Split each of them into training and testing sets.
- 3 Tune and train a lasso classification model on each of the k+1 training datasets.
- 4 Assess the performance of the k+1 models on their respective testing dataset.
- ► We choose to create 12 versions of the telematics features, each using one month more data than the previous version.
- ▶ We therefore have 13 classification datasets.
- ▶ We assess the performance using the AUC. In order to obtain a distribution of this performance metric, we use non-parametric bootstrapping.

Results – Time leaps

- ▶ The AUC has improved substantially with the 4-measure trip summaries!
- ► Telematics information becomes redundant after about 3 months.

Results – Distance leaps

► Telematics information becomes redundant after about 4,000 km.

Summary

- We have developed a claim classification model using telematics data in the form of trip summaries.
- Based on this claim classification model, we have designed a method useful to determine when information on the insured's driving becomes redundant.
- With the data we have at hand, we found out that telematics information no longer improves classification performance after about 3 months or 4,000 km of trip summaries.

Future considerations

- Do we come to the same conclusions if we use, for instance, comprehensive coverage claims (theft, hail, etc.)?
- Generalize the approach for count regression.