1.

An actuary is using the inversion method to simulate a gamma random variable with mean and variance both equal to 2 . Two random draws from the uniform distribution $(0,1)$ are independently made, and their values are 0.2 and 0.8 .

Calculate the value of the simulated gamma random variable.
A. Less than 0.5
B. At least 0.5 , but less than 1.0
C. At least 1.0 , but less than 1.5
D. At least 1.5 , but less than 2.0
E. At least 2.0

1. Solution

Key: D

Solution: By hypothesis, we know that the actuary is simulating a gamma random variable with $(\alpha, \theta)=(2,1)$. Thus, it can be thought of the sum of two independent exponential random variables each with rate 1 . Using the inversion method, we have:

$$
-\ln (0.2)-\ln (0.8)=1.833
$$

Classification: A.8.c - Simulation - Inversion Method
Text Reference: Ross, 11.2.1 (example 11.3) \& 11.3.2
Item Notes: The author states that when simulating exponential random variables using either U or (1-U) as values is valid (example 11.3, p 650). However in this question the simulated values are chosen such that the answer is the same either way.
2.

You want to fit a cubic spline to a large dataset and need to determine the number of knots to use. Below is a chart of four statistics from this model valued for various numbers of knots:

Determine which set of statistics below best describes each line.

A. W is Test MSE	X is Variance	Y is Squared Bias	Z is Train MSE
B. W is Variance	X is Squared Bias	Y is Test MSE	Z is Train MSE
C. W is Train MSE	X is Test MSE	Y is Variance	Z is Squared Bias
D. W is Test MSE	X is Train MSE	Y is Variance	Z is Squared Bias
E. W is Variance	X is Train MSE	Y is Test MSE	Z is Squared Bias

2. Solution

Key: D

Solution:

All else equal, a spline with more knots will be more flexible, and allow the model to better fit the training data.

Variance increases with flexibility \rightarrow Line Y
Bias squared and Train MSE both decrease with flexibility \rightarrow Lines X\&Z
Test MSE generally exhibits a 'U' shaped behavior \rightarrow Line W
\rightarrow Only answer D meets these conditions

Also Test MSE is the sum of Variance + Bias Squared + Irreducible Error, and only Line W can be the sum of two of the other values

Classification: C.2.q - Test vs Train Error
Text Reference: James et al, p 29-37
Item Notes:
3.

You are given the following statements about different resampling methods:
I. Leave-one-out cross-validation (LOOCV) is a special case of k -fold cross-validation
II. k-fold cross-validation has higher variance than LOOCV when $\mathrm{k}<\mathrm{n}$
III. LOOCV tends to overestimate the test error rate in comparison to validation set approach

Determine which of the above statements are correct.
A. I only
B. II only
C. III only
D. I, II, and III
E. The correct answer isn't given by (A), (B), (C), or (D)

3. Solution

Key: A

Solution:

I. TRUE: LOOCV is just k -fold cross-validation where $\mathrm{k}=\mathrm{n}$
II. FALSE: LOOCV has higher variance than k -fold validation, for $\mathrm{k}<\mathrm{n}$, because of the high degree of correlation in the training data sets.
III. FALSE: Validation set approach tends to overestimate the test error rate more than LOOCV, which is one of its drawbacks.

Classification: C.2.p - Cross Validation
Text Reference: James et al, Chapter 5.1
Item Notes:
4.

You are given the following models which contain regression splines:

Model	Numbers of Spline Knots	Degree of Regression Spline
A	6	4
B	5	5
C	8	2
D	10	3

Calculate the total number of the regression coefficients in the four models.
A. Less than 5
B. At least 15 , but less than 25
C. At least 25 , but less than 35
D. At least 35 , but less than 45
E. At least 45

4. Solution

Key: E

Solution:

\# of coefficients $=$ Degree of Regression Spline + Numbers of Spline Knots + Intercept

Number of coefficients sum for Model A: $\quad 6+4+1=11$
Number of coefficients sum for Model B: $\quad 5+5+1=11$
Number of coefficients sum for Model C: $\quad 8+2+1=11$
Number of coefficients sum for Model D: $\quad 10+3+1=14$

Total number of coefficients: $\quad 11+11+11+14=47$

Classification: C.4.i - Piecewise Linear and Smoothing Splines
Text Reference: James et al, p 273
Item Notes:

