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An Incremental Approach to Estimating Ultimate Claim 
Counts and Future Claim Payments 

Michael D. Green, ACAS, MAAA and Michelle L. Iarkowski, FCAS, MAAA 

________________________________________________________________________ 
Abstract 

Traditional chain ladder development methods to estimate ultimate claim counts are challenged when the insurer 
experiences shifts in the speed of claim closure and/or the proportion of claims closed with payment. Similarly, 
changes in these metrics can impact the estimation of ultimate losses when claims that linger open longer cost 
more to close. This paper presents an approach to estimate ultimate claim counts by allowing the actuary to 
explicitly estimate incremental closure rates by age and subsequently apply an inflationary assumption to estimate 
ultimate losses. The method may also be used as a tool to provide insight into how a change in the speed of claim 
closures, a shift in the proportion of claims closed with payment and changing inflationary factors may impact 
the ultimate losses.  

Keywords: reserving; internal operational changes; external environmental changes; inflation; claim counts. 

1. INTRODUCTION

Actuaries spend much of their time performing calculations to project future activity. These
calculations range from simple to complex, and in some cases may be difficult to explain to 
stakeholders who are not trained in technical actuarial approaches. When the operating environment 
changes and the assumptions underlying many traditional techniques are violated, the actuary’s job 
becomes even more challenging. 

This paper presents an approach that allows the actuary to infuse judgment into the process of 
estimating both ultimate claim counts and future claim payments, in a manner that is easily relatable 
to non-technical audiences. The “incremental method” that we present allows the actuary to break 
claim closures into component pieces for claims closed both with and without payment. This 
approach allows the actuary to examine and separately project not only the overall speed of claim 
closures, but also the proportion of claims that will close with payment in any given time interval. 
The actuary may then apply an inflationary assumption to future claim payments, with a key 
underlying premise: Claims that close later tend to cost more to close. 

As we write this paper in 2020, the insurance industry is operating in unprecedented times. There 
are several phenomena that may impact insurance operations, and in turn lead to calls for actuaries 
to help management and clients understand the impact of these phenomena on ultimate claims 
payments. The incremental method is useful to project future payments in which the actuary can 
explicitly make assumptions related to the impact of changes in claim closure rates, shifts in the 
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proportion of claims closed with payment, and variation in future inflationary assumptions. The 
method may also be used as a diagnostic tool to examine the presence of these metrics in historical 
data. Scenarios in which this approach may be useful include: 

• Social inflation. There has been extensive discussion of this issue, which is credited with 
leading to increased attorney involvement in claims, more plaintiff-friendly juries, and 
larger settlements.1 As social inflation may lead to claims staying open longer, higher 
severities for indemnity and defense costs, and/or a higher proportion of claims closed 
with payment, how can the actuary reflect these changes in the unpaid claims analysis? 

• Advancements in technology. We have seen the insurance industry embrace technology, 
particularly as it relates to claims investigation and settlement.2 Where an auto insurance 
claim previously required visual inspection, a picture submitted through an app is now 
common practice. Roof damage that led to an inspector on a ladder has been replaced 
with inspection by drone. As advances in technology may lead to a faster rate of claims 
settlement, how can the actuary quantify this impact? 

• COVID-19. It remains to be seen what the long-term effects of COVID-19 will be on 
the insurance industry and the broader economy. But even a few months into the 
pandemic, we know that there have already been impacts on claims operations as insurers 
shift to a work-from-home model, inspectors may be limited in their ability to access 
accident sites, and court closures delay litigation proceedings.3 To the extent the 
pandemic drives a slowdown in claim closures, the actuary will need to consider how this 
impacts the projection of unpaid claims. 

The phenomena discussed above are broad, industry-wide events. These phenomena aside, 
individual insurers may experience internal operational changes, such as a slowdown in claim 
closures due to turnover in the claims department or a lower proportion of claims closed with 
payment due to a more aggressive defense strategy. A more active pursuit of claim settlements may 
also impact the speed with which claims are closed and the ultimate value paid on those claims. 

All the aforementioned examples present challenges to one of the key assumptions underlying 
traditional development methods: that the historical development is predictive of future 

 
1 https://www.insurance-research.org/sites/default/files/news_releases/IRCSocialInflation2020.pdf  
2 https://www2.deloitte.com/content/dam/Deloitte/us/Documents/human-capital/us-future-of-claims-pov.pdf  
3 https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-services/us-COVID-19-impact-
property-casualty-insurance.pdf  

https://www.insurance-research.org/sites/default/files/news_releases/IRCSocialInflation2020.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/human-capital/us-future-of-claims-pov.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-services/us-COVID-19-impact-property-casualty-insurance.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-services/us-COVID-19-impact-property-casualty-insurance.pdf
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development. The incremental method presents a framework in which the actuary can examine the 
impact of these changes on projecting unpaid claims estimates. This framework can be applied in 
many contexts for property and casualty insurance claims, including an insurer, self-insured, or 
portfolio of third-party administrator’s claims. 

The remainder of the paper proceeds as follows: 

 Section 2 will discuss the mechanics of the incremental method, and then present constructed 
scenarios in which the incremental method is compared to traditional actuarial methods. An 
additional scenario will be presented with private passenger auto liability data as an exercise in 
applying the incremental method in practice. Finally, we discuss considerations in projecting future 
severities. 

Section 3 discusses potential uses of the incremental method, as well as limitations of the 
method. 

2. BACKGROUND AND METHODS 

We begin this section by discussing the mechanics of the incremental method. We then present 
three scenarios in which the incremental method is compared to traditional actuarial methods. The 
methods included are the reported loss development method, the paid loss development method, 
and the disposal rate frequency-severity method. Readers unfamiliar with these approaches may refer 
to “Estimating Unpaid Claims Using Basic Techniques” by Jacqueline Friedland.4 A final scenario 
will be presented with private passenger auto liability data as an exercise in applying the incremental 
method in practice. 

2.1 Mechanics of the Incremental Method 
The incremental method can be classified as a frequency-severity approach, as claim counts and 

severities are estimated separately and then multiplied together to arrive at an estimate of ultimate 
losses. This section lays out the steps to perform the incremental method, applied to a simplified 
“base case” data set where we have defined development factors and trend rates, as well as the 
ultimate counts and ultimate losses. The data and diagnostics are displayed on Appendix 1, Exhibits 
1-2. We note that calculations may not tie exactly due to additional decimals in the spreadsheet vs. 

 
4 https://www.casact.org/library/studynotes/Friedland_estimating.pdf  

https://www.casact.org/library/studynotes/Friedland_estimating.pdf
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the sample calculations. To provide additional precision in the sample calculations, we show claim 
counts to the first decimal, acknowledging that in practice, claim counts will be whole numbers. 

2.1.1 Definitions 

We define the following data elements for use in performing the incremental method to estimate 
ultimate loss. In this context, we assume that “loss” relates to indemnity payments and that defense 
and cost containment payments are estimated separately. 

• Open counts: claim counts that have been reported to the insurer and are open pending 
future activity at a given point in time. 

• Counts closed with payment: claim counts that have been closed with a loss payment. 

• Counts closed without payment: claim counts that have been closed without a loss 
payment. 

• Closed counts: all claim counts that have been closed. Closed counts = closed with 
payment counts + closed without payment counts. 

• Reported counts: all claim counts reported to the insurer. Reported counts = open counts 
+ closed with payment counts + closed without payment counts. 

• Non-zero counts: all claim counts reported to the insurer, excluding counts closed 
without payment. Non-zero counts = open counts + closed with payment counts. Some 
companies may refer to this as incurred counts. 

• Active counts: the claims available to close in a given period 

• Ultimate counts: the ultimate number of claim counts closed with payment. 

• Paid severity: claim payments divided by counts closed with payment. 

All triangles are presented on an accident year basis, with annual evaluations beginning at 12 
months maturity. 

2.1.2 Projection of Ultimate Claim Counts 

In many cases, the actuary can project ultimate claim counts by utilizing a development method 
applied to non-zero counts. This approach assumes that historical development is predictive of 
future development. To the extent there have been changes in claim closure rates and/or shifts in 
the proportion of claims closed with payment, the results of a straightforward development method 
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may be distorted. The approach below requires more intermediate steps than a development 
method, but it allows the actuary to incorporate the impact of such changes. 

The steps for projecting ultimate claim counts are discussed below.  

Step 1: Calculate incremental count triangles for reported counts, closed with payment counts, 
closed without payment counts, and closed counts. The incremental count is the change in the 
cumulative count triangle from one age to the next. The incremental count triangles are displayed on 
Appendix 1, Exhibits 3-6. 

Step 2: Calculate a triangle of active counts for each incremental period. Active counts for an 
incremental period are defined as the counts available to close in that period. They are calculated as 
the counts that were open at the beginning of the period plus newly reported counts during the 
period. The active count triangle and sample calculations are displayed on Appendix 1, Exhibit 7. 

Step 3: Project future reported counts. This step is accomplished through application of the 
traditional development technique, where the age-to-age factors are utilized to “square the triangle.” 
The underlying assumption is that while there may be changes to the closure rate or proportion of 
counts closed with payment, the overall reporting pattern of claims to the insurer is relatively stable. 
The projection of future reported counts is displayed on Appendix 1, Exhibits 8-9. 

Step 4: Select the incremental closure rate at each age. The incremental closure rate is defined as 
the percentage of claims closed within a period of the total claims available to close in that period. It 
is calculated as the counts closed in a period divided by the active counts for that period. In this 
simplified dataset, there is no variation in the data by accident year, so our selection is equal to the 
historical data. We note that the “tail” closure rate should be 100%, as all counts must ultimately 
close. The incremental closure rate triangle and sample calculations are displayed on Appendix 1, 
Exhibit 10. 

Step 5: Select the incremental closed with payment rate at each age. The incremental closed with 
payment rate is defined as the percentage of claims closed with payment within a period of the total 
claims available to close in that period. It is calculated as the counts closed in a period with payment 
divided by the active counts for that period. Similar to step 4, there is no variation in this data, so 
our selection is equal to the historical data. The tail selection for this step should equal the actuary’s 
best estimate of the proportion of counts that will close with payment after the last point in the 
triangle. In this simplified data set where we know by definition what the ultimate counts are, we set 
the tail equal to our known closed with payment rate for 120 months to ultimate. Section 2.4 will 



An Incremental Approach to Estimating Ultimate Claim Counts and Future Claim Payments 
 

Casualty Actuarial Society E-Forum, Winter 2021 6 

discuss how the tail may be selected in a more realistic data set. The incremental closed with 
payment rate triangle and sample calculations are displayed on Appendix 1, Exhibit 11. 

Step 6: Calculate the implied selected incremental closed without payment rate at each age. The 
incremental closed without payment rate is defined as the percentage of claims closed without 
payment in a period of the total claims available to close in that period. It is calculated as the counts 
closed in a period without payment divided by the active counts for that period. It can also be 
calculated as the incremental closure rate less the incremental closed with payment rate at each age. 
In this simplified dataset, the implied selection is equal to the historical data. When working with 
actual data, the actuary should perform this step to see how the implied pattern aligns to the actual 
closed without payment rates.5 The incremental closed without payment rate triangle is displayed on 
Appendix 1, Exhibit 12. 

Step 7: Project future active counts for the next diagonal. To project the next diagonal of active 
counts, start with open counts at the beginning of the incremental period and add projected newly 
reported counts (from step 3). The projected active count triangle and sample calculations are 
displayed on Appendix 1, Exhibit 13. 

Step 8: Project future closed with payment counts for the next diagonal. To project the next 
diagonal of counts closed with payment, multiply the selected incremental closed with payment rate 
by the active counts for each incremental period. The projected closed with payment triangle and 
sample calculations are displayed on Appendix 1, Exhibit 14. 

Step 9: Project future closed without payment counts for the next diagonal. To project the next 
diagonal of counts closed without payment, multiply the selected incremental closed without 
payment rate by the active counts for each incremental period. The projected closed without 
payment triangle and sample calculations are displayed on Appendix 1, Exhibit 15. 

Step 10: Project future open counts for the next diagonal. To project the next diagonal of open 
counts, start with open counts in the prior diagonal, add newly reported counts (from step 3), 
subtract incremental counts closed with payment (from step 8), and subtract incremental counts 
closed without payment (from step 9). The projected open count triangle and sample calculations 
are displayed on Appendix 1, Exhibit 16. 

Steps 7 through 10 are repeated for each subsequent diagonal until the “square” is completed to 
 

5 This check is conceptually similar to calculating a ground-up trend and a primary limits trend, then examining the 
implied excess trend for reasonability. 
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ultimate. The completed triangles are displayed on Appendix 1, Exhibit 17. The sum of the 
incremental closed with payment triangle represents the projected ultimate claim counts from the 
incremental method. 

2.1.3 Projection of Future Severities 

For exposures where claim severity does not vary by age, the actuary could estimate ultimate 
losses by taking the ultimate claim counts from the results above and multiply by an ultimate 
severity. However, many property and casualty exposures experience a paid severity that increases 
over time, where smaller, simpler claims are closed at earlier ages, and larger, more complex claims 
are closed at later ages. To incorporate this observation in the method, we project future paid 
severities by age and calendar period. 

Step 11: Calculate incremental paid severities. Incremental paid severities are calculated as 
incremental paid losses divided by incremental closed with payment counts. The incremental paid 
severity triangle and sample calculations are displayed on Appendix 1, Exhibit 18. 

Step 12: Trend incremental paid severities to current calendar year dollars. In this simplified 
example, we use a single trend rate of 4% per year applied to all historical periods. If desired, the 
actuary can vary the prior calendar period trend rates. The trended incremental paid severity triangle 
and sample calculations are displayed on Appendix 1, Exhibit 19. 

Step 13: Select an incremental paid severity at each age in current calendar year dollars. There is 
no variation in this simplified data, so our selection is equal to the historical trended data. The tail 
selection for this step should equal the actuary’s best estimate of the severity for counts that will 
close with payment after the last point in the triangle. In this simplified data set, we know by 
definition what the ultimate counts and ultimate losses are; consequently, we set the tail equal to our 
known paid severity for 120 months to ultimate. Section 2.4 will discuss how the tail may be selected 
in a more realistic data set. The trended incremental paid severity triangle and selections are 
displayed on Appendix 1, Exhibit 20. 

Step 14: Trend selected incremental severities to future calendar years. Our simplified example 
again uses a trend rate of 4% per year applied to all future periods. If desired, the actuary can vary 
the future calendar period trend rates. The trended incremental paid severities and sample 
calculations are displayed on Appendix 1, Exhibit 21. 
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2.1.4 Projection of Ultimate Losses 

Step 15: To determine ultimate losses, the incremental counts closed with payment are multiplied 
by the incremental severities, resulting in incremental payments for each period. The sum of the 
incremental payments across the periods for each accident year result in the estimate of ultimate 
losses for that accident year. The incremental paid losses, ultimate losses and sample calculations are 
displayed on Appendix 1, Exhibit 22. 

2.2 Scenario 1: Base Case 
Now that we have established the mechanics of the incremental method, we will compare the 

results to traditional methods in a few scenarios. The first scenario is a base case scenario using the 
simplified data presented in the previous section.  

2.2.1 Scenario Description 

The simplified data used in this scenario uses the same claim counts in each accident year, with a 
4% annual trend in the paid severities. Given the structure of the data, we “know” the value of the 
ultimate counts and ultimate losses. 

2.2.2 Results of Traditional Methods 

Appendix 1, Exhibit 23 displays the results of the reported loss development method. 

Appendix 1, Exhibit 24 displays the results of the paid loss development method. 

Appendix 1, Exhibits 25-27 display the results of the disposal rate frequency-severity method 
with the same calendar year severities described in section 2.1.3. 

We see that with this simplified dataset, the result of all methods is identical to our defined 
ultimate counts and ultimate losses. 

2.2.3 Results of the Incremental Method 

Appendix 1, Exhibit 22 displays the results of the incremental method. We see that the result is 
equal to the other methods for this simplified dataset. We have included this scenario to 
demonstrate that in a scenario with data structured such that we “know” the value of the ultimate 
counts and ultimate losses, the mechanics of the incremental method produce a result that is 
equivalent to traditional approaches. 
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2.3 Scenario 2: Shift in the proportion of claims closed with payment 
In Scenario 2, we take the original dataset and modify the latest diagonal to represent an increase 

in the proportion of claims closed with payment. While still a simplified dataset, this scenario may be 
representative of the impacts of a phenomenon such as social inflation, where increased attorney 
involvement may lead to more claims closing with payment. 

2.3.1 Scenario Description 

The data and diagnostics for this scenario are displayed on Appendix 2, Exhibits 1-2. The 
assumptions we make are as follows: 

• Total closure rates do not change from the base case. The same number of counts close 
at each point in time, but 10% more close with payment at each age beginning with 
calendar year 2020. This is a permanent increase that remains in future calendar years. 

• Incremental paid severities do not change from the base case. The revised paid loss 
triangle is calculated by applying the base case incremental paid severities to the revised 
closed with payment count triangle. We acknowledge that in practice, an increase in the 
proportion of claims closed with payment could impact incremental paid severities. The 
actuary should examine how changes in the proportion of claims closed with payment 
impact incremental paid severities and consider this in the selection of the incremental 
paid severity for each age. For example, if the shift in proportion of claims closed with 
payment has been observed in the most recent three to four calendar years, a severity 
selection incorporating this data may be most appropriate to reflect the expected severity 
in the new environment. 

• Case reserves do not change from the base case. The number of open counts is the same 
at each point in the triangle. The revised reported loss triangle is calculated by applying 
the base case average case reserves per open claim to the revised open claim count 
triangle and adding this to the revised paid loss triangle. Similar to the above, we 
acknowledge that in practice, an increase in the proportion of claims closed with payment 
could impact case reserves. While case reserves are not directly utilized in the incremental 
method, the actuary should examine how average case reserve levels may impact the 
results of other methods. 

• For simplicity, tail factors are unchanged from the base scenario. In practice, the actuary 
should consider how changes in operations may impact tails. 
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2.3.2 Results of Traditional Methods 

We examine the results of traditional methods in this scenario. As has been established in 
actuarial literature, a key underlying assumption of these methods is that the historical development 
is representative of future development. The shift in the proportion of counts closed with payment 
violates this assumption. 

The reported loss development method is displayed on Appendix 2, Exhibit 3. There is an 
increase in the latest diagonal where the additional counts are closed with payment. We know that 
due to the multiplicative nature of this method, utilizing the latest diagonal as the “new normal” will 
overstate the ultimate losses. Conversely, using the prior development factors may not correctly 
project the ultimate losses as the prior factors do not account for the increased proportion of counts 
closing with payment in future development periods. 

The paid loss development method is displayed on Appendix 2, Exhibit 4. Similar to the reported 
loss development method, the increase in the latest diagonal will distort the results of this method, 
overstating the ultimate losses. 

The disposal rate frequency-severity method is displayed on Appendix 2, Exhibits 5-8. Estimating 
ultimate counts closed with payment using a non-zero count triangle will overstate ultimate counts, 
similar to the loss development methods. A similar issue would exist if ultimate counts were 
estimated using closed with payment counts. The severity portion of the method is not impacted; 
where paid severities are unchanged, the projected severities remain the same as the base case. 
Multiplying overstated claim counts by “correct” severities results in an overstated ultimate loss. 

2.3.3 Results of the Incremental Method 

The incremental method is displayed on Appendix 2, Exhibits 9-15. The incremental closed with 
payment closure rate is 10% higher in the current diagonal, offset by a decrease in the closed 
without payment closure rates. Selecting this diagonal as the “new normal” projects future closed 
with payment counts that are 10% higher than the base case. Applying the same approach to project 
paid severities results in paid severities that remain the same as the base case (shown in Appendix 2, 
Exhibit 7). A comparison to the base case projected incremental counts is shown on Appendix 2, 
Exhibit 16. The resulting ultimate losses incorporate the higher proportion of counts closed with 
payment without overstating the ultimate claim counts. 
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2.4 Scenario 3: Shift in the rate of claim closures 
In Scenario 3, we take the original dataset and modify the latest diagonal to represent a slowdown 

in closures for counts closed both with and without payment. This scenario may be representative of 
the impacts of a phenomenon such as COVID-19, where operational limitations may lead to a 
slowdown in claim closures. Alternatively, this scenario may be representative of an insurer who has 
experienced a change in staffing in the claims department or has taken a more aggressive approach 
in defending claims.  

2.4.1 Scenario Description 

The data and diagnostics for this scenario are displayed on Appendix 3, Exhibits 1-2. The 
assumptions we make are as follows: 

• Total closure rates decline to 85% of the base case in the 2020 diagonal through 60 
months. The slowdown impacts both closed with payment counts and closed without 
payment counts. We assume that the total proportion of claims that will ultimately close 
with payment is unchanged (i.e., the inherent nature of if a claim has merit is unchanged). 
However, some of these claims will now close later than they historically would have due 
to the slowdown in calendar year 2020. 

• Incremental paid severities do not change from the base case. The revised paid loss 
triangle is calculated by applying the base case incremental paid severities to the revised 
closed with payment count triangle. As in the prior scenario, we acknowledge that in 
practice, incremental paid severities may change in this scenario, and the actuary should 
examine such impacts in making selections. 

• Average case per open claim does not change from the base case. The revised reported 
loss triangle is calculated by applying the base case average case reserves to the revised 
open claim count triangle and adding this to the revised paid loss triangle. Similar to the 
prior scenario, in practice, the actuary should examine average case reserves to see if there 
has been any impact from the shift in the rate of claim closures. 

• For simplicity, tail factors are unchanged from the base scenario. In practice, the actuary 
should consider how changes in operations may impact tails. 

2.4.2 Results of Traditional Methods 

We examine the results of traditional methods in this scenario. As has been established in 
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actuarial literature, a key underlying assumption of these methods is that the historical development 
is representative of future development. The slowdown in claim closures violates this assumption. 

The reported loss development method is displayed on Appendix 3, Exhibit 3. The latest 
diagonal is distorted compared to the base case, with the 12-month point increasing due to the 
additional volume of open counts, and subsequent points decreasing due to the lower rate of claim 
closures. Due to the multiplicative nature of this method, applying historic loss development factors 
to the latest diagonal will distort the ultimate losses. 

The paid loss development method is displayed on Appendix 3, Exhibit 4. The latest diagonal is 
understated given the slowdown in claim closures, such that applying historic loss development 
factors to the latest diagonal will understate the ultimate losses. 

The disposal rate frequency-severity method is displayed on Appendix 3, Exhibits 5-8. The non-
zero count triangle is distorted due to the additional volume of open counts. Estimating ultimate 
counts using the non-zero count triangle will overstate ultimate counts closed with payment. This 
occurs because the latest diagonal of the non-zero count triangle contains open counts that would 
previously have closed without payment and left the non-zero count triangle under claims 
operations prior to the slowdown; the historic development factors do not account for these claims 
now leaving the triangle at a later age. Conversely, estimating ultimate counts using the closed with 
payment count triangle will understate ultimate claim counts due to the slowdown. The distorted 
claim counts will lead to distorted ultimate losses. 

2.4.3 Results of the Incremental Method 

The incremental method is displayed on Appendix 3, Exhibits 9-15. The incremental closed with 
payment closure rate and incremental closed without payment closure rates have both declined from 
prior diagonals. In this scenario, the actuary must use his or her knowledge of claims operations to 
determine an appropriate selection. For example, if the actuary believes that claim closure rates will 
return to normal after a one-time slowdown in calendar year 2020, the actuary may select the historic 
diagonals, as displayed in this example. If the slowdown is expected to continue, the actuary may 
select the closure rates in the current diagonal. We recommend that the actuary conduct discussions 
with the claims department to make these assumptions based on informed judgment. Applying the 
same approach to project paid severities results in paid severities that remain the same as the base 
case (shown in Appendix 3, Exhibit 7). 

A comparison to the base case projected incremental counts is shown on Appendix 3, Exhibit 16. 
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In this example, we see that the incremental method produces projected counts that increase over 
the base case to “make up” for the calendar year 2020 slowdown. Whether the historic closure rates 
are appropriate to project future closure rates will depend on the driver of the slowdown and how 
future operations are expected to be impacted; in other words, the actuary must understand the 
implications of his or her selections on the projected incremental counts. 

2.4.4 Comparison to the Berquist-Sherman Approach 

Readers may note that there is already a widely accepted actuarial approach to adjust for changes 
in claim closure rates: the paid Berquist-Sherman method. We note that to apply the paid Berquist-
Sherman method, the actuary must first estimate ultimate claim counts closed with payment, prior to 
adjusting the closed claim count triangle for the change in claim disposal rates. In a scenario where 
the non-zero count triangle is not distorted, the actuary may estimate the ultimate counts by 
applying the development method to the non-zero claim count triangle, and then proceed with the 
paid Berquist-Sherman method. However, in the scenario presented here, the slowdown in claim 
closures distorts all count triangles other than the reported claim count triangle, such that the actuary 
may not have a reliable approach to estimate ultimate claim counts closed with payment. The 
incremental method provides a framework in which the actuary can estimate ultimate claim counts 
without needing to apply a traditional development approach to the non-zero count triangle.  

Additionally, the paid Berquist-Sherman method typically relies upon the selection of a 
cumulative disposal rate at each age to “square the triangle” of counts closed with payment. It is 
assumed that the selected cumulative disposal rates are appropriate for all future periods at each age. 
While it is possible for the actuary to incorporate anticipated changes in future incremental closure 
rates and/or the proportion of claims closed with payment into the paid Berquist-Sherman approach 
by calculating the impact of these assumptions on future cumulative disposal rates, the incremental 
method allows the actuary to approach these assumptions more directly. 

Finally, the paid Berquist-Sherman approach utilizes regression between the successive pairs of 
cumulative paid losses and cumulative closed with payment claims to “restate” the paid loss triangle. 
While this approach is understood by actuaries who study such methods as part of the credentialing 
process, it may be difficult to explain to a non-technical audience. The approach to estimating 
incremental paid severities discussed here may be easier to demonstrate and explain. 
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2.5 Scenario 4: Private Passenger Auto Data 
Scenario 4 presents auto liability data from a private passenger auto insurer. The data and 

diagnostics are displayed on Appendix 4, Exhibits 1-2. 

2.5.1 Scenario Diagnostics 

Examining the diagnostics for this data shows: 

• There does not appear to be a clear trend in the total incremental closure rates. 

• There appears to be a shift to close more claims with payment, particularly at the earlier 
maturities. 

• There appears to be a positive trend in the paid severities. 

2.5.2 Selecting Incremental Assumptions 

The mechanics of the incremental method operate as presented in section 2.1, and are displayed 
on Appendix 4, Exhibits 3-10. We select 3-year weighted averages for the incremental selections to 
reflect recent claims operations. 

2.5.3 Selecting the Tail 

The data becomes very volatile by 72 months. Rather than continuing to select incremental 
closure rates, we select a tail. 

For the incremental closure rates, we examine the data to estimate approximately how many 
counts will close at each incremental age. A selection of 50% seems representative of the data 
observed after 72 months. The tail closure rate for 120 months to ultimate should be 100%, as all 
counts must ultimately close. 

For the incremental closed with payment closure rates, we examine “tail” closure rates at each age 
by dividing total counts closed with payment by total counts closed for all subsequent maturities. We 
elect to place the tail at 72 months, where the data becomes thin and volatile. However, the tail 
selected here includes all future counts closed with payment. To project incremental closed with 
payment closure rates, we multiply our selected tail by the selected incremental closure rate for each 
incremental period.  

In this example, although we expect 69% of counts that close to close with payment, we need to 
reflect that at the incremental ages, only about 50% of active counts are closing each period. 
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Therefore, at the incremental ages, we close 50% of our active counts, 69% of those with payment. 
69% * 50% = 35% of active counts close with payment at each incremental age. 

The distribution of closures to incremental period matters because we believe that paid severity 
varies by age. If we were solely trying to project ultimate claim counts, the actuary could simply 
calculate the tail at 72 months as 69% of remaining active counts. However, because we want to 
project ultimate losses by applying incremental severities that vary by age, we must project when 
those counts close. 

We may calculate a tail for the severities in a similar manner, electing to place the tail at 72 
months.  

2.5.4 Results of the Incremental Method 

The results of the incremental method are displayed on Appendix 4, Exhibit 10. 

2.6 Considerations in Projecting Future Severities 
We have discussed that we trend severities to calendar year because claims that linger open longer 

tend to cost more to close. The flexibility of projecting claim closures by calendar year allows the 
actuary to easily modify trend rates by calendar year, both historically and prospectively. 

However, what should the actuary do if there is a significant impact on the accident year 
severities, due to a change to reinsurance terms or tort reform with an accident year impact? One 
option is to run the method on data gross of reinsurance and separately estimate the impact of 
reinsurance, such as by applying a net-to-gross ratio for each accident period. This may be most 
appropriate where the impact of reinsurance is relatively small. 

If the actuary wishes to examine the impact on net data directly, the actuary can run the severity 
portion of the method twice. For example, if the actuary expects a significant change in severities 
beginning in accident year 2019 due to a change in reinsurance terms, the actuary may run the 
severity triangle twice – once at the pre-2019 reinsurance levels, and once at the 2019 reinsurance 
levels. The severity triangle at the 2019 reinsurance levels can be estimated by applying the 2019 
reinsurance terms to historical data as if those terms had been in place in the prior years. When 
multiplying projected future severities by the projected future closed with payment counts, the 
severities for accident years 2018 and prior would be taken from the first triangle, while the 
severities for accident years 2019-2020 would be taken from the second triangle. This allows the 
actuary to incorporate accident year impacts on severities while also accounting for calendar year 
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trends. 

3. RESULTS AND DISCUSSION 

It is important to understand that, like all actuarial methods, the incremental method does not 
automatically result in the “right” answer for the actuary. It is the actuary’s responsibility to 
understand the insurer’s historic operations and anticipated future operations and make selections 
accordingly. We believe that an advantage of the incremental method is that the nature of relating 
the incremental closure rates to incremental active claims allows the actuary to explicitly project 
future closure rates by calendar year based on information from the claims department. For 
example, in the scenario where there is a slowdown in claim closure rates, the actuary may use his or 
her knowledge from claims department management to modify the future closure rates by calendar 
year if it may take multiple years for the closure rates to return to “normal”.  

3.1 Potential Uses of the Incremental Method 
The incremental method may be used as a diagnostic tool along with other methods to estimate 

ultimate claim counts and ultimate losses. The flexible nature of the assumptions by calendar year 
allows the actuary to make explicit assumptions about how many claims will close each period, how 
many of those claims will close with payment, and future inflationary levels. Given this framework, 
the incremental method may also be used as a sensitivity test to understand the impact of changing 
these metrics on ultimate loss estimates.  

The mechanics of the incremental method also make it easy to describe to a non-technical 
audience. The major inputs to the method require the actuary to understand and explain 
assumptions around how fast claims close, what portion of those claims close with payment, and 
what inflationary impacts will be. The calendar year nature of these assumptions can be more 
relatable than the traditional age-to-ultimate concept. This may make the method a useful tool for 
the claims department or a third-party administrator to measure the potential impacts of different 
claims handling strategies. 

Finally, given the incremental nature of the method, it may be helpful in measuring actual versus 
expected emergence for subsequent calendar periods. 
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3.2 Limitations of the Incremental Method 
As with all approaches for estimating ultimate claim counts and ultimate losses, the actuary must 

understand the limitations of any method he or she applies. We include limitations of the 
incremental method below: 

• The method relies on a consistent definition of claim counts. If the insurer changes how 
claims are recorded, historical data may need to be restated to the new definition of claim 
counts for the method to work.  

• If the insurer has made significant changes to the book of business being analyzed that 
are not yet reflected in the historical data (such as an acquisition or entering a new 
market), the historic incremental closure rates may not be reflective of future closure 
rates. The actuary may be able to adjust for this through inquiry with management. 

• The assumption that claims that linger open longer cost more to close makes the method 
very sensitive to the trend assumption. We recommend that the actuary understand the 
impact of changing the trend assumption on the results of the method. 

• The method is sensitive to where the tail is placed and the volume of data underlying the 
tail selection. We recommend that the actuary understand the impact of changing the tail 
assumption on the results of the method. 

• Given the manner in which paid severities are calculated, the estimation of severities is 
closely tied to claim closures. Therefore, the severity portion of the method generally will 
not work well on exposures with significant partial payments, although it can still be used 
to examine claim closure activity and estimate ultimate claim counts. This may be a 
consideration for coverages such as workers compensation or liability coverages with 
significant defense and cost containment payments where indemnity and defense data are 
not examined separately. When determining if the method may be appropriate for such 
exposures, the actuary should consider the materiality of the incremental payments in 
relation to total payments, as well as how closely the incremental payments relate to 
claim closures. 

o For example, the incremental method may be more useful for a portfolio of 
workers compensation claims in which many claims are settled with a lump sum 
payment than a long-tailed workers compensation book with decades of 
incremental payments.  
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o Similarly, examining indemnity and defense data on a combined basis with this 
method may be more appropriate if incremental defense payments occurring 
prior to claim closure do not make up a significant portion of the ultimate claim 
payment. 

4. CONCLUSIONS  

The incremental method allows the actuary to break claim closures into component pieces for 
claims closed both with and without payment. The flexible nature of the assumptions by calendar 
year allows the actuary to make explicit assumptions about how many claims will close each period, 
how many of those claims will close with payment, and future inflationary levels. Given this 
framework, the incremental method may also be used as a sensitivity test to understand the impact 
of changing these metrics on ultimate loss estimates. The method may also serve as an actual versus 
expected tool to measure calendar year activity. Finally, the nature of closure rates by calendar year 
and inflation rates may be easily related to a non-technical audience. 
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Scenario 1: Base Case Appendix 1
Data Exhibit 1

Cumulative Reported Counts Cumulative Closed with Payment Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 815.0 1,018.0 1,046.0 1,063.0 1,064.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 2011 375.0 555.0 585.0 600.0 609.0 616.0 622.0 625.0 627.0 628.0 633.0 
2012 822.8 1,027.8 1,056.1 1,073.2 1,074.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 2012 378.6 560.3 590.6 605.8 614.9 621.9 628.0 631.0 633.0 639.1 
2013 830.7 1,037.7 1,066.2 1,083.5 1,084.6 1,085.6 1,085.6 1,085.6 1,085.6 2013 382.2 565.7 596.3 611.6 620.8 627.9 634.0 637.1 645.2 
2014 838.7 1,047.6 1,076.5 1,094.0 1,095.0 1,096.0 1,096.0 1,096.0 2014 385.9 571.2 602.0 617.5 626.7 633.9 640.1 651.4 
2015 846.8 1,057.7 1,086.8 1,104.5 1,105.5 1,106.6 1,106.6 2015 389.6 576.7 607.8 623.4 632.8 640.0 657.7 
2016 854.9 1,067.9 1,097.3 1,115.1 1,116.1 1,117.2 2016 393.4 582.2 613.7 629.4 638.8 664.0 
2017 863.2 1,078.2 1,107.8 1,125.8 1,127.9 2017 397.2 587.8 619.6 635.5 670.4 
2018 871.5 1,088.5 1,118.5 1,138.8 2018 401.0 593.5 625.5 676.9 
2019 879.8 1,099.0 1,149.7 2019 404.8 599.2 683.4 
2020 888.3 1,160.8 2020 408.7 689.9 

Cumulative Closed without Payment Counts Open Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 275.0 375.0 390.0 402.0 411.0 417.0 421.0 424.0 426.0 427.0 432.0 2011 165.0 88.0 71.0 61.0 44.0 32.0 22.0 16.0 12.0 10.0 0.0
2012 277.6 378.6 393.8 405.9 415.0 421.0 425.0 428.1 430.1 436.2 2012 166.6 88.8 71.7 61.6 44.4 32.3 22.2 16.2 12.1 0.0
2013 280.3 382.2 397.5 409.8 418.9 425.1 429.1 432.2 440.3 2013 168.2 89.7 72.4 62.2 44.9 32.6 22.4 16.3 0.0
2014 283.0 385.9 401.4 413.7 423.0 429.1 433.3 444.6 2014 169.8 90.6 73.1 62.8 45.3 32.9 22.6 0.0
2015 285.7 389.6 405.2 417.7 427.0 433.3 448.9 2015 171.4 91.4 73.8 63.4 45.7 33.2 0.0
2016 288.5 393.4 409.1 421.7 431.1 453.2 2016 173.1 92.3 74.5 64.0 46.2 0.0
2017 291.3 397.2 413.0 425.8 457.5 2017 174.8 93.2 75.2 64.6 0.0
2018 294.1 401.0 417.0 461.9 2018 176.4 94.1 75.9 0.0
2019 296.9 404.8 466.4 2019 178.1 95.0 0.0
2020 299.7 470.9 2020 179.8 0.0

Cumulative Reported Loss Cumulative Paid Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 3,750,000 7,500,000 10,500,000 12,600,000 13,860,000 14,970,000 15,720,000 16,030,000 16,190,000 16,270,000 17,500,000 2011 1,500,000 3,750,000 6,750,000 9,450,000 11,225,000 12,725,000 14,150,000 14,900,000 15,450,000 15,760,000 17,500,000 
2012 3,937,500 7,875,000 11,025,000 13,230,000 14,553,000 15,718,500 16,506,000 16,831,500 16,999,500 18,375,000 2012 1,575,000 3,937,500 7,087,500 9,922,500 11,786,250 13,361,250 14,857,500 15,645,000 16,222,500 18,375,000 
2013 4,134,375 8,268,750 11,576,250 13,891,500 15,280,650 16,504,425 17,331,300 17,673,075 19,293,750 2013 1,653,750 4,134,375 7,441,875 10,418,625 12,375,563 14,029,313 15,600,375 16,427,250 19,293,750 
2014 4,341,094 8,682,188 12,155,063 14,586,075 16,044,683 17,329,646 18,197,865 20,258,438 2014 1,736,438 4,341,094 7,813,969 10,939,556 12,994,341 14,730,778 16,380,394 20,258,438 
2015 4,558,148 9,116,297 12,762,816 15,315,379 16,846,917 18,196,129 21,271,359 2015 1,823,259 4,558,148 8,204,667 11,486,534 13,644,058 15,467,317 21,271,359 
2016 4,786,056 9,572,112 13,400,956 16,081,148 17,689,262 22,334,927 2016 1,914,422 4,786,056 8,614,901 12,060,861 14,326,261 22,334,927 
2017 5,025,359 10,050,717 14,071,004 16,885,205 23,451,674 2017 2,010,143 5,025,359 9,045,646 12,663,904 23,451,674 
2018 5,276,627 10,553,253 14,774,554 24,624,257 2018 2,110,651 5,276,627 9,497,928 24,624,257 
2019 5,540,458 11,080,916 25,855,470 2019 2,216,183 5,540,458 25,855,470 
2020 5,817,481 27,148,244 2020 2,326,992 27,148,244 
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Scenario 1: Base Case Appendix 1
Diagnostics Exhibit 2

Case Reserves per Open Count Paid Loss per Closed with Payment Count
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 13,636 42,614 52,817 51,639 59,886 70,156 71,364 70,625 61,667 51,000 2011 4,000 6,757 11,538 15,750 18,432 20,657 22,749 23,840 24,641 25,096 
2012 14,182 44,318 54,930 53,705 62,282 72,963 74,218 73,450 64,133 2012 4,160 7,027 12,000 16,380 19,169 21,484 23,659 24,794 25,627 
2013 14,749 46,091 57,127 55,853 64,773 75,881 77,187 76,388 2013 4,326 7,308 12,480 17,035 19,936 22,343 24,606 25,785 
2014 15,339 47,935 59,412 58,087 67,364 78,916 80,274 2014 4,499 7,600 12,979 17,717 20,733 23,237 25,590 
2015 15,953 49,852 61,788 60,411 70,059 82,073 2015 4,679 7,904 13,498 18,425 21,563 24,166 
2016 16,591 51,846 64,260 62,827 72,861 2016 4,867 8,221 14,038 19,162 22,425 
2017 17,254 53,920 66,830 65,340 2017 5,061 8,549 14,600 19,929 
2018 17,945 56,077 69,503 2018 5,264 8,891 15,184 
2019 18,662 58,320 2019 5,474 9,247 
2020 19,409 2020 5,693 

Closed Counts / Reported Counts Closed with Payment Counts / Closed Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 98.9% 99.1% 2011 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6% 59.5% 59.5%
2012 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 98.9% 2012 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6% 59.5%
2013 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 2013 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6%
2014 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 2014 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6%
2015 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 2015 57.7% 59.7% 60.0% 59.9% 59.7% 59.6%
2016 79.8% 91.4% 93.2% 94.3% 95.9% 2016 57.7% 59.7% 60.0% 59.9% 59.7%
2017 79.8% 91.4% 93.2% 94.3% 2017 57.7% 59.7% 60.0% 59.9%
2018 79.8% 91.4% 93.2% 2018 57.7% 59.7% 60.0%
2019 79.8% 91.4% 2019 57.7% 59.7%
2020 79.8% 2020 57.7%

An Incremental Approach to Estimating Ultimate Claim Counts and Future Claim Payments

Casualty Actuarial Society E-Forum, Winter 2021 21



Scenario 1: Base Case Appendix 1
Step 1 Exhibit 3

Cumulative Reported Counts
Accident Year 12 24 36 48 60 72 84 96 108 120

2011 815.0 1,018.0 1,046.0 1,063.0 1,064.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 
2012 822.8 1,027.8 1,056.1 1,073.2 1,074.2 1,075.2 1,075.2 1,075.2 1,075.2 
2013 830.7 1,037.7 1,066.2 1,083.5 1,084.6 1,085.6 1,085.6 1,085.6 
2014 838.7 1,047.6 1,076.5 1,094.0 1,095.0 1,096.0 1,096.0 
2015 846.8 1,057.7 1,086.8 1,104.5 1,105.5 1,106.6 
2016 854.9 1,067.9 1,097.3 1,115.1 1,116.1 
2017 863.2 1,078.2 1,107.8 1,125.8 
2018 871.5 1,088.5 1,118.5 
2019 879.8 1,099.0 
2020 888.3 

Incremental Reported Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 815.0 203.0 28.0 17.0 1.0 1.0 0.0 0.0 0.0 0.0 
2012 822.8 205.0 28.3 17.2 1.0 1.0 0.0 0.0 0.0 
2013 830.7 206.9 28.5 17.3 1.0 1.0 0.0 0.0 
2014 838.7 208.9 28.8 17.5 1.0 1.0 0.0 
2015 846.8 210.9 29.1 17.7 1.0 1.0 
2016 854.9 212.9 29.4 17.8 1.0 
2017 863.2 215.0 29.7 18.0 
2018 871.5 217.1 29.9 
2019 879.8 219.2 
2020 888.3 
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Scenario 1: Base Case Appendix 1
Step 1 Exhibit 4

Cumulative Closed with Payment Counts
Accident Year 12 24 36 48 60 72 84 96 108 120

2011 375.0 555.0 585.0 600.0 609.0 616.0 622.0 625.0 627.0 628.0 
2012 378.6 560.3 590.6 605.8 614.9 621.9 628.0 631.0 633.0 
2013 382.2 565.7 596.3 611.6 620.8 627.9 634.0 637.1 
2014 385.9 571.2 602.0 617.5 626.7 633.9 640.1 
2015 389.6 576.7 607.8 623.4 632.8 640.0 
2016 393.4 582.2 613.7 629.4 638.8 
2017 397.2 587.8 619.6 635.5 
2018 401.0 593.5 625.5 
2019 404.8 599.2 
2020 408.7 

Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 
2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 
2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 
2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 
2015 389.6 187.0 31.2 15.6 9.4 7.3 
2016 393.4 188.8 31.5 15.7 9.4 
2017 397.2 190.6 31.8 15.9 
2018 401.0 192.5 32.1 
2019 404.8 194.3 
2020 408.7 
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Scenario 1: Base Case Appendix 1
Step 1 Exhibit 5

Cumulative Closed without Payment Counts
Accident Year 12 24 36 48 60 72 84 96 108 120

2011 275.0 375.0 390.0 402.0 411.0 417.0 421.0 424.0 426.0 427.0 
2012 277.6 378.6 393.8 405.9 415.0 421.0 425.0 428.1 430.1 
2013 280.3 382.2 397.5 409.8 418.9 425.1 429.1 432.2 
2014 283.0 385.9 401.4 413.7 423.0 429.1 433.3 
2015 285.7 389.6 405.2 417.7 427.0 433.3 
2016 288.5 393.4 409.1 421.7 431.1 
2017 291.3 397.2 413.0 425.8 
2018 294.1 401.0 417.0 
2019 296.9 404.8 
2020 299.7 

Incremental Closed without Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 275.0 100.0 15.0 12.0 9.0 6.0 4.0 3.0 2.0 1.0 
2012 277.6 101.0 15.1 12.1 9.1 6.1 4.0 3.0 2.0 
2013 280.3 101.9 15.3 12.2 9.2 6.1 4.1 3.1 
2014 283.0 102.9 15.4 12.3 9.3 6.2 4.1 
2015 285.7 103.9 15.6 12.5 9.4 6.2 
2016 288.5 104.9 15.7 12.6 9.4 
2017 291.3 105.9 15.9 12.7 
2018 294.1 106.9 16.0 
2019 296.9 108.0 
2020 299.7 
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Scenario 1: Base Case Appendix 1
Step 1 Exhibit 6

Cumulative Closed Counts
Accident Year 12 24 36 48 60 72 84 96 108 120

2011 650.0 930.0 975.0 1,002.0 1,020.0 1,033.0 1,043.0 1,049.0 1,053.0 1,055.0 
2012 656.3 938.9 984.4 1,011.6 1,029.8 1,042.9 1,053.0 1,059.1 1,063.1 
2013 662.6 948.0 993.8 1,021.4 1,039.7 1,053.0 1,063.2 1,069.3 
2014 668.9 957.1 1,003.4 1,031.2 1,049.7 1,063.1 1,073.4 
2015 675.4 966.3 1,013.0 1,041.1 1,059.8 1,073.3 
2016 681.9 975.6 1,022.8 1,051.1 1,070.0 
2017 688.4 985.0 1,032.6 1,061.2 
2018 695.0 994.4 1,042.5 
2019 701.7 1,004.0 
2020 708.5 

Incremental Closed Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 650.0 280.0 45.0 27.0 18.0 13.0 10.0 6.0 4.0 2.0 
2012 656.3 282.7 45.4 27.3 18.2 13.1 10.1 6.1 4.0 
2013 662.6 285.4 45.9 27.5 18.3 13.3 10.2 6.1 
2014 668.9 288.2 46.3 27.8 18.5 13.4 10.3 
2015 675.4 290.9 46.8 28.1 18.7 13.5 
2016 681.9 293.7 47.2 28.3 18.9 
2017 688.4 296.5 47.7 28.6 
2018 695.0 299.4 48.1 
2019 701.7 302.3 
2020 708.5 
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Scenario 1: Base Case Appendix 1
Step 2 Exhibit 7

Active Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 815.0 368.0 116.0 88.0 62.0 45.0 32.0 22.0 16.0 12.0 
2012 822.8 371.5 117.1 88.8 62.6 45.4 32.3 22.2 16.2 
2013 830.7 375.1 118.2 89.7 63.2 45.9 32.6 22.4 
2014 838.7 378.7 119.4 90.6 63.8 46.3 32.9 
2015 846.8 382.4 120.5 91.4 64.4 46.8 
2016 854.9 386.0 121.7 92.3 65.0 
2017 863.2 389.7 122.9 93.2 
2018 871.5 393.5 124.0 
2019 879.8 397.3 
2020 888.3 

Accident year 2019 active counts from 0 to 12 months = counts reported from 0 to 12 months = 879.8

Accident year 2019 active counts from 12 to 24 months = open counts at 12 months + counts reported from 12 to 24 months = 178.1 + 219.2 = 397.3
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Scenario 1: Base Case Appendix 1
Step 3 Exhibit 8

Cumulative Reported Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 815.0 1,018.0 1,046.0 1,063.0 1,064.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 

2012 822.8 1,027.8 1,056.1 1,073.2 1,074.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 

2013 830.7 1,037.7 1,066.2 1,083.5 1,084.6 1,085.6 1,085.6 1,085.6 1,085.6 1,085.6 1,085.6 

2014 838.7 1,047.6 1,076.5 1,094.0 1,095.0 1,096.0 1,096.0 1,096.0 1,096.0 1,096.0 1,096.0 

2015 846.8 1,057.7 1,086.8 1,104.5 1,105.5 1,106.6 1,106.6 1,106.6 1,106.6 1,106.6 1,106.6 

2016 854.9 1,067.9 1,097.3 1,115.1 1,116.1 1,117.2 1,117.2 1,117.2 1,117.2 1,117.2 1,117.2 

2017 863.2 1,078.2 1,107.8 1,125.8 1,126.9 1,127.9 1,127.9 1,127.9 1,127.9 1,127.9 1,127.9 

2018 871.5 1,088.5 1,118.5 1,136.6 1,137.7 1,138.8 1,138.8 1,138.8 1,138.8 1,138.8 1,138.8 

2019 879.8 1,099.0 1,129.2 1,147.6 1,148.7 1,149.7 1,149.7 1,149.7 1,149.7 1,149.7 1,149.7 

2020 888.3 1,109.6 1,140.1 1,158.6 1,159.7 1,160.8 1,160.8 1,160.8 1,160.8 1,160.8 1,160.8 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 1.000 
2012 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 
2013 1.249 1.028 1.016 1.001 1.001 1.000 1.000 
2014 1.249 1.028 1.016 1.001 1.001 1.000 
2015 1.249 1.028 1.016 1.001 1.001 
2016 1.249 1.028 1.016 1.001 
2017 1.249 1.028 1.016 
2018 1.249 1.028 
2019 1.249 

Age-to-Age 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 1.000
Age-to-Ult 1.307 1.046 1.018 1.002 1.001 1.000 1.000 1.000 1.000 1.000
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Scenario 1: Base Case Appendix 1
Step 3 Exhibit 9

Cumulative Reported Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 815.0 1,018.0 1,046.0 1,063.0 1,064.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 

2012 822.8 1,027.8 1,056.1 1,073.2 1,074.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 

2013 830.7 1,037.7 1,066.2 1,083.5 1,084.6 1,085.6 1,085.6 1,085.6 1,085.6 1,085.6 1,085.6 

2014 838.7 1,047.6 1,076.5 1,094.0 1,095.0 1,096.0 1,096.0 1,096.0 1,096.0 1,096.0 1,096.0 

2015 846.8 1,057.7 1,086.8 1,104.5 1,105.5 1,106.6 1,106.6 1,106.6 1,106.6 1,106.6 1,106.6 

2016 854.9 1,067.9 1,097.3 1,115.1 1,116.1 1,117.2 1,117.2 1,117.2 1,117.2 1,117.2 1,117.2 

2017 863.2 1,078.2 1,107.8 1,125.8 1,126.9 1,127.9 1,127.9 1,127.9 1,127.9 1,127.9 1,127.9 

2018 871.5 1,088.5 1,118.5 1,136.6 1,137.7 1,138.8 1,138.8 1,138.8 1,138.8 1,138.8 1,138.8 

2019 879.8 1,099.0 1,129.2 1,147.6 1,148.7 1,149.7 1,149.7 1,149.7 1,149.7 1,149.7 1,149.7 

2020 888.3 1,109.6 1,140.1 1,158.6 1,159.7 1,160.8 1,160.8 1,160.8 1,160.8 1,160.8 1,160.8 

Incremental Reported Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 815.0 203.0 28.0 17.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 

2012 822.8 205.0 28.3 17.2 1.0 1.0 0.0 0.0 0.0 0.0 0.0 

2013 830.7 206.9 28.5 17.3 1.0 1.0 0.0 0.0 0.0 0.0 0.0 

2014 838.7 208.9 28.8 17.5 1.0 1.0 0.0 0.0 0.0 0.0 0.0 

2015 846.8 210.9 29.1 17.7 1.0 1.0 0.0 0.0 0.0 0.0 0.0 

2016 854.9 212.9 29.4 17.8 1.0 1.0 0.0 0.0 0.0 0.0 0.0 

2017 863.2 215.0 29.7 18.0 1.1 1.1 0.0 0.0 0.0 0.0 0.0 

2018 871.5 217.1 29.9 18.2 1.1 1.1 0.0 0.0 0.0 0.0 0.0 

2019 879.8 219.2 30.2 18.4 1.1 1.1 0.0 0.0 0.0 0.0 0.0 

2020 888.3 221.3 30.5 18.5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 
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Scenario 1: Base Case Appendix 1
Step 4 Exhibit 10

Incremental Closure Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 80% 76% 39% 31% 29% 29% 31% 27% 25% 17%
2012 80% 76% 39% 31% 29% 29% 31% 27% 25%
2013 80% 76% 39% 31% 29% 29% 31% 27%
2014 80% 76% 39% 31% 29% 29% 31%
2015 80% 76% 39% 31% 29% 29%
2016 80% 76% 39% 31% 29%
2017 80% 76% 39% 31%
2018 80% 76% 39%
2019 80% 76%
2020 80%

Selected 80% 76% 39% 31% 29% 29% 31% 27% 25% 17% 100%

Accident year 2019 incremental closure rate from 0 to 12 months = incremental closures / active counts = 701.7 / 879.8 = 80%

Accident year 2019 incremental closure rate from 12 to 24 months = incremental closures / active counts = 302.3 / 397.3 = 76%
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Scenario 1: Base Case Appendix 1
Step 5 Exhibit 11

Incremental Closed with Payment Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 46% 49% 26% 17% 15% 16% 19% 14% 13% 8%
2012 46% 49% 26% 17% 15% 16% 19% 14% 13%
2013 46% 49% 26% 17% 15% 16% 19% 14%
2014 46% 49% 26% 17% 15% 16% 19%
2015 46% 49% 26% 17% 15% 16%
2016 46% 49% 26% 17% 15%
2017 46% 49% 26% 17%
2018 46% 49% 26%
2019 46% 49%
2020 46%

Selected 46% 49% 26% 17% 15% 16% 19% 14% 13% 8% 50%

Accident year 2019 incremental closed with payment rate from 0 to 12 months = incremental closures with payment / active counts = 404.8 / 879.8 = 46%

Accident year 2019 incremental closed with payment rate from 12 to 24 months = incremental closures with payment / active counts = 194.3 / 397.3 = 49%

120-Ult tail calculated using defined ultimates: 
(Ultimate closed with payment counts - closed with payment counts at 120 months) / active counts from 120 months to ultimate = (633.0 - 628.0) / 10.0 = 50%
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Scenario 1: Base Case Appendix 1
Step 6 Exhibit 12

Incremental Closed without Payment Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 34% 27% 13% 14% 15% 13% 13% 14% 13% 8%
2012 34% 27% 13% 14% 15% 13% 13% 14% 12%
2013 34% 27% 13% 14% 15% 13% 12% 14%
2014 34% 27% 13% 14% 15% 13% 12%
2015 34% 27% 13% 14% 15% 13%
2016 34% 27% 13% 14% 15%
2017 34% 27% 13% 14%
2018 34% 27% 13%
2019 34% 27%
2020 34%

Closure Rate 80% 76% 39% 31% 29% 29% 31% 27% 25% 17% 100%

Closed with 
Payment Rate 46% 49% 26% 17% 15% 16% 19% 14% 13% 8% 50%

Closed without 
Payment Rate 34% 27% 13% 14% 15% 13% 13% 14% 13% 8% 50%
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Scenario 1: Base Case Appendix 1
Step 7 Exhibit 13

Active Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 815.0 368.0 116.0 88.0 62.0 45.0 32.0 22.0 16.0 12.0 10.0 

2012 822.8 371.5 117.1 88.8 62.6 45.4 32.3 22.2 16.2 12.1 

2013 830.7 375.1 118.2 89.7 63.2 45.9 32.6 22.4 16.3 

2014 838.7 378.7 119.4 90.6 63.8 46.3 32.9 22.6 

2015 846.8 382.4 120.5 91.4 64.4 46.8 33.2 

2016 854.9 386.0 121.7 92.3 65.0 47.2 

2017 863.2 389.7 122.9 93.2 65.7 

2018 871.5 393.5 124.0 94.1 

2019 879.8 397.3 125.2 

2020 888.3 401.1 

Accident year 2019 active counts from 24 to 36 months = open counts at 24 months + counts reported from 24 to 36 months = 95.0 + 30.2 = 125.2
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Scenario 1: Base Case Appendix 1
Step 8 Exhibit 14

Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 5.0 

2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 1.0 

2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 2.0 

2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 3.1 

2015 389.6 187.0 31.2 15.6 9.4 7.3 6.2 

2016 393.4 188.8 31.5 15.7 9.4 7.3 

2017 397.2 190.6 31.8 15.9 9.5 

2018 401.0 192.5 32.1 16.0 

2019 404.8 194.3 32.4 

2020 408.7 196.2 

Accident year 2019 incremental closed with payment counts from 24 to 36 months = incremental closed with payment rate * active counts = 26% * 125.2 = 32.4
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Scenario 1: Base Case Appendix 1
Step 9 Exhibit 15

Incremental Closed without Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 275.0 100.0 15.0 12.0 9.0 6.0 4.0 3.0 2.0 1.0 5.0 

2012 277.6 101.0 15.1 12.1 9.1 6.1 4.0 3.0 2.0 1.0 

2013 280.3 101.9 15.3 12.2 9.2 6.1 4.1 3.1 2.0 

2014 283.0 102.9 15.4 12.3 9.3 6.2 4.1 3.1 

2015 285.7 103.9 15.6 12.5 9.4 6.2 4.2 

2016 288.5 104.9 15.7 12.6 9.4 6.3 

2017 291.3 105.9 15.9 12.7 9.5 

2018 294.1 106.9 16.0 12.8 

2019 296.9 108.0 16.2 

2020 299.7 109.0 

Accident year 2019 incremental closed without payment counts from 24 to 36 months = incremental closed without payment rate * active counts = 13% * 125.2 = 16.2
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Scenario 1: Base Case Appendix 1
Step 10 Exhibit 16

Open Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 165.0 88.0 71.0 61.0 44.0 32.0 22.0 16.0 12.0 10.0 0.0 

2012 166.6 88.8 71.7 61.6 44.4 32.3 22.2 16.2 12.1 10.1 

2013 168.2 89.7 72.4 62.2 44.9 32.6 22.4 16.3 12.2 

2014 169.8 90.6 73.1 62.8 45.3 32.9 22.6 16.5 

2015 171.4 91.4 73.8 63.4 45.7 33.2 22.9 

2016 173.1 92.3 74.5 64.0 46.2 33.6 

2017 174.8 93.2 75.2 64.6 46.6 

2018 176.4 94.1 75.9 65.2 

2019 178.1 95.0 76.6 

2020 179.8 95.9 

Accident year 2019 open counts at 36 months:
Open counts at 24 months + counts reported - counts closed with payment - counts closed without payment from 24 to 36 months
= 95.0 + 30.2 - 32.4 - 16.2 = 76.6
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Scenario 1: Base Case Appendix 1
Steps 7-10 Exhibit 17

Active Counts Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 815.0 368.0 116.0 88.0 62.0 45.0 32.0 22.0 16.0 12.0 10.0 0.0 2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 5.0 633.0 

2012 822.8 371.5 117.1 88.8 62.6 45.4 32.3 22.2 16.2 12.1 10.1 0.0 2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 1.0 5.0 639.1 

2013 830.7 375.1 118.2 89.7 63.2 45.9 32.6 22.4 16.3 12.2 10.2 0.0 2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 2.0 1.0 5.1 645.2 

2014 838.7 378.7 119.4 90.6 63.8 46.3 32.9 22.6 16.5 12.3 10.3 0.0 2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 3.1 2.1 1.0 5.1 651.4 

2015 846.8 382.4 120.5 91.4 64.4 46.8 33.2 22.9 16.6 12.5 10.4 0.0 2015 389.6 187.0 31.2 15.6 9.4 7.3 6.2 3.1 2.1 1.0 5.2 657.7 

2016 854.9 386.0 121.7 92.3 65.0 47.2 33.6 23.1 16.8 12.6 10.5 0.0 2016 393.4 188.8 31.5 15.7 9.4 7.3 6.3 3.1 2.1 1.0 5.2 664.0 

2017 863.2 389.7 122.9 93.2 65.7 47.7 33.9 23.3 16.9 12.7 10.6 0.0 2017 397.2 190.6 31.8 15.9 9.5 7.4 6.4 3.2 2.1 1.1 5.3 670.4 

2018 871.5 393.5 124.0 94.1 66.3 48.1 34.2 23.5 17.1 12.8 10.7 0.0 2018 401.0 192.5 32.1 16.0 9.6 7.5 6.4 3.2 2.1 1.1 5.3 676.9 

2019 879.8 397.3 125.2 95.0 66.9 48.6 34.5 23.8 17.3 13.0 10.8 0.0 2019 404.8 194.3 32.4 16.2 9.7 7.6 6.5 3.2 2.2 1.1 5.4 683.4 

2020 888.3 401.1 126.4 95.9 67.6 49.0 34.9 24.0 17.4 13.1 10.9 0.0 2020 408.7 196.2 32.7 16.3 9.8 7.6 6.5 3.3 2.2 1.1 5.4 689.9 

Incremental Closed without Payment Counts Open Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 275.0 100.0 15.0 12.0 9.0 6.0 4.0 3.0 2.0 1.0 5.0 432.0 2011 165.0 88.0 71.0 61.0 44.0 32.0 22.0 16.0 12.0 10.0 0.0 

2012 277.6 101.0 15.1 12.1 9.1 6.1 4.0 3.0 2.0 1.0 5.0 436.2 2012 166.6 88.8 71.7 61.6 44.4 32.3 22.2 16.2 12.1 10.1 0.0 

2013 280.3 101.9 15.3 12.2 9.2 6.1 4.1 3.1 2.0 1.0 5.1 440.3 2013 168.2 89.7 72.4 62.2 44.9 32.6 22.4 16.3 12.2 10.2 0.0 

2014 283.0 102.9 15.4 12.3 9.3 6.2 4.1 3.1 2.1 1.0 5.1 444.6 2014 169.8 90.6 73.1 62.8 45.3 32.9 22.6 16.5 12.3 10.3 0.0 

2015 285.7 103.9 15.6 12.5 9.4 6.2 4.2 3.1 2.1 1.0 5.2 448.9 2015 171.4 91.4 73.8 63.4 45.7 33.2 22.9 16.6 12.5 10.4 0.0 

2016 288.5 104.9 15.7 12.6 9.4 6.3 4.2 3.1 2.1 1.0 5.2 453.2 2016 173.1 92.3 74.5 64.0 46.2 33.6 23.1 16.8 12.6 10.5 0.0 

2017 291.3 105.9 15.9 12.7 9.5 6.4 4.2 3.2 2.1 1.1 5.3 457.5 2017 174.8 93.2 75.2 64.6 46.6 33.9 23.3 16.9 12.7 10.6 0.0 

2018 294.1 106.9 16.0 12.8 9.6 6.4 4.3 3.2 2.1 1.1 5.3 461.9 2018 176.4 94.1 75.9 65.2 47.0 34.2 23.5 17.1 12.8 10.7 0.0 

2019 296.9 108.0 16.2 13.0 9.7 6.5 4.3 3.2 2.2 1.1 5.4 466.4 2019 178.1 95.0 76.6 65.9 47.5 34.5 23.8 17.3 13.0 10.8 0.0 

2020 299.7 109.0 16.3 13.1 9.8 6.5 4.4 3.3 2.2 1.1 5.4 470.9 2020 179.8 95.9 77.4 66.5 48.0 34.9 24.0 17.4 13.1 10.9 0.0 

An Incremental Approach to Estimating Ultimate Claim Counts and Future Claim Payments

Casualty Actuarial Society E-Forum, Winter 2021 36



Scenario 1: Base Case Appendix 1
Step 11 Exhibit 18

Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 4,000 12,500 100,000 180,000 197,222 214,286 237,500 250,000 275,000 310,000 
2012 4,160 13,000 104,000 187,200 205,111 222,857 247,000 260,000 286,000 
2013 4,326 13,520 108,160 194,688 213,316 231,771 256,880 270,400 
2014 4,499 14,061 112,486 202,476 221,848 241,042 267,155 
2015 4,679 14,623 116,986 210,575 230,722 250,684 
2016 4,867 15,208 121,665 218,998 239,951 
2017 5,061 15,816 126,532 227,757 
2018 5,264 16,449 131,593 
2019 5,474 17,107 
2020 5,693 

Accident year 2019 paid severity from 0 to 12 months = paid loss / counts closed with payment = $2,216,183 / 404.8 = $5,474

Accident year 2019 paid severity from 12 to 24 months = paid loss / counts closed with payment = ($5,540,458 - $2,216,183) / 194.3 = $17,107
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Scenario 1: Base Case Appendix 1
Step 12 Exhibit 19

Trended Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 310,000 
2012 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 
2013 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 
2014 5,693 17,107 131,593 227,757 239,951 250,684 267,155 
2015 5,693 17,107 131,593 227,757 239,951 250,684 
2016 5,693 17,107 131,593 227,757 239,951 
2017 5,693 17,107 131,593 227,757 
2018 5,693 17,107 131,593 
2019 5,693 17,107 
2020 5,693 

Trend Rate: 4%

Accident year 2019 trended paid severity from 0 to 12 months = nominal severity * (1 + trend rate) ^ trend period = $5,474 * (1.04)^1 = $5,693

Accident year 2019 trended paid severity from 12 to 24 months = nominal severity * (1 + trend rate) ^ trend period = $17,107 * (1.04)^0 = $17,107

Trend Period to Calendar Year 2020
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 9 8 7 6 5 4 3 2 1 0 
2012 8 7 6 5 4 3 2 1 0 
2013 7 6 5 4 3 2 1 0 
2014 6 5 4 3 2 1 0 
2015 5 4 3 2 1 0 
2016 4 3 2 1 0 
2017 3 2 1 0 
2018 2 1 0 
2019 1 0 
2020 0 
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Scenario 1: Base Case Appendix 1
Step 13 Exhibit 20

Trended Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 310,000 
2012 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 
2013 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 
2014 5,693 17,107 131,593 227,757 239,951 250,684 267,155 
2015 5,693 17,107 131,593 227,757 239,951 250,684 
2016 5,693 17,107 131,593 227,757 239,951 
2017 5,693 17,107 131,593 227,757 
2018 5,693 17,107 131,593 
2019 5,693 17,107 
2020 5,693 

Selected 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 310,000 334,615 

120-Ult tail in calendar year 2020 dollars calculated using defined ultimates: 
(Ultimate paid loss - paid loss at 120 months) / counts closed with payment 120 months to ultimate / (1 + trend factor)
= ($17,500,000 - $15,760,000) / (633.0 - 628.0) / (1.04) = $334,615
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Scenario 1: Base Case Appendix 1
Step 14 Exhibit 21

Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 4,000 12,500 100,000 180,000 197,222 214,286 237,500 250,000 275,000 310,000 348,000 

2012 4,160 13,000 104,000 187,200 205,111 222,857 247,000 260,000 286,000 322,400 361,920 

2013 4,326 13,520 108,160 194,688 213,316 231,771 256,880 270,400 297,440 335,296 376,397 

2014 4,499 14,061 112,486 202,476 221,848 241,042 267,155 281,216 309,338 348,708 391,453 

2015 4,679 14,623 116,986 210,575 230,722 250,684 277,841 292,465 321,711 362,656 407,111 

2016 4,867 15,208 121,665 218,998 239,951 260,711 288,955 304,163 334,580 377,162 423,395 

2017 5,061 15,816 126,532 227,757 249,549 271,140 300,513 316,330 347,963 392,249 440,331 

2018 5,264 16,449 131,593 236,868 259,531 281,985 312,534 328,983 361,881 407,939 457,944 

2019 5,474 17,107 136,857 246,342 269,912 293,265 325,035 342,142 376,356 424,256 476,262 

2020 5,693 17,791 142,331 256,196 280,709 304,995 338,037 355,828 391,411 441,227 495,313 

Trend Rate: 4%

Accident year 2019 paid severity from 24 to 36 months = selected severity * (1 + trend rate) ^ trend period = $131,593 * (1.04)^1 = $136,857

Trend Period from Calendar Year 2020 to Future Calendar Years
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 1
2012 1 2 
2013 1 2 3 
2014 1 2 3 4 
2015 1 2 3 4 5 
2016 1 2 3 4 5 6 
2017 1 2 3 4 5 6 7 
2018 1 2 3 4 5 6 7 8 
2019 1 2 3 4 5 6 7 8 9 
2020 1 2 3 4 5 6 7 8 9 10 
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Scenario 1: Base Case Appendix 1
Step 15 Exhibit 22

Incremental Paid Loss
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 1,500,000 2,250,000 3,000,000 2,700,000 1,775,000 1,500,000 1,425,000 750,000 550,000 310,000 1,740,000 17,500,000 

2012 1,575,000 2,362,500 3,150,000 2,835,000 1,863,750 1,575,000 1,496,250 787,500 577,500 325,500 1,827,000 18,375,000 

2013 1,653,750 2,480,625 3,307,500 2,976,750 1,956,938 1,653,750 1,571,063 826,875 606,375 341,775 1,918,350 19,293,750 

2014 1,736,438 2,604,656 3,472,875 3,125,588 2,054,784 1,736,438 1,649,616 868,219 636,694 358,864 2,014,268 20,258,438 

2015 1,823,259 2,734,889 3,646,519 3,281,867 2,157,524 1,823,259 1,732,096 911,630 668,528 376,807 2,114,981 21,271,359 

2016 1,914,422 2,871,634 3,828,845 3,445,960 2,265,400 1,914,422 1,818,701 957,211 701,955 395,647 2,220,730 22,334,927 

2017 2,010,143 3,015,215 4,020,287 3,618,258 2,378,670 2,010,143 1,909,636 1,005,072 737,053 415,430 2,331,766 23,451,674 

2018 2,110,651 3,165,976 4,221,301 3,799,171 2,497,603 2,110,651 2,005,118 1,055,325 773,905 436,201 2,448,355 24,624,257 

2019 2,216,183 3,324,275 4,432,366 3,989,130 2,622,483 2,216,183 2,105,374 1,108,092 812,600 458,011 2,570,772 25,855,470 

2020 2,326,992 3,490,488 4,653,985 4,188,586 2,753,608 2,326,992 2,210,643 1,163,496 853,231 480,912 2,699,311 27,148,244 

Accident year 2019 paid loss from 24 to 36 months = incremental severity * incremental counts closed with payment = $136,857 * 32.4 = $4,432,366
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Scenario 1: Base Case Appendix 1
Reported Loss Development Method Exhibit 23

Cumulative Reported Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 3,750,000 7,500,000 10,500,000 12,600,000 13,860,000 14,970,000 15,720,000 16,030,000 16,190,000 16,270,000 17,500,000 

2012 3,937,500 7,875,000 11,025,000 13,230,000 14,553,000 15,718,500 16,506,000 16,831,500 16,999,500 17,083,500 18,375,000 

2013 4,134,375 8,268,750 11,576,250 13,891,500 15,280,650 16,504,425 17,331,300 17,673,075 17,849,475 17,937,675 19,293,750 

2014 4,341,094 8,682,188 12,155,063 14,586,075 16,044,683 17,329,646 18,197,865 18,556,729 18,741,949 18,834,559 20,258,438 

2015 4,558,148 9,116,297 12,762,816 15,315,379 16,846,917 18,196,129 19,107,758 19,484,565 19,679,046 19,776,287 21,271,359 

2016 4,786,056 9,572,112 13,400,956 16,081,148 17,689,262 19,105,935 20,063,146 20,458,793 20,662,998 20,765,101 22,334,927 

2017 5,025,359 10,050,717 14,071,004 16,885,205 18,573,726 20,061,232 21,066,303 21,481,733 21,696,148 21,803,356 23,451,674 

2018 5,276,627 10,553,253 14,774,554 17,729,465 19,502,412 21,064,293 22,119,619 22,555,820 22,780,956 22,893,524 24,624,257 

2019 5,540,458 11,080,916 15,513,282 18,615,939 20,477,532 22,117,508 23,225,600 23,683,611 23,920,004 24,038,200 25,855,470 

2020 5,817,481 11,634,962 16,288,946 19,546,736 21,501,409 23,223,383 24,386,880 24,867,791 25,116,004 25,240,110 27,148,244 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 2.000 1.400 1.200 1.100 1.080 1.050 1.020 1.010 1.005 
2012 2.000 1.400 1.200 1.100 1.080 1.050 1.020 1.010 
2013 2.000 1.400 1.200 1.100 1.080 1.050 1.020 
2014 2.000 1.400 1.200 1.100 1.080 1.050 
2015 2.000 1.400 1.200 1.100 1.080 
2016 2.000 1.400 1.200 1.100 
2017 2.000 1.400 1.200 
2018 2.000 1.400 
2019 2.000 

Age-to-Age 2.000 1.400 1.200 1.100 1.080 1.050 1.020 1.010 1.005
Age-to-Ult 4.667 2.333 1.667 1.389 1.263 1.169 1.113 1.092 1.081 1.076
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Scenario 1: Base Case Appendix 1
Paid Loss Development Method Exhibit 24

Cumulative Paid Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 1,500,000 3,750,000 6,750,000 9,450,000 11,225,000 12,725,000 14,150,000 14,900,000 15,450,000 15,760,000 17,500,000 

2012 1,575,000 3,937,500 7,087,500 9,922,500 11,786,250 13,361,250 14,857,500 15,645,000 16,222,500 16,548,000 18,375,000 

2013 1,653,750 4,134,375 7,441,875 10,418,625 12,375,563 14,029,313 15,600,375 16,427,250 17,033,625 17,375,400 19,293,750 

2014 1,736,438 4,341,094 7,813,969 10,939,556 12,994,341 14,730,778 16,380,394 17,248,613 17,885,306 18,244,170 20,258,438 

2015 1,823,259 4,558,148 8,204,667 11,486,534 13,644,058 15,467,317 17,199,413 18,111,043 18,779,572 19,156,379 21,271,359 

2016 1,914,422 4,786,056 8,614,901 12,060,861 14,326,261 16,240,683 18,059,384 19,016,595 19,718,550 20,114,197 22,334,927 

2017 2,010,143 5,025,359 9,045,646 12,663,904 15,042,574 17,052,717 18,962,353 19,967,425 20,704,478 21,119,907 23,451,674 

2018 2,110,651 5,276,627 9,497,928 13,297,099 15,794,702 17,905,353 19,910,471 20,965,796 21,739,702 22,175,903 24,624,257 

2019 2,216,183 5,540,458 9,972,824 13,961,954 16,584,437 18,800,621 20,905,995 22,014,086 22,826,687 23,284,698 25,855,470 

2020 2,326,992 5,817,481 10,471,465 14,660,052 17,413,659 19,740,652 21,951,294 23,114,790 23,968,021 24,448,933 27,148,244 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 2.500 1.800 1.400 1.188 1.134 1.112 1.053 1.037 1.020 
2012 2.500 1.800 1.400 1.188 1.134 1.112 1.053 1.037 
2013 2.500 1.800 1.400 1.188 1.134 1.112 1.053 
2014 2.500 1.800 1.400 1.188 1.134 1.112 
2015 2.500 1.800 1.400 1.188 1.134 
2016 2.500 1.800 1.400 1.188 
2017 2.500 1.800 1.400 
2018 2.500 1.800 
2019 2.500 

Age-to-Age 2.500 1.800 1.400 1.188 1.134 1.112 1.053 1.037 1.020
Age-to-Ult 11.667 4.667 2.593 1.852 1.559 1.375 1.237 1.174 1.133 1.110
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Scenario 1: Base Case Appendix 1
Disposal Rate Frequency-Severity Method Exhibit 25

Cumulative Non-Zero Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 540.0 643.0 656.0 661.0 653.0 648.0 644.0 641.0 639.0 638.0 633.0 

2012 545.2 649.2 662.3 667.4 659.3 654.2 650.2 647.2 645.1 644.1 639.1 

2013 550.4 655.4 668.7 673.8 665.6 660.5 656.4 653.4 651.3 650.3 645.2 

2014 555.7 661.7 675.1 680.3 672.0 666.9 662.8 659.7 657.6 656.6 651.4 

2015 561.1 668.1 681.6 686.8 678.5 673.3 669.1 666.0 663.9 662.9 657.7 

2016 566.5 674.5 688.2 693.4 685.0 679.8 675.6 672.4 670.3 669.3 664.0 

2017 571.9 681.0 694.8 700.1 691.6 686.3 682.1 678.9 676.8 675.7 670.4 

2018 577.4 687.5 701.4 706.8 698.2 692.9 688.6 685.4 683.3 682.2 676.9 

2019 583.0 694.2 708.2 713.6 705.0 699.6 695.2 692.0 689.8 688.8 683.4 

2020 588.6 700.8 715.0 720.5 711.7 706.3 701.9 698.7 696.5 695.4 689.9 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 1.191 1.020 1.008 0.988 0.992 0.994 0.995 0.997 0.998 
2012 1.191 1.020 1.008 0.988 0.992 0.994 0.995 0.997 
2013 1.191 1.020 1.008 0.988 0.992 0.994 0.995 
2014 1.191 1.020 1.008 0.988 0.992 0.994 
2015 1.191 1.020 1.008 0.988 0.992 
2016 1.191 1.020 1.008 0.988 
2017 1.191 1.020 1.008 
2018 1.191 1.020 
2019 1.191 

Age-to-Age 1.191 1.020 1.008 0.988 0.992 0.994 0.995 0.997 0.998
Age-to-Ult 1.172 0.984 0.965 0.958 0.969 0.977 0.983 0.988 0.991 0.992
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Scenario 1: Base Case Appendix 1
Disposal Rate Frequency-Severity Method Exhibit 26

Disposal Rate (Closed with Payment Counts)
Accident Year 12 24 36 48 60 72 84 96 108 120 120-Ult

2011 59% 88% 92% 95% 96% 97% 98% 99% 99% 99%
2012 59% 88% 92% 95% 96% 97% 98% 99% 99%
2013 59% 88% 92% 95% 96% 97% 98% 99%
2014 59% 88% 92% 95% 96% 97% 98%
2015 59% 88% 92% 95% 96% 97%
2016 59% 88% 92% 95% 96%
2017 59% 88% 92% 95%
2018 59% 88% 92%
2019 59% 88%
2020 59%

Selected 59% 88% 92% 95% 96% 97% 98% 99% 99% 99% 100%

Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 5.0 633.0 

2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 1.0 5.0 639.1 

2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 2.0 1.0 5.1 645.2 

2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 3.1 2.1 1.0 5.1 651.4 

2015 389.6 187.0 31.2 15.6 9.4 7.3 6.2 3.1 2.1 1.0 5.2 657.7 

2016 393.4 188.8 31.5 15.7 9.4 7.3 6.3 3.1 2.1 1.0 5.2 664.0 

2017 397.2 190.6 31.8 15.9 9.5 7.4 6.4 3.2 2.1 1.1 5.3 670.4 

2018 401.0 192.5 32.1 16.0 9.6 7.5 6.4 3.2 2.1 1.1 5.3 676.9 

2019 404.8 194.3 32.4 16.2 9.7 7.6 6.5 3.2 2.2 1.1 5.4 683.4 

2020 408.7 196.2 32.7 16.3 9.8 7.6 6.5 3.3 2.2 1.1 5.4 689.9 
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Scenario 1: Base Case Appendix 1
Disposal Rate Frequency-Severity Method Exhibit 27

Incremental Paid Loss
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 1,500,000 2,250,000 3,000,000 2,700,000 1,775,000 1,500,000 1,425,000 750,000 550,000 310,000 1,740,000 17,500,000 

2012 1,575,000 2,362,500 3,150,000 2,835,000 1,863,750 1,575,000 1,496,250 787,500 577,500 325,500 1,827,000 18,375,000 

2013 1,653,750 2,480,625 3,307,500 2,976,750 1,956,938 1,653,750 1,571,063 826,875 606,375 341,775 1,918,350 19,293,750 

2014 1,736,438 2,604,656 3,472,875 3,125,588 2,054,784 1,736,438 1,649,616 868,219 636,694 358,864 2,014,267 20,258,438 

2015 1,823,259 2,734,889 3,646,519 3,281,867 2,157,524 1,823,259 1,732,096 911,630 668,528 376,807 2,114,981 21,271,359 

2016 1,914,422 2,871,634 3,828,845 3,445,960 2,265,400 1,914,422 1,818,701 957,211 701,955 395,647 2,220,730 22,334,927 

2017 2,010,143 3,015,215 4,020,287 3,618,258 2,378,670 2,010,143 1,909,636 1,005,072 737,053 415,430 2,331,766 23,451,674 

2018 2,110,651 3,165,976 4,221,301 3,799,171 2,497,603 2,110,651 2,005,118 1,055,325 773,905 436,201 2,448,355 24,624,257 

2019 2,216,183 3,324,275 4,432,366 3,989,130 2,622,483 2,216,183 2,105,374 1,108,092 812,600 458,011 2,570,772 25,855,470 

2020 2,326,992 3,490,488 4,653,985 4,188,586 2,753,608 2,326,992 2,210,643 1,163,496 853,231 480,912 2,699,311 27,148,244 

Accident year 2019 paid loss from 24 to 36 months = incremental severity * incremental counts closed with payment = $136,857 * 32.4 = $4,432,366
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Data Exhibit 1

Cumulative Reported Counts Cumulative Closed with Payment Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 815.0 1,018.0 1,046.0 1,063.0 1,064.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 2011 375.0 555.0 585.0 600.0 609.0 616.0 622.0 625.0 627.0 628.1 
2012 822.8 1,027.8 1,056.1 1,073.2 1,074.2 1,075.2 1,075.2 1,075.2 1,075.2 2012 378.6 560.3 590.6 605.8 614.9 621.9 628.0 631.0 633.2 
2013 830.7 1,037.7 1,066.2 1,083.5 1,084.6 1,085.6 1,085.6 1,085.6 2013 382.2 565.7 596.3 611.6 620.8 627.9 634.0 637.4 
2014 838.7 1,047.6 1,076.5 1,094.0 1,095.0 1,096.0 1,096.0 2014 385.9 571.2 602.0 617.5 626.7 633.9 640.7 
2015 846.8 1,057.7 1,086.8 1,104.5 1,105.5 1,106.6 2015 389.6 576.7 607.8 623.4 632.8 640.8 
2016 854.9 1,067.9 1,097.3 1,115.1 1,116.1 2016 393.4 582.2 613.7 629.4 639.8 
2017 863.2 1,078.2 1,107.8 1,125.8 2017 397.2 587.8 619.6 637.0 
2018 871.5 1,088.5 1,118.5 2018 401.0 593.5 628.7 
2019 879.8 1,099.0 2019 404.8 618.6 
2020 888.3 2020 449.6 

Cumulative Closed without Payment Counts Open Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 275.0 375.0 390.0 402.0 411.0 417.0 421.0 424.0 426.0 426.9 2011 165.0 88.0 71.0 61.0 44.0 32.0 22.0 16.0 12.0 10.0 
2012 277.6 378.6 393.8 405.9 415.0 421.0 425.0 428.1 429.9 2012 166.6 88.8 71.7 61.6 44.4 32.3 22.2 16.2 12.1 
2013 280.3 382.2 397.5 409.8 418.9 425.1 429.1 431.9 2013 168.2 89.7 72.4 62.2 44.9 32.6 22.4 16.3 
2014 283.0 385.9 401.4 413.7 423.0 429.1 432.6 2014 169.8 90.6 73.1 62.8 45.3 32.9 22.6 
2015 285.7 389.6 405.2 417.7 427.0 432.5 2015 171.4 91.4 73.8 63.4 45.7 33.2 
2016 288.5 393.4 409.1 421.7 430.2 2016 173.1 92.3 74.5 64.0 46.2 
2017 291.3 397.2 413.0 424.2 2017 174.8 93.2 75.2 64.6 
2018 294.1 401.0 413.8 2018 176.4 94.1 75.9 
2019 296.9 385.4 2019 178.1 95.0 
2020 258.9 2020 179.8 

Cumulative Reported Loss Cumulative Paid Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 3,750,000 7,500,000 10,500,000 12,600,000 13,860,000 14,970,000 15,720,000 16,030,000 16,190,000 16,301,000 2011 1,500,000 3,750,000 6,750,000 9,450,000 11,225,000 12,725,000 14,150,000 14,900,000 15,450,000 15,791,000 
2012 3,937,500 7,875,000 11,025,000 13,230,000 14,553,000 15,718,500 16,506,000 16,831,500 17,057,250 2012 1,575,000 3,937,500 7,087,500 9,922,500 11,786,250 13,361,250 14,857,500 15,645,000 16,280,250 
2013 4,134,375 8,268,750 11,576,250 13,891,500 15,280,650 16,504,425 17,331,300 17,755,763 2013 1,653,750 4,134,375 7,441,875 10,418,625 12,375,563 14,029,313 15,600,375 16,509,938 
2014 4,341,094 8,682,188 12,155,063 14,586,075 16,044,683 17,329,646 18,362,827 2014 1,736,438 4,341,094 7,813,969 10,939,556 12,994,341 14,730,778 16,545,355 
2015 4,558,148 9,116,297 12,762,816 15,315,379 16,846,917 18,378,455 2015 1,823,259 4,558,148 8,204,667 11,486,534 13,644,058 15,649,643 
2016 4,786,056 9,572,112 13,400,956 16,081,148 17,915,802 2016 1,914,422 4,786,056 8,614,901 12,060,861 14,552,801 
2017 5,025,359 10,050,717 14,071,004 17,247,031 2017 2,010,143 5,025,359 9,045,646 13,025,730 
2018 5,276,627 10,553,253 15,196,685 2018 2,110,651 5,276,627 9,920,058 
2019 5,540,458 11,413,343 2019 2,216,183 5,872,885 
2020 6,050,180 2020 2,559,692 
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Diagnostics Exhibit 2

Case Reserves per Open Count Paid Loss per Closed with Payment Count
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 13,636 42,614 52,817 51,639 59,886 70,156 71,364 70,625 61,667 51,000 2011 4,000 6,757 11,538 15,750 18,432 20,657 22,749 23,840 24,641 25,141 
2012 14,182 44,318 54,930 53,705 62,282 72,963 74,218 73,450 64,133 2012 4,160 7,027 12,000 16,380 19,169 21,484 23,659 24,794 25,710 
2013 14,749 46,091 57,127 55,853 64,773 75,881 77,187 76,388 2013 4,326 7,308 12,480 17,035 19,936 22,343 24,606 25,903 
2014 15,339 47,935 59,412 58,087 67,364 78,916 80,274 2014 4,499 7,600 12,979 17,717 20,733 23,237 25,823 
2015 15,953 49,852 61,788 60,411 70,059 82,073 2015 4,679 7,904 13,498 18,425 21,563 24,423 
2016 16,591 51,846 64,260 62,827 72,861 2016 4,867 8,221 14,038 19,162 22,746 
2017 17,254 53,920 66,830 65,340 2017 5,061 8,549 14,600 20,447 
2018 17,945 56,077 69,503 2018 5,264 8,891 15,778 
2019 18,662 58,320 2019 5,474 9,494 
2020 19,409 2020 5,693 

Closed Counts / Reported Counts Closed with Payment Counts / Closed Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 98.9% 99.1% 2011 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6% 59.5% 59.5%
2012 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 98.9% 2012 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6% 59.6%
2013 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 2013 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6%
2014 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 2014 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.7%
2015 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 2015 57.7% 59.7% 60.0% 59.9% 59.7% 59.7%
2016 79.8% 91.4% 93.2% 94.3% 95.9% 2016 57.7% 59.7% 60.0% 59.9% 59.8%
2017 79.8% 91.4% 93.2% 94.3% 2017 57.7% 59.7% 60.0% 60.0%
2018 79.8% 91.4% 93.2% 2018 57.7% 59.7% 60.3%
2019 79.8% 91.4% 2019 57.7% 61.6%
2020 79.8% 2020 63.5%
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Reported Loss Development Method Exhibit 3

Cumulative Reported Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 3,750,000 7,500,000 10,500,000 12,600,000 13,860,000 14,970,000 15,720,000 16,030,000 16,190,000 16,301,000 17,533,344 

2012 3,937,500 7,875,000 11,025,000 13,230,000 14,553,000 15,718,500 16,506,000 16,831,500 17,057,250 17,174,196 18,472,552 

2013 4,134,375 8,268,750 11,576,250 13,891,500 15,280,650 16,504,425 17,331,300 17,755,763 17,993,909 18,117,277 19,486,930 

2014 4,341,094 8,682,188 12,155,063 14,586,075 16,044,683 17,329,646 18,362,827 18,812,552 19,064,873 19,195,583 20,646,755 

2015 4,558,148 9,116,297 12,762,816 15,315,379 16,846,917 18,378,455 19,474,164 19,951,108 20,218,699 20,357,320 21,896,318 

2016 4,786,056 9,572,112 13,400,956 16,081,148 17,915,802 19,544,512 20,709,741 21,216,945 21,501,514 21,648,930 23,285,573 

2017 5,025,359 10,050,717 14,071,004 17,247,031 19,214,698 20,961,489 22,211,197 22,755,173 23,060,374 23,218,478 24,973,777 

2018 5,276,627 10,553,253 15,196,685 18,626,793 20,751,874 22,638,408 23,988,093 24,575,587 24,905,204 25,075,956 26,971,680 

2019 5,540,458 11,413,343 16,435,214 20,144,877 22,443,152 24,483,438 25,943,122 26,578,498 26,934,978 27,119,646 29,169,871 

2020 6,050,180 12,463,371 17,947,254 21,998,206 24,507,922 26,735,915 28,329,889 29,023,719 29,412,996 29,614,654 31,853,500 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 2.000 1.400 1.200 1.100 1.080 1.050 1.020 1.010 1.007 
2012 2.000 1.400 1.200 1.100 1.080 1.050 1.020 1.013 
2013 2.000 1.400 1.200 1.100 1.080 1.050 1.024 
2014 2.000 1.400 1.200 1.100 1.080 1.060 
2015 2.000 1.400 1.200 1.100 1.091 
2016 2.000 1.400 1.200 1.114 
2017 2.000 1.400 1.226 
2018 2.000 1.440 
2019 2.060 

Age-to-Age 2.060 1.440 1.226 1.114 1.091 1.060 1.024 1.013 1.007
Age-to-Ult 5.265 2.556 1.775 1.448 1.300 1.191 1.124 1.097 1.083 1.076
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Paid Loss Development Method Exhibit 4

Cumulative Paid Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 1,500,000 3,750,000 6,750,000 9,450,000 11,225,000 12,725,000 14,150,000 14,900,000 15,450,000 15,791,000 17,534,423 

2012 1,575,000 3,937,500 7,087,500 9,922,500 11,786,250 13,361,250 14,857,500 15,645,000 16,280,250 16,639,575 18,476,685 

2013 1,653,750 4,134,375 7,441,875 10,418,625 12,375,563 14,029,313 15,600,375 16,509,938 17,180,307 17,559,497 19,498,173 

2014 1,736,438 4,341,094 7,813,969 10,939,556 12,994,341 14,730,778 16,545,355 17,510,014 18,220,991 18,623,150 20,679,259 

2015 1,823,259 4,558,148 8,204,667 11,486,534 13,644,058 15,649,643 17,577,408 18,602,240 19,357,565 19,784,810 21,969,174 

2016 1,914,422 4,786,056 8,614,901 12,060,861 14,552,801 16,691,965 18,748,126 19,841,215 20,646,848 21,102,549 23,432,399 

2017 2,010,143 5,025,359 9,045,646 13,025,730 15,717,025 18,027,322 20,247,977 21,428,512 22,298,596 22,790,753 25,306,991 

2018 2,110,651 5,276,627 9,920,058 14,284,883 17,236,337 19,769,963 22,205,281 23,499,935 24,454,127 24,993,859 27,753,333 

2019 2,216,183 5,872,885 11,041,025 15,899,075 19,184,043 22,003,969 24,714,478 26,155,428 27,217,444 27,818,165 30,889,460 

2020 2,559,692 6,783,183 12,752,383 18,363,432 22,157,570 25,414,584 28,545,222 30,209,519 31,436,147 32,129,981 35,677,326 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 2.500 1.800 1.400 1.188 1.134 1.112 1.053 1.037 1.022 
2012 2.500 1.800 1.400 1.188 1.134 1.112 1.053 1.041 
2013 2.500 1.800 1.400 1.188 1.134 1.112 1.058 
2014 2.500 1.800 1.400 1.188 1.134 1.123 
2015 2.500 1.800 1.400 1.188 1.147 
2016 2.500 1.800 1.400 1.207 
2017 2.500 1.800 1.440 
2018 2.500 1.880 
2019 2.650 

Age-to-Age 2.650 1.880 1.440 1.207 1.147 1.123 1.058 1.041 1.022
Age-to-Ult 13.938 5.260 2.798 1.943 1.610 1.404 1.250 1.181 1.135 1.110

An Incremental Approach to Estimating Ultimate Claim Counts and Future Claim Payments

Casualty Actuarial Society E-Forum, Winter 2021 50



Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Disposal Rate Frequency-Severity Method Exhibit 5

Cumulative Non-Zero Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 540.0 643.0 656.0 661.0 653.0 648.0 644.0 641.0 639.0 638.1 633.1 

2012 545.2 649.2 662.3 667.4 659.3 654.2 650.2 647.2 645.3 644.4 639.4 

2013 550.4 655.4 668.7 673.8 665.6 660.5 656.4 653.7 651.9 650.9 645.8 

2014 555.7 661.7 675.1 680.3 672.0 666.9 663.4 660.6 658.7 657.8 652.7 

2015 561.1 668.1 681.6 686.8 678.5 674.0 670.5 667.7 665.8 664.9 659.6 

2016 566.5 674.5 688.2 693.4 685.9 681.4 677.9 675.0 673.1 672.2 666.9 

2017 571.9 681.0 694.8 701.7 694.1 689.5 685.9 683.1 681.1 680.2 674.8 

2018 577.4 687.5 704.7 711.6 704.0 699.4 695.7 692.8 690.8 689.9 684.4 

2019 583.0 713.6 731.3 738.6 730.7 725.8 722.0 719.0 717.0 716.0 710.4 

2020 629.4 770.5 789.7 797.5 788.9 783.7 779.6 776.3 774.2 773.1 767.0 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 1.191 1.020 1.008 0.988 0.992 0.994 0.995 0.997 0.999 
2012 1.191 1.020 1.008 0.988 0.992 0.994 0.995 0.997 
2013 1.191 1.020 1.008 0.988 0.992 0.994 0.996 
2014 1.191 1.020 1.008 0.988 0.992 0.995 
2015 1.191 1.020 1.008 0.988 0.993 
2016 1.191 1.020 1.008 0.989 
2017 1.191 1.020 1.010 
2018 1.191 1.025 
2019 1.224 

Age-to-Age 1.224 1.025 1.010 0.989 0.993 0.995 0.996 0.997 0.999
Age-to-Ult 1.219 0.995 0.971 0.962 0.972 0.979 0.984 0.988 0.991 0.992
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Disposal Rate Frequency-Severity Method Exhibit 6

Disposal Rate (Closed with Payment Counts)
Accident Year 12 24 36 48 60 72 84 96 108 120 120-Ult

2011 59% 88% 92% 95% 96% 97% 98% 99% 99% 99%
2012 59% 88% 92% 95% 96% 97% 98% 99% 99%
2013 59% 88% 92% 95% 96% 97% 98% 99%
2014 59% 88% 92% 95% 96% 97% 98%
2015 59% 87% 92% 95% 96% 97%
2016 59% 87% 92% 94% 96%
2017 59% 87% 92% 94%
2018 59% 87% 92%
2019 57% 87%
2020 59%

Selected 59% 87% 92% 94% 96% 97% 98% 99% 99% 99% 100%

Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.1 5.0 633.1 

2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.2 1.1 5.0 639.4 

2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.4 2.2 1.1 5.1 645.8 

2014 385.9 185.2 30.9 15.4 9.3 7.2 6.8 3.4 2.3 1.1 5.2 652.7 

2015 389.6 187.0 31.2 15.6 9.4 8.0 6.8 3.4 2.3 1.1 5.2 659.6 

2016 393.4 188.8 31.5 15.7 10.4 8.0 6.9 3.5 2.3 1.2 5.3 666.9 

2017 397.2 190.6 31.8 17.5 10.4 8.1 7.0 3.5 2.3 1.2 5.3 674.8 

2018 401.0 192.5 35.3 17.4 10.5 8.2 7.1 3.5 2.4 1.2 5.4 684.4 

2019 404.8 213.8 34.0 18.0 10.9 8.5 7.4 3.7 2.5 1.2 5.6 710.4 

2020 449.6 218.3 36.7 19.5 11.8 9.2 7.9 4.0 2.7 1.3 6.1 767.0 
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Disposal Rate Frequency-Severity Method Exhibit 7

Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 4,000 12,500 100,000 180,000 197,222 214,286 237,500 250,000 275,000 310,000 348,000 

2012 4,160 13,000 104,000 187,200 205,111 222,857 247,000 260,000 286,000 322,400 361,920 

2013 4,326 13,520 108,160 194,688 213,316 231,771 256,880 270,400 297,440 335,296 376,397 

2014 4,499 14,061 112,486 202,476 221,848 241,042 267,155 281,216 309,338 348,708 391,453 

2015 4,679 14,623 116,986 210,575 230,722 250,684 277,841 292,465 321,711 362,656 407,111 

2016 4,867 15,208 121,665 218,998 239,951 260,711 288,955 304,163 334,580 377,162 423,395 

2017 5,061 15,816 126,532 227,757 249,549 271,140 300,513 316,330 347,963 392,249 440,331 

2018 5,264 16,449 131,593 236,868 259,531 281,985 312,534 328,983 361,881 407,939 457,944 

2019 5,474 17,107 136,857 246,342 269,912 293,265 325,035 342,142 376,356 424,256 476,262 

2020 5,693 17,791 142,331 256,196 280,709 304,995 338,037 355,828 391,411 441,227 495,313 

Trend Rate: 4%

Trended Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 310,000 
2012 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 
2013 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 
2014 5,693 17,107 131,593 227,757 239,951 250,684 267,155 
2015 5,693 17,107 131,593 227,757 239,951 250,684 
2016 5,693 17,107 131,593 227,757 239,951 
2017 5,693 17,107 131,593 227,757 
2018 5,693 17,107 131,593 
2019 5,693 17,107 
2020 5,693 

Selected 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 310,000 334,615 
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Disposal Rate Frequency-Severity Method Exhibit 8

Incremental Paid Loss
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 1,500,000 2,250,000 3,000,000 2,700,000 1,775,000 1,500,000 1,425,000 750,000 550,000 341,000 1,739,727 17,530,727 

2012 1,575,000 2,362,500 3,150,000 2,835,000 1,863,750 1,575,000 1,496,250 787,500 635,250 356,940 1,827,285 18,464,475 

2013 1,653,750 2,480,625 3,307,500 2,976,750 1,956,938 1,653,750 1,571,063 909,563 665,054 374,962 1,919,548 19,469,501 

2014 1,736,438 2,604,656 3,472,875 3,125,588 2,054,784 1,736,438 1,814,577 949,998 698,958 394,077 2,017,403 20,605,791 

2015 1,823,259 2,734,889 3,646,519 3,281,867 2,157,524 2,005,585 1,897,385 998,576 734,698 414,228 2,120,561 21,815,091 

2016 1,914,422 2,871,634 3,828,845 3,445,960 2,491,940 2,092,182 1,995,000 1,049,950 772,496 435,538 2,229,658 23,127,625 

2017 2,010,143 3,015,215 4,020,287 3,980,084 2,585,889 2,201,776 2,099,504 1,104,949 812,962 458,353 2,346,454 24,635,616 

2018 2,110,651 3,165,976 4,643,431 4,115,962 2,727,600 2,322,437 2,214,560 1,165,502 857,514 483,472 2,475,044 26,282,149 

2019 2,216,183 3,656,702 4,648,125 4,442,742 2,944,154 2,506,824 2,390,382 1,258,036 925,595 521,856 2,671,546 28,182,145 

2020 2,559,692 3,883,976 5,219,457 4,988,829 3,306,039 2,814,954 2,684,200 1,412,669 1,039,366 586,001 2,999,923 31,495,108 

An Incremental Approach to Estimating Ultimate Claim Counts and Future Claim Payments

Casualty Actuarial Society E-Forum, Winter 2021 54



Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Incremental Method Exhibit 9

Cumulative Reported Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 815.0 1,018.0 1,046.0 1,063.0 1,064.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 

2012 822.8 1,027.8 1,056.1 1,073.2 1,074.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 

2013 830.7 1,037.7 1,066.2 1,083.5 1,084.6 1,085.6 1,085.6 1,085.6 1,085.6 1,085.6 1,085.6 

2014 838.7 1,047.6 1,076.5 1,094.0 1,095.0 1,096.0 1,096.0 1,096.0 1,096.0 1,096.0 1,096.0 

2015 846.8 1,057.7 1,086.8 1,104.5 1,105.5 1,106.6 1,106.6 1,106.6 1,106.6 1,106.6 1,106.6 

2016 854.9 1,067.9 1,097.3 1,115.1 1,116.1 1,117.2 1,117.2 1,117.2 1,117.2 1,117.2 1,117.2 

2017 863.2 1,078.2 1,107.8 1,125.8 1,126.9 1,127.9 1,127.9 1,127.9 1,127.9 1,127.9 1,127.9 

2018 871.5 1,088.5 1,118.5 1,136.6 1,137.7 1,138.8 1,138.8 1,138.8 1,138.8 1,138.8 1,138.8 

2019 879.8 1,099.0 1,129.2 1,147.6 1,148.7 1,149.7 1,149.7 1,149.7 1,149.7 1,149.7 1,149.7 

2020 888.3 1,109.6 1,140.1 1,158.6 1,159.7 1,160.8 1,160.8 1,160.8 1,160.8 1,160.8 1,160.8 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 1.000 
2012 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 
2013 1.249 1.028 1.016 1.001 1.001 1.000 1.000 
2014 1.249 1.028 1.016 1.001 1.001 1.000 
2015 1.249 1.028 1.016 1.001 1.001 
2016 1.249 1.028 1.016 1.001 
2017 1.249 1.028 1.016 
2018 1.249 1.028 
2019 1.249 

Age-to-Age 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 1.000
Age-to-Ult 1.307 1.046 1.018 1.002 1.001 1.000 1.000 1.000 1.000 1.000
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Incremental Method Exhibit 10

Active Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 815.0 368.0 116.0 88.0 62.0 45.0 32.0 22.0 16.0 12.0 
2012 822.8 371.5 117.1 88.8 62.6 45.4 32.3 22.2 16.2 
2013 830.7 375.1 118.2 89.7 63.2 45.9 32.6 22.4 
2014 838.7 378.7 119.4 90.6 63.8 46.3 32.9 
2015 846.8 382.4 120.5 91.4 64.4 46.8 
2016 854.9 386.0 121.7 92.3 65.0 
2017 863.2 389.7 122.9 93.2 
2018 871.5 393.5 124.0 
2019 879.8 397.3 
2020 888.3 
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Incremental Method Exhibit 11

Incremental Closed Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 650.0 280.0 45.0 27.0 18.0 13.0 10.0 6.0 4.0 2.0 
2012 656.3 282.7 45.4 27.3 18.2 13.1 10.1 6.1 4.0 
2013 662.6 285.4 45.9 27.5 18.3 13.3 10.2 6.1 
2014 668.9 288.2 46.3 27.8 18.5 13.4 10.3 
2015 675.4 290.9 46.8 28.1 18.7 13.5 
2016 681.9 293.7 47.2 28.3 18.9 
2017 688.4 296.5 47.7 28.6 
2018 695.0 299.4 48.1 
2019 701.7 302.3 
2020 708.5 

Incremental Closure Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 80% 76% 39% 31% 29% 29% 31% 27% 25% 17%
2012 80% 76% 39% 31% 29% 29% 31% 27% 25%
2013 80% 76% 39% 31% 29% 29% 31% 27%
2014 80% 76% 39% 31% 29% 29% 31%
2015 80% 76% 39% 31% 29% 29%
2016 80% 76% 39% 31% 29%
2017 80% 76% 39% 31%
2018 80% 76% 39%
2019 80% 76%
2020 80%

Selected 80% 76% 39% 31% 29% 29% 31% 27% 25% 17% 100%
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Incremental Method Exhibit 12

Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.1 
2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.2 
2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.4 
2014 385.9 185.2 30.9 15.4 9.3 7.2 6.8 
2015 389.6 187.0 31.2 15.6 9.4 8.0 
2016 393.4 188.8 31.5 15.7 10.4 
2017 397.2 190.6 31.8 17.5 
2018 401.0 192.5 35.3 
2019 404.8 213.8 
2020 449.6 

Incremental Closed with Payment Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 46% 49% 26% 17% 15% 16% 19% 14% 13% 9%
2012 46% 49% 26% 17% 15% 16% 19% 14% 14%
2013 46% 49% 26% 17% 15% 16% 19% 15%
2014 46% 49% 26% 17% 15% 16% 21%
2015 46% 49% 26% 17% 15% 17%
2016 46% 49% 26% 17% 16%
2017 46% 49% 26% 19%
2018 46% 49% 28%
2019 46% 54%
2020 51%

Selected 51% 54% 28% 19% 16% 17% 21% 15% 14% 9% 50%
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Incremental Method Exhibit 13

Incremental Closed without Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 275.0 100.0 15.0 12.0 9.0 6.0 4.0 3.0 2.0 0.9 
2012 277.6 101.0 15.1 12.1 9.1 6.1 4.0 3.0 1.8 
2013 280.3 101.9 15.3 12.2 9.2 6.1 4.1 2.8 
2014 283.0 102.9 15.4 12.3 9.3 6.2 3.5 
2015 285.7 103.9 15.6 12.5 9.4 5.5 
2016 288.5 104.9 15.7 12.6 8.5 
2017 291.3 105.9 15.9 11.1 
2018 294.1 106.9 12.8 
2019 296.9 88.5 
2020 258.9 

Incremental Closed with Payment Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 34% 27% 13% 14% 15% 13% 13% 14% 13% 7%
2012 34% 27% 13% 14% 15% 13% 12% 14% 11%
2013 34% 27% 13% 14% 15% 13% 13% 12%
2014 34% 27% 13% 14% 15% 13% 11%
2015 34% 27% 13% 14% 15% 12%
2016 34% 27% 13% 14% 13%
2017 34% 27% 13% 12%
2018 34% 27% 10%
2019 34% 22%
2020 29%

Implied 29% 22% 10% 12% 13% 12% 11% 12% 11% 7% 50%
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Incremental Method Exhibit 14

Active Counts Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 815.0 368.0 116.0 88.0 62.0 45.0 32.0 22.0 16.0 12.0 10.0 0.0 2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.1 5.0 633.1 

2012 822.8 371.5 117.1 88.8 62.6 45.4 32.3 22.2 16.2 12.1 10.1 0.0 2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.2 1.1 5.0 639.4 

2013 830.7 375.1 118.2 89.7 63.2 45.9 32.6 22.4 16.3 12.2 10.2 0.0 2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.4 2.2 1.1 5.1 645.8 

2014 838.7 378.7 119.4 90.6 63.8 46.3 32.9 22.6 16.5 12.3 10.3 0.0 2014 385.9 185.2 30.9 15.4 9.3 7.2 6.8 3.4 2.3 1.1 5.1 652.7 

2015 846.8 382.4 120.5 91.4 64.4 46.8 33.2 22.9 16.6 12.5 10.4 0.0 2015 389.6 187.0 31.2 15.6 9.4 8.0 6.9 3.4 2.3 1.1 5.2 659.7 

2016 854.9 386.0 121.7 92.3 65.0 47.2 33.6 23.1 16.8 12.6 10.5 0.0 2016 393.4 188.8 31.5 15.7 10.4 8.1 6.9 3.5 2.3 1.2 5.2 667.0 

2017 863.2 389.7 122.9 93.2 65.7 47.7 33.9 23.3 16.9 12.7 10.6 0.0 2017 397.2 190.6 31.8 17.5 10.5 8.2 7.0 3.5 2.3 1.2 5.3 675.0 

2018 871.5 393.5 124.0 94.1 66.3 48.1 34.2 23.5 17.1 12.8 10.7 0.0 2018 401.0 192.5 35.3 17.6 10.6 8.2 7.1 3.5 2.4 1.2 5.3 684.7 

2019 879.8 397.3 125.2 95.0 66.9 48.6 34.5 23.8 17.3 13.0 10.8 0.0 2019 404.8 213.8 35.6 17.8 10.7 8.3 7.1 3.6 2.4 1.2 5.4 710.7 

2020 888.3 401.1 126.4 95.9 67.6 49.0 34.9 24.0 17.4 13.1 10.9 0.0 2020 449.6 215.8 36.0 18.0 10.8 8.4 7.2 3.6 2.4 1.2 5.4 758.4 

Incremental Closed without Payment Counts Open Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 275.0 100.0 15.0 12.0 9.0 6.0 4.0 3.0 2.0 0.9 5.0 431.9 2011 165.0 88.0 71.0 61.0 44.0 32.0 22.0 16.0 12.0 10.0 0.0 

2012 277.6 101.0 15.1 12.1 9.1 6.1 4.0 3.0 1.8 0.9 5.0 435.9 2012 166.6 88.8 71.7 61.6 44.4 32.3 22.2 16.2 12.1 10.1 0.0 

2013 280.3 101.9 15.3 12.2 9.2 6.1 4.1 2.8 1.8 0.9 5.1 439.7 2013 168.2 89.7 72.4 62.2 44.9 32.6 22.4 16.3 12.2 10.2 0.0 

2014 283.0 102.9 15.4 12.3 9.3 6.2 3.5 2.8 1.9 0.9 5.1 443.3 2014 169.8 90.6 73.1 62.8 45.3 32.9 22.6 16.5 12.3 10.3 0.0 

2015 285.7 103.9 15.6 12.5 9.4 5.5 3.5 2.8 1.9 0.9 5.2 446.9 2015 171.4 91.4 73.8 63.4 45.7 33.2 22.9 16.6 12.5 10.4 0.0 

2016 288.5 104.9 15.7 12.6 8.5 5.6 3.6 2.8 1.9 0.9 5.2 450.2 2016 173.1 92.3 74.5 64.0 46.2 33.6 23.1 16.8 12.6 10.5 0.0 

2017 291.3 105.9 15.9 11.1 8.6 5.6 3.6 2.9 1.9 1.0 5.3 453.0 2017 174.8 93.2 75.2 64.6 46.6 33.9 23.3 16.9 12.7 10.6 0.0 

2018 294.1 106.9 12.8 11.2 8.7 5.7 3.6 2.9 1.9 1.0 5.3 454.1 2018 176.4 94.1 75.9 65.2 47.0 34.2 23.5 17.1 12.8 10.7 0.0 

2019 296.9 88.5 13.0 11.3 8.7 5.7 3.7 2.9 1.9 1.0 5.4 439.1 2019 178.1 95.0 76.6 65.9 47.5 34.5 23.8 17.3 13.0 10.8 0.0 

2020 258.9 89.4 13.1 11.4 8.8 5.8 3.7 2.9 2.0 1.0 5.4 402.4 2020 179.8 95.9 77.4 66.5 48.0 34.9 24.0 17.4 13.1 10.9 0.0 
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Incremental Method Exhibit 15

Incremental Paid Loss
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 1,500,000 2,250,000 3,000,000 2,700,000 1,775,000 1,500,000 1,425,000 750,000 550,000 341,000 1,740,000 17,531,000 

2012 1,575,000 2,362,500 3,150,000 2,835,000 1,863,750 1,575,000 1,496,250 787,500 635,250 358,050 1,827,000 18,465,300 

2013 1,653,750 2,480,625 3,307,500 2,976,750 1,956,938 1,653,750 1,571,063 909,563 667,013 375,953 1,918,350 19,471,253 

2014 1,736,438 2,604,656 3,472,875 3,125,588 2,054,784 1,736,438 1,814,577 955,041 700,363 394,750 2,014,267 20,609,777 

2015 1,823,259 2,734,889 3,646,519 3,281,867 2,157,524 2,005,585 1,905,306 1,002,793 735,381 414,488 2,114,981 21,822,591 

2016 1,914,422 2,871,634 3,828,845 3,445,960 2,491,940 2,105,865 2,000,571 1,052,932 772,150 435,212 2,220,730 23,140,261 

2017 2,010,143 3,015,215 4,020,287 3,980,084 2,616,537 2,211,158 2,100,600 1,105,579 810,758 456,973 2,331,766 24,659,100 

2018 2,110,651 3,165,976 4,643,431 4,179,088 2,747,364 2,321,716 2,205,630 1,160,858 851,296 479,821 2,448,355 26,314,185 

2019 2,216,183 3,656,702 4,875,603 4,388,043 2,884,732 2,437,801 2,315,911 1,218,901 893,861 503,812 2,570,772 27,962,322 

2020 2,559,692 3,839,537 5,119,383 4,607,445 3,028,968 2,559,692 2,431,707 1,279,846 938,554 529,003 2,699,311 29,593,137 
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Scenario 2: Shift in proportion of claims closed with payment Appendix 2
Incremental Method Exhibit 16

Incremental Closed with Payment Counts: Base Case
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 5.0 

2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 1.0 5.0 

2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 2.0 1.0 5.1 

2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 3.1 2.1 1.0 5.1 

2015 389.6 187.0 31.2 15.6 9.4 7.3 6.2 3.1 2.1 1.0 5.2 

2016 393.4 188.8 31.5 15.7 9.4 7.3 6.3 3.1 2.1 1.0 5.2 

2017 397.2 190.6 31.8 15.9 9.5 7.4 6.4 3.2 2.1 1.1 5.3 

2018 401.0 192.5 32.1 16.0 9.6 7.5 6.4 3.2 2.1 1.1 5.3 

2019 404.8 194.3 32.4 16.2 9.7 7.6 6.5 3.2 2.2 1.1 5.4 

2020 408.7 196.2 32.7 16.3 9.8 7.6 6.5 3.3 2.2 1.1 5.4 

Incremental Closed with Payment Counts: Scenario 2
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.1 5.0 

2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.2 1.1 5.0 

2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.4 2.2 1.1 5.1 

2014 385.9 185.2 30.9 15.4 9.3 7.2 6.8 3.4 2.3 1.1 5.1 

2015 389.6 187.0 31.2 15.6 9.4 8.0 6.9 3.4 2.3 1.1 5.2 

2016 393.4 188.8 31.5 15.7 10.4 8.1 6.9 3.5 2.3 1.2 5.2 

2017 397.2 190.6 31.8 17.5 10.5 8.2 7.0 3.5 2.3 1.2 5.3 

2018 401.0 192.5 35.3 17.6 10.6 8.2 7.1 3.5 2.4 1.2 5.3 

2019 404.8 213.8 35.6 17.8 10.7 8.3 7.1 3.6 2.4 1.2 5.4 

2020 449.6 215.8 36.0 18.0 10.8 8.4 7.2 3.6 2.4 1.2 5.4 

Comparison of Scenarios
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 100% 100% 100% 100% 100% 100% 100% 100% 100% 110% 100%

2012 100% 100% 100% 100% 100% 100% 100% 100% 110% 110% 100%

2013 100% 100% 100% 100% 100% 100% 100% 110% 110% 110% 100%

2014 100% 100% 100% 100% 100% 100% 110% 110% 110% 110% 100%

2015 100% 100% 100% 100% 100% 110% 110% 110% 110% 110% 100%

2016 100% 100% 100% 100% 110% 110% 110% 110% 110% 110% 100%

2017 100% 100% 100% 110% 110% 110% 110% 110% 110% 110% 100%

2018 100% 100% 110% 110% 110% 110% 110% 110% 110% 110% 100%

2019 100% 110% 110% 110% 110% 110% 110% 110% 110% 110% 100%

2020 110% 110% 110% 110% 110% 110% 110% 110% 110% 110% 100%
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Scenario 3: Shift in rate of claim closure Appendix 3
Data Exhibit 1

Cumulative Reported Counts Cumulative Closed with Payment Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 815.0 1,018.0 1,046.0 1,063.0 1,064.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 2011 375.0 555.0 585.0 600.0 609.0 616.0 622.0 625.0 627.0 628.0 
2012 822.8 1,027.8 1,056.1 1,073.2 1,074.2 1,075.2 1,075.2 1,075.2 1,075.2 2012 378.6 560.3 590.6 605.8 614.9 621.9 628.0 631.0 633.0 
2013 830.7 1,037.7 1,066.2 1,083.5 1,084.6 1,085.6 1,085.6 1,085.6 2013 382.2 565.7 596.3 611.6 620.8 627.9 634.0 637.1 
2014 838.7 1,047.6 1,076.5 1,094.0 1,095.0 1,096.0 1,096.0 2014 385.9 571.2 602.0 617.5 626.7 633.9 640.1 
2015 846.8 1,057.7 1,086.8 1,104.5 1,105.5 1,106.6 2015 389.6 576.7 607.8 623.4 632.8 640.0 
2016 854.9 1,067.9 1,097.3 1,115.1 1,116.1 2016 393.4 582.2 613.7 629.4 637.4 
2017 863.2 1,078.2 1,107.8 1,125.8 2017 397.2 587.8 619.6 633.1 
2018 871.5 1,088.5 1,118.5 2018 401.0 593.5 620.7 
2019 879.8 1,099.0 2019 404.8 570.0 
2020 888.3 2020 347.4 

Cumulative Closed without Payment Counts Open Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 275.0 375.0 390.0 402.0 411.0 417.0 421.0 424.0 426.0 427.0 2011 165.0 88.0 71.0 61.0 44.0 32.0 22.0 16.0 12.0 10.0 
2012 277.6 378.6 393.8 405.9 415.0 421.0 425.0 428.1 430.1 2012 166.6 88.8 71.7 61.6 44.4 32.3 22.2 16.2 12.1 
2013 280.3 382.2 397.5 409.8 418.9 425.1 429.1 432.2 2013 168.2 89.7 72.4 62.2 44.9 32.6 22.4 16.3 
2014 283.0 385.9 401.4 413.7 423.0 429.1 433.3 2014 169.8 90.6 73.1 62.8 45.3 32.9 22.6 
2015 285.7 389.6 405.2 417.7 427.0 433.3 2015 171.4 91.4 73.8 63.4 45.7 33.2 
2016 288.5 393.4 409.1 421.7 429.7 2016 173.1 92.3 74.5 64.0 49.0 
2017 291.3 397.2 413.0 423.9 2017 174.8 93.2 75.2 68.9 
2018 294.1 401.0 414.6 2018 176.4 94.1 83.1 
2019 296.9 388.6 2019 178.1 140.3 
2020 254.8 2020 286.1 

Cumulative Reported Loss Cumulative Paid Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 3,750,000 7,500,000 10,500,000 12,600,000 13,860,000 14,970,000 15,720,000 16,030,000 16,190,000 16,270,000 2011 1,500,000 3,750,000 6,750,000 9,450,000 11,225,000 12,725,000 14,150,000 14,900,000 15,450,000 15,760,000 
2012 3,937,500 7,875,000 11,025,000 13,230,000 14,553,000 15,718,500 16,506,000 16,831,500 16,999,500 2012 1,575,000 3,937,500 7,087,500 9,922,500 11,786,250 13,361,250 14,857,500 15,645,000 16,222,500 
2013 4,134,375 8,268,750 11,576,250 13,891,500 15,280,650 16,504,425 17,331,300 17,673,075 2013 1,653,750 4,134,375 7,441,875 10,418,625 12,375,563 14,029,313 15,600,375 16,427,250 
2014 4,341,094 8,682,188 12,155,063 14,586,075 16,044,683 17,329,646 18,197,865 2014 1,736,438 4,341,094 7,813,969 10,939,556 12,994,341 14,730,778 16,380,394 
2015 4,558,148 9,116,297 12,762,816 15,315,379 16,846,917 18,196,129 2015 1,823,259 4,558,148 8,204,667 11,486,534 13,644,058 15,467,317 
2016 4,786,056 9,572,112 13,400,956 16,081,148 17,555,819 2016 1,914,422 4,786,056 8,614,901 12,060,861 13,986,451 
2017 5,025,359 10,050,717 14,071,004 16,622,733 2017 2,010,143 5,025,359 9,045,646 12,121,165 
2018 5,276,627 10,553,253 14,643,010 2018 2,110,651 5,276,627 8,864,733 
2019 5,540,458 13,226,584 2019 2,216,183 5,041,817 
2020 7,530,993 2020 1,977,943 
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Scenario 3: Shift in rate of claim closure Appendix 3
Diagnostics Exhibit 2

Case Reserves per Open Count Paid Loss per Closed with Payment Count
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 13,636 42,614 52,817 51,639 59,886 70,156 71,364 70,625 61,667 51,000 2011 4,000 6,757 11,538 15,750 18,432 20,657 22,749 23,840 24,641 25,096 
2012 14,182 44,318 54,930 53,705 62,282 72,963 74,218 73,450 64,133 2012 4,160 7,027 12,000 16,380 19,169 21,484 23,659 24,794 25,627 
2013 14,749 46,091 57,127 55,853 64,773 75,881 77,187 76,388 2013 4,326 7,308 12,480 17,035 19,936 22,343 24,606 25,785 
2014 15,339 47,935 59,412 58,087 67,364 78,916 80,274 2014 4,499 7,600 12,979 17,717 20,733 23,237 25,590 
2015 15,953 49,852 61,788 60,411 70,059 82,073 2015 4,679 7,904 13,498 18,425 21,563 24,166 
2016 16,591 51,846 64,260 62,827 72,861 2016 4,867 8,221 14,038 19,162 21,942 
2017 17,254 53,920 66,830 65,340 2017 5,061 8,549 14,600 19,146 
2018 17,945 56,077 69,503 2018 5,264 8,891 14,281 
2019 18,662 58,320 2019 5,474 8,845 
2020 19,409 2020 5,693 

Closed Counts / Reported Counts Closed with Payment Counts / Closed Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 98.9% 99.1% 2011 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6% 59.5% 59.5%
2012 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 98.9% 2012 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6% 59.5%
2013 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 98.5% 2013 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6% 59.6%
2014 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 97.9% 2014 57.7% 59.7% 60.0% 59.9% 59.7% 59.6% 59.6%
2015 79.8% 91.4% 93.2% 94.3% 95.9% 97.0% 2015 57.7% 59.7% 60.0% 59.9% 59.7% 59.6%
2016 79.8% 91.4% 93.2% 94.3% 95.6% 2016 57.7% 59.7% 60.0% 59.9% 59.7%
2017 79.8% 91.4% 93.2% 93.9% 2017 57.7% 59.7% 60.0% 59.9%
2018 79.8% 91.4% 92.6% 2018 57.7% 59.7% 60.0%
2019 79.8% 87.2% 2019 57.7% 59.5%
2020 67.8% 2020 57.7%
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Scenario 3: Shift in rate of claim closure Appendix 3
Reported Loss Development Method Exhibit 3

Cumulative Reported Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 3,750,000 7,500,000 10,500,000 12,600,000 13,860,000 14,970,000 15,720,000 16,030,000 16,190,000 16,270,000 17,500,000 

2012 3,937,500 7,875,000 11,025,000 13,230,000 14,553,000 15,718,500 16,506,000 16,831,500 16,999,500 17,083,500 18,375,000 

2013 4,134,375 8,268,750 11,576,250 13,891,500 15,280,650 16,504,425 17,331,300 17,673,075 17,849,475 17,937,675 19,293,750 

2014 4,341,094 8,682,188 12,155,063 14,586,075 16,044,683 17,329,646 18,197,865 18,556,729 18,741,949 18,834,559 20,258,438 

2015 4,558,148 9,116,297 12,762,816 15,315,379 16,846,917 18,196,129 19,107,758 19,484,565 19,679,046 19,776,287 21,271,359 

2016 4,786,056 9,572,112 13,400,956 16,081,148 17,555,819 18,961,804 19,911,794 20,304,457 20,507,121 20,608,454 22,166,438 

2017 5,025,359 10,050,717 14,071,004 16,622,733 18,285,006 19,749,390 20,738,838 21,147,810 21,358,893 21,464,434 23,087,129 

2018 5,276,627 10,553,253 14,643,010 17,571,612 19,328,774 20,876,749 21,922,678 22,354,996 22,578,127 22,689,693 24,405,017 

2019 5,540,458 13,226,584 18,517,218 22,220,661 24,442,727 26,400,262 27,722,920 28,269,619 28,551,786 28,692,870 30,862,030 

2020 7,530,993 15,061,987 21,086,781 25,304,138 27,834,551 30,063,725 31,569,924 32,192,486 32,513,809 32,674,470 35,144,636 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 2.000 1.400 1.200 1.100 1.080 1.050 1.020 1.010 1.005 
2012 2.000 1.400 1.200 1.100 1.080 1.050 1.020 1.010 
2013 2.000 1.400 1.200 1.100 1.080 1.050 1.020 
2014 2.000 1.400 1.200 1.100 1.080 1.050 
2015 2.000 1.400 1.200 1.100 1.080 
2016 2.000 1.400 1.200 1.092 
2017 2.000 1.400 1.181 
2018 2.000 1.388 
2019 2.387 

Age-to-Age 2.000 1.400 1.200 1.100 1.080 1.050 1.020 1.010 1.005
Age-to-Ult 4.667 2.333 1.667 1.389 1.263 1.169 1.113 1.092 1.081 1.076
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Scenario 3: Shift in rate of claim closure Appendix 3
Paid Loss Development Method Exhibit 4

Cumulative Paid Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 1,500,000 3,750,000 6,750,000 9,450,000 11,225,000 12,725,000 14,150,000 14,900,000 15,450,000 15,760,000 17,500,000 

2012 1,575,000 3,937,500 7,087,500 9,922,500 11,786,250 13,361,250 14,857,500 15,645,000 16,222,500 16,548,000 18,375,000 

2013 1,653,750 4,134,375 7,441,875 10,418,625 12,375,563 14,029,313 15,600,375 16,427,250 17,033,625 17,375,400 19,293,750 

2014 1,736,438 4,341,094 7,813,969 10,939,556 12,994,341 14,730,778 16,380,394 17,248,613 17,885,306 18,244,170 20,258,438 

2015 1,823,259 4,558,148 8,204,667 11,486,534 13,644,058 15,467,317 17,199,413 18,111,043 18,779,572 19,156,379 21,271,359 

2016 1,914,422 4,786,056 8,614,901 12,060,861 13,986,451 15,855,464 17,631,027 18,565,534 19,250,838 19,637,101 21,805,157 

2017 2,010,143 5,025,359 9,045,646 12,121,165 14,397,892 16,321,886 18,149,681 19,111,678 19,817,143 20,214,768 22,446,602 

2018 2,110,651 5,276,627 8,864,733 12,410,626 14,741,722 16,711,663 18,583,106 19,568,077 20,290,388 20,697,509 22,982,640 

2019 2,216,183 5,041,817 9,075,270 12,705,378 15,091,838 17,108,565 19,024,455 20,032,818 20,772,285 21,189,075 23,528,478 

2020 1,977,943 4,944,859 8,900,746 12,461,044 14,801,610 16,779,554 18,658,600 19,647,572 20,372,818 20,781,593 23,076,007 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 2.500 1.800 1.400 1.188 1.134 1.112 1.053 1.037 1.020 
2012 2.500 1.800 1.400 1.188 1.134 1.112 1.053 1.037 
2013 2.500 1.800 1.400 1.188 1.134 1.112 1.053 
2014 2.500 1.800 1.400 1.188 1.134 1.112 
2015 2.500 1.800 1.400 1.188 1.134 
2016 2.500 1.800 1.400 1.160 
2017 2.500 1.800 1.340 
2018 2.500 1.680 
2019 2.275 

Age-to-Age 2.500 1.800 1.400 1.188 1.134 1.112 1.053 1.037 1.020
Age-to-Ult 11.667 4.667 2.593 1.852 1.559 1.375 1.237 1.174 1.133 1.110
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Scenario 3: Shift in rate of claim closure Appendix 3
Disposal Rate Frequency-Severity Method Exhibit 5

Cumulative Non-Zero Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 540.0 643.0 656.0 661.0 653.0 648.0 644.0 641.0 639.0 638.0 633.0 

2012 545.2 649.2 662.3 667.4 659.3 654.2 650.2 647.2 645.1 644.1 639.1 

2013 550.4 655.4 668.7 673.8 665.6 660.5 656.4 653.4 651.3 650.3 645.2 

2014 555.7 661.7 675.1 680.3 672.0 666.9 662.8 659.7 657.6 656.6 651.4 

2015 561.1 668.1 681.6 686.8 678.5 673.3 669.1 666.0 663.9 662.9 657.7 

2016 566.5 674.5 688.2 693.4 686.4 681.2 677.0 673.8 671.7 670.7 665.4 

2017 571.9 681.0 694.8 702.0 693.5 688.2 683.9 680.7 678.6 677.5 672.2 

2018 577.4 687.5 703.9 709.2 700.6 695.3 691.0 687.8 685.6 684.5 679.2 

2019 583.0 710.4 724.7 730.2 721.4 715.9 711.5 708.1 705.9 704.8 699.3 

2020 633.5 754.4 769.6 775.5 766.1 760.2 755.5 752.0 749.7 748.5 742.6 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 1.191 1.020 1.008 0.988 0.992 0.994 0.995 0.997 0.998 
2012 1.191 1.020 1.008 0.988 0.992 0.994 0.995 0.997 
2013 1.191 1.020 1.008 0.988 0.992 0.994 0.995 
2014 1.191 1.020 1.008 0.988 0.992 0.994 
2015 1.191 1.020 1.008 0.988 0.992 
2016 1.191 1.020 1.008 0.990 
2017 1.191 1.020 1.010 
2018 1.191 1.024 
2019 1.219 

Age-to-Age 1.191 1.020 1.008 0.988 0.992 0.994 0.995 0.997 0.998
Age-to-Ult 1.172 0.984 0.965 0.958 0.969 0.977 0.983 0.988 0.991 0.992
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Scenario 3: Shift in rate of claim closure Appendix 3
Disposal Rate Frequency-Severity Method Exhibit 6

Disposal Rate (Closed with Payment Counts)
Accident Year 12 24 36 48 60 72 84 96 108 120 120-Ult

2011 59% 88% 92% 95% 96% 97% 98% 99% 99% 99%
2012 59% 88% 92% 95% 96% 97% 98% 99% 99%
2013 59% 88% 92% 95% 96% 97% 98% 99%
2014 59% 88% 92% 95% 96% 97% 98%
2015 59% 88% 92% 95% 96% 97%
2016 59% 87% 92% 95% 96%
2017 59% 87% 92% 94%
2018 59% 87% 91%
2019 58% 82%
2020 47%

Selected 47% 82% 91% 94% 96% 97% 98% 99% 99% 99% 100%

Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 5.0 633.0 

2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 1.0 5.0 639.1 

2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 2.0 1.0 5.1 645.2 

2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 3.1 2.1 1.0 5.1 651.4 

2015 389.6 187.0 31.2 15.6 9.4 7.3 6.2 3.1 2.1 1.0 5.2 657.7 

2016 393.4 188.8 31.5 15.7 8.0 10.1 6.3 3.2 2.1 1.1 5.3 665.4 

2017 397.2 190.6 31.8 13.5 10.9 10.2 6.4 3.2 2.1 1.1 5.3 672.2 

2018 401.0 192.5 27.3 18.9 11.0 10.3 6.4 3.2 2.1 1.1 5.4 679.2 

2019 404.8 165.2 69.1 19.5 11.3 10.6 6.6 3.3 2.2 1.1 5.5 699.3 

2020 347.4 257.9 73.4 20.7 12.0 11.3 7.0 3.5 2.3 1.2 5.9 742.6 
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Scenario 3: Shift in rate of claim closure Appendix 3
Disposal Rate Frequency-Severity Method Exhibit 7

Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 4,000 12,500 100,000 180,000 197,222 214,286 237,500 250,000 275,000 310,000 348,000 

2012 4,160 13,000 104,000 187,200 205,111 222,857 247,000 260,000 286,000 322,400 361,920 

2013 4,326 13,520 108,160 194,688 213,316 231,771 256,880 270,400 297,440 335,296 376,397 

2014 4,499 14,061 112,486 202,476 221,848 241,042 267,155 281,216 309,338 348,708 391,453 

2015 4,679 14,623 116,986 210,575 230,722 250,684 277,841 292,465 321,711 362,656 407,111 

2016 4,867 15,208 121,665 218,998 239,951 260,711 288,955 304,163 334,580 377,162 423,395 

2017 5,061 15,816 126,532 227,757 249,549 271,140 300,513 316,330 347,963 392,249 440,331 

2018 5,264 16,449 131,593 236,868 259,531 281,985 312,534 328,983 361,881 407,939 457,944 

2019 5,474 17,107 136,857 246,342 269,912 293,265 325,035 342,142 376,356 424,256 476,262 

2020 5,693 17,791 142,331 256,196 280,709 304,995 338,037 355,828 391,411 441,227 495,313 

Trend Rate: 4%

Trended Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 310,000 
2012 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 
2013 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 
2014 5,693 17,107 131,593 227,757 239,951 250,684 267,155 
2015 5,693 17,107 131,593 227,757 239,951 250,684 
2016 5,693 17,107 131,593 227,757 239,951 
2017 5,693 17,107 131,593 227,757 
2018 5,693 17,107 131,593 
2019 5,693 17,107 
2020 5,693 

Selected 5,693 17,107 131,593 227,757 239,951 250,684 267,155 270,400 286,000 310,000 334,615 
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Scenario 3: Shift in rate of claim closure Appendix 3
Disposal Rate Frequency-Severity Method Exhibit 8

Incremental Paid Loss
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 1,500,000 2,250,000 3,000,000 2,700,000 1,775,000 1,500,000 1,425,000 750,000 550,000 310,000 1,740,000 17,500,000 

2012 1,575,000 2,362,500 3,150,000 2,835,000 1,863,750 1,575,000 1,496,250 787,500 577,500 325,500 1,827,000 18,375,000 

2013 1,653,750 2,480,625 3,307,500 2,976,750 1,956,938 1,653,750 1,571,063 826,875 606,375 341,775 1,918,350 19,293,750 

2014 1,736,438 2,604,656 3,472,875 3,125,588 2,054,784 1,736,438 1,649,616 868,219 636,694 358,864 2,014,268 20,258,438 

2015 1,823,259 2,734,889 3,646,519 3,281,867 2,157,524 1,823,259 1,732,096 911,630 668,528 376,807 2,114,981 21,271,359 

2016 1,914,422 2,871,634 3,828,845 3,445,960 1,925,590 2,631,922 1,822,461 959,190 703,406 396,465 2,225,321 22,725,217 

2017 2,010,143 3,015,215 4,020,287 3,075,519 2,721,635 2,765,327 1,914,837 1,007,809 739,060 416,561 2,338,116 24,024,509 

2018 2,110,651 3,165,976 3,588,106 4,475,753 2,859,731 2,905,640 2,011,995 1,058,945 776,560 437,697 2,456,752 25,847,806 

2019 2,216,183 2,825,634 9,457,409 4,792,734 3,062,262 3,111,422 2,154,488 1,133,941 831,557 468,696 2,630,744 32,685,070 

2020 1,977,943 4,588,585 10,445,175 5,293,305 3,382,096 3,436,391 2,379,511 1,252,374 918,408 517,648 2,905,508 37,096,946 

An Incremental Approach to Estimating Ultimate Claim Counts and Future Claim Payments

Casualty Actuarial Society E-Forum, Winter 2021 70



Scenario 3: Shift in rate of claim closure Appendix 3
Incremental Method Exhibit 9

Cumulative Reported Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 815.0 1,018.0 1,046.0 1,063.0 1,064.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 1,065.0 

2012 822.8 1,027.8 1,056.1 1,073.2 1,074.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 1,075.2 

2013 830.7 1,037.7 1,066.2 1,083.5 1,084.6 1,085.6 1,085.6 1,085.6 1,085.6 1,085.6 1,085.6 

2014 838.7 1,047.6 1,076.5 1,094.0 1,095.0 1,096.0 1,096.0 1,096.0 1,096.0 1,096.0 1,096.0 

2015 846.8 1,057.7 1,086.8 1,104.5 1,105.5 1,106.6 1,106.6 1,106.6 1,106.6 1,106.6 1,106.6 

2016 854.9 1,067.9 1,097.3 1,115.1 1,116.1 1,117.2 1,117.2 1,117.2 1,117.2 1,117.2 1,117.2 

2017 863.2 1,078.2 1,107.8 1,125.8 1,126.9 1,127.9 1,127.9 1,127.9 1,127.9 1,127.9 1,127.9 

2018 871.5 1,088.5 1,118.5 1,136.6 1,137.7 1,138.8 1,138.8 1,138.8 1,138.8 1,138.8 1,138.8 

2019 879.8 1,099.0 1,129.2 1,147.6 1,148.7 1,149.7 1,149.7 1,149.7 1,149.7 1,149.7 1,149.7 

2020 888.3 1,109.6 1,140.1 1,158.6 1,159.7 1,160.8 1,160.8 1,160.8 1,160.8 1,160.8 1,160.8 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 1.000 
2012 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 
2013 1.249 1.028 1.016 1.001 1.001 1.000 1.000 
2014 1.249 1.028 1.016 1.001 1.001 1.000 
2015 1.249 1.028 1.016 1.001 1.001 
2016 1.249 1.028 1.016 1.001 
2017 1.249 1.028 1.016 
2018 1.249 1.028 
2019 1.249 

Age-to-Age 1.249 1.028 1.016 1.001 1.001 1.000 1.000 1.000 1.000
Age-to-Ult 1.307 1.046 1.018 1.002 1.001 1.000 1.000 1.000 1.000 1.000
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Scenario 3: Shift in rate of claim closure Appendix 3
Incremental Method Exhibit 10

Active Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 815.0 368.0 116.0 88.0 62.0 45.0 32.0 22.0 16.0 12.0 
2012 822.8 371.5 117.1 88.8 62.6 45.4 32.3 22.2 16.2 
2013 830.7 375.1 118.2 89.7 63.2 45.9 32.6 22.4 
2014 838.7 378.7 119.4 90.6 63.8 46.3 32.9 
2015 846.8 382.4 120.5 91.4 64.4 46.8 
2016 854.9 386.0 121.7 92.3 65.0 
2017 863.2 389.7 122.9 93.2 
2018 871.5 393.5 124.0 
2019 879.8 397.3 
2020 888.3 
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Scenario 3: Shift in rate of claim closure Appendix 3
Incremental Method Exhibit 11

Incremental Closed Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 650.0 280.0 45.0 27.0 18.0 13.0 10.0 6.0 4.0 2.0 
2012 656.3 282.7 45.4 27.3 18.2 13.1 10.1 6.1 4.0 
2013 662.6 285.4 45.9 27.5 18.3 13.3 10.2 6.1 
2014 668.9 288.2 46.3 27.8 18.5 13.4 10.3 
2015 675.4 290.9 46.8 28.1 18.7 13.5 
2016 681.9 293.7 47.2 28.3 16.0 
2017 688.4 296.5 47.7 24.3 
2018 695.0 299.4 40.9 
2019 701.7 256.9 
2020 602.2 

Incremental Closure Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 80% 76% 39% 31% 29% 29% 31% 27% 25% 17%
2012 80% 76% 39% 31% 29% 29% 31% 27% 25%
2013 80% 76% 39% 31% 29% 29% 31% 27%
2014 80% 76% 39% 31% 29% 29% 31%
2015 80% 76% 39% 31% 29% 29%
2016 80% 76% 39% 31% 25%
2017 80% 76% 39% 26%
2018 80% 76% 33%
2019 80% 65%
2020 68%

Selected 80% 76% 39% 31% 29% 29% 31% 27% 25% 17% 100%
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Scenario 3: Shift in rate of claim closure Appendix 3
Incremental Method Exhibit 12

Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 
2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 
2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 
2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 
2015 389.6 187.0 31.2 15.6 9.4 7.3 
2016 393.4 188.8 31.5 15.7 8.0 
2017 397.2 190.6 31.8 13.5 
2018 401.0 192.5 27.3 
2019 404.8 165.2 
2020 347.4 

Incremental Closed with Payment Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 46% 49% 26% 17% 15% 16% 19% 14% 13% 8%
2012 46% 49% 26% 17% 15% 16% 19% 14% 13%
2013 46% 49% 26% 17% 15% 16% 19% 14%
2014 46% 49% 26% 17% 15% 16% 19%
2015 46% 49% 26% 17% 15% 16%
2016 46% 49% 26% 17% 12%
2017 46% 49% 26% 14%
2018 46% 49% 22%
2019 46% 42%
2020 39%

Selected 46% 49% 26% 17% 15% 16% 19% 14% 13% 8% 50%
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Scenario 3: Shift in rate of claim closure Appendix 3
Incremental Method Exhibit 13

Incremental Closed without Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 275.0 100.0 15.0 12.0 9.0 6.0 4.0 3.0 2.0 1.0 
2012 277.6 101.0 15.1 12.1 9.1 6.1 4.0 3.0 2.0 
2013 280.3 101.9 15.3 12.2 9.2 6.1 4.1 3.1 
2014 283.0 102.9 15.4 12.3 9.3 6.2 4.1 
2015 285.7 103.9 15.6 12.5 9.4 6.2 
2016 288.5 104.9 15.7 12.6 8.0 
2017 291.3 105.9 15.9 10.8 
2018 294.1 106.9 13.6 
2019 296.9 91.8 
2020 254.8 

Incremental Closed with Payment Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 34% 27% 13% 14% 15% 13% 13% 14% 13% 8%
2012 34% 27% 13% 14% 15% 13% 12% 14% 13%
2013 34% 27% 13% 14% 15% 13% 13% 14%
2014 34% 27% 13% 14% 15% 13% 12%
2015 34% 27% 13% 14% 15% 13%
2016 34% 27% 13% 14% 12%
2017 34% 27% 13% 12%
2018 34% 27% 11%
2019 34% 23%
2020 29%

Implied 34% 27% 13% 14% 15% 13% 13% 14% 13% 8% 50%
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Scenario 3: Shift in rate of claim closure Appendix 3
Incremental Method Exhibit 14

Active Counts Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 815.0 368.0 116.0 88.0 62.0 45.0 32.0 22.0 16.0 12.0 10.0 0.0 2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 5.0 633.0 

2012 822.8 371.5 117.1 88.8 62.6 45.4 32.3 22.2 16.2 12.1 10.1 0.0 2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 1.0 5.0 639.1 

2013 830.7 375.1 118.2 89.7 63.2 45.9 32.6 22.4 16.3 12.2 10.2 0.0 2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 2.0 1.0 5.1 645.2 

2014 838.7 378.7 119.4 90.6 63.8 46.3 32.9 22.6 16.5 12.3 10.3 0.0 2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 3.1 2.1 1.0 5.1 651.4 

2015 846.8 382.4 120.5 91.4 64.4 46.8 33.2 22.9 16.6 12.5 10.4 0.0 2015 389.6 187.0 31.2 15.6 9.4 7.3 6.2 3.1 2.1 1.0 5.2 657.7 

2016 854.9 386.0 121.7 92.3 65.0 50.0 35.6 24.5 17.8 13.3 11.1 0.0 2016 393.4 188.8 31.5 15.7 8.0 7.8 6.7 3.3 2.2 1.1 5.6 664.1 

2017 863.2 389.7 122.9 93.2 70.0 50.7 36.1 24.8 18.0 13.5 11.3 0.0 2017 397.2 190.6 31.8 13.5 10.2 7.9 6.8 3.4 2.3 1.1 5.6 670.3 

2018 871.5 393.5 124.0 101.3 71.3 51.7 36.7 25.3 18.4 13.8 11.5 0.0 2018 401.0 192.5 27.3 17.3 10.3 8.0 6.9 3.4 2.3 1.1 5.7 675.9 

2019 879.8 397.3 170.6 122.8 86.2 62.2 44.3 30.4 22.1 16.6 13.8 0.0 2019 404.8 165.2 44.1 20.9 12.5 9.7 8.3 4.1 2.8 1.4 6.9 680.7 

2020 888.3 507.4 151.8 111.5 78.4 56.7 40.3 27.7 20.2 15.1 12.6 0.0 2020 347.4 248.2 39.3 19.0 11.4 8.8 7.6 3.8 2.5 1.3 6.3 695.5 

Incremental Closed without Payment Counts Open Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 275.0 100.0 15.0 12.0 9.0 6.0 4.0 3.0 2.0 1.0 5.0 432.0 2011 165.0 88.0 71.0 61.0 44.0 32.0 22.0 16.0 12.0 10.0 0.0 

2012 277.6 101.0 15.1 12.1 9.1 6.1 4.0 3.0 2.0 1.0 5.0 436.2 2012 166.6 88.8 71.7 61.6 44.4 32.3 22.2 16.2 12.1 10.1 0.0 

2013 280.3 101.9 15.3 12.2 9.2 6.1 4.1 3.1 2.0 1.0 5.1 440.3 2013 168.2 89.7 72.4 62.2 44.9 32.6 22.4 16.3 12.2 10.2 0.0 

2014 283.0 102.9 15.4 12.3 9.3 6.2 4.1 3.1 2.1 1.0 5.1 444.6 2014 169.8 90.6 73.1 62.8 45.3 32.9 22.6 16.5 12.3 10.3 0.0 

2015 285.7 103.9 15.6 12.5 9.4 6.2 4.2 3.1 2.1 1.0 5.2 448.9 2015 171.4 91.4 73.8 63.4 45.7 33.2 22.9 16.6 12.5 10.4 0.0 

2016 288.5 104.9 15.7 12.6 8.0 6.7 4.4 3.3 2.2 1.1 5.6 453.1 2016 173.1 92.3 74.5 64.0 49.0 35.6 24.5 17.8 13.3 11.1 0.0 

2017 291.3 105.9 15.9 10.8 10.2 6.8 4.5 3.4 2.3 1.1 5.6 457.7 2017 174.8 93.2 75.2 68.9 49.6 36.1 24.8 18.0 13.5 11.3 0.0 

2018 294.1 106.9 13.6 13.8 10.3 6.9 4.6 3.4 2.3 1.1 5.7 462.9 2018 176.4 94.1 83.1 70.2 50.6 36.7 25.3 18.4 13.8 11.5 0.0 

2019 296.9 91.8 22.1 16.7 12.5 8.3 5.5 4.1 2.8 1.4 6.9 469.0 2019 178.1 140.3 104.4 85.1 61.2 44.3 30.4 22.1 16.6 13.8 0.0 

2020 254.8 137.9 19.6 15.2 11.4 7.6 5.0 3.8 2.5 1.3 6.3 465.3 2020 286.1 121.3 92.9 77.3 55.6 40.3 27.7 20.2 15.1 12.6 0.0 
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Scenario 3: Shift in rate of claim closure Appendix 3
Incremental Method Exhibit 15

Incremental Paid Loss
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 1,500,000 2,250,000 3,000,000 2,700,000 1,775,000 1,500,000 1,425,000 750,000 550,000 310,000 1,740,000 17,500,000 

2012 1,575,000 2,362,500 3,150,000 2,835,000 1,863,750 1,575,000 1,496,250 787,500 577,500 325,500 1,827,000 18,375,000 

2013 1,653,750 2,480,625 3,307,500 2,976,750 1,956,938 1,653,750 1,571,063 826,875 606,375 341,775 1,918,350 19,293,750 

2014 1,736,438 2,604,656 3,472,875 3,125,588 2,054,784 1,736,438 1,649,616 868,219 636,694 358,864 2,014,268 20,258,438 

2015 1,823,259 2,734,889 3,646,519 3,281,867 2,157,524 1,823,259 1,732,096 911,630 668,528 376,807 2,114,981 21,271,359 

2016 1,914,422 2,871,634 3,828,845 3,445,960 1,925,590 2,029,288 1,927,823 1,014,644 744,072 419,386 2,353,974 22,475,637 

2017 2,010,143 3,015,215 4,020,287 3,075,519 2,534,051 2,138,533 2,031,607 1,069,267 784,129 441,964 2,480,699 23,601,413 

2018 2,110,651 3,165,976 3,588,106 4,090,585 2,686,091 2,266,396 2,153,076 1,133,198 831,012 468,389 2,629,020 25,122,499 

2019 2,216,183 2,825,634 6,037,189 5,154,450 3,376,217 2,838,987 2,697,037 1,419,493 1,040,962 586,724 3,293,224 31,486,099 

2020 1,977,943 4,415,278 5,589,404 4,867,828 3,192,944 2,690,012 2,555,512 1,345,006 986,338 555,936 3,120,414 31,296,616 
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Scenario 3: Shift in rate of claim closure Appendix 3
Incremental Method Exhibit 16

Incremental Closed with Payment Counts: Base Case
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 5.0 

2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 1.0 5.0 

2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 2.0 1.0 5.1 

2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 3.1 2.1 1.0 5.1 

2015 389.6 187.0 31.2 15.6 9.4 7.3 6.2 3.1 2.1 1.0 5.2 

2016 393.4 188.8 31.5 15.7 9.4 7.3 6.3 3.1 2.1 1.0 5.2 

2017 397.2 190.6 31.8 15.9 9.5 7.4 6.4 3.2 2.1 1.1 5.3 

2018 401.0 192.5 32.1 16.0 9.6 7.5 6.4 3.2 2.1 1.1 5.3 

2019 404.8 194.3 32.4 16.2 9.7 7.6 6.5 3.2 2.2 1.1 5.4 

2020 408.7 196.2 32.7 16.3 9.8 7.6 6.5 3.3 2.2 1.1 5.4 

Incremental Closed with Payment Counts: Scenario 3
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 375.0 180.0 30.0 15.0 9.0 7.0 6.0 3.0 2.0 1.0 5.0 

2012 378.6 181.7 30.3 15.1 9.1 7.1 6.1 3.0 2.0 1.0 5.0 

2013 382.2 183.5 30.6 15.3 9.2 7.1 6.1 3.1 2.0 1.0 5.1 

2014 385.9 185.2 30.9 15.4 9.3 7.2 6.2 3.1 2.1 1.0 5.1 

2015 389.6 187.0 31.2 15.6 9.4 7.3 6.2 3.1 2.1 1.0 5.2 

2016 393.4 188.8 31.5 15.7 8.0 7.8 6.7 3.3 2.2 1.1 5.6 

2017 397.2 190.6 31.8 13.5 10.2 7.9 6.8 3.4 2.3 1.1 5.6 

2018 401.0 192.5 27.3 17.3 10.3 8.0 6.9 3.4 2.3 1.1 5.7 

2019 404.8 165.2 44.1 20.9 12.5 9.7 8.3 4.1 2.8 1.4 6.9 

2020 347.4 248.2 39.3 19.0 11.4 8.8 7.6 3.8 2.5 1.3 6.3 

Comparison of Scenarios
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

2012 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

2013 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

2014 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

2015 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

2016 100% 100% 100% 100% 85% 106% 106% 106% 106% 106% 106%

2017 100% 100% 100% 85% 107% 106% 106% 106% 106% 106% 106%

2018 100% 100% 85% 108% 108% 107% 107% 107% 107% 107% 107%

2019 100% 85% 136% 129% 129% 128% 128% 128% 128% 128% 128%

2020 85% 126% 120% 116% 116% 116% 116% 116% 116% 116% 116%
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Scenario 4: Private Passenger Auto Appendix 4
Data (Losses in thousands) Exhibit 1

Cumulative Reported Counts Cumulative Closed with Payment Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 13,285 14,107 14,278 14,334 14,343 14,345 14,347 14,348 14,348 14,348 2011 6,954 9,392 9,736 9,789 9,833 9,851 9,867 9,872 9,873 9,874 
2012 12,678 13,480 13,773 13,792 13,796 13,798 13,799 13,799 13,799 2012 7,045 8,555 8,783 8,866 8,894 8,920 8,922 8,926 8,927 
2013 12,202 12,964 13,023 13,035 13,041 13,043 13,044 13,044 2013 6,033 7,627 7,841 7,916 7,953 7,963 7,969 7,971 
2014 10,667 11,249 11,295 11,317 11,323 11,323 11,323 2014 5,796 7,314 7,541 7,668 7,709 7,727 7,730 
2015 10,047 10,703 10,784 10,806 10,809 10,810 2015 5,535 7,107 7,469 7,564 7,597 7,615 
2016 10,220 10,665 10,742 10,762 10,763 2016 5,457 7,300 7,579 7,674 7,718 
2017 10,710 11,339 11,405 11,429 2017 5,876 7,739 8,029 8,120 
2018 11,874 12,501 12,582 2018 6,173 8,155 8,427 
2019 11,451 12,201 2019 6,354 8,533 
2020 11,163 2020 6,098 

Cumulative Closed without Payment Counts Open Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 3,644 4,255 4,352 4,431 4,450 4,466 4,471 4,473 4,473 4,473 2011 2,687 460 190 114 60 28 9 3 2 1 
2012 3,426 4,513 4,801 4,847 4,861 4,865 4,868 4,868 4,870 2012 2,207 412 189 79 41 13 9 5 2 
2013 3,800 4,954 5,021 5,049 5,057 5,064 5,065 5,068 2013 2,369 383 161 70 31 16 10 5 
2014 3,055 3,476 3,530 3,563 3,582 3,587 3,589 2014 1,816 459 224 86 32 9 4 
2015 2,447 2,980 3,130 3,167 3,182 3,184 2015 2,065 616 185 75 30 11 
2016 2,447 2,913 2,994 3,010 3,021 2016 2,316 452 169 78 24 
2017 2,536 3,174 3,228 3,235 2017 2,298 426 148 74 
2018 3,432 3,935 3,999 2018 2,269 411 156 
2019 2,694 3,239 2019 2,403 429 
2020 2,594 2020 2,471 

Cumulative Reported Loss Cumulative Paid Loss
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 66,864 76,933 82,886 86,662 88,601 89,955 91,425 92,659 93,014 93,652 2011 32,674 57,934 72,163 79,523 85,214 88,726 90,877 92,474 92,943 93,558 
2012 60,073 67,591 73,451 76,387 77,888 78,630 79,979 81,325 81,549 2012 30,560 53,919 64,638 71,485 75,567 77,868 79,506 80,871 81,390 
2013 58,942 67,331 71,312 73,425 74,761 76,133 77,341 78,456 2013 28,678 50,761 62,774 69,745 72,641 74,754 76,498 78,015 
2014 57,367 66,125 71,359 74,392 75,449 76,455 77,592 2014 27,887 50,158 62,104 69,473 72,672 75,469 77,215 
2015 57,332 66,381 69,709 71,923 73,014 74,372 2015 26,989 49,006 59,694 66,587 70,861 73,706 
2016 60,238 73,707 78,662 82,592 83,763 2016 29,853 56,665 69,892 76,127 81,361 
2017 68,251 81,617 88,106 90,787 2017 33,071 59,463 76,720 84,844 
2018 74,885 90,847 97,546 2018 35,733 70,594 86,043 
2019 85,308 97,740 2019 39,503 74,123 
2020 90,649 2020 41,245 
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Scenario 4: Private Passenger Auto Appendix 4
Diagnostics Exhibit 2

Case Reserves per Open Count Paid Loss per Closed with Payment Count
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 12,724 41,302 56,437 62,623 56,450 43,893 60,889 61,667 35,500 94,000 2011 4,699 6,168 7,412 8,124 8,666 9,007 9,210 9,367 9,414 9,475 
2012 13,372 33,184 46,630 62,051 56,610 58,615 52,556 90,800 79,500 2012 4,338 6,303 7,359 8,063 8,496 8,730 8,911 9,060 9,117 
2013 12,775 43,264 53,031 52,571 68,387 86,188 84,300 88,200 2013 4,754 6,655 8,006 8,811 9,134 9,388 9,599 9,787 
2014 16,233 34,786 41,317 57,198 86,781 109,556 94,250 2014 4,811 6,858 8,236 9,060 9,427 9,767 9,989 
2015 14,694 28,206 54,135 71,147 71,767 60,545 2015 4,876 6,895 7,992 8,803 9,327 9,679 
2016 13,120 37,704 51,893 82,885 100,083 2016 5,471 7,762 9,222 9,920 10,542 
2017 15,309 52,005 76,932 80,311 2017 5,628 7,684 9,555 10,449 
2018 17,255 49,277 73,737 2018 5,789 8,657 10,210 
2019 19,062 55,051 2019 6,217 8,687 
2020 19,994 2020 6,764 

Closed Counts / Reported Counts Closed with Payment Counts / Closed Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Accident Year 12 24 36 48 60 72 84 96 108 120

2011 79.8% 96.7% 98.7% 99.2% 99.6% 99.8% 99.9% 100.0% 100.0% 100.0% 2011 65.6% 68.8% 69.1% 68.8% 68.8% 68.8% 68.8% 68.8% 68.8% 68.8%
2012 82.6% 96.9% 98.6% 99.4% 99.7% 99.9% 99.9% 100.0% 100.0% 2012 67.3% 65.5% 64.7% 64.7% 64.7% 64.7% 64.7% 64.7% 64.7%
2013 80.6% 97.0% 98.8% 99.5% 99.8% 99.9% 99.9% 100.0% 2013 61.4% 60.6% 61.0% 61.1% 61.1% 61.1% 61.1% 61.1%
2014 83.0% 95.9% 98.0% 99.2% 99.7% 99.9% 100.0% 2014 65.5% 67.8% 68.1% 68.3% 68.3% 68.3% 68.3%
2015 79.4% 94.2% 98.3% 99.3% 99.7% 99.9% 2015 69.3% 70.5% 70.5% 70.5% 70.5% 70.5%
2016 77.3% 95.8% 98.4% 99.3% 99.8% 2016 69.0% 71.5% 71.7% 71.8% 71.9%
2017 78.5% 96.2% 98.7% 99.4% 2017 69.9% 70.9% 71.3% 71.5%
2018 80.9% 96.7% 98.8% 2018 64.3% 67.5% 67.8%
2019 79.0% 96.5% 2019 70.2% 72.5%
2020 77.9% 2020 70.2%
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Scenario 4: Private Passenger Auto Appendix 4
Incremental Method Exhibit 3

Cumulative Reported Counts
Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 13,285 14,107 14,278 14,334 14,343 14,345 14,347 14,348 14,348 14,348 14,348 

2012 12,678 13,480 13,773 13,792 13,796 13,798 13,799 13,799 13,799 13,799 13,799 

2013 12,202 12,964 13,023 13,035 13,041 13,043 13,044 13,044 13,044 13,044 13,044 

2014 10,667 11,249 11,295 11,317 11,323 11,323 11,323 11,323 11,323 11,323 11,323 

2015 10,047 10,703 10,784 10,806 10,809 10,810 10,811 10,811 10,811 10,811 10,811 

2016 10,220 10,665 10,742 10,762 10,763 10,764 10,764 10,765 10,765 10,765 10,765 

2017 10,710 11,339 11,405 11,429 11,432 11,433 11,434 11,434 11,434 11,434 11,434 

2018 11,874 12,501 12,582 12,607 12,611 12,612 12,613 12,613 12,613 12,613 12,613 

2019 11,451 12,201 12,280 12,305 12,309 12,310 12,310 12,311 12,311 12,311 12,311 

2020 11,163 11,821 11,898 11,922 11,925 11,926 11,927 11,927 11,927 11,927 11,927 

Age-to-Age Factors
Accident Year 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 1.062 1.012 1.004 1.001 1.000 1.000 1.000 1.000 1.000 
2012 1.063 1.022 1.001 1.000 1.000 1.000 1.000 1.000 
2013 1.062 1.005 1.001 1.000 1.000 1.000 1.000 
2014 1.055 1.004 1.002 1.001 1.000 1.000 
2015 1.065 1.008 1.002 1.000 1.000 
2016 1.044 1.007 1.002 1.000 
2017 1.059 1.006 1.002 
2018 1.053 1.006 
2019 1.065 

Age-to-Age 1.059 1.006 1.002 1.000 1.000 1.000 1.000 1.000 1.000
Age-to-Ult 1.068 1.009 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Scenario 4: Private Passenger Auto Appendix 4
Incremental Method Exhibit 4

Active Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

2011 13,285 3,509 631 246 123 62 30 10 3 2 
2012 12,678 3,009 705 208 83 43 14 9 5 
2013 12,202 3,131 442 173 76 33 17 10 
2014 10,667 2,398 505 246 92 32 9 
2015 10,047 2,721 697 207 78 31 
2016 10,220 2,761 529 189 79 
2017 10,710 2,927 492 172 
2018 11,874 2,896 492 
2019 11,451 3,153 
2020 11,163 
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Scenario 4: Private Passenger Auto Appendix 4
Incremental Method Exhibit 5

Incremental Closed Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 10,598 3,049 441 132 63 34 21 7 1 1 
2012 10,471 2,597 516 129 42 30 5 4 3 
2013 9,833 2,748 281 103 45 17 7 5 
2014 8,851 1,939 281 160 60 23 5 
2015 7,982 2,105 512 132 48 20 
2016 7,904 2,309 360 111 55 
2017 8,412 2,501 344 98 
2018 9,605 2,485 336 
2019 9,048 2,724 
2020 8,692 

Incremental Closure Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 80% 87% 70% 54% 51% 55% 70% 70% 33% 50%
2012 83% 86% 73% 62% 51% 70% 36% 44% 60%
2013 81% 88% 64% 60% 59% 52% 41% 50%
2014 83% 81% 56% 65% 65% 72% 56%
2015 79% 77% 73% 64% 62% 65%
2016 77% 84% 68% 59% 70%
2017 79% 85% 70% 57%
2018 81% 86% 68%
2019 79% 86%
2020 78%

Selected 79% 86% 69% 60% 65% 63% 50% 50% 50% 50% 100%
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Scenario 4: Private Passenger Auto Appendix 4
Incremental Method Exhibit 6

Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 6,954 2,438 344 53 44 18 16 5 1 1 
2012 7,045 1,510 228 83 28 26 2 4 1 
2013 6,033 1,594 214 75 37 10 6 2 
2014 5,796 1,518 227 127 41 18 3 
2015 5,535 1,572 362 95 33 18 
2016 5,457 1,843 279 95 44 
2017 5,876 1,863 290 91 
2018 6,173 1,982 272 
2019 6,354 2,179 
2020 6,098 

Incremental Closed with Payment Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 52% 69% 55% 22% 36% 29% 53% 50% 33% 50%
2012 56% 50% 32% 40% 34% 60% 14% 44% 20%
2013 49% 51% 48% 43% 49% 30% 35% 20%
2014 54% 63% 45% 52% 45% 56% 33%
2015 55% 58% 52% 46% 42% 58%
2016 53% 67% 53% 50% 56%
2017 55% 64% 59% 53%
2018 52% 68% 55%
2019 55% 69%
2020 55%

Tail Paid 19,692 3,193 977 358 131 41 14 3 1
Tail Closed 26,889 4,432 1,361 496 183 59 21 5 1

Tail 73% 72% 72% 72% 72% 69% 67% 60% 100%
Selected Tail 69% 69% 69% 69% 69%

Closure Rate 79% 86% 69% 60% 65% 63% 50% 50% 50% 50% 100%

Selected 54% 67% 56% 49% 47% 48% 35% 35% 35% 35% 69%
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Scenario 4: Private Passenger Auto Appendix 4
Incremental Method Exhibit 7

Incremental Closed without Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 3,644 611 97 79 19 16 5 2 0 0 
2012 3,426 1,087 288 46 14 4 3 0 2 
2013 3,800 1,154 67 28 8 7 1 3 
2014 3,055 421 54 33 19 5 2 
2015 2,447 533 150 37 15 2 
2016 2,447 466 81 16 11 
2017 2,536 638 54 7 
2018 3,432 503 64 
2019 2,694 545 
2020 2,594 

Incremental Closed with Payment Rate
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 27% 17% 15% 32% 15% 26% 17% 20% 0% 0%
2012 27% 36% 41% 22% 17% 9% 21% 0% 40%
2013 31% 37% 15% 16% 11% 21% 6% 30%
2014 29% 18% 11% 13% 21% 16% 22%
2015 24% 20% 22% 18% 19% 6%
2016 24% 17% 15% 8% 14%
2017 24% 22% 11% 4%
2018 29% 17% 13%
2019 24% 17%
2020 23%

Implied 25% 19% 13% 11% 18% 15% 15% 15% 15% 15% 31%
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Scenario 4: Private Passenger Auto Appendix 4
Incremental Method Exhibit 8

Active Counts Incremental Closed with Payment Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 13,285 3,509 631 246 123 62 30 10 3 2 1 0 2011 6,954 2,438 344 53 44 18 16 5 1 1 1 9,875 

2012 12,678 3,009 705 208 83 43 14 9 5 2 1 0 2012 7,045 1,510 228 83 28 26 2 4 1 1 1 8,928 

2013 12,202 3,131 442 173 76 33 17 10 5 3 1 0 2013 6,033 1,594 214 75 37 10 6 2 2 1 1 7,974 

2014 10,667 2,398 505 246 92 32 9 4 2 1 1 0 2014 5,796 1,518 227 127 41 18 3 1 1 0 0 7,733 

2015 10,047 2,721 697 207 78 31 12 6 3 2 1 0 2015 5,535 1,572 362 95 33 18 4 2 1 1 1 7,623 

2016 10,220 2,761 529 189 79 25 10 5 3 1 1 0 2016 5,457 1,843 279 95 44 12 3 2 1 0 0 7,737 

2017 10,710 2,927 492 172 77 28 11 6 3 1 1 0 2017 5,876 1,863 290 91 37 13 4 2 1 1 1 8,178 

2018 11,874 2,896 492 181 76 27 11 6 3 1 1 0 2018 6,173 1,982 272 90 36 13 4 2 1 1 1 8,574 

2019 11,451 3,153 508 183 77 28 11 6 3 1 1 0 2019 6,354 2,179 282 91 37 13 4 2 1 1 1 8,964 

2020 11,163 3,129 518 186 78 28 11 6 3 1 1 0 2020 6,098 2,100 288 92 37 13 4 2 1 1 1 8,636 

Incremental Closed without Payment Counts Open Counts
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate Accident Year 12 24 36 48 60 72 84 96 108 120 Ultimate

2011 3,644 611 97 79 19 16 5 2 0 0 0 4,473 2011 2,687 460 190 114 60 28 9 3 2 1 0 

2012 3,426 1,087 288 46 14 4 3 0 2 0 0 4,871 2012 2,207 412 189 79 41 13 9 5 2 1 0 

2013 3,800 1,154 67 28 8 7 1 3 1 0 0 5,070 2013 2,369 383 161 70 31 16 10 5 3 1 0 

2014 3,055 421 54 33 19 5 2 1 0 0 0 3,590 2014 1,816 459 224 86 32 9 4 2 1 1 0 

2015 2,447 533 150 37 15 2 2 1 0 0 0 3,188 2015 2,065 616 185 75 30 11 6 3 2 1 0 

2016 2,447 466 81 16 11 4 2 1 0 0 0 3,028 2016 2,316 452 169 78 24 9 5 3 1 1 0 

2017 2,536 638 54 7 14 4 2 1 0 0 0 3,256 2017 2,298 426 148 74 27 10 5 3 1 1 0 

2018 3,432 503 64 19 14 4 2 1 0 0 0 4,039 2018 2,269 411 156 72 26 10 5 3 1 1 0 

2019 2,694 545 67 19 14 4 2 1 0 0 0 3,347 2019 2,403 429 159 73 27 10 6 3 1 1 0 

2020 2,594 588 68 20 14 4 2 1 0 0 0 3,291 2020 2,471 441 162 74 27 10 6 3 1 1 0 
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Scenario 4: Private Passenger Auto Appendix 4
Disposal Rate Frequency-Severity Method Exhibit 9

Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 4,699 10,361 41,363 138,868 129,341 195,111 134,438 319,400 469,000 615,000 371,941 

2012 4,338 15,470 47,013 82,494 145,786 88,500 819,000 341,250 519,000 371,941 394,258 

2013 4,754 13,854 56,136 92,947 78,270 211,300 290,667 758,500 371,941 394,258 417,913 

2014 4,811 14,671 52,626 58,024 78,024 155,389 582,000 371,941 394,258 417,913 442,988 

2015 4,876 14,006 29,525 72,558 129,515 158,056 371,941 394,258 417,913 442,988 469,567 

2016 5,471 14,548 47,409 65,632 118,955 188,588 394,258 417,913 442,988 469,567 497,741 

2017 5,628 14,166 59,507 89,275 120,003 199,903 417,913 442,988 469,567 497,741 527,606 

2018 5,789 17,589 56,798 84,793 127,203 211,897 442,988 469,567 497,741 527,606 559,262 

2019 6,217 15,888 61,260 89,880 134,835 224,611 469,567 497,741 527,606 559,262 592,818 

2020 6,764 17,812 64,935 95,273 142,926 238,087 497,741 527,606 559,262 592,818 628,387 

Trend Rate: 6%

Trended Incremental Paid Severity
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult

2011 7,938 16,514 62,195 196,987 173,087 246,323 160,117 358,878 497,140 615,000 
2012 6,914 23,260 66,689 110,396 184,051 105,405 920,228 361,725 519,000 
2013 7,148 19,652 75,122 117,343 93,221 237,417 308,107 758,500 
2014 6,825 19,633 66,439 69,107 87,668 164,712 582,000 
2015 6,525 17,682 35,165 81,526 137,286 158,056 
2016 6,906 17,327 53,268 69,569 118,955 
2017 6,703 15,917 63,077 89,275 
2018 6,504 18,644 56,798 
2019 6,590 15,888 
2020 6,764 

Tail Dollars 545,540,196 248,071,328 118,980,556 59,322,027 29,744,735 14,386,401 6,389,429 1,631,140 615,000
Tail Counts 19,692 3,193 977 358 131 41 14 3 1

Tail 27,704 77,692 121,782 165,704 227,059 350,888 456,388 543,713 615,000

Selected 6,618 16,804 57,792 79,993 113,210 177,913 350,888 350,888 350,888 350,888 350,888 
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Scenario 4: Private Passenger Auto Appendix 4
Incremental Method Exhibit 10

Incremental Paid Loss
Accident Year 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-Ult Ultimate

2011 32,674 25,260 14,229 7,360 5,691 3,512 2,151 1,597 469 615 258 93,816 

2012 30,560 23,359 10,719 6,847 4,082 2,301 1,638 1,365 519 258 274 81,922 

2013 28,678 22,083 12,013 6,971 2,896 2,113 1,744 1,517 646 342 363 79,367 

2014 27,887 22,271 11,946 7,369 3,199 2,797 1,746 552 293 155 164 78,380 

2015 26,989 22,017 10,688 6,893 4,274 2,845 1,495 828 439 233 247 76,947 

2016 29,853 26,812 13,227 6,235 5,234 2,252 1,357 757 401 213 225 86,567 

2017 33,071 26,392 17,257 8,124 4,406 2,657 1,597 889 471 250 265 95,379 

2018 35,733 34,861 15,449 7,602 4,597 2,783 1,684 942 500 265 281 104,696 

2019 39,503 34,620 17,305 8,159 4,925 2,978 1,798 1,005 532 282 299 111,406 

2020 41,245 37,404 18,699 8,757 5,275 3,185 1,919 1,070 567 301 319 118,739 
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Exceedance Probability in Catastrophe Modeling

July 14, 2020

Abstract

This article explores two of the most important notions in Catastrophic Modeling: the
Occurrence Exceedance Probability (OEP) and the Aggregate Exceedance Probability (AEP)
curves. Construction of each curve is discussed and comparisons are made. Several numerical
and theoretical examples demonstrate introduced metrics and techniques. A separate discussion
is dedicated to a connection between the distribution of loss severities and the OEP depending
on the distribution of claim counts. The article is concluded with demonstration of OEP and
AEP curves for the deadliest, costliest, and most intense US tropical cyclones based on the
2011 National Oceanic and Atmospheric Administration (NOAA) report.

Keywords. Aggregate Exceedance Probability, Average Annual Loss, Catastrophe Mod-
eling, Collective Risk Model, Exceedance Probability, Loss Return Period, Monte Carlo Simu-
lation, Occurrence Exceedance Probability.

1 Introduction

Catastrophe Modeling is a type of estimation technique used in the Property and
Casualty (P&C) industry to predict and evaluate damage caused by natural catas-
trophes such as hurricanes, earthquakes, tornados, hail, winter storms, floods and
wild fires, as well as man-made catastrophes such as terrorism, [1].

Catastrophe models are widely used in ratemaking, portfolio management and op-
timization, underwriting and risk selection, loss mitigation strategies, allocation of
cost of capital, cost of reinsurance, reinsurance and risk transfer analysis, enterprise
risk management, as well as financial and capital adequacy analysis utilized by rating
agencies, [1].

The Occurrence Exceedance Probability (OEP) and the Aggregate Exceedance Prob-
ability (AEP) are two primary metrics used in catastrophe modeling that give an
insurer immediate feedback on the financial nature of a disaster.
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This paper explores the notions of OEP and AEP and demonstrates their use through
several numerical, as well as theoretical examples.

2 Exceedance Probability

Exceedance Probability (EP) is one of the most commonly used metrics in catastro-
phe modeling. It is the probability that a certain loss value will be exceeded in a
predefined future time period. Exceedance probability is used in planning for poten-
tial hazards such as river and stream flooding, hurricane storm surges and droughts,
reserving for reservoir storage levels and providing homeowners and community mem-
bers with risk assessment.

To define exceedance probability, let D1, D2, · · · be a set of natural disasters. Let
pi and Xi be an annual probability of occurrence and a corresponding total loss
associated with a natural disaster Di. Thus, Di is a Bernoulli random variable with

P(Di occurs) = pi

P(Di does not occur) = 1− pi
If an event Di does not occur, the loss is zero. The expected loss for a given event
Di in a given year is E[X] = piXi.

The overall expected loss for the entire set of events is known as the average annual
loss (AAL) and is defined as the sum of the expected losses of each of the individual
events for a given year:

AAL =
∞∑
i=1

piXi

The Exceedance Probability (EP) is the probability that a loss random variable
exceeds a certain amount of loss. This probability is sometimes denoted as EP (x)
and is called the Exceedance Probability Curve. LetX be a loss random variable.
Then

EP(x) = P(X > x) = 1−P(X ≤ x)

Using probabilistic terminology, EP (x) is the survival function of X.

In particular, if x = Xi, which is a loss associated with a disaster Di, then

EP(Xi) = P(X > Xi) = 1−P(X ≤ Xi) = 1−
i∏

j=1

(1− pj),

Exceedance Probability in Catastrophe Modeling
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where D1, D2, · · · , Di are the events with higher level of losses such that X1 ≥ X2 ≥
· · · ≥ Xi.

The probability that all the other events with possible losses above the value Xi have
not occurred is

P(X ≤ Xi) =
i∏

j=1

(1− pj)

and is sometimes called the Non-Exceedance Probability (NEP).

A characteristic sometimes associated with the Exceedance Probability is the Re-
turn Period or the Loss Return Period of a natural disaster. It is calculated as
a reciprocal of the EP:

RP =
1

EP
.

2.1 Example of an Exceedance Probability Curve

Suppose that during a given year no more than one hurricane can occur. The fol-
lowing table shows the probability of each category of hurricane and the associated
loss that would incurred.

Event Description Annual probability Loss (Xi)
(Di) of occurrence (pi)

1 Category 5 Hurricane 0.003 15,000,000

2 Category 4 Hurricane 0.006 8,000,000

3 Category 3 Hurricane 0.011 5,000,000

4 Category 2 Hurricane 0.030 3,000,000

5 Category 1 Hurricane 0.040 1,000,000

Table 1: Event Loss Data

Note that the Saffir/Simpson Hurricane Wind Scale, [6], provides specific wind values
for each hurricane category:

Exceedance Probability in Catastrophe Modeling
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Scale Number Winds Max 1-min
(Category) (mph)

1 74 – 95

2 96 – 110

3 111 – 130

4 131 – 155

5 > 155

Table 2: The Saffir/Simpson Hurricane Wind Scale, 1974

Calculating the Exceedance Probability at each level of loss and the Expected Loss
for each level of disaster, we obtain

Event Annual probability Loss (Xi) Exceedance E[X]
(Di) of occurrence (pi) Probability = piXi

1− (1− p1)(1− p2) · · ·
1 0.003 15,000,000 0.0030 45,000

2 0.006 8,000,000 0.0090 48,000

3 0.011 5,000,000 0.0199 55,000

4 0.030 3,000,000 0.0493 90,000

5 0.040 1,000,000 0.0873 40,000

Table 3: Exceedance Probability and Expected Loss Results

Note that the probability that no hurricane occurs is

P(No Disaster) = 1−
5∑
i=1

pi = 1− 0.09 = 0.91.

The Average Annual Loss is

AAL =
∞∑
i=1

piXi = 45,000 + 48,000 + 55,000 + 90,000 + 40,000 = 278,000.

The Exceedance Probability Curve in this example is

Exceedance Probability in Catastrophe Modeling
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Figure 1: Exceedance Probability Curve in Example 2.1

The probabilities of non-occurrence and non-exceedance are shown in connection
with exceedance probability as follows:

Event Annual probability Probability of Probability of Exceedance
(Di) of occurrence Non-Occurrence Non-Exceedance Probability

pi 1− pi (1− p1)(1− p2) · · · 1− (1− p1)(1− p2) · · ·
1 0.003 0.997 0.997 0.0030

2 0.006 0.994 0.991 0.0090

3 0.011 0.989 0.980 0.0199

4 0.030 0.970 0.951 0.0493

5 0.040 0.960 0.913 0.0873

Table 4: Non-Occurrence and Non-Exceedance Probabilities

Calculating the Return Period of each event, we have
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Event Description Annual probability Exceedance Return Period
(Di) of occurrence (pi) Probability (years)

1− (1− p1)(1− p2) · · · = 1/EP

1 Category 5 Hurricane 0.003 0.0030 333.33

2 Category 4 Hurricane 0.006 0.0090 111.33

3 Category 3 Hurricane 0.011 0.0199 50.29

4 Category 2 Hurricane 0.030 0.0493 20.29

5 Category 1 Hurricane 0.040 0.0873 11.45

Table 5: Return Period of the Event

The return period is illustrated in the following chart:
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Figure 2: Return Period of the Event in Example 2.1

The exceedance probability can be further broken down into the occurrence ex-
ceedance probability, OEP, and the aggregate exceedance probability, AEP.

3 Occurrence Exceedance Probability

The Occurrence Exceedance Probability (OEP) is the probability that the largest loss
in a year exceeds a certain amount of loss. This probability is sometimes denoted as
O(x) and is called the Occurrence Exceedance Probability Curve.

Let X1, X2, · · · , XN be losses in a given year. Then

O(x) = P(max1≤i≤N(X
i
) > x) = 1−P(max1≤i≤N(Xi) ≤ x) = 1−

N∏
i=1

P (Xi ≤ x)

Using probabilistic terminology, if X(1), X(2), · · · , X(N) is the ordered statistic with 
X(N) = max1≤i≤N X(i), then O(x) is the survival function of X(N).

Let F (x) be the cumulative distribution function (CDF) of X. Then for a fixed N 
the OEP is

O(x) = 1 − (FX(x))N .

If N is the random claim count with the probability mass function (p.m.f.) PN ,

Exceedance Probability in Catastrophe Modeling
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then by the law of total probability,

O(x) =
∞∑
n=0

P(max1≤i≤n(X
i
) > x|N = n)P(N = n) =

= 1−
∞∑
n=0

P(max1≤i≤n(Xi) ≤ x|N = n)P(N = n) =

= 1−
∞∑
n=0

(
n∏
i=1

P (Xi ≤ x)

)
P(N = n) = 1−

∞∑
n=0

(FX(x))nP(N = n) =

= 1− EN

(
(FX(x))N

)
= 1−PGF (FX(x)) ,

where PGF(x) is the probability generating function for N defined as

PGF(t) = E
(
tN
)

=
∞∑
n=0

tn ·P (N = n) .

Thus,
O(x) = 1−PGF (FX(x)) . (3.1)

The expected value of X(N) is by definition

E
[
X(N)

]
=

∫ ∞
0

O(x) dx.

In catastrophe modeling the Occurrence Exceedance Probability is used for occur-
rence based reinsurance structures such as quota share or working excess.

3.1 Example of an Occurrence Exceedance Probability Curve

Following is a simplified example that demonstrates construction of an Occurrence
Exceedance Probability Curve outlined in [3]. Data is simulated over ten years
assuming a fixed number of losses per year. Severities are assumed to be Pareto-
distributed, with parameters α = 3 and θ = 1000. Recall that for a two-parameter
Pareto distribution, the cumulative distribution function is of the form

F (x) = 1−
(

θ

x+ θ

)α
.

Exceedance Probability in Catastrophe Modeling
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Using the inversion method of the Monte Carlo Simulation (MCS) technique, we
calculate the inverse function of F (x) as

u = 1−
(

θ

x+ θ

)α
⇔ 1− u =

(
θ

x+ θ

)α
⇔ (1− u)−1/α =

x

θ
+ 1⇔

x = θ
[
(1− u)−1/α − 1

]
⇔ F−1(x) = θ

[
(1− x)−1/α − 1

]
.

Table 10 of Appendix A contains a 100 simulated losses. Assuming 10 losses per
year, the data is simulated over 10 years. Calculating the largest loss within each
year, we have

Year max1≤i≤10 (Xi)

1 869.63

2 1,390.24

3 1,713.30

4 3,330.60

5 1,069.76

6 604.58

7 578.61

8 721.97

9 1,644.01

10 1,042.16

Table 6: Maximum Loss by Year

These amounts are highlighted in Table 10. Sorting annual losses from highest to
lowest and ranking each year, we obtain
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OEP Rank Year max1≤i≤10 (Xi)

0.1 1 4 3,330.60

0.2 2 3 1,713.30

0.3 3 9 1,644.01

0.4 4 2 1,390.24

0.5 5 5 1,069.76

0.6 6 10 1,042.16

0.7 7 1 869.63

0.8 8 8 721.97

0.9 9 6 604.58

1.0 10 7 578.61

Table 7: Sorted and Ranked Maximum Losses by Year

The resulting Occurrence Exceedance Probability Curve is
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Figure 3: Occurrence Exceedance Probability Curve in Example 3.1

An exponential trend is included to demonstrate the general behavior of the function.

4 Evaluating Severity Distribution Using the OEP

It follows from the equation (3.1) that the cumulative distribution function FX of
losses X can be evaluated using the Occurrence Exceedance Probability O(x) as

FX(x) = PGF−1 (1−O(x)) , (4.1)

where PGF−1(x) indicates the inverse function of the probability generating function 
for N.

The loss distribution will be consistent with the starting OEPs and the claim count 
assumption.

An important property of the probability generating function is outlined in the fol-
lowing Lemma.
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Lemma 4.1 If N and M are independent random variables, then

PGFN+M(t) = PGFN(t) ·PGFM(t)

Proof. By definition,

PGFN+M(t) = E
(
tN+M

)
= E

(
tN · tM

)
= E

(
tN
)
· E
(
tM
)

= PGFN(t) ·PGFM(t).

Following is the derivation of the cumulative distribution function FX of losses X for
a few standard discrete distributions of claim counts.

4.1 Poisson Distribution of Claim Counts

Suppose claim counts N have a Poisson distribution with mean parameter λ. This
is a common assumption when modeling a number of catastrophes. The probability
mass function is defined as

pn = P (N = n) = e−λ
λn

n!
.

Calculating the PGF, we obtain

PGF (t) =
∞∑
n=0

tn ·P (N = n) =
∞∑
n=0

tn · e−λ λ
n

n!
= e−λ

∞∑
n=0

tn
λn

n!
=

= e−λ
∞∑
n=0

(tλ)n

n!
= e−λ · etλ = eλ(t−1).

Then the inverse function is

y = eλ(t−1) ⇔ λ(t− 1) = ln y ⇔ t =
ln y

λ
+ 1⇔ PGF−1(x) =

lnx

λ
+ 1

Using (4.1), cumulative distribution function FX is

FX(x) = PGF−1 (1−O(x)) =
ln (1−O(x))

λ
+ 1

4.2 Bernoulli Distribution of Claim Counts

Suppose claim counts N have a Bernoulli distribution with parameter q. The prob-
ability mass function is defined as

p0 = P (N = 0) = 1 − q, p1 = P (N = 1) = q

Exceedance Probability in Catastrophe Modeling
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Calculating the PGF, we obtain

PGF(t) =
1∑

n=0

tn ·P (N = n) = (1− q) + qt (4.2)

Then the inverse function is

y = (1− q) + qt⇔ t =
y − 1 + q

q
=
y − 1

q
+ 1⇔

PGF−1(x) =
x− 1

q
+ 1

Using (4.1), cumulative distribution function FX is

FX(x) = PGF−1 (1−O(x)) =
1−O(x)− 1

q
+ 1 =

O(x)

q
+ 1

4.3 Binomial Distribution of Claim Counts

Suppose claim counts N have a binomial distribution with parameters q and m. The
probability mass function is defined as

pn = P (N = n) =

(
m

n

)
qn(1− q)m−n.

Calculating the PGF, we obtain

PGF(t) =
m∑
n=0

tn ·P (N = n) =
m∑
n=0

tn ·
(
m

n

)
qn(1− q)m−n =

m∑
n=0

(
m

n

)
(qt)n(1− q)m−n =

= ((1− q) + qt)m = (1 + q(t− 1))m

Note that the same PGF can be obtained using one of the properties of a probability
generating function. Since a Binomial (q,m) random variable N can be expressed as
a sum of m i.i.d. Bernoulli (q),

N = N1 +N2 + · · ·+Nm,

by Lemma (4.1), using (4.2), its PGF is

PGFN(t) =
m∏
i=1

PGFNi
(t) = ((1− q) + qt)m

Exceedance Probability in Catastrophe Modeling
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The inverse function is

y = ((1− q) + qt)m ⇔ (1− q) + qt = y1/m ⇔ t =
y1/m − 1 + q

q
=
y1/m − 1

q
+ 1⇔

PGF−1(x) =
x1/m − 1

q
+ 1

Using (4.1), cumulative distribution function FX is

FX(x) = PGF−1 (1−O(x)) =
(1−O(x))1/m − 1

q
+ 1

4.4 Geometric Distribution of Claim Counts

Suppose claim counts N have a geometric distribution with success probability 0 <
p < 1. The probability mass function is defined as

pn = P (N = n) = (1− p)np.

Calculating the PGF, we obtain

PGF(t) =
∞∑
n=0

tn ·P (N = n) =
∞∑
n=0

tn · (1− p)np = p
∞∑
n=0

(t(1− p))n =

=
p

1− t(1− p)

(4.3)

Then the inverse function is

y =
p

1− t(1− p)
⇔ y − yt(1− p) = p⇔ yt(1− p) = y − p⇔ t =

y − p
y(1− p)

⇔

PGF−1(x) =
x− p
x(1− p)

Using (4.1), cumulative distribution function FX is

FX(x) = PGF−1 (1−O(x)) =
1−O(x)− p

(1−O(x))(1− p)
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4.5 Negative Binomial Distribution of Claim Counts

Suppose claim counts N have a negative binomial distribution with parameters p
and r. The probability mass function is defined as

pn = P (N = n) =

(
n+ r − 1

n

)
pr(1− p)n.

For an integer r, since a Negative Binomial (p, r) random variable N can be expressed
as a sum of r i.i.d. geometric (p),

N = N1 +N2 + · · ·+Nr,

by Lemma (4.1), using (4.3), its PGF is

PGFN(t) =
m∏
i=1

PGFNi
(t) =

(
p

1− t(1− p)

)r

Then the inverse function is

y =

(
p

1− t(1− p)

)r
⇔ p

1− t(1− p)
= y1/r ⇔ y1/r − y1/rt(1− p) = p⇔

y1/rt(1− p) = y1/r − p⇔ t =
y1/r − p
y1/r(1− p)

⇔ PGF−1(x) =
x1/r − p
x1/r(1− p)

Using (4.1), cumulative distribution function FX is

FX(x) = PGF−1 (1−O(x)) =
(1−O(x))1/r − p

(1−O(x))1/r(1− p)

5 Aggregate Exceedance Probability

The Aggregate Exceedance Probability (AEP) is the probability that the sum of 
losses in a year exceeds a certain amount of loss. This probability is sometimes 
denoted as A(x) and is called the Aggregate Exceedance Probability Curve.

Let X1, X2, · · · , XN be losses in a given year. Then

A(x) = P(X1 + X2 + · · · + XN > x) = 1 − P(X1 + X2 + · · · + XN ≤ x)

Exceedance Probability in Catastrophe Modeling

Casualty Actuarial Society E-Forum, Winter 2021 15



Using the terminology of the aggregate loss models, if S is the collective risk model,
defined as S =

∑N
i=1Xi, then A(x) is the survival function of S.

For a fixed N this probability is

A(x) = 1− F (N)
X (x),

where F
(N)
X is an N -fold convolution of FX(x), defined as

F
(N)
X (x) =

∫ x

0

F
(N−1)
X (x− y)fX(y) dy for N = 2, 3, · · · .

For N = 1 this equation reduces to F
(1)
X (x) = FX(x), [5].

If N is the random claim count with the probability mass function (p.m.f.) PN ,
then by the law of total probability,

A(x) =
∞∑
n=0

P(S > x|N = n)P(N = n) =

= 1−
∞∑
n=0

P(S ≤ x|N = n)P(N = n) =

= 1−
∞∑
n=0

F
(n)
X (x)P(N = n) = 1− EN

(
F

(N)
X

)

The expected value of S is by definition

E [S] =

∫ ∞
0

A(x) dx = E [X]E [N ] .

In catastrophe modeling the Aggregate Exceedance Probability is used for aggregate 
based reinsurance structures such as stop loss and reinstatements.

5.1 Example of an Aggregate Exceedance Probability Curve

Following is a simplified example that demonstrates construction of an Aggregate 
Exceedance Probability Curve outlined in [3]. We use the same data as in Example 
3.1.
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In that example data was simulated over ten years assuming a fixed number of losses
per year. Severities were assumed to be Pareto-distributed, with parameters α = 3
and θ = 1000. Losses were simulated using the inversion method of the Monte Carlo
Simulation (MCS) technique. Table 10 of Appendix A contains a 100 simulated
losses. Assuming 10 losses per year, the data is simulated over 10 years.

Calculating the sum of losses within each year, we have

Year
∑10

i=1 Xi

1 2,936.52

2 3,867.36

3 4,589.80

4 7,092.26

5 4,125.27

6 2,831.38

7 2,589.09

8 1,832.78

9 5,400.46

10 3,087.66

Table 8: Sum of Losses by Year

These amounts are highlighted in Table 10. Sorting annual losses from highest to
lowest and ranking each year, we obtain
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AEP Rank Year
∑10

i=1 Xi

0.1 1 4 7,092.26

0.2 2 9 5,400.46

0.3 3 3 4,589.80

0.4 4 5 4,125.27

0.5 5 2 3,867.36

0.6 6 10 3,087.66

0.7 7 1 2,936.52

0.8 8 6 2,831.38

0.9 9 7 2,589.09

1.0 10 8 1,832.78

Table 9: Sorted and Ranked Sum of Losses by Year

The resulting Aggregate Exceedance Probability Curve is
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Figure 4: Aggregate Exceedance Probability Curve in Example 5.1

An exponential trend is included to demonstrate the general behavior of the function.

6 Comparison of the OEP and the AEP

In the simplified examples 3.1 and 5.1 we constructed the Occurrence and the Ag-
gregate Exceedance Probability curves using the Monte Carlo simulation technique.
These curves are shown in the following Figure.
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Figure 5: Occurrence and Aggregate EP Curves

In this graph the curves appear to be parallel-shifted due to the nature of the sim-
plified assumption on the fixed number of losses per year.

A more typical visualization of the O(x) and A(x) curves is
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Figure 6: A Standard Visualization of the Occurrence and Aggregate EP Curves
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Homer and Li, [2], address a question of when the OEP and the AEP are alike.

Proposition 6.1 Let X be the severity of loss random variable and N be the number
of claims random variable. Suppose that X and N are mutually independent. Then
for any ε > 0 there exists a δ > 0 such that

If
∞∑
n=2

PN(n) < δ then |A(x)−O(x)| < ε

Proof. Let X1, X2, · · · , XN be losses in a given year. By definition,

O(x) = P

(
max
1≤i≤N

(Xi) > x

)
and A(x) = P

(
N∑
i=1

Xi > x

)

We have shown in Sections 3 and 5 that

O(x) = 1−
∞∑
n=0

(FX(x))nP(N = n) and

A(x) = 1−
∞∑
n=0

F
(n)
X (x)P(N = n),

where F
(n)
X is an n-fold convolution of FX(x).

If PN(n) = P(N = n) = 0 for n > 1, then A(x) = O(x). Otherwise, let ε > 0.
Choose δ = ε/2. Suppose that

∞∑
n=2

PN(n) < δ

Then,

|A(x)−O(x)| ≤
∞∑
n=2

P(N = n)
∣∣∣F (n)

X (x)− (FX(x))n
∣∣∣ ≤ 2

∞∑
n=2

PN(n) < 2δ = ε.

The following inequality is always true:

max
1≤i≤N

(Xi) ≤
N∑
i=1

Xi.

In addition, the following proposition shows connection between the OEP and the 
AEP with the survival function of the loss severity random variable.
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Proposition 6.2 Let X1, X2, · · · , XN be losses in a given year, FX(x) and SX(x)
be the cumulative distribution and survival functions of a loss random variable X.
Then

O(x) ≥ 1− FX(x) = SX(x) and

A(x) ≥ 1− FX(x) = SX(x)

Proof. For any N , we have:

O(x) = 1− (FX(x))N ≥ 1− FX(x) = SX(x)

A(x) = 1− F (N)
X (x) = 1−

∫ x

0

F
(N−1)
X (x− y)fX(y) dy ≥

≥ 1−
∫ x

0

fX(y) dy = 1− FX(x) = SX(x)

7 The Deadliest, Costliest, and Most Intense US Tropical
Cyclones

In this section we consider the information reported by the National Oceanic and 
Atmospheric Administration (NOAA) in 2011, [6], on the the deadliest, costliest, and 
most intense US tropical cyclones from 1851 to 2010 and construct the corresponding 
OEP and AEP curves for each category.

7.1 Ranking Tropical Cyclones by Deaths

Table 11 of Appendix B lists the tropical cyclones that have caused at least 25 deaths 
on the U.S. mainland during the period 1851-2010, [6].

Based on this table, the Galveston Hurricane of 1900 was responsible for at least 
8000 deaths and remains first on the list. Hurricane Katrina of 2005 remains the 
third deadliest hurricane to strike the United States. Although these systems are 
spread out over most of the coast, there is a clustering of tracks on the coasts of 
Texas, southeastern Louisiana, south Florida, North Carolina and New England.

The following Figure 7, curtesy of [6], shows the paths of these deadly cyclones.
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Figure 7: Mainland United States tropical cyclones causing 25 or more deaths, 1851-2010. The
black numbers are the ranks of a given storm on Table 11 (e.g. 1 is the deadliest all-time). The
colors are the intensity of the tropical cyclone at its maximum impact on the United States.

Table 12 provides maximum deaths and the sum of deaths by year with multiple
hurricane years being highlighted. In addition, tables 13 and 14 show maximum
number of deaths and the sum of the number of deaths sorted from highest to lowest
resulting in the following Occurrence and Aggregate Exceedance Probability Curves
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Figure 8: Occurrence EP Curve TC Deaths Figure 9: Aggregate EP Curve TC Deaths

An exponential trend is included to demonstrate the general behavior of the func-
tions.

Since there are only a few years with multiple hurricanes, the comparison between
the O(x) and the A(x) shown in the following graph is subtle
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Figure 10: The Deadliest US Tropical Cyclones: Occurrence and Aggregate EP

7.2 Ranking Tropical Cyclones by Costs

Table 15 of Appendix C lists the 30 costliest mainland United States tropical cy-
clones, 1900-2010, not adjusted for inflation, [6].

Based on this table, hurricane Ike of 2008 was the second-costliest hurricane on 
record. Hurricane Katrina of 2005 was responsible for at least $108 billion of property 
damage and is by far the costliest hurricane to ever strike the United States. It is 
of note that the last ten hurricane seasons have produced 14 out of the 30 costliest 
systems to affect the United States.

The following Figure 11, curtesy of [6], displays the near-landfall portion of these 
tropical cyclone tracks and shows concentrations of costly hurricanes along the central 
Gulf Coast, south Florida and the Carolinas.
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Figure 11: The 30 costliest tropical cyclones to strike the United States, 1900-2010. The black
numbers are the ranks of a given storm on Table 15 (e.g. 1 is the costliest all-time). The colors are
the intensity of the tropical cyclone at its maximum impact on the United States.

Table 16 re-orders Table 15 and the historical database after adjusting to 2010 dollars,
which adds several other hurricanes. After this normalization to todays societal
vulnerability, the last decade still accounts for eight of the top 30 tropical cyclones.

The following Figure 12, curtesy of [6], displays the near-landfall portion of these
tropical cyclone tracks and shows concentrations of costly hurricanes along the central
Gulf Coast, south Florida and the Carolinas.
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Figure 12: The 30 costliest tropical cyclones to strike the United States, ranked by normalization
for inflation, population and wealth, 1900-2010. The black numbers are the ranks of a given storm
on Table 16. The colors are the intensity of the tropical cyclone at its maximum impact on the
United States.

Table 17 provides maximum costs and the sum of costs by year with multiple hurri-
cane years being highlighted. In addition, tables 18 and 19 show maximum costs and
the sum of costs sorted from highest to lowest resulting in the following Occurrence
and Aggregate Exceedance Probability Curves
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Figure 13: Occurrence EP Curve TC Costs Figure 14: Aggregate EP Curve TC Costs

An exponential trend is included to demonstrate the general behavior of the func-
tions.

Since there are only a few years with multiple hurricanes, the comparison between
the O(x) and the A(x) shown in the following graph is subtle
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Figure 15: The Costliest US Tropical Cyclones Occurrence and Aggregate EP

7.3 Ranking Tropical Cyclones by Intensity

Table 20 of Appendix D lists the most intense major hurricanes to strike the U.S. 
mainland during the period 1851– 2010, [6]. In this study, the major hurricanes 
have been ranked by estimating central pressure at time of landfall. Central pressure 
is used as a proxy for intensity due to the uncertainties in maximum wind speed 
estimates for many historical hurricanes.

Based on this table, Hurricane Katrina had the third lowest pressure ever noted at 
landfall, behind the 1935 Florida Keys hurricane and Hurricane Camille in 1969.

The following Figure 16, curtesy of [6], shows where these major hurricanes struck 
the coast.

Exceedance Probability in Catastrophe Modeling

Casualty Actuarial Society E-Forum, Winter 2021 30



Figure 16: The most intense United States major hurricanes, ranked by pressure at landfall, 1851-
2010. The black numbers are the ranks of a given storm on Table 20 (e.g. 1 has the lowest pressure
all-time). The colors are the intensity of the tropical cyclone at its maximum impact on the United
States.

Table 21 provides minimum and maximum intensities by year with multiple hurricane
years being highlighted.

Using the definition of a hurricane intensity, adopted in [6], the most intense tropical
storm is the one with the lowest central pressure. Thus, the usual definition of
exceedance probability must be modified. Let I be an intensity random variable.
Then

EPI(x) = P(I < x)

Using probabilistic terminology, the EPI(x) is the cumulative distribution function
of I.

Tables 22 and 23 show minimum and maximum intensities sorted from lowest to
highest resulting in the following Min and Max Exceedance Probability Curves
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Figure 17: Occurrence EP Curve TC Intensities Figure 18: Aggregate EP Curve TC Intensities

An exponential trend is included to demonstrate the general behavior of the func-
tions.

Since there are only a few years with multiple hurricanes, the comparison between
the Min EP and the Max EP shown in the following graph is subtle
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Figure 19: The Most Intense US Tropical Cyclones Occurrence and Aggregate EP Curves

Following [4], the difference between the aggregate and occurrence EP curves would
vary depending on:

1. Peril, such as hurricane, earthquake, flood, severe convective storm, etc;

2. Geographic Scope that includes all of the US, by state, by county, by ZIP or by
region such as California vs. East Coast vs. Gulf Coast vs. Midwest, etc;

3. Portfolio composition such as construction, occupancy, year built, building height,
etc;

4. Insurance structure such as deductibles, endorsements, exclusions, etc.

8 Conclusion

In this paper we explored two of the most important notions in Catastrophic Mod-
eling, the Occurrence Exceedance Probability (OEP) and the Aggregate Exceedance 
Probability (AEP). We discussed construction of each curve and compared these two 
metrics in several numeric and theoretical examples. In particular, we discussed a 
connection between the distribution of loss severities and the OEP depending on the
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distribution of claim counts. One of the examples involved Monte Carlo Simulation,
an important technique that allows to account for risk in quantitative analysis and
decision making. Finally, we produced the OEP and AEP curves for the deadliest,
costliest, and most intense US tropical cyclones based on the 2011 National Oceanic
and Atmospheric Administration (NOAA) report.
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A OEP and AEP Curves Simulation

Table 10: Simulated Losses for O(x) and A(x)

No u Xi max1≤i≤10 (Xi)
∑10

i=1 Xi

1 0.1244 45.27 869.63 2,936.52

2 0.2997 126.11 869.63 3,325.47

3 0.8470 869.63 869.63 3,610.52

4 0.4592 227.44 594.64 2,905.16

5 0.3690 165.89 1,390.24 4,067.96

6 0.0547 18.92 1,390.24 4,370.74

7 0.1723 65.05 1,390.24 4,466.30

8 0.4739 238.72 1,390.24 5,122.50

9 0.7534 594.64 1,390.24 4,984.59

10 0.7488 584.86 1,390.24 4,427.47

11 0.6610 434.22 1,390.24 3,867.36

12 0.6441 411.16 1,390.24 3,434.54

13 0.3664 164.26 1,390.24 3,295.06

14 0.9268 1,390.24 1,713.30 4,844.10

15 0.6843 468.66 1,713.30 4,418.00

16 0.2776 114.49 1,713.30 4,132.96

17 0.8039 721.24 1,713.30 4,811.47

18 0.2503 100.81 1,713.30 4,245.80

19 0.1046 37.52 1,713.30 4,225.72

20 0.0707 24.75 1,713.30 4,334.76

21 0.0042 1.40 1,713.30 4,589.80

22 0.5137 271.67 1,713.30 5,326.43

23 0.9499 1,713.30 1,713.30 5,126.44

24 0.8680 964.14 964.14 3,548.89

25 0.3969 183.62 793.00 2,796.58

26 0.8265 793.00 793.00 2,959.52

27 0.3519 155.57 1,290.22 3,456.74

Continued on next page
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Table 10 – Continued from previous page

No u Xi max1≤i≤10 (Xi)
∑10

i=1 Xi

28 0.2078 80.74 3,330.60 6,631.78

29 0.3365 146.55 3,330.60 6,597.18

30 0.5229 279.79 3,330.60 6,533.40

31 0.8095 738.03 3,330.60 7,092.26

32 0.1875 71.68 3,330.60 7,311.69

33 0.3174 135.76 3,330.60 7,286.00

34 0.4381 211.83 3,330.60 7,624.17

35 0.5904 346.57 3,330.60 8,482.10

36 0.9168 1,290.22 3,330.60 8,340.17

37 0.9877 3,330.60 3,330.60 7,954.98

38 0.1265 46.13 1,069.76 4,786.62

39 0.2123 82.78 1,069.76 4,783.34

40 0.8391 838.65 1,069.76 4,705.71

41 0.8667 957.46 1,069.76 4,125.27

42 0.1262 46.00 1,069.76 3,484.08

43 0.6877 473.92 1,069.76 3,713.75

44 0.8872 1,069.76 1,069.76 3,482.34

45 0.4279 204.63 905.04 2,696.83

46 0.8554 905.04 905.04 2,802.84

47 0.3631 162.25 316.27 1,945.86

48 0.1183 42.84 316.27 1,855.80

49 0.0153 5.16 568.24 2,381.19

50 0.4980 258.21 604.58 2,980.62

51 0.5615 316.27 604.58 2,831.38

52 0.5183 275.67 604.58 2,660.73

53 0.4787 242.51 604.58 2,543.30

54 0.5279 284.25 604.58 2,497.96

55 0.5558 310.64 604.58 2,422.68

56 0.1313 48.06 604.58 2,152.96

Continued on next page
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Table 10 – Continued from previous page

No u Xi max1≤i≤10 (Xi)
∑10

i=1 Xi

57 0.1887 72.18 604.58 2,609.00

58 0.7407 568.24 604.58 2,661.87

59 0.7579 604.58 604.58 2,341.09

60 0.2668 108.98 504.10 2,119.46

61 0.3349 145.61 578.61 2,589.09

62 0.3564 158.24 578.61 2,473.83

63 0.4172 197.17 578.61 2,465.94

64 0.4341 208.98 721.97 2,990.75

65 0.1133 40.92 721.97 2,826.52

66 0.7061 504.10 721.97 2,988.58

67 0.2978 125.04 721.97 2,689.37

68 0.4849 247.47 721.97 2,607.54

69 0.6219 382.95 721.97 2,590.02

70 0.7458 578.61 721.97 2,312.96

71 0.0858 30.35 721.97 1,832.78

72 0.3431 150.36 721.97 2,374.31

73 0.8042 721.97 721.97 2,251.83

74 0.1231 44.75 571.89 2,012.57

75 0.4256 202.97 1,254.22 3,222.04

76 0.4283 204.90 1,644.01 4,663.08

77 0.1192 43.22 1,644.01 4,960.95

78 0.4625 229.95 1,644.01 5,008.84

79 0.2606 105.89 1,644.01 4,940.07

80 0.2454 98.42 1,644.01 5,268.69

81 0.7425 571.89 1,644.01 5,400.46

82 0.0792 27.87 1,644.01 5,155.09

83 0.6932 482.72 1,644.01 5,132.26

84 0.9127 1,254.22 1,644.01 5,691.70

85 0.9459 1,644.01 1,644.01 4,479.08

Continued on next page
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Table 10 – Continued from previous page

No u Xi max1≤i≤10 (Xi)
∑10

i=1 Xi

86 0.7053 502.77 1,042.16 3,115.89

87 0.2302 91.11 1,042.16 3,180.42

88 0.3613 161.17 1,042.16 3,436.24

89 0.6612 434.51 1,042.16 3,281.85

90 0.4629 230.19 1,042.16 3,311.03

91 0.5716 326.52 1,042.16 3,087.66

92 0.0150 5.04 1,042.16 2,761.14

93 0.8826 1,042.16 1,042.16 2,756.10

94 0.1151 41.60 567.30 1,713.94

95 0.5241 280.82 567.30 1,672.34

96 0.7403 567.30 567.30 1,391.52

97 0.5908 346.93 463.69 824.23

98 0.0201 6.78 463.69 477.30

99 0.6811 463.69 463.69 470.52

100 0.0202 6.83 6.83 6.83
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B The Deadliest US Tropical Cyclones

Table 11: Mainland U.S. Tropical Cyclones Deaths 1851-2010

Rank Hurricane Year Category Deaths

1 TX (Galveston) 1900 4 8,000

2 FL (SE/Lake Okeechobee) 1928 4 2,500

3 KATRINA (SE LA/MS) 2005 3 1,200

4 LA (Cheniere Caminanda) 1893 4 1,250

5 SC/GA (SeaIs lands) 1893 3 1,500

6 GA/SC 1881 2 700

7 AUDREY (SW LA N TX) 1957 4 416

8 FL (Keys) 1935 5 408

9 LA (Last Island) 1856 4 400

10 FL (Miami) IMS/AUPensacola 1926 4 372

11 LA (Grand Isle) 1909 3 350

12 FL (Keys)/S TX 1919 4 287

13 LA (New Orleans) 1915 3 275

13 TX (Galveston) 1915 4 275

15 New England 1938 3 256

15 CAMILLE (MS/SE LA/VA) 1969 5 256

17 DIANE (NE U.S.) 1955 1 184

18 GA, SC, NC 1898 4 179

19 TX 1875 3 176

20 SE FL 1906 3 164

21 TX (Indianola) 1886 4 150

22 MS/AUPensacola 1906 2 134

23 FL, GA, SC 1896 3 130

24 AGNES (FL/NE U.S.) 1972 1 122

25 HAZEL (SC/NC) 1954 4 95

26 BETSY (SE FL/SE LA) 1965 3 75

27 Northeast U.S. 1944 3 64

Continued on next page

Exceedance Probability in Catastrophe Modeling

Casualty Actuarial Society E-Forum, Winter 2021 39



Table 11 – Continued from previous page

Rank Hurricane Year Category Deaths

28 CAROL (NE U.S.) 1954 3 60

29 FLOYD (Mid Atlantic & NE U.S.) 1999 2 56

30 NC 1883 2 53

31 SE FL/SE LA/MS 1947 4 51

32 NC, SC 1899 3 50

32 GA/SCINC 1940 2 50

32 DONNA (FL/Eastem U.S.) 1960 4 50

35 LA 1860 2 47

36 NC, VA 1879 3 46

36 CARLA 1961 4 46

38 TX (Velasco) 1909 3 41

38 ALLISON (SE D9 2001 TS 41

40 Mid-Atlantic 1889 TS 40

40 TX (Freeport) 1932 4 40

40 S TX 1933 3 40

Table 12: Hurricane Max and Sum of Deaths By Year

Year Max Sum

1856 400 400

1860 47 47

1875 176 176

1879 46 46

1881 700 700

1883 53 53

1886 150 150

1889 40 40

Continued on next page
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Table 12 – Continued from previous page

Year Max Sum

1893 1,500 2,750

1896 130 130

1898 179 179

1899 50 50

1900 8,000 8,000

1906 164 298

1909 350 391

1915 275 550

1919 287 287

1926 372 372

1928 2,500 2,500

1932 40 40

1933 40 40

1935 408 408

1938 256 256

1940 50 50

1944 64 64

1947 51 51

1954 95 155

1955 184 184

1957 416 416

1960 50 50

1961 46 46

1965 75 75

1969 256 256

1972 122 122

1999 56 56

2001 41 41

2005 1,200 1,200
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Table 13: Hurricane Max Deaths By Year

No O(x) Max Deaths Sorted

1 0.031 8,000

2 0.063 2,500

3 0.094 1,500

4 0.125 1,200

5 0.156 700

6 0.188 416

7 0.219 408

8 0.250 400

9 0.281 372

10 0.313 350

11 0.344 287

12 0.375 275

13 0.406 256

14 0.438 256

15 0.469 184

16 0.500 179

17 0.531 176

18 0.563 164

19 0.594 150

20 0.625 130

21 0.656 122

22 0.688 95

23 0.719 75

24 0.750 64

25 0.781 56

26 0.813 53

27 0.844 51

28 0.875 50

Continued on next page
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Table 13 – Continued from previous page

No O(x) Max Deaths Sorted

29 0.906 47

30 0.938 46

31 0.969 41

32 1.000 40

Table 14: Hurricane Sum of Deaths By Year

No A(x) Sum Deaths Sorted

1 0.031 8,000

2 0.063 2,750

3 0.094 2,500

4 0.125 1,200

5 0.156 700

6 0.188 550

7 0.219 416

8 0.250 408

9 0.281 400

10 0.313 391

11 0.344 372

12 0.375 298

13 0.406 287

14 0.438 256

15 0.469 256

16 0.500 184

17 0.531 179

18 0.563 176

19 0.594 155

Continued on next page
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Table 14 – Continued from previous page

No A(x) Sum Deaths Sorted

20 0.625 150

21 0.656 130

22 0.688 122

23 0.719 75

24 0.750 64

25 0.781 56

26 0.813 53

27 0.844 51

28 0.875 50

29 0.906 47

30 0.938 46

31 0.969 41

32 1.000 40
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C The Costliest US Tropical Cyclones

Table 15: The 30 costliest mainland United States tropical cyclones, 1900-2010, (not adjusted for
inflation).

Rank Hurricane Year Category Damage (Millions)

1 KATRINA (SE FL, LA, MS) 2005 3 108,000

2 IKE (TX, LA) 2008 2 29,520

3 ANDREW (SE FL/LA) 1992 5 26,500

4 WILMA (S FL) 2005 3 21,007

5 IVAN (AL/NW FL) 2004 3 18,820

6 CHARLEY (SW FL) 2004 4 15,113

7 RITA (SW LA, N TX) 2005 3 12,037

8 FRANCES (FL) 2004 2 9,507

9 ALLISON (N TX) 2001 TS 9,000

10 JEANNE (FL) 2004 3 7,660

11 HUGO (SC) 1989 4 7,000

12 FLOYD (Mid-Atlantic & NE U.S.) 1999 2 6,900

13 ISABEL (Mid-Atlantic) 2003 2 5,370

14 OPAL (NW FL/AL) 1995 3 5,142

15 GUSTAV (LA) 2008 2 4,618

16 FRAN (NC) 1996 3 4,160

17 GEORGES (FL Keys, MS,AL) 1998 2 2,765

18 DENNIS (NW FL) 2005 3 2,545

19 FREDERIC (AL/MS) 1979 3 2,300

20 AGNES (FUNE U.S.) 1972 1 2,100

21 ALICIA (N TX) 1983 3 2,000

22 BOB (NC, NE U.S) 1991 2 1,500

22 JUAN (LA) 1985 1 1,500

24 CAMILLE (MS/SE LANA) 1969 5 1,421

25 BETSY (SE FL/SE LA) 1965 3 1,421

26 ELENA (MS/AL/NW FL) 1985 3 1,250

Continued on next page
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Table 15 – Continued from previous page

Rank Hurricane Year Category Damage (Millions)

27 DOLLY (S TX) 2008 1 1,050

28 CELIA (S TX) 1970 3 930

29 LILI (SC LA) 2002 1 925

30 GLORIA (Eastern U.S.) 1985 3 900

Table 16: The 30 costliest mainland United States tropical cyclones, 1900-2010, Ranked Using 2010
Inflation, Population and Wealth Normalization.

Rank Hurricane Year Category Damage (Millions)

1 SE Florida/Alabama 1926 4 164,839

2 KATRINA (SE LA, MS, AL) 2005 3 113,400

3 N Texas (Galveston) 1900 4 104,330

4 N Texas (Galveston) 1915 4 71,397

5 ANDREW (SE FL/LA) 1992 5 58,555

6 New England 1938 3 41,122

7 SW Florida 1944 3 40,621

8 SE Florida/Lake Okeechobee 1928 4 35,298

9 IKE (N TX/SW LA) 2008 2 29,520

10 DONNA (FUEastern U.S.) 1960 4 28,159

11 CAMILLE (MS/LANA) 1969 5 22,286

12 WILMA (S FL) 2005 3 22,057

13 IVAN (NW FL, AL) 2004 3 21,575

14 BETSY (SE FL/LA) 1965 3 18,749

15 DIANE (NE U.S.) 1955 1 18,073

16 AGNES (NW FL, NE U.S.) 1972 1 18,052

17 HAZEL (SC/NC) 1954 4 17,339

18 CHARLEY (SW FL) 2004 4 17,210

Continued on next page
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Table 16 – Continued from previous page

Rank Hurricane Year Category Damage (Millions)

19 CAROL (NE U.S.) 1954 3 16,940

20 HUGO (SC) 1989 4 16,088

21 SE Florida 1949 3 15,398

22 CARLA (N & Central TX) 1961 4 14,920

23 SE Florida/Louisiana/Alabama 1947 4 14,406

24 NE U.S. 1944 3 13,881

25 SE FL/S TX 1919 4 13,847

26 SE Florida 1945 3 12,956

27 RITA (SW LA/N TX) 2005 3 12,639

28 ALLISON (N TX) 2001 TS 12,523

29 CELIA (S TX) 1970 3 12,104

30 FRANCES (SE FL) 2004 2 10,899

Table 17: Hurricane Max and Sum of Costs By Year

Year Max Sum

1900 104,330 104,330

1915 71,397 71,397

1919 13,847 13,847

1926 164,839 164,839

1928 35,298 35,298

1938 41,122 41,122

1944 40,621 54,502

1945 12,956 12,956

1947 14,406 14,406

1949 15,398 15,398

1954 17,339 34,279

Continued on next page
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Table 17 – Continued from previous page

Year Max Sum

1955 18,073 18,073

1960 28,159 28,159

1961 14,920 14,920

1965 18,749 18,749

1969 22,286 22,286

1970 12,104 12,104

1972 18,052 18,052

1989 16,088 16,088

1992 58,555 58,555

2001 12,523 12,523

2004 21,575 49,684

2005 113,400 148,096

2008 29,520 29,520

Table 18: Hurricane Max Costs By Year

No O(x) Max Costs Sorted

1 0.042 164,839

2 0.083 113,400

3 0.125 104,330

4 0.167 71,397

5 0.208 58,555

6 0.250 41,122

7 0.292 40,621

8 0.333 35,298

9 0.375 29,520

10 0.417 28,159

Continued on next page
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Table 18 – Continued from previous page

No O(x) Max Costs Sorted

11 0.458 22,286

12 0.500 21,575

13 0.542 18,749

14 0.583 18,073

15 0.625 18,052

16 0.667 17,339

17 0.708 16,088

18 0.750 15,398

19 0.792 14,920

20 0.833 14,406

21 0.875 13,847

22 0.917 12,956

23 0.958 12,523

24 1.000 12,104

Table 19: Hurricane Sum of Costs By Year

No A(x) Sum Cosths Sorted

1 0.042 164,839

2 0.083 148,096

3 0.125 104,330

4 0.167 71,397

5 0.208 58,555

6 0.250 54,502

7 0.292 49,684

8 0.333 41,122

9 0.375 35,298

Continued on next page
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Table 19 – Continued from previous page

No A(x) Sum Costs Sorted

10 0.417 34,279

11 0.458 29,520

12 0.500 28,159

13 0.542 22,286

14 0.583 18,749

15 0.625 18,073

16 0.667 18,052

17 0.708 16,088

18 0.750 15,398

19 0.792 14,920

20 0.833 14,406

21 0.875 13,847

22 0.917 12,956

23 0.958 12,523

24 1.000 12,104
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D The Most Intense US Tropical Cyclones

Table 20: The Most Intense Mainland United States Hurricanes Ranked by Pressure, 1851-2010

Rank Hurricane Year Category Mimimum Pressure

(at landfall) Millibars (Inches)

1 FL (Keys) 1935 5 892 26.35

2 CAMILLE (MS/SE LA/VA) 1969 5 909 26.84

3 KATRINA (SE LA, MS) 2005 3 920 27.17

4 ANDREW (SE FL/SE LA) 1992 5 922 27.23

5 TX (Indianola) 1886 4 925 27.31

6 FL (Keys)/S TX 1919 4 927 27.37

7 FL (Lake Okeechobee) 1928 4 929 27.43

8 DONNA (FL/Eastern U.S.) 1960 4 930 27.46

8 FL (Miami)/MS/AUPensacola 1926 4 930 27.46

10 CARLA (N & Central TX) 1961 4 931 27.49

11 S TX 1916 4 932 27.52

12 LA (Last Island) 1856 4 934 27.58

12 HUGO (SC) 1989 4 934 27.58

14 TX (Galveston) 1900 4 936 27.64

15 RITA (SW LA/N TX) 2005 3 937 27.67

16 GA/FL (Brunswick) 1898 4 938 27.70

16 HAZEL (SC/NC) 1954 4 938 27.70

18 SE FL/SE LA/MS 1947 4 940 27.76

18 TX (Galveston) 1915 4 940 27.76

20 N TX 1932 4 941 27.79

20 CHARLEY (SW FL) 2004 4 941 27.79

22 GLORIA (Eastern U.S.) 1985 3 942 27.82

22 OPAL (NW FL/AL) 1995 3 942 27.82

24 LA (New Orleans) 1915 3 944 27.88

25 FL (Central) 1888 3 945 27.91

25 E NC 1899 3 945 27.91

Continued on next page

Exceedance Probability in Catastrophe Modeling

Casualty Actuarial Society E-Forum, Winter 2021 51



Table 20 – Continued from previous page

Rank Hurricane Year Category Mimimum Pressure

(at landfall) Millibars (Inches)

25 AUDREY (SW LA/N TX) 1957 4 945 27.91

25 CELIA (S TX) 1970 3 945 27.91

25 ALLEN (S TX) 1980 3 945 27.91

30 New England 1938 3 946 27.94

30 FREDERIC (AL/MS) 1979 3 946 27.94

30 /VAN (AL, NW FL) 2004 3 946 27.94

30 DENNIS (NW FL) 2005 3 946 27.94

34 NE U.S. 1944 3 947 27.97

35 LA (Chenier Caminanda) 1893 4 948 27.99

35 BETSY (SE FL/SE LA) 1965 3 948 27.99

35 SE FL/NW FL 1929 3 948 27.99

35 SE FL 1933 3 948 27.99

39 NW FL 1917 3 949 28.02

39 NW FL 1882 3 949 28.02

39 DIANA (NC) 1984 3 949 28.02

39 S TX 1933 3 949 28.02

43 MS/AL 1916 3 950 28.05

43 GA/SC 1854 3 950 28.05

43 LA/MS 1855 3 950 28.05

43 LA/MS/AL 1860 3 950 28.05

43 LA 1879 3 950 28.05

43 BEULAH (S TX) 1967 3 950 28.05

43 HILDA (Central LA) 1964 3 950 28.05

43 GRACIE (SC) 1959 3 950 28.05

43 TX (Central) 1942 3 950 28.05

43 JEANNE (FL) 2004 3 950 28.05

43 WILMA (S FL) 2005 3 950 28.05

54 SE FL 1945 3 951 28.08

Continued on next page
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Table 20 – Continued from previous page

Rank Hurricane Year Category Mimimum Pressure

(at landfall) Millibars (Inches)

54 BRET (S TX) 1999 3 951 28.08

56 LA (Grand Isle) 1909 3 952 28.11

56 FL (Tampa Bay) 1921 3 952 28.11

56 CARMEN (Central LA) 1974 3 952 28.11

59 SC/NC 1885 3 953 28.14

59 S FL 1906 3 953 28.14

61 GA/SC 1893 3 954 28.17

61 EDNA (New England) 1954 3 954 28.17

61 SE FL 1949 3 954 28.17

61 FRAN (NC) 1996 3 954 28.17

65 SE FL 1871 3 955 28.20

65 LA/TX 1886 3 955 28.20

65 SC/NC 1893 3 955 28.20

65 NW FL 1894 3 955 28.20

65 ELOISE (NW FL) 1975 3 955 28.20

65 KING (SE FL) 1950 3 955 28.20

65 Central LA 1926 3 955 28.20

65 SW LA 1918 3 955 28.20

Table 21: Hurricane Min and Max of Intensities By Year

Year Min Pressure Max Pressure

1854 28.05 28.05

1855 28.05 28.05

1856 27.58 27.58

1860 28.05 28.05

Continued on next page
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Table 21 – Continued from previous page

Year Min Pressure Max Pressure

1871 28.20 28.20

1879 28.05 28.05

1882 28.02 28.02

1885 28.14 28.14

1886 27.31 28.20

1888 27.91 27.91

1893 27.99 28.20

1894 28.20 28.20

1898 27.70 27.70

1899 27.91 27.91

1900 27.64 27.64

1906 28.14 28.14

1909 28.11 28.11

1915 27.76 27.88

1916 27.52 28.05

1917 28.02 28.02

1918 28.20 28.20

1919 27.37 27.37

1921 28.11 28.11

1926 27.46 28.20

1928 27.43 27.43

1929 27.99 27.99

1932 27.79 27.79

1933 27.99 28.02

1935 26.35 26.35

1938 27.94 27.94

1942 28.05 28.05

1944 27.97 27.97

1945 28.08 28.08

Continued on next page
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Table 21 – Continued from previous page

Year Min Pressure Max Pressure

1947 27.76 27.76

1949 28.17 28.17

1950 28.20 28.20

1954 27.70 28.17

1957 27.91 27.91

1959 28.05 28.05

1960 27.46 27.46

1961 27.49 27.49

1964 28.05 28.05

1965 27.99 27.99

1967 28.05 28.05

1969 26.84 26.84

1970 27.91 27.91

1974 28.11 28.11

1975 28.20 28.20

1979 27.94 27.94

1980 27.91 27.91

1984 28.02 28.02

1985 27.82 27.82

1989 27.58 27.58

1992 27.23 27.23

1995 27.82 27.82

1996 28.17 28.17

1999 28.08 28.08

2004 27.79 28.05

2005 27.17 28.05
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Table 22: Hurricane Min Intensities By Year

No MinEP (x) Min Intensities Sorted

1 0.017 26.35

2 0.034 26.84

3 0.051 27.17

4 0.068 27.23

5 0.085 27.31

6 0.102 27.37

7 0.119 27.43

8 0.136 27.46

9 0.153 27.46

10 0.169 27.49

11 0.186 27.52

12 0.203 27.58

13 0.220 27.58

14 0.237 27.64

15 0.254 27.70

16 0.271 27.70

17 0.288 27.76

18 0.305 27.76

19 0.322 27.79

20 0.339 27.79

21 0.356 27.82

22 0.373 27.82

23 0.390 27.91

24 0.407 27.91

25 0.424 27.91

26 0.441 27.91

27 0.458 27.91

28 0.475 27.94

29 0.492 27.94

Continued on next page
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Table 22 – Continued from previous page

No MinEP (x) Min Intensities Sorted

30 0.508 27.97

31 0.525 27.99

32 0.542 27.99

33 0.559 27.99

34 0.576 27.99

35 0.593 28.02

36 0.610 28.02

37 0.627 28.02

38 0.644 28.05

39 0.661 28.05

40 0.678 28.05

41 0.695 28.05

42 0.712 28.05

43 0.729 28.05

44 0.746 28.05

45 0.763 28.05

46 0.780 28.08

47 0.797 28.08

48 0.814 28.11

49 0.831 28.11

50 0.847 28.11

51 0.864 28.14

52 0.881 28.14

53 0.898 28.17

54 0.915 28.17

55 0.932 28.20

56 0.949 28.20

57 0.966 28.20

58 0.983 28.20

Continued on next page
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Table 22 – Continued from previous page

No MinEP (x) Min Intensities Sorted

59 1.000 28.20

Table 23: Hurricane Max Intensities By Year

No MaxEP (x) Min Intensities Sorted

1 0.017 26.35

2 0.034 26.84

3 0.051 27.23

4 0.068 27.37

5 0.085 27.43

6 0.102 27.46

7 0.119 27.49

8 0.136 27.58

9 0.153 27.58

10 0.169 27.64

11 0.186 27.70

12 0.203 27.76

13 0.220 27.79

14 0.237 27.82

15 0.254 27.82

16 0.271 27.88

17 0.288 27.91

18 0.305 27.91

19 0.322 27.91

20 0.339 27.91

21 0.356 27.91

22 0.373 27.94

Continued on next page

Exceedance Probability in Catastrophe Modeling

Casualty Actuarial Society E-Forum, Winter 2021 58



Table 23 – Continued from previous page

No MaxEP (x) Min Intensities Sorted

23 0.390 27.94

24 0.407 27.97

25 0.424 27.99

26 0.441 27.99

27 0.458 28.02

28 0.475 28.02

29 0.492 28.02

30 0.508 28.02

31 0.525 28.05

32 0.542 28.05

33 0.559 28.05

34 0.576 28.05

35 0.593 28.05

36 0.610 28.05

37 0.627 28.05

38 0.644 28.05

39 0.661 28.05

40 0.678 28.05

41 0.695 28.05

42 0.712 28.08

43 0.729 28.08

44 0.746 28.11

45 0.763 28.11

46 0.780 28.11

47 0.797 28.14

48 0.814 28.14

49 0.831 28.17

50 0.847 28.17

51 0.864 28.17

Continued on next page
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Table 23 – Continued from previous page

No MaxEP (x) Min Intensities Sorted

52 0.881 28.20

53 0.898 28.20

54 0.915 28.20

55 0.932 28.20

56 0.949 28.20

57 0.966 28.20

58 0.983 28.20

59 1.000 28.20
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Building and Testing Yield Curve Generators
for P&C Insurance

By Gary G. Venter, FCAS, ASA, CERA, and Kailan Shang, FSA, CFA, PRM, SCJP 
Abstract Interest-rate risk is a key factor for property-casualty insurer capital. P&C 
companies tend to be highly leveraged, with bond holdings much greater than capital. For 
GAAP capital, bonds are marked to market but liabilities are not, so shifts in the yield curve 
can have a significant impact on capital. Yield-curve scenario generators are one approach 
to quantifying this risk. They produce many future simulated evolutions of the yield curve, 
which can be used to quantify the probabilities of bond-value changes that would result 
from various maturity-mix strategies. Some of these generators are provided as black-box 
models where the user gets only the projected scenarios. One focus of this paper is to 
provide methods for testing generated scenarios from such models by comparing to known 
distributional properties of yield curves.

Typically regulators, security analysts, and customers focus on one to three-year time frames for 
capital risk. This is much different than risk-management in other financial institutions, where the 
focus is on how much markets can move from one day’s close to the next day’s opening. Those 
institutions trade continuously when the markets are open, and manage risk with derivatives. P&C 
insurers, on the other hand, hold bonds to maturity and manage cash-flow risk by matching asset and 
liability flows. Derivative pricing and stochastic volatility are of little concern over the relevant time 
frames. This requires different models and model testing than what is common in the broader financial 
markets.

To complicate things further, interest rates for the last decade have not been following 
the patterns established in the sixty years following WWII. We are now coming out of the 
period of very low rates, yet are still not returning to what had been thought of as normal 
before that. Modeling and model testing are in an evolving state while new patterns 
emerge.

Our analysis starts with a review of the literature on interest-rate model testing, with a 
P&C focus, and an update of the tests for current market behavior. We then discuss models, 
and use them to illustrate the fitting and testing methods. The testing discussion does not 
require the model-building section. We do try to make the modeling more accessible to 
actuarial modelers, compared to our source papers in the financial literature. Code for MCMC 
estimation is included at the CAS GitHub site. Model estimation is getting easier as the 
software advances, and interested actuaries, who often have a better feel for the application
Casualty Actuarial Society E-Forum, Winter 2021 1



Figure 1: History of Ten Year US Bond Rates

needs than do financial modelers, can use this to fit their own yield-curve generators.

Keywords: Economic scenario generators, affine models, interest rates, inflation, MCMC

1 A historical look
In this Section 1 we look at a long-term history of US interest rates for perspective. Section
2 reviews the literature on properties of yield curves for testing models, and updates the
properties in the light of recent data. Section 3 introduces affine models, which often meet
most of the yield-curve tests. In section 4 we fit some models. Section 5 then illustrates the
tests by applying them to the fitted models. Appendix 1 covers some more general affine
models, and Appendix 2 addresses fitting models by Markov-chain Monte Carlo (MCMC).

Figure 1 graphs long Treasury bond yields for 1790–2018. It is hard to identify a long-term
equilibrium rate. Before the Civil War, the rate gravitated around 6%, but from 1870 to
1970, it was rarely above 4% – and it has returned to similar levels since about 2010. The
postwar period of higher rates – say 1972 to 2007 – was considered the new normal at the
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Figure 2: Ten-Year Rolling Average 1 and 10 Year Rates

time, and many economists who spent their careers in those years still consider it normal.

The longer history calls that normality into question. Some economists are now pointing out
historical peculiarities of the postwar period. Piketty (2014) reports a few such findings. For
instance, that period included a now-completed massive rebuilding of global assets, 50% of
which, in monetary terms, were destroyed in the world wars. It was also a time of steadily
increasing productivity, since diminished. Both of those elements boosted economic expansion,
wages, and interest rates. Absent the postwar period, the current situation looks more like a
continuation of the 1870–1970 levels than a return to 1990.

The graph also shows long periods of rising or falling rates. The rate generally declined for
39 years starting in 1861, then rose for 20 years, and then declined for 25 years, to 1.7% in
1945. Then it increased for 36 years, with some fluctuations, and dropped again for 31 years,
getting to 1.8% in 2012.

Figures 2 and 3, from Pedersen et al. (2016), the SoA ESG report, show rolling average one
and ten year rates and their standard deviations since 1936. The one-year rates are lower, but
their standard deviations are higher, compared to the ten-year rates. The standard deviations
loosely follow the rates. The Cox-Ingersoll-Ross (CIR) interest rate model assumes that for
the shortest rates, the standard deviation is proportional to the rates. The gap between the
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Figure 3: Ten-Year Rolling Average 1 and 10 Year Standard Deviations

one-year and ten-year rates was high in the early 1940s, much like it was recently. In the
1940s the one-year rates were even lower than they were in the 2010s and actually became
negative for a few years.

2 Historical model tests and current updates
Several tests have been proposed for yield-curve models. We discuss proposed tests from
three papers, and review these with recent data. The period from 2008 to 2018 had unusually
low rates – comparable to those from 1938 to 1955. With the recent changes in economic
conditions, it seems unlikely that such rates would return over the next several decades. But
the historically unusually high rates from 1970 – 2000 had specific causes that also seem
unlikely to repeat. This makes it difficult to select a relevant time period for measuring rate
properties. What we do below is look at how the properties have been evolving over time in
order to come up with reasonable criteria for model behavior. Many of the tests would be
performed on scenarios simulated from the fitted models, but a few use fits to the data.

2a Tests from the Feldhűtter paper on fitting affine models
Feldhütter (2016) explores how well affine models fit historical properties of interest rates.

2a.1 Moments by maturity
Table 1 shows his exhibit of moments for US Treasury maturities of 1 – 5 years, using monthly
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Table 1: Moments of Treasury Yields
maturity 1 2 3 4 5
mean 5.60 5.81 5.98 6.11 6.19
standard deviation 0.50 0.43 0.40 0.39 0.36
skewness 0.83 0.79 0.78 0.77 0.77
excess kurtosis 0.77 0.57 0.51 0.44 0.35

observations from 1952:6 to 2004:12. This includes the unusually high rates of the 1970s and
80s. What it shows is mean rates that increase by maturity and volatilities that decrease.
Higher moments are positive but small and also decline a bit by maturity.

The modestly positive higher moments in Table 1 have been challenging for models to match
– most give much higher or virtually zero higher moments. If this holds up for more relevant
data, it would be an important feature to capture for risk analysis.

The yield curve is usually upward sloping, and there are good reasons for that. Investors
need higher yields to lock up their funds in longer rates, and to take a many-year risk of
bond values going down due to rates increasing. The curve gets flat or inverted when the
Federal Reserve raises short rates above the level at which the market is trading the longer
obligations. This seems reasonably likely to happen over the next several years, so some
curve inversions would be a good thing to see in a simulated scenario set.

Although shorter rates are normally more volatile than are longer rates, this pattern was
reversed for six years beginning in August 2011. The short rates were too low to have much
absolute volatility. As an alternative we looked at the volatility of the log of the rates.

Figure 4 shows 156-week moving standard deviations of rates and the log of rates from 1/2009
to 1/2019. Before August 2011 and after August 2017 the usual pattern held, with volatility
decreasing as maturities increased. In between, the pattern was almost exactly reversed. The
logs of the rates show more consistent volatilities. Except for a short period where rates
longer than two years all had very little volatility, the usual pattern is maintained for those
maturities. The one and two-year maturities always have higher log volatility than do the ten
and longer year maturities, and drop below the three-to-seven-year log volatilities for only a
relatively short period. Going forward it seems that the modeled volatilities of the logs of
the rates should decline steadily with maturity. In the near term, it looks like the one-year
log volatilities have stabilized around 0.6, while the others show a bit of an upward trend.
Numbers a little higher than these would thus seem reasonable targets for model testing.

Figure 5 shows the skewness of the five-year rate over fairly long periods. It displays the
rolling skewness of weekly rates over moving 500, 1000, and 1500 week periods, with the
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Figure 4: Three-Year Moving Standard Deviation of Rates and Log Rates by Maturity

Building and Testing Yield Curve Generators for P&C Insurance

Casualty Actuarial Society E-Forum, Winter 2021 6



Figure 5: 500, 1000, and 100 Week Moving Skewness of Five-Year Rates

periods’ ending points starting in 1971. These correspond roughly to 10, 20, and 30 year
periods. The higher values in the earlier years appear to be due to the very high rates in
the early 1980s. There is no consistent skewness that holds in general. There is a temporary
spike due to the recovery from very low rates (below 1%) starting in 2016. These have since
stabilized around 2.5%, so the spike seems to be over. For simulated rates going forward,
very little skewness would be a good result – say below 0.25 but not too negative either.

2a.2 Volatility as related to levels of the rates
Feldhütter (2016) regresses the squared change in rates from month t to t+1 for each maturity
against the level, slope, and curvature of the yield curve at month t. The level is the five-year
rate, the slope is the difference between the five and one-year rates, and the curvature is the
sum of the five and one-year rates less twice the three-year rate, respectively. This measure
of curvature is higher when the midpoint of the curve is lower relative to the endpoints, so
quantifies upward curvature. Table 2 shows the coefficients for each variable, along with their
t-statistics, for each maturity.

The coefficients are small, as the squared change in rates is. The level coefficients all have
quite significant t-statistics, showing that the volatility of rates is higher when the level of
rates is. This effect is greatest for the shorter maturities, since the volatilities are higher for
them. The other coefficients are not individually significant, but the slope coefficients display
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Table 2: Volatility Regression Coefficients
maturity 1 2 3 4 5
level 0.11 0.07 0.06 0.05 0.04
t-statistic -5.4 -5.4 -5.5 -6.9 -7.6
slope -0.14 -0.08 -0.03 -0.02 0.02
t-statistic 1.5 1.2 0.7 0.5 -0.5
curvature 0.27 0.11 0.17 0.08 0.13
t-statistic -1.4 -0.8 -1.7 -1.0 -2.1

a clear pattern of lower volatility for the shorter maturities for steeper yield curves. Volatility
is also consistently but not significantly higher with less downward curvature.

However, the previous results no longer hold up. Test found that these coefficients were no
longer significant, and sometimes had changed sign. The very low rates did not act in accord
with the earlier results. This does not appear to be a useful test at this time, but should be
reviewed as new data emerges.

2a.3 Annual rate changes by maturity related to curve slope
The value of a bond would generally go up over time as its time to maturity shortens. These
changes have been found historically to be stronger (bigger value increase, bigger yield drop)
when the current yield spread over the shortest yield is higher. Feldhütter (2016) does a
regression for this effect, following the methodology of Campbell and Shiller (1991). With
yield Y (t, n) at time t and time to maturity n, he finds the factors for a regression on the
change in yield. That is, he estimates:

Y (t+ 1, n− 1)− Y (t, n) = const+ factorn
Y (t, n)− Y (t, 1)

n− 1 + res

The factors, shown in Table 3, are negative, which means that the drops in yield are greater
when the spread over the one-year yield is higher, and are increasingly so as the maturity
increases. This is a sort of mean reversion that investors would be looking for. A longer
bond that has a particularly high spread relative to the shortest bond would be expected
to increase more in value during the next year. Campbell and Shiller (1991) called this the
excess-profits effect. Apparently the higher spread led later to a greater decrease in the longer
rate. This seems counter-intuitive, as short rates are more volatile, so the wider spread would
be expected to narrow due to an increase in the short rate, not a decrease in the long rate.
Feldhütter (2016) also finds this effect suspect, but confirms it empirically.

Our Federal Reserve data does not have 4, 6, 8, or 9 year rates, so to update the analysis we
looked at the change over two years for bonds that started as 5 or 7 years, and the change
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Table 3: Yield Change Regression
maturity 2 3 4 5
factor -0.78 -1.13 -1.52 -1.49
t-statistic 1.4 1.8 2.2 -2.0

Table 4: Yield Change Slopes by Period
Period 4/53-12/78 1/84-12/08 1/09-1/19 4/53-1/19

2Y -4.81 -0.36 -1.73 -0.93
3Y -4.63 -0.34 -2.54 -1.18
5Y 0.91 0.76 -3.46 -0.54
7Y 1.18 0.65 -5.02 -0.66
10Y 1.86 1.39 -4.43 -0.25

over three years for the 10 year bonds. Preliminary analysis suggested that the very high
rates around 1981 were distorting the results, but the very low rates of the last ten years
were also unique. For this reason, we did regressions over 4 periods: the first 25 years in our
data, from mid-1953 to 1978, the 25 years from 1984 through 2008 (thus skipping 1978–1984),
2009 – 2019, and the entire 66 years. Table 4 shows the results.

The entire period shows all negative slopes, but generally getting less negative by maturity.
The two 25-year older periods show negative slopes for the 2 and 3-year rates, with increasingly
positive slopes for the longer rates. Only the 10 recent years display the pattern found in
earlier studies.

The past decade has featured very low short rates, with very low volatility. Thus in this
period, a high spread over the 1-year rate would indicate a higher long rate. Then for it to
decrease is just a form of mean reversion. The first two columns were 25-year periods of
either generally increasing or generally decreasing rates, but their coefficients are similar. It
could be that in those periods, higher spreads occurred during expansionary times, where
overall rates were increasing more, or decreasing less, than when spreads were lower.

To test simulated rates going forward, negative coefficients would be reasonable for 2 and 3
year rates. For longer rates, right now any result could look plausible – positive, negative, or
not significant coefficients. In the future, another look at the regressions would be called for.

2b Test from the Venter (2004) paper on ESGs for P&C companies

2b.1 Yield spreads and the short rate
This paper presents a test of yield curve scenarios based on the way longer yield spreads
relate to the short rate. Since longer rates are less volatile, they go up less when the short
rate increases. Thus the spread, say between the three and ten-year rates, would be expected
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Figure 6: Three-Year to Ten-Year Spreads as a Function of the Three-Month Rate

to decrease when the short rate increases, and widen again when it goes back down. Figure 6
shows data on this from 1995 to 2011 with a regression fit. The scatter around the regression
line is fairly consistent for three sub-periods shown.

Figure 7 graphs the 3-year – 30-year spread as a function of the 1-year rate for two periods –
13 years starting in 2006, and about 31/2 years ending 1/4/19, both with fitted lines. The
longer range shows two distinct periods, with similar slopes but different intercepts. The
second of these periods is what is fit in the bottom panel. The graphs are similar to Figure
6, which shows the 3-10 spread for 1995-2001, so the general long-term pattern has been
continuing. The slope in the upper panel is −0.53, compared to −0.67 in the lower panel.
The standard deviation around the slope for the longer period is 0.57, but it is clearly less
than this for the two sub-periods. It is 0.12 for the later period.

To use this as a test for simulated scenarios, fitting the trend line would be the starting
point, then graphing the data and fitted line. An eyeball test of the overall look of the graph
compared to Figures 6 and 7 would be a check of the basic pattern. For the near future, a
slope similar to the recent period would be expected. For a longer projection, any slope less
than −0.5 would seem reasonable. A flatter line would indicate that the longer spreads do
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Figure 7: 3 – 30 Year Spread as Function of 1-Year Rates
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Figure 8: Actual and Implied Volatilites by Maturity for each Model

not compress much with increasing shorter rates, which could arise from problems in the
volatilities. For a short-term projection, the spread around the line should be fairly small –
below 0.2 perhaps – but a wider spread would be reasonable for a longer projection. Still,
any spread above 0.6 would suggest that the historical behavior is not reflected in the model.

2c Tests from the Jagannathan, Kaplin, and Sun (2003) paper about testing
CIR models
This paper uses properties of yield curves for expanded model goodness-of-fit tests on the
sample data. It compares fits from single-factor, two-factor, and three-factor CIR models.
They try several tests, but the two here show ways in which only the three-factor model fits
well. They have other tests involving option prices where none of the CIR models work. But
since bond option prices depend on stochastic volatility, CIR would not be expected to work.
This should not be a problem for the time frames used in P&C models, where the stochastic
volatilities average out.

2c.1 Volatility by maturity
They compare volatility by maturity in the sample with that implied by the fits. Figure 8 is
their main result for that, and it shows a reasonably good match for the three-factor model.
A similar test for simulated data is included in the Feldhütter (2016) discussion above.
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Table 5: Weights for the first four principal components of yield changes
Change in: 3M 2Y 3Y 5Y 7Y 10Y % Explained
Level 0.123 0.430 0.462 0.450 0.454 0.421 93.7
Slope -0.866 -0.273 -0.112 0.081 0.223 0.326 3.6
Curvature 0.482 -0.601 -0.288 -0.035 0.355 0.4433 2.0
Factor 4 -0.010 -0.606 0.662 0.235 0.016 -0.3738 0.3

2c.2 Yield curve shapes as described by principal component analysis (PCA)
Yield data comes in an array – perhaps rows for each week of observation and columns for
each maturity. In their data there are six maturities, so the yield curve at any date can
be represented as a vector in six-dimensional space. PCA rotates the axes of this space to
put most of the variation into a few dimensions. The first such dimension – i.e., the first
principal component – is defined by the line between the two points that are furthest apart
in this space. The second axis is the longest line between two points that is perpendicular
to the first one, etc. Each axis gives a set of weights for the yields at any date, where the
sum product of the weights with the yields is the coordinate on that axis. For interest rates,
usually three principal components – often called level, slope, and curvature – are enough to
explain most of the variation in the yield curves. That is, there is very little variation in the
remaining dimensions. There are standard formulas that produce principal components and
software to implement them.

The weights for the first four components for their example are in Table 5, along with the
total variance accounted for by each. The first three explain over 99% of the variation in yield
curves. Then they look at how well these three principal components can be approximated by
the fitted models, using a regression approach. They find that the three-factor model provides
a very good approximation to the three principal components, while the other models do not.
They conclude that a three-factor CIR can capture the variety of yield curve shapes, but two
factors cannot.

With modern fitting, there would be fitted values for each observation, so these could be used
to compute fitted principal components for comparison to the actual principal components.
That would show how well the fit is able to explain the observed variation in yield curves.

The principal components are essentially two or three new yield curves fit using the observed
collection of yield curves. In the example from Jagannathan, Kaplin, and Sun (2003), 94% of
the differences among yields across the data set is explained by the first component, and over
97% of the shape differences can be accounted for by regressing each yield curve on the first
two components. They stop with three components, which explain 99.3% of the variability.
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Figure 9: Yield Curve from PCA

For a recent historical dataset, we tried PCA on the actual data, and on two fitted models,
which were two and three-factor affine models. These model the yields as linear combinations
of partial short rates. Then for each observed time point, we calculated the PCA-fitted yield
curves from the three sets of components. Figure 9 graphs the actual and fitted curves at one
particular time. This sample has a difficult set of yield curves, due to a reversal in rates from
1 to 5 years. As can be seen, the actual and historical PCA curves are practically identical,
and the three-factor model gives a reasonably good approximation. The two-factor model
has less flexibility and does not match this particular curve shape.

What we found in doing this exercise, and should have known in advance, is that the two-factor
model fits only have two principal components, and the three factor model’s have three.
That’s because the fitted values are linear combinations of two or three sets of short rates.
Thus the results of Jagannathan, Kaplin, and Sun (2003) – that the two-factor CIR does not
fit the three principal components of actual rates – was more or less pre-ordained. As long as
the third actual component is non-trivial, a two-factor model will not have enough variety of
curve shapes.
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Table 6: R-Squared by Maturity
R2 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 20Y 30Y

Two-factor fit 95.7% 97.7% 77.6% 94.9% 95.6% 91.6% 96.5% 99.1% 91.7% 81.5%
Three-factor fit 99.4% 99.6% 97.9% 98.1% 99.2% 97.3% 99.6% 99.4% 98.6% 99.2%

This gives another way to do a realism test of simulated yield curves: do a PCA on the set
of curves and see if the third component explains enough of the variance – maybe 0.005 or
more. An expanded test would be to do a PCA on what is taken to be a relevant historical
period, and use that as a guideline on how significant the third component should be.

Another useful indicator of how well the model fits by maturity would be to just compute an
R2 statistic for each maturity. For each maturity, that would be the total variance of the
rates at the maturity minus the variance of the model residuals, as a percentage of that total
variance. Table 6 illustrates this for the two example models. The problems of the two-factor
model show up in some specific maturities.

3 Interest rate models
Generally the academic literature focuses on arbitrage-free models. Some actuarial models do
not require that, depending on the applications intended. If the risk of different investment
strategies is to be analyzed, having arbitrage possible could easily distort the conclusions.
If realistic yield curves are desired, the models should also be arbitrage-free. But if rates
for only one or two maturities are to be projected long-term, such constraints might not be
necessary. Here we will stick to arbitrage-free models of the whole yield curve.

Lognormal models, like the Libor Market Model, produce more skewed distributions of rates
than the historical data supports. They are popular for options’ pricing, where the greater
skewness may help match market risk pricing of short-term volatility. That is not the main
focus of P&C models, though, and so we will use models with normal residuals.

Most popular of these are the affine models. They build up the yield curves from the
short rates. In a single-factor model with short-rate r(t) at time t, every maturity τ has
a constant term C(τ) and a factor D(τ) that do not change over time, with fitted rate
R(t, τ) = C(τ) + D(τ)r(t). Thus changes in the yield curve over time depend only on the
changes in the short rate r(t). This will make all the yield curves parallel, which is unrealistic.

Multi-factor model postulate short-rate components rj(t) for each factor j, and constants
and factors Cj(τ) and Dj(τ) that again do not vary over time. Then R(t, τ) = ∑

j[Cj(τ) +
Dj(τ)rj(t)]. Mixtures of processes like that can give a much greater variety of yield-curve
shapes, especially mixtures of at least three processes. Still the changes in the yield curves
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over time come from the short rates components rj(t), as the Cj(τ), Dj(τ) functions still do
not vary over time t.

Interest rates are modeled as continuous processes, using Brownian motion, but are fit with
discrete data, so can be represented by time-series approximations. (A Brownian motion
is a continuous process whose value at any future time is normally distributed with mean
equal to the current value and variance equal to the time interval.) Parameters are usually
scaled as annual changes, with the rates incremented in fractions of a year dt. For instance,
dt might be 0.004, for an increment of 1/250th of a year, which is often used to represent one
trading day. The advantage of starting with Brownian motion is that any increment can be
taken as an approximation. We will start by assuming an unspecified increment dt.

The basic building blocks of affine models are the CIR and Vasicek processes. These are
specified by the distribution of the incremental change dr(t) = r(t + dt) − r(t), which is
stochastic. More general affine models are built up as combinations of these two. In both of
these processes, the distribution of the increments is normal, which we will write as N (µ, σ).
In the Vasicek process, from Vasicek (1977):

dr(t) ∼ N
(
[ω − κr(t)]dt, σ

√
dt
)

where ω, κ, σ are parameters. The square root of dt is taken because the variance is propor-
tional to the time increment dt. The constants C(τ), D(τ) for each maturity τ are calculated
by closed form but slightly complicated formulas.

The CIR process, from Cox, Ingersoll, and Ross (1985), is similar, with

dr(t) ∼ N
(

[ω − κr(t)]dt,
√
βr(t)dt

)

Its incremental variance is proportional to its latest value r(t). The variance parameter
here is denoted as β rather than σ2 because it is not the variance but a factor which when
combined with r(t) gives the variance. The processes can be simulated in steps of any desired
(but small) dt by sampling from these normal distributions. Also these distributions become
the priors for the incremental changes in the values of the processes at each subsequent step
when doing Bayesian estimation from the historical processes.

The CIR process cannot go negative: it is a continuous process, so if r(t) = 0, the standard
deviation also becomes zero, and the process increments by ωdt, which is positive. However
when simulating the process, if it gets to a small positive value, the next discrete simulation
can become negative. A work-around derives from the fact that the constantly changing
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volatility results in a gamma-like distribution for the process over time. This is actually the
non-central chi-squared distribution, and for step size dt, the next value of the process has
mean and variance:

µ = r(t)e−κdt + ω
(
1− e−κdt

)
/κ

V = β

2κ
(
1− e−κdt

) [
2r(t)e−κdt + ω

(
1− e−κdt

)
/κ
]

The non-central chi-square is close to a gamma distribution, so it can be approximated by a
gamma distribution with this mean and variance. This way the process would not become
negative in simulations.

The long-term variance is βω/2κ2. For the Vasicek process, this is σ2/2κ. The Vasicek
long-term distribution is normal with mean ω/κ and this variance, while the CIR long-term
distribution is gamma. Both the variances follow the algorithm: expected value of the process
change variance divided by twice the speed of mean reversion. These could be used in the
priors for the first values of each process, in that they have been going on a long time.

As discussed below, multifactor processes can have a few Vasicek and CIR processes, or
can even include combined forms. The CIR processes must be independent or positively
correlated to be arbitrage-free, but Vasicek processes can be positively or negatively correlated.
Apparently negatively correlated processes provide a realistic variety of yield curves.

3a Yield curves and market price of risk
Dai and Singleton (2000) provide a comprehensive characterization of affine models. Like
Jagannathan, Kaplin, and Sun (2003) also recommend, they focus on three-factor models.
We start with three-factor combinations of the Vasicek and CIR models that have closed
form Cj(τ) and Dj(τ) functions.

The yield-curve formulas are derived as expectations of related risk-neutral processes. The
idea of risk-neutral processes is to add risk load directly into the processes, so the expected
value of the bond value at maturity discounted along the risk-neutral rate process is the
risk-loaded price of the bond. This allows risk loads to be put into bonds of various maturities
in a consistent way. The fundamental theorem of asset pricing says that arbitrage-free prices
must be the expected values of admissible transformed processes – i.e., ones that do not
change the set of outcomes that have non-zero probabilities. Such transforms here change
the ω and κ parameters, but not the σ or β parameters.

The simplest transform is called completely affine. Under it, the mean [ω − κr(t)]dt of these
process changes to [ω̃ − κ̃r(t)]dt. This uses a market-price-of-risk parameter λ, which is
estimated when fitting the model. For the Vasicek process, it works out that κ̃ = κ and
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ω̃ = ω−σλ. For the CIR process, on the other hand, κ̃ = κ+βλ and ω̃ = ω. The transformed
parameters are called the risk-neutral parameters. The derivation of the C(τ) and D(τ)
functions assumes that the bond prices are expected values under the transformed process.

There is a more general approach to the market price of risk called essentially affine. It
does not affect the previously-transformed CIR process but for each Vasicek process there is
another market price parameter ψ. Then

ω̃ = ω − σλ

κ̃ = κ+ σψ

In either case, the values of C(τ), D(τ) are derived from the risk-neutral processes. Let
q = ω̃/κ̃. Then for the Vasicek process, the constants C(τ), D(τ) are:

D(τ) = 1− e−κ̃τ
κ̃τ

C(τ) = q − qD(τ) +
[
σ

2κ̃

]2 [
κ̃τD(τ)2 + 2D(τ)− 2

]
The CIR formulas require two intermediate values:

h =
√
κ̃2 + 2β

Q(τ) =
[
(κ̃+ h)

(
ehτ − 1

)
+ 2h

]−1

Then:
C(τ) = − ω̃

τβ
(2log[2hQ(τ)] + κ̃τ + hτ)

D(τ) = 2Q(τ)
(
ehτ − 1

)
/τ

The D functions start at 1 for τ = 0 and decline from there. That means that the longer
maturities change less as r(t) changes, and so have less volatility than do the shorter maturities.
This is a pretty standard property of yield curves but did not hold over much of the last
decade. These models would probably not do very well when the short rates are so low.
Having greater volatility in the shorter rates also builds in the property that longer spreads
get lower when the short rate rises.

The C(τ), D(τ) functions depend on κ̃ and ω̃, so some analysts prefer to make these the
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primary parameters to estimate, and then calculate κ, ω by reversing the λ and ψ adjustments.
In a sense, the C(τ) and D(τ) functions basically define the model, as they are constant
over time while the short-rates evolve stochastically. Fitting the model then comes down to
deriving these functions from the risk-neutral processes. That is why these processes are often
taken as the starting point. Doing it this way also seems to help numerically with parameter
estimation, as λ and ψ then do not go into estimating the functions. That approach seems to
speed up the estimation. However we take it one step further.

For a thee-factor model with one CIR and two Vasiceks, in the completely affine case, this
method produces all the risk-neutral parameters, plus three real-world parameters: the CIR
κ and the two Vasicek ωs. We actually estimate these directly, and the λs can be backed
out later, if desired. In the essentially affine model it is similar, but now the real-world and
risk-neutral parameters can all be estimated independently, just with the CIR ω = ω̃. This
also holds for the more general models discussed later for the essentially affine risk loads. It
is easier for the software to do the estimation this way, as there are less interactions among
the parameters that are specified in advance.

In multi-factor models, the CIR and Vasicek processes rj are taken as unobserved components
of the short rate. Any number of independent processes can be combined in this way. Then
the yield curves from each model are treated as partial interest rates, and they add up to the
interest rates for each maturity. The Cj(τ) functions add over j, as do the Dj(τ)rj(t) terms.

For two correlated Vasicek processes, the Dj(τ)rj(t) terms add, but an adjustment to the
Cj(τ) functions is needed. If the correlation is ρ, Brigo and Mercurio (2001), p. 135, as well
as Troiani (2017), give the adjustment:

C(τ) = C1(τ) + C2(τ) + ρσ1σ2

κ̃1κ̃2

e−τ(κ̃1+κ̃2) − 1
τ(κ̃1 + κ̃2) +D1(τ) +D2(τ)− 1


If there are additional independent Vasicek or CIR processes, their C functions add in as
well, and so do the Dj(τ)r(t) terms.

Bolder (2001) shows the adjustment for any number of correlated Vasiceks:

C(τ) =
∑
j

Cj(τ) +
∑
i,j:j 6=i

ρijσiσj
κ̃iκ̃j

e−τ(κ̃i+κ̃j) − 1
τ(κ̃i + κ̃j)

+Di(τ) +Dj(τ)− 1


This uses the sum of the correlation adjustments across all of the binary correlations.

Multi-factor models allow a slight generalization to the idea that the sum of the vector r(t) of
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the short-rate components at time t is the actual short rate rs(t). For instance, three-factor
models allow a constant δ0 ≥ 0 and a positive three-vector δ so that rs(t) = δ0 + δ′r(t).
The default assumption, assumed above, is that δ0 = 0 and δj = 1, j > 0. We introduce
γj = δj − 1 > −1, j > 0. The result of this is to add δ0 to C(τ), and γj to Dj(τ). Dai and
Singleton (2000) argue that in a three-factor model, nothing is lost by setting γ2 = γ3 = 0.
We adopt this approach. Feldhütter (2016) estimates δ0 and γ1 as both less than 0.03. He
leaves γ2, γ3 in the model, but they both come out virtually equal to zero.

All of this provides quite a bit that can be done in closed form. Starting with one CIR and
two Vasiceks, you can add correlation to the Vasiceks, which is one more parameter. The
Vasiceks can also use essentially affine market prices of risk, adding two more parameters.
And two more come from δ0 and γ1. This gives quite a lot of flexibility to the model building.
You start off with 3 κ̃ parameters, 3 ω̃’s, 2 σ’s and β to make the C(τ), D(τ) functions. The
correlation ρ affects those, as do δ0 and γ1. Then the market-price-of-risk adjustments add
five more factors to give the real-world yield-curve processes.

The more general affine models, discussed in Appendix 1, require solving systems of ordinary
differential equations for the C(τ), D(τ) functions. There is convenient software for this,
illustrated in the sample code in Appendix 3, but it does add to model fitting time. The
fairly complicated formulas for C,D for the CIR and Vasicek models are actually solutions of
these differential equations.

In the models discussed so far, the drifts – the incremental mean changes of the processes –
depend on the immediately previous values of their processes. The more general models allow
the immediately previous values of all the processes to go into the drift of a process. The
CIR variance is a multiple of the process itself. In the more general models, every process
variance is allowed to be a linear function of the CIR process.

The CIR process is very delicate with respect to any possible generalization and is usually
left the same in the more general models. Below is an example of the evolution formula for
the first Vasicek process, assumed to be the second process in a model with one CIR and two
Vasicek processes:

dr2(t) ∼ N
(

[ω2 − κ21r1(t)− κ22r2(t)− κ23r3(t)] dt, σ2

√
1 + β2r1(t)dt

)

This lowers subsequent values of this process when any of the processes is high, and also
allows the stochastic volatility from the first process to go into each of the process variances.
We fit this model below for comparison to the closed-form models. The other Vasicek process
is like this one, but has an extra volatility term to produce correlation with this process.
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The first process is a plain CIR. With essentially affine market price of risk and the δ0, γ1

parameters, this is the maximal model we fit. Below we call this model 7k3b, because it
has 7 κ’s and 3 β’s. In the general form, the κ’s are in a 3x3 matrix K, but in this CIR,
κ12 = κ13 = 0.

Appendix 2 goes into the model fitting by MCMC. This requires specifying postulated (prior)
distributions for the parameters, but these can be changed after seeing the implied conditional
distributions of the parameters given the data. Thus they are not exactly like the Bayesian
view of prior beliefs. Historical values of rj(t) are not parameters of the model, but they
are projected as a step in parameter estimation. These are not allowed to fluctuate freely,
however. Their prior distributions are defined by the process evolution equations. Thus the
next value of a process would be normally distributed according to the evolution assumptions
of the process. (In MCMC you do not have to specify the form of the posterior (conditional
given the data) parameter distributions – they are sampled numerically based on the priors,
the likelihood, and the data.) All of this produces projections for the history of the partial
short-rate processes rj, and so also provides fitted values of the yield curve at every time
point in the data. More detail is in Appendix 2.

4 Results of Fitting
A key issue in fitting models to yield-curve data is the choice of period and data to use.
The models assume zero-coupon bonds, but there is no raw data on those. Some data
series have been constructed, for instance by the Wall Street Journal. Here we instead use
US Treasury Constant Maturity Rates, available from the St. Louis Fed FRED database
(https://fred.stlouisfed.org/categories/115). It would be rare to have bonds on the market
that mature in exactly 5 years, for instance, and the Fed estimates 5-year, etc., rates
by interpolating related yields on actual trades. These rates assume semi-annual interest
payments at whatever rates the actual bonds carry. The data is considered to be estimates
of the yields, each with a distribution around the actual rate. We assume these distributions
are all normal, with standard deviations = σy, which is estimated in the model fitting using
the differences of the fitted and observed rates.

Short-rates have come out of the very-low-yield period following the economic crash of
2008, with the Fed increasing their rates a fair amount. Fitting older data would not be
representative of the market we are in now, and even starting at the beginning of the period
of rate increases creates a problem of models with built-in upward trend. We chose to use
week-ending rates from 1/5/2018 to 6/21/2019 for maturities of 1, 2, 3, 5, 7, 10, 20, and 30
years. Rates shorter than this follow the Fed much more than the market so are not really
generated from the same process. This is largely true for the one-year rates as well, but they
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are too important to leave out. That rate was at 1.82% at the beginning of our data, and
ended 1.98%. It got as high as 2.7% along the way. All the other rates also went up for much
of this period, but ended up lower than they started. For instance, two-year rates started
at 1.95%, got as high as 2.94%, and ended at 1.79%. Thirty-year rates went from 2.8% up
to 3.42% then back down to 2.56% The Fed Funds Rate went up for a while then leveled
off, not decreasing at the end. The one-year rate seems more influenced by this, and ended
higher than the two, three and five-year rates.

We fit four models to that data. VVV is a closed-form model consisting of three correlated
Vasicek processes, with essentially affine market prices of risk. This is considered an A0(3)
model as there are three processes and none of them affect the volatility of the rates. The
other three models are A1(3) models, having a single CIR process. CVV is a completely
affine model with one CIR and two correlated Vasicek processes. CVV+ is our maximal
closed-form model, and is like CVV but is essentially affine and includes parameters for δ0

and γ1. 7k3b is the overall maximal ODE model that we fit. It has 7 κ parameters – all
but κ12, κ13 – and all three β parameters. The CVV model has 14 parameters – 3 for each
risk-neutral process, 3 additional real-world parameters, ρ, and σy. VVV has 19 parameters,
so 5 more: 2 more correlations, and 6 real-world parameters – a κ and a ω for each process.
CVV+ has 18 parameters. It only has 1 correlation, but has δ0 and γ1 as well as 5 real-world
parameters, as ω̃1 = ω1. 7k3b actually has 10 more parameters than this, so 28 in total.
Compared to CVV+ it has 4 more κ̃s, 2 more βs, and 4 more κs.

Table 7 shows the fitted parameters for each model, along with: σy; the implied real-
world model means µj for each process and their implied total short rate; the loo penalized
loglikelihood goodness-of-fit measure for MCMC fits; the loo penalty for parameters (difference
from LL); and the implied loglikelihood.

The VVV model does not fit as well as any of the CIR models, according to loo. The Vasicek
and CIR yield curves can have somewhat different shapes, which could be contributing to this.
Also stochastic volatility may be a feature of the data, and Vasicek models do not capture
that. The essentially affine version of the CVV model, including the δ0, γ1 adjustments
to the C(τ), D(τ) functions, is better-fitting than the basic version. The full model, even
when considering all the additional parameters, is better yet, both in loo and the residual
standard deviation σy. The 10 additional parameters make the model much more flexible,
and apparently this data can make use of that flexibility.

All of the projected short-rates (here for 3 processes and 77 data points, so 231 in total) are
considered parameters for testing goodness of fit, in addition to the model parameters and
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Table 7: Fitted Models
Variable VVV CVV CVV+ 7k3b
ω̃1 -30.3 1.33 1.19 0.113
ω̃2 -0.627 -62 -19.28 -2.758
ω̃3 30.3 62.2 19.91 1.649
κ̃11 0.07 0.027 0.165 0.007
κ̃22 1.076 0.063 0.07 0.330
κ̃33 0.055 0.052 0.047 0.224
κ̃21 - - - 0.047
κ̃23 - - - 0.122
κ̃31 - - - -0.708
κ̃32 - - - -0.933
σ1 1.64 1 1 1
σ2 0.83 2.58 1.17 0.159
σ3 1.92 2.9 1.31 0.071
β1 - 1.85 1.19 9E-05
β2 - - - 1.078
β3 - - - 2.703
ω1 24.1 1.33 1.19 0.113
ω2 -0.296 -0.596 7.045 -6.626
ω3 -19.2 0.43 -22.272 2.908
κ11 0.972 2.432 1.8667 0.012
κ22 1.906 - 0.7369 0.918
κ33 1.0534 - 2.4443 1.094
κ21 - - - 0.023
κ23 - - - -0.678
κ31 - - - 0.133
κ32 - - - -0.228
ρ12 0.17 - - -
ρ13 -0.93 - - -
ρ23 -0.47 -0.96 -0.81 -0.65
δ0 - - 0.021 0.253
γ1 - - -0.032 0.001
σy 0.025 0.023 0.023 0.019
µ1 9.41 0.55 0.64 9.52
µ2 -0.46 -13.05 9.36 -5.7
µ3 -6.35 6.2 -9.09 -0.05

Mean short rate 2.6 -6.3 0.91 4.02
loo 1312.9 1324.7 1333.3 1462.1

penalty 134 175.7 184.2 183.5
LL 1446.9 1500.4 1517.5 1645.6
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the market prices of risk. Thus there are between 245 and 259 parameters that go into the
parameter penalty. The penalties are much less than this, and are not always higher with
more parameters.

The loo penalty is not calculated as a multiple of the number of parameters but rather
comes from a cross-validation approach. The penalized loglikelihood is an estimate of the
loglikelihood (LL) of the fitted model for a new independent sample. The penalty is how
much lower the penalized likelihood is from the actual LL. It is an estimate of the sample
bias, which tends to increase for more parameters, but not in a readily-predictable way for
non-linear models like these. The penalties here are less than the actual number of parameters
partly because the estimated historical short-rates are highly constrained and do not act like
independent parameters.

Ye (1998) defines the generalized degrees of freedom used by a data point in a nonlinear
model as the derivative of the fitted point wrt the actual data point. These derivatives
constitute the diagonal of the hat matrix in linear models. The sum of the resulting dofs is
the effective number of parameters, and these can then be penalized by AIC, etc. Constrained
parameters do not give the data points much power to move the fitted values towards them,
so the derivatives and the effective number of parameters are reduced. Something similar
happens in loo. The loglikelihood at a point is penalized by how much it would be reduced if
that point were left out of the sample. Again if the parameters are highly constrained, the
loglikelihood at a point is not affected much by leaving it out of the estimation.

Figures 10 and 11 show the fitted short rates, the C(τ), D(τ) functions, and the resulting
rate fits for the 7k3b model.

5 Applying Tests
We now apply several of the tests from Section 2 to the VVV and 7k3b models for illustration.
We first extracted the sampled parameter distributions from the Stan output for each model.
Then we simulated two years of future rates for the two models, and these simulated yield
curves were the used for the tests. This is similar to the common situation of the insurer
only having the generated scenario sets and not the model fitting comparisons.

The simulations started from the sampled parameter distributions, which is a way of including
parameter uncertainty. Each simulation starts by drawing a parameter sample at random.
Then the ending values of the three processes in that sample are the starting previous values
for their first simulations. The simulations are done by computing the drift and the variance
using the real-world processes, then doing a random draw for the next value of each process.
The C and D functions (already in the parameter samples) are based on the risk-neutral
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Figure 10: Projected Historical Short Rates and C, D Functions
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Figure 11: Actual vs. Fitted Yield Curves

processes and are not simulated except as implied by the draw of the sample. We simulate at
monthly intervals for two years for each process, and the two year-ending yield curves are
used in the tests.

Table 8 shows the moments of the simulated rates for the two models by year. The mean
yield curves are basically upward for the VVV model, while the 7k3b model projects the
current curve shape, which is high on both ends and low in the middle, which seems better.
The standard deviations generally decline with maturity, which is probably all you can look
for there at this point, as the right shape of the volatilities by maturity is still emerging. The
skewness is moderately negative for the VVV model, indicating more downward risk in yields.
It is also negative for the longer rates in the 7k3b model, but is positive for the shorter rates.
That could be coming from the recent experience, which had movements like that.

Table 9 has the spread regressions for the 3-year – 30-year spreads as a function of the 1-year
rates and the Campbell-Schiller regressions for 2 and 3-year rates. The spread regressions’
slopes and standard errors are compatible with recent history for 7k3g but are pretty small
for VVV. The expected slopes for the Campbell-Schiller regressions are negative. That is all
consistent with the targets for these tests, and what we would want for the exact magnitudes
of the slopes is not clear beyond those signs.

We did principal component analysis on the actual data, the fitted means for all four models,
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Table 8: Scenario Moments
Maturity 1 2 3 5 7 10 20 30
VVV Year 1
mean 1.90 1.87 1.89 1.97 2.06 2.18 2.48 2.70
std 0.40 0.44 0.46 0.47 0.47 0.45 0.38 0.32
skw -0.55 -0.50 -0.45 -0.41 -0.39 -0.37 -0.35 -0.34
VVV Year 2
mean 1.94 1.92 1.95 2.03 2.12 2.24 2.52 2.73
std 0.53 0.56 0.58 0.58 0.57 0.54 0.45 0.38
skw -0.86 -0.77 -0.71 -0.64 -0.61 -0.59 -0.55 -0.53
7k3b Year 1
mean 2.74 2.56 2.45 2.38 2.42 2.51 2.71 2.86
std 0.82 0.76 0.76 0.73 0.68 0.60 0.45 0.40
skw 0.18 0.04 -0.08 -0.23 -0.28 -0.30 -0.30 -0.30
7k3b Year 2
mean 3.29 2.85 2.57 2.32 2.30 2.39 2.65 2.82
std 1.47 1.01 0.90 0.93 0.92 0.83 0.59 0.49
skw 0.94 0.68 0.24 -0.85 -1.20 -1.27 -1.02 -0.78

Table 9: Scenario Regressions
Spread Slope Spread SE Campbell-Schiller Slope

VVV Year 1 (2 Year τ for C-S) -0.42 0.01 -0.99
VVV Year 2 (3 Year τ for C-S) -0.29 0.01 -1.63
7k3b Year 1 (2 Year τ for C-S) -0.61 0.06 -2.63
7k3b Year 2 (3 Year τ for C-S) -0.45 0.09 -1.99
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and the two years of simulated scenarios for the VVV and 7k3b models. For this we used the
R function prcomp, which takes as input an array, with the variables in the columns and
the observation times in rows. The first three components explain the vast majority of the
variation in the data. An indicator of the degree of complexity of the yield curves is provided
by the percentage of variance explained by the third principal component. This is small for
the short time period we have, but was greatest in the data itself, and was higher for the
fitted values than for the simulated scenarios. The VVV model looks too weak in the third
PC’s proportion of variance in the simulations. Table 10 shows the results.

Conclusion
The last 30 or 40 years of yield curve history, instead of being the new normal, are starting
to look more like a one-time aberration, driven by the post-WWII financing needs. We are
now seeing interest rates more like the 1870 – 1970 period, where the long rates rarely got
above 4%. This makes constructing tests based on yield-curve standard behavior challenging.

We started by reviewing the tests that had been used historically in the related literature.
Most of them are still useful with updated targets, although these are fairly broad given the
uncertainty about the properties of interest rates in the emerging era. We applied the tests
to a few models fit to recent data, and the models did reasonably well in the context of these
broad guidelines, with the better-fitting model also doing better on the tests.

The models used were affine models, which build up the yield curves as weighted sums of
partial short-rate processes. The weights for this are time invariant but are a bit complicated to
calculate, and for the most general models require numerical solutions of ordinary differential
equations. Several closed form models where the differential equations have been solved in
closed form provide reasonable fits, but not as good as the more general models.

MCMC estimation provides a direct way to fit the models, and produces fitted values for the
historical processes.
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Table 10: PCA Comparisons
data PC1 PC2 PC3
Standard deviation 0.657 0.254 0.083
Proportion of Variance 0.857 0.128 0.014
Cumulative Proportion 0.857 0.985 0.999

fit vvv PC1 PC2 PC3
Standard deviation 0.655 0.251 0.070
Proportion of Variance 0.863 0.127 0.010
Cumulative Proportion 0.863 0.990 1.000

fit cvv PC1 PC2 PC3
Standard deviation 0.656 0.252 0.074
Proportion of Variance 0.862 0.127 0.011
Cumulative Proportion 0.862 0.989 1.000

fit cvv+ PC1 PC2 PC3
Standard deviation 0.655 0.253 0.074
Proportion of Variance 0.861 0.128 0.011
Cumulative Proportion 0.861 0.989 1.000

fit 7k PC1 PC2 PC3
Standard deviation 0.657 0.254 0.079
Proportion of Variance 0.859 0.128 0.013
Cumulative Proportion 0.859 0.987 1.000

vvv yr1 PC1 PC2 PC3
Standard deviation 1.189 0.187 0.062
Proportion of Variance 0.973 0.024 0.003
Cumulative Proportion 0.973 0.997 1.000

vvv yr2 PC1 PC2 PC3
Standard deviation 1.481 0.211 0.072
Proportion of Variance 0.978 0.020 0.002
Cumulative Proportion 0.978 0.998 1.000

7k yr1 PC1 PC2 PC3
Standard deviation 3.067 0.749 0.165
Proportion of Variance 0.789 0.203 0.009
Cumulative Proportion 0.789 0.991 1.000

7k yr2 PC1 PC2 PC3
Standard deviation 1.975 1.734 0.222
Proportion of Variance 0.561 0.432 0.007
Cumulative Proportion 0.561 0.993 1.000
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Appendix 1 – General Affine Models

A1a Matrix Notation
We follow the notation of Dai and Singleton (2000) for affine models. The model combining
two Vasiceks and one CIR is classified as an A1(3) model. That means that there are three
processes, with one of them affecting the variance – in this case the CIR process. For
consistency with more general models, we replace κj with κjj and σj with σjj. Then our
model, with the CIR model first, can be written:

dr1(t) ∼ N
(

[ω1 − κ11r1(t)]dt,
√
β1r1(t)dt

)

dr2(t) ∼ N
(
[ω2 − κ22r2(t)]dt, σ22

√
dt
)

dr3(t) ∼ N
(
[ω3 − κ33r3(t)]dt, σ33

√
dt
)

corr (dr2(t), dr3(t)) = ρ

While this is a convenient way to show the correlation, more calculation detail is needed for
use as a prior or for simulation. The bivariate normal prior can be used for the two Vasicek
processes, specifying their covariance matrix as:

Cov(dr2(t), dr3(t)) =
 σ2

22 ρσ22σ33

ρσ22σ33 σ2
33

 dt
We do that in the code. For simulation, it is useful to be able to show these evolution equations
in terms of independent standard normal draws. For this we write drj(t) = µj(t)dt+zj(t)

√
dt,

where zj(t)dt is a mean zero normal variable. Also we define εj(t) to be a standard normal
random variable observed at time t. Then the vector z(t)dt that combines the three processes
can be expressed as:

z(t)
√
dt =


√
β1r1(t) 0 0

0 σ22 0
0 ρσ22

√
1− ρ2σ33



ε1(t)
ε2(t)
ε3(t)

√dt

This now can be set up in matrix notation as the evolution of a vector of three processes.
Let r(t) be a column vector of the three processes, with dr(t) ∼ µ(t)dt+ z(t)

√
dt, and vector

of standard normals ε(t). Then the general A1(3) model diffusion can be expressed by:

µ(t)dt = [Ω−Kr(t)]dt
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z(t)
√
dt = ΣD(t)ε(t)

√
dt

where: K is the 3x3 matrix of κi,j, with κ12 = κ13 = 0; Ω is a 3-vector; Σ is the matrix
of σi,j values, with σ11 = 1, σ12 = σ13 = 0 and ρ combined into the σ coefficients; D(t) is
a diagonal matrix with the three values

√
β1r1(t),

√
α2 + β2r1(t),

√
α3 + β3r1(t), with all βj

non-negative and β1 positive. This allows the CIR process to also contribute to the variances
of the other processes. D2 is a variance factor, scaled by Σ2. We are going to assume that
α2 = α3 = 1 in the fitting, as the σ’s can pick up a lot of the α effects.

Such general A1(3) models provide for interaction among the processes. For the two Vasicek
processes, σ32 takes the place of ρσ22. We set σ23 = 0 for identifiability, but this is not always
done. The off-diagonal κ terms make a Vasicek process’s mean movements responsive to the
current levels of both other processes, as well as its own. That cannot be done for the CIR
process, as it can easily lose its arbitrage-free property with any adjustments.

Some constraints on the parameters are needed for identifiability. Dai and Singleton (2000)
set up a canonical form of the model that builds in numerous constraints, but it is not clear
how our original three-factor model would be expressed in it, so we rely instead on the use of
priors on the parameters to get unique parameters. The yield curves are built up from the
short rates using market prices of risk. The CIR and Vasicek market prices of risk discussed
previously are special cases. Here we follow Christensen (2015) who clarifies the notation
and provides examples.

A1b Market Price of Risk and Bond Yields
The basic form of market price of risk is the completely affine risk premium. It uses a 3-vector
Λ(t) = D(t)λ, where λ is a 3-vector of constants. The risk-neutral process is produced by
a change in the drift term. ΣD(t)Λ(t)dt is subtracted from the drift [Ω−Kr(t)]dt. Some
algebra on this can then be used to express the risk-neutral drift term as [Ω̃− K̃r(t)]dt, and
this is used to compute the yield curve, as it was in the three-factor model above.

The term subtracted is similar to the stochastic term of the process. We need to compute:

Ω̃dt− K̃r(t)dt = Ωdt−Kr(t)dt− ΣD(t)Λ(t)dt

The right side of this is already the risk-neutral drift, but the formulas for the yield curve use
the notation of the left side, so we have to put it in that form. For the completely affine case,
ΣD(t)Λ(t)dt = ΣD(t)2λ, where D(t)2 is diagonal with elements αj + βjr1(t). Then D(t)2λ

is the vector with elements λj[αj + βjr1(t)], which means that ΣD(t)Λ(t) is a 3-vector, but
with α1 = 0. Each element is a sum of multiples of αj and βjr1(t) terms. The terms with
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αj’s are subtracted from the ωj’s terms, and this gives Ω̃. All the factors with βjr1(t)’s are
subtracted from the drift, so the coefficients of rj(t) are added to K to produce K̃. Also note
that the stochastic part of the process does not change in the risk-neutral process.

Dai and Singleton (2000) solve some of this for any A1(3) model. Let L be the diagonal matrix
with elements λjβj and H be the vector of λjαj . Then K̃ = K + ΣL, and Ω̃ = Ω− ΣH. In
practice we reverse this for estimation efficiency, so we start with the risk-neutral process
and get the real-world process by K = K̃ − ΣL, and Ω = Ω̃ + ΣH.

Above we used formulas from Brigo and Mercurio (2001) to compute the C(τ) and Dj(τ)
functions in the correlated Vasicek case. Troiani (2017) illustrate these formulas for the
essentially affine case. For more general models, C and Dj functions are not closed form and
need to be computed numerically, from systems of ordinary differential equations (ODEs).
Fast software for solving ODEs is widely available. The closed-form calculation is considerably
faster, but solving the system numerically is feasible on personal computers. That’s why
these functions are considered to be “almost closed form.”

The system for the A1(3) models is expressed in terms of functions A(τ) and Bj(τ), with
C(τ) = −A(τ)/τ and Dj(τ) = Bj(τ)/τ . B is the vector of the Bj’s. Let Q(τ) =
Σ′B(τ)B(τ)′Σ, which is 3x3 and can be considered to be the square of the three-vector
Σ′B(τ). The jth element on the diagonal of Q is the square of the jth element of Σ′B(τ),
so Qjj = ([Σ′B(τ ]j)2. Also let β0j be the vector consisting of βj followed by two zeros. The
equations are then:

dA(τ)
dτ

= −Ω̃′B(τ) + 1
2

3∑
j=1

([Σ′B(τ)]j)2αj

dB(τ)
dτ

= 1− K̃ ′B(τ)− 1
2

3∑
j=1

([Σ′B(τ)]j)2β0j

Here 1 is a vector of 1’s. The starting values are A(0) = Bj(0) = 0.

We have been assuming that the sum of the vector r(t) of the three short-rate components
is the actual short rate rs(t). But affine models allow a slight generalization of that with a
constant δ0 and a three-vector δ so that rs(t) = δ0 + δ′r(t). The differential equations above
are based on the default assumptions that δ0 = 0 and δ = 1. We set γ = δ − 1. Then the
differential equations become:

dA(τ)
dτ

= −Ω̃′B(τ) + 1
2

3∑
j=1

([Σ′B(τ)]j)2αj − δ0
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dB(τ)
dτ

= γ + 1− K̃ ′B(τ)− 1
2

3∑
j=1

([Σ′B(τ)]j)2β0j

This ends up subtracting δ0τ from A(τ) and adding γτ to B(τ). Thus C(τ) is increased by
δ0 and Dj(τ) is increased by γj. Dai and Singleton (2000) assume δ0 ≥ 0 and γ2 = γ3 = 0.
Feldhütter (2016) estimates δ0 and γ1 as both less than 0.03. These same adjustments to C
and D can be done for the closed form cases as well, as discussed before.

A1c Essentially Affine Market Price of Risk
Analysts have generally concluded that completely affine risk premiums are overly restrictive
on yield-curve dynamics. Recall that these subtract ΣD(t)Λ(t)dt from the drift [Ω−Kr(t)]dt,
where D(t)Λ(t) is set to D(t)2λ, with λ a 3-vector. Greater flexibility is provided by the
essentially affine risk premium, with D(t)Λ(t) = D(t)2λ + JΨr(t). Here J is a diagonal
matrix with elements 0, α−1/2

2 , α
−1/2
3 , and Ψ is a 3x3 matrix with the first row all zeros. This

makes D(t)Λ(t) =

β1r1(t) 0 0

0 α2 + β2r1(t) 0
0 0 α3 + β3r1(t)



λ1

λ2

λ3

+


0 0 0
0 α

−1/2
2 0

0 0 α
−1/2
3




0 0 0
ψ21 ψ22 ψ23

ψ31 ψ32 ψ33



r1(t)
r2(t)
r3(t)



Multiplying by Σ shows that (0, σ22λ2α2, σ33λ3α3)’ is subtracted from Ω, all of the other
pieces are added to K. Alternatively, starting with the risk-neutral coefficients can produce
the real-world coefficients.

A1d Our maximal model
The maximal model that we fit, which we call 7k3b, is the full general model with the
following restrictions:

• Σ is diagonal except for σ32 = ρσ22, with σ33 =
√

1− ρ2σ3, where σ3 is the standard
deviation of the original correlated second Vasicek process.

• σ11 = 1

• κ12 = κ13 = 0

• α2 = α3 = 1
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This means that in the model dr(t) ∼ µ(t)dt+ z(t)
√
dt

µ(t) =


ω1

ω2

ω3

−

κ11 0 0
κ21 κ22 κ23

κ31 κ32 κ33

 r(t)

z(t) =


1 0 0
0 σ22 0
0 σ32 σ33




√
β1r1(t)ε1(t)√

1 + β2r1(t)ε2(t)√
1 + β3r1(t)ε3(t)

 =


√
β1r1(t)ε1(t)

σ22

√
1 + β2r1(t)ε2(t)

σ32

√
1 + β2r1(t)ε2(t) + σ33

√
1 + β3r1(t)ε3(t)


There are thus 7 κs and 3 βs. The variances of these processes over a short time dt are:
β1r1(t), σ2

22(β2r1(t) + 1)dt, [σ2
32(β2r1(t) + 1) + σ2

33(β3r1(t) + 1)]dt. The last is from the sum of
two normal distributions. The covariance of the two Vasicek processes is σ22σ32(1 +β2r1(t))dt.

The risk-adjustment for the essentially affine version for this model comes from

D(t)Λ(t) =


λ1β1r1(t)

λ2 + λ2β2r1(t)
λ3 + λ3β3r1(t)

+


0

21r1(t) + ψ22r2(t) + ψ23r3(t)
31r1(t) + ψ32r2(t) + ψ33r3(t)


Then

ΣD(t)Λ(t) =


λ1β1r1(t)

σ22λ2 + σ22λ2β2r1(t)
σ32λ2 + σ32λ2β2r1(t) + σ33λ3 + σ33λ3β3r1(t)




0
σ22ψ21r1(t) + σ22ψ22r2(t) + σ22ψ23r3(t)

σ32ψ21r1(t) + σ32ψ22r2(t) + σ32ψ23r3(t) + σ33ψ31r1(t) + σ33ψ32r2(t) + σ33ψ33r3(t)


From above, the r2 mean for this model is:

µ2(t) = ω2 − κ21r1(t)− κ22r2(t)− κ23r3(t)

Starting with the risk-neutral version, we can see that ω2 = ω̃2 + σ22λ2. Also, κ21 =
κ̃21 − σ22(λ2β2 + ψ21), from the middle row of z(t). The other coefficients are calculated
similarly.

As the real-world parameters are linear combinations of the risk-neutral parameters and
the market-price-of-risk parameters, we can fit the risk-neutral and real-world parameters
separately and then back out the market-price-of-risk parameters if we want them. It is just
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necessary to keep ω1 = ω̃1. This seems to make it easier and faster for the Stan software.
Perhaps Stan uses numerical derivatives of the posterior probabilities with respect to the
parameters as a fitting step, and having the real-world and risk-neutral parameters related
algebraically complicates this.

The reverting mean of the CIR process is µ1 = ω1/κ11, as it is for any CIR process. For the
Vasicek processes, the changes to the next period will have mean zero if all the processes
are at their means. A little algebra can give these means. First, let w2 = ω2 − κ21µ1 and
w3 = ω3 − κ31µ1. Also define κ∆ = κ22κ33 − κ23κ32. Then µ2 = (κ33w2 − κ23w3)/κ∆ and
µ3 = (κ22w3 − κ32w2)/κ∆.

The long-term variances of the Vasicek processes, calculated as expected incremental variance
for one year divided by twice the speed of mean reversion, come out: 0.5σ2

22 (β2ω1/κ11 + 1) /κ22

and 0.5 [σ2
32(β2ω1/κ11 + 1) + σ2

33(β3ω1/κ11 + 1)] /κ33.

A1e Unspanned Stochastic Volatility (USV)
In an A1(3) model, or any model that includes a single CIR component, the current variance
of the CIR piece is a constant multiple of the latest value of that process, and the other
variances are linear functions of the CIR process. That means that the variance of a rate
can be expressed as a linear function of all the rates. This is also the case when there are
multiple CIR processes. The value of the processes at any point in time can be estimated
from the C(τ), Dj(τ) values at each maturity and the current rates. Thus the variance at
any time can be well estimated by a regression on the rates.

This turns out not to be true of actual rates. Typically a regression like that has an R2

of about 20%. Collin-Dufresne, Goldstein, and Jones (2003) call this situation “unspanned
stochastic volatility.” Knowing the yield curve at a given time is not enough to know the
variances of the rates. Since it would be enough in A1(3) generated rates, these models have
too close a relationship among the rates and their volatilities.

Collin-Dufresne, Goldstein, and Jones (2003) then look for affine models that have stochastic
volatility but for which the variance cannot be computed as a linear function of the rates.
They come up with a closed-form A1(3) model with a lot of related parameters which interact
to produce D(τ) = 0 for the CIR process. Then the rates are not a linear function of the CIR
process, even though its variance does affect the other processes. Apparently their model did
not fit very well, however. Because only two factors enter into the rate calculation, it acts
more like a two-factor model, for PCA for example.

Joslin (2018) comes up with general constraints for an affine model to display USV, and gives
an A1(4) example. Filipovic, Larsson, and Statti (2018) work out conditions for an A3(3)
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model – 3 CIRs – to have USV. USV models do not necessarily fit better – this is more of a
constraint, like being arbitrage-free. We found in our own fitting that mistakes in our code
that gave models that were not arbitrage-free often produced better fits. This is typical for
constraints. Similarly, adding more data to the fit usually makes the fit a bit worse for the
original smaller dataset.

Appendix 2 – Fitting models by MCMC
MCMC (Markov Chain Monte Carlo) estimation simulates sample sets of parameter estimates.
It requires a postulated distribution for each parameter and samples from the conditional
distribution of the parameters given the data, using efficient numerical techniques. Sometimes
it is presented in a Bayesian context, with the postulated distributions labeled as the priors
and the conditional distributions called posteriors. However these priors often have no
connection to any prior beliefs, or any subjective view of probability, and Bayes Theorem
is not needed to sample from the conditional distributions. The postulated distributions
can be revised in response to the conditional distributions they generate. MCMC can be
done in a frequentist context if the parameters are instead treated as being random effects
with the postulated distributions. We will use the prior/posterior terminology, but with the
understanding that they are not the same as prescribed by traditional Bayesian methods,
and also have a frequentist interpretation.

MCMC has goodness of fit measures analogous to the AIC, BIC, etc., the best one being the
leave-one-out (loo) loglikelihood. From the sample of estimates it is possible to numerically
approximate what the likelihood would be for a point from a fit done with the data excluding
that point – basically by giving more weight to the parameter sets that fit worst at this point.
Loo is a good estimate of what the loglikelihood would be for an entirely new sample using
the parameters fit to this sample, which is the goal of the AIC measure as well. All of this is
in line with the idea that model estimation should optimize the fit to the entire population
instead of optimizing the fit to the given sample.

MCMC fitting of yield-curve models includes an intermediate calculation of the rj(t) values
for each process j at each point in time t. These are not parameters of the model per se,
but are still given priors and produce posteriors. The estimation assumes that there is noise
in the observation process. The interest rates by maturity produced by a model are the
estimated mean values, and the data is (typically) assumed to be normally distributed with
those means and variance σy. The likelihood function is calculated from those probabilities.

In the CVV model, we start with four parameters for each process: κ̃, ω̃, ω and σ or β. Those
are all given wide-enough priors so that the priors do not restrict the conditional distributions.
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Sometimes the priors have to be narrowed to exclude poor-fitting local maxima, and possibly
to speed the calculations. We use normal priors, but for parameters that must be positive,
we use gamma priors or give their logs normal or uniform priors. This eliminates a problem
with wide priors over-estimating positive parameters. A similar prior is used for σy. The
prior for ρ is initially uniform(−1, 1). These parameters are then used to calculate the C(τ)
and Dj(τ) functions according to the formulas above.

The first rj(t) for each process is given the prior of the long-term distribution of the process
defined by the parameters, so is gamma with mean ω/κ and variance βω/2 for the CIR, and
is normal(ωj/κj, σ2

j/2κj) for the Vasicek processes. This is like assuming that the process
has been going a long time up to that point.

Then the sample value at rj(t) is used to produce the prior for the process at the next
period rj(t + dt), using the evolution equations for the processes. Each Vasicek prior for
rj(t+ dt) is normal with mean rj(t) + [ωj − κjrj(t)]dt and variance σ2

jdt. The CIR process
is approximated by a gamma with mean and variance µ = r(t)e−κdt + κ

(
1− e−κdt

)
/ω and

V = β2
(
1− e−κdt

) [
2r(t)e−κdt + c

(
1− e−κdt

)]
/2κ. This has the same mean and variance

as the CIR evolution equation, but for non-instantaneous jumps, the gamma is a better
approximation. The Vasicek priors are bivariate normals with correlation = ρ.

MCMC simulates the conditional distribution of the parameters given the data. For each
simulated set of parameters, it simulates a value of each rj(t+ dt) from the parameters and
all the rj(t)’s for the processes. Again this gives the conditional parameter distribution given
the data. The different processes can end up with correlated parameters. Finally the fitted
parameters and short rates are taken to be the means of the conditional distributions.

There are some model diagnostics. Each parameter has a convergence measure Rhat that
will be close to 1.0 if the estimates have converged. We also check to see if the posterior
distributions are pushing against the boundaries of the priors. If so, the priors are adjusted
to accommodate. There are further diagnostics when parameters do not converge. Finally,
loo can be used to compare alternative models.

A2a Estimation Using Ordinary Differential Equations - ODEs
For MCMC model estimation, the prior for dr2(t), r3(t) given r(t) is bivariate normal. To get
the moments for this, we expand the evolution matrices. This gives:

µ2(t)dt = [κ21(θ1 − r1(t)) + κ22(θ2 − r2(t)) + κ23(θ3 − r3(t))]dt

z2(t)
√
dt = σ21

√
β1r1(t)dtε1(t) + σ22

√
α2dt+ β2r1(t)dtε2(t) + σ23

√
α3dt+ β3r1(t)dtε3(t)
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and:

µ3(t)dt = [κ31(θ1 − r1(t)) + κ32(θ2 − r2(t)) + κ33(θ3 − r3(t))]dt

z3(t)
√
dt = σ31

√
β1r1(t)dtε1(t) + σ32

√
α2dt+ β2r1(t)dtε2(t) + σ33

√
α3dt+ β3r1(t)dtε3(t)

Using E[(X − EX)2] for the variance shows that it is the expected value of the stochastic
part squared. All the terms of that that are mixtures of different εj’s have mean zero. The
expected squared of a mean-zero normal is its variance, so, for a short time period dt, we
have:

V ariance(dr2(t)) = σ2
21β1r1(t)dt+ σ2

22(α2 + β2r1(t))dt+ σ2
23(α3 + β3r1(t))dt

V ariance(dr3(t)) = σ2
31β1r1(t)dt+ σ2

32(α2 + β2r1(t))dt+ σ2
33(α3 + β3r1(t))dt

These depend on r(t), the CIR process, but for an A1(3) model, the variances do not depend
on the Vasicek processes.

We calculate the covariance using E[(X − EX)(Y − EY )]. This is the product of the two
stochastic terms, and again any mixed products have mean zero. This gives the incremental
covariance:

Cov(dr2(t), dr3(t)) = σ21σ31β1r1(t)dt+ σ22σ32(α2 + β2r1(t))dt+ σ23σ33(α3 + β3r1(t))dt

For the prior for the starting point of each process, we again assume that each one has
the long-term distribution for the process. The mean for each is its θj, the reverting mean.
The variances are the one-year variances (i.e., for dt = 1) divided by twice the speed of
mean reversion κjj, where for this purpose, r1 takes its mean value θ1. By convention, mean
reversion is expressed in annual terms.

Stan has a solver for systems of differential equations. You write the system as a single
function at the top of the code, in the functions section. It gives as output the vector of
left-hand sides of the system – here the d/dτ terms. We need C(τ) and Dj(τ) functions for
each maturity τ , but for a given set of parameters, these are fixed across the observation
times. Thus the function takes as arguments the current values of: τ, K̃, Ω̃,Σ, β0j, j = 1, 2, 3.
This does not require r(t). Then to solve the system, the differential-equation solver function
is applied to the output of the differential equation function. For some reason, Stan’s name
for this solver is “integrate_ode_rk45.”
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Appendix 3 – Code
Stan and R code is up on the CAS GitHub site. A few comments are below.

Stan is run in R and other platforms. Some R code is needed for that, but most of the code
is for the models in Stan. It is easy to have the R code open in RStudio, then run a few lines
as needed. What is up is typical R code for our models. We are not Stan experts and just
reuse and modify code from online examples. This is undoubtedly inelegant and probably
inefficient. We are probably using vectors and matrices when arrays would be better, looping
more than we need to, etc. But the code can give some idea about how to approach MCMC
fitting for these models. There is some R code up, but most of the code is for rstan, the R
implementation of Stan. The R code includes some variations for different models.

The introductory Stan file is for a single CIR process. The structure of a Stan file is to first
read in variables already populated from the R space, then define all the variables to be
used. That takes a fair amount of real estate in a Stan file, and is needed because it will be
translated to C++ then compiled. We make the risk-neutral parameters the first ones to
estimate, and the model begins with calculating the C and D functions. Then the real-world
parameters are defined, and from these the processes at each point are estimated. In the CIR
file that just uses the CIR evolution equation to define the prior for the CIR process at each
time point, conditional on the previous point. The gamma distribution approximation is
used for that. From all this, the fitted values are calculated, then the model for the data is
just normal in these values. Finally the likelihoods are computed to pass to loo.

We also put up this model done by solving the differential equations, as an example of how
to do that, although no one ever would as the equations have already been solved in closed
form. To do it, you start with a new functions section above the data section, and define the
system of differential equations there. We call that system AB_eq, as it solves for the A and
B functions. These produce the C and D functions after the system has been solved. It is
solved by the function integrate_ode_rk45. This takes as arguments the name of the system
to be solved, starting values at τ = 0 – here a vector of zeros, the values of the risk-neutral
parameters, the precision wanted for the iteration, and some other arguments. The latter are
not well documented and are required even though not used, so we put in some (obscure)
values that we found in Stan examples, and it all seems to work well. The values of the
parameters are strung out in a linear array to pass to the function, which then puts them
back into vectors, etc. There is probably a simpler way to do that, but we got it working by
doing it, so kept doing it that way. The intermediate W and h calculations for CIR are not
needed here, as those are for solving the system in closed form. All the other parts of the
code after getting the C and D functions are the same as in the closed-form case.
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For the three-factor models, the Vasicek formulas and the correlation adjustment are needed.
There is code provided for the CVV+ essentially affine model with the δ and γ terms included,
and for the 7k3b model. The correlation adjustment is not needed for the 7k3b model, since it
solves for C and D numerically. The priors for it are what gave the fit above, but alternative
priors are shown as comments. They gave an even better fit, but the priors are very narrow,
and with much deviation from these ranges the model deteriorates rapidly. That makes them
suspect as a fluke set of priors that works for the current data but is not really representative
of a longer-term population, but both sets are worth trying. Probably for new data they
would both have to be modified after seeing how they perform. The posterior histograms can
help show if the parameters are trying to move in one direction or another from the priors
used.

Some miscellaneous R code is shown below for defining the paras variable used in the print
and plot statements, and for extracting the simulated samples for use in simulating future
scenarios.

#for 7k3b model
paras <- c("kaprn","kaprn21","kaprn23","kaprn31","kaprn32","omrn","lb1","lb2",
"lb3","ls2","ls3", "corr","kap", "kap21","kap23","kap31","kap32","om","ldel","gam1")

#for CVV_plus model
paras <-
c("kaprn", "omrn", "lb", "ls2", "ls3", "sigma_y", "corr", "kap", "om","ldel","gam1")

us1_ss = extract(us_1, permuted = FALSE) # this gets all the samples
#Need permuted = FALSE to get it in array form
dim(us1_ss) # shows dimensions, like 1000 x 4 x 2000 for 1000 sampling draws,
#4 chains and 2000 things computed
us1_ss = us1_ss[,,c(1:28,105,182,259:277,286:336)]
# keeps only variables that are needed for 7k3b;
#for simulation. Here 105, 182, 259 were the last (90th) period's r values
#these numbers would change with more periods fit; also taus (278-285) left out
#careful though as arrays show in different order than in print output
#just keeping 1 chain will keep variables names to check: us1_ss = us_1_ss[,1,]
dim(us1_ss) = c(4000,100) # collapses first two dimensions (samples and chains)
write.csv(us1_ss, file="samples_out.csv")
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