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December 2005 
 
TO:  Members of the American Academy of Actuaries and Other Persons Interested in 

Risk Classification (for All Practice Areas) 
 
FROM: Actuarial Standards Board (ASB) 
 
SUBJ:  Actuarial Standard of Practice (ASOP) No. 12 
 
 
This booklet contains the final version of a revision of ASOP No. 12, now titled Risk 
Classification (for All Practice Areas).  
 
 
Background 
 
In 1989, the Actuarial Standards Board adopted the original ASOP No. 12, then titled 
Concerning Risk Classification. The original ASOP No. 12 was developed as the need for more 
formal guidance on risk classification increased as the selection process became more complex 
and more subject to public scrutiny. In light of the evolution in practice since then, as well as the 
adoption of a new format for standards, the ASB believed it was appropriate to revise this 
standard in order to reflect current generally accepted actuarial practice. 
 
 
Exposure Draft 
 
The exposure draft of this ASOP was approved for exposure in September 2004 with a comment 
deadline of March 15, 2005. Twenty-two comment letters were received and considered in 
developing the final standard. A summary of the substantive issues contained in the exposure 
draft comment letters and the responses are provided in appendix 2. 
 
The most significant changes from the exposure draft were as follows: 
 
1. The task force clarified language relating to the interaction of applicable law and this 

standard. 
 
2. The task force revised the definition of “adverse selection.” 
 
3. The task force reworded the definition of “financial or personal security system” and 

included examples. 
 
4. The words “equitable” and “fair” were added in section 3.2.1 but defined in a very 

limited context that is applicable only to rates. 
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5. With respect to the operation of the standard, the task force added language that clarifies 
that this standard in all respects applies only to professional services with respect to 
designing, reviewing, or changing risk classification systems. 

 
6. Sections 4.1 and 4.2 were combined into a new section 4.1, Communications and 

Disclosures, which was revised for clarity. The placement of communication 
requirements throughout the proposed standard was examined, and a sentence regarding 
disclosure was removed from section 3.3.3 and incorporated into section 4.1. A similar 
change was made by adding a new sentence in section 4.1 to correspond to the guidance 
in section 3.4.1.  

 
In addition, the disclosure requirement in section 4 for the actuary to consider providing 
quantitative analyses was removed and replaced by a new section 3.4.4, which guides the 
actuary to consider performing such analyses, depending on the purpose, nature, and 
scope of the assignment. 

 
 
The task force thanks everyone who took the time to contribute comments on the exposure draft. 
 
The ASB voted in December 2005 to adopt this standard. 
 
 

Task Force to Revise ASOP No. 12 
 

Mark E. Litow, Chairperson 
 David J. Christianson   Charles L. McClenahan  
 Arnold A. Dicke   Donna C. Novak 
 Paul R. Fleischacker   Ronnie Susan Thierman 
 Joan E. Herman   Kevin B. Thompson 
 Barbara J. Lautzenheiser      

 
 

General Committee of the ASB 
 
 W.H. Odell, Chairperson 

Charles A. Bryan  Mark E. Litow 
Thomas K. Custis Chester J. Szczepanski  
Burton D. Jay Ronnie Susan Thierman 
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ACTUARIAL STANDARD OF PRACTICE NO. 12 
 
 

RISK CLASSIFICATION (FOR ALL PRACTICE AREAS) 
 
 

STANDARD OF PRACTICE 
 
 

Section 1.  Purpose, Scope, Cross References, and Effective Date 
 
1.1 Purpose—This actuarial standard of practice (ASOP) provides guidance to actuaries 

when performing professional services with respect to designing, reviewing, or changing 
risk classification systems. 

 
1.2 Scope⎯This standard applies to all actuaries when performing professional services with 

respect to designing, reviewing, or changing risk classification systems used in 
connection with financial or personal security systems, as defined in section 2.4, 
regarding the classification of individuals or entities into groups intended to reflect the 
relative likelihood of expected outcomes. Such professional services may include expert 
testimony, regulatory activities, legislative activities, or statements concerning public 
policy, to the extent these activities involve designing, reviewing, or changing a risk 
classification system used in connection with a specific financial or personal security 
system.  

 
 Throughout this standard, any reference to performing professional services with respect 

to designing, reviewing, or changing a risk classification system also includes giving 
advice with respect to that risk classification system.  

 
Risk classification can affect and be affected by many actuarial activities, such as the 
setting of rates, contributions, reserves, benefits, dividends, or experience refunds; the 
analysis or projection of quantitative or qualitative experience or results; underwriting 
actions; and developing assumptions, for example, for pension valuations or optional 
forms of benefits. This standard applies to actuaries when performing such activities to 
the extent such activities directly or indirectly involve designing, reviewing, or changing 
a risk classification system. This standard also applies to actuaries when performing such 
activities to the extent that such activities directly or indirectly are likely to have a 
material effect, in the actuary’s professional judgment, on the intended purpose or 
expected outcome of the risk classification system.  
 
If the actuary departs from the guidance set forth in this standard in order to comply with 
applicable law (statutes, regulations, and other legally binding authority), or for any other 
reason the actuary deems appropriate, the actuary should refer to section 4. 
 

1.3 Cross References⎯When this standard refers to the provisions of other documents, the 
reference includes the referenced documents as they may be amended or restated in the 
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future, and any successor to them, by whatever name called. If any amended or restated 
document differs materially from the originally referenced document, the actuary should 
consider the guidance in this standard to the extent it is applicable and appropriate. 

 
1.4 Effective Date—This standard will be effective for any professional service commenced 

on or after May 1, 2006.  
 
 

Section 2.  Definitions 
 

The terms below are defined for use in this actuarial standard of practice. 
 
2.1 Advice—An actuary’s communication or other work product in oral, written, or 

electronic form setting forth the actuary’s professional opinion or recommendations 
concerning work that falls within the scope of this standard. 

 
2.2 Adverse Selection—Actions taken by one party using risk characteristics or other 

information known to or suspected by that party that cause a financial disadvantage to the 
financial or personal security system (sometimes referred to as antiselection). 

 
2.3 Credibility⎯A measure of the predictive value in a given application that the actuary 

attaches to a particular body of data (predictive is used here in the statistical sense and not 
in the sense of predicting the future).  

 
2.4 Financial or Personal Security System⎯A private or governmental entity or program that 

is intended to mitigate the impact of unfavorable outcomes of contingent events. 
Examples of financial or personal security systems include auto insurance, homeowners 
insurance, life insurance, and pension plans, where the mitigation primarily takes the 
form of financial payments; prepaid health plans and continuing care retirement 
communities, where the mitigation primarily takes the form of direct service to the 
individual; and other systems, where the mitigation may be a combination of financial 
payments and direct services.  

 
2.5 Homogeneity⎯The degree to which the expected outcomes within a risk class have 

comparable value. 
 
2.6 Practical⎯Realistic in approach, given the purpose, nature, and scope of the assignment 

and any constraints, including cost and time considerations. 
 
2.7 Risk(s)—Individuals or entities covered by financial or personal security systems.  
 
2.8 Risk Characteristics⎯Measurable or observable factors or characteristics that are used to 

assign each risk to one of the risk classes of a risk classification system.  
 
2.9 Risk Class⎯A set of risks grouped together under a risk classification system. 
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2.10 Risk Classification System—A system used to assign risks to groups based upon the 
expected cost or benefit of the coverage or services provided.  

 
 

Section 3.  Analysis of Issues and Recommended Practices 
 

3.1 Introduction⎯This section provides guidance for actuaries when performing professional 
services with respect to designing, reviewing, or changing a risk classification system. 
Approaches to risk classification can vary significantly and it is appropriate for the 
actuary to exercise considerable professional judgment when providing such services, 
including making appropriate use of statistical tools. Sections 3 and 4 are intended to 
provide guidance to assist the actuary in exercising professional judgment when applying 
various acceptable approaches. 

 
3.2 Considerations in the Selection of Risk Characteristics⎯Risk characteristics are 

important structural components of a risk classification system. When selecting which 
risk characteristics to use in a risk classification system, the actuary should consider the 
following:  
 

 3.2.1 Relationship of Risk Characteristics and Expected Outcomes⎯The actuary 
should select risk characteristics that are related to expected outcomes. A 
relationship between a risk characteristic and an expected outcome, such as cost, 
is demonstrated if it can be shown that the variation in actual or reasonably 
anticipated experience correlates to the risk characteristic. In demonstrating a 
relationship, the actuary may use relevant information from any reliable source, 
including statistical or other mathematical analysis of available data. The actuary 
may also use clinical experience and expert opinion. 

 
Rates within a risk classification system would be considered equitable if 
differences in rates reflect material differences in expected cost for risk 
characteristics. In the context of rates, the word fair is often used in place of the 
word equitable.  
 
The actuary should consider the interdependence of risk characteristics. To the 
extent the actuary expects the interdependence to have a material impact on the 
operation of the risk classification system, the actuary should make appropriate 
adjustments. 
 
Sometimes it is appropriate for the actuary to make inferences without specific 
demonstration. For example, it might not be necessary to demonstrate that persons 
with seriously impaired, uncorrected vision would represent higher risks as 
operators of motor vehicles.  
 

 3.2.2 Causality—While the actuary should select risk characteristics that are related to 
expected outcomes, it is not necessary for the actuary to establish a cause and 
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effect relationship between the risk characteristic and expected outcome in order 
to use a specific risk characteristic.  

 
 3.2.3 Objectivity—The actuary should select risk characteristics that are capable of 

being objectively determined. A risk characteristic is objectively determinable if it 
is based on readily verifiable observable facts that cannot be easily manipulated. 
For example, a risk classification of “blindness” is not objective, whereas a risk 
classification of “vision corrected to no better than 20/100” is objective. 

 
 3.2.4 Practicality—The actuary’s selection of a risk characteristic should reflect the 

tradeoffs between practical and other relevant considerations. Practical 
considerations that may be relevant include, but are not limited to, the cost, time, 
and effort needed to evaluate the risk characteristic, the ongoing cost of 
administration, the acceptability of the usage of the characteristic, and the 
potential usage of different characteristics that would produce equivalent results.  

   
 3.2.5 Applicable Law—The actuary should consider whether compliance with 

applicable law creates significant limitations on the choice of risk characteristics.  
 
 3.2.6 Industry Practices—When selecting risk characteristics, the actuary should 

consider usual and customary risk classification practices for the type of financial 
or personal security system under consideration.  

 
 3.2.7 Business Practices⎯When selecting risk characteristics, the actuary should 

consider limitations created by business practices related to the financial or 
personal security system as known to the actuary and consider whether such 
limitations are likely to have a significant impact on the risk classification system.  

 
3.3 Considerations in Establishing Risk Classes⎯A risk classification system assigns each 

risk to a risk class based on the results of measuring or observing its risk characteristics. 
When establishing risk classes for a financial or personal security system, the actuary 
should consider and document any known significant choices or judgments made, 
whether by the actuary or by others, with respect to the following:  

 
 3.3.1 Intended Use—The actuary should select a risk classification system that is 

appropriate for the intended use. Different sets of risk classes may be appropriate 
for different purposes. For example, when setting reserves for an insurance 
coverage, the actuary may choose to subdivide or combine some of the risk 
classes used as a basis for rates.  
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3.3.2 Actuarial Considerations⎯When establishing risk classes, the actuary should 
consider the following, which are often interrelated:  
 
a. Adverse Selection⎯If the variation in expected outcomes within a risk 

class is too great, adverse selection is likely to occur. To the extent 
practical, the actuary should establish risk classes such that each has 
sufficient homogeneity with respect to expected outcomes to satisfy the 
purpose for which the risk classification system is intended.  

 
b. Credibility⎯It is desirable that risk classes in a risk classification system 

be large enough to allow credible statistical inferences regarding expected 
outcomes. When the available data are not sufficient for this purpose, the 
actuary should balance considerations of predictability with considerations 
of homogeneity. The actuary should use professional judgment in 
achieving this balance. 

 
 c. Practicality⎯The actuary should use professional judgment in balancing 

the potentially conflicting objectives of accuracy and efficiency, as well as 
in minimizing the potential effects of adverse selection. The cost, time, 
and effort needed to assign risks to appropriate risk classes will increase 
with the number of risk classes.  

 
 3.3.3 Other Considerations⎯When establishing risk classes, the actuary should (a) 

comply with applicable law; (b) consider industry practices for that type of 
financial or personal security system as known to the actuary; and (c) consider 
limitations created by business practices of the financial or personal security 
system as known to the actuary. 

 
3.3.4 Reasonableness of Results⎯When establishing risk classes, the actuary should 

consider the reasonableness of the results that proceed from the intended use of 
the risk classes (for example, the consistency of the patterns of rates, values, or 
factors among risk classes).  

 
3.4 Testing the Risk Classification System⎯Upon the establishment of the risk classification 

system and upon subsequent review, the actuary should, if appropriate, test the long-term 
viability of the financial or personal security system. When performing such tests 
subsequent to the establishment of the risk classification system, the actuary should 
evaluate emerging experience and determine whether there is any significant need for 
change.  

   
 3.4.1 Effect of Adverse Selection—Adverse selection can potentially threaten the  

long-term viability of a financial or personal security system. The actuary should 
assess the potential effects of adverse selection that may result or have resulted 
from the design or implementation of the risk classification system. Whenever the 
effects of adverse selection are expected to be material, the actuary should, when 
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practical, estimate the potential impact and recommend appropriate measures to 
mitigate the impact.  

  
 3.4.2 Risk Classes Used for Testing—The actuary should consider using a different set 

of risk classes for testing long-term viability than was used as the basis for 
determining the assigned values if this is likely to improve the meaningfulness of 
the tests. For example, if a risk classification system is gender-neutral, the actuary 
might separate the classes based on gender when performing a test of long-term 
viability.   

 
 3.4.3 Effect of Changes⎯If the risk classification system has changed, or if business or 

industry practices have changed, the actuary should consider testing the effects of 
such changes in accordance with the guidance of this standard.  

 
3.4.4 Quantitative Analyses—Depending on the purpose, nature, and scope of the 

assignment, the actuary should consider performing quantitative analyses of the 
impact of the following to the extent they are generally known and reasonably 
available to the actuary:  

 
a. significant limitations due to compliance with applicable law; 
 
b. significant departures from industry practices;  
 
c. significant limitations created by business practices of the financial or 

personal security system; 
 

  d. any changes in the risk classes or the assigned values based upon the 
actuary’s determination that experience indicates a significant need for a 
change; and 

 
e. any expected material effects of adverse selection. 
 

3.5 Reliance on Data or Other Information Supplied by Others⎯When relying on data or 
other information supplied by others, the actuary should refer to ASOP No. 23, Data 
Quality, for guidance. 

 
3.6 Documentation⎯The actuary should document the assumptions and methodologies used 

in designing, reviewing, or changing a risk classification system in compliance with the 
requirements of ASOP No. 41, Actuarial Communications. The actuary should also 
prepare and retain documentation to demonstrate compliance with the disclosure 
requirements of section 4.1. 
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Section 4.  Communications and Disclosures 
 
4.1 Communications and Disclosures⎯When issuing actuarial communications under this 

standard, the actuary should comply with ASOP Nos. 23 and 41. In addition, the actuarial 
communications should disclose any known significant impact resulting from the 
following to the extent they are generally known and reasonably available to the actuary:   

 
a. significant limitations due to compliance with applicable law; 
 
b. significant departures from industry practices; 
 

 c. significant limitations created by business practices related to the financial or 
personal security system;  

 
 d. a determination by the actuary that experience indicates a significant need for 

change, such as changes in the risk classes or the assigned values; and 
 
e. expected material effects of adverse selection; 
 
f. the disclosure in ASOP No. 41, section 4.2, if any material assumption or method 

was prescribed by applicable law (statutes, regulations, and other legally binding 
authority); 

 
g. the disclosure in ASOP No. 41, section 4.3, if the actuary states reliance on other 

sources and thereby disclaims responsibility for any material assumption or 
method selected by a party other than the actuary; and 

 
h the disclosure in ASOP No. 41, section 4.4, if, in the actuary’s professional 

judgment, the actuary has otherwise deviated materially from the guidance of this 
ASOP. 

 
The actuarial communications should also disclose any recommendations developed by 
the actuary to mitigate the potential impact of adverse selection. 
 



ASOP No. 12—December 2005 
 

 8

Appendix 1 
 

Background and Current Practices 
 

Note:  The following appendix is provided for informational purposes but is not part of the 
standard of practice. 
 
 

Background 
 

Risk classification has been a fundamental part of actuarial practice since the beginning of the 
profession. The financial distress and inequity that can result from ignoring the impact of 
differences in risk characteristics was dramatically illustrated by the failure of the nineteenth-
century assessment societies, where life insurance was provided at rates that disregarded age. 
Failure to adhere to actuarial principles regarding risk classification for voluntary coverages can 
result in underutilization of the financial or personal security system by, and thus lack of 
coverage for, lower risk individuals, and can result in coverage at insufficient rates for higher 
risk individuals, which threatens the viability of the entire system.  
 
Adverse selection may result from the design of the classification system, or may be the result of 
externally mandated constraints on risk classification. Classes that are overly broad may produce 
unexpected changes in the distribution of risk characteristics. For example, if an insurer chooses 
not to screen for a specific risk characteristic, or a jurisdiction precludes screening for that 
characteristic, this may result in individuals with the characteristic applying for coverage in 
greater numbers and/or amounts, leading to increased overall costs. 
 
Risk classification is generally used to treat participants with similar risk characteristics in a 
consistent manner, to permit economic incentives to operate and thereby encourage widespread 
availability of coverage, and to protect the soundness of the system. 
 
The following actuarial literature provides additional background and context with respect to risk 
classification: 
 
1. In 1957, the Society of Actuaries published Selection of Risks by Pearce Shepherd and 

Andrew Webster, which educated several generations of actuaries and is still a useful 
reference. 

 
2. In 1980, the American Academy of Actuaries published the Risk Classification Statement 

of Principles, which has enjoyed widespread acceptance in the actuarial profession. At 
the time of this revision of ASOP No. 12, the American Academy of Actuaries was 
developing a white paper regarding risk classification principles.  

 
3. In 1992, the Committee on Actuarial Principles of the Society of Actuaries published 

“Principles of Actuarial Science,” which discusses risk classification in the context of the 
principles on which actuarial science is based. 
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 Current Practices 
 
Over the years, a multitude of risk classification systems have been designed, put into use, and 
modified as a result of experience. Advances in medical science, economics, and other 
disciplines, as well as in actuarial science itself, are likely to result in continued evolution of 
these systems. While future developments cannot be foreseen with accuracy, practicing actuaries 
can take reasonable steps to keep abreast of emerging and current practices. These practices may 
vary significantly by area of practice. For example, the risk classes for voluntary life insurance 
may be subdivided to reflect the applicant’s state of health, smoking habits, and occupation, 
while these factors are usually not considered in pension systems.  
 
Innovations in risk classification systems may engender considerable controversy. The potential 
use of genetic tests to classify risks for life and health insurance is a current example. In some 
cases, such controversy results in legislation or regulation. The use of postal codes, for example, 
has been outlawed for some types of coverage. For the most part, however, the legal test for risk 
classification has remained unchanged for several decades; risk classification is allowed so long 
as it is “based on sound actuarial principles” and “related to actual or reasonably anticipated 
experience.”  
 
Risk classification issues in some instances may pose a dilemma for an actuary working in the 
public policy arena when political considerations support a system that contradicts to some 
degree practices called for in this ASOP. Also, when designing, reviewing, or changing a risk 
classification system, actuaries may perform professional services related to a designated set of 
specific assumptions that place certain restraints on the risk classification system. 
 
In such situations, it is important for those requesting such professional services to have the 
benefit of professional actuarial advice.  
 
This ASOP is not intended to prevent the actuary from performing professional services in the 
situations described above. In such situations, the communication and disclosure guidance in 
section 4.1 will be particularly pertinent, and current section 4.1(e), which requires disclosure of 
any known significant impact resulting from expected material effects of adverse deviation, may 
well apply. Section 4.1(a), which relates to applicable law, and section 4.1(b), which relates to 
industry practices, may also be pertinent.  
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Appendix 2 
 

Comments on the Exposure Draft and Responses 
 

 
The exposure draft of this revision of ASOP No. 12, Risk Classification for All Practice Areas, 
was issued in September 2004 with a comment deadline of March 15, 2005. Twenty-two 
comment letters were received, some of which were submitted on behalf of multiple comment-
ators, such as by firms or committees. For purposes of this appendix, the term “commentator” 
may refer to more than one person associated with a particular comment letter. The task force 
carefully considered all comments received. Summarized below are the significant issues and 
questions contained in the comment letters and the responses, which may have resulted from 
ASB, General Committee, or task force discussion. Unless otherwise noted, the section numbers 
and titles used below refer to those in the exposure draft.  
 
  

GENERAL COMMENTS 

Comment 
 
 
Response 

Several commentators suggested various editorial changes in addition to those addressed specifically 
below.  
 
The task force implemented such suggestions if they enhanced clarity and did not alter the intent of the 
section. 

Comment 
 
 
Response 

One commentator noted that the ASOP should deal with the ability of an insured to misrepresent or 
manipulate its classification.   
 
The task force believed that the considerations raised by the commentator are adequately addressed by 
sections 3.2.3 and 3.2.4. 

Comment 
 
 
Response 

One commentator thought that a section on public and social policy considerations should be added to 
the standard. 
 
The task force believed that social and public policy considerations, while essential aspects of the way 
the public views the profession, did not belong in an ASOP dealing with the actuarial aspects of risk 
classification. 

Comment 
 
 
Response 

One commentator questioned whether the ASOP would apply to company selection criteria (tiering 
criteria) and schedule-rating criteria that may be part of a rating scheme.  
 
The task force believes that the ASOP applies to the extent the selection or schedule rating criteria, used 
by a company as part of the risk classification system, creates the potential for adverse selection. 

Comment 
 
 
 
Response 

One commentator believed that the ASOP could conflict with proposed state legislation to ban credit as 
a rating variable and suggested adding an additional consideration in section 3 that the actuary should 
select risk characteristics in order to avoid controversy or lawsuits.  
 
The task force believes it has addressed issues regarding applicable law, industry practices, business 
practices, and testing the risk classification system under various scenarios. 

Comment 
 
 
Response 

In the transmittal memorandum of the exposure draft, the task force asked whether the key changes from 
the previous standard were appropriate.  
 
Several commentators responded that the changes were appropriate and some suggested additional 
changes that are discussed in this appendix. 
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Comment 
 
 
 
Response 

One commentator expressed concern regarding the expansion of scope and the implications in actuarial 
work that would be otherwise unrelated to risk classification and the expansion of scope to the public 
policy arena in general.  
 
The task force has added modified wording in the standard to clarify that in all cases the standard applies 
only in respect to design, reviewing, or changing risk classification systems related to financial or 
personal security systems. 

Comment 
 
 
 
Response 

Two commentators believed that the revised standard should discuss the purposes of risk classification 
similar to the discussion in the previous standard. One commentator noted the discussion about 
encouraging “widespread availability of coverage” in particular.  
 
The task force retained a brief discussion of the purposes of risk classification in appendix 1 but did not 
believe it was appropriate for the ASOP to provide additional education about the purposes of risk 
classification. The task force noted that a white paper on risk classification that could contain such 
material is being developed.  

Comment 
 
 
 
 
 
 
Response 

Several commentators noted that the previous ASOP No. 12 had been very useful in court proceedings 
and recommended that the task force retain some of the wording in section 5 of the previous ASOP. One 
commentator suggested strengthening the revised standard so that actuarial testimony would be given 
greater weight by the courts in interpreting rate standards. Another commentator suggested 
strengthening the ASOP by adding an explicit statement that one objective during the development and 
use of risk classification systems is to minimize adverse selection. 
 
The task force reviewed the revised standard with these concerns in mind but concluded that the revised 
standard represents current generally accepted practice and provides an appropriate level of guidance. 
The task force considered the specific suggestions with respect to additional wording and incorporated 
some of the wording regarding adverse selection from the old section 5.5 into appendix 1. 

Comment 
 
 
 
 
 
Response 

In the transmittal memorandum of the exposure draft, the task force asked whether it was appropriate for 
the ASOP not to use the terms “equitable” and “fair.” Two commentators believed that the ASOP should 
use or define these concepts because they have been used in court proceedings, but the majority of 
commentators believed that it was appropriate not to define them and that the standard adequately 
addressed these concepts.  
 
The task force agreed that the ASOP should not define subjective qualities such as “equitable” and 
“fair.” As the result of ASB deliberation on this issue, language was added to section 3.2.1 to discuss 
what was meant by the terms “equitable” and “fair.” These terms are intended to apply to a risk 
classification system only to the extent the risk classification system applies to rates. As such, a formal 
definition was not added. Court decisions notwithstanding, there is no general agreement as to what 
characterizes “equitable” classification systems or “fair” discrimination. The task force also considered 
the possibility that further discussions about such issues might become part of the proposed white paper 
on risk classification that the American Academy of Actuaries is developing. 

Comment 
 
 
 
Response 

One commentator questioned why the standard offered separate guidance for “risk characteristics” 
(section 3.2) and “risk classes” (section 3.3). Another commentator believed there should be greater 
differentiation between the concepts of “risk characteristic” and “risk classification.” 
 
The task force believed that the ASOP uses these terms appropriately and made no change.  

Comment 
 
 
Response 

One commentator thought that section 3.3.2 should include guidance on appropriately matching the risk 
with the outcome when establishing a risk class. 
 
The task force believed that section 3.2.1 addressed this comment and noted that section 3.3.2(a) 
requires sufficient homogeneity with respect to outcomes. 
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Section 1.2, Scope 

Comment 
 
 
 
 
Response 

In the transmittal memorandum of the exposure draft, the task force asked whether it was appropriate to 
include the actuary’s advice within the scope of the standard. Several commentators agreed that 
including guidance on actuarial advice was appropriate. One commentator believed that the disclosure 
requirements in section 4 could be burdensome to an actuary who has provided brief oral advice.  
 
The task force kept actuarial advice within the scope of the standard and intended that the disclosure 
requirements in section 4 should apply to any actuarial advice that falls within the scope of the standard. 

Comment 
 
 
Response 

One commentator questioned what was meant by “legislative activities” as an example of a professional 
service. 
 
The task force intended that “legislative activities” could include drafting legislation, for example. 

Comment 
 
 
 
 
Response 

Several commentators questioned the meaning of “personal security system.” One commentator 
questioned whether the definition of “financial or personal security system” would exclude share-based 
payment systems from the scope of the standard. The commentator recommended that the standard be 
revised to include such systems. 
 
The task force intended that the ASOP should apply if share-based payment systems or stock options 
were part of a financial or personal security system, as defined in the section 2.5. If such plans were not 
part of a financial or personal security system, the ASOP would not apply. The task force chose not to 
expand the scope to include such plans in all situations but did clarify the definition of “financial or 
personal security system.”  

SECTION 2.  DEFINITIONS 

Comment 
 
 
 
Response 

One commentator suggested that a definition of experience be included, citing the definition of 
“experience” in the previous ASOP (old section 2.5), which includes the wording, “Experience may 
include estimates where data are incomplete or insufficient.”  
 
The task force agreed that experience may include estimates where data are incomplete or insufficient 
but did not believe that the old definition was necessary in the revised ASOP. 

Comment 
 
Response 

One commentator suggested that a definition of “reasonable” be included.   
 
The task force disagreed and did not add a definition of “reasonable.” 

Section 2.1, Advice 
Comment 
 
 
Response 

One commentator suggested that “other work product” was not needed, since the standard already listed 
“an actuary’s oral, written, or electronic communication.” 
 
The task force revised the language to clarify that “communication or other work product” was intended. 

Comment 
 
Response 

One commentator believed that a definition for “advice” is not needed. 
 
The task force disagreed and retained the definition of advice. 

Section 2.2, Adverse Selection 
Comment 
 
 
 
 
 
Response 

In the transmittal memorandum of the exposure draft, the task force asked if the definition of “adverse 
selection” was appropriate or whether an alternative definition (included in the transmittal letter) would 
be preferable. Many commentators responded, some agreeing with the original, some with the 
alternative, and some suggested other wording. The other wording was most often to change the phrase, 
“take financial advantage of.” 
 
The task force believed that some of the reasoning on the part of the commentators who preferred the 
current version did not accurately describe adverse selection. The task force ultimately decided to use 
the alternative definition in the standard and believed that it better addressed some commentators’ 
concerns that the other definition could have a negative connotation with respect to motivation.  
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Comment 
 
 
Response 

One commentator suggested that “antiselection” is synonymous with adverse selection and that should 
be made clear in the definition. 
 
The task force agreed and added that reference. 

Section 2.4, Credibility (now 2.3) 
Comment 
 
 
Response 

Two commentators believed that within the definition of “credibility” the language concerning  
“predictive” was confusing. 
 
The task force retained the definition as it is used in several other ASOPs. 

Section 2.5, Financial or Personal Security System (now 2.4) 
Comment 
 
Response 

Several commentators questioned the meaning of “personal security system.”  
 
The task force clarified the definition.  

Comment 
 
Response 

One commentator suggested that “impact” be modified to read “financial impact.” 
 
The task force disagreed and revised the definition of  “financial and security systems” to delineate the 
impacts. 

Section 2.6, Homogeneity (now 2.5) 
Comment 
 
 
Response 

One commentator believed the definition of “homogeneity” needed revisions to include the concept of 
grouping similar risks. Another commentator found the definition unclear. 
 
The task force believes that the current definition is appropriate for this ASOP.  

Section 2.7, Practical (now 2.6) 
Comment 
 
 
Response 

One commentator believed the definition of “practical” was much too broad and needed to be more 
actuarial in nature. Alternatively, the commentator suggested dropping it and relying on section 3.2.4. 
 
The task force believed the definition was appropriate and made no change. Section 3.2.4 addresses 
actuarial practice with respect to practicality. While “practical” is used there and in other places, it is 
always modified by its context.  

Section 2.8, Risk(s) (now 2.7) 
Comment 
 
 
Response 

One commentator suggested that the definition of risks as individuals or entities seemed too limiting and 
noted that covered risks can also include pieces of property or events. 
 
 The task force disagreed, believing that “entity” could encompass property and events.  

Comment 
 
Response 

One commentator suggested that a unit of risk be defined at the basic unit of risk.   
 
The task force disagreed and made no change. 

Section 2.9, Risk Characteristics (now 2.8) 
Comment 
 
 
Response 

One commentator suggested defining risk characteristics as “measurable or observable factors or 
characteristics, each of which is measured by grouping similar risks into risk classes.” 
 
The task force disagreed and made no change. 

Section 2.11, Risk Classification System (now 2.10) 
Comment 
 
 
Response 

One commentator believes the definition of  “risk classification system” is circular since “classify” is 
used in the definition. 
 
The task force agreed and revised the wording. 

Comment 
 
 
 
Response 

One commentator recommended that the term “risks” be changed to “similar risks” in this definition  
just as in the old definition of risk classification that used the phrase “grouping risks with similar risk 
characteristics.” 
 
 The task force disagreed and made no change.   

Comment 
 
Response 

One commentator suggested replacing “groups” with “classes.” 
 
The task force disagreed and made no change. 
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SECTION 3.  ANALYSIS OF ISSUES AND RECOMMENDED PRACTICES 

Section 3.2.1, Relationship of Risk Characteristics and Expected Outcomes 

Comment 
 
 
Response 

One commentator expressed concern with the standard’s differentiation between the section’s 
quantitative and subjective factors. 
 
The task force did not intend to be prescriptive as to how to quantify the ratings scheme and believed 
that the ASOP was sufficiently specific. The ASOP does not address rate adequacy. Selection is the 
focus, not quantification. 

Comment 
 
 
Response 

One commentator believed that “clinical” was not an appropriate adjective to describe the experience an 
actuary is allowed to use. 
 
The task force intentionally used the term “clinical.” 

Comment 
 
 
Response 

One commentator believed that if the classification cannot be measured by actual insurance data, then it 
is not really a risk classification system. 
 
The task force disagreed and made no change. 

Comment 
 
 
Response 

One commentator suggested that the three points addressing why risk classification is generally used be 
moved to background information. 
 
The task force agreed that such educational language was more appropriate in an appendix than in the 
body of the ASOP and has moved it. 

Comment 
 
 
 
Response 

One commentator believed that it may be difficult to deal with the process and procedures involved with 
considering the interdependence of risk characteristics and their potential impact on the operation of the 
risk classification system. 
 
The task force did not change the language to address this comment but notes that section 3.2.4 
addresses considerations regarding practicality. 

Section 3.2.2, Causality 

Comment 
 
 
Response 

A number of commentators expressed concern with establishing a cause-and-effect relationship while 
others thought the standard did not go far enough in this regard.   
 
The task force agreed that, where there is a demonstrable cause-and-effect relationship between a risk 
characteristic and the expected outcome, it is appropriate for the actuary to include such a 
demonstration. However, the task force recognized that there can be significant relationships between 
risk characteristics and expected outcomes where a cause-and-effect relationship cannot be 
demonstrated. 

Section 3.2.4, Practicality 

Comment 
 

Response 

Two commentators suggested the use of examples of practical considerations. 
 
The task force revised the section to indicate that the language shows examples of practical 
considerations. 

Comment 
 

Response 

One commentator suggested that “theoretical,” as used in section 3.2.4, be defined.  
 
The task force replaced “theoretical” with “other relevant.” 

Section 3.2.5, Applicable Law 

Comment 
 

Response 

One commentator thought that the proposed language in this section was much too broad. 
 
The task force disagreed with the comment and made no change. 
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Section 3.3, Considerations in Establishing Risk Classes 

Comment 
 
 

Response 

One commentator expressed concern that the documentation requirements for these considerations 
represented an increase from the previous version. 
 
The task force thought the documentation requirements were appropriate and necessary and made no 
change. 

Section 3.3.1, Intended Use 

Comment 
 
 

Response 

One commentator noted that stratifying data sets in loss reserving is different from risk classification, 
which is done to price risks, and believed that loss reserving permits more flexibility. The commentator 
stated that the definition of a risk classification system does not apply to loss reserving. 
 
The task force agreed with the first concepts but disagreed with the final sentence and therefore made no 
change. 

Section 3.3.2, Actuarial Considerations 

Comment 
 
 

Response 

With respect to section 3.3.2(a), one commentator suggested replacing the word “for” in the first line 
with “within” for clarification. 
 
The task force agreed and made the suggested change. 

Comment 
 
 

Response 

With respect to section 3.3.2(b), two commentators questioned what was intended by the use of the term 
“large enough.” 
 
The task force believed the language was sufficiently clear and made no change. 

Comment 
 
 
 

Response 

One commentator pointed out that there are often classes that, individually, have associated experience 
with low statistical credibility and believed that alternatives to credibility should be included in section 
3.3.2(b). 
 
While the task force agreed that there are situations in which actuarially sound classification plans will 
have individual classes where the experience has low statistical credibility, the task force believed that 
credibility is a desirable characteristic of risk classes within a risk classification system and that no 
expansion to include alternatives was necessary. 

Comment 
 
 
 

Response 

One commentator suggested replacing “statistical predictions” with “predictions” in section 3.3.2(b) to 
avoid the implication that underlying statistics were required. Another commentator suggested that the 
term “predictions” needed explanation. 
 
The task force agreed with these comments and replaced “predictions” with “inferences” and edited the 
language to improve its clarity. 

Comment 
 

Response 

One commentator suggested that the last sentence of section 3.3.2(b), while accurate, was irrelevant. 
 
The task force agreed and eliminated the sentence. 

Comment 
 
 

Response 

With respect to section 3.3.2(c), one commentator suggested the need for definitions of “accuracy” and 
“efficiency.” 
 
The task force believed that the existing language regarding the actuary’s professional judgment was 
sufficient in determining the meaning of “accuracy” and “efficiency” and did not add a definition of 
either word. 
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Comment 

 
 
 

Response 

Several commentators suggested that section 3.3.2(d) be eliminated. A number of those commentators 
also pointed out that the language was both inconsistent with current actuarial practice and inappropriate 
as an implied requirement. 
 
The task force agreed and deleted the section. 

Section 3.3.3, Other Considerations 

Comment 
 
 

Response 

Several commentators pointed out that the last sentence of the section was unclear and might 
inadvertently require a degree of testing and determination that was not intended. 
 
The task force deleted the last sentence of the section. In addition, section 4.1, Communications and 
Disclosures, was clarified as to what disclosures are appropriate. 

Section 3.3.4, Reasonableness of Results 

Comment 
 

Response 

One commentator found the parenthetical wording confusing.  
 
The task force believed the examples were appropriate and made no change. 

Comment 
 
 
 

Response 

One commentator found this section ambiguous in the context of establishing risk classes. Another 
commentator suggested that a cost-based definition of reasonable be added or that the section be deleted 
entirely.  
 
The task force retained the section but clarified the wording by mentioning the intended use of the risk 
classes. The task force did not believe additional clarification of “reasonableness” was necessary 
because reasonableness is a subjective concept that may depend on the actuary’s professional judgment. 
The task force also notes that the Introduction to the Actuarial Standards of Practice discusses this 
concept in further detail. 

Section 3.4, Testing the Risk Classification System 

Comment 
 
 
 

Response 

One commentator indicated that it may be preferable to substitute the word “or” for “and” on the second 
line so that the sentence reads, “Upon establishment of the risk classification system or upon subsequent 
review. … ” 
 
The task force did not agree and believed the word “and” was appropriate because testing should be 
carried out both upon establishment and upon subsequent review. 

Comment 
 
 
 
 

Response 

One commentator wanted to substitute “continuing” for “long-term” viability in the second line. The 
commentator believed that the usual issue is the current and near-future viability of a system, not its 
long-term prognosis. Also, another commentator said that the requirement to “test long-term viability” is 
new and questioned its meaning.  
 
The task force considered alternative wording but ultimately decided that the existing wording best 
reflected that the actuary should check the risk classification system for viability both in the short-term 
and in the long-term. 
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Comment 

 
 
 
 
 
 
 
 

Response 

One commentator believed that testing the system is set out as something the actuary should do, if 
appropriate, rather than as something the actuary should consider. The commentator believed that the 
paragraph implied a duty to test in some situations, without describing explicitly what those situations 
would be (i.e., when testing would be “appropriate”). The commentator suspected that the situations 
described in sections 3.4.1–3.4.3 were the kind of situations that the task force had in mind as situations 
where long-term testing would be “appropriate.” However, as currently written, the commentator 
thought that a stronger duty could be implied. The commentator suggested that section 3.4 itself should 
read, “…the actuary should consider testing the long-term viability of the risk classification system. …” 
 
The task force believed that the existing wording conveyed the concept that the actuary considers 
whether testing is appropriate and made no change. 

Section 3.5, Reliance on Data Supplied by Others (now Reliance on Data or Other Information Supplied by 
Others) 

Comment 
 
 

Response 

One commentator believed that the provision for reliance on data supplied by others was not needed in 
this ASOP because ASOP No. 23, Data Quality, addresses this. 
 
This task force agreed and revised the section to refer to ASOP No. 23, using wording consistent with 
other recently adopted ASOPs and exposure drafts.  

SECTION 4.  COMMUNICATIONS AND DISLOSURES 

Section 4.1, Communications (now Communications and Disclosures) 

Comment 
 
 
 
Response 

One commentator suggested changing the phrase “when issuing actuarial communications under this 
standard” to “when issuing actuarial communications that include elements of actuarial work within the 
scope of this standard.” 

 
The task force retained the original language to be consistent with other ASOPs. 

Section 4.2, Disclosures (now 4.1, Communications and Disclosures) 

Comment 
 
 
 
 
 
 
Response 

One commentator stated that some of the disclosures, notably section 4.2(a) and 4.2(c) (now 4.1(a) and 
4.1(c)), are impractical, since they might require the actuary to begin with the universe and then disclose 
everything that is not utilized. The commentator suggested replacing these disclosure requirements with 
a communication that defends the choice of risk classification system and notes in that defense how 
compliance with applicable law and business practices affected the selection, rather than describing all 
the alternatives that would have been available in the absence of such constraints. 

 
The task force did not agree that the requirement to disclose significant limitations required a discussion 
of all alternatives that would have been available in the absence of legal or business constraints. The task 
force noted that the listed disclosures proceed from considerations required in section 3 and modified the 
wording of the disclosure requirements to be more consistent with that section, including revising the 
lead-in sentence to require disclosure of the significant impact of such considerations. 

Comment 
 
 
 
Response 

One commentator stated that the disclosure issue is heightened by the expansion of scope into the public 
policy arena and stated that excessive disclosure requirements may weaken the actuary’s ability to 
influence the discussion of public policy. 

 
The task force disagreed with the comment and noted that, while the scope of the standard now includes 
regulatory activities, legislative activities, and statements regarding public policy, the scope does so only 
in the context of the performance of professional services.  
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Comment 
 
 
 
Response 

One commentator suggested deleting section 4.2(a) (now 4.1(a)), which requires disclosure of 
significant limitations due to compliance with applicable law, noting that other ASOPs have tended not 
to include this requirement except where the limitations seriously distort the work product.   

 
The task force disagreed with this comment, noting that significant limitations on the choice of risk 
characteristics are likely to distort the risk classification system and therefore should be disclosed. 

Comment 
 
 
 
 
 
 
 
 
 
 
 
Response 

Several commentators expressed opinions regarding the requirement that the actuary should disclose 
whether quantitative analyses were performed relative to items being disclosed. One commentator 
expressed strong objection to this requirement, asserting that the requirement would be counter-
productive and would reduce the number of quantitative analyses being done. Another commentator 
agreed and noted that the disclosure issue was heightened by the expansion of scope to the public policy 
arena, where an advocacy position may be taken. A third commentator objected to the requirement to 
disclose that quantitative analyses were not done but suggested requiring that any analyses that were 
done be summarized. A fourth commentator suggested exempting certain of the required disclosures 
from the requirement to consider quantification. A fifth commentator pointed out that, while the actuary 
was required to disclose whether quantitative analyses were performed, the actuary was only required to 
consider providing the results of those analyses in the disclosure. 
 
The disclosure requirement for the actuary to consider providing quantitative analyses of the impact of 
the items being disclosed was removed, and instead similar wording was added as a new section 3.4.4, 
Quantitative Analyses, which guides the actuary to consider performing such analyses, depending on the 
purpose, nature, and scope of the assignment.   

Comment 
 
 
 
 
 
Response 

In the transmittal letter for the exposure draft in request for comment #6, the task force asked whether 
there were any situations in which the requirement in section 4.2(c) (now 4.1(c)) to disclose any 
significant limitations created by business practices of the financial or personal security system would 
not be appropriate. Two comments were received, both agreeing with the appropriateness of the 
requirement. 

 
The task force retained the requirement. 

Comment 
 
Response 

Two commentators suggested substituting “indicates” for “creates” in section 4.2(d) (now 4.1(d)). 
 

The task force agreed, changed the wording as suggested, and made other revisions for clarity. 

Comment 
 
 
 
 
Response 

In the transmittal letter for the exposure draft in request for comment #7, the task force asked whether 
the requirement in 4.2(e) (now 4.1(e)) to disclose the effects of adverse selection was appropriate. Three 
commentators addressed this request for comment, and all agreed the requirement was appropriate. 
However, one commentator suggested that there be no requirement to quantify the impact. 

 
The task force retained the requirement in what is now 4.1(e) and also removed the requirement to 
consider providing quantitative analyses. Additionally, the task force deleted section 4.2(f) after 
determining that it was already covered by ASOP No. 41, Actuarial Communications, to which section 
4.1 refers. 

APPENDIX (now Appendix 1) 

Comment 
 
 
Response 

One commentator expressed concern with the citing of the textbook Selection of Risks by Shepherd and 
Webster.   

 
The task force believed that citing the Shepherd and Webster book was appropriate but added a new 
lead-in sentence to the citation to indicate that the references cited provide additional background and 
context with respect to risk classification. 
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This is the second monograph in the recently introduced CAS Monograph Series. A 
CAS monograph is an authoritative, peer reviewed, in-depth work on an important 
topic within the property and casualty actuarial practice.

In this monograph David Bahnemann brings together two perennially important 
elements of actuarial practice: a solid academic presentation of parametric distributions 
coupled with the application of these distributions in the actuarial paradigm.

Bahnemann taught mathematics at the university level for nineteen years, thus 
developing an excellent appreciation for what works and what does not work in presenting 
and conveying technical subject matter. Following that, he worked for more than two 
decades in applying this knowledge to all types of real actuarial problems that actuaries 
face every day. Hence, we have this rare presentation of mathematics that actuaries use 
whenever distributions are involved.

This monograph is useful for those wishing to learn the subject matter for the first 
time as well as for practicing actuaries who wish to have in their bookcase a “desk reference 
manual” for use whenever faced with a problem involving parametric distributions.

This work clearly is a labor of love in which Bahnemann has brought together in 
a single volume his entire professional life experience in this field. The CAS is grateful 
for his effort in producing this monograph as well as the gift it represents to the CAS 
and its members.

C. K. “Stan” Khury
Chairperson

Monograph Editorial Board
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This monograph contains a brief exposition of the standard probability distributions—and 
their fundamental applications—commonly encountered by property/casualty actuaries. 
Specifically, it includes the basic distributional topics that I had occasion to use during 
the 25 years I provided actuarial support to the excess and surplus lines underwriting 
departments at the St. Paul Companies (now Travelers). The emphasis is on a clear, 
informal presentation of the basic concepts, and there has been no attempt to provide an 
exhaustive (and possibly, exhausting) compendium of every possible topic and technique. 
Moreover, the focus is clearly on the use of parametric distributions fitted to empirical 
claim data to solve standard actuarial problems—creation of increased limit factors, 
pricing of deductibles, evaluating the effect of aggregate limits, and so on.

A prerequisite for understanding this material is an upper-level undergraduate course 
in mathematical—that is, calculus-based—probability and statistics, and the mathematical 
level of this monograph is similar to that in such a course.

I envision two possible uses of this monograph—first, as a study aid when the reader 
is first learning the material, and later as a handy on-the-shelf reference and source 
of ideas when faced with a distributional problem. The work contains more than six 
dozen worked-out illustrative examples and more than 170 problems that can serve as a 
help in mastering the fundamentals, as well as extending the basic ideas and providing 
applications beyond those presented in the text.

Chapter 1 contains a brief review of basic concepts from probability and mathematical 
statistics. Moreover, this chapter also provides an introduction to the notational conventions 
used throughout the text. Chapters 2 and 3, respectively, introduce the most commonly 
used probability distributions for claim size and claim counts. Many of the examples in 
this pair of chapters illustrate methods of fitting a probability distribution from a given 
parametric distribution family to a set of claim data. Chapter 4 is devoted to the properties 
of aggregate loss distributions and to some of the standard techniques for approximating 
values of such distributions. Chapter 5 takes up the concepts of excess claims and layers 
of insurance, ideas which find application in Chapter 6 to the modeling of such common 
policy provisions as deductibles and limits.

Projects like this never see the light of day without the assistance of many individuals. I 
am indebted to former St. Paul/Travelers colleagues David Warren and Nancy Braithwaite, 
who helped bring the manuscript to the attention of the Casualty Actuarial Society and 
recruit persons to check the problem solutions. I am grateful to the anonymous reviewers 
who made valuable suggestions for improvement and to the team of volunteers who 
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verified the problem answers and identified errors: Kendall McDonald, Ira Robbin, 
Heidi Holtti, Su Fei Ang, Mikalai Filon, George Schuler, Patrick Filmore, Andrew 
Scott, Kevin Hanson, and Rachel Larson. At the CAS Donna Royston provided 
excellent and thoughtful editorial support. I am particularly indebted to Stan Khury, 
whose enthusiasm for the project was essential. All these generous contributors deserve 
my heartfelt thanks. Finally, above all, I owe an enormous debt of gratitude to my 
wife, Abbie, whose encouragement and support never faltered, and without which the 
manuscript would not have been completed.

David Bahnemann
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Property/casualty insurance policies are written to cover policyholder losses that arise 
from certain unpredictable events. These events, which occur more or less randomly 
over time, must happen during the time period the policy is in effect in order to qualify 
as insured events. To cite just a few possibilities, an insured event could be property 
damage due to fire or storm, medical treatment due to illness, or personal injury due 
to accident or professional malpractice. The occurrence of such an event can trigger a 
claim against the policy.

In order to determine a reasonable premium charge for a policy, actuaries must be 
able to quantify the random aspects of the underlying claim process. In particular, they 
must be able to construct appropriate probability models for the incidence and size of 
claims, topics which are the subjects of Chapters 3 and 2, respectively. We begin here 
in Chapter 1 with a brief summary of basic probability concepts.

A Note on Notation. In addition to providing a review of the probability prerequisites, 
this chapter establishes most of the notational conventions used throughout the 
subsequent chapters. In general, the notation is consistent with standard usage employed 
by expositors of probability and mathematical statistics. Probability spaces are denoted 
by upper-case Greek letters and probability events are denoted by upper-case Roman 
letters. The probability of a general random-variable-related event is usually denoted by 
Pr{z}. As usual, cumulative probability functions are denoted by F(z) and probability 
density functions by the associated lower-case Roman letter: f (z). For most parametric 
distributional families, parameters are denoted by lower-case Greek letters. Random 
variables are denoted by upper-case Roman letters, with X or Y denoting a claim-size 
variable, N a claim-count variable, and S an aggregate-loss variable. In every case, the 
introduction of a concept is accompanied by sufficient mathematical display to establish 
the applicable notational conventions.

1.1. Probability Spaces
Consider an experiment of chance for which the outcome cannot be predicted 

in advance. For example, tossing a coin and observing whether it lands Heads (H) 
or Tails (T ) is an experiment with a set of two possible, but unpredictable outcomes: 
{H, T }. The roll of a single die or pair of dice, the blind selection of objects from a 
well-mixed collection such as cards from a shuffled deck, the time to failure of an 
electronic or mechanical component, or the occurrence of an insurance claim—each 

1. Introduction
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can be interpreted as an experiment of chance with outcomes that cannot be predicted 
in advance.

A set W of all possible distinct outcomes of an experiment of chance is called a 
sample space for the experiment. Each element w of W is referred to as an elementary 
outcome. A performance of the experiment, obtaining one of the elementary outcomes 
as a result, is a trial of the experiment.

Note that different sets of elementary outcomes may be defined for any given 
experiment, depending on what attributes of the outcomes are of particular interest. 
For example, if an experiment consists of tossing a coin twice in succession, then one 
set of elementary outcomes could consist of all ordered pairs of Heads and Tails:

, , , .1 { }Ω = HH HT TH TT

If the order is unimportant, then the elementary outcomes could be the unordered pairs 
of Heads and Tails: W2 = {{H, H }, {H, T }, {T, T }}. Alternatively, if only the number 
of Heads obtained is material, then W3 = {0, 1, 2} would suffice as a sample space. 
However, sometimes selecting a sample space for which the elementary outcomes can 
be assigned equal probabilities makes all subsequent probability calculations easier—
see Example 1.2(a).

An event E for an experiment of chance is a subset of the sample space: E ⊆ W. If, 
at a trial of the experiment, outcome w ∈ W is obtained and it also happens that w ∈ E, 
then one says that event E has occurred.

Example 1.1. (a) An experiment consists of tossing a coin three times in succes-
sion and observing the resulting sequence of Heads and Tails. A sample space consists 
of eight elementary outcomes, each an ordered triple of Hs and Ts:

, , , , , , , . (1.1){ }Ω = HHH THH HTH HHT HTT THT TTH TTT

Thus, if on the first and second tosses the coin falls Heads and on the third Tails, 
then the outcome of the trial is HHT. The event E of obtaining at most one Heads 
among the three tosses is defined by the set E = {HTT, THT, TTH, TTT }.

(b) Another experiment consists of rolling a pair of dice and observing the number 
of spots on each die in turn (a die being a cube whose six faces are marked with one 
through six spots). There are 36 elementary outcomes in the sample space:

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) . (1.2)

{

}

Ω =

For example, if one observes five spots on the first die and two spots on the second, 
then the outcome of the trial is (5,2).

The set E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} defines the event that the sum of 
the spots is seven. The event

(1,4), (2,4), (3,4), (4,4), (5,4), (6,4), (4,1), (4,2), (4,3), (4,5), (4,6){ }=F
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occurs when four spots are obtained on at least one die. Having obtained the outcome 
(5,2) on a trial, we observe that event E has occurred because (5,2) ∈ E and that event F 
has not occurred because (5,2) ∉ F.

(c) An insurance policy pays at most $200,000 for an incurred claim. The issuing of 
such a policy can be interpreted as a trial of an experiment of chance for which the un-
certain outcome is the occurrence (or non-occurrence) of one or more claims. A reason-
able set of elementary outcomes would be the number of incurred claims: W1 = {0, 1, 2,  
3, . . .}. In addition, the occurrence of a claim can be interpreted as another experiment of 
chance for which the size of the claim is the unpredictable outcome. For this experiment 
the sample space can be expressed as an interval of real numbers: W2 = [0; 200,000].1 n

Generally, most—but not necessarily all—subsets of W can be considered events 
for an experiment with sample space W. In order to define probabilities for the events 
of an experiment of chance in a reasonable way, the set S of events must have certain 
properties. In particular, (i) S must contain W and (ii) S must contain the complement 
E c = {w ∈ W : w ∉ E } whenever E ∈ S. Moreover, (iii) S must contain the union of every 
countable collection of events in S.2 A collection of sets with these properties is called 
a s-algebra or Borel field.3 When the sample space W is finite or countably infinite, it is 
customary to assume that S is just the set of all subsets of W. The alternate case for the 
sample space that is uncountably infinite will be discussed briefly in Section 2.

Consider now an experiment of chance with a sample space W and a set of events S. 
To construct a probability space (W,S,P) for the experiment, one must assign a real 
number P(E ) to each event E—the probability of the event—that serves as a measure 
of the likelihood of the event will occur in a trial of the experiment. An event that is 
certain to occur—that is, the event W—is assigned the maximum probability of 1, 
and all other events have a probability measure between 0 and 1. A real-valued function P 
defined on the set of events S is called a probability set function if it satisfies the 
following three axioms:

( ) 1,

0 ( ) 1 ,

{ , , , . . . } ,
, for , ( ) ( ). (1.3)

1 2 3

A

A

A

1

2

3

∑

Ω =

≤ ≤ ∈

∩ = ∅ ≠ =

P

P E for E S

If E E E is a countable collection of disjoint events
that is E E i j then P E P Ei j i i ii∪

Other properties of function P can be derived from axioms A1, A2, A3 and the 
properties of S. Verification of the following set of statements is requested in Problem 1.2.

1 In reality the value of an insurance claim is expressed in whole monetary units (cents or dollars, for example), but 
it is convenient to assume that all values on the continuous interval are possible outcomes.

2 We observe the usual convention that a countable set A contains either a finite or countably infinite number 
of elements. Set A is countably infinite if it can be put into one-to-one correspondence with the set of positive 
integers.

3 After the French mathematician, Emile Borel (1871–1956). Borel was a pioneer in the development of modern 
measure theory and the theory of functions. Throughout the period 1905–1950, he published more than 50 papers 
and several longer works in probability theory.
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Properties of P(x)
Assume that E, F ∈ S are events for a probability space (W,S,P). Then

a( ) ( ) 1 ( ). (1.4)= −P E P Ec

b( ) ( ) 0. (1.5)∅ =P

c( ) ( ) ( ) ( ) ( ). (1.6)+ = ∪ + ∩P E P F P E F P E F

d( ) ( ) ( ) ( ). (1.7)= ∩ + ∩P E P E F P E F c

e( ) ( ) ( ). (1.8)⊆ ≤If E F then P E P F

f( ) , , , . . . ,
. (1.9)

1 2 3

∑
{ }

{ }( )( )
= ω ω ω Ω

= ω
If E is a countable subset of
then P E P ii

There are many ways to assign the probability function P for a probability space 
(W,S,P). Methods range from those founded on a priori assumptions about the underlying 
experiment to methods based on analyses of sample data.

In the special case in which W is a finite set of n elementary outcomes, there are 
often situations in which the outcomes can be assumed, by a priori reasoning based 
on symmetry arguments, to have equal probabilities: P({w}) = 1/n for each w ∈ W. For 
example, in the toss of single fair coin (that is, a coin of uniform composition with a 
symmetrical shape), it is reasonable to assume that outcomes Heads and Tails are equally 
probable: P(H ) = P(T ) = 1/2. Similarly, single objects selected blindly (“at random”) 
from a collection of n similar objects can also be assumed to be equally probable. Thus, 
a specified card drawn from a well-shuffled bridge deck would have probability 1/52.4

In the finite case for which the n elementary outcomes are assigned equal probability, 
the probability P(E ) of an event E containing m elementary outcomes can be calculated 
by the following formula based on property (1.9) above, where #(E ) denotes the 
number of elements in the set E:

( )
#
#

. (1.10)∑ { }( ) ( )
( )

= ω =
Ω

=
ω∈

P E P
E m

nE

Example 1.2.  (a) As in Example 1.1(a), an experiment involves tossing a coin 
three times and observing the sequence of Heads and Tails. The sample space W is displayed 
in equation (1.1). If the coin is assumed to be fair, then it makes sense to assign equal prob-
abilities to the eight elementary outcomes in W: P({w}) = 1/8 for each w ∈ W. Applying 
formula (1.10) to the event

, , ,{ }=E HTT THT TTH TTT

yields the probability of obtaining at most one Head: P(E ) = 4/8 = 0.5000.

4 A bridge deck contains 52 distinct playing cards, divided into four suits of 13 cards each: Hearts, Diamonds, 
Spades, Clubs. Each suit contains 10 numbered cards—Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10—and three Face cards: Jack, 
Queen, King. Hearts and Diamonds are red cards; Spades and Clubs are black cards.
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(b) An experiment consists of drawing a single card at random from a bridge deck, 
so that each of the 52 elementary outcomes is assigned probability 1/52. We define 
events E and F by

E : card drawn is a Face card and F : card drawn is a Heart.

The probabilities of events E, E c, F, E ∩ F, and E ∪ F are calculated from formula (1.10):

#
52

12
52

0.2308,

#
52

52 12
52

0.7692,

#
52

13
52

0.2500,

#
52

3
52

0.0577,

12
52

13
52

3
52

22
52

0.4231.

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

= = =

= = − =

= = =

∩ = ∩ = =

∪ = + − ∩ = + − = =

P E
E

P E
E

P F
F

P E F
E F

P E F P E P F P E F

c
c

(c) An experiment consists of dealing a hand of five cards at random from a standard 
deck of 52. Since the order of the cards is immaterial, the number of elementary outcomes 
is given by the combinatoric formula nCk = n!/[k! (n - k)!] for the number of distinct 
selections (or combinations) of k objects from a collection of n distinguishable objects:

52!
5!47!

2,598,960.52 5 = =C

Let E be the event of obtaining five cards from the same suit, and let F be the event of 
obtaining no face cards. Thus,

4 5,148
2,598,960

0.0020,

658,008
2,598,960

0.2532,

(4)( ) 1,008
2,598,960

0.0004.

13 5

52 5

40 5

52 5

10 5

52 5

( )( ) ( )

( )

( )

= = =

= = =

∩ = = =

P E
C

C

P F
C
C

P E F
C

C
n

One of the most useful probability concepts is that of conditional probability. 
Often one has partial information about the result of an experiment of chance, 
information which can alter the likelihood that a particular event could occur. For 
instance, consider the experiment of Example 1.1(b) involving the roll of a pair of 
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dice. Assuming that each die is fair, we assign the probability 1/36 to each elementary 
outcome in (1.2). As a result, the probability of obtaining a total of seven spots (event E 
in that example) is P(E ) = 6/36 = 0.1667. However, this probability changes if we 
know that event F has already occurred, namely, that at least one die shows four spots. 
In this case, the number of possible elementary outcomes has been reduced from 36 in 
W to only 11 in event F. In addition, there are only two outcomes in E that are also 
in F—that is, E ∩ F = {(3,4), (4,3)}—and these remain equally probable. Thus, the 
conditional probability of E given that F has occurred, denoted by P(E |F ), is

#
#

2
11

0.1818.( ) ( )
( )

= ∩ = =P E F
E F

F

However, the first quotient in this equation could also be expressed as

#
#

# #
# #

,
( )

( )
( ) ( )

( ) ( )
( )

( )
∩ = ∩ Ω

Ω
= ∩E F

F
E F

F
P E F

P F

which can be generalized to provide a definition for conditional probability. If P(F ) > 0, 
then P(E |F ), the probability of event E, given that event F has occurred, is defined by

(1.11)( ) ( )
( )

= ∩
P E F

P E F
P F

In addition, one can express (1.11) in the following multiplicative form, which is 
satisfied even when P(F ) = 0:

( ). (1.12)( ) ( )∩ =P E F P F P E Fi

Equation (1.12) is occasionally useful in calculating P(E ∩ F ), as in Example 1.3(b).

Example 1.3.  (a) An experiment consists of tossing a fair coin two times in 
succession and observing the resulting sequence of Heads and Tails. The sample space 
contains four equally probable outcomes: W = {HH, HT, TH, TT }.

The probability of obtaining two Tails (event E ), given that at least one of the coins 
lands Tails (event F ), is therefore

, ,
1 4
3 4

1
3

.{ }( )( ) ( )
( )

{ }( )
= ∩ = = =P E F

P E F
P F

P TT
P HT TH TT

(b) An urn contains eight white chips and five black chips. Two chips are drawn at 
random without replacing the first chip before drawing the second—at each draw the 
chips in the urn are equally likely to be drawn.

Let E1 denote the event that the first chip is white, and let E2 denote the event that 
the second chip is white. Clearly,

8
13

and
8 1

13 1
7

12
.1 2 1( ) ( )= = −

−
=P E P E E
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Thus, (1.12) implies that the probability P(E1 ∩ E2) that both chips are white is

8
13

7
12

56
156

0.3590.1 2 1 2 1( ) ( ) ( )∩ = = = =P E E P E P E Ei i
 
n

It is possible, however, that the occurrence of event F does not alter the probability 
of E, that is, P(E | F ) = P(E ). In this situation, we have

. (1.13)( ) ( ) ( )∩ =P E F P E P Fi

Events E and F for which equation (1.13) holds are said to be stochastically 
independent (or merely independent) events; otherwise, they are said to be 
dependent events.

Example 1.4.  Consider again the experiment of Example 1.1(b), involving the 
roll of two fair dice. The 36 equally probable elementary outcomes are displayed in 
(1.2). Let E7 denote the event of obtaining a total of seven spots, and F2 denote the 
event that the first die shows two spots. Thus,

6
36

1
6

and
6

36
1
6

.7 2( ) ( )= = = =P E P F

Since

2,5
1

36
,7 2 7 2( ) ( ) ( )( ){ }( )∩ = = =P E F P P E P Fi

events E7 and F2 are independent, by definition.
On the other hand, let E5 be the event of obtaining a total of five spots, so that 

P(E5) = 4/36 = 1/9. In this case,

2,3
1

36
.5 2( ) ( ){ }( )∩ = =P E F P

Therefore, E5 and F2 are dependent events:

1
9

1
6

1
36

.5 2 5 2( ) ( )( ) = ≠ = ∩P E P F P E Fi i
 
n

1.2.  Random Variables and Probability Distributions
When working with a random phenomenon modeled by a probability space, 

one is often more concerned with some numerical function of the outcomes  
in the sample space than in the actual set of outcomes. For example, interpreting  
the occurrence of an insurance claim as the outcome of a random experiment,  
actuaries usually focus on the monetary amount of the claim. From another perspec-
tive, they may be primarily interested in the number of claims occurring during the  
policy term.
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Assume that (W,S,P) is a probability space for an experiment of chance. Consider 
now a function X defined on the sample space W that assigns a real number X(w) to 
each outcome w ∈ W. The function X is called a random variable on W provided that 
for every real number x the set {w ∈W : X(w) ≤ x} is an event in S (such a function X is 
a measurable function with respect to S). The range space or value space of X is the 
range of the function X:

{ }( )= ∈ℜ = ω ω ∈Ω: for some .R x x XX

We denote random variables by upper-case letters—X, Y, N. Specific values that a 
random variable assumes are represented by lower-case letters—x, y, n.

Most commonly encountered random variables can be classified as one of two major 
types—the discrete type or the continuous type—although actuaries also meet the 
mixed type of variable that combines features of both the discrete and the continuous. 
A discrete random variable X has a countable range space, RX = {x1, x2, x3, . . .}, whereas 
for continuous random variables the range space consists of one or more intervals of 
real numbers—finite or infinite in length.

Assume now that (W,S,P) is a probability space and that X is a random variable 
defined on W. The set function PX defined on subsets of the real numbers R is called a 
probability distribution (or merely distribution) for X provided it assigns to a set A 
of real numbers the probability that X takes on a value in A:5

( ) : . (1.14){ }( )( )= ω ∈Ω ω ∈P A P X AX

In particular, the probability that X lies in the semi-infinite interval (-∞, x] is

] { }( )(( )−∞ = ω ∈Ω ω ≤, : ( ) . (1.15)P x P X xX

Example 1.5.  An experiment consists of tossing three fair coins. As discussed 
in Examples 1.1(a) and 1.2(a), the sample space (1.1) consists of eight elementary 
outcomes, each with probability 1/8. Let the discrete random variable X denote the 
number of Heads obtained. There are clearly four possible values for X: RX = {0, 1, 2, 3}. 
Thus, variable X is defined on the sample space by

{ }
{ }

( )ω =

ω =

ω ∈

ω ∈

ω =













0 if

1 if , ,

2 if , ,

3 if .

X

TTT

HTT THT TTH

HHT HTH THH

HHH

5 Technically speaking, set A must belong to the s–algebra @ generated by all the semi-infinite intervals (-∞, x]. 
The resulting induced probability space (R, @, PX) is defined on all of R. Virtually every set of real numbers 
encountered in practice belongs to @. Details of this formal approach to random variables and probability 
distributions can be found in an advanced textbook of probability.
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Each value of X defines an event in the underlying sample space, with an associated 
probability. Thus, the probability set function P defined on the sample space induces 
in a natural way a probability distribution PX for the random variable X:

 �

P X P TTT

P X P HTT THT TTH

P X P HHT HTH THH

P X P HHH

X

X

X

X

{ }

{ }

)

)

(

(

{ }) { } { })

{ }) { }

{ }) { }

{ }) { } { })

( (

(

(

( (

= = = =

= = = =

= = = =

= = = =

0 Pr 0
1
8

,

1 Pr 1 , ,
3
8

,

2 Pr 2 , ,
3
8

,

3 Pr 3
1
8

. (1.16)

In the final set of equations (1.16) of this example we introduced a somewhat 
simplified notation. If H(X ) is a statement about the values of X that can be true or 
false, then Pr{H(X)} represents the more precise expression

{ }( ){ } ( )( ) =Pr : .H X P x H x is trueX

Probability Distribution Functions
In practice, however, the probability distribution for a random variable X is usually 

expressed by a function defined directly on the real-number values of X. Specifically, 
one often generates a probability distribution for X by means of a probability 
density function f (abbreviated p.d.f.) defined on all of the real numbers R. (The 
density function for X may be denoted by fX when it is important to distinguish the 
random variable from other variables in a given context.) Function f has a distinctive 
form, depending on whether X is of the discrete type or continuous type. Beginning 
with the discrete case, we shall in the following discussion take up these two types, as 
well as the mixed type, in turn.

Often f depends on a set of one or more numbers Q = 〈q1, q2, . . . , qr〉, which can 
vary over a range of values, each value-set of numbers determining a specific density 
function. Such numbers are called parameters. The resulting distributions are then 
said to belong to a parametric distribution family.

Whenever X has a countable range space RX = {x1, x2, x3, . . .}, X is said to be a 
discrete random variable. To serve as a probability density function in the discrete case, 
function f must have properties (i), (ii), (iii) listed below. In the discrete case f is also 
called a probability mass function.

0 for ,

0 for ,

1, 1, 2, 3, . . . . (1.17)∑

( )

( )

( )

( )

( )

( )

≥ ∈

= ∉

= =

i f x x R

ii f x x R

iii f x i

i i X

X

ii
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Function PX is defined by setting PX({xi}) = f (xi) for i = 1, 2, 3, . . . . Moreover, for a set A, 
A ⊆ R, it follows that

. (1.18)∑ ( )( ) =
∈

P A f xX i
x Ai

The next example describes three common families of discrete distributions.

Example 1.6.  (a) The simplest non-trivial random variable takes on only two 
distinct values: {0,1}. Such a variable X can be defined on any probability space relative 
to a fixed event E with P(E ) = p, where 0 < p < 1:

1 if

0 if .
( )ω =

ω ∈

ω ∉





X
E

E

A trial resulting in the occurrence of E is often termed a “success,” whereas the 
occurrence of the complement Ec is called a “failure.” Therefore, the probability of 
obtaining a success is Pr{X = 1} = p, and the probability mass function is

if 1

1 if 0

0 if 0,1 .{ }
( ) =

=

− =

∉










f x

p x

p x

x

The probability distribution with this function is called a Bernoulli distribution with 
parameter p, and X is accordingly known as a Bernoulli random variable.6

(b) Another family of discrete distributions, related to the Bernoulli, comprises 
the binomial distributions with parameters n and p. X is a binomial random 
variable if X equals the number x of successes, each with probability p, obtained in 
n independent Bernoulli trials (n = 1, 2, 3, . . .).7 The probability of x successes in n 
trials is Pr{X = x} = nCx px (1 - p)n-x, and the probability mass function is

{ }
{ }

( ) =
− ∈

∉







−(1 ) if 0,1, 2, . . . ,

0 if 0,1, 2, . . . , .
(1.19)f x

C p p x n

x n

n x
x n x

6 The Bernoulli variable is named for Jacob [James] Bernoulli (1654–1705), a prominent member of the Bernoulli 
family of Swiss mathematicians. His most significant work in probability, the Ars conjectandi, was published 
posthumously in Basel in 1713.

7 Informally, we say that successive trials of a single experiment or trials of separate experiments are said to 
be independent whenever the probabilities of the outcomes in one trial do not depend on those of another. 
In particular, if event E is associated with a certain trial and event F with another trial in the sequence,  
then Pr{E and F } = P(E )zP(F ). A more formal treatment of this topic can be found in a standard probability 
theory text.
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The factors nCx in (1.19) are the ordinary binomial coefficients. The Binomial Theorem is 
used at step (2) in the following verification that the probabilities in (1.19) all sum to 1:

1 1 1.
0 0

2
∑ ∑ ( ) ( )( ) = − = + − =

( )

=

−

=
f x C p p p p

x

n

n x
x n x

x

n
n

(c) Consider a Bernoulli experiment with two elementary outcomes: success or failure. 
Independent trials with Pr{success} = p are performed until the first success is obtained. For 
this experiment the elementary outcomes in W form a countably infinite set of sequences 
beginning with a number (0, 1, 2, . . .) of failures (F ) and ending with a single success (S ):

, , , , , , . . . .{ }Ω = S FS FFS FFFS FFFFS FFFFFS

Let N denote a random variable with value equal to the number n of trials required to 
obtain the first success. Independence of the component Bernoulli trials implies that 
for n = 1, 2, 3, . . . the probability mass function is

Pr (1 ) . (1.20)1{ }( ) = = − −f n first S obtained on the n trial p pth n

Note that the sum of an infinite geometric series is used at step (2) in the following 
verification of the sum of all nonzero probabilities:

1
1

1 (1 )
1.

1 0

2
∑ ∑ ( )( ) = − =

− −
=

( )

=

∞

=

∞
f n p p p

pn

n

n
i

A distribution with probability mass function (1.20) is accordingly called a geometric 
distribution with parameter p. Refer also to Problem 3.21. n

A probability distribution for a random variable X can also be characterized by 
a function related to the probability density function, the cumulative distribution 
function (sometimes shortened to distribution function or abbreviated c.d.f.). This 
function is denoted by F—or by FX whenever the dependence on X must be empha-
sized—and is defined for all real numbers x by

Pr . (1.21)( ) { }= ≤F x X x

Therefore, if X is a discrete variable with range space RX = {x1, x2, x3, . . .} with a 
probability mass function f satisfying (1.17), then function F is given by

. (1.22)∑ ( )( ) =
≤

F x f xi
x xi

Example 1.7.  Let X be the random variable of Example 1.5. The probability 
density function can be expressed by the table

# Heads x 0 1 2 3

f(x) 0.125 0.375 0.375 0.125
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As usual, we assume that f (x) = 0 for x ∉ RX = {0, 1, 2, 3}. A graph of the cumulative 
distribution function, below, is shown in Figure 1.1:

0 if 0

0.125 if 0 1

0.500 if 1 2

0.875 if 2 3

1.000 if 3 .

( ) =

−∞ < <

≤ <

≤ <

≤ <

≤ < ∞















F x

x

x

x

x

x   n

Example 1.7 illustrates the fact that for a discrete random variable X, F(x) has a 
jump discontinuity at each value xi ∈ RX for which f (xi) > 0. Moreover, the height of 
the jump at xi is just f (xi). Elsewhere the function is constant:

∑ ( )( ) =

<

≤ < =

≥










=
−

−F x

x x

f x x x x i

R x R

jj
i

i i

X X

0 if

if , 2, 3, . . .

1 if max exists and max .

1

1
1

1

Thus, for every probability distribution defined on a discrete random variable the 
cumulative distribution function F(x) is a step function.

Suppose now that random variable X is a non-discrete variable. This means the 
range space RX is a uncountable set, and we shall further assume that RX consists of one 
or more intervals (of finite or infinite length) of real numbers. To serve as a probability 
density function in this case f must be defined on all of ℜ and be Riemann integrable 
there (“Riemann integrable” generally means that the function has at most a countable 

Figure 1.1.  Cumulative Distribution Function  
y  F (x) [Example 1.7]
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0.6

0.2
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set of points of discontinuity).8 Function f must also have properties analogous to those 
of the discrete case (1.17):

0 for ,

0 for ,

1. (1.23)∫

( ) ( )

( ) ( )

( ) ( )

≥ ∈

= ∉

=−∞
∞

i f x x R

ii f x x R

iii f x dx

X

X

If such a density function exists, the probability function PX is defined for a set A 
of real numbers by the integral

. (1.24)∫( ) ( )=P A f x dxX A

Thus, for example,

∫[ ] [ ]( ) ( )= ⊆ ℜ, , , . (1.25)P a b f x dx a bX a

b

In particular, the cumulative distribution function is given by

. (1.26)∫( ) ( )= −∞F x f u dux

A basic theorem of calculus guarantees that for such an integrand f (x), the function 
F(x) is a continuous function of x on all of R. Moreover, when the density function 
f (x) is continuous at x, then F(x) is also differentiable at x, with F ′(x) = f (x). As a 
result, the random variable X and its associated probability distribution PX are said to 
be continuous.

The next example illustrates a trio of important continuous distributions.

Example 1.8.  (a) Random variable X takes on values throughout an interval  
[a, b] of real numbers (a < b). Variable X is said to have a uniform distribution on 
[a, b] if the probability density function is given by

( )

1
if [ , ]

0 if or .
= β − α

∈ α β

< α > β






f x

x

x x

8 Named for the German professor of mathematics, Bernhard Riemann (1826–1866), who gave the first rigorous 
definition, the Riemann integral is the ordinary integral of elementary calculus. Riemann’s approach to 
integration was later extended by other mathematicians, notably Henri Lebesgue (1875–1941). Although today 
the most general and rigorous treatments of probability are founded on the Lebesgue theory of measure and 
integration, the Riemann approach (and its generalization by Stieltjes, discussed in the next section) is adequate 
for the present work.
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Thus, the probability that X lies in a subinterval [c, d ], where a ≤ c < d ≤ b, is 
proportional to the length of the subinterval:

, ( )
1

.∫ ∫[ ]( ) = =
β − α

= −
β − α

P c d f x dx dx
d c

X c

d

c

d

(b) Let X denote the size of an insurance claim that is unrestricted by any policy 
limit. Then it is reasonable to consider the nonnegative real numbers as the range space 
of X: RX = [0, ∞). When X has the probability density function

( ) ( )
=

−∞ < <

β ≤ < ∞ β >






− β

( )
0 if 0

1 if 0 0
f x

x

e xx

X is said to have an exponential distribution. The cumulative distribution function is

=
−∞ < <

− ≤ < ∞






− β

( )
0 if 0

1 if 0 .
F x

x

e xx

In the case b = 200 the probability that X falls in the interval [300,400] is

Pr 300 400
1

200
400 300 0.0878.200

300
400

∫{ } ( ) ( )≤ ≤ = = − =−X e dx F Fx

(c) The random variable Z with the important standard normal distribution—
known also as the Gaussian distribution9—has a continuous nonzero density function 
defined on all of R:

( )=
π

− −∞ < < ∞( )
1
2

exp , . (1.27)1
2

2f z z z

Because f is a function of z2, the distribution is symmetric about z = 0.
The cumulative distribution function, denoted in this case by the special notation 

F(z), is therefore

∫ ( )( )Φ =
π

−
−∞

1
2

exp . (1.28)1
2

2z u du
z

Because the integral in (1.28) cannot be evaluated by elementary methods of calculus, 
values of F must be obtained by some approximation method—refer to Appendix A.1 
for details. A graph of y = F(z) is shown in Figure 1.2. n

9 The German mathematician Karl Friedrich Gauss (1777–1855) is widely acknowledged as the greatest mathematician 
of the nineteenth century. Working at the University of Göttingen, he made significant contributions to a broad range 
of fields in mathematics and physics. He used the normal distribution to model the distribution of measurement errors.
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In addition to the special properties for cumulative distribution functions for 
discrete and continuous random variables already mentioned, the function F(x) has a 
number of general properties, listed below.

Properties of F(x)
Assume that c is an arbitrary real constant. Then

a( ) 0 1 . (1.29)( )≤ ≤ ∈ℜF x for all x

b . (1.30)1 2 1 2( ) ( )( ) ≤ <F x F x for x x

c lim 1 lim 0. (1.31)( ) ( ) ( )= =→∞ →−∞F x and F xx x

d Pr lim lim . (1.32)( ) { } ( ) ( ) ( ) ( )= = − = + − −→ + → −X c F x F x F c F cx c x c

e , , lim ( ) ( ). (1.33)( ) ( ) =→ +F x is continuous from the right that is F x F cx c

Proof:
(a) The inequality follows from the definition (1.21) of F as a probability.
(b) The inequality follows from

Pr 0.2 1 1 2( ) ( ) { }− = < ≤ ≥F x F x x X x

(c) Let 〈xn〉 be an increasing sequence of reals with limn→∞ xn = ∞. Then 〈In〉 = 〈(-∞, xn]〉 
is an ascending sequence of intervals, with ∪n In = (-∞, ∞) and PX(In) = F(xn).  
Applying the result of Problem 1.3(a):

)( )(−∞ ∞) ) )( ( (= = = =
→∞ →∞

∪ ,lim lim 1.F x P I P I P
n

n
n

X n X n n X

1.0

0.8

0.6

0.2

-3 -2 -1 0 1 2 3 z

y

Figure 1.2.  Cumulative Distribution Function  
y  F(z) [Example 1.8(c)]
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(d )  The sequence ,1 1 ](= − +I c cn n n  is a descending sequence of intervals, with 
{c} = ∩n In. The result of Problem 1.3(b) yields

Pr lim

lim
1 1

.

( ) ( ){ }

( ) ( )

= = =

= +





− −











= + − −

→∞

→∞

X c P I P I

F c
n

F c
n

F c F c

X n n
n

X n

n

∩

(e) Let 〈xn〉 be a decreasing sequence of reals with limn→∞ xn = c. Then 〈In〉 = 〈(-∞, xn]〉 is 
a descending sequence of intervals, with ∩n In = (-∞, c] and PX(In) = F(xn). Again 
applying Problem 1.3(b):

,lim ( ) lim lim .](( )−∞( )( ) ( ) ( )= = = = =
→ + →∞ →∞

cF x F x P I P I P F c
n c n

n
n

X n X n n X∩
 
n

Note that property (d ) above implies that if X is a continuous random variable then 
Pr{X = x} = 0 for every real x.

Occasionally one encounters random variables that are neither entirely discrete nor 
entirely continuous but whose distribution is a hybrid of these two main types. Such a 
random variable is said to have a mixed distribution, with a cumulative distribution 
function of the form described below.

A distribution function F is of the mixed type if the function can be expressed as

, (1.34)1 1 2 2( ) ( ) ( )= ω + ωF x F x F x

where F1(x) is the distribution function of a continuous variable X1, F2(x) is the distribution 
function of a discrete random variable X2 with RX2 = {xi}, and the nonnegative numbers 
w1 and w2 satisfy w1 + w2 = 1. Here the numbers w1 and w2 can be interpreted as the 
respective probabilities of being (1) in the continuous state or (2) in the discrete state. A 
graph of y = F(x) is continuous except at the points {xi}, where it has a jump discontinuity 
of height w2 fX2(xi).

The next example illustrates some types of mixed distributions often encountered 
in the modeling of property/casualty claim processes.

Example 1.9.  The distribution of an unlimited claim-size random variable Y has 
the exponential c.d.f.

0 if 0

1 if 0 .0.01
( ) =

−∞ ≤ <

− ≤ < ∞






−

F x
x

e x
Y x

(a) The variable X is distributed like Y for positive x, but takes on the value 0 with 
probability 0.25. Thus, the distribution of X is a mixed distribution with a discrete 
lump of probability at x = 0. Since

1 Pr 0 0.75,1 { }ω = = − = =Probability of being in the continuous state X
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the cumulative distribution function of X has the form

( ) ( ) ( )=
− ∞ < <

− ≤ < ∞






+

−∞ < <

≤ < ∞





=
− ∞ < <

− ≤ < ∞







−

−

0.75
0 if 0

1 if 0
0.25

0 if 0

1 if 0

0 if 0

1 0.75 if 0 .

0.01

0.01

F x
x

e x

x

x

x

e x

x

x

(b) Alternatively, suppose that X is distributed like Y, but is limited above by  
the value 200—that is, claims less than or equal to 200 are paid at full value, 
but claims greater than 200 are paid at the maximum value of 200. In this case, 
however,

200 1 .1
2( )ω = = = − −Probability of being in the continuous state F eY

Therefore,

( )( ) = −

− ∞ < <

−
−

≤ < +
−∞ < <

≤ < ∞





≤ < ∞













=

−∞ < <

− ≤ <

≤ < ∞










−
−

−
−

−

1

0 if 0

1
1

if 0 200
0 if 200

1 if 200

1 if 200

0 if 0

1 if 0 200

1 if 200 .

2
0.01

2
2

0.01

F x e

x

e
e

x e
x

x

x

x

e x

x

x

x

(c) Finally, again assume that X is distributed like Y, but simultaneously has both 
modifications described in parts (a) and (b): it takes on the value 0 with probability 
Pr{X = 0} = 0.25 and is limited above by the value 200. Thus, the modified variable Xc 
has a mixed distribution with two discrete lumps of probability mass, one at x = 0 and 
another at x = 200. Observe that

0.75 200 0.75 1 .1
2( )( )ω = = = − −Probability of being in the continuous state F eY

Variable X then has the cumulative distribution function

0.75 1

0 if 0

1
1

if 0 200

1 if 200

2
0.01

2( )( ) = −

−∞ < <

−
−

≤ <

≤ < ∞













−
−

−F x e

x

e
e

x

x

x
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0.25 0.75

0 if 0

0.25
0.25 0.75

if 0 200

1 if 200

0 if 0

1 0.75 if 0 200

1 if 200 .

2
2

0.01

( )+ +

−∞ < <

+
≤ <

≤ < ∞













=

−∞ < <

− ≤ <

≤ < ∞










−
−

−

e

x

e
x

x

x

e x

x

x

Graphs of y = F(x) for parts (a), (b), and (c) are shown in Figures 1.3, 1.4, and 1.5, 
respectively. n
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Figure 1.3.  Mixed Distribution Function y  F (x)  
[Example 1.9(a)]
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Figure 1.4.  Mixed Distribution Function y  F (x) 
[Example 1.9(b)]
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Joint Distributions
It is frequently necessary to work with two or more random variables at the 

same time, recognizing that the values of one variable may influence the values 
of another. Accordingly, one must consider the probability distribution of the 
variables jointly. For example, suppose that X and Y are random variables with 
respective density functions fX(x) and fY(y). We define F(x, y), the joint cumulative 
distribution function of X and Y, by

, Pr , , . (1.35){ }( ) = ≤ ≤ −∞ < < ∞F x y X x and Y y x y

The joint probability density function f (x, y) is a function that, in the case that X 
and Y are both discrete variables, satisfies

, Pr , , , (1.36)( ) { }= = = ∈ ∈f x y X x and Y y x R y Ri j i j i X j Y

as well as

, , ,

( ) , , . (1.37)

∑

∑

( )

( )

( ) = ∈

= ∈

∈

∈

f x f x y x R

f y f x y y R

X i i j
y R

i X

Y j i j
x R

j Y

j Y

i X

In this context, functions fX(x) and fY(y) are called the marginal probability density 
functions of X and Y, respectively.

In the case that X and Y are both continuous variables, the density function f (x, y) 
must satisfy

, , , , , (1.38)∫∫( ) ( )= −∞ < < ∞−∞−∞F x y f u v du dv x yyx
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-400 -200 0 200 400 600 x

y

Figure 1.5.  Mixed Distribution Function y  F (x)
[Example 1.9(c)]
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with the marginal density functions given by

, and , . (1.39)∫ ∫( ) ( ) ( )( )= =−∞
∞

−∞
∞f x f x y dy f y f x y dxX Y

When it is true that the density functions satisfy the relation

, , , , (1.40)( ) ( )( )= −∞ < < ∞f x y f x f y x yX Yi

we say that random variables X and Y are independent. For independent random 
variables, the probability distribution of one variable is not affected by the values of 
the other. In particular, the probability Pr{X ≤ x} is mathematically independent of the 
value of Y, and vice versa. Consequently, we also have

, , , . (1.41)( ) ( )( )= −∞ < < ∞F x y F x F y x yX Yi

1.3. Mathematical Expectation
One of the most useful random-variable concepts is that of mathematical expectation, 

which we define in the following way. Assume that X is a random variable with p.d.f. 
f—and range space RX = {xi} if X is discrete. Let g be a function such that

or ,∑ ∫( ) ( ) ( ) ( )−∞
∞g x f x g x f x dxi i

i

depending on whether X is discrete or continuous, respectively, exists as a finite 
number. Thus, whenever the above expression is an infinite series or improper Riemann 
integral, it must be convergent. The expectation or expected value of g(X ) is denoted 
by E[g(X )], and it is defined by

∑

∫
=





 −∞
∞

[ ( )]
( ) ( ) if is discrete

( ) ( ) if is continuous.
(1.42)E g X

g x f x X

g x f x dx X

i ii

A Note on Integrals. Students of integration theory will recognize that the dual 
expressions in (1.42) can be represented by a single formula in which the integral is of 
the Riemann–Stieltjes type, as opposed to the ordinary Riemann integral of elementary 
calculus:10

. (1.43)∫[ ]( ) ( ) ( )= −∞
∞E g X g x dF x

Without going into the theoretical details, unnecessary for the present discussion 
and which can be obtained from a text of real analysis, the Riemann–Stieltjes integral 

10 Thomas Jan Stieltjes (1856–1894) was a prominent Dutch mathematician who made contributions to continued 
fractions, number theory, and analysis. Appearing in his 1894 paper, “Recherches sur les fractions continues,” his 
was the first published generalization of the Riemann integral. Details concerning the Riemann–Stieltjes integral 
can be found in textbooks of probability theory or advanced calculus; for example, refer to McCord and Moroney 
[14], pp. 82–92, or Apostol [2], pp. 140–182.
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has the following properties which support the use of the expression in (1.43). Whenever 
F(x) is a nondecreasing differentiable function for which F ′(x) = f (x) and f (x) is Riemann-
integrable, the Stieltjes integral in (1.43) reduces to the Riemann integral

. (1.44)∫ ∫( ) ( ) ( ) ( )=−∞
∞

−∞
∞g x dF x g x f x dx

In the case that F(x) is a nondecreasing step function with jumps at a countable set of 
values {xi} and with the height of the jump at xi equal to f (xi), then

. (1.45)1∫ ∑ ∑( )( ) ( ) ( ) ( ) ( ) ( ) ( )= − − =−∞
∞

−g x dF x g x F x F x g x f xi i ii i ii

As a result, we are justified in using the notation of (1.43) in place of (1.42), with the 
integral ( ) ( )∫−∞

∞
g x dF x  interpreted as a Riemann–Stieltjes integral.

Properties (1.46) through (1.50) below are straightforward consequences of definition 
(1.42). Verification is requested in Problem 1.8.

Properties of E[g(X )]
Assume that c is a real constant and that h and g are functions for which E[g(X)] and 
E[h(X)] exist. Then

a( ) . (1.46)[ ] =E c c

b( ) . (1.47)[ ] [ ]( ) ( )=E c g X c E g X

c( ) . (1.48)[ ] [ ] [ ]( ) ( ) ( ) ( )+ = +E g X h X E g X E h X

d( ) . (1.49)[ ] [ ]( ) ( ) ( ) ( )≤ ≤E g X E h X whenever g x h x for all x

e( ) ( ) ( ) . (1.50)[ ][ ] ≤E g X E g X

One of the most important expected values for a random variable X is the mean 
E[X ], obtained from (1.43) when g(X ) = X:

. (1.51)∫[ ] ( )= −∞
∞E X x dF x

In addition, the expectation of g(X ) = (X - E[X ])2 defines the variance of X:

[ ] . (1.52)2[ ] ( )= − Var X E X E X

The mean is a familiar measure of central tendency. For claim-size distributions, 
discussed in Chapter 2, the mean E[X ] is often called the severity.11 The variance is 

11 Actuaries sometimes use the term “severity” as a synonym for “claim size” when referring to claim-size distributions 
as “severity distributions.” However, in this monograph we shall consistently use the term to denote mean claim size.
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a standard measure of the dispersion of the distribution—the larger the variance, the 
more widely dispersed over the range space is the unit mass of probability. The square 
root of the variance is known as the standard deviation: [ ] [ ]=SD X Var X .

Properties of Var[X ]
If c is a real constant, then

a( ) 0. (1.53)[ ] =Var c

b( ) . (1.54)2[ ] [ ]=Var c X c Var X

c( ) . (1.55)2 2[ ][ ] [ ]( )= −Var X E X E X

Proofs of these variance properties are requested in Problem 1.9.
Generalizing the expected values involved in definitions (1.51) and (1.52), we 

define the expectation of g(X ) = X m for m = 1, 2, 3, . . . :

. (1.56)∫[ ] ( )= −∞
∞E X x dF xm m

When the expression in (1.56) exists, the expected value E[X m ] is called the mth moment 
about 0 (or more simply, the mth moment) of X. In addition, the expected value  
E[(X - E[X ])m] is called the mth central moment of X. Accordingly, Var[X ] is the 
second central moment of X.

Although we have defined the moments, as well as the variance and other moment-
based entities, as characteristics of a random variable, it is customary to refer to them 
interchangeably as properties of the random variable and of its associated probability 
distribution. In a formal treatment of probability these concepts can be defined separately, 
but we shall not do so here.

Example 1.10.  (a) Random variable X has a Bernoulli distribution with param-
eter p. Then

0 1 1 ,

0 1 1 ,2 2 2[ ] ( ) ( )
[ ] ( ) ( )( )

( )

= − + =

= − + =

E X p p p

E X p p p

so that equation (1.55) yields Var[X ] = p(1 - p).
(b) Variable X is uniformly distributed on [a, b]. Integrating over the interval, we 

obtain the mean and variance as functions of parameters a and b:

1
2 2

,

1
3 4 12

.

2 2

2 2
2 2 2 2

∫

∫

[ ]

[ ] [ ]( )

( )

( ) ( )

=
β − α

= β − α
β − α

= α + β

=
β − α

− = β + αβ + α − α + β = β − α

α
β

α
β

E X x dx

Var X x dx E X
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(c) Z has the standard normal distribution with p.d.f. (1.27). Then

∫

∫

( )

( )

=
π

− =

=
π

− =
π

π =

−∞
∞

−∞
∞

[ ]
1
2

exp 0,

[ ]
1
2

exp
1
2

2 1,

1
2

2

2 2 1
2

2

E Z z z dz

E Z z z dz

and so Var[Z ] = 1 - 02 = 1. n
Finally, we examine another special expected value for a random variable X, namely 

that of the function g(X ) = e tX. If there exists a positive number K such that the expectation 
E[g(X )] = E[e tX ] exists for all t < K, then the resulting function of t, M(t) = E[e tX], is 
called the moment-generating function of X. Thus,12

exp( ) . (1.57)12∫[ ]( ) ( )= = −∞
∞M t E e tx dF xtX

Moment-generating functions play an important role in probability. When it exists, 
the moment-generating function of a random variable is unique and, moreover, completely 
characterizes the probability distribution of the variable. That is, two random variables 
with the same moment-generating function have the same distribution. In addition, when 
it exists, the mth derivative of M(t) evaluated at t = 0 is just the mth moment:

, 1, 2, 3, . . . . (1.58)
0

[ ]( ) = =
=

d
dt

M t E X m
m

m
t

m

Proofs of both these assertions about the moment-generating function can be found in 
a standard text of probability theory.

Example 1.11.  (a) Assume that random variable X has a binomial distribution with 
parameters n and p (n = 1, 2, 3, . . . and 0 < p < 1). Function M(t) exists for all real t, and

1 1 .
0 0

∑ ∑ ( ) ( )( )( ) ( )= = − = − +
=

−

=
M t e f x C pe p p petx

x

n

n x
t x n x

x

n
t n

The first two derivatives are

( )

( ) ( )( )

( )

( )

= − +

=
− − + + − + ≥

=







−

− −

1 ,

1 1 1 if 2

if 1.

1

2

2

2 2 2 1

d
dt

M t n p pe pe

d
dt

M t
n n p pe p e n p pe pe n

pe n

t n t

t n t t n t

t

12 For a continuous random variable the moment-generating function is a type of Laplace transform of its probability 
density function. Although useful when it exists, the moment-generating function fails to exist for a number of 
important distributions, notably the lognormal family discussed in Chapter 2. However, the characteristic function 
of a random variable X, defined as the complex-valued function E[exp(itX )], always exists and has similar moment-
generating properties. The uniqueness of the moment-generating function is usually obtained from a corresponding 
uniqueness theorem about the characteristic function. For example, see Parzen [18], pp. 400–404. Refer also to 
Section 4.5.
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Evaluating these derivatives at t = 0, we obtain

0 ,

0 1 ,2 2[ ]
[ ] ( )

( ) ( )

= ′ =

= ′′ = − +

E X M np

E X M n n p np

and hence Var[X ] = n(n - 1)p2 + np - (np)2 = np(1 - p).
(b) Assume that X is exponentially distributed with parameter b. Then

1 1
1

, 1 ,0∫( ) =
β

=
− β

− ∞ < < β− β∞M t e e dx
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ttx x

and the first two derivatives are

1
and

2
1

.2

2

2

2

3( ) ( )
( ) ( )= β

− β
= β

− β
d
dt

M t
t

d
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M t
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Therefore,

0 and 0 2 ,2 2[ ][ ] ( ) ( )= ′ = β = ′′ = βE X M E X M

so that Var[X ] = 2b2 - b2 = b2. n

For two or more random variables considered jointly, there are several useful and 
important results about expectations.

First, consider g (X, Y ) = X + Y. The expectation E[X + Y ] is just the sum E[X ] + 
E[Y ]. If, for example, X and Y are continuous variables, then

,

, ,

. (1.59)
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Secondly, assume that X and Y are independent random variables and that g and h 
are functions for which E[g(X )] and E[h(Y )] each exist. Then the expectation of the 
product XY is the product of the expected values:

. (1.60)[ ] [ ] [ ]( ) ( ) ( ) ( )=E g X h Y E g X E h Yi i

In the continuous case, we have
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and a similar argument applies in the discrete case.
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Again, suppose that X and Y are independent random variables. Then

. (1.61)[ ] [ ] [ ]+ = +Var X Y Var X Var Y

To verify (1.61), use (1.59) and (1.60) to obtain

2 2 ,2 2 2 2 2[ ] [ ] [ ][ ] [ ]( )+  = + + = + +E X Y E X XY Y E X E X E Y E Y

and so
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When random variable Y is the sum of n independent, identically distributed 
random variables, Y = X1 + X2 + . . . + Xn, there is a useful result involving the moment-
generating functions. If each variable Xi has the same distribution as some random 
variable X, the generating function of Y can be expressed in terms of MX(t). Observe 
that the independence of the variables {Xi} is used at step (3):

exp . . . exp exp . . . exp

exp

. (1.62)
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Example 1.12.  Assume that random variable Y is the sum of n independent 
random variables {Xi}, each having the distribution of X, a Bernoulli random variable 
with parameter p:

. . . .1 2= + + +Y X X Xn

The moment-generating function of each variable Xi exists for all real t, and

exp 1 1 .0 1[ ]( ) ( ) ( ) ( )= = = − + = − +M t M t E tX e p e p p peX X
t t t

i

Thus, by (1.62) the generating function for the sum Y is

1 .( )( ) = − +M t p peY
t n

Because this is the moment-generating function of a binomial distribution with parameters 
n and p, the uniqueness of the generating function implies that Y is binomially distributed 
with parameters n and p. n

1.4. Random Samples
The problem of fitting a parametric distribution to a set of claim data, discussed 

briefly in the next section, relies heavily on the theory of sampling from a population, 
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a collection of objects with identical distributional characteristics. For example, an 
actuary is often interested in inferring the distribution of sizes or numbers of claims 
from a set of data obtained from a portfolio of similar policies. We begin with the 
definition of random sample, which is fundamental to the discussion that follows.

An ordered set 〈X1, X2, . . . , Xn〉 of independent, identically-distributed random 
variables is a random sample from a population random variable X if each Xi has the 
distribution of X. Thus, the distribution of Xi does not depend on the value of any other 
random variable Xj (i ≠ j) in the sample. In practice, a random sample of size n may 
be generated by performing n successive independent trials of a single experiment—for 
example, tossing a coin n times—or perhaps by making n selections from a collection of 
similar objects, each time replacing the selected object before making the next selection, 
a method called selection with replacement. The set of particular values of the random 
variables 〈Xi〉, denoted by 〈x1, x2, . . . , xn〉, is referred to as a set of sample observations. A 
statistic is a function of the sample variables 〈X1, X2, . . . , Xn〉.

The sample moments, analogs of formula (1.56) for moments of the population 
distribution, are useful statistics in the analysis of sample data:

1
, 1, 2, 3, . . . . (1.63)

1
∑= =
=

M
n

X mm i
m

i

n

The first moment is sometimes denoted by X
_
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and the sample variance by S2:
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Because they are functions of random variables, statistics are also random variables, 
with probability distributions induced by that of the population random variable. 
For instance, if the distribution of the population variable X has mean E[X ] = µ and 
variance Var[X ] = s2, then
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1
. (1.67)
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= − σ

Var X

n
n

Assume that 〈x1, x2, . . . , xn〉 is a set of observations from the random sample 
〈X1, X2, . . . , Xn〉 of size n. The sample distribution function or empirical distribution 
function Fn(x) is defined for all real x by

1 #
. (1.68)∑( ) = = ≤

≤
F x

n
observations x

nn
x xi

Although it is not itself a probability distribution function, Fn(x) has the same 
form as a cumulative distribution function for a discrete random variable defined 
on a finite set of equally probable outcomes. Fn(x) therefore has the properties  
of such a function—specifically, (1.29) through (1.33). In particular, the first 
moment evaluated at the observations 〈x1, x2, . . . , xn〉 is the mean of the sample 
distribution:

1
. (1.69)
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The variance of the sample distribution is defined similarly:
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Often, for ease of analysis, data in a set of observations from a random sample are 
grouped into a collection of disjoint intervals or cells: {(ck-1, ck]} (k = 1, 2, . . . , m). In 
this case, (1.69) has the form

1
, (1.71)
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If the sum of the observations in the kth cell is unavailable, so that ak is not known exactly, 
one could approximate the average ak in formula (1.71) by the interval midpoint:

1
2

. (1.72)1( )≈ +−a c ck k k
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1.5. Fitting Distributions
Actuaries frequently find it desirable to fit a parametric distribution model to a 

set of claim data, both for the purpose of smoothing the empirical distribution but 
also for interpolating among or extrapolating beyond the existing data. The problem 
of extrapolation is particularly important in describing the behavior of the very large 
claims in a claim-size distribution—the probability of such claims is usually so small 
that in any given sample of claim-size data the number of large claims is insufficient to 
characterize adequately the right-hand tail of the underlying population distribution. In 
this section we review the rudimentary details of several methods used to fit probability 
models to data.

We begin with a finite set of claim data 〈x1, x2, . . . , xn〉, which can be interpreted 
as a set of particular values for a random sample 〈X1, X2, . . . , Xn〉 from a population 
random variable X with an unknown distribution. The variables 〈Xi〉 are independent, 
and each has the same distribution as X, representing the results of a single random 
selection from the population variable X. Here, X could be either a claim-size or  
claim-count variable, as discussed in Chapters 2 and 3. The aim is to find a 
probability model for the distribution of X, consistent with the sample observations 
〈x1, x2, . . . , xn〉.

In practice, in order to justify the interpretation as a random sample from a single 
population, claim data must often be adjusted in order that all are on the same basis. 
For example, claim-size data obtained from multiple policy or accident years may very 
well require the application of trend factors to remove the effects of monetary inflation 
over time.

Methods of fitting models to sample data usually depend on first selecting a 
distribution family, that is, a collection of distribution functions {FQ(x)} indexed by a 
finite set of numeric parameters Q = 〈q1, q2, . . . , qr〉. The choice of such a family can 
be arbitrary, but should take into consideration any known or desired properties of 
the distribution under investigation.

Having chosen such a family, one must next identify the particular member of the 
selected distribution family that, according to some selection criterion, best describes the 
data. This is usually done by finding an appropriate point estimate for each distribution 
parameter—usually in the form of a statistic, that is, a function of the sample random 
variables:

ˆ , . . . , , 1, 2, . . . , . (1.73)1( )θ = =g X X i ri i n

For example, the sample-moment statistics (1.63) are useful in this regard.
In a given situation there may exist several possible parameter estimators, statistics 

which could differ in their ease of computation or in the general properties of estimators 
deemed desirable by statisticians. The latter include the three estimator properties 
described below—bias, consistency, efficiency.

Assume that X is a random variable with a distribution that depends on the unknown 
parameter q. Let 〈X1, X2, . . . , Xn〉 be a random sample of X of size n and assume that 
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q̂n  is a function of the sample random variables, a statistic whose distribution depends 
on the parameter q.

• q̂n  is said to be an unbiased estimate of q whenever the mean of q̂n  is just q: E[q̂n ] = q. 
For example, the expected value of the sample mean X

_
 is E[X

_
] = E[X ]. Thus, if E[X ] = 

q, then q̂n  = X
_
 is an unbiased estimate of q. However, because [ ] (1 ) [ ]2 1= −E S Var Xn , 

the sample variance statistic is a biased estimate of Var[X ], although the bias 
[ ]1 Var Xn  is insignificant for large samples.

• q̂n  is said to be a consistent estimate of q if q̂n  converges in probability to q, 
that is,

lim Pr ˆ 1 for all 0.{ }θ − θ < ε = ε >
→∞n

n

It can be shown that when Var[X] is finite X
_

 converges in probability to E[X ], 
and so, as in the above example, q̂n  = X

_
 is a consistent estimate of q = E[X]. In 

addition, if q̂n  is an unbiased estimate of q and if limn→∞ Var[q̂n ] = 0, then q̂n  is 
also a consistent estimate of q.

• Suppose that q̂n  is an unbiased estimate of q and that for all estimates q̂n*  for which 
E[q̂n * ] = q, we have Var[q̂n ] ≤ Var[q̂n * ] for all q. In this case q̂n  is said to be an 
unbiased, minimum variance estimate of q. Statistic q̂n  is also called the most 
efficient estimator of q.

To find an optimal fitted distribution it is often advisable to try more than one 
method of calculating a set of parameter estimates Q̂ and sometimes work with more 
than one distribution family. Then, after deciding on a particular parameter estimate, 
one should in the final step evaluate how well the distribution FQ̂(x) fits the sample data. 
One could do this with an informal comparison of the fitted and empirical distribution 
functions or more rigorously by employing a standard goodness-of-fit test, such as that 
based on the chi-square statistic.

Briefly described below are four useful techniques of parameter estimation: the 
method of moments, the maximum-likelihood method, the minimum chi-square method, 
and minimum-distance methods.13

Method-of-Moments Estimation
First proposed by the English statistician Karl Pearson, this is the oldest technique 

of estimating parameters and perhaps the easiest to apply in practice. The method-
of-moments method is based on the usually reasonable assumption that the sample 
moments are good estimates of the corresponding population moments.14

Accordingly, one computes successive sample moments 1
1= ∑ =M xm n i

n
i
m evaluated 

at the sample data points 〈x1, x2, . . . , xn〉 and then equates them to the corresponding 

13 More complete discussions of estimation techniques can be found in standard mathematical statistics texts. For 
example, see Hogg and Craig [7], chapter 6, or Lindgren [13], chapter 5.

14 Karl Pearson (1857–1936), founder of the field of mathematical statistics, established the world’s first college 
department of statistics at University College London. His contributions include the foundations of statistical 
hypothesis testing and decision theory, and he is the eponymous inventor of the chi-square goodness-of-fit test.
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moments of the assumed distributional model, which depend on the unknown 
parameters Q:

, 1, 2, 3, . . . . (1.74)[ ]= =ΘM E X mm
m

One must use as many of these equations as is necessary to determine the parameters 
uniquely—in general, when there are r parameters to estimate use (1.74) for m =  
1, 2, . . . , r. The resulting system of equations could then be solved to obtain Q̂ = 
〈q̂1, q̂2, . . . , q̂r〉 in terms of the observed data values 〈xi〉.

Method-of-moments estimates have the advantage of usually being very easy to 
calculate, but they do not always have the desirable properties indicated above—they 
are often consistent, but are sometimes biased.

Example 1.13.  A possibly unbalanced die is rolled and the number of spots on 
the upper surface is observed. We define a Bernoulli random variable:

1 if # spots 6

0 if # spots 6.
=

=

≠





X

The probability distribution for X has a single unknown parameter

{ }{ }= = = =Pr 1 Pr # spots 6p X

with the probability mass function

( )
1 if 0,1

0 if 0,1 .
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=
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x x

It is evident that E[X ] = p.
In order to estimate parameter p, the die is rolled 50 times, creating a random 

sample of size n = 50. Twelve sixes are observed, so that S50
i=1 xi = 12. The method-of-

moments estimate of parameter p is obtained from the unbiased, consistent estimator 
p̂ = x

_
:

ˆ 12
50

0.2400.= =p
 
n

Maximum-Likelihood Estimation
Simply stated, a maximum-likelihood estimator Q̂ of distribution parameters Q 

specifies the member FQ̂ (x) of a distribution family which maximizes the probability 
of obtaining the values 〈x1, x2, . . . , xn〉 actually observed in a random sample  
〈X1, X2, . . . , Xn〉.

To begin, let 〈X1, X2, . . . , Xn〉 be a random sample from a probability distribution 
with density function fQ(x). The joint probability density function for the sample is 
then Pn

i =1 fQ(xi). Evaluated at the observed sample values 〈x1, x2, . . . , xn〉, this product 
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can be regarded as a function of the parameters Q. As such, it is called the likelihood 
function of the random sample:

. (1.75)
1

∏( ) ( )Θ = Θ
=

L f xi
i

n

Therefore, Q̂ = 〈q̂1, q̂2, . . . , q̂r〉 is a maximum-likelihood estimator if it yields a 
maximum value for the likelihood function:

ˆ for all .( ) ( )Θ ≥ Θ ΘL L

Because they are located at points at which the likelihood function attains an extreme 
value, maximum-likelihood estimators are usually, but not always, unique.

An analytic solution of the maximum-value problem can be sought by setting the  
r partial derivatives of the likelihood function equal to 0 and solving the resulting system 
of equations. However, in most situations it is easier to solve the equivalent problem of 
maximizing the log-likelihood function log L(Q), using the same technique:1514
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log , . . . , 0.
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(Recall that log x is an increasing function of x, so that whenever L(Q̂) is a maximum 
value of the likelihood function, log L(Q̂) is a maximum value of log L(Q̂), and 
conversely.) If, as it often does, the analytic approach proves intractable, one could 
employ an iterative solving algorithm, available in many computer software packages.

Maximum-likelihood estimators are usually consistent and efficient, but not always 
unbiased, estimators of the distribution parameters.

Example 1.14.  Returning to the problem of Example 1.13, we now determine 
the maximum-likelihood estimator of p = Pr {X = 1} for a sample of size n. The likeli-
hood function is

1 1 ,1

1
∏( ) ( ) ( )= − = −−

=

∑ −∑L p p p p px x

i

n
x n xi i i i

and so the log-likelihood function is

log log log 1 .
1 1

∑ ∑( )( ) ( )= + − −



= =

L p p x p n xi
i

n

i
i

n

15 Throughout this monograph, log x denotes the natural (base e) logarithm function of x.
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Therefore, the equation

log
1 1
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has the solution ˆ 1
1= ∑ ==p x xn i

n
i , a maximum-likelihood estimate of p. n

Minimum Chi-Square Estimation
The minimum chi-square estimator Q̂ of distribution parameters Q specifies the member 
FQ̂(x) of a selected distribution family that minimizes an associated chi-square statistic. 
This statistic is identical in form to that used in the classic Pearson chi-square goodness-
of-fit test.

To construct the chi-square statistic one must first group the data from a random 
sample of size n into a smaller number m of classes or cells. If the population distribution 
is of the continuous type, like that of most size-of-loss random variables, then the 
cells may take the form of intervals of real numbers. Otherwise, if the distribution is 
discrete and the random variable is integer-valued—like that of a claim-count random 
variable—then the cells must be subsets of the nonnegative integers.

We then calculate the cell frequencies:

# 1, 2, . . . , and .1( )= = = ∑ =n observations in the k cell k m n nk
th

k
m

k

The statistic c2(Q) is given by

∑( ) ( )
( )χ Θ =

− φ Θ
φ Θ=

, (1.76)2
2

1

nk k

kk

m

where fk(Q) is the expected number of sample observations in the kth cell, based on the 
population distribution with parameters Q. For example, if the random variable X has 
a continuous distribution, with cells of the form (ck-1, ck], then

.1( ) ( ) ( )( )φ Θ = −Θ Θ −n F c F ck k ki

Since each expected value fk(Q) is a function of Q, so is c2(Q), and a minimum 
chi-square estimate of Q is a value Q̂ at which the statistic achieves a minimum value:

ˆ for all .2 2( ) ( )χ Θ ≤ χ Θ Θ

Calculation of Q̂ is complicated by the fact that both numerator and denominator 
of c2(Q) depend on Q. However, use of a computer-implemented iterative solving 
algorithm is a practical way of overcoming such computational complexities.

One advantage of using minimum chi-square estimation of the distribution 
parameters, of course, is the fact that at the end of the procedure one has a built-in 
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goodness-of-fit test available. The value of the chi-square statistic under the assumption 
of the fitted distribution—the null hypothesis—has already been computed. For 
illustrations of this method, refer to Examples 2.8 and 2.11.

Minimum-Distance Estimation
As with the minimum chi-square method discussed previously, minimum-distance 

methods are applied to grouped sample data. In particular, the method is most useful 
in estimating parameters for a random variable X with a continuous distribution. 
Suppose, for example, the n sample values have been assigned to m cell intervals of the 
form (ck-1, ck], where

# , 1, 2, . . . , and .1 1]( ( )= = = ∑− =n observations in c c k m n nk k k k
m

k

The empirical sample distribution function at the cell boundary point ck is

1
. (1.77)
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F c
n

nn k i
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k

One minimum-distance estimator of parameter Q is the value Q̂ that minimizes 
the “distance” D(Q) between the sample and parametric distribution functions, Fn(x) 
and FQ(x), evaluated at the cell boundary points:

. (1.78)1
2( ) ( ) ( )Θ = ∑ −= ΘD F c F ck

m
n k k

Clearly, D(Q) is a function of Q, and Q̂ must satisfy D(Q̂) ≤ D(Q) for all Q.
An analytic solution of a minimum-distance problem is unlikely to be 

straightforward, but as in the case of minimum chi-square estimation, Q̂ can usually 
be obtained by applying a computer utility or software that implements an iterative 
solving algorithm. Minimum-distance methods in an actuarial setting are more fully 
discussed in a paper by Klugman and Parsa [12]. Examples of minimum-distance 
fitting can be found in Examples 2.9 and 2.10.

1.6. Problems
1.1 Let W be the sample space for an experiment of chance.

(a) Show that the set {∅, E, Ec, W} is a s-algebra.
(b) Assume that S is a s-algebra, with E, F ∈ S. Show that E ∩ F ∈ S.
(c)  Assume that W = {a, b, c, d } and that {a} and {b,c} are events. Find the small-

est s-algebra S containing this pair of events—this is the s-algebra gener-
ated by {a} and {b,c}.

1.2 Assume that (W, S, P) is a probability space. Verify the following properties of P.
(a) Equation (1.4). (b) Equation (1.5).
(c) Equation (1.6). (d ) Property (1.7).
(e) Equation (1.8). ( f ) Property (1.9).
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1.3 Assume that (W, S, P) is a probability space. Verify the following properties of the 
probability function P.
(a)  If E1 ⊆ E2 ⊆ E3 ⊆ . . . is an ascending sequence of sets in S, then P(∪nEn) = 

limn→∞ P(En).
(b)  If E1 ⊇ E2 ⊇ E3 ⊇ . . . is a descending sequence of sets in S, then P(∩n En) = 

limn→∞ P(En).

1.4 An urn contains three red and four black chips. Two chips are drawn at random 
without replacement. Calculate:
(a) the probability that both chips are red.
(b) the probability that both chips are black.
(c) the expected number of red chips.

1.5 For a probability space (W,S,P) with events E and F show that
(a) P(E) = P(F ) z P(E |F ) + P(F c) z P(E |F c).
(b) If E and F are independent, then P(E ∪ F ) = 1 - P(Ec)P(Fc).

1.6 Consider the following generalization of Example 1.4. Two fair dice are rolled. 
Let Em denote the event of obtaining a total of m spots (m = 2, 3, . . . , 12) and 
Fn the event that the first die shows n (n = 1, 2, . . . , 6) spots. For what values of 
(m, n) are events Em and Fn independent? Explain.

1.7 A random variable X takes on five values with nonzero probability: RX = {1, 2, 3, 
4, 5}. The probability mass function is tabulated below, where k is a constant.

x 1 2 3 4 5

f (x) k2 0.50k k 0.25k 0.50

Calculate:
(a) k. (b) F(2). (c) Pr{X is odd }.
(d ) E[X ]. (e) Var[X ].

1.8 Verify the following properties of the expected value E[g(X )].
(a) Equation (1.46). (b) Equation (1.47).
(c) Equation (1.48). (d ) Property (1.49).
(e) Property (1.50).

1.9 Verify the following properties of the variance Var[X ].
(a) Equation (1.53). (b) Equation (1.54).
(c) Equation (1.55).

1.10 A discrete random variable N has the countably infinite range space RN =  
{1, 2, 3, . . .}.
(a) Can the outcomes in RN be assigned equal probabilities?
(b)  Find the constant k such that f (n) = k pn (0 < p < 1, n ∈ RN) is a probability 

mass function for N.
(c) Using the function of part (b), calculate E[N ] and Var[N ].
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1.11 A random variable X has the cumulative distribution function

0 if 0

1 0.25 if 0 .0.50( ) =
− ∞ < <

− ≤ < ∞




−F x
x

e xx

Calculate:
(a) Pr{X = 0}. (b) Pr{X = 1}. (c) Pr{X < 1}.
(d ) Pr{1 < X < 2}. (e) E[X ]. ( f ) Var[X ].

1.12 Assume random variable X has a continuous distribution, with c.d.f. F(x).
(a) Show that Pr{X = c} = 0 for all real c.
(b) Show that Pr{a < X < b} = Pr{a ≤ X ≤ b} = F(b) - F(a) for all a and b.

1.13 Evaluate these Riemann–Stieltjes integrals.
(a) ∫1

0 x d(x2). (b) ∫3
1 x2 d(log x).

(c) ∫
∞
0 d(1 - e-x). (d ) ∫5

0 x d(vxb).1615

1.14 Evaluate these Riemann–Stieltjes integrals, in which F denotes the discrete 
cumulative distribution function of Example 1.7.
(a) ∫

∞
0 x dF(x). (b) ∫

∞
0 x2 dF(x). (c) ∫

∞
0  exp(tx) dF(x).

1.15 Evaluate these Riemann–Stieltjes integrals, in which F denotes the continuous 
c.d.f. of the uniform distribution of Example 1.8(a).
(a) ∫

∞
0  x dF(x). (b) ∫

∞
0  x2 dF(x). (c) ∫

∞
0  exp(tx) dF(x).

1.16 A random variable X has the distribution function

0 if 0

1 0.20 0.80 if 0 .100 200
( )

( ) ( )
=

−∞ < <

− − ≤ < ∞






− −

F x
x

e e xx x

(a)  Show that the distribution of X can be interpreted as the mixture of two 
exponential distributions.

(b) Determine E[X ] and Var[X ].

1.17 Calculate E[X ] and Var[X ] for the random variable X of Example 1.8(a).

1.18 Calculate E[X ] and Var[X ] for the random variable Xa of Example 1.9(a).

1.19 Assume that X is a random variable with E[X ] = 0 and Var[X ] = 1. Calculate 
E[Y ] and Var[Y ] for Y = sX + µ.

1.20 Find the moment-generating functions for:
(a) the standard normal distribution.
(b)  the normal distribution of Y = sZ + µ, where Z is the standard normal random 

variable.
(c) the distribution of X, uniformly distributed on the interval [a, b].

16 vxb denotes the greatest integer function, defined for every real x as the unique integer m satisfying m ≤ x < m + 1. 
For example, v5b = 5, vpb = 3, v-1.5b = -2.
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1.21 Random variable N has the geometric distribution defined by (1.20). Determine:
(a) M(t). (b) E [N ]. (c) Var[N ].
(d )  the probability that an odd number of trials is required to obtain the first 

success.

1.22 Justify the algebraic rearrangement in the second step of (1.67).

1.23 Find the maximum-likelihood estimator of the parameter b for the exponential 
distribution of Example 1.8(b).

1.24 Random variable X has a mixed probability density function f defined by

 
, where 0 1and 1.

1 1
∑ ∑( ) ( )= ω < ω < ω =
= =

f x f xk k
k

n

k k
k

n

Show that E[X ] and Var[X ] are given by

 
( )and ,

1

2

1

2

1
∑ ∑ ∑[ ] [ ] [ ]= ω µ = ω σ + ω µ −
= = =

E X Var X E Xk k
k

n

k k
k

n

k k
k

n

where µk and s2
k are the respective mean and variance of the kth distribution.
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Every property/casualty claim process involves two independent random variables: the 
claim-size random variable and the claim-count random variable. These two variables 
combine to create a third fundamental claim variable, the aggregate-loss random 
variable, values of which represent the total claim amount generated by the underlying 
claim process. We shall investigate each of these variables and their related distributions 
in turn. Distributions of claim-size variables are studied in this chapter, the claim-count 
variable is the subject of Chapter 3, and then aggregate-loss distributions are taken up 
in Chapter 4.

A claim-size variable has an associated probability distribution called a size-of-loss 
distribution, often shortened to loss distribution. A set of empirical claim data, being 
finite, always has a discrete distribution, but as we shall see, a set of claim data can be 
usefully interpreted as a sample drawn from an underlying claim-size population assumed 
to have a continuous loss distribution.

To model the size of property/casualty insurance claims, actuaries employ a variety 
of parametric families of continuous distributions. The most popular probability 
distributions used for this purpose, including the lognormal and Pareto families, 
are studied in this chapter.

2.1. Claim-Size Random Variables
A claim-size random variable, if based on a finite population of claims or on a finite 

sample of claims from a larger population, always has a discrete distribution. However, 
for many actuarial calculations it is useful to assume that the sizes of the underlying 
claim population are modeled by a continuous distribution, usually one of the standard 
parametric distributions discussed later in this chapter. Thus the task of the actuary 
often is to fit a continuous parametric claim-size distribution to a discrete sample of 
claim data. In addition, as we shall see, distributions of various derived random variables 
are neither wholly discrete nor continuous, but of the mixed discrete/continuous type.

Claim-size variables, by their very nature, take on only nonnegative values. Thus 
for all such variables X, Pr{X < 0} = 0. That is, FX(x) = 0 for all x < 0. The probability 
density function f (x) for a continuous size-of-loss distribution for which claim size is 
unbounded (or unlimited) from above takes on positive values over a semi-infinite 
interval of the form 0 ≤ x < x < ∞. For positive b in this interval, the portion of the 
distribution defined on the subinterval (b, ∞) is called the long tail of the distribution. 

2. Claim Size
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Alternately, the part of the distribution defined on the finite subinterval (x, b), extending 
to the left and bounded below by 0, is called the short tail. Clearly, such distributions 
cannot be symmetric.

The skewness of the distribution, defined as the normalized third central moment, 
is a measure of distribution symmetry:

[ ] [ ]
[ ]( )

( )
[ ]

[ ]
[ ]

[ ] [ ]
[ ]( )

( )
( )

=
−  =

− +

−

3 2
.

3

3 2

3 2 3

2 2 3 2Sk X
E X E X

Var X
E X E X E X E X

E X E X

The larger the absolute value Sk[X ] the more asymmetric is the distribution. Symmetric 
random variables X, on the other hand, always have zero skewness—it is easy to verify 
that X = -X implies Sk[X ] = Sk[-X ] = -Sk[X], that is, Sk[X ] = 0. The standard normal 
variable Z, for example, has Sk[Z ] = 0. However, for a continuous, unlimited loss 
distribution, with its infinite long tail, skewness is usually positive—corresponding to 
greater probability density toward the left end of the distribution. Such a distribution 
is said to be positively skewed.

The following three examples illustrate these fundamental properties of claim-size 
distributions.

Example 2.1.  A discrete claim-size random variable X has the finite set of values 
RX = {0, 50, 100, 200}, with probability mass function

Claim Size x 0 50 100 200

f (x) 0.20 0.40 0.30 0.10

A graph of the cumulative distribution function F(x) is shown in Figure 2.1. The 
severity (mean) and variance of variable X are

[ ]

[ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= + + + =

= − + − + − + − =

2
10

0
4

10
50

3
10

100
1

10
200 70,

2
10

0 70
4

10
50 70

3
10

100 70
1

10
200 70 3,100.2 2 2 2

E X

Var X

0.2

1.0

0.8

0.6

0.4

-200 -100 0 100 200 300

y

x

Figure 2.1.  Discrete Cumulative Distribution Function 
[Example 2.1]
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In addition, the third central moment is

[ ]( )

( ) ( ) ( ) ( )

− 

= − + − + − + − =2
10

0 70
4

10
50 70

3
10

100 70
1

10
200 70 156,000,

3

3 3 3 3

E X E X

so that Sk[X ] = (156,000)/(3,100)3/2 = 0.9038. n

Example 2.2.  A continuous claim-size variable X has the exponential cumulative 
distribution function

( ) =
−∞ < <

− ≤ < ∞






−

0 if 0

1 if 0 ,250
F x

x

e xx

a graph of which is shown in Figure 2.2. A probability density function for X is therefore 
given by

( )
( ) =

−∞ < ≤

< < ∞






−

0 if 0

1 250 if 0 .250
f x

x

e xx

Consequently,

∫

∫

[ ]

[ ] ( )

= =

= − =

−∞

−∞

1
250

250,

1
250

250 62,500,

250
0

2 250
0

E X x e dx

Var X x e dx

x

x

and the skewness is given by

∫[ ] ( ) ( )
( )

=
−

= =
−∞

S
1 250 250
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31,250,000
15,625,000

2.0000
3 250

0
3 2k X

x e dxx

. n

1.0

0.8

0.6

0.4

0.2
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Figure 2.2.  Continuous Cumulative Distribution 
Function [Example 2.2]
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Example 2.3.  For claim-size random variable Y the probability of a claim of size 
zero is Pr{Y = 0} = 0.20. But for positive values Y is distributed conditionally as variable 
X in Example 2.2—that is,

{ } { }≤ > = < ≤ = − < < ∞−Pr 0
Pr 0

0.80
1 , 0 .250Y y Y

Y y
e yy

Therefore, the cumulative distribution function of Y (see Figure 2.3) is given by

( ) =
−∞ < <

− ≤ < ∞






−

0 if 0

1 0.80 if 0 .250
F y

y

e y
Y

y

Obviously, Y has a mixed discrete/continuous distribution—FY(y) is continuous for 
all y ≠ 0, with a jump discontinuity at y = 0.

The mean, variance, and skewness of Y are, respectively,

[ ]

[ ]

[ ]

( )( ) ( )( )

( )( ) ( )( )
( )

( )( ) ( )( )= + =

= − + =

=
− +

=

0.20 0 0.80 250 200,

0.20 0 200 0.80 62,500 58,000,

0.20 0 200 0.80 31,250,000
58,000

1.9043.

2

3

3 2

E Y

Var Y

Sk Y

A comparison with Example 2.2 reveals the effect of transferring 20% of the total 
probability to the value y = 0—the mean, variance, and skewness of Y are all smaller 
than those of X. n

2.2. Limited Moments
Actuaries seldom use continuous parametric size-of-loss distributions in their pure 

form, that is, without restrictions placed on the size of claims. The reason for this, of 
course, is that property/casualty insurance policies almost always specify some type 

1.0

0.8

0.6

0.4

0.2

-400 -200 0 200 400 600 800

Figure 2.3.  Mixed Cumulative Distribution Function 
[Example 2.3]
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of limitation on the claim amount payable under the policy. Consequently, every 
unlimited probability distribution used to model insurance claim sizes must be modified 
appropriately to reflect whatever policy conditions are in place.

The most widely encountered condition of this type is a policy occurrence limit 
that caps each claim amount at a specified maximum value. Assume that X denotes an 
unlimited claim-size random variable, for which Pr {X < 0} = 0, and that individual 
claim amounts are then restricted by a policy limit l. The effective claim size from the 
viewpoint of the insurer is the limited random variable Y, defined by

{ }= =
≤ <

≤ < ∞






min ,

if 0

if .
(2.1)Y X l

X X l

l l X

The insurer pays in full those claims less than l and for all other claims pays the maximum 
amount l. Because the policy limit serves to conceal the actual size of each claim larger 
than l, variable X modified in this way is said to be censored at l . In terms of the 
function FX, the cumulative distribution function of variable Y is given by the formula

{ }( )
( )

= ≤ =
− ∞ < <

≤ < ∞






Pr

if

1 if .
F y Y y

F y y l

l y
Y

X

Accordingly, the distribution of Y can have a discrete lump of nonzero probability at 
y = l, of size

{ } ( ) ( )( )= = − − = − −Pr 1 .Y l F l F l F lY Y X

In particular, if FX is everywhere continuous with 0 < FX(l ) < 1, then variable Y has 
a mixed discrete/continuous distribution—FY is continuous for all y ≠ l, and it has a 
single jump discontinuity at y = l, with Pr{Y = l } = 1 - FX(l ) > 0.

With respect to X, the mean of the censored variable Y is referred to as the limited 
expected value or limited severity of X. It is denoted by E [X; l ] and represented by 
the Riemann–Stieltjes integral formula (refer to Section 1.3):

i ( )∫ ∫ ( )[ ] [ ] ( )( )= = = + −∞; 1 . (2.2)0 0E X l E Y y dF y x dF x l F lY X
l

X

If X is continuous, then there exists a function fX such that dFX(x) = fX(x)dx, and

i∫[ ] ( )( ) ( )= + −; 1 . (2.3)0E X l x f x dx l F lX
l

X

In the case that variable X has a discrete set of values {xi}, (2.2) has the form

i∑ ∑[ ] ( ) ( )= +
≤ >

; . (2.4)E X l x f x l f xi X i
x l

X i
x li i



42 Casualty Actuarial Society

Distributions for Actuaries

Equation (2.2) is easily generalized to a formula for limited moments of all orders m, 
where m = 1, 2, 3, . . . :

i∫[ ] ( ) ( )( )= + −; 1 . (2.5)0E X l x dF x l F lm m
X

l m
X

In the discrete case for which the values 〈xi〉 constitute n observations for a random 
sample 〈X1, X2, . . . , Xn〉 from a population claim-size random variable X, we denote by 
X̂ the variable with the sample distribution fn(xi) = 1/n, (1 ≤ i ≤ n). The sample limited 
expected value En[X̂ ; l ] is a special case of (2.4):

∑ ∑ ∑{ }  = = +
= ≤ >

ˆ;
1

min ,
1 1

. (2.6)
1

E X l
n

x l
n

x
n

ln i
i

n

i
x l x li i

Sometimes sample observations are grouped by size into a finite number m of 
non-overlapping intervals of the form (ck-1, ck], where k = 1, 2, . . . , m and for which 
it is possible that cm = ∞. Often only the claim count—and occasionally the total 
claim amount—in each interval is known. Whenever this is the case, probabilities for 
the discrete sample distribution can only be calculated accurately at the finite interval 
endpoints {ck}. This is also true for the sample limited severity En[X̂ ; l ], which is 
exactly computable only when l = cj, j = 1, 2, . . . , m. At such a point, formula (2.6) 
becomes

∑ ∑  = +
= = +

ˆ;
1

, (2.7)
1 1

E X c
n

n a
c
n

nn j k k
k

j
j

k
k j

m

where nk and ak are, respectively, the number of claims and the average claim size in 
the k th group interval (ck -1, ck] and where n = Sm

k =1 nk . If the total claim amount xk 
in (ck -1, ck] is known, then it is evident that xk = nk ak , or ak = xk /nk . Otherwise, for 
group intervals of finite width, ak can be approximated by the interval midpoint:  
ak ≈ �‒₂ (ck -1 + ck). This approximation, of course, is consistent with the assumption 
that claim sizes are distributed uniformly throughout each group interval (ck -1, ck]— 
refer to Problem 2.5.

It is useful to consider the limited expected value E [X; x ] as a function of the 
variable limit x, defined on the semi-infinite interval 0 ≤ x < ∞ by

i∫[ ] ( )( )( )= + −; 1 . (2.8)0E X x u dF u x F xx

E [X ; x ] exists as a finite number for all 0 ≤ x < ∞, even when E [X ] does not exist. Proof 
of this fact is requested in Problem 2.7.

The next examples illustrate the limited expected function E[X ; x] in three important 
cases—the first with a continuous variable X, the second with a discrete variable, and the 
third with a grouped claim sample.

Example 2.4.  Assume that the continuous random variable X is distributed as in 
Example 2.2. Then the first three moments of X limited at 400 are
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Therefore, the mean and variance of the censored variable Y = min{X, 400} are E [Y ] = 
199.53 and Var [Y ] = 59,384 - (199.53)2 = 19,572. The skewness is

[ ] ( )( ) ( )( )
( )

( )
=

− +
=

20,310,141 3 199.53 59,384 2 199.53
19,572

0.2377.
3

3 2Sk Y

Censoring reduces not only the mean but also the variance and skewness of a random 
variable. The limited severity function for variable X, a graph of which is shown in 
Figure 2.4, is E [X ; x] = 250(1 - e-x/250). n

Example 2.5.  Consider the discrete claim-size variable X of Example 2.1. The 
limited severity function for X is the continuous, piecewise-linear function
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+ ≤ <

+ ≤ <

≤ < ∞
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Figure 2.5 displays a graph of y = E [X ; x]. n
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Figure 2.4.  Limited Severity Function y  E [X; x] 
[Example 2.4]
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Example 2.6.  A random sample of 200 claims 
is drawn from a population with an unknown claim-
size distribution.17 These observations are grouped by 
size into nine group intervals of the form (ck -1, ck], 
where c0 = 0 and ck = 500(k + 1) for k = 1, 2, . . . , 9. 
The results are displayed in the table.

To calculate limited expected values at the 
endpoints of each group interval, we use formula 
(2.7) with the average claim size in the i th group 
approximated by the interval midpoint: ak ≈ �‒₂ (ck -1 + ck). 
For example, the approximate sample limited severity  
at c3 = 2,000 is

( )( ) ( )( ) ( )( )

( )( )

  ≈
+ +

+
+ + + +

=

E X̂ ; 2,000
42 500 61 1,250 47 1,750

200

26 14 7 2 1 2,000
200

1,398.

200

The complete set of limited expected values at the group interval endpoints is displayed 
in Table 2.1, along with values of the sample cumulative distribution function F200 at 
the same points. A graph of y = E200[X̂ ; x] for x = ck, 0 ≤ k ≤ 9, is shown in Figure 2.6. n

The limited severity functions of the previous examples exhibit some mathematical 
attributes that are shared by all such functions, notably those properties listed below.

17 In the time-honored tradition of the textbook example, claim data used in the examples and problems throughout 
this monograph have been selected to illustrate clearly the concepts under study rather than obtained strictly 
from potentially messier real-life insurance data.
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Figure 2.5.  Limited Severity Function y  E [X; x] 
[Example 2.5]

Size Group # Claims

0–1,000 42

1,001–1,500 61

1,501–2,000 47

2,001–2,500 26

2,501–3,000 14

3,001–3,500 7

3,501–4,000 2

4,001–4,500 1

4,501–5,000 0

Total 200
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Properties of E[ X; x]
Assume that X is a claim-size random variable, for which Pr {X < 0} = 0. Then

 (a) [ ] [ ]≤ ≤ < < ∞; ; 0 .1 2 1 2E X x E X x for all x x  (2.9)

 (b) [ ] ≤ < ∞; 0 .E X x is continuous for all x  (2.10)

 (c) [ ] [ ] [ ]≤ ≤ < ∞, ; 0 .If E X exists then E X x E X for all x  (2.11)

 (d ) [ ] [ ] [ ]=→∞, lim ; .If E X exists then E X x E Xx  (2.12)

 (e ) [ ] ≤ < ∞; 0 .E X x is a concave function on x  (2.13)

 ( f ) [ ] [ ]( )+ = − + >; ; 0 and .E aX b x a E X x b a b for constants a b  (2.14)
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Figure 2.6.  Sample Limited Severity Function [Example 2.6]

Table 2.1.  Sample Limited Severities [Example 2.6]

Size x F200(x) E200[X̂; x]

0 0.0000 0

1,000 0.2100 895

1,500 0.5150 1,214

2,000 0.7500 1,398

2,500 0.8800 1,490

3,000 0.9500 1,533

3,500 0.9850 1,549

4,000 0.9950 1,554

4,500 1.0000 1,555

5,000 1.0000 1,555
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Proof:

 (a )  Assume that numbers (x1, x2) satisfy the inequality 0 ≤ x1 < x2 < ∞. Then for random 
variables Y1 = min{X, x1} and Y2 = min{X, x2} we have Y1 ≤ Y2, so that E [X ; x1] = 
E [Y1] ≤ E [Y2] = E [X ; x2].

 (b ) Again, assume that 0 ≤ x1 < x2 < ∞. Then

{ } { }≤ − ≤ −0 min , min , ,2 1 2 1X x X x x x

which implies that 0 ≤ E [X; x2] - E [X; x1] ≤ x2 - x1. This means that E [X; x ] is 
uniformly continuous—and hence continuous—on 0 ≤ x < ∞.

 (c ) Since Y = min{X, x} ≤ X, we have E [X; x ] = E [Y ] ≤ E [X ].
 (d ) Existence of E [X ] implies that

∫ ∫[ ]( ) ( )= =
→∞ →∞

∞lim and lim 0.0 u dF u E X u dF u
x

X
x

x
Xx

But

∫ ∫( )( ) ( ) ( )≤ − = ≤ → → ∞∞ ∞0 1 0 as ,x F x x dF u u dF u xXx Xx

so that

∫[ ] [ ]( )( ) ( )= + − = +
→∞ →∞ →∞

lim ; lim lim 1 0.0E X x u dF u x F x E X
x x

X
x

x

 ( e ) Let random variable Y(x) = min{X, x} be a function of x on 0 ≤ x < ∞.

Then, for 0 ≤ x1 < x2 < ∞ and 0 ≤ t ≤ 1,

1 1 .1 2 1 2( )( ) ( ) ( ) ( )+ − ≤ + −tY x t Y x Y t x t x

This implies that

[ ][ ] [ ]( ) ( )+ − ≤ + − ≤ ≤; 1 ; ; 1 for 0 1,1 2 1 2t E X x t E X x E X t x t x t

which means that E[X; x] is a concave function.
 ( f ) Let Y = min{aX + b, x}. Then

{ }{ } ( )= − + = − +min , min , .Y aX x b b a X x b a b

Therefore, E [aX + b; x ] = E [Y ] = aE [X; (x - b)/a ] + b, as required. n

2.3. Gamma Distributions
Gamma distributions comprise a versatile family of probability distributions, with 

many applications in statistics and probability. Property/casualty actuaries have found 
them useful in constructing a variety of insurance models—parameter uncertainty for 
claim-count distributions, approximation of aggregate-loss distributions, and occasionally 
as claim-size distributions.

The gamma distribution with positive parameters (a, b) is defined by the 
probability density function
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( )
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0 if 0

1
if 0 0, 0 .

(2.15)
1

f x

x

x e xx

Except for a discontinuity at x = 0 when 0 < a < 1, f is an everywhere-continuous 
function of x. Thus, gamma distributions are of the continuous type.

The symbol G in (2.15) denotes the gamma function,18 defined for positive x by 
the convergent improper integral

∫( )Γ = < < ∞− −∞ , 0 . (2.16)1
0x u e du xx u

The integral formula of Problem 2.10(a) implies that ∫ ∞
0 xa-1 e-x/b dx = ba G(a). So 

∫ ∞
-∞ f (x)dx = ∫ ∞

0 f (x)dx = 1, thus confirming that f is indeed a density function.
The gamma function is continuous on its domain and has derivatives of all orders 

there.19 The following properties of the function are the most useful for our purposes. 
Verifications are requested in Problem 2.11.

Properties of G(x)

 (a) ( )Γ =1 1.  (2.17)

 (b) ( ) ( )Γ + = Γ < < ∞1 , 0 .x x x x  (2.18)

 (c ) ( )Γ + = =1 !, 1, 2, 3, . . . .n n n  (2.19)

 (d ) ∏( ) ( )( )Γ + Γ = + < < ∞ ==
− , 0 , 1, 2, 3, . . . .0

1x n x x i x ni
n  (2.20)

Property (2.19) shows that G(x) is an extension, to all positive real numbers, of the 
factorial function n! = 1 z 2 z . . . z (n - 1) z n (where n is a positive integer), providing 
continuous interpolation between successive integer factorials.

The incomplete gamma function G(x, a) is handy in representing gamma-related 
distribution functions. It is defined for positive real x by the integral

∫( ) ( )Γ α = α >α− −, 0 . (2.21)1
0x u e duux

This integral is an ordinary proper integral whenever a ≥ 1 and is a convergent improper 
integral when 0 < a < 1. It is obvious that limx→∞ G(x, a) = G(a).

18 The gamma function was introduced in 1730 by Swiss mathematician Leonhard Euler (1707–1783) as a generalization 
of the factorial function x ! to nonintegral values of x. Euler proposed the integral formula G(x) = ∫1

0 [log(1/u)]x-1 du, 
which is equivalent to (2.16). The traditional G notation is due to French mathematician Adrien-Marie Legendre 
(1752–1833).

19 Proofs of continuity and differentiability can be found in a standard advanced calculus text.
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Suppose now that random variable X has a gamma distribution with density function f  
as defined in (2.15). The cumulative distribution function for X can be conveniently 
expressed in terms of an incomplete gamma function. To observe this, start with the 
integral I(x) = ∫

x

0 f (u)du (0 < x < ∞) and apply the change-of-variable substitution u = bv:

∫ ∫( ) ( ) ( )
( )

( )=
β Γ α

=
Γ α

=
Γ β α

Γ αα
α− − β α− −β1 1 ,

.1
0

1
0I x u e du v e dv

xux vx

The gamma (a, b) cumulative distribution function is therefore

( ) ( )
( )

=

−∞ < <

Γ β α
Γ α

≤ < ∞









0 if 0

,
if 0 .

(2.22)F x

x

x
x

To derive now general formulas for the mth moments of X, both unlimited and 
limited, begin this time with the integral Im(x) = ∫

x

0 um f (u)du and apply the same 
substitution u = bv as before. For m = 1, 2, 3, . . .

∫ ∫( ) ( ) ( ) ( )( ) =
β Γ α

= β
Γ α

= β
Γ α

Γ β α +α
α− − β α+ − −β1

, .1
0

1
0I x u u e du v e dv x mm

m ux
m

m vx
m

Hence,

[ ] ( ) ( ) ( ) ( ) ( )= = β
Γ α

Γ α + = α α + α + − β
→∞

lim 1 . . . 1 , (2.23)E X I x m mm

x
m

m
m

i

; 1

,
1

,
. (2.24)
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( )( ) ( )

( )
( )

( )
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= + −
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Γ β α +

Γ α +
+ −

Γ β α
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E X x I x x F x

E X
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x
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From (2.23) it follows that

[ ] [ ] [ ]= αβ = αβ =
α

, , S
2

. (2.25)2E X Var X k X

Random variables with the gamma (a, b) distribution also have an important 
reproductive property: the sum of independent gamma variables having the same b parameter 
is also gamma-distributed. This result is readily obtained from an argument based on the 
moment-generating function for a gamma (a, b) random variable X:

∫( ) ( )

( )( )

=   =
β Γ α

=
β Γ α

Γ α β −

= − β −∞ < < β

−α

−α

( )
α

α− − β−∞

α

1

1
( )

1

(1 ) , 1 , (2.26)

1 1
0

(2)

M t E e x e dx

t

t t

X
t X x t

i
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where the integral formula of Problem 2.10(a) was used at step (2). The restriction  
-∞ < t < 1/b guarantees that, as a function of t, the improper integral in the first step is 
convergent.

Assume now that {Xi} is a finite collection of independent gamma-distributed 
random variables, with identical b parameters but possibly different a parameters: 
{(ai, b)}. Independence among the Xi implies that the generating function for the sum 
Y = Si Xi is the product of the component generating functions. Hence,

∏ ∏( ) ( ) ( ) ( )= = − β = − β −∞ < < β−α −Σ α1 1 , 1 .M t M t t t tY X
i i

i

i i i

This is the generating function of a gamma random variable. The uniqueness of the 
generating function thus implies that Y has a gamma (Siai, b) distribution.

There are two important special cases of the gamma distribution worth noting.
(a) The first instance, for which the exponent parameter a is fixed at a = 1, is the 

familiar exponential distribution,20 with cumulative distribution function

( )
( )

=
−∞ < <

− ≤ < ∞ β >






− β

0 if 0

1 if 0 0 ,
(2.27)F x

x

e xx

and probability density function

( )
( )

=
−∞ < ≤

β < < ∞






− β

0 if 0

1 if 0 .
(2.28)f x

x

e xx

The mean, variance, and skewness for a random variable X with an exponential 
distribution are likewise special cases of the general formulas (2.25):

[ ] [ ] [ ]= β = β =, , 2. (2.29)2E X Var X Sk X

Furthermore,

( ) ( )[ ] [ ]= β − = −− β − β; 1 1 . (2.30)E X x e E X ex x

We have already encountered an example of this distribution type—the claim-size 
random variable of Example 2.2 is exponentially distributed with b = 250. Exponential 
distributions have a number of actuarial applications, but they have limited practical value 
as size-of-loss distributions. With only a single parameter available, the exponential 
family is usually not flexible enough to provide a good fit to an empirical set of sample 
claim data. However, it is possible to adopt the Insurance Services Office (ISO) approach 

20 The exponential distribution is sometimes known as the Laplace distribution, in honor of French mathematician 
and physicist Pierre-Simon Laplace (1749–1847). Laplace made important contributions to analysis and celestial 
mechanics, as well as to probability. His 1812 treatise, Théorie Analytique des Probabilités, provided an early 
mathematical basis for the subject. In it he wrote “the theory of probabilities is at bottom nothing but common 
sense reduced to calculus. . . .”
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and work with a mixture of exponential distributions. For example, the mixture of two 
such distributions has a three-parameter distribution function of the form

( )
( ) ( )

=
−∞ < <

− ω − − ω ≤ < ∞ β > β > < ω <






− β − β

0 if 0

1 1 if 0 0, 0, 0 1 .
(2.31)

1 2
1 2

F x
x

e e xx x

Bureau actuaries at ISO use mixtures of up to twelve exponential distributions, 
involving as many as 23 parameters, to model claim size in the current ISO increased 
limits factor methodology.21

(b) Another important special case of the gamma distribution occurs when a =  �‒₂ n  
(n a positive integer) and b = 2. This distribution is known as the chi-square distribution 
with n degrees of freedom and is denoted by c2(n). The probability density function 
is, accordingly,

f x

x

n
x e x

n
n x( ) =

−∞ < ≤

( )
< < ∞




− −

0 0

1
2

0
2 1

2

2 1 2

if

if
Γ

.






( . )2 32

A random variable X with the c2(n) distribution therefore has mean, variance, and 
skewness

[ ] [ ] [ ]= = =, 2 , 2
2

. (2.33)E X n Var X n Sk X
n

The chi-square arises naturally as the distribution of the sum of squares of independent 
standard normal random variables. It figures prominently in the classic goodness-of-fit 
test—the so-called chi-square test, first introduced by British statistician Karl Pearson in 
1900. In such a test the calculated test statistic is distributed under the null hypothesis 
according to a chi-square model.

Because the gamma function and the associated distribution functions are defined 
by integrals with integrands having no elementary antiderivatives, evaluation of these 
functions necessarily involves some type of approximation. Some standard approximations 
are discussed in Appendix A.1.

Example 2.7.  Return now to the grouped sample of 200 claims of Example 2.6. 
We shall attempt to fit a gamma distribution model to these data.

Begin by assuming that these data represent a random sample of claims drawn from 
a population having a gamma distribution with unknown parameters (a, b). To use the 
method-of-moments technique for estimating (a, b), we compute the first and second 
sample moments M1 and M2, based on the midpoint approximation to the average 

21 For a description of this approach, refer to the “Explanatory Memorandum” section of a current ISO Actuarial 
Service Circular for increased limits data and analysis (Jersey City, NJ: Insurance Services Office, Inc.); refer also 
to Keatinge [11]. For a discussion of mixed probability distributions like that in formula (2.31) as probability-
weighted sums of conditional distributions, refer to Section 3.3.
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claim size in each group: M1 = 1,555 and M2 = 3,036,875 (refer to Problem 2.6). 
Substituting these numbers into formulas (2.25) for the gamma mean and variance and 
then solving for a and b yields the joint method-of-moments estimators:

( )
( )

α =
−

=
−

=

β = − = =

ˆ 1,555
3,036,875 1,555

3.907288,

ˆ 618,850
1,555

397.931.

1
2

2 1
2

2

2

2 1
2

1

M
M M

M M
M

The skewness of the resulting distribution is =2 3.907288 1.0118.
The implied gamma probability density function is graphed in Figure 2.7 with a 

histogram of the sample distribution. Table 2.2 displays the limited expected values 

Figure 2.7.  Histogram with Gamma Density 
Function [Example 2.7]

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 1,000 2,000 3,000 4,000 5,000

Table 2.2.  Tail Probabilities and Limited Severities [Example 2.7]

Size x

Pr {X > x} E [X; x ]

Sample Gamma Sample Gamma

1,000 0.7900 0.7382 895 924

1,500 0.4850 0.4604 1,214 1,223

2,000 0.2500 0.2465 1,398 1,396

2,500 0.1200 0.1186 1,490 1,484

3,000 0.0500 0.0528 1,533 1,525

3,500 0.0150 0.0222 1,549 1,543

4,000 0.0050 0.0089 1,554 1,550

4,500 0.0000 0.0035 1,555 1,553

5,000 0.0000 0.0013 1,555 1,554
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and tail probabilities at the group endpoints and compares the sample statistics to the 
corresponding gamma distribution values.

We test the goodness of fit of this gamma distribution by using the Pearson chi-
square test. To implement this test, define six cells by taking the first five groups in the 
table of Example 2.6 and, to avoid low-frequency cells, combine the remaining four 
groups into a single cell. The resulting seven cell boundaries are {ck} = {0, 1000, 1500, 
2000, 2500, 3000, ∞}, where k = 0, 1, 2, . . . , 6. The observed k th cell frequency is just 
the tabulated sample frequency nk for the k th cell (ck-1, ck]. The expected frequency in 
the k th cell is implied by the selected gamma distribution: fk(â, b̂) = (200)(Fâ,b̂}(ck) - 
Fâ,b̂(ck -1)), where Fâ,b̂(c6) = 1. The chi-square statistic then has the value

∑ ( )( )
( )

( ) ( ) ( )

( ) ( ) ( )

χ =
− φ α β

φ α β

=
−

+
−

+
−

+
−

+
−

+
−

=

=

ˆ , ˆ

ˆ , ˆ

42 52.37
52.37

61 55.56
55.56

47 42.77
42.77

26 25.58
25.58

14 13.16
13.16

10 10.57
10.57

3.096.

2

2

1

6

2 2 2

2 2 2

nk k

kk

When testing the fit of a distribution based on parameters estimated from a sample, 
c2 has q - r - 1 degrees of freedom, where q = # cells and r = # estimated parameters. In 
this example d.f. = 6 - 2 - 1 = 3, and so the rejection limit at the 5% significance level is 
c2

0.95(3) = 7.815. Because c2 < 7.815, we do not reject the null hypothesis that the fitted 
gamma distribution provides a reasonable description of the population claim size. n

2.4. Lognormal Distributions
Applications of lognormal distributions are commonly found in a variety of fields—

physics, reliability theory, biology, economics, to name a few. Moreover, they are widely 
used in property/casualty insurance to model claim size. Like their gamma-distributed 
counterparts, lognormal random variables take on only nonnegative values, and the 
distribution is positively skewed. The shape of the lognormal probability density curve 
y = f (x) is typical of many continuous claim-size distributions—the curve rises to a 
maximum value in the short tail of the distribution (that is, the mode occurs at a 
relatively small positive value of x) and then declines asymptotically to y = 0 as x → ∞.

Random variable X has a lognormal distribution with parameters (µ, s) if, and 
only if, log X is normally distributed with mean µ and variance s2. Therefore, the 
lognormal variable X can be expressed as X = esZ+µ, where Z is the standard normal 
random variable. As a consequence, the lognormal cumulative distribution function is

( )( )
( )

=
−∞ < ≤

Φ − µ
σ

< < ∞ −∞ < µ < ∞ σ >







0 if 0

log
if 0 , 0 .

(2.34)F x

x

x
x

X
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Again, log x denotes the natural (base e) logarithm function of x, and F denotes the 
standard normal distribution function:

∫( )Φ =
π

−∞ < < ∞−
−∞

1
2

, .22

z e du zuz

The continuous lognormal variable X has probability density function

( )( )
( )

=

−∞ < ≤

σ π
− − µ σ < < ∞









0 if 0

1
2

exp log if 0 .
(2.35)

1
2

2 2
f x

x

x
x x

X

Keep in mind that parameters (µ, s) represent the mean and standard deviation 
not of X, but that of the normally-distributed variable log X. Although the lognormal 
variable X has finite moments of all orders, it turns out that E [e tX] is infinite for all  
t > 0, so the moment-generating function MX(t) does not exist. Nevertheless, the mth 
moments of X are obtainable from the generating function of the standard normal 
variable Z, that is, from MZ(t ) = exp(�‒₂ t 2). In fact, for m = 1, 2, 3, . . .

[ ] ( ) ( )( )=   = σ = µ + σσ +µ µ exp . (2.36)1
2

2 2E X E e e M m m mm Z m m
Z

The mean, variance, and skewness follow directly:

( )
( )

[ ]

[ ]

[ ]

=

= −

= + −

µ+σ

σ µ+σ

σ σ

,

1 ,

2 1. (2.37)
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2
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2 2

E X e

Var X e e

Sk X e e

To derive a formula for the limited mth moments, begin by evaluating the integral 
Im(x) = ∫ x

0 tm f (t)dt. The change-of-variable substitution v = (log t - µ)/s at step (2) does 
the trick:

i

∫

∫

∫

( )

( )

( )

( )

( )

( ) ( )

( )
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− − µ σ

=
π

σ + µ −

=
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− − σ
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Consequently,

i

[ ]

[ ]

( )( ) ( )= + −

= Φ − µ − σ
σ







+ Φ − + µ
σ







; 1

log log
. (2.39)
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As in the case of gamma-related distributions, evaluation of the normal and lognormal 
functions requires some sort of approximation. Microsoft Excel users find the worksheet 
functions lognorm.dist and lognorm.inv useful—refer to Appendix A.1.

Example 2.8.  Returning again to the grouped claim-size data of Example 2.6, we 
now attempt to fit a lognormal distribution model. This time, however, we shall use the 
minimum chi-square technique to estimate the distribution parameters—that is, we set the 
lognormal parameters µ and s equal to the joint values for which the chi-square statistic 
c2(µ, s), as a function of the variable parameters µ and s, achieves a minimum value.

Set up six cells as in Example 2.7, defined by the seven cell boundaries: {ck} =  
{0, 1000, 1500, 2000, 2500, 3000, ∞}, where k = 0, 1, 2, . . . , 6. As usual, the observed 
cell frequency is just the tabulated sample frequency nk for the cell (ck-1, ck]. Expected 
frequencies fk(µ, s) are those derived from the lognormal distribution: fk(µ, s) =  
(200)(Fµ,s(ck) - Fµ,s(ck-1)), in which Fµ,s(x) is the lognormal cumulative distribution 
function (note that Fµ,s(c6) = 1). The chi-square statistic then, as a function of µ and s, is
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( ) ( ) ( )

χ µ σ =
− φ µ σ
φ µ σ

=
− φ µ σ
φ µ σ

+
− φ µ σ
φ µ σ

+
− φ µ σ
φ µ σ

+
− φ µ σ
φ µ σ

+
− φ µ σ
φ µ σ

+
− φ µ σ
φ µ σ

=

,
,

,

42 ,
,

61 ,
,

47 ,
,

26 ,
,

14 ,
,

10 ,
,

.

2
2

1

6

1
2

1

2
2

2

3
2

3

4
2

4

5
2

5

6
2

6

nk k

kk

To find values that minimize c2(µ, s) by analytic methods would be a daunting 
task, but computer software applications that use iterative algorithms often handle 
such problems with ease. In this example the Microsoft Excel Solver returns (µ̂, ŝ) = 
(7.274670, 0.442525), corresponding to a minimum value of c2(µ̂, ŝ) = 1.828. The 
minimum chi-square estimates have a built-in goodness-of-fit test—because c2(µ̂, ŝ) is 
less than the 5% rejection limit c2

0.95(3) = 7.815, the fitted distribution, as in Example 2.7, 
is a reasonable model of the data.

The graph of the fitted probability density function is shown in Figure 2.8 along 
with the histogram of the observed empirical distribution. The sample and fitted 
lognormal limited expected values and tail probabilities at the group interval endpoints 
are displayed in Table 2.3.

It is instructive to compare the present lognormal model with the gamma model of 
Example 2.7. The two distributions have similar severities—1,555 for the gamma model 
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and 1,592 for the lognormal—but the lognormal has the larger standard deviation and 
skewness: SD = 2,369.675 and Sk = 1.4959, compared to 786.670 and 1.0118, respectively, 
for the gamma. Appropriately, on the interval 0 < x < 3,500 the two distributions are similar, 
but beyond x = 3,500 the lognormal model consistently has the larger tail probability. n

2.5. Pareto Distributions
Pareto distributions bear the name of the eponymous Italian sociologist and 

economist Vilfredo Pareto (1843–1923), who first proposed using them in an 1896 
textbook.22 The distribution has long been attractive to property/casualty actuaries. 

22 In his Cours d’Économie Politique (Paris, 1896–97), based on lectures in economics given at Switzerland’s University 
of Lausanne, Pareto introduced what has become known as Pareto’s Law of Income Distribution. The law asserts 
that within a given population the proportion of individuals with incomes larger than x is modeled by a function 
of the general form C/x a.

Figure 2.8.  Histogram with Lognormal Density 
Function [Example 2.8]
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Table 2.3.  Tail Probabilities and Limited Severities [Example 2.8]

Size x

Pr {X > x} E [X; x ]

Sample Lognormal Sample Lognormal

1,000 0.7900 0.7965 895 958

1,500 0.4850 0.4653 1,214 1,273

2,000 0.2500 0.2305 1,398 1,441

2,500 0.1200 0.1072 1,490 1,522

3,000 0.0500 0.0491 1,533 1,559

3,500 0.0150 0.0227 1,549 1,576

4,000 0.0050 0.0106 1,554 1,584

4,500 0.0000 0.0051 1,555 1,588

5,000 0.0000 0.0025 1,555 1,590
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The computationally simple form of the distribution function—requiring only 
algebraic calculations and no limit processes—and the typically heavy long tail have 
made the Pareto family the distributional family of choice to model claim size in a 
variety of actuarial applications.

The classical Pareto distribution applies only to random variables with values larger 
than a fixed positive number g. Such variables have a continuous cumulative distribution 
function of the form

( )( )
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− γ γ ≤ < ∞ α > γ >
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Unlike the gamma- and lognormally-distributed random variables, which have 
moments of all orders, there exist for a Pareto random variable X only a finite number 
of moments. The existence of the mth moment depends on the size of parameter a. In 
particular, the following improper integral converges—and E [X m] exists—whenever 
m < a:

∫[ ] ( )= α γ = α γ
α −

= < αα −α−
γ

∞
1, 2, 3, . . . , . (2.42)1E X x dx

m
m mm m

m

For example, the mean E [X ] exists if a > 1, but a > 2 is required for the variance also 
to exist:
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On the other hand, limited moments exist for all values of parameter a. For 
example, the limited severity function is
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For computational convenience the classical Pareto distribution is sometimes 
transformed into the so-called “single-parameter” Pareto distribution. If random variable 
X has the distribution function (2.40), then dividing each claim by g yields the rescaled 
variable Y = X/g. This transform standardizes the minimum claim size at 1 and reduces 
the set of parameters from {a, g } to {a}.23 The distribution function of the transformed 
variable is then

{ } { } ( )( ) = γ ≤ = ≤ γ = γ =

−∞ < <

− ≤ < ∞







 α

Pr Pr

0 if 1

1
1

if 1 .
(2.45)F y X y X y F y

y

y
y

Y X

Not surprisingly, the distribution function of Y is a special case of (2.40), for which 
parameter g = 1.

As a claim-size distribution the classical Pareto distribution models only those 
claims in excess of a specified positive amount—a disadvantage in some applications. 
The most widely used form of the Pareto distribution gets around this restriction by 
shifting the minimum claim size to 0, as described below.

Suppose that random variable Y has the single-parameter distribution function 
(2.45). Applied to Y, the linear transformation L(Y ) = b(Y - 1) = X, for which b > 0, 
first shifts the lower limit to 0 and then scales the claim size by the constant multiplier b. 
Consequently, FX(x) satisfies for all x
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The resulting random variable X is said to have the shifted Pareto distribution,24 with 
distribution functions
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1

23 The distribution of Y is a single-parameter distribution only in the sense that function FY in (2.45) formally 
depends on just the single parameter a. Parameter g is still present, however, in the preliminary scaling of random 
variable X.

24 When it is unnecessary to maintain the distinction between the classical Pareto distribution function (2.40) and 
its shifted counterpart, most actuaries refer to (2.46) simply as the Pareto distribution function.
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To obtain the mth moments (m = 1, 2, 3, . . .) we first evaluate the integral  
Im(x) = ∫ x

0 um f (u) du by applying the change-of-variable substitution u = b/v - b:

1 . (2.48)1
0
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Then E [Xm] is obtained as the limit
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The integral in the right member of equation (2.49) is the special beta function B(a - m, 
m + 1). After applying a well known relation linking the beta and gamma functions,

∫( ) ( ) ( )
( ) ( )( )Β = − =

Γ Γ
Γ +

> >− −, 1 0, 0 ,1 1
0
1p q x x dx

p q
p q

p qp q

we obtain

�
[ ] ( )

( ) ( )( ) ( ) ( )= αβ
Γ α − Γ +

Γ α +
= β

α − α − α −
< α

( ) 1
1

!
1 2

. (2.50)E X
m m m

m
mm m

m

Formula (2.50) yields
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To develop now a formula for the limited mth moments, start again with the 
integral Im (x) in equation (2.48). The binomial formula is applied at the second 
step in the following sequence, and the integration in the final step requires that  
a ≠ 1, 2, . . . , m:
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Therefore, for a ≠ 1, 2, . . . , m
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The limited severity in the case that a = 1 is requested in Problem 2.21.

Example 2.9.  The table displays the observations 
from a random sample of 200 claims drawn from a 
population with an unknown claim-size distribution, 
grouped by size into ten groups. Note that in this case 
the right-most group interval is a semi-infinite interval: 
10,000 < x < ∞.

In this example we fit a shifted Pareto (a, b) 
distribution to these data by minimizing, as a function 
of a and b, the “distance” between the sample 
limited expected values and the corresponding Pareto 
statistics at the finite endpoints of the sample groups: 
ck = 1000 k, where k = 0, 2, 3, . . . , 10. That is, the 
desired least-squares estimators (â, b̂) are parameter 
values that minimize the quasi-distance function
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In this equation variable X has a shifted Pareto (a, b) distribution and X̂ has the 
discrete sample distribution. The components of D(a, b) are thus defined by
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Size Group # Claims

0–2,000 56

2,001–3,000 22

3,001–4,000 18

4,001–5,000 16

5,001–6,000 14

6,001–7,000 12

7,001–8,000 10

8,001–9,000 8

9,001–10,000 7

>10,000 37

Total 200
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where nk = # claims in the k th group (ck-1, ck], n11 = 37, and n = 200. The average 
claim size for each finite group interval has been set to the interval midpoint in the 
formula for En[X̂ ; ci]. Solving iteratively yields â = 6.000000 and b̂ = 34,355.3719.25 
Figure 2.9 compares the graph of the implied Pareto density function to the 
histogram of the observed sample distribution.

Using the ten distribution groups as cells, we apply the chi-square test and obtain 
c2 = 1.793. Since d.f. = 10 - 2 - 1 = 7, the rejection limit is c2

0.95(7) = 14.067. The 
fitted Pareto distribution is therefore, at the 5% level of significance, a reasonable fit 
to these claim data. Table 2.4 compares the sample and Pareto limited expected values 
and tail probabilities. n

2.6. Estimation with Modified Data
The fact that most available insurance claim-size data are modified by such common 

policy conditions as limits and deductibles presents additional challenges to the problem 
of fitting a distributional model to the unknown underlying unmodified, unlimited 
claim-size distribution for a portfolio of policies. In this section we consider some 
possible techniques for parameter estimation under such conditions. Generally speaking, 
one must either adjust the data to remove the effects of the policy modifications or 
modify the parametric distribution formulas to model the data modifications—or use 
a combination of both approaches. We begin in Example 2.10 with a set of policy 
data censored by a policy limit and then in Example 2.11 take up the problem of data 
both censored by a policy limit and truncated by a deductible.

Example 2.10.  A sample contains n = 1,500 claims from a large portfolio of 
policies, each with a policy limit of $300,000. These claim data are summarized in 
Table 2.5. For a sequence of selected claim sizes x the number and total amount for 

25 The indicated solution was obtained by using the Solver utility in Microsoft Excel. To facilitate the iterative 
process, parameter a was arbitrarily fixed at â = 6 and the corresponding b̂ obtained iteratively.

Figure 2.9.  Histogram with Pareto Density Function 
[Example 2.9]
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claims less than or equal x have been tabulated. Moreover, there are 23 claims with 
the policy-limit value of 300,000. We wish to use these censored data to find an 
unlimited lognormal distribution for the unmodified claim population underlying 
this portfolio. Such a distribution will be useful in creating a set of increased limit 
factors for pricing policy limits greater than 300,000 (this topic is discussed in detail 
in Chapter 6). As in Example 2.9, we shall use the method of minimum-distance 
estimation to obtain the desired parameters.

Note that for all claim sizes x, x ≤ 300,000, sample limited expected values can be 
calculated accurately from the summarized sample data—for example, at x = 5,000 
we have

( )( )  =
− −

=ˆ ;5,000
1,102,272 5,000 1,500 1,096

1,500
2,082.E Xn

Table 2.4.  Tail Probabilities and Limited Severities [Example 2.9]

Size x

Pr{X > x} E [X; x ]

Sample Pareto Sample Pareto

2,000 0.7200 0.7121 1,720 1,693

3,000 0.6100 0.6051 2,385 2,350

4,000 0.5200 0.5164 2,950 2,910

5,000 0.4400 0.4425 3,430 3,388

6,000 0.3700 0.3807 3,835 3,799

7,000 0.3100 0.3287 4,175 4,153

8,000 0.2600 0.2848 4,460 4,459

9,000 0.2200 0.2476 4,700 4,724

10,000 0.1850 0.2159 4,903 4,956

Table 2.5.  Censored Data and Limited Severities [Example 2.10]

Size x # Claims ≤ x S Claims ≤ x En[X̂; x] Eµ,s[X; x]

1,000 729 225,138 664 648

5,000 1,096 1,102,272 2,082 2,091

10,000 1,208 1,918,947 3,226 3,239

25,000 1,326 3,752,091 5,401 5,410

50,000 1,391 6,007,543 7,638 7,580

100,000 1,440 9,234,739 10,156 10,168

200,000 1,468 13,100,561 13,000 13,069

300,000 1,500 22,343,455 14,896 14,850
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(However, the same cannot be said for any x > 300,000.) The lognormal limited mean 
Eµ,s[X ; x] is obtained from formula (2.39) with m = 1:

i i( )[ ] = µ + σ Φ − µ − σ
σ
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Minimizing the quasi-distance function

∑ [ ]( )µ σ = −  µ σ, ; ˆ;,
2

D E X x E X xn
x

over all parameter values yields (µ̂, ŝ) = (6.9852,2.5850), and the resulting limited 
expected values are displayed in the fifth column of Table 2.5.

As usual with grouped claim data, we can easily apply the chi-square statistic to the 
nine cells defined by the sequence of claim sizes in Table 2.5:

{ }∞0,1 , 5 ,10 , 25 , 50 ,100 , 200 , 300 , .K K K K K K K K

We set the observed frequency of the last cell (300K, ∞) to be 23, the number of 
limit claims. The chi-square statistic c2 = 2.763 is less than the 5% rejection limit for  
d.f. = 6, c2

0.95(6) = 12.6, so we conclude that the lognormal with fitted parameters 
(µ̂, ŝ) is an acceptable distribution for the underlying claim population for this 
portfolio. n

The policy condition known as a straight deductible eliminates all claims less 
than or equal to the deductible amount d, where d > 0, and it reduces the size of larger 
claims by d. (Section 6.5 contains a more extended discussion of deductible concepts.) 
Thus, a claim sample generated by a portfolio of policies with a straight deductible 
would be missing all original claims of size d or less and sizes of the remaining claims 
would be reduced by the amount d. A sample or random variable with this property 
is said to be truncated below by d and shifted by d. The next example illustrates how 
an unlimited parametric distribution model could be fitted to an underlying claim 
population, given only a sample of truncated and shifted claim-size data.

Example 2.11.  A sample contains 770 claims from a portfolio of identical 
policies, each with a policy limit of $200,000 and a straight deductible of $1,000. 
Thus, the sample data have been censored above at 200,000 and then truncated below 
by 1,000 and shifted by the same amount. Adding back the 1,000 deductible amount 
to each claim in the sample removes the shift effect of the deductible, resulting in an 
adjusted sample of claim sizes censored above by 200,000 and truncated below by 
1,000. These adjusted claim sizes have been sorted into 12 groups, with the observed 
group frequencies displayed in Table 2.6. Thirty-one claims valued at the policy limit 
were placed in the last group (200K, ∞).

To fit a lognormal distribution to the underlying unmodified claim population, we 
shall use the minimum chi-square method of parameter estimation.
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Note that if X is a non-truncated random variable, then X truncated below by 
1,000 is defined only for 1,000 < X < ∞ by

= .1000X X

Thus, the expected frequency of cell (ck -1, ck] (k = 1, 2, . . . 12) in terms of the cumulative 
distribution function Fµ,s(x) of an unmodified, unlimited lognormal distribution is

( )( ) ( )( ) ( ) ( )φ µ σ =
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Minimizing the chi-square statistic
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over all µ and s yields the estimated parameters (µ̂, ̂s) = (6.6916, 2.6965). Corresponding 
expected cell frequencies are shown in the third column of Table 2.6.

The minimum chi-square statistic c2(µ̂, ŝ) = 4.691 is less than the 5% rejection 
limit c2

0.95(8) = 15.5, so we can conclude that the fitted lognormal distribution is an 
acceptable description of the underlying unlimited claim-size distribution. n

Other examples of parameter estimation based on modified data can be found in 
Problems 2.39 and 2.43. In addition, we shall return to the important concept of truncated 

Table 2.6.  Truncated and Censored Data [Example 2.11]

Size Group Obs # Claims Exp # Claims

0–1K 0 0

1K–5K 367 360

5K–10K 112 122

10K–25K 118 121

25K–50K 65 63

50K–75K 36 27

75K–100K 13 16

100K–125K 10 10

125K–150K 8 7

150K–175K 6 5

175K–200K 4 4

>200K 31 34

Total 770 770
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random variables and data in Sections 5.1 and 6.5, as well as in Problems 2.41 and 2.42. 
For a slightly different approach to the estimation problem addressed in Example 2.11, 
refer to Example 5.3 and Problem 5.23.

2.7. Transformations
With claim-size random variables, as with random variables in general, one can create 

new variables by transforming existing ones. This is often done in order to create claim-
size models with predetermined properties or with properties somewhat different from, 
but related to, those of a known variable. In this section we shall focus on those functions 
that transform one continuous claim-size random variable into another.

Assume that T is a strictly increasing—and hence invertible—continuous and 
differentiable function that maps a set of nonnegative real numbers into itself. If X is 
a continuous claim-size variable, then Y = T (X ) is also a continuous random variable 
with nonnegative values. As such, Y is also a possible random variable for the size of 
insurance claims. Because T is an increasing function, distribution functions for X and 
Y are related by

{ } ( ){ }( )( ) ( ) ( )= ≤ = ≤ = < < ∞− −Pr Pr , 0 . (2.55)1 1F y T X y X T y F T y yY X

Moreover, if FX is differentiable at x = T -1(y), then

( ) ( )( ) ( ) ( ) ( ) ( )= = =− − − . (2.56)1 1 1f y
d
dy

F y
d
dy

F T y f T y
d
dy

T yY Y X X

The simplest such function is the linear transformation L(X ) = aX + b, where a 
and b are real constants and a > 0. For a continuous variable X and Y = L(X ) = aX + b, 
distribution functions (2.55) and (2.56) become, respectively,

( ) ( )= −



 = −



 < < ∞and

1
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f y
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a
yY X Y X

Linear transformations appear in a variety of probability settings, where they are used 
to translate the values of a random variable, up or down by a fixed amount, or to rescale 
the values by applying a constant multiplier. For example, we previously observed in 
Section 2.5 that the linear transformation L(Y ) = b(Y - 1) = X creates a shifted Pareto 
random variable X from the classical single-parameter Pareto variable Y. In addition, 
we encountered in Section 2.4 the transformation T(Z ) = esZ+µ = X, transforming the 
standard normal variable Z first by the linear function sZ + µ and then by the exponential 
function, to define X as a lognormal claim-size random variable.

With regard to distribution characteristics, it is well known that L(X ) = aX + b 
transforms the mean of the random variable when either a ≠ 1 or b > 0—specifically, 
E [L(X )] = L(E [X ]) = aE [X ] + b. It also transforms the variance whenever a ≠ 1: 
Var [L(X )] = a2 Var [X ]. However, when a > 0 the skewness of a distribution remains 
unchanged under such a linear transform: Sk[L(X )] = Sk[X ]. Proof of this invariance 
property is requested in Problem 2.26.
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In some cases the linear transformation L(X ) does not change the parametric family 
of the initial distribution of variable X, but only alters the parameters within the family. 
For example, consider

( ) = >, 0. (2.58)L X c X cc

If random variable X has a gamma (a, b) distribution, then the transformed variable 
Y = Lc(X ) has the cumulative distribution function
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Consequently, Y is also gamma-distributed, but with parameters (a, cb). A similar 
outcome is obtained when transformation (2.58) is applied to a random variable with one 
of several other common parametric distributions. The results of applying Lc to X with the 
normal, exponential, lognormal, and Pareto distributions—as well as with the Weibull 
and Burr distributions defined in Examples 2.12 and 2.14—are shown in Table 2.7.

Another class of transformations important to the study of claim-size random 
variables are those functions having the form

( ) ( )= > δ >δ 0, 0 (2.60)1T X c X c

Such a transformation can be employed to produce a variable T(X) with distributional 
tail characteristics differing from those of X, as illustrated in Examples 2.12 and 2.13. 
Parameter d serves to alter the thickness of the long tail of the distribution. In general, 
the distribution of T(X) has a heavier long tail than that of X whenever 0 < d < 1. On 
the other hand, if d > 1, then X has the heavier-tailed distribution.

Example 2.12.  Consider the random variable X, defined by

( )( )= = β β > δ >( )δ− δ δ 0, 01 1X T Y Y

Table 2.7.  Effect of Lc(X) on Distribution Parameters

Distribution Family X Parameters Lc(X) Parameters

Normal µ, s cµ, cs

Gamma a, b a, cb

Exponential b cb

Lognormal µ, s µ + logc, s

Shifted Pareto a, b a, cb

Weibull b, d cb, d

Burr a, b, d a, c db, d
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in which transformation T is a special case of (2.60). If Y has an exponential (b) 
distribution, then formula (2.55) yields for the transformed variable X the cumulative 
distribution function

( )( )
( ) ( )

=
−∞ < <

− − β ≤ < ∞ β > δ >
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(2.61)F x
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x x
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Here X is said to have a Weibull distribution, after Swedish engineer E.H.W. Weibull 
(1887–1979). In a 1939 paper Weibull proposed the distribution as a model for the 
random failure time of various parts of mechanical systems, for which F(t) = Pr{ failure 
time ≤ t }. A later paper [22], published by Weibull in 1951, served to promote the 
distribution in the U.S.

The Weibull distribution is known for its exceptional ability to fit a wide variety 
of data, and it is widely employed in reliability engineering and failure analysis. Of 
course, when d = 1 the distribution reduces to the special case of an exponential 
distribution. Otherwise—especially when 0 < d < 1—it is useful in modeling size-of-
loss distributions.

Formulas for the moments of the Weibull distribution are obtained from the 
integral Im(x) = ∫

x
0 um f (u) du, where the p.d.f. is f (x) = (d/bd) xd-1 e-(x/b)d:
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for m = 1, 2, 3, . . . . Note that the change-of-variable substitution v = (u/b)d was used 
at step (2). Therefore, the Weibull mth moments are
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Again, because the Weibull distribution functions and moments are expressed in 
terms of the gamma function, evaluation necessarily involves the use of approximation 
techniques. n

The next example, using a set of related Weibull variables, illustrates how the size of 
parameter d in (2.61) affects the distribution of probability in the long tail of a claim-
size distribution.

Example 2.13.  Consider three related Weibull random variables: X1 has parameters 
(b1, d1) = (220.653, 0.80), X2 has parameters (b2, d2) = (250, 1.00), and (b3, d3) = 
(265.774, 1.20) are parameters for X3. The means of X1, X2, and X3 are therefore identical:
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220.653 1 1 0.80 250,

250 2 250,

265.774 1 1 1.20 250.
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3

E X

E X

E X

Tail probabilities for these variables are compared in Table 2.8, clearly indicating the 
effect of parameter d on the thickness of the long tail. n

Example 2.14.  As another application of transformation (2.60) consider now 
the random variable X defined by X = T (Y ) = Y 1/d, where Y has the shifted Pareto 
(a, b) distribution:
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Such a transformed distribution is called the Burr distribution, after the Purdue 
University statistician Irving Wingate Burr, who first proposed its use. Clearly, the 
Burr distribution is a generalization of the shifted Pareto, to which it reduces when  
d = 1. Burr made numerous contributions to reliability theory, statistical quality control, 
and distribution theory. He introduced the distribution in 1942 as one suitable for 
modeling failure times in reliability engineering. n

Table 2.8.  Weibull Tail Probabilities [Example 2.13]

Size x

Pr{X1 > x}
d1 = 0.80

b1 = 220.653

Pr{X2 > x}
d2 = 1.00

b2 = 250.000

Pr{X3 > x}
d3 = 1.20

b3 = 265.774

200 0.3968 0.4493 0.4912

300 0.2784 0.3012 0.3146

400 0.2000 0.2019 0.1953

500 0.1460 0.1353 0.1183

600 0.1079 0.0907 0.0702

700 0.0806 0.0608 0.0409

800 0.0607 0.0408 0.0235

900 0.0460 0.0273 0.0133

1,000 0.0351 0.0183 0.0074
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2.8. Inflation Effects
When the claim process to be modeled is subject to some type of inflationary pressure 

applied over time, one must account for this in a probability model for the size of claims. 
Such time-dependent forces can arise from a variety of sources. Monetary inflation results 
from the changing, usually declining, value of the underlying currency. Social or judicial 
inflation occurs when changes take place in the societal or legal environment—changes 
that often affect the size of insurance claims. In contrast to monetary inflation, which 
usually gives rise to increasing claim size, social and judicial inflation could possibly 
result in a decrease as well as an increase in the size of claims. Of course, these types 
of inflationary pressure can also affect the frequency of claims, the subject addressed 
in Chapter 3.

Often a claim-size distribution, whether an empirical distribution based on a 
population of actual claims or a continuous parametric model as discussed in this 
chapter, must be adjusted for inflationary trend to account for past changes or to 
model change projected for the future. The simplest approach is to assume that all 
claims in the population are impacted in the same way by inflation, as is clearly the 
case with monetary inflation. Accordingly, we shall first study the concept of uniform 
trend and then take up one approach to the concept of variable trend.

Suppose that claim-size random variable X is subject to a uniform inflationary 
trend over a period of time. This means that every claim, large and small, changes 
by the same percentage during the time period. That is, X is transformed into a new 
random variable Y = T (X ) = tX, where t = 1 + r is the trend factor and r is the 
inflation rate for the period.

For example, assume that claim size is increasing at the uniform rate of 5% per 
annum. Then the constant trend factor for a single year is t1 = 1.05, whereas for a 
three-year period the factor is t3 = (1.05)3 = 1.1576.

Transformation T(X ) = tX is a linear transformation of the form (2.58), and so 
the cumulative distribution function of the transformed variable Y is a special case of 
formula (2.57):

( )( ) = τ < < ∞, 0 . (2.66)F y F y yY X

For example, if X has a lognormal (µ, s) distribution, then

( )( ) =

−∞ < ≤

Φ − τ − µ
σ

< < ∞







0 if 0

log log
if 0 .

F y

y

y
y

Y

As shown previously in Table 2.7, Y also has a lognormal distribution, but with 
parameters (µ + log t, s).

When a uniform trend factor is applied to a censored random variable the 
nonlinearity of the limited expected value E [X; x ] with respect to the random variable X 
serves to modify the effect of inflation on the average censored claim size. For example, 
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consider a claim-size random variable X subject to the fixed positive upper limit l. The 
average claim size before trending is E [X; l ], and the severity after applying t = 1 + r 
is given by equation (2.14):

[ ] [ ]τ = τ τ; ; . (2.67)E X l E X l

If r̃  denotes the effective rate of change on the censored variable, then

� [ ][ ]
[ ] [ ]( ) ( )+ =
τ

= +
+

1
;

;
1

; 1
;

. (2.68)r
E X l
E X l

r
E X l r

E X l

E [X; x] is a nondecreasing function of x, so it follows that

� ≤ . (2.69)r r

This overall reduction in the effect of inflation on claim size is due to the fact that 
all censored claims—those larger than l—are unchanged by the force of inflation. For 
example, if x > l and r > 0 then x and (1 + r)x are each replaced by l in the calculation 
of E [X; l ] and E [t X; l ].

However, if limit l is subjected to the same trend factor as the claim size—so that 
after trending the severity is E [t X; tl ]—then this leveraging effect of the upper limit 
disappears. Proof of this assertion is requested in Problem 2.32.

Example 2.15.  Random variable X has a shifted Pareto distribution with (a, b) 
= (2; 3,000). The average claim size subject to a policy limit of $8,000 is

[ ] = −
+







=; 8,000 (3,000) 1
3,000

8,000 3,000
2,182.E X

Application of a uniform 10% trend to X yields the limited severity

[ ] [ ]( ) ( )= = −
+







=1.1 ; 8,000 1.1 ; 8,000 1.1 3,300 1
3,000

8,000 1.1 3,000
2,336.E X E X

Consequently, the effective inflation rate for the limited variable is less than the nominal 
10% rate: r̃  = 2,336/2,182 - 1 = 7.1%.

If, on the other hand, X is subjected to a negative annual trend of -5% so that  
t = 0.95, then

[ ] [ ]( )= =0.95 ; 8,000 0.95 ; 8,000 0.95 2,101.E X E X

In this case,

� = − = −2,101
2,182

1 3.7%.r n
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The assumption of a uniform trend—claims of all sizes are subject to the same rate 
of change—is not always satisfied in practice. Empirical evidence sometimes suggests 
that the trend factor should in some way be an increasing function of the claim-size 
variable X. In a study of non-uniform trend models Sheldon Rosenberg and Aaron 
Halpert proposed an annual trend factor of the form

( ) ( )τ = > >0, 0 . (2.70)26x a x a bb

Note that factor (2.70) reduces to the uniform case when b = 0; otherwise t(x) is an 
increasing function of x.

The trended random variable Y is therefore

i( )= τ = + . (2.71)1Y X X a X b

When X has a lognormal (µ, s) distribution the distribution function of the 
trended variable Y is

( )( ) ( )
( )( ) = Φ

− µ
σ









 = Φ

− + µ −
+ σ







< < ∞
( )+log log 1 log

1
, 0 . (2.72)

1 1

F y
y a y b a

b
yY

b

This implies that Y is also lognormally distributed, with parameters

� � ( )( ) ( )( )µ σ = + µ + + σ, 1 log , 1 .b a b

However, X and Y in (2.71) do not always belong to the same distribution family. If 
X has a shifted Pareto (a, b) distribution, for example, then Y has distribution function

( )
( ) = − β

+ β







= − β

+ β






≤ < ∞( )

( )

( ) ( )+

α +

+ +

α

1 1 , 0 , (2.73)1 1

1 1

1 1 1 1F y
y a

a
y a

yY b

b

b b

which defines a Burr distribution with parameters

� � � ( )( ) ( )α β δ = α β +( )+, , , ,1 1 .1 1a bb

Example 2.16.  Random variable X has a lognormal distribution with parameters 
(µ, s) = (7.2, 0.476) and thus has mean

( )( )[ ] = + =exp 7.2 0.476 1,500.1
2

2
E X

Applying the variable trend factor t(x) = 0.96x0.0183 yields a new lognormal variable 
Xt = t(X ) z X = 0.96X1.0183 with mean

[ ] ( )( ) ( ) ( )= + + =τ ( )exp 1.0183 7.2 log0.96 1.0183 0.476 1,650.1
2

2 2E X

26 Rosenberg and Halpert [20], p. 466.
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Trending has increased the overall unlimited mean of the distribution by 10%: E [Xt]/
E [X ] = 1,650/1,500 = 1.10. Table 2.9 displays values of the variable trend factor t for 
several claim sizes. n

2.9. Problems
2.1  A continuous claim-size random variable X takes on values larger than or equal 

to 1,000 and has the Pareto cumulative distribution function

( )
( ) =

−∞ < <

− ≤ < ∞






F x

x

x x
X

0 if 1,000

1 1,000 if 1,000 .3

Evaluate:
(a) E [X ]. (b ) Var [X ].
(c) Pr{X > 2,000}. (d ) E [X; 2,000].

2.2 Claim-size random variable Y has the cumulative distribution function

( )
( )

( )
=

−∞ < <

− ≤ < ∞







0 if 500

1 0.75 500 if 500 .2
F y

y

y y
Y

Evaluate:
(a) E [Y ]. (b ) Var [Y ].
(c) Pr{Y = 500}. (d ) E [Y; 1,000].

2.3 Derive the limited severity function for random variable Y with the mixed 
distribution of Example 2.3.

Table 2.9.  Variable Trend Factor 
[Example 2.16]

Claim Size x t(x) = 0.96x0.0183

  100 1.0444

  500 1.0756

  750 1.0836

1,000 1.0894

1,500 1.0975

1,650 1.1000

2,000 1.1033

3,000 1.1115

4,000 1.1173

5,000 1.1219
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2.4 The table displays the grouped claim sample data of Example 2.6, but with the 
total claim amount in each group now included. Calculate the mean of the 
sample distribution, as well as the limited severities at the endpoints of each 
group interval. Compare these results to those obtained in Example 2.6 and 
explain the observed differences.

Size Group # Claims
Total Claim 

Amount

0–1,000 42 20,370

1,001–1,500 61 74,725

1,501–2,000 47 82,250

2,001–2,500 26 57,200

2,501–3,000 14 37,800

3,001–3,500 7 22,400

3,501–4,000 2 7,200

4,001–4,500 1 4,400

4,501–5,000 0 0

Total 200 306,345

2.5 Demonstrate that the midpoint approximation to ak in formula (2.7) is consistent 
with the assumption, but does not necessarily imply, that claims are distributed 
uniformly on each group interval of finite width.

2.6 Using the notation of formula (2.7) for grouped sample data and the midpoint 
approximation ( )≈ +−

1
2 1a c ck k k , develop formulas for approximating the sample 

moments M1 and M2.

2.7 Verify that for every claim-size random variable X, E [X; x] exists as a finite 
number. Cite an example for which E [X; x] < E [X ] = ∞.

2.8 Show that for a discrete claim-size variable X, E [X; x] is a piecewise linear 
function on the interval 0 ≤ x < ∞.

2.9 Assume that X is a continuous claim-size random variable with a density function 
f (x) = F ′(x) continuous on the interval 0 < x < ∞.
(a) Show that function E [X; x] is differentiable on 0 < x < ∞.
(b)  Prove that the limited severity function for X can be expressed as E [X; x] = 

∫
x

0(1 - F(u)) du.
(c)  Use the second derivative test from elementary calculus to verify that 

function E [X; x] is concave.

2.10 Show that the gamma function G(x) defined by equation (2.16) can also be 
expressed by each of these integral formulas.
(a) G(x) = cx ∫

∞
0 ux -1 e-cu du, c > 0.

(b) G(x) = 2∫
∞
0 u2x -1 e-u2 du. (c) G(x) = ∫

1
0 (log(1/u))x -1 du.
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2.11 Prove these properties of the gamma function G(x).
(a) Equation (2.17). (b ) Equation (2.18).
(c) Equation (2.19). (d ) Equation (2.20).

2.12 Derive these values of G(x).
(a) ( )Γ = π.1

2  

(b) 
i i( ) ( )Γ + =

−
π =

1 3 5 . . . 2 1
2

, 1, 2, 3, . . . .1
2n

n
nn

2.13 Random variable X has a gamma (a, b) distribution for which =E X Var X[ ] [ ]. 
What can be said about a and b?

2.14 Assume that X has an exponential distribution. For a > 0 and b > 0 calculate 
Pr{X > a + bX > a}. Interpret the result.

2.15 Assume that X has the mixed exponential distribution with cumulative distribution 
function (2.31). Calculate:
(a) E [X ]. (b) Var [X ]. (c) E [X; x ].

2.16 Use the minimum chi-square method to estimate the gamma parameters of 
Example 2.7. Compare the mean and variance of the resulting gamma distribution 
with the sample statistics. Which of the two gamma distributions, that obtained 
by the method-of-moments or that obtained by the minimum chi-square method, 
provides a better fit to the data?

2.17 In a certain claim population the claim-size random variable X is distributed 
lognormally with (µ, s) = (6.3210, 1.6000). Calculate:
(a) E [X ]. (b) Median[X ].27 (c) Var [X ].
(d ) Pr{X > 3,000}. (e ) Pr{1,000 < X < 3,000}.
( f ) E [X; 3,000]. (g ) E [XX > 3,000].

2.18 (a)  Calculate the mean and variance of the minimum chi-square fitted distribution 
of Example 2.8 and compare with the sample statistics.

(b)  Calculate the method-of-moments estimators of parameters µ and s for 
fitting a lognormal distribution model to the data of Example 2.6. Compare 
the result with that obtained in Example 2.8.

(c)  Which of the parameter estimates—the method-of-moments or the minimum 
chi-square—is likely to provide the better fit in Example 2.8?

2.19 A claim-size variable X has a shifted Pareto distribution with parameters (a, b) 
= (3; 4,000). Calculate:
(a) E [X ]. (b) Median [X ]. (c) Var [X ].
(d ) Pr{X > 3,000}. (e ) Pr{1,000 < X < 3,000}.
( f ) E [X ; 3,000]. (g ) E [XX > 3,000].

27 Recall that m is the median of a continuous distribution for random variable X provided that FX(m) = 0.50.
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2.20 Show that if Var [X ] exists for a shifted Pareto (a, b) random variable X, then 
Var [X ] > (E [X ])2.

2.21 Derive a formula for E [X; x] when X has the shifted Pareto (a, b) distribution 
for which a = 1.

2.22 Claim-size variable X is defined on a population from which a random 
sample 〈X1, X2, . . . , Xn〉 is drawn. Let 〈xi〉 be a set of observations for such a 
sample. Verify the following method-of-moments estimators for the indicated 
distribution parameters, where M1 and M2 are the first two sample moments.
(a) Estimator of the gamma parameter b when a is known: b̂ = M1/a.
(b) Joint estimators of the lognormal (µ, s) parameters: 

( ) ( )µ = σ =ˆ log and ˆ log .1
2

2 2 1
2M M M M

(c)  Estimator of the lognormal parameter µ when parameter s is known:  
µ̂ = log (M1) − σ .1

2
2

(d ) Joint estimators of the shifted Pareto (a, b) parameters:

( )α =
−

−
β =

−
ˆ 2

2
and ˆ

2
.2 1

2

2 1
2

1 2

2 1
2

M M
M M

M M
M M

2.23 Verify the following maximum-likelihood estimators for the indicated distribution 
parameters.
(a) Estimator of the gamma parameter b when a is known: b̂ = M1/a.
(b) Joint estimators of the lognormal (µ, s) parameters:

∑ ∑ ( )µ = σ = − µ
=

=
ˆ 1

log and ˆ 1
log ˆ .

1

2
1n

x
n

xi
i

n

ii
n

(c) Estimator of the lognormal parameter s when µ is known:

∑ ( )σ = − µ=
ˆ 1

log .2
1n

xii
n

(d ) Estimator of the shifted Pareto parameter a when b is known:

∑ ( )
α =

+ β − β=

ˆ
log log

.
1

n
xii

n

2.24 Obtain formulas for the median of each continuous distribution.
(a) exponential (b). (b ) lognormal (µ, s).
(c) shifted Pareto (a, b). (d ) Weibull (b, d).

2.25 For an unlimited population of 5,000 claims the mean claim size is 1,000 with a 
standard deviation of 2,000. Estimate the number of claims that are larger than 
1,000, assuming that the size-of-loss distribution is:
(a) gamma. (b) lognormal. (c) shifted Pareto.
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2.26 Prove: if Sk[X ] exists for random variable X, then Sk[L(X )] = Sk[X ] for all linear 
transformations L(X ) = aX + b for which a > 0.

2.27 Assume that X is distributed according to the classical Pareto distribution 
function (2.40) with parameters (a, g). Find a linear transformation L so that Y 
= L(X ) has the shifted Pareto (a, b) distribution (2.46).

2.28 Assume that random variable U is uniformly distributed on the interval 0 < u 
< 1 and that parameters (a, b, d) are all positive. In each case determine the 
distribution of the transformed variable X.
(a) X = -2 logU. (b ) X = b(U-1/a - 1).
(c) X = (b(U -1/a - 1))1/d. (d ) X = b(-logU)1/d.
(e) X = log(1 + Y/b), where Y has a shifted Pareto (a, b) distribution.

2.29 Random variable X has a Burr (a, b, d) distribution with cumulative distribution 
function (2.64).
(a) Derive a formula for E [X m], m = 1, 2, 3, . . . .
(b) Derive a formula for E [X; x ].

2.30 Random variable Y is defined by Y = T (X ) = e X, where X is gamma (a, b) 
distributed. Y is said to have the loggamma distribution.
(a) Derive the cumulative distribution function for Y.
(b) Derive a formula for E [Y m], m = 1, 2, 3, . . . .

2.31 The coefficient of variation CV [X ] of a random variable X is defined as the ratio 
of the standard deviation to the mean: CV [X ] = SD[X ]/E [X ]. Show that an 
application of the uniform trend transformation T (X ) = tX (t > 0) leaves both 
the coefficient of variation and the skewness invariant.

2.32 Prove that the damping effect of a positive upper limit l on a uniform trend rate 
disappears when the limit l is subjected to the same trend factor as the claim size.

2.33 Claim-size random variable Y is obtained by applying to X the variable trend 
factor t(x) = ax b. Determine the distribution of Y when the distribution of X is:
(a) exponential (b). (b) shifted Pareto (a, b).
(c) Weibull (b, d). (d ) Burr (a, b, d).

2.34 For claim-size random variable X let p = Pr {X ≤ E [X ]}. Determine p when X has 
the following distributions. How does p compare to 0.50?
(a) exponential (b). (b) gamma (a, b).
(c) lognormal (µ, s). (d ) shifted Pareto (a, b), a > 1.

2.35 Assume that n random variables {Xi} are independent and identically distributed 
with an exponential (b) distribution. Show that the distribution of Y = Sn

i =1Xi is 
gamma (n, b).

2.36 Assume that claim-size variable X has a lognormal (µ, s) distribution. Verify that 
the conditional mean E [XX > a] is given by

( )( )[ ] [ ] ( )( )> =
Φ − + µ + σ σ

Φ − + µ σ
>

log
log

( 0).
2

E X X a E X
a

a
a
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2.37 A parametric family of continuous probability distributions has a scale parameter  
whenever the probability density function fq(x) depending on parameter q can 
be written in the form

( ) ( )=
θ

θθ
1

.1f x f x

For each family of distributions identify the scale parameter, if any.
(a) normal (µ, s). (b ) gamma (a, b).
(c) lognormal (µ, s). (d ) shifted Pareto (a, b).
(e) Weibull (b, d). ( f ) Burr (a, b, d).

2.38 Assume that X is a continuous random variable whose distribution has a scale 
parameter q. Show that c q is a scale parameter for the distribution of variable cX.

2.39 The grouped data displayed in the table 
represent the sizes of a random sample of 
claims drawn from an unlimited population 
and then censored at the value 100,000.
(a)  Obtain estimates of parameters (µ̂, ŝ) for 

a lognormal model fit to the underly-
ing unlimited population distribution 
by minimizing the distance between the 
sample limited severities at the eight group 
endpoints 10,000 through 100,000 and 
those implied by the lognormal model at 
the same points, as in Example 2.10.

(b)  Compare the sample mean M1 to the 
limited severity at 100,000 implied by 
the lognormal (µ̂, ŝ) distribution.

(c)  Use the chi-square test, with eight cells, to test the goodness-of-fit of the 
lognormal (µ̂, ŝ) distribution.

2.40 To the sample data of Problem 2.39, fit a lognormal model to the underlying 
claim-size distribution by using the minimum chi-square method applied to the 
nine cells with the boundary points

{0; 10,000; 20,000; 30,000; 40,000; 50,000; 60,000; 80,000; 100,000; ∞}.

Note that the observed frequency in the ninth cell (10,000; ∞) is 22.

2.41 For the unlimited claim-size random variable X and positive limit l, the random 
variable Y defined only on the interval 0 ≤ X ≤ l by

= ≤ ≤, 0Y X X l

represents variable X truncated from above at l.
(a) Derive the cumulative distribution and density functions for Y.
(b) Obtain a formula for E [Y ].

Size Group # Claims

     0–10,000 78

10,001–20,000 27

20,001–30,000 21

30,001–40,000 15

40,001–50,000 12

50,001–60,000 10

60,001–80,000 8

80,001–99,999 7

100,000 22

Total 200
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2.42 For the unlimited claim-size random variable X and positive limit a, the random 
variable Y defined only for X > a by

= < < ∞,Y X a X

represents variable X truncated from below at a.
(a) Derive the cumulative distribution and density functions for Y.
(b) Obtain a formula for E [Y ].

2.43 The table displays the result of a random sample 
of claims drawn from an unlimited population, 
truncated above at size 50,000.
(a)  Using the minimum chi-square method 

with ten cells for estimating parameters, 
fit a lognormal model to the underlying 
non-truncated population distribution.

(b)  Compare the sample mean to the severity of 
the fitted lognormal distribution truncated 
above at 50,000.

Size Group # Claims

0–5,000 104

5,001–10,000 120

10,001–15,000 81

15,001–20,000 54

20,001–25,000 45

25,001–30,000 32

30,001–35,000 26

35,001–40,000 18

40,001–45,000 12

45,001–50,000 8

Total 500
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This chapter is devoted to probability models associated with the number of claims 
generated either by a single policy or by a portfolio of policies in property/casualty 
insurance. We study first some aspects of the basic claim process by means of a simplified 
example and then turn to the standard claim-count models. Our main emphasis is on the 
two most important parametric families, the Poisson and negative binomial distributions, 
with special attention paid to the modeling of both parameter uncertainty and claim 
contagion.

3.1. An Elementary Claim Process
The incidence of insurance claims is most usefully modeled as a random process, 

continuous throughout a fixed time interval. For a single policy this period is the 
length of time the policy remains in force—the policy term, typically one year. The 
basic random process must be endowed with a probability structure rich enough  
to support the essential random variables. The most important such time-dependent 
random variable—the claim count—is the principal focus of this chapter. Values of 
the claim-count variable, which we denote by N, are just the numbers of insured 
events occurring during the policy term that give rise to claims against the policy.

Begin by considering a simple discrete model of a claim process, based on the 
following pair of assumptions about claims arising from a single policy:

B1  During a short time interval the probability of a single claim occurring is a fixed 
number p (0 ≤ p ≤ 1) and the probability of two or more claims occurring is zero.

B2  The numbers of claims occurring in disjoint short time intervals, each with 
the probability structure described in B1, are independent random variables.

In other words, the number of claims occurring during a single short interval is a 
Bernoulli random variable—it takes on the value 1 with probability p and the value 0 
with probability 1 - p.

Now let Nm denote the total number of claims occurring in m adjacent, but non-
overlapping intervals for each of which assumptions B1 and B2 both hold. It is evident 
that Nm is the sum of m independent Bernoulli random variables, and so it has a 
binomial distribution with parameters (m, p) and probability function

Pr 1 , 0,1, 2, . . . , . (3.1){ } ( )= = − =−N n C p p n mm m n
n m n

The mean and variance of Nm are mp and mp(1 - p), respectively.

3. Claim Counts
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Example 3.1.  The probability that an individual policyholder makes a claim in 
any single day is 0.003. Assuming that at most one claim per day is possible and that 
claims on successive days are independent, the binomial distribution (3.1) with p = 0.003 
applies to any time period comprised of m successive days.

For example, during a 30-day period the respective probabilities of no claims and 
a single claim are

Pr 0 0.003 0.997 0.9138,

Pr 1 0.003 0.997 0.0825.

30 30 0
0 30

30 30 1
1 29

{ }

{ }

( ) ( )

( ) ( )

= = =

= = =

N C

N C

As a result, the probability of two or more claims is 1 - 0.9138 - 0.0825 = 0.0037. 
The expected number of claims for the 30-day period is mp = (30)(0.003) = 0.0900.

Probabilities of claims occurring during a full year can be computed in a similar way. 
For example, the probability of two claims in a 365-day year is

Pr 2 0.003 0.997 0.2009,365 365 2
2 363{ } ( ) ( )= = =N C

and the expected number of claims for the year is (365)(0.003) = 1.0950. n

Example 3.1 indicates how to apply the binomial model to a policy term of reason-
able length—one year, for example. In that example, this was accomplished by partition-
ing the policy term into disjoint short time intervals, during each of which at most one 
claim is possible, thereby dividing the period into discrete units with separate but identical 
probability structures. However, such a discrete-time approach is conceptually at variance 
with the intuitive view that a claim process should be a continuous one. It seems desirable, 
therefore, to find a continuous-time model for the process.

Passage from a discrete model to a continuous one always requires some type of 
limit procedure. To accomplish this in the case of the binomial model, first partition the 
policy period into m short subintervals of equal length, each with a Bernoulli probability 
structure specified by B1, for which p is the probability of a single claim. The total number 
of claims in all these subintervals then has the binomial probability function (3.1) with 
parameters (m, p).

Next, we allow the number of subintervals to become infinite in such a way that 
the expected number of claims for the total policy period remains unchanged. That is, as 
m → ∞ parameters m and p must always satisfy mp = l for some positive constant l. 
This implies that the probability p of a claim in each subinterval approaches zero as the 
number of subintervals becomes arbitrarily large—or equivalently, as the subinterval 
length becomes arbitrarily small. Then, for each nonnegative integer n, the probability 
of obtaining n claims is
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The final step is a consequence of a familiar limit theorem from elementary calculus: 
limm→∞ (1 + x/m)m = ex.

Formula (3.2) expressing lne -l/n! as the limit of binomial probabilities was first  
derived by Siméon-Denis Poisson (1781–1840), French mathematician and mathematical 
physicist extraordinaire.28 The resulting probability distribution with probabilities given 
by (3.2) subsequently came to be known as a Poisson distribution.

Poisson distributions have been applied to a diverse range of random events occurring 
throughout some time interval (or, alternatively, some type of spatial configuration). 
The number of alpha particles emitted from a radioactive source during a fixed time 
period, the number of defective products in a lot of manufactured items, the number 
of calls arriving at a telephone switchboard during an hour, the number of cells 
visible under a microscope in a certain region, the number of hurricanes striking the 
North American Atlantic coast in a single year—all have been successfully modeled 
as Poisson processes.

Because of results like (3.2) the Poisson distribution has also come to play a prominent 
role in modeling claim processes in property/casualty insurance. In the next section, we 
derive this probability distribution directly from a set of general assumptions.

3.2. Poisson Claim Processes
Experience has shown that the claim process in property/casualty insurance is often 

a Poisson process. This means that claims occur over time in accordance with the 
following set of assumptions, sometimes referred to as the Poisson postulates. In 
statements {A1, A2, A3, A4, A5}, Pn(t) is the probability that n claims occur during a time 
interval of length t, 0 ≤ t < ∞.

A1  The numbers of claims29 occurring in disjoint time intervals are independent 
random variables.

A2  The probability structure is time-invariant—that is, for all a ≥ 0 the probability 
of n claims occurring in the interval between a and a + t equals Pn(t). Thus, 
the distribution of the number of claims occurring during an interval depends 
on the length of the interval but not on the endpoints.

28 Poisson’s derivation appeared in his 1837 treatise on probability, Recherchés sur la probabilité des jugements en matière 
criminelle et en matière civile [Research on the probability of criminal and civil verdicts]. Poisson published more than 
300 papers on mathematics, including the fields of analysis and probability, and on a wide range of topics in physics. 
His memorable adage, “Life is good for only two things, discovering mathematics and teaching mathematics,” is 
undoubtedly best appreciated by other mathematicians.

29 In this special formulation of the Poisson postulates the underlying random event is the occurrence of an insurance 
claim during a specified time interval. However, as indicated above, the general Poisson process can be applied to 
a variety of random events occurring in time or space.



Casualty Actuarial Society 81

Distributions for Actuaries

A3  The probability of a single claim occurring in a short interval of length h, h > 0, 
is approximately proportional to h:

P1(h) = lh + o(h) for some positive constant l.30

Parameter l is the time density of the incidence of claims—the average 
number of claims per unit of time.

A4  The probability of more than one claim occurring in a short interval of length h 
is approximately zero: S∞

n=2 Pn(h) = o(h).
A5  In an interval of length t = 0, P0(0) = 1 and Pn(0) = 0 for n > 0.

Although these assumptions are often satisfied in practice, there are situations 
involving the incidence of insurance claims in which one or more of them fails to 
hold in a significant way. For example, A2 and A3 imply that the density l of claims 
per unit time remains constant over time, an assumption usually valid in the short 
run but which might fail in the long run. The assumption of independence in A1 
fails whenever the occurrence of a claim alters the probability of later claims. This 
phenomenon of claim contagion will be explored later, in Section 3.4. Finally, A4 is 
incompatible with the occurrence of multiple simultaneous claims, as is the case when 
two or more individuals are injured in the same accident. Such a violation of postulate A4 
can be avoided by always defining “claim” to refer to a single insured event, without regard 
to the number of claimants involved.

A general formula for the Poisson probability function Pn(t) can be derived directly 
from postulates {A1, A2, A3, A4, A5}. First, observe that A3 and A4 together imply that 
the probability P0(h) of zero claims in a short interval of positive length h is given by

1 1 .0
1

∑( ) ( ) ( )= − = − λ +
=

∞
P h P h h o hn

n

Moreover, the independence and time-invariance properties A1 and A2 imply that the 
probability of zero claims in the interval (0, t + h) can be expressed as

.0 0 0( ) ( ) ( )+ =P t h P t P h

Extending this last equation to the case of n claims, where n ≥ 1, we obtain

. . . , (3.3)0 1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + + +−P t h P t P h P t P h P t P hn n n n

verification of which is requested in Problem 3.5. Finally, combining the last three 
equations with postulate A4 produces

1 ,

1 ( ) , 1.

0 0

1 2∑

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

+ = − λ +

+ = − λ + + λ + + ≥− −=

P t h P t h o h

P t h P t h o h P t h o h P t o h nn n n n ii
n

30 The expression o(h), pronounced “little oh of h,” denotes a function of h that approaches 0 faster than h, so that 
A = o(h) means limh→0A/h = 0. If A = o(h) and B = o(h), then A + B = o(h) also.
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These equations can now be used to obtain appropriate expressions for the derivative, 
with respect to t, of probability function Pn(t).

The case n = 0 yields the differential equation

lim lim .0
0

0 0
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0
0

( )( ) ( ) ( ) ( ) ( ) ( )=
+ −

=
−λ +

= −λ
→ →

d
dt
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The initial condition P0(0) = 1 supplied by A5 gives rise to the unique solution P0(t) = e-lt. 
Similarly, the derivative in the case n ≥ 1 is
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When n = 1 the solution of this differential equation is P1(t) = lte-lt. Continuing 
inductively for n = 2, 3, 4, . . . yields the general Poisson probability function

!
, 0,1, 2, . . . . (3.4)( )( ) = λ =

−λ

P t
t e
n

nn

n t

Example 3.2.  The claim process for a certain liability policy is Poisson, and 
claims occur at a constant rate of 0.04 per year. If the policy term is one year, then 
formula (3.4) with t = 1 and l = 0.04 applies. The probabilities for zero, one, and two 
claims against the policy are, respectively,

1 0.9608,

1 0.04 0.0384,

1
0.04

2!
0.0008.

0
0.04

1
0.04

2

2 0.04

( )
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−

−

P e
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P
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On the other hand, to obtain probabilities for claims arising during an 18-month 
period put t = 1.5 and l = 0.04 into the same formula. Thus

1.5 0.9418,

1.5 0.06 0.0565,

1.5
0.06

2!
0.0017.

0
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1
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2

2 0.06

( )

( ) ( )

( ) ( )

= =

= =

= =

−

−

−

P e

P e

P
e

 
n

In property/casualty insurance applications the claim-count random variable of 
greatest interest is the number of claims occurring during a fixed time period, usually 
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a single policy term. It is appropriate then to take the basic time unit in the Poisson 
process to be the length of this fixed period and adjust the parameter l to represent 
the claim density during the selected period. We denote the resulting random variable 
by N and use the customary f (n) to denote the associated probability mass function, 
which has the simplified form

!
, 0,1, 2, . . . . (3.5)( ) = λ =

−λ

f n
e
n

n
n

The moment-generating function M(t) for claim-count N with distribution (3.5) 
exists for all real t:

! !
exp . (3.6)
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This function has derivatives of all orders, and so all moments of N can be obtained 
from the successive derivatives of M(t) evaluated at t = 0:
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It is not surprising, given the role that l plays in the Poisson postulates, that E [N ] = l. 
In addition, the variance and skewness are

, (3.7)2 2 2 2[ ][ ] [ ]( )= − = λ + λ − λ = λVar N E N E N

1
. (3.8)

3

3 2 3 2
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=
λ
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E N E N

Var N

Poisson random variables have a distinctive property that serves to characterize 
this distributional family—the mean and variance are equal, each identical to the 
distribution parameter l.

The next example illustrates one way to fit a Poisson 
distribution to a set of claim data.

Example 3.3.  During a single policy period of one 
year a certain portfolio of 1,000 identical insurance poli-
cies generated 150 claims. These data have been summa-
rized in the table by the number of claims per policy per 
year. We wish to find a Poisson distribution for the claim-
count variable N for an individual policy selected from the 
portfolio.

# Claims # Policies

 0 868

 1 118

 2 11

 3 2

 4 1

≥5 0

Total 1,000
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To do so, one can interpret these data as observations for a sample of size 1,000 drawn  
from a population of policies with identical Poisson claim-count distributions and 
unknown Poisson parameter l. The method-of-moments estimate of parameter l is 
just the sample average: l̂ = 150/1,000 = 0.15 claims per policy per year. It is also the 
case that l̂ is a maximum-likelihood estimator of the parameter—see Problem 3.7.

In addition, the distribution based on l̂  can be interpreted as a parametric distribution 
fit to the empirical distribution of the portfolio data. Table 3.1 compares the sample 
distribution to that implied by the Poisson formula f (n) = (0.15)ne-0.15/n!.

Visual inspection of the tabulated values shows that the Poisson probabilities are 
close to the sample values. However, one can test the goodness of fit in a more formal 
way, as with the Pearson chi-square test. First compute the Pearson statistic relative 
to the three cells containing policies with 0, 1, and 2 or more claims, respectively—
grouping in this way avoids creating cells with frequencies that are too small. Here nk 
denotes the observed policy frequency in the kth cell. The expected cell frequency fk(l̂) 
predicted by the Poisson (l̂) distribution is fk(l̂) = 1,000p̂k, where p̂k is the Poisson 
(l̂) probability of being in the kth cell. Then

ˆ

ˆ
868 860.7

860.7
118 129.1

129.1
14 10.2

10.2
2.43.2

2

1

3 2 2 2

∑ ( )( )
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φ λ
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+
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+
−

=
=

nk k

kk

The c2 statistic is approximately chi-square distributed, with degrees of freedom

. . # # 1 3 1 1 1.= − − = − − =d f cell s estimated parameters

The 95th percentile of the chi-square distribution with d.f. = 1 is c2
0.95(1) = 3.84. Because  

c2 = 2.43 < c2
0.95(1), we conclude at the 5% significance level that the Poisson distribution 

is an acceptable model for these data. n

Table 3.1.  Claim-Count Distributions [Example 3.3]

Pr{N = n}

# Claims n Sample Poisson (l = 0.15)

 0 0.8680 0.8607

 1 0.1180 0.1291

 2 0.0110 0.0097

 3 0.0020 0.0005

 4 0.0010 0.0000

≥5 0.0000 0.0000

Mean 0.1500 0.1500

Variance 0.1735 0.1500
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3.3. Parameter Uncertainty
It is sometimes the case that an insurance claim process is not strictly Poisson 

because the density parameter l fails to be uniform throughout a population or 
is itself subject to some type of random fluctuation. For example, in a portfolio 
of insurance policies for which the random variable N is Poisson-distributed, 
the expected number of claims—the Poisson parameter l—might vary from one 
insured to another. What is the distribution of N for a policy selected at random 
from such a population? Or consider the situation in which the distribution of the 
number of wind-damage claims depends on a parameter l that varies with random 
changes in some key weather variables. How should one model the distribution of 
N in such a case?

Answers to questions like these can be obtained by means of a mixture of Poisson 
distributions, in which the parameter l is itself taken to be a random variable. The 
resulting variable N having such a mixed distribution is called a model of parameter 
uncertainty.

To model parameter uncertainty in the Poisson case, begin by assuming that a 
given population of policies has a finite number m of parameter states {Si}, where  
1 ≤ i ≤ m. In each state Si the claim process is Poisson with claim density ai and 
Pr{being in state Si} = pi, where p1 + p2 + . . . + pm = 1. Now let l denote a random 
variable with the set of values {ai} and the associated discrete probability distribution, 
for which E [l] = Sm

i=1aipi. In this context, variable l is called the mixing parameter 
for the distribution of N.

For example, consider a portfolio of policies comprised of m disjoint subgroups, 
where the claim-count distribution in the i th subgroup is Poisson with mean ai. The 
probability pi of obtaining a single policy from the i th subgroup in a random selection 
from this mixed portfolio is just the fraction of the total number of portfolio policies 
that belong to the i th subgroup. The probability function of the claim-count variable N  
for such a randomly selected policy is then specified for each n = 0, 1, 2, . . . by the 
conditional probability formula

Pr Pr
1
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The expected value of this mixed distribution turns out to be, quite reasonably, the 
probability-weighted average of the {ai}, that is, E[l]:

Pr Pr . (3.10)
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The second moment is obtained in a similar way:
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As a result, one can express Var[N ] in terms of the mean and variance of l:

. (3.11)2

1

2∑[ ] [ ] [ ] [ ]( )[ ] = λ + α − λ = λ + λ
=

Var N E p E E Vari
i

m

i

It is evident from (3.10) and (3.11) that when N has a mixed Poisson distribution, 
Var[N ] = E[N ] if, and only if, Var[l] = 0 (in which case the variable l is constant). 
Therefore, a mixture of distinct Poisson distributions—for which Var[l] > 0—cannot 
itself be a Poisson distribution.

Example 3.4.  A portfolio of 100 insurance 
policies for which the claim counts are Poisson-
distributed produces an overall average of 0.51 
claims per policy per year. However, this port folio 
consists of four policy subgroups, representing 
four parameter states, with expected claim counts 
ranging from 0.10 to 1.40, as shown in the table. 
Also tabulated are the numbers of policies in each 
subgroup. Con sequently, the distribution of N for a policy selected at random from 
this portfolio has a mixed Poisson distribution with probabilities

0.10 0.2 0.35 0.4 0.70 0.3 1.40 0.1
!

.
0.10 0.35 0.70 1.40

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )=
+ + +− − − −

f n
e e e e

nN

n n n n

As expected, E[N ] = 0.51, and the variance exceeds the mean: Var[N ] = 0.6439 > 
E[N ]. Probabilities for N are shown in Table 3.2, where they are compared with those 
of the single Poisson distribution for which l = 0.51.

State Density ai # Policies

S1 0.10  20

S2 0.35  40

S3 0.70  30

S4 1.40  10

Total 0.51 100

Table 3.2.  Claim-Count Distributions [Example 3.4]

Pr{N = n}

# Claims n Mixed Poisson Poisson (l = 0.51)

 0 0.6365 0.6005

 1 0.2556 0.3063

 2 0.0788 0.0781

 3 0.0218 0.0133

 4 0.0056 0.0017

 5 0.0013 0.0002

 6 0.0003 0.0000

≥7 0.0001 0.0000

Mean 0.5100 0.5100

Variance 0.6439 0.5100
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This example effectively illustrates how mixing several distinct Poisson distributions 
serves to increase the dispersion of the claim-count distribution over what would be 
expected in the case of a single Poisson distribution. n

The discrete conditional probability formula (3.9) is readily generalized to the case 
in which the variable l has a continuous density function f l(u) on the interval 0 < u < ∞  
for which ∫

∞
0 f l(u)du = 1. Thus, the continuous analog of (3.9) for claim counts n = 0, 

1, 2, . . . is given by the integral formula

Pr
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Formulas (3.10) and (3.11) for the mean and variance of N also hold in the 
continuous case. For example, in the following continuous analog of (3.10) integration 
over the semi-infinite interval 0 < u < ∞ replaces summation over the finite set of 
parameter values {ai}:
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As before, the second moment is E[N 2] = E[l] + E[l2], so that

. (3.14)[ ] [ ] [ ][ ] [ ]= λ + λ = + λVar N E Var E N Var

Moreover,

3
. (3.15)

3

3 2
( )[ ] [ ] [ ]

[ ] [ ]( )[ ] =
λ + λ + λ − λ 

λ + λ
Sk N

E Var E E
E Var

Example 3.5.  Parameter l for a mixed Poisson distribution has an exponen-
tial density function: f l(u) = 4e-4u, 0 < u < ∞. Consequently, E[l] = 0.25 and Var[l] = 
0.0625. The claim-count probabilities for the mixed distribution follow from (3.12):

4
!

4
!

1 5 0.8 0.2 , 0,1, 2, . . . .5
0

1∫( ) ( ) ( )( )= = Γ + = =( )−∞ − +f n
n

u e du
n

n nN
n u n n

This distribution is an instance of the geometric distribution—see Problem 3.21. 
Table 3.3 displays probabilities for the distribution, again compared to those of the 
related, but less-dispersed single Poisson distribution. n

31 By using the Riemann–Stieltjes integral, formulas (3.9) and (3.12) can both be expressed by the single integral 
formula fN(n) = (1/n!) ∫ 0

∞une-udFl(u), where the function Fl(u) is the cumulative distribution function for the 
variable mixing parameter l.
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The mixed Poisson distribution provides a powerful alternative to the single Poisson 
distribution in modeling insurance claim data. However, the mixed distribution approach 
does require that one must have some a priori knowledge of the distribution of the vari-
able parameter l. In cases where claim data can reasonably be partitioned into a finite 
number of homogenous subgroups, as in Example 3.4, there is usually no difficulty 
in constructing the mixed distribution. On the other hand, if one is presented with a 
sample of claim data for which the mean and variance are quite different, then finding 
an appropriate parametric distribution in the absence of additional information about 
the population is more challenging. A common solution to this problem, which involves 
a special family of distributions for the variable l, is the topic of the next section.

3.4. Negative Binomial Distributions
It is often the case that claim-count data yield a sample distribution with markedly 

different mean and variance and that very little is known about the actual population 
distribution. Nevertheless, the actuary can be faced with the problem of fitting a 
parametric distribution to such data in order to model the claim-count probabilities of 
a policy selected at random from the underlying population.

In situations like this it has proven useful to suppose that the population has a mixed 
Poisson distribution and, in the absence of any other information, to assume a particular 
distribution for the variable parameter l. Gamma distributions are almost always used 
for this purpose because of the useful analytic form of the resulting mixed distribution.

We start by assuming that the mixing parameter l has a gamma distribution with 
positive parameters a and b = n/a and the resulting density function

( ) ( )
( )

=
α ν
Γ α

< < ∞( )
λ

α
α− − α νf u u e uu, 0 . (3.16)1

Table 3.3.  Claim-Count Distributions [Example 3.5]

Pr{N = n}

# Claims n Mixed Poisson Poisson (l = 0.25)

 0 0.8000 0.7788

 1 0.1600 0.1947

 2 0.0320 0.0243

 3 0.0064 0.0020

 4 0.0013 0.0001

 5 0.0003 0.0000

≥6 0.0001 0.0000

Mean 0.2500 0.2500

Variance 0.3125 0.2500
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This special choice of a and b is contrived to yield convenient forms for the means 
and variances of l and N. In particular, E[l] = n and Var[l] = n2/a. The probability 
function for N is then obtained by substituting (3.16) into formula (3.12) for each 
n = 0, 1, 2, . . . :
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The mean, variance, and skewness of N are thus given by formulas (3.13), (3.14), 
and (3.15):
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The mixed probability distribution defined by (3.17) is a member of the negative 
binomial distribution family. Such a distribution has a probability function, with 
parameters r and q, of the general form

1
1 0, 0 1 , 0,1, 2, . . . . (3.19)( ) ( )( ) =
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The leading coefficient in this function is an instance of the general binomial coefficient, 
defined for all real x and n = 0, 1, 2, 3, . . . by
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Putting r = a and q = a/(n + a) into (3.19) and then applying (3.20) shows that 
probability function (3.17) does indeed belong to the negative binomial family.
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The general binomial coefficient first arose in connection with Isaac Newton’s 
binomial series, a convergent series expansion valid for all real s:

1 , 1 1. (3.21)
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binomial coefficient mCn of combinatorial analysis:
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Moreover, whenever s = m series (3.21) reduces to the familiar finite sum of the 
elementary Binomial Theorem.

The negative binomial distribution is so called because the probabilities in (3.19) 
are fixed multiples of terms from a convergent binomial series with negative exponent. 
This becomes evident after using the identity

1
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to restate probability function (3.19) as
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Verification of S∞
n=0 f (n) = 1 follows immediately from (3.21) with x = q - 1 and 

negative exponent s = -r :
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The negative binomial moment-generating function is obtained in a similar way:

1 1 1 , log 1 . (3.24)
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Returning to the mixed distribution (3.17), one can see that for a given mean n 
the size of Var[N ] relative to E[N ] is determined by parameter a. The larger the value 
of a, the more nearly equal are Var[N ] and E[N ] and conversely. One can therefore 
interpret 1/a as a measure of parameter uncertainty—of how significantly the mixed 
distribution deviates from a single Poisson.
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Not surprisingly, the Poisson distribution is a limiting case—that is, for fixed mean n 
the negative binomial distribution (3.17) tends to a Poisson distribution as a → ∞. 
This can be easily demonstrated using the moment-generating function. The generating 
function of distribution (3.17) is

1 1 , log ,( ) ( )( ) ( )= − ν
α

−





−∞ < < ν + α ν
−α

M t e tt

obtained by substituting r = a and q = a/(n + a) into (3.24). Passing to the limit as  
a → ∞ while holding n constant yields

lim lim 1 1 exp 1 , (3.25)( )( ) ( )( ) = − ν
α

−





= ν −
α→∞ α→∞

−α

M t e et t

the moment-generating function of a Poisson random variable with mean n. The 
conclusion follows from the uniqueness property of the generating function.

One of the earliest uses of the negative binomial as a mixed Poisson distribution 
was in modeling the concept of accident proneness. The number of accidents incurred by 
individual members of a population group was assumed to be Poisson-distributed, but 
with different parameters—the more “accident-prone” members having larger Poisson 
parameters and those less so having smaller expected values. In the realm of property/
casualty insurance, actuaries began to apply the negative binomial distribution to 
automobile liability in the 1950s and 1960s.32 Since then, the distribution has enjoyed 
a wide range of applicability.

Example 3.6.  Claim-count data from a sample of 
5,000 automobile liability policies are displayed in the table. 
Here the mean 0.1238 and variance 0.130074 are unequal. 
This inequality suggests that the policies were possibly drawn 
not from a homogeneous population of Poisson-distributed 
policies but from a mix of policies with different Poisson 
distributions.

To obtain the distribution of claim counts for a single 
policy selected at random from this population, we shall 
assume a negative binomial distribution of the form (3.17) 
and search for appropriate parameter estimates (â, n̂). 
Derivation of maximum-likelihood parameter estimates for 
the negative binomial distribution involves some difficult, but not insurmountable, 
complexities,33 whereas the method-of-moments estimates are easily calculated. Opting 

# Claims # Policies

 0 4,429

 1 528

 2 39

 3 3

 4 1

≥5 0

Total 5,000

32 For an example of such early applications of the negative binomial distribution in auto insurance see Hewitt [6].
33 For example, refer to Simon [21]. In most cases the maximum-likelihood equations are solvable only by iteration, 

but Simon observes that the method “will usually produce answers very similar to the method-of-moments” 
estimates.
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for the latter approach, we set n̂ = 0.1238 and then solve the variance formula Var = 
n̂ + n̂2/â = 0.130074 for â:

ˆ 0.1238
0.130074 0.1238

2.44285.
2( )α =

−
=

Probabilities calculated from the resulting mass function

2.44285
! 2.44285

0.951766 0.048234 , 0,1, 2, . . . ,( ) ( )
( )

( )( )=
Γ +

Γ
=f n

n
n

nn

are displayed in Table 3.4. The chi-square statistic based on the four cells corresponding 
to 0, 1, 2, and 3 or more claims is c2 = 0.7753. The degrees-of-freedom parameter 
is d.f. = 4 - 2 - 1 = 1, so the rejection limit for a test at the 5% significance level is  
c2

0.95(1) = 3.84. Because c2 < 3.84, one can conclude that the negative binomial distribution 
is an acceptable model.

Recall that a negative binomial distribution can be interpreted as a mixture of 
Poisson distributions with a variable gamma-distributed mixing parameter l. In this 
case an implied gamma density function for the variable mixing parameter l can be 
obtained by putting â and n̂ into formula (3.16):

1141.264 , 0 .1.44285 19.7322( ) ( )= < < ∞λ
−f u u e uu

Here E[l] = 0.1238 = n and Var[l] = 0.006274. A graph of this density function y = f l(u) 
is shown in Figure 3.1. n

3.5. Claim Contagion
One of the assumptions of the Poisson claim-count process, that of independence 

of successive claims, is not always satisfied. This happens whenever the occurrence of a 
claim changes the probability of subsequent claims. For example, a successful products 

Table 3.4.  Negative Binomial Distribution [Example 3.6]

Pr{n claims}

# Claims n Sample Negative binomial

 0 0.8858 0.8862

 1 0.1056 0.1044

 2 0.0078 0.0087

 3 0.0006 0.0006

 4 0.0002 0.0000

≥5 0.0000 0.0000
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liability claim against a manufacturer often increases the likelihood that similar claims will 
be brought in the future—a classic example of claim contagion. A standard approach to 
modeling such a contagion process is based on an urn model proposed by the Hungarian 
mathematician George Pólya (1887–1985). Pólya models have since been used to model 
a variety of contamination processes, including the spread of contagious diseases.34

In the Pólya model, an urn initially contains w white balls and b black balls. 
A trial consists of drawing one ball at random, noting its color, and then replacing it 
together with c additional balls of the same color. Obtaining a white ball on the first 
trial therefore increases the probability of selecting a white ball on the next trial. The 
probability function for the number Wm of white balls obtained in m trials, is derived 
by conventional combinatorial methods:

Pr , , ; , 0,1, . . . , . (3.26)0

1

0

1

0

1
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∏
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A distribution with probabilities Pn(w, b, c; m) is known as a Pólya distribution.35 
The ratio g = c/w is customarily called the degree of contagion. When there is no 
contagion—that is, when c = g = 0—the Pólya distribution is identical to the simpler 
binomial distribution for which the probability of drawing a white ball remains 
constant throughout successive trials.

0

1

2

3

4

5

6

0.0 0.2 0.4 u

y

y  = f λ(u )

ν

Figure 3.1.  Implied Gamma Density Function  
for Mixing Parameter l [Example 3.6]

34 Pólya’s original contamination model first appeared in a 1923 paper by Pólya and F. Eggenberger “Über die Statistik 
der vergetteter Vorgänge,” Zeitschrift für Angewandte Mathematik und Mechanik, III, 279–289]. The present 
formulation is based on that presented by William Feller in his classic probability textbook: Feller [4], pp. 118–121, 
142–143. Urn models have been used to model probability distributions ever since they were introduced by Swiss 
mathematician Jacob Bernoulli to describe the two-outcome experiment underlying the random variable now 
known as a Bernoulli variable.

35 Although history and logic dictate that (3.26) should be called the Pólya distribution, some authors apply that 
name instead to the associated negative binomial distribution (3.27).



94 Casualty Actuarial Society

Distributions for Actuaries

To derive the moments of the distribution for Wm, let p denote the probability of 
drawing a white ball in the first Pólya trial: p = w/(w + b). Then

, , ; , , ; 1

, , ; 1
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Similar reasoning yields
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Var W mp m
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It is instructive to compare these formulas to the respective mean mp and variance 
mp(1 - p) of the related binomial distribution. Clearly, the two distributions have 
identical means, each equal to mp. The Pólya distribution, as one would reasonably 
expect, has the larger variance: Var[Wm] ≥ mp(1 - p).

Example 3.7.  Pólya trials are conducted with an urn that initially contains w = 10 
white balls and b = 5 black balls. Corresponding to c = 2, the degree of contagion is  
g = 2/10. The initial probability is therefore p = E[W1] = 10/15. Various probabilities 
for drawing white balls in the first three trials are given by

Pr 1
10
15

0.6667,

Pr 2 1
12
17

0.7059,

Pr 2 1
10
17

0. 5882,

Pr 2
12
17

10
15

10
17

5
15

0. 6667,

Pr 3 1 & 2
14
19

0.7368,

Pr 3 1 & 2
10
19

0. 5263.

i i

{ }

{ }

{ }

{ }

{ }

{ }

= =

= =

= =

= + =

= =

= =

white on st trial

white on nd trial white on st trial

white on nd trial black on st trial

white on nd trial

white on rd trial white on st nd trials

white on rd trial black on st nd trials
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The probabilities Pn(10,5,2;6) for obtaining n white balls in six successive Pólya trials 
are shown in Table 3.5 and compared with those for the related binomial distribution, 
for which c = 0. The expected count for each distribution is mp = 4, but the Pólya 
distribution with positive contagion has the larger variance, a fact clearly evident in 
Figure 3.2. n

To interpret the Pólya urn model as a claim process, identify the draw of a white ball 
in a Pólya trial with the occurrence of a claim. However, contagion in the urn model 
occurs at discrete times, after each draw from the urn. Modeling a time-continuous claim 
process, this time with contagion, again requires some type of limit process.

We proceed as in Section 3.1, where a Poisson distribution arose as the limit of a 
sequence of binomial distributions. Again, partition the basic time period—the policy 

Table 3.5.  Pólya and Binomial Probabilities [Example 3.7]

Pr{n white balls in 6 trials}

# White Balls n Pólya (c = 2) Binomial (c = 0)

0 0.0115 0.0014

1 0.0462 0.0165

2 0.1066 0.0823

3 0.1809 0.2195

4 0.2412 0.3292

5 0.2481 0.2634

6 0.1654 0.0878

Mean 4.0000 4.0000

Variance 2.1176 1.3333

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6

Pólya Binomial

Figure 3.2.  Pólya and Binomial Distributions 
[Example 3.7]
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term—into m subintervals of equal length and perform one Pólya trial per subinterval. 
Then let m → ∞ in such a way that the expected number of white balls (that is, claims) 
in the time period remains constant: mp = n > 0. Passage to the limit is carried out 
in such a way that the degree of contagion g remains constant, as well. As before, the 
probability structure in each subinterval changes with m so that p → 0 as m → ∞. 
Whenever g > 0 the limit of the Pólya probability function (3.26) is

lim ( , , ; ) 1 1 1
1 1

, 0,1, 2, . . . . (3.27)
1/
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Comparison to formula (3.19), after setting r = 1/g and q = 1/(1 + gn), reveals the 
limiting distribution to be negative binomial with mean n and variance n + gn2.

Thus we have observed that two distinct situations—claim contagion in this section 
and parameter uncertainty with a gamma-distributed l discussed in Section 3.4—give 
rise to the same distribution family for the claim-count variable N. In fact, the negative 
binomial distribution in (3.27), with mean n and contagion parameter g, is identical 
to the negative binomial distribution (3.17) with mean n and uncertainty parameter 
a = 1/g. It is not surprising, then, that the negative binomial distribution remains the 
principal alternative to the Poisson for modeling the distribution of property/casualty 
claim counts.

We conclude this section with an outline of the proof of limit formula (3.27) in 
which the negative binomial is obtained as the limiting case of the Pólya distribution 
for a contagion model.

Proof of (3.27): Start by expressing the Pólya probability function in terms of the 
general binomial coefficients, where g = c/w and p = w/(w + b):
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An application of the identity in Problem 3.27(b) yields
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To complete the proof, we evaluate the limits of quotients A and B in turn.
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First, apply to quotient A in equation (3.28) formula (3.20) defining the general 
binomial coefficient as a ratio of gamma function expressions. This yields
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The limit of A is based on the asymptotic relation G(x) ~ 2πe-xx x-1/2.36 Applying this to  
the gamma functions in the last equation, substituting Q = gpm - gpn, and observing that 
factors involving 2πe-x cancel, one obtains
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An application of the limit formulas
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For quotient B in equation (3.28) we have
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36 This relation is a generalization of Stirling’s approximation formula: n! ~ 2πn(n/e)n, n a positive integer; see 
Feller [4], pp. 52–54, 66. f (x) ~ g(x) means that limx→∞ f (x)/g(x) = 1. Therefore, f (x) ~ g(x) and limx→∞ g(x) = L 
together imply that limx→∞ f (x) = L.
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This completes the proof. n

3.6. Portfolio Claims
Up to now our focus has been on modeling the claim process for a single policy. However, 

it is also important to find probability models that describe the aggregate behavior of entire 
portfolios of similar policies. In a variety of situations it is possible to infer the distribution 
of the portfolio claim count from those of the individual component policies.

For example, if the claim process for each policy in a portfolio of policies is Poisson, 
what can be said about the distribution of N, the total number of portfolio claims that 
occur during a policy period? The answer lies in the reproductive property of Poisson 
variables—that is, the sum of mutually independent Poisson random variables is also 
Poisson-distributed. This fact follows from an argument based on the moment-generating 
function.

Let N = N1 + N2 + . . . + Nm be the sum of m independent Poisson random variables. 
If E[Ni] = li, where 1 ≤ i ≤ m, then
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the moment-generating function for a Poisson variable with parameter S m
i=1li. The 

uniqueness property of the generating function implies that N must be Poisson-
distributed with mean S m

i=1li.
In the special case that each policy in a portfolio of m policies has the same Poisson 

distribution with expected value l, it is evident that the portfolio claim-count variable 
N has a Poisson distribution with parameter ml.

One can similarly show by means of the moment-generating function that the sum 
N = N1 + N2 + . . . + Nm of mutually independent negative binomial variables, identically 
distributed as in (3.17) with parameters (a, n), has a negative binomial distribution 
with parameters (ma, mn):
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On the other hand, the sum N does not necessarily have a negative binomial 
distribution when the {Ni} have different a and n parameters. Consequently, the 
sum of independent claim-count random variables, each with a contagion structure 
as described in Section 3.5, is not always itself a negative binomial contagion model. 
Nevertheless, it is often desirable to be able to treat such a distribution as if it were 
such a model. One can do this by defining the contagion parameter g for an arbitrary 
claim-count variable N in a way that is consistent with the negative binomial case, 
namely,

[ ] [ ]
[ ]( )

γ =
−Var N E N

E N
, (3.29)2

obtained by rearranging the negative binomial formula

.2[ ] [ ] [ ]( )= + γVar N E N E N

Formula (3.29) implies that the contagion parameter for a Poisson random variable is 
g = 0, as one would reasonably expect.

Example 3.8.  Consider a group of 100 identical policies, each with a Poisson 
claim process and an expected annual claim count of 0.035 per policy. What is the 
probability that these policies in aggregate generate five or more claims during a 
single year?

The portfolio claim-count variable N is the sum of identically distributed Poisson 
variables. Under the reasonable assumption that the claim processes associated with 
these policies are independent, the reproductive property of the Poisson process implies 
that N also has a Poisson distribution, with parameter l = (100)(0.035) = 3.50. 
Therefore,

Pr 5 1 1 3.50
1
2

3.50
1
6

3.50
1

24
3.50 0.2746.3.50 2 3 4( ) ( ) ( ){ }≥ = − + + + +





=−N e  n

Example 3.9.  A portfolio contains 20 independent, identically-distributed policies 
subject to claim contagion. Each policy has an expected claim count of n = 0.150 per 
year and contagion parameter g = 0.400. Thus the distribution of the portfolio claim 
count N is negative binomial, with

20 0.150 3.000,

20 0.150 0.400 20 0.150 3.180.2

[ ]

[ ]
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( )( ) ( )( )( )

= =

= + =

E N

Var N

Formula (3.29) implies a portfolio contagion parameter of

3.180 3.000
3.000

0.020.2( )
γ = − =  n
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3.7. Problems
3.1 Random variable N has a binomial (m, p) distribution.
 (a) Use MN(t) to derive the mean, variance, and skewness for N.
 (b) Evaluate lim

→∞
=λ

m
mp

 MN(t), where l > 0. What conclusion can be drawn?

3.2 Verify that the Poisson probability function (3.4) satisfies S ∞
n=0Pn(t) = 1.

3.3 Assume that claim-count variable N has probability function f (n) = lne-l/n! 
What are the values of l and Pr{N ≤ 3} in each case?

 (a) E [N ] = 3.20. (b) Var[N ] = 2.50.
 (c) Sk[N ] = 0.40. (d ) f (1) = f (2).
 (e) E [e tN ] = e4e t/e4. ( f ) f (0) = 0.80.

3.4 The policy claim count for a liability line of insurance is Poisson-distributed with 
constant density of 0.10 claims per policy per year. Compute the probability 
that a single policy has exactly two claims when the policy term is:

 (a) 6 months. (b) 15 months. (c) 24 months.

3.5 Use mathematical induction to verify equation (3.3) for the decomposition of 
Pn(t + h) in the derivation of the Poisson probability function.

3.6 Prove that the Poisson probability function f (n) = ln e-l/n! has a maximum 
value at n = vlb, where vxb denotes the greatest integer function. [Hint: show 
that f satisfies the recursion relation f (n) = (l/n) f (n - 1) for n = 1, 2, 3, . . . .]

3.7 Let ni be a set of observations for a random sample of claim counts N1,  
N2, . . . , Nm drawn from a Poisson-distributed population with unknown 

 parameter l. Prove that the sample mean 
1

1 1∑= =M
m

nii
m  is a maximum-likelihood 

estimator for l.

3.8 Show that the cumulative distribution function F (n) for a Poisson (l) random 
variable can be expressed at each nonnegative integer n by

∑( ) ( )= λ = −
Γ λ +−λ

= !
1

, 1
!

.
0

F n
e
k

n
n

k

k

n

3.9 The distribution of policy-year claims in a portfolio 
of 6,000 identical policies is summarized in the 
table.

 (a)  Fit a Poisson model to these data to obtain a 
probability function for the claim-count variable N 
for a single policy selected at random from this 
population.

 (b)  Check the goodness of fit of the resulting distribu-
tion with a chi-square test.

# Claims # Policies

 0 5,220

 1 722

 2 52

 3 4

 4 2

≥5 0

Total 6,000
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3.10 Derive these formulas for the moments of a random variable N with a mixed-
Poisson distribution directly from probability function (3.12), thus verifying 
(3.14) and (3.15).

 (a) E [N 2] = E [l] + E [l2].    (b) E [N 3] = E [l] + 3E [l2] + E [l3].
 (c) E [(N - E [N ])3] = E [l] + 3Var[l] + E [(l - E [l])3].

3.11 Assume that N has a mixed-Poisson distribution for which the mixing parameter 
l has a gamma distribution with (a, b) = (2, 1). Compute:

 (a) E [N ]. (b) Var[N ]. (c) Pr{N ≤ 3}.

3.12 N is the claim-count variable for a policy selected at random from a population 
characterized by a mixture of Poisson distributions for which l has a gamma 
dis tribution with E[l] = 0.100 and Var[l] = 0.005. Compute fN(n) for n = 
0, 1, 2, 3.

3.13 Random variable N1 is Poisson-distributed with l = 0.75, variable N2 has a 
mixed-Poisson distribution with Pr{l = 0.6} = 0.75 and Pr{l = 1.2} = 0.25, 
and variable N3 has a mixed distribution for which ( ) = ( )

λ
−4

3
4/3f u e u.

 (a) Show that E [N1] = E [N2] = E [N3].
 (b) Compute Var[N1], Var[N2], and Var[N3].
 (c) Compute fNi(n) for i = 1, 2, 3 and n = 0, 1, 2, 3, 4, 5.

3.14 To the data of Example 3.6 fit a mixed Poisson distribution of the form

1
!

, 1.1 1 2 2 1 2
1 2( )( ) = ω λ + ω λ ω + ω =−λ −λf n

n
e en n

 (a) Compute method-of-moments parameter estimates l̂1, l̂2, ŵ1, ŵ2.
 (b)  Compare the fit of the resulting distribution to that of the negative binomial 

distribution obtained in Example 3.6.

3.15 The table displays the incidence of claims from a 
portfolio of 10,000 annual policies. Fit a reasonable 
distribution model to these data. What assumptions 
must one make? Test the goodness of fit of the fitted 
distribution.

3.16 Prove identity (3.22) for the general binomial 
coefficient.

3.17 Prove this identity: 
1

1

∏( )+
=

−
x i

i

n
 = G(x + n)/G(x), n =  

2,
 
3, 4, . . . .

3.18 Derive these formulas for the mean and variance of a random variable N with 
the general negative binomial probability function (3.19).

 (a) E [N ] = r(1 - q)/q. (b) Var[N ] = r(1 - q)/q2.

# Claims # Policies

 0 8,956

 1 907

 2 120

 3 15

 4 2

≥5 0

Total 10,000
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3.19 Show that the negative binomial probability function (3.19) satisfies a 
recursion relation of the following form: there exist numbers a > 0 and b > 0 
such that

1 , 1, 2, 3, . . . .( ) ( )= + − =f n
na b

n
f n n

3.20 Explain how the negative binomial probability function (3.19), whenever 
parameter r has a positive integer value, can be interpreted as Pr{M = n}, where 
M is the number of failures occurring before the r th success in a sequence of 
independent Bernoulli trials for which q is the probability of success in a single 
trial. The negative binomial distribution for which parameter r is a positive 
integer is sometimes called the Pascal distribution, after French mathematician 
and philosopher Blaise Pascal (1623–1662).37

3.21 A random variable N with probability mass function

1 , 0 1, 0,1, 2, . . .( ) ( )= − < < =f n p p p nn

 has a geometric distribution with parameter p.
 (a) Show that the geometric distribution is a special case of the Pascal distribution.
 (b) Compute E [N ] and Var[N ] in terms of p.

3.22 A claim-count variable N is obtained as a mixture of geometric variables. Derive 
a formula for the probability function fN(n) under each of the following assump-
tions about the distribution of the variable parameter p.

 (a) p is uniformly distributed on the interval 0 < u < 1.
 (b) p is distributed on the interval 0.10 < u < 1 with fp(u) = 1/(u log 10).

3.23 (a)  Verify that the moment-generating function Ml(t) for the mixing parameter l 
with the gamma probability density function (3.16) is

.( )( ) ( )= α − ν αλ
−αM t t

 (b)  Show that the moment-generating function MN(t) for the mixed distribution 
(3.17) satisfies the equation MN(t) = Ml(e t - 1), where Ml(t) is the generating 
function of part (a).

 (c)  Prove that the relation MN(t) = Ml(e t - 1) holds for an arbitrary (not just 
gamma) distribution for the variable parameter l.

37 Pascal and fellow French mathematician Pierre de Fermat (1601–1665) are credited with establishing the 
mathematical foundations of probability. In a remarkable correspondence during the summer of 1654 they 
solved a celebrated problem from the realm of gambling: how should the stakes in a game of chance be divided 
between two equally skilled players when the game is interrupted? Pascal’s easily generalized solution made use of 
the array of binomial coefficients that has since become known as Pascal’s Triangle.



Casualty Actuarial Society 103

Distributions for Actuaries

3.24 Let n1, n2, . . . , nm be observations of a random sample of size m drawn from a 
population with a negative binomial distribution (3.17) with unknown parameters 
(a, n). Find formulas for the method-of-moments parameter estimates (â, n̂).

3.25 For the Pólya distribution of Example 3.7, compute:
 (a) Pr{white on 3rd trialwhite on 1st & black on 2nd trial }.
 (b) Pr{white on 3rd trialblack on 1st & white on 2nd trial }.
 (c) Pr{white on 3rd trial }.

3.26 The number Wm of white balls drawn from an urn in m Pólya trials has probability 
function Pn(100,25,5; m), n = 0, 1, 2, . . . , m.

 (a) What is the degree of contagion?
 (b) Compute these probabilities:

Pr{white on 1st trial },
Pr{white on 2nd trialwhite on 1st trial },
Pr{white on 2nd trialblack on 1st trial },
Pr{white on 2nd trial }.

 (c) Compute the probabilities Pn(100,25,5;4) for n = 0, 1, 2, 3, 4.
 (d )  What is the limiting distribution of Wm as m → ∞ such that mp = 3.2 and 

the degree of contagion remain constant?

3.27 (a)  Demonstrate that the Pólya probability function (3.26) can be expressed in 
terms of the general binomial coefficients as

, , ;
1 1

1 1 1 1
,( ) = γ

+ −











−
γ

+ − −

−













γ
+ −











P w b c m
n

n

p
p

m n

m n
p
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m
n

  where p = w/(w + b) and g = c/w.
 (b) Show that the denominator in part (a) can be written as

1
1

1
1 1 1 1 .

1 1
∏ ∏γ

+ −











= γ
+ − −

−











 γ

+ −





− −



= =

p
m

m
p

m n

m n pm
m i

m
i
mi

n

i

n

3.28 N has a negative binomial distribution with mean 1.00 and contagion parameter 
g = 0.20. Compute the probabilities of N = 0, 1, 2, 3, 4, 5 claims.

3.29 (a)  Three independent claim-count variables (N1, N2, N3) have respective means 
(10, 25, 5) and contagion parameters (0.35, 0.20, 0). Compute the contagion 
parameter for N = N1 + N2 + N3.

 (b)  Let N be the sum of m independent claim-count random variables with means 
{ni} and contagion parameters {gi}. Prove that the contagion parameter for N is

.2
1 1

2
∑ ∑( )γ = γ ν ν= =i ii

m
ii

m
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3.30 A policyholder owns a fleet of 20 insured automobiles. The claim process for each 
vehicle is Poisson-distributed with claim density of 0.30 per year. Assuming that 
the individual claim processes are independent, find the probability of incurring 
at least six auto claims in a single year.

3.31 The claim-count variable for a portfolio of 8,000 policies is Poisson-distributed 
with an expected value of 650 claims. Assuming also that the claim-count variable 
for each policy has the same Poisson distribution, compute the expected number 
of policyholders that produce at least one claim.

3.32 In a portfolio of m identical policies, the claim count for every policy  
has the same negative binomial distribution with contagion parameter g. If 
gm is the contagion parameter of the portfolio distribution, find limm→∞gm. 
What does this imply about the nature of the portfolio distribution for  
large m?

3.33 The random time of occurrence—or waiting time—for successive claims in a 
claim process is occasionally of interest. In the case that the process is Poisson, 
the distribution of the random variable Tn, the occurrence time of the nth claim, 
has a particularly simple form.

Note that Tn ≤ t is identical to the event that at least n claims occur in the 
time interval [0, t). Thus, when the claim process is Poisson with parameter 
l = # claims per unit time, probability formula (3.4) implies that the distribution 
function for Tn is

∑
( ) { } ( )= ≤ =

−∞ < <

λ ≤ < ∞









−λ

=

∞Pr

0 if 0

!
if 0 .

F t T t

t

t e
k

t
n n k t

k n

 (a) Show that Tn has the gamma probability density function

1 !
.1( ) ( )= λ

−
− −λf t

n
t en

n
n t

 (b) Obtain E [Tn] and Var[Tn] in terms of n and l.
 (c) Let T̂n denote the time between successive claims:

ˆ
if 1

if 2.

1

1

=
=

− ≥



 −

T
T n

T T n
n

n n

 Show that variables T̂n are independent and that each has an exponential distribution 
with parameter b = 1/l.
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3.34 The claim-count variable for a property policy with a two-year term has a Poisson 
distribution with 0.215 claims per year.

 (a) What is the expected time until the occurrence of the first claim?
 (b)  What is the probability that the first claim will occur within the first year? . . . 

the second year?
 (c)  What is the probability that the second claim will occur within the first 

year? . . . the second year?

3.35 For a certain claim process the claim-count variable N has a Poisson distribution 
with parameter l, and the probability that any given claim is fraudulent is p. 
Find the distribution of N* = # fraudulent claims. [Hint : for n = 1, 2, 3, . . .

iPr ( )

1 ( ).

*

∑

∑( ) { }

( )

= =

= 



 − 

=
∞

−
=

∞

f n n fraudulent claims N k f k

k
n p p f k

N k n N

n k n
Nk n
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The probability distribution of the total claim amount S for a claim process is called 
an aggregate loss (or aggregate claim) distribution. Because S depends on two 
independent random variables—the number of claims N and the claim size X—the 
distribution of S is a compound distribution, that is, an appropriate combination 
of the claim-count and claim-size distributions. In this chapter we describe how 
the aggregate distribution and its properties are derived from the component dis-
tributions of N and X and then discuss some practical methods for evaluating and 
approximating the distribution.

4.1. A Discrete Example
Before providing a general definition of the aggregate distribution in the next 

section, we illustrate the basic ideas with a simple discrete model in Example 4.1.

Example 4.1.  Assume first that n = 0, 1, 2 are the only possible numbers of 
claims and that there exist just three potential claim sizes: {100, 200, 300}. Associated 
probability functions for N and X are shown in the following tables.

Claim Count N Claim Size X

# Claims n fN(n) Size x fX(x)

0 0.60 100 0.40

1 0.30 200 0.50

2 0.10 300 0.10

E[N ] = 0.50, Var[N ] = 0.45 E[X ] = 170, Var[X ] = 4,100

Thus, there are seven distinct total loss amounts: {0, 100, 200, 300, 400, 500, 600}. 
Probabilities for these values of S are defined by

if s S s S s N n f nS N
n
∑( ) { } { } ( )= = = = =
=

Pr Pr . (4.1)
0

2

4. Aggregate Claims
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Conditional probabilities Pr{S = s | N = n} in this formula are displayed here for each 
n value and all possible s values.

n = 0 n = 1 n = 2

Amount s 0 100 100 + 100 100 + 200 100 + 300

200 200 + 100 200 + 200 200 + 300

300 300 + 100 300 + 200 300 + 300

Pr{S = s | N = n} 1.00 0.40 0.16 0.20 0.04

0.50 0.20 0.25 0.05

0.10 0.04 0.05 0.01

Inserting these tabulated probabilities into formula (4.1) yields values of the 
aggregate probability function. For example,

f S N f S N f

S N f

S N N

N

( ) { } ( ) { } ( )

{ }

( )( ) ( )( ) ( )( )

( )

= = = + = =

+ = =

= + + +

=

300 Pr 300 0 0 Pr 300 1 1

Pr 300 2 2

0 0.60 0.10 0.30 0.20 0.20 0.10

0.0700.

Other probabilities are obtained in a similar way and 
then assembled to form the distribution of S, shown 
in the table. Figure 4.1 displays a histogram of the 
discrete probability mass function fS.

The expected loss amount for such a policy is E[S ] 
= 85. In the next section, we shall see that it is not 
merely coincidental that E[S ] = (0.50)(170) = E[N ]
E[X ]. The premium charge for such a policy would 
therefore be $85 plus a loading for the expense of 
doing business and a provision for profit and risk. n

4.2. Aggregate Distribution Properties
Example 4.1 shows how values for the aggregate random variable S can be generated 

in two steps: (i) select a number of claims N = n and then (ii) choose n claim-size values 
for X. The sum of these n numbers is a single value for S. Assuming that the sizes of 
successive claims are mutually independent and also independent of the number of 
claims, one can define the aggregate random variable by

=
=

+ + + >







0 if 0

. . . if 0,1 2

S
N

X X X NN

Aggregate Loss S

Amount s fs(s) Fs(s)

  0 0.6000 0.6000

100 0.1200 0.7200

200 0.1660 0.8860

300 0.0700 0.9560

400 0.0330 0.9890

500 0.0100 0.9990

600 0.0010 1.0000

E[S] = 85, Var[S] = 15,055
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where X1, X2, . . . , XN are independent random variables, all identical to X. This two-
step generation of the aggregate variable S suggests how to construct the probability 
distribution for S from the component claim-count and claim-size distributions. In the 
discussion that follows, fN(n) denotes Pr{N = n}, and F(x) is the cumulative distribution 
function for X.

For every positive integer n define Yn = Sn
k=1Xk as the sum of n independent random 

variables, each identical to X. (For later convenience, define Y0 = 0.) The distribution 
function of Yn is the convolution of n replicates of F(x):

� ��� ���F y Y y F F F y n y
n fold convolution

n n p p p( )( ) { } ( )∗ = ≤ = = −∞ < < ∞Pr . . . , 1, 2, 3, . . . , .
-

The convolution of two functions is obtained by a standard integral formula, employed 
in the following recursive definition of the sequence 〈F n

*( y)〉:38

p ∫( ) ( )

( )

( ) ( ) ( )

∗ =
<

≥







∗ = ∗ = ∗ − =− −−∞
∞

0 if 0

1 if 0
and

, 1, 2, 3, . . . . (4.2)

0

1 1

F y
y

y

F y F F y F y u dF u nn n n

Finally, the aggregate variable S has the compound distribution function

∑ ∑( ) ( ) ( ) ( ){ }= ≤ = = ∗ ≤ < ∞
=

∞

=

∞
Pr , 0 . (4.3)

0 0
F s f n Y s N n f n F s sS N n

n
N n

n

38 Development of the convolution integral formula (F1 * F2)(x) = ∫
∞
-∞ F2(x - u) dF1(u) for the distribution function 

of the sum of two independent random variables can be found in most textbooks of mathematical probability; 
see also Problem 4.2. In practice, it is usually easier to derive the distribution of the sum Yn from the moment-
generating or characteristic functions of the random variables involved than it is to perform the sequence of 
integrations indicated in (4.2).

0.0

0.2

0.4

0.6

0 100 200 300 400 500 600 s

f (s)

Figure 4.1.  Aggregate Probability 
Mass Function [Example 4.1]
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The mth moments of S (m = 1, 2, 3, . . .) are related to the corresponding moments 
of the {Yn} variables by the equation

E S s dF s

s f n dF s f n s dF s

f n E Y

m m
S

m
N n

n
N

m
n

n

N n
m

n

∫

∑∫ ∫∑

∑

[ ]

[ ]

( )

( ) ( ) ( ) ( )

( )

=

= ∗ = ∗

=

∞

=

∞∞ ∞

=

∞

=

∞
, (4.4)

0

0
0 0

0

0

provided the E[Yn
m] exist. Formulas for the first three moments of Yn, displayed below, 

follow from the independence of the {Xk} variables. Derivation of these formulas also 
depends on the fact that the second and third moments of a sum of independent 
random variables are the respective sums of the second and third moments of the 
summands.

E Y n E X

E Y E Y E Y E Y

nE X E X n E X

nVar X n E X

E Y E Y E Y E Y E Y E Y

nE X E X n E X Var X n E X

n

n n n n

n n n n n n

[ ]

[ ] [ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

( ) ( )

( )

( ) ( )

[ ]

[ ] [ ]

[ ] [ ] [ ]

( ) ( )

( ) ( )

=

= −  +

= −  +

= +

= −  + −

= −  + +

,

,

3 2

3 .

2 2 2

2 2

2 2

3 3 2 3

3 2 3 3

Combining these results with equation (4.4) yields

E S f n nE X nf n E X E N E XN
n

N
n

∑ ∑[ ] [ ] [ ] [ ] [ ]( )( ) ( )= = 



 =

=

∞

=

∞
, (4.5)

1 0

E S f n nVar X n E X

E N Var X E N E X

N
n
∑ ( )[ ]

[ ]

[ ] [ ]

[ ] [ ] [ ]

( )

( )

( )= +

= +

=

∞

, (4.6)

2 2 2

1

2 2

∑ ( )[ ]

[ ]

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ]

( ) ( )

( )

( )

( )= −  + +

= −  +

+

=

∞
3

3

. (4.7)
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Therefore,

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ]
[ ]

( )
( )

( ) ( )
( )

= +

=
−  +

+
− 

( [ ]) ,

3

. (4.8)

2

3

3 2

3 3

3 2

Var S E N Var X Var N E X

Sk S
E N E X E X Var N E X Var X

Var S

E N E N E X

Var S

If N is distributed with mean E[N ] = l and contagion parameter g so that Var[N ] = 
l + gl2, then formulas (4.5) and (4.8) become

E S E X

Var S E X E X

Sk S
E X E X E X E X

E X E X( )

[ ]
[ ] [ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]
[ ]

( )

( )
( )

= λ

= λ + γ λ

=
λ + γ λ + γ λ

λ + γ λ

,

,

3 2
. (4.9)

2 2 2

3 2 2 2 3 3

2 2 2 3 2

In the special case that N has a Poisson distribution, these formulas reduce to

E S E X

Var S E X

Sk S
E X

E X

[ ]
[ ]
[ ]( )

[ ] [ ]

[ ]

[ ]

= λ

= λ

=
λ

,

,

. (4.10)

2

3

2 3 2

Derivations of (4.5)–(4.7) above, based on the fundamental equation (4.4) relating 
the moments of S to those of the sequence 〈Yn〉, are completely straightforward. 
However, as with any random variable, these formulas can also be derived from the 
moment-generating function of S whenever that function exists.

To construct MS(t), start with the moment-generating function of variable Yn. For 
each fixed n, Yn = Sn

k=1Xk is the sum of independent identical random variables, and 
therefore

M t E t X E t X M tY kk
n

k
k

n

X
n

n ∑ ∏( ) [ ] ( )( ) ( ) ( )=   = ==
=

exp exp ,1
1

where MX(t) is the generating function for the common claim-size variable X. Accord-
ingly, MS(t) is given by the series

M t E tY f n M t f n M tS N N Y
n

N X
n

n
n∑ ∑[ ] ( )( ) ( ) ( ) ( ) ( ) ( )= = =

=

∞

=

∞
exp .

0 0
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But this last formula can be interpreted as an expected value with respect to the 
distribution of N:

M t f n M t f n n M t E n M tS N X
n

n
N X

n
N X∑ ∑ [ ]( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )= = =

=

∞

=

∞
exp log exp log .

0 0

Thus, in terms of the generating function MN for N:

M t M M tS N X( )( ) ( )= log . (4.11)

As usual, E[S ] is now obtainable from (4.11) by differentiation:

E S M M M t
M t
M t

M
M
M

E N E XS N X
X

X t
N

X

X
[ ] [ ] [ ]( )( ) ( ) ( )

( ) ( ) ( )
( )= ′ = ′

′
= ′

′
=

=

0 log 0
0
0

.
0

Similar derivations of formulas (4.6) and (4.7) are requested in Problem 4.5.

Example 4.2.  Assume that the claim-count random variable N has a Poisson (l) 
distribution:

f n
e
n

nN

n

( ) = λ =
−λ

!
, 0,1, 2, 3, . . . .

Moreover, suppose that claim size X is gamma (a, b) distributed:

F x

x

x
x

( ) ( )
( )

=

−∞ < <

Γ β α
Γ α

≤ < ∞









0 if 0

,
if 0 .

Accordingly, the moment-generating function for X is MX(t) = (1 - bt)-a, and the 
generating function for the sum of n independent such gamma variables is the nth power 
of MX(t):

M t t t tX
n n n( )( )( ) ( ) ( )= − β = − β −∞ < < β−α − α1 1 , 1 .

However, this is the generating function of a gamma variable with parameters (na, b), 
so the n-fold convolution of identical gamma-distributed variables also has a gamma 
distribution:

F y

y

y n
n

y n
n ( )

( )
( )∗ =

−∞ < <

Γ β α
Γ α

≤ < ∞ =









0 if 0

,
if 0 , 1, 2, 3, . . . .
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Note that deriving this convolution formula from the moment-generating function 
is considerably less onerous than carrying out the successive integrations indicated in 
formula (4.2). The distribution function for this combination of N and X can therefore 
be expressed in closed analytic form:

∑
( ) ( )

( )
=

−∞ < <

λ Γ β α
Γ α

≤ < ∞









−λ

=

∞

0 if 0

!
,

if 0 .
(4.12)

0

F s
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e
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s n
n

s
S n

n
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In the particular instance that l = 2.5 and (a, b) = (3, 400), the Poisson formulas 
(4.10) imply that

E S

Var S

Sk S

[ ]

[ ]

[ ]

( )( )( )

( ) ( )( )( )( )

( )

= λαβ = =

= λα α + β = =

= α +
λα α +

= =

2.5 3 400 3,000,

1 2.5 3 4 400 4,800,000,

2
1

5
30

0.9129.

2 2

Values for the cumulative distribution function F(s) in this special case are displayed in 
Table 4.1. The distribution has a discrete lump of probability of size fN(0) = e-2.5 = 0.0821 
at s = 0, but at all other s values F(s) is continuous. A graph of the corresponding probability 
density function is shown in Figure 4.2. n

Table 4.1.  Aggregate Distribution 
[Example 4.2]

Amount s F(s)

0 0.0821

500 0.1096

1,000 0.1867

2,000 0.3755

3,000 0.5613

4,000 0.7152

5,000 0.8273

6,000 0.9013

7,000 0.9465

8,000 0.9723

9,000 0.9863

10,000 0.9934
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In Example 4.2 we observed that the convolution of a gamma cumulative 
distribution function with itself is also gamma, a fact which led to an easy-to-calculate 
exact formula for the aggregate distribution function of that example. However, this 
desirable reproductive property—the distribution of a sum of identical independent 
random variables having the same distribution type as the components—is shared 
by just a few families of distributions (notably the normal distributions, which are 
not generally useful as claim-size distributions). In fact, sums of the ubiquitous 
lognormal and Pareto distributions belong neither to their respective families nor to 
any other familiar parametric distribution family. As a consequence, actuaries have 
since the mid-1900s sought to develop various procedures for calculating values of an 
aggregate distribution. Among these are several approximations using easily calculable 
parametric distributions, algorithms featuring recursive formulas, Fourier-transform-
based methods, and Monte Carlo simulation. The remainder of this chapter is devoted 
to some of the most important of these techniques.

4.3. Approximation by Matching Moments
In this section we discuss a traditional technique of approximation, the method 

of matching moments, similar to the method-of-moments for fitting a distribution 
model to sample data. This approach is based on the not-unreasonable assumption 
that two distributions with identical moments of order m, where usually 1 ≤ m ≤ 3, are 
sufficiently similar that one distribution can be used to approximate the other.39

The method consists of two steps:

(i) Calculate from the moments of the claim-count and claim-size distributions the 
required mean µ = E[S ], variance s2 = Var[S ], and skewness k = Sk[S ] according 
to formulas (4.5) and (4.8).

(ii)  Select from a convenient parametric family of continuous distributions the 
particular member with matching respective first, second, and third moments. 

39 Although the method of matching moments usually gives reasonable results, the assumption on which it is 
based—that distributions with identical lowest moments are indeed comparable—could fail to hold. It is 
possible for distributions with identical first-, second-, and third-order moments to be significantly different. For 
a discussion of this “moment problem” see Pentikäinen [19] and the references cited there. However, Pentikäinen 
suggests that acceptable approximations are usually obtained by the method of matching moments when the 
variable X is restricted to a finite interval, as in the case that claim size is limited by policy conditions.
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Figure 4.2.  Aggregate Density Function 
[Example 4.2]
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The cumulative distribution function of this selected parametric distribution 
could then serve as an approximation to FS.

Normal Approximation
There are several reasons for considering a normal approximation to an aggregate-

loss distribution. The variables Yn defined in Section 4.2 are the sums of independent, 
identically distributed claim-size random variables. Thus, when n is large, the Central 
Limit Theorem implies that Yn is approximately normally distributed. In addition, 
whenever the claim count is Poisson-distributed with mean l (but not when N has a 
positive contagion parameter—see Problem 4.8), the Poisson formulas (4.10) imply 
that Sk[S ] is small for large values of l. In fact, in the Poisson case, one can observe that 
liml→∞ Sk[S ] = 0, so that the distribution of S is asymptotically symmetric.

In such a case—when N is Poisson-distributed and l is large—it is useful to try 
the approximation S ≈ Y = sZ + µ, where Z is the standard normal variable. This is 
equivalent to asserting that the standardized variable

T S
S( ) = − µ

σ
(4.13)

is approximately standard normal. The normal approximation S ≈ Y = sZ + µ (or 
equivalently, T(S) ≈ Z ), yields

F s S s T S T s

Z T s T s s s

S { }

{ } ( ) ( )

( ) { } ( ) ( )

( ) ( ) ( )

= ≤ = ≤

≈ ≤ = Φ = Φ − µ σ ≤ < ∞

Pr Pr

Pr , 0 . (4.14)

Because E[Y ] = E[S ] = µ and Var[Y ] = Var[S ] = s2, the normal approximation 
(4.14) certainly involves matching the first two, but not necessarily the third, moments 
of the distributions. Of course, the skewness of the symmetric variable Y = sZ + µ 
is zero, whereas Sk[S ] is usually positive. Because of this, the normal approximation 
generally underestimates the probabilities of large claims. Moreover, it could assign 
significant probability to negative values of s and thereby fail to model acceptably the 
short tail of the aggregate distribution (for instance, refer to Example 4.3). Obviously, 
the normal approximation is useful only in those cases where S is nearly symmetric. In 
other situations one must look elsewhere for a satisfactory approximation.

Gamma Approximation
When S is notably skewed, one way to improve on the normal approximation is 

to match moments with a known skewed distribution. The versatile family of gamma 
distributions often provides a reasonable starting point.

For example, consider a gamma-distributed variable G with parameters (a, b). The 
required mean µ and variance s2 then determine a and b:

µ = αβ

σ = αβ







α = µ σ

β = σ µ






implies

.2 2

2 2

2
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With these parameters the distribution of G has the specified mean and variance, 
and it is also skewed, with Sk[G ] = 2s/µ > 0. However, the utility of the gamma 
approximation S ≈ G depends on how close 2s/µ is to the desired skewness k.

For a better approximation—one that matches all three parameters µ, s, and k—
start again with a gamma variable G, except this time solve for the gamma parameters 
in terms of s and k:

σ = αβ

κ = α







α = κ

β = σκ







2

implies
4

1
2

.
(4.15)

2 2
2

As before, the distribution of G is now completely determined, but with E[G ] = ab 
= 2s/k. In order to match the required aggregate mean µ we introduce the shifted 
variable Y = G + µ - 2s/k, a random variable with all three specified properties:

E Y E G

Var Y Var G

Sk Y Sk G

[ ] [ ]

[ ] [ ]

[ ] [ ]

= + µ − σ κ = µ

= = σ

= = κ

2 ,

,

.

2

The distribution function of the resulting shifted gamma approximation S ≈ Y is

F s F s F s

s s

S Y G

( )

( ) ( ) ( )

( ) ( )

≈ = − µ + σ κ

= Γ − µ β + α α Γ α µ − σ κ ≤ < ∞

2

; , 2 , (4.16)

where gamma parameters a and b are given by (4.15). Depending on the sign and 
magnitude of the quantity µ - 2s/k, the shift of the origin sometimes adversely affects the 
modeling of the short tail of the distribution, as in the case of the normal approximation 
(again, refer to Example 4.3).

Normalizing Transformations
The normal approximation to S can also be improved by finding a refinement of 

the standardizing transformation (4.13) that allows for a better match of the third 
moments. Specifically, one could look for a transform T(S) with not only the properties 
E[T(S)] = 0 and Var[T(S)] = 1 as in (4.13), but with the additional property that the 
transformed variable be symmetric, or nearly so: Sk[T(S)] ≈ 0. If such a “symmetrizing” 
function T could be found, then the assumption T(S) ≈ Z is more likely to provide 
a satisfactory approximation to S. Such a transformation must necessarily be more 
complex than that of standardizing transformation (4.13). In particular, it cannot be 
linear, because the skewness property of a random variable is invariant under such a 
transformation (refer to Problem 2.26). Two such normalizing functions, described in 
this section, have been used extensively—the normal power and the Wilson–Hilferty  
transformations.
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For a random variable S with mean µ, variance s2, and skewness k the normal 
power transformation is defined by

iT S
S

NP ( ) =
κ

− µ
σ

+
κ

+ −
κ

6 9
1

3
. (4.17)2

It was proposed in 1969 by Finnish authors Lauri Kauppi and Pertti Ojantakanen, 
who were seeking an approximation to the Poisson case of an aggregate distribution.40 
Kauppi and Ojantakanen observed that for large values of S the standardized aggregate 
variable (S - µ)/s could be approximated by a certain quadratic polynomial Q in the 
standard normal variable Z:

Q Z Z Z
S( )( ) = κ − + ≈ − µ

σ6
1 . (4.18)2

This approximation formula is based on the so-called Edgeworth series expansion 
of a distribution function.41Solving the approximate equation (4.18) for Z yields 
formula (4.17) and the approximation

iZ T S Q S
S

NP =( )( ) ( )≈ = − µ σ
κ

− µ
σ

+
κ

+ −
κ

− 6 9
1

3
. (4.19)1

2

Thus, the normal power approximation to FS is

F s T sS NP( )( ) ( )≈ Φ . (4.20)

Formula (4.20) is generally applicable to the long tail of the distribution, the main 
region of interest in most applications. TNP is somewhat less successful in modeling 
the short tail, but a refinement of TNP(s) for smaller values of s exists.42 The Normal 
Power approach can generally be relied upon to give acceptable results whenever S is 
moderately skewed, say when k < 2.

Another classic approach to this problem is based on the work of Harvard 
statisticians Edwin B. Wilson and Margaret M. Hilferty. In 1931 Wilson and Hilferty 
developed a transformation of the chi-square variable X = c2(m) with m degrees of 
freedom that yielded, approximately, the standard normal variable Z:

W X m
X

m

m

Z
( )

( ) =
− −

≈

1 1 2
9

2
9

. (4.21)
3

40 Kauppi and Ojantakanen [10].
41 A detailed derivation of the normal power approximation from the Edgeworth expansion can be found in Beard, 

Pentikäinen, and Pesonen [3], pp. 107–110, 355–356.
42 Ibid., pp. 116–117.
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This transformation gave rise to a remarkably accurate approximation to the cumulative 
distribution function of the chi-square random variable:

F x W xm ( )( ) ( )≈ Φ( )χ , (4.22)2

illustrated in Table 4.2. Since its initial appearance the Wilson–Hilferty transformation 
has been successfully generalized to other random variables—including, as we shall see, 
moderately skewed aggregate-loss variables.

To generalize (4.21) in this way, recall that c2(m) is gamma-distributed, with param-
eters a = (1/2) m and b = 2. Thus, E[c2(m)] = m  and Var[c2(m)] = 2m. Thus, for the scaled 
variable Y  = (1/m) c2 (m)  we have E[Y ] = 1 and Var[Y ] = 2/m. Setting v Var Y[ ]= , one  
can express transformation W in (4.21) as

W Y
v

Y
v( )( ) = − +3

1
3

. (4.23)1/3

It is a simple matter now to apply (4.23) to an arbitrary gamma random variable G 
with parameters (a, b). In this case, set Y = G/(ab), for which v = α1 . Consequently,

W Y Y( )( ) = α − +
α

3 1
1

3
,1/3

or in terms of the variable G,

W G
G( ) = α − αβ

αβ
+ α





− α +
α

3 3
1

3
. (4.24)3

1/3

Table 4.2.  Wilson-Hilferty Approximation to x2(10)

x Fc2(10)(x) F(W (x)) Relative Error

 3 0.0186 0.0193 +3.76%

 6 0.1847 0.1837 -0.54%

 9 0.4679 0.4672 -0.15%

12 0.7149 0.7155 +0.08%

15 0.8679 0.8686 +0.08%

18 0.9450 0.9453 +0.03%

21 0.9789 0.9789 +0.00%

24 0.9924 0.9923 -0.01%

27 0.9974 0.9973 -0.01%

30 0.9991 0.9991  0.00%
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Replacing G with S and substituting ab = E[G ] = µ, ab2 = Var[G ] = s2, α =2  
Sk G[ ] = κ into (4.24) leads to a transformation of the aggregate variable S:

T S
S

WH ( ) ( )( ) =
κ

− µ
σ

+
κ

−
κ

+ κ
3

2 2 6
6

. (4.25)
2/3 1/3

As in (4.22), we obtain the Wilson–Hilferty approximation to distribution 
function FS(s):

F s T s sS WH( )( ) ( )≈ Φ ≤ < ∞, 0 . (4.26)

Because this approximation has been so successfully applied to gamma random 
variables, which in turn have provided acceptable approximations to a wide range 
of aggregate distributions, it is not surprising that the Wilson–Hilferty formula has 
proved to be useful in approximating aggregate distributions, as well.

In fact, all three approaches that take into consideration the skewness of S—
the shifted gamma, the normal power, and the Wilson–Hilferty schemes—provide 
acceptable approximations to the aggregate-loss variable S whenever the skewness is 
not too large.

Example 4.3.  The result of applying the normal (4.14), shifted gamma (4.16), 
normal power (4.20), and Wilson–Hilferty (4.26) approximations to the moderately 
skewed distribution of Example 4.2 are displayed in Table 4.3. The normal approximation 
clearly fails to yield a reasonable result, whereas the other three methods generate quite 
acceptable approximations to the long tail of the distribution.

Application of these same approximations to the Poisson/gamma distribution (4.12) 
for which l = 10, a = 0.05, and b = 6,000 yields the outcomes shown in Table 4.4. 

Table 4.3.  Approximations to FS(s): m 5 3,000, s 5 2,191, k 5 0.9129 [Example 4.3]

Amount s F(s) Normal
Relative 

Error
Normal 
Power

Relative 
Error

Shifted 
Gamma

Relative 
Error

Wilson-
Hilferty

Relative 
Error

0 0.0821 0.0855 +4.14% 0.0534 -34.96% 0.0459 -44.09% 0.0464 -43.48%

1,000 0.1867 0.1807 -3.21% 0.1900 +1.77% 0.1775 -4.93% 0.1765 -5.46%

2,000 0.3755 0.3240 -13.72% 0.3745 -0.27% 0.3680 -2.00% 0.3668 -2.32%

3,000 0.5613 0.5000 -10.92% 0.5591 -0.39% 0.5607 -0.11% 0.5605 -0.14%

4,000 0.7152 0.6760 -5.48% 0.7125 -0.38% 0.7185 +0.46% 0.7191 +0.55%

5,000 0.8273 0.8193 -0.97% 0.8245 -0.34% 0.8310 +0.45% 0.8318 +0.54%

6,000 0.9013 0.9145 +1.46% 0.8987 -0.29% 0.9038 +0.28% 0.9044 +0.34%

7,000 0.9465 0.9661 +2.07% 0.9443 -0.23% 0.9475 +0.11% 0.9478 +0.14%

8,000 0.9723 0.9888 +1.70% 0.9707 -0.16% 0.9724 +0.01% 0.9724 +0.01%

10,000 0.9934 0.9993 +0.59% 0.9927 -0.07% 0.9930 -0.04% 0.9929 -0.05%
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This second distribution is considerably more skewed than that in Table 4.3, with  
µ = 3,000, s = 4,347, and k = 2.8293. Again, as expected, the normal approximation 
is unsuitable. The shifted gamma and Wilson–Hilferty methods, however, produce 
generally satisfactory results, at least to the long tail, while the normal power 
approximation is less accurate. n

4.4. Recursion
In contrast to the method of matching moments, in which the approximating dis-

tribution for the aggregate-loss random variable is selected from a family of continuous 
distributions, the next technique under consideration involves a discrete approximating 
distribution. Values of this distribution are calculated by means of a recursion formula 
for the aggregate probability function.

The recursion approach has been studied since the mid-1960s, when the Poisson 
case was first described by R. M. Adelson. It was later extended to other cases by 
such authors as H. H. Panjer.43 We present in this section a basic formulation of 
the recursion method, which rests on a pair of assumptions, one for each of the 
variables N and X.

Suppose first that the claim count N has a distribution for which the probability 
function fN(n) satisfies, for some constants a and b, a recursion relation on n:

f n
na b

n
f n nN N( ) ( )= + − =1 , 1, 2, 3, . . . . (4.27)

43 Panjer [17].

Table 4.4.  Approximations to FS(s): m 5 3,000, s 5 4,347, k 5 2.8293 [Example 4.3]

Amount s F (s) Normal
Relative 

Error
Normal 
Power

Relative 
Error

Shifted 
Gamma

Relative 
Error

Wilson-
Hilferty

Relative 
Error

0 0.00005 0.2451 — 0.4023 — 0.1228 — 0.1494 —

2,000 0.5922 0.4090 -30.94% 0.5866 -0.95% 0.5886 -0.61% 0.5835 -1.47%

4,000 0.7513 0.5910 -21.34% 0.7108 -5.39% 0.7504 -0.12% 0.7519 +0.08%

6,000 0.8401 0.7549 -10.14% 0.7978 -5.04% 0.8402 -0.01% 0.8443 +0.50%

8,000 0.8946 0.8750 -2.19% 0.8590 -3.98% 0.8949 +0.03% 0.8992 +0.51%

10,000 0.9294 0.9463 +1.82% 0.9020 -2.95% 0.9298 +0.04% 0.9333 +0.42%

12,000 0.9522 0.9808 +3.00% 0.9322 -2.10% 0.9525 +0.03% 0.9552 +0.32%

14,000 0.9674 0.9943 +2.78% 0.9532 -1.47% 0.9676 +0.02% 0.9694 +0.21%

16,000 0.9777 0.9986 +2.14% 0.9678 -1.01% 0.9778 +0.01% 0.9789 +0.12%

18,000 0.9846 0.9997 +1.53% 0.9779 -0.68% 0.9847 +0.01% 0.9853 +0.07%
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Whenever N is Poisson-distributed with E[N ] = l, it is easy to show that probabilities 
fN(n) satisfy (4.27) with a = 0 and b = l. This relation also holds in the negative 
binomial case—refer to Problem 3.19.

In addition, assume that claim-size variable X has a discrete structure, with only a 
finite number of equally spaced values xk:

x kh k m h step lengthk { }{ } = = >: 0,1, 2, . . . , ˆ , where 0 is the constant . (4.28)

We denote the probability mass function for X by

g k X x f xk X k( ) { } ( )= = =Pr ,

for which, as usual, g(k) ≥ 0 and S∞
k=0 g(k) = Sm̂

k=0 g(k) = 1. It is convenient to select m̂ 
so that m̂ = max{k : g(k) > 0}.

Again, let Yn = Sn
i=1Xi be the sum of n (n ≥ 1) independent random variables, each 

identical to X . Because the component variables {Xi} can have only values that are 
multiples of h, this is true for each Yn and for the aggregate loss variable S, as well. 
Probabilities for Yn are denoted by

g m Y mh mn n( ) { }= = =Pr , 0,1, 2, 3, . . . ,

where, by convention, g0(0) = 1 and g0(m) = 0 when m ≥ 1. Thus, the probability 
function fS(m) for S has the form

f m S mh f n g m mS N n
n
∑( ) { } ( ) ( )= = = =
=

∞
Pr , 0,1, 2, 3, . . . . (4.29)

0

Because of the independence of the {Xi} it is easy to verify that the convolution 
probabilities gn(m) can be expressed recursively for positive n by

g m g k g m k mn n
k

m

∑( ) ( ) ( )= − =−
=

, 0,1, 2, 3, . . . . (4.30)1
0

In addition, observe that gn(0) = gn(0) for each positive n, so that

∑
( )

( ) ( ) ( )
( ) ( )

( ) ( )
= =

=

>





=

∞
0 0

0 if 0 0

log 0 if 0 0.
(4.31)

0
f f n g

f g

M g g
S N

n
N

N
n

Finally, applying (4.27) to formula (4.29), we obtain

f m a
b
n

f n g m mS N n
n
∑( )( ) ( ) ( )= + − =

=

∞

1 , 1, 2, 3, . . . . (4.32)
1

Having established these preliminary results, we can now state and prove the main 
theorem about fS(m):
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The probability function for the aggregate-loss variable with a claim-count distribution 
satisfying (4.27) and a claim-size variable having the discrete structure (4.28) satisfies a 
recursion relation on the integer variable m:

f m
ag

a
b
m

k g k f m k mS S
k

m

∑( )( ) ( ) ( ) ( )=
−

+ − =
=

1
1 0

, 1, 2, 3, . . . , (4.33)
1

and fS(0) is given by (4.31).

Proof : Verification of formula (4.33) rests on an ingenious argument about con-
ditional probabilities and expectations for the random variables involved in the sums 
{Yn} to create an alternative expression for gn(m).

Begin by considering the following conditional probability formula for Xn. Vari-
ables Xn and X1 + X2 + . . . + Xn-1 are independent, so for each k and for each positive 
m for which gn(m) ≠ 0

X kh Y mh
g k g m k

g mn n
n

n
{ } ( ) ( )

( )= = =
−−Pr .1

Subject to the condition Yn = mh, the expected value of Xn is therefore

E X Y mh h
k g k g m k

g mn n
n

nk

m

∑[ ] ( ) ( )
( )= =

−−

=

. (4.34)1

1

It is obvious that

E X Y mh E Y Y mh mhi n
i

n

n n∑ [ ] [ ]= = = =
=

. (4.35)
1

However, the random variables {Xi} are identical and independent, and they play sym-
metric roles in the definition of Yn. This means that the expected values E[Xi | Yn = mh] 
must be identical, so that the sum in equation (4.35) must also equal nE[Xn | Yn = mh]. 
Consequently, E[Xn | Yn = mh] = (m/n)h. Substituting this value into equation (4.34) yields 
the alternate formula

g m
n
m

kg k g m kn n
k

m

∑( ) ( ) ( )= −−
=

. (4.36)1
1

But g(k)gn-1 (m - k) = 0 whenever gn(m) = 0, so (4.36) is valid for all values of m.
To conclude, apply (4.30) and (4.36) to formula (4.32) and obtain

i

f m af n g m
b
n

f n g m

af n g k g m k
b
n

f n
n
m

k g k g m k

S N n
n

N n
n

N
n

n
k

m

N n
k

m

n

∑

∑

∑

∑ ∑ ∑

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= − + −

= − − + − −

=

∞

=

∞

=

∞

−
=

−
==

∞

1 1

1 1

1 1

1
1

0
1

11
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ag f n g m a
b
m

k g k f n g m k

ag f m a
b
m

k g k f m k

N n
n

N n
nk

m

S S
k

m

∑

∑

∑ ∑( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= − + + − −

= + + −

−
=

∞

−
=

∞

=

=

0 1 1

0 .

1
1

1
11

1

Solving this equation for fS(m) yields (4.33), as required. n

Example 4.4.  Claim-count random variable N is Poisson-
distributed with mean l = 1.75. Variable X has a discrete 
structure of the form (4.28), with h = 1,000, m̂ = 5, and the 
tabulated probabilities g(k).

Applying formula (4.33) in succession yields the probability 
function for the aggregate variable S:

f eS ( ) = =−0 0.1738,1.75

fS ( ) ( )( )( )= =1
1.75

1
1 0.20 0.1738 0.0608,

fS [ ]( ) ( )( )( ) ( )( )( )= + =2
1.75

2
1 0.20 0.0608 2 0.40 0.1738 0.1323,

fS [ ]( ) ( )( )( ) ( )( )( ) ( )( )( )= + +

=

3
1.75

3
1 0.20 0.1323 2 0.40 0.0608 3 0.20 0.1738

0.1046,

fS [

]

( ) ( )( )( ) ( )( )( ) ( )( )( )

( )( )( )

= + +

+ =

4
1.75

4
1 0.20 0.1046 2 0.40 0.1323 3 0.20 0.0608

4 0.15 0.1738 0.1170,

. . . .

The cumulative probability function F is a step function:

� �
F s f kS S

k

s h

∑( ) ( )=
=

.
0

Values of the derived discrete distribution functions for S are displayed in Table 4.5. n

In order to use formula (4.33) to approximate the distribution of an aggregate-
loss variable S for which the claim-size variable X is continuous, or continuous almost 
everywhere, one must first approximate X with a discrete variable of the form (4.28) by 
selecting parameters h and m̂ and defining probabilities g(k).

k xk g(k)

 1 1,000 0.20

 2 2,000 0.40

 3 3,000 0.20

 4 4,000 0.15

 5 5,000 0.05

≥6 1,000 k 0.00
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In general, greater accuracy is achieved by choosing h small and m̂ large. However, 
there does exist a tradeoff. The recursive nature of the method requires the calculation 
of all preceding values { fS(1), fS(2), . . . , fS(m - 1)} before fS(m) can be evaluated, 
necessitating a large number of arithmetic operations in most applications. Calculation 
time can be adversely affected if m̂ becomes too large.

Whenever X is censored—say, by a policy limit l—one should select h and m̂ so 
that m̂h = l. On the other hand, if X is unlimited, then m̂h must be large enough to 
guarantee that 1 - FX(m̂h) is small, as in Example 4.5.

Probabilities g(k) can be defined in variety of ways. In general, one is faced with 
the problem of starting with a continuous probability distribution defined by FX for 
intervals of X values and redistributing the total probability mass to a finite set of point 
values. One simple technique, often referred to as the midpoint method, is to treat the 
lattice points {kh} as the midpoints of certain intervals and then assign probabilities as 
follows:

g F h

g k F k h F k h k m

g m F m h

X

X X

X

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

=

= + − − = −

= − −

0 ,

, 1, 2, . . . , ˆ 1,

ˆ 1 ˆ . (4.37)

1
2

1
2

1
2

1
2

Table 4.5.  Aggregate Distribution [Example 4.4]

Amount s fS(s) FS(s)

0 0.1738 0.1738

1,000 0.0608 0.2346

2,000 0.1323 0.3669

3,000 0.1046 0.4715

4,000 0.1170 0.5886

5,000 0.0932 0.6818

6,000 0.0786 0.7604

7,000 0.0641 0.8245

8,000 0.0499 0.8744

9,000 0.0377 0.9121

10,000 0.0274 0.9395

12,000 0.0138 0.9729

14,000 0.0063 0.9886

16,000 0.0027 0.9955
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One difficulty with the midpoint method is that when h is large and m̂ is small the 
discrete distribution may fail to have the same moments as the continuous distribution 
for X. This can often be improved by a careful selection of h and m̂.

Example 4.5.  Return again to the aggregate-loss variable of Example 4.2, in which 
N is Poisson with E[N ] = 2.5 and X is gamma-distributed with (a, b) = (3, 400), so 
that E[X ] = 1,200 and Var[X ] = 480,000.

Now approximate the distribution function using recursion model (4.33), with 
the midpoint method for assigning claim-size probabilities and two choices for param-
eters h and m̂: (A) (h, m̂) = (100, 60) and (B) (h, m̂) = (20, 300). Note that m̂h =  
6,000 in both cases, and that FX(6,000) = 0.99996. Both sets of parameters return 
good approximations to E[X ] and Var[X ]: (1,199.98; 480,642) for option (A) and 
(1,199.88; 479,846) for (B). Nevertheless, the two options do yield materially different 
approximations to FS(s), as shown in Table 4.6. n

4.5. Fourier Approximation
We have already observed that the moment-generating function of a random variable 

is a Laplace transform of its probability density function f. In an analogous way, the 
characteristic function j of a random variable is defined as a Fourier transform of the 
density function:

t E e e f x dx t iitX itx∫ ( )[ ]( ) ( )ϕ = = = −−∞
∞ for all real 1 . (4.38)

Table 4.6.  Aggregate Distribution, Discrete Approximations [Example 4.5]

Amount s FS(s)
Approx (A)  

h = 100 Relative Error
Approx (B)  

h = 20 Relative Error

0 0.0821 0.0821  0.00% 0.0821  0.00%

500 0.1096 0.1158 +5.66% 0.1108 +1.09%

1,000 0.1867 0.1956 +4.77% 0.1885 +0.96%

2,000 0.3755 0.3852 +2.58% 0.3775 +0.53%

3,000 0.5613 0.5699 +1.53% 0.5630 +0.30%

4,000 0.7152 0.7218 +0.92% 0.7165 +0.18%

5,000 0.8273 0.8318 +0.54% 0.8282 +0.11%

6,000 0.9013 0.9042 +0.32% 0.9019 +0.07%

7,000 0.9465 0.9482 +0.18% 0.9469 +0.04%

8,000 0.9723 0.9733 +0.10% 0.9725 +0.02%

9,000 0.9863 0.9868 +0.05% 0.9864 +0.01%

10,000 0.9934 0.9937 +0.03% 0.9935 +0.01%
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Whereas the moment-generating function of a random variable could fail to exist, 
the expected value in (4.38) exists for every random variable. Moreover, to every charac-
teristic function there corresponds a unique probability distribution, thus establishing 
a one-to-one correspondence between the set of probability distributions and the set of 
characteristic functions.

There exists a variety of formulas that invert formula (4.38) and allow recovery 
of the density function f—or equivalently, the distribution function F—from j(t). 
Particularly useful in this section is the inversion formula

F x F x e t
t

dt
i tx

∫ ( )( ) ( ) ( )+ + −
= −

π
ℑ ϕ−∞

2
1
2

1
, (4.39)

0

where F(x+) and F(x-) are the respective right- and left-hand limits of F at x.44

The correspondence between distributions and characteristic functions has been 
exploited by several authors—notably in the early 1980s by Philip Heckman and 
Glenn Meyers45—to develop methods for approximating an aggregate distribution 
function. These methods generally involve setting up the approximating function in a 
such a way that an appropriate inversion formula becomes easy to evaluate. The general 
approach to using characteristic functions as the basis of an approximation is outlined 
in this section, with particular attention paid to the Heckman–Meyers approach.

The characteristic function of an aggregate variable S is defined in a manner 
analogous to that of the moment-generating function MS(t). For each positive integer n 
the characteristic function of Yn = Sn

k=1Xk is given by the product

t E it X E it X tY kk
n

k
k

n

X
n

n ∑ ∏( ) [ ] ( )( ) ( ) ( )ϕ =   = = ϕ=
=

exp exp ,1
1

where jX(t) is that of the common claim-size distribution. Thus, jS(t) is given by the series

t E itY f n t f n tS N N Y
n

N X
n

n
n∑ ∑[ ] ( )( ) ( ) ( ) ( ) ( ) ( )ϕ = = ϕ = ϕ

=

∞

=

∞
exp . (4.40)

0 0

Finally, jS(t) can be expressed in terms of MN(t), as in (4.11):

t M tS N X( )( ) ( )ϕ = ϕlog . (4.41)

In the case that N has a Poisson (l) distribution, this equation becomes

t tS X( )( ) ( )ϕ = λϕ − λexp . (4.42)

44 ℑ(a + ib) denotes the imaginary part of the complex number a + ib: ℑ(a + ib) = b and | a + ib | = a b+2 2 . Also, 
eiq can be expressed as a complex number of the form a + ib by means of Euler’s Formula: ei q = cosq + i sinq. Note 
that if F is continuous at x, then (1/2) (F (x+ ) + F (x-)) = F (x). For a derivation of inversion formula (4.39) 
consult, for example, Parzen [18], pp. 400–413.

45 Heckman and Meyers [5].
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On the other hand, if N has a negative binomial distribution with mean l and contagion 
parameter g (g ≠ 0), then

t tS X( )( ) ( )ϕ = + λγ − λγ ϕ − γ1 . (4.43)1

Example 4.6.  The characteristic function for the gamma (a, b) random variable 
is j(t) = (1 - ibt)-a. Therefore, the aggregate variable S with a Poisson-distributed 
claim count with mean l and a gamma (a, b) claim-size distribution has characteristic 
function jS(t) = exp(l(1 - ibt)-a - l). n

The Heckman–Meyers algorithm begins with the definition of a piecewise-
linear approximation to the cumulative distribution function FX(x) for claim-size 
variable X. As we shall soon discover, this approach gives rise to a computationally 
tractable characteristic function for S. We start by assuming that FX(x) is continuous 
on an interval 0 < x < l. The Heckman-Meyers algorithm accordingly assumes that 
X is censored at l. If one must use an uncensored variable, choose l large enough so 
that 1 - FX(l ) is negligibly small. After partitioning the closed interval [0, l ] into 
m subintervals

c c c c lm m= < < < < =−0 . . . ,0 1 1

we approximate FX(x) by a piecewise-linear function F̂X(x) with nodes at the points46

c F c k mk X k( )( ) =, , 0,1, 2, . . . , .

That is, the graph of y = F̂X(x) on [0, l ] is a continuous polygonal curve connecting the 
endpoints (0, FX(0)) and (l, FX(l )). The associated probability density function f X̂(x) 
is a step function—that is, f X̂(x) is piecewise constant on [0, l ], with the sequence of 
constants defined by

F c F c
c c

k mk
X k X k

k k

( ) ( )
δ =

−
−

=−

−
, 1, 2, . . . , .1

1

Consequently, the characteristic function associated with the approximating distribu-
tion function F̂X(x) is

t e dx F c e

tx i tx dx F c e

X k
itx

c

c

k

m

X m
ic t

kc

c

k

m

X m
ic t

k

k m

k

k m

∫∑

∫∑

( ) ( )( )

( )( )( )

ϕ = δ + −

= δ + + −

=

=

−

−

ˆ 1

cos sin 1

1

1

1

1

46 To improve the approximation to FX(x) it is advantageous to use a nonregular partition, with partition points 
closer together nearer x = 0, where the graph of y = F(x) is steeper, and farther apart nearer x = l, where the graph 
is flatter. For example, the formula ck = exp(log(l )k/m) for 1 ≤ k ≤ m often works well—see Example 4.7.
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∑

( )

( )

( ) ( )
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( )( )
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,

1
1

1
1

where A(t ) and B(t ) denote the real and imaginary parts of ĵX(t), respectively. Note 
that a discrete lump of probability of size 1 - FX(l ) has been incorporated at the upper 
limit l = cm.

We can now use formulas (4.42) and (4.43) to develop the characteristic function 
for the approximating aggregate distribution. In the Poisson case

t A t i B t R t eS
i t( )( ) ( ) ( ) ( )ϕ = λ + λ − λ = ( )θˆ exp ,

where R(t) = elA(t)-l and q(t) = lB(t). In the negative binomial case the function is

t A t iB t R t eS
i t( )( )( ) ( ) ( ) ( )ϕ = + λγ − λγ + = ( )− γ θˆ 1 ,1

with

R t A t B t

t
B t

A t

( )( ) ( ) ( )

( ) ( )
( )

= + λγ − λγ + λγ

θ = −
γ

λγ
+ λγ − λγ







− γ
1 and

1
arctan

1
.

2 2 1

The cumulative distribution function of S is recoverable from ĵS(t) by means of 
inversion formula (4.39):

∫

∫

∫

( )

( )

( )

( ) ( ) ( )

( )

( )

( )

≈ = −
π

ℑ ϕ

= −
π

ℑ

= +
π

− θ

( )

−∞

− θ∞

∞

ˆ 1
2

1 ˆ

1
2

1

1
2

1
sin , (4.44)

0

0

0

F s F s
e t

t
dt

e R t e
t

dt

R t
t

st t dt

S S

its
SS

its i t

whenever FS(s) is continuous at s. In their paper [5], Heckman and Meyers use numerical 
integration to evaluate formula (4.44) at the required values of s.

Example 4.7.  An application of the Heckman–Meyers algorithm to the aggre-
gate distribution of Example 4.2 yields the results shown in Table 4.7.47 Here the 

47 These results were obtained from an implementation of the Heckman–Meyers algorithm in a Microsoft Excel 
workbook created by the author.
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basic claim-size interval of definition is taken as [0; 20,000], with partition points  
ck = exp(log(20,000)k/256), k = 1, 2, . . . , 256. This choice of partition improves the 
accuracy of the approximation by placing the points closer together at the left end of 
the interval and farther apart at the right end, where the distribution is flatter. The 
approximation is highly accurate, except at the single point s = 0. At this exceptional 
point there is a discrete lump of probability, the probability of N = 0 claims. Such 
points of discrete probability give rise to jump discontinuities in the function FS(s), as 
discussed in the next section. n

4.6. Discontinuities
When a generally continuous claim-size distribution has a nonzero probability amount 

at a positive singular point x, the corresponding aggregate distribution function has a 
jump discontinuity at all multiples of x. This phenomenon is always present when the 
continuous claim-size variable X is censored at a limit value l. The distribution of the 
modified variable has a discrete lump of probability in the amount of 1 - FX(l ) at x = l 
and an aggregate distribution function based on the modified distribution would then 
have jump discontinuities at all positive integer multiples of l.

The size of the jump discontinuity in the aggregate distribution at s = kl, the kth 
multiple of the claim limit l, is given by

if k F l kN X
k( )( ) ( )− =1 , 1, 2, 3, . . . . (4.45)

In situations where E[N ] is fairly large, the probability fN(k)—and therefore the 
size of the discontinuity at k—is comfortably small. When this occurs the error of 

Table 4.7.  Heckman–Meyers Approximation [Example 4.7]

Amount s F (s) F̂ (s) Relative Error

0 0.0821 0.0412 -49.82%

500 0.1096 0.1094 -0.15%

1,000 0.1867 0.1869 +0.10%

2,000 0.3755 0.3757 +0.06%

3,000 0.5613 0.5614 +0.01%

4,000 0.7152 0.7151 -0.01%

5,000 0.8273 0.8271 -0.02%

6,000 0.9013 0.9011 -0.02%

7,000 0.9465 0.9463 -0.02%

8,000 0.9723 0.9722 -0.01%

9,000 0.9863 0.9862 -0.01%

10,000 0.9934 0.9934 0.00%
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approximation by a continuous function is negligible. On the other hand, when the 
expected number of claims is small, then the techniques discussed in Sections 4.3 
and 4.5 can fail to provide a reasonable approximation at or near such a point of 
discontinuity. The next example illustrates this situation.

Example 4.8.  Consider a gamma-distributed claim-size variable X with (a, b) = 
(2.5, 500). The unlimited mean is 1,250, but the distribution limited at l = 2,000 has 
a mean of 1,147. The limited distribution has a single discrete amount of probability 
of size 0.1562 at l = 2,000.

Compounding this claim-size variable with a Poisson claim-count variable with 
mean l = 1.308 yields an aggregate random variable S with mean 1,500 = (1.308)
(1,147). The aggregate distribution function FS will then have a jump discontinuity at 
s = 2,000, the size of which is given by (4.45) with k = 1:

e( )( ) ( ) =−1.308 0.1562 0.0552.1.308

Approximating the aggregate distribution function by the shifted gamma approxi-
mation (4.16) yields the continuous function shown in the graph of Figure 4.3 as the 
dashed curve. This approximation has considerable error throughout a fairly broad 
interval about the discontinuity at s = 2,000.

By way of contrast, the Fourier approximation (4.44) based on the Heckman-Meyers 
algorithm does a better job of approximating the function near the singular point, but 
as a continuous function it also has difficulty at the point itself. This approximation is 
shown in Figure 4.3 as the solid curve. Note that the graph of the Heckman–Meyers 
function passes through the midpoint of the jump at s = 2,000. n

4.7. Simulation
Methods for calculating or approximating aggregate loss distributions discussed in 

the previous sections all involve deterministic models—that is, numbers associated with 
the approximating distribution are all calculable from definite algorithms and functional 
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Figure 4.3.  Approximations to F(s) at a Point of 
Discontinuity [Example 4.8]
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formulas. In this section we turn to another classic approach to the problem—the 
method of distribution simulation, often called Monte Carlo simulation in reference 
to its stochastic basis.

The simulation technique is conceptually simple and straightforward: first 
(i) generate a large random sample of selections from the parametric distribution in 
question, and then (ii) create the discrete distribution for this sample, a distribution 
which can be a useful approximation to the original parametric distribution. In the 
case of stochastic simulation, however, there is no empirical population of data from 
which to select a random sample. The sample points must be generated, either from 
a table of random numbers or by means of a computer random number generator. 
Such computer software packages—more accurately characterized as pseudo random 
number generators—typically generate numbers uniformly distributed between 0 and 1.

At the heart of the simulation method lies the following theorem, used to transform 
a number u randomly selected from a uniform distribution on the interval 0 < u < 1 to 
a random value of a variable with a specified distribution. Thus, if F is the distribution 
function of random variable Y and u is a number randomly generated from the interval 
0 < u < 1, then F̃ -1(u)—where F̃ -1 is the generalized inverse function defined at 
(4.46)—is a randomly generated value of variable Y.

Assume that F( y) = Pr{Y ≤ y} is the cumulative distribution function for random vari-
able Y. The generalized inverse function F̃ -1 is defined for each u in the open interval (0, 1) by

�F u u F{ }( ) ( )= ξ ≤ ξ− min : . (4.46)1

If random variable U is uniformly distributed on the interval (0, 1), then random variable 
F̃ -1(U ) is identical to Y: F̃ -1(U ) = Y.

Proof : Observe first that F̃ -1 has the following properties:

�u F F u u( ) ( )( )≤ − for all in 0,1 , (4.47)1

�F F y y y( )( ) ≤− for all real , (4.48)1

�F u u( )− is a nondecreasing function of , (4.49)1

(refer to Problem 4.19). The theorem will be established if we can show that for all real y

�u F u y u u F y{ }( ) ( ){ }≤ = ≤−: : . (4.50)1

Then, if random variable U is uniformly distributed on (0, 1), equation (4.50) 
implies that

F U y U F y F y y{ }( ) ( ){ } ( )≤ = ≤ = −∞ < < ∞−Pr Pr , .1

As a result, random variables F̃ -1(U ) and Y have the same cumulative distribution 
function F( y), and so they must be identical: F̃ -1(U ) = Y.
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To prove equation (4.50), assume that y is a fixed real number. First select u in (0, 1) 
so that F̃ -1(u) ≤ y. Because of (4.47) and the fact that F is a nondecreasing function

�u F F u F y( )( ) ( )≤ ≤− . (4.51)1

Conversely, suppose that u ≤ F( y). Properties (4.48) and 4.49) imply that

� �F u F F y y( ) ( )( )≤ ≤− − . (4.52)1 1

Combining (4.51) and (4.52) yields the desired result. n

Example 4.9.  Suppose that X has the claim-size distribution of Example 4.1, 
with cumulative distribution function

F x

x

x

x

x

( ) =

−∞ < <

≤ <

≤ <

≤ < ∞













0 if 100

0.40 if 100 200

0.90 if 200 300

1.00 if 300 .

(a) The inverse (4.46) is therefore given by

�F u

u

u

u

( ) =

< ≤

< ≤

< <









−

100 if 0 0.40

200 if 0.40 0.90

300 if 0.90 1.00.

(4.53)1

If U is uniformly distributed on the interval (0, 1), then F̃ -1(U ) takes on three possible 
values—100, 200, 300—with probabilities

�

�

�

F U

F U

F U

{ }
{ }
{ }

( )

( )

( )

= = − =

= = − =

= = − =

−

−

−

Pr 100 0.40 0 0.40,

Pr 200 0.90 0.40 0.50,

Pr 300 1.00 0.90 0.10.

1

1

1

This verifies, of course, that random variables F̃ -1(U ) and X are identical.
(b) Suppose now that three trials of the random generation process are performed, 

generating random numbers u1 = 0.4547, u2 = 0.9236, and u3 = 0.2573. The corre-
sponding random values of X are obtained from formula (4.53): x1 = F̃ -1(u1) = 200,  
x2 = F̃ -1(u2) = 300, and x3 = F̃ -1(u3) = 200. n

The next three examples illustrate methods for generating random values of 
commonly encountered claim-size and claim-count random variables.

Example 4.10.  (a) Variable X1 is exponentially distributed, with F1(x) = 1 - e-x/b  
for 0 < x < ∞. Because F1 is strictly increasing for positive x, the function is invertible 
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there in the ordinary sense, and the inverse defined in (4.46) is identical to the con-
ventional inverse function:

x F u u u( ) ( )= = −β − < <− log 1 , 0 1.1
1

Alternatively, because 1 - U is also distributed uniformly on the interval (0, 1), one can 
generate a random value for x by the equation x = -blogu, 0 < u < 1.

(b) Similarly, when random variable X2 has a shifted Pareto distribution with 
distribution function F2(x) = 1 - (b/(x + b))a for 0 < x < ∞, the inverse function is 
given by

x F u u u( )( ) ( )= = β − − < <− − α1 1 , 0 1.2
1 1

(c) Random variable X3 has a lognormal distribution with parameters (µ, s). 
Thus, if z is a randomly generated value of the standard normal distribution,48 then  
x = exp(µ + sz) is a random value for X3.

(d ) Five values of u were randomly generated from the uniform distribution on 
the interval (0, 1). Corresponding random values for X1 when b = 2,000, for X2 when 
(a, b) = (2; 2,000), for standard normal Z, and for X3 when (µ, s) = (4.956, 2.3) are 
displayed in Table 4.8. n

Example 4.11.  (a) Variable X has a gamma distribution with probability density 
function

f x
n

x e n xn
n x( ) ( ) ( )=

β Γ
= β > < < ∞− − β1

1, 2, 3, . . . , 0 , 0 .1

The reproductive property of the gamma distribution implies that X has the same 
distribution as the sum of n independent random variables Xi, each with the exponential 
distribution with parameter b (refer to Section 2.3). Thus, to generate a random value 

48 Users of Microsoft Excel find the composite of two worksheet functions NORM.S.INV(RAND) convenient for 
generating random values of the standard normal variable Z. Refer to Appendix A.1 and also to Problem 4.26.

Table 4.8.  Random Values for Claim-Size Distributions [Example. 4.10(d )]

Trial
Uniform

u
Exponential

x1

Pareto
x2

Std Normal
z

Lognormal
x3

(1) 0.1854 410 216 -0.8950 18

(2) 0.3038 724 397 -0.5135 44

(3) 0.5498 1,596 981 0.1252 189

(4) 0.7953 3,172 2,420 0.8249 947

(5) 0.9774 7,580 11,304 2.0028 14,221
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for X, generate values for each of the identical random variables Xi —the sum of these 
values is a random value for X:

x x x xn= + + +. . . .1 1

(b) Variable X has a gamma distribution with (a, b) = (3, 400). Three random 
values are generated from the uniform distribution on (0, 1): 0.5349, 0.8762, 0.2009 
(three different random values of the uniform distribution are required because the Xi 
must be independent). Thus, we have a random value for X:

x ( ) ( ) ( ) ( ) ( ) ( )= − − − − − −

=

400 log 1 0.5349 400 log 1 0.8762 400 log 1 0.2009

1,232.

Example 4.12.  (a) Variable N has a Poisson distribution with mean l = # claims 
per unit time:

f n
e
n

nN

n

( ) = λ =
−λ

!
, 0,1, 2, . . . .

The random variable T̂n, where T̂1 = occurrence time of the first claim and T̂n = time between 
the occurrence of the (n - 1)st and the nth claim (n > 1), has an exponential distribution 
with parameter b = 1/l [refer to Problem 3.33(c)]. Thus, the event that N = n in a unit 
of time is equivalent to

T Ti
i

n

i
i

n

∑ ∑≤ <
= =

+ˆ 1 ˆ . (4.54)
1 1

1

If {ui} are values of the random variable U, uniformly distributed on the interval 
(0, 1), then by the result of Example 4.10(a) above, we have corresponding values  
of T̂i : ti = -(1/l)log ui. As a result, inequality (4.54) is satisfied whenever

u ui
i

n

i
i

n

∑ ∑( ) ( )− λ ≤ < − λ
= =

+
1 log 1 1 log .

1 1

1

After multiplying by -1 and applying the exponential function, we obtain the equivalent 
inequality

u e ui
i

n

i
i

n

∏ ∏≥ >
=

−λ

=

+
. (4.55)

1 1

1

Inequality (4.55) can now be used to generate a random value for N in the following 
way, a method easily programmed for computer implementation:

 (i)  Assume that 〈ui〉, i = 1, 2, 3, . . . , is a sequence of random values generated 
from the uniform distribution on the interval (0, 1).

 (ii) If u1 < e-l, then stop and set n = 0.
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 (iii) Otherwise, if u1u2 < e-l, then stop and set n = 1.
 (iv) Otherwise, if u1u2u3 < e-l, then stop and set n = 2.
 (v) Otherwise, if u1u2u3u4 < e-l, then stop and set n = 3.
 . . .

Continue in this way until (4.55) is satisfied by i = m:

u e ui
i

m

i
i

m

∏ ∏< ≤
=

+
−λ

=
;

1

1

1

then stop and set n = m.
(b) Variable N has a Poisson distribution with mean E[N ] = l = 1.500. Successive 

products of numbers randomly generated from the uniform distribution on the interval 
(0, 1) are compared to e-1.500 = 0.2231 according to the procedure developed in part (a) 
above. Corresponding random values of N are then calculated, and the results of four 
such trials are displayed in Table 4.9. n

The next two examples illustrate how Monte Carlo simulation methods can be 
used to generate random values of a compound aggregate loss random variable. To gen-
erate a single such value, one must first generate a random value for the claim-count 
variable N, say N = n, and then generate n values for the claim-size variable X. The sum 
of these claim-size amounts is a random value for the aggregate loss variable S.

Example 4.13.  (a) For the aggregate variable S the claim-count N is Poisson-
distributed with mean l = 1.500. Claim-size X has a lognormal distribution with 
parameters (µ, s) = (4.956, 2.300). Therefore, S has mean

E S E N E X ( )( ) ( )[ ] [ ] [ ]= = + =1.500 exp 4.956 2.300 3,000.1
2

2

For each random value n obtained for N we generate n random values for X, the sum 
of which is a random value for S. Table 4.10 displays the results of this procedure based 
on the four values for n generated in Example 4.12(b).

(b) One distinct advantage that Monte Carlo simulation has over other methods of 
approximating an aggregate loss distribution is the fact that it is easy to model various 

Table 4.9.  Random Values for Poisson Distribution [Example 4.12(b)]

Trial u1 u2 u3 u4 Pui e-1.500 n

(1) 0.6791 0.7543 0.2391 0.1225 0.2231 2

(2) 0.1047 0.1047 0.2231 0

(3) 0.7591 0.4746 0.7205 0.3256 0.0845 0.2231 3

(4) 0.5029 0.2874 0.1445 0.2231 1
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policy conditions imposed on the size of claims—including complex deductible and/or  
limit restrictions. As an example, consider the imposition of a $1,000 policy limit 
on the size of claims in the claim process described in part (a) above. The results are 
shown in Table 4.10, where the limit has been imposed on each random claim size 
as it is generated, yielding the modified random values x̃ and the associated modified 
aggregate loss amounts s̃ . n

Example 4.14.  Return now to the aggregate distribution of Example 4.2, for 
which N has a Poisson distribution with l = 2.5 and X is gamma-distributed with 
parameters (a, b) = (3, 400). We generate 10,000 values of N—and for each of these 
a corresponding aggregate loss amount, thus creating a randomly generated sample of 
size 10,000. The resulting sample cumulative distribution function is an approximation 
to the aggregate distribution function F(s). For example, 5,599 sample points have 
aggregate loss amounts less than or equal 3,000, so that

F FK S( ) ( )= = ≈3,000
5,599

10,000
0.5599 3,000 .10

This compares favorably with the actual value of F(3,000) = 0.5613. Values of the 
cumulative distribution F10K(s) based on the generated sample are shown in Table 4.11  
along with the exact values of F(s). n

Example 4.15.  Consider the aggregate random variable S for which the claim 
count N is Poisson-distributed with l = 3 and claim size X has a lognormal distribu-
tion with (µ, s) = (6, 1.5). Moreover, claim size is limited by a policy limit of 1,000. 
As before, a sample of 10,000 random trials is generated, and the resulting aggregate 
distribution function created. A graph of y = F10K(s) is displayed in Figure 4.4, in which 
the discontinuity at multiples of the 1,000 limit is clearly evident. n

Table 4.10.  Random Values for Aggregate-Loss Distribution [Example 4.13]

Trial n

Example 4.13(a) Example 4.13(b)

u z x s x̃ s̃

(1) 2 0.2871 -0.5619 39 — 39 —

0.8945 1.2508 2,522 2,561 1,000 1,039

(2) 0 — — — 0 — 0

(3) 3 0.7387 0.6393 618 — 618 —

0.3766 -0.3144 69 — 69 —

0.9411 1.5641 5,185 5,872 1,000 1,687

(4) 1 0.6982 0.5192 469 469 469 469
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Table 4.11.  Approximation by Monte Carlo Simulation [Example 4.14]

Amount s F (s) F10K(s) Relative Error

0 0.0821 0.0832 +1.34%

500 0.1096 0.1084 -1.09%

1,000 0.1867 0.1874 +0.37%

2,000 0.3755 0.3796 +1.09%

3,000 0.5613 0.5599 -0.25%

4,000 0.7152 0.7130 -0.31%

5,000 0.8273 0.8342 +0.83%

6,000 0.9013 0.9042 +0.32%

7,000 0.9465 0.9468 +0.03%

8,000 0.9723 0.9719 -0.04%

9,000 0.9863 0.9865 +0.02%

10,000 0.9934 0.9935 +0.01%

0.0

0.2

0.4

0.6

0.8

1.0

0 2,000 4,000 6,000 8,000 s

y

Figure 4.4.  Cumulative Distribution Function  
y 5 F10K(s) [Example 4.15]
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4.8. Problems
4.1 Construct the discrete aggregate loss distribution based on these distributions 

for N and X.

Claim Count N Claim Size X

Count n fN(n) Size x fx(x)

0 0.20 500 0.10

1 0.40 1,000 0.40

2 0.25 1,500 0.30

3 0.15 2,000 0.20

4.2 Assume that Y = X1 + X2, where X1 and X2 are continuous, independent (not 
necessarily claim-size) random variables.
(a) X1 and X2 have respective probability density functions f1 and f2. Prove that

f y f y x f x dxY ∫ ( )( ) ( )= −−∞
∞ .1 2

(b)  Assume now that X1 and X2 are identically distributed claim-size random 
variables, with common distribution function F and F(x) = 0 for x < 0. 
Show that FY can be expressed as

F y
y

F y x dF x y
Y y

∫ ( ) ( )
( ) =

<

− ≥







0 if 0

if 0.0

4.3 Verify that the recursion formula (4.2) yields F 1*( y) = F( y) for all y.

4.4 In each of the following cases construct a formula for FS(s) in terms of fN(n) = 
Pr{N = n} and FX(x), the c.d.f. for X.
(a) fN(n) = 0 for n > 1.   (b) fN(n) = 0 for n > 2.

4.5 Derive formulas (4.6) and (4.7) for E[S 2] and E[S3] from the compound 
moment-generating function (4.11).

4.6 N is Poisson-distributed with mean l, and X has an exponential (b) distri-
bution. Derive explicit formulas for the aggregate distribution functions fS(s)  
and FS(s).
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4.7 N is Poisson-distributed with mean l = 8, and X has a gamma distribution with 
a = 0.2000 and b = 3,750. Calculate the indicated values for FS(s).

Amount s FS(s)

0 _____________

3,000 _____________

6,000 _____________

9,000 _____________

12,000 _____________

15,000 _____________

18,000 _____________

21,000 _____________

24,000 _____________

27,000 _____________

4.8 l and g are the claim-count mean and contagion parameter, respectively, for an 
aggregate loss variable S. Prove that for fixed g:

(a) CV S[ ] = γ
λ→∞
lim .   (b) Sk S[ ] = γ

λ→∞
lim 2 .

4.9 Verify the normal power inversion formula (4.19):

Q S T SNP( )( ) ( )− µ σ =− ,1

 where TNP(S ) is given by (4.17).

4.10 Provide detailed derivations of the Wilson–Hilferty transformation formulas (4.24) 
and (4.25).

4.11 Derive from the Wilson–Hilferty chi-square approximation (4.22) a formula 
for c2

0.95(m), the 95th percentile of the chi-square distribution with m degrees 
of freedom.

4.12 Use the formula obtained in Problem 4.11 to estimate the chi-square percentiles 
in the following table.

d.f. m c2
0.95 (m) Wilson–Hilferty Relative Error

5 11.070 __________ __________%

10 18.307 __________ __________%

15 24.996 __________ __________%

20 31.410 __________ __________%

25 37.652 __________ __________%

30 43.773 __________ __________%
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4.13 Tabulate the following approximations to the Poisson/gamma distribution func-
tion of Problem 4.7.

Amount s FS(s) Normal
Relative 

Error
Normal 
Power

Relative 
Error

Shifted 
Gamma

Relative 
Error

Wilson-
Hilferty

Relative 
Error

0 _______ _______ _____% _______ _____% _______ _____% _______ _____%

3,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

6,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

9,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

12,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

15,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

18,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

21,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

24,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

27,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

4.14 l and g are, respectively, the claim-count mean and contagion parameter for 
an aggregate loss variable S. Verify the following special cases of formula (4.31)  
for f (0).
(a) If N is Poisson-distributed, then fS(0) = elg (0)-l.
(b) If N has a negative binomial distribution, for which g ≠ 0, then

f gS ( )( ) ( )= + γ λ − γ λ − γ0 1 0 .1

4.15 Show that recursion formula (4.33) can be expressed in the following form, 
where m̂ is defined by (4.28):

f m
ag

a
b
m

k g k f m k mS S
k

m m

∑ ( )( ) ( ) ( ) ( )=
−

+ − =
{ }

=

1
1 0

, 1, 2, 3, . . . .
1

min , ˆ

4.16 Use the recursion method of Section 4.4 to calculate the cumulative distribu-
tion function of the aggregate random variable for which claim size X has the 
discrete distribution of Example 4.1 and N has a Poisson distribution with  
l = 1.35.

4.17 Verify that the midpoint formulas of (4.37) actually define a discrete probability 
function.

4.18 Random variable U is uniformly distributed on the interval (0, 1).
(a) Show that the characteristic function of U is jU(t) = (eit - 1)/(it).
(b) Use formula (4.39) to recover FU(x) from jU(t).
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4.19 Let F be the cumulative distribution function for random variable Y. Prove these 
statements about the inverse function F̃ -1 defined by (4.46).
(a)  F̃ -1 exists for all variables Y.
(b)  F̃ -1(u) is a nondecreasing function of u.
(c) u ≤ F(F̃ -1(u)) for all u in (0, 1).
(d )  F̃ -1(F( y)) ≤ y for all real y.
(e)  Show by example that it is possible for the inequalities in (c) and (d ) to be 

strictly less than.
( f ) If F is strictly increasing, then F̃ -1 is the usual inverse of function F.

4.20 F is a strictly increasing cumulative distribution function for continuous random 
variable X. Prove: random variable F(X ) is uniformly distributed on the unit 
interval (0, 1).

4.21 Calculate the inverse function F̃ -1(u) in the case that F(x) is a Weibull distribution 
function (2.61).

4.22 Consider the following sequence of random selections from the uniform distri-
bution on the interval (0, 1):

0.4695, 0.2871, 0.7527, 0.9106, 0.5538, 0.1189, 0.8853 .

Calculate the random value for N with a Poisson distribution (l = 3) that is 
implied by the sequence.

4.23 Five random values of U, uniformly distributed on the interval (1,0), are shown 
in the table. Calculate corresponding random values for X1 (exponential with 
b = 2,000), for X2 (Pareto with (a, b) = (2.5; 3,000)), for X3 (lognormal with  
(µ, s) = (5.181, 2.2)), and for X4 (Weibull with (b, d) = (1,000; 0.5)).

Trial
Uniform

u
Exponential

x1

Pareto
x2

Lognormal
x3

Weibull
x4

(1) 0.2097 _________ _________ _________ _________

(2) 0.3562 _________ _________ _________ _________

(3) 0.6970 _________ _________ _________ _________

(4) 0.8245 _________ _________ _________ _________

(5) 0.9882 _________ _________ _________ _________

4.24 (a) Random variable N has a geometric distribution, with

f n p p p nn( ) ( ) ( )= − < < =1 0 1 , 0,1, 2, . . . .

Show that random values of N can be generated by the formula

� �n u p( ) ( )( )( )= − − −log 1 log 1 1 ,
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where vxb denotes the greatest integer function. [Hint: the cumulative 
distribution function at positive integer n is

F n pN
n( ) ( )= − − +1 1 .1

(b) Use moment-generating functions to show that the sum of m identical 
independent random variables, each distributed with a geometric distribu-
tion with parameter p has the special negative binomial distribution with 
probability density function

f n
m n

n
p p m p nm n( ) ( ) ( )=

+ −



 − = < < =

1
1 1, 2, 3, . . . , 0 1 , 0,1, 2, . . . .

(c)  Describe a method for generating random values of a random variable with 
the negative binomial distribution defined in part (b).

4.25 (a)  Random variables 〈Un〉 (n = 1, 2, . . . , 12) are independent and uni-
formly distributed on the interval (0, 1). Show that the distribution of 
X = S12

n=1 Un - 6 is approximately standard normal.
(b)  Use the result of part (a) to devise a method of generating random values 

from a normal distribution with parameters (µ, s).
(c)  Use the result of part (b) to devise a method of generating random values 

from a lognormal distribution with parameters (µ, s).
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We investigate in this chapter claim processes in which all claims are restricted to those 
larger in size than some fixed positive amount—that is, to claims that penetrate an excess 
layer of insurance. Distributions of such excess losses are critical to the quantification of 
such common policy provisions as deductibles and to the pricing of successive layers of 
coverage lying above a first-dollar, or primary, layer of insurance.

5.1. Excess Claim Size
Consider first an unlimited claim-size random variable X and a nonnegative 

constant a. The random variable Y defined by

Y
X a

X a X{=
≤ ≤

− < < ∞
0 if 0

if a

represents the size of claims modified by a policy condition that imposes an underlying  
limit amount a. Here the insurer pays nothing if the claim size is a or less, and the 
sizes of all other claims are reduced by a. In this situation a could represent an amount 
retained by the insured, as in the case of a policy with a deductible, or for an umbrella 
or excess policy it might be the limit of an underlying primary policy.

The distribution function of variable Y is readily obtained from that of X:

F y Y y
y

F y a y
Y

X

( ) { }
( )

= ≤ =
−∞ < <

+ ≤ < ∞






Pr

0 if 0

if 0 .

If E[X ] exists, then so does E[Y ]. Moreover,

E Y ydF y a

u a dF u

udF u udF u a dF u

E X E X a

X

Xa

X X Xa

a

∫

∫

∫ ∫∫

( )[ ]

[ ]

( ) ( )

( ) ( ) ( )

= +

= −

= − −

= −

∞

∞

∞ ∞

[ ; ]. (5.1)

0

0 0

Clearly, E[Y ] ≤ E[X ] whenever both expected values exist.

5. Excess Claims
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For random variable Y the probability that the insurer pays nothing,

F Y X a F aY X{ } { }( ) ( )= = = ≤ =0 Pr 0 Pr ,

is usually a positive number. However, insurers do not always see, nor are they usually 
interested in, claims for which Y = 0. It is therefore more useful, from an insurer’s 
standpoint, to work with a related variable Xa, defined only for X > a:

X X a a Xa = − < < ∞, . (5.2)

Xa represents the excess of X over the limit a, for which claims of size a or smaller are 
ignored and all others are reduced by the amount a. Thus modified, variable X is said 
to be truncated from below and shifted by a. Variable Xa has a distribution function 
obtained conditionally from that of X—and in this case FXa(0) = 0:

F x X a x X a

x

F x a F a
F

x
X X X

X

a { }
( )

( ) ( ) ( )= − ≤ > =

−∞ < <

+ −
−

≤ < ∞








Pr

0 if 0

1
if 0 .

(5.3)

Whenever E[X ] exists the expected value of Xa is

E X
xdF x a

F a
E X E X a

F aa
X

X X

∫ [ ][ ]( )
( ) ( )

[ ] =
+

−
=

−
−

∞

1
;

1
. (5.4)0

[Compare this formula with that of (5.1).] Moreover, if all three moments E[X ], E[X 2], 
and E[X 3] exist, then the second and third moments of Xa are, respectively,

E X
E X E X a a E X E X a

F aa
X

[ ] [ ] [ ]( )[ ]
( )

=
− − −

−
[ ]

; 2 ;
1

, (5.5)2
2 2

[ ] [ ] [ ] [ ] [ ]( )

[ ]( )[ ]

( )

( )

=
− − −

−

+
−

−

E X
E X E X a a E X E X a

F a

a E X E X a
F a

a
X

X

; 3 ;
1

3 ;
1

. (5.6)

3
3 3 2 2

2

The limited expected value of the excess random variable Xa is an obvious combina-
tion of limited severities of the unlimited claim-size variable X:

E X l
xdF x a

F a
l

F l a F a
F a

u a dF u
F a

l
F a l

F a

a
X

l

X

X X

X

Xa

a l

X

X

X

∫

∫

[ ]
( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( )

=
+

−
+ − + −

−






=
−

−
+ − +

−






+

;
1

1
1

1
1

1

0
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E X a l E X a a l F a l a F a
F a

l F a l a F a l F a
F a

E X a l E X a
F a

X X

X

X X X

X

X

[ ] [ ]

[ ] [ ]

( ) ( )

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )

=
+ − − + − + + −

−

+
− + − + −

−

=
+ −
−

; ; 1 1
1

1
1

; ;
1

. (5.7)

Example 5.1.  Claim-size random variable X has an exponential distribution with 
mean b:

F x
x

e x
X x

=
−∞ < <

− ≤ < ∞






− β

( )
0 if 0

1 if 0 .

For the exponential distribution family it is evident that the excess c.d.f. is independent 
of the size of limit a:

F x
e e

e
e xX

x a a

a
x

a

( ) ( )( ) =
− − −

= − ≤ < ∞
− + β − β

− β
− β1 1

1 , 0 .
( )

As a consequence, the excess claim size Xa and unlimited claim size X have the same 
distribution. This means that the existence of a deductible or underlying coverage 
does not affect the distribution of claim size. In particular, E[Xa] = E[X ] = b for 
every limit a. n

Example 5.2.  Claim-size variable X has a Pareto distribution with probability 
density function

f x
x

xX ( ) = αβ
+ β

< < ∞
α

α+( )
, 0 .1

Accordingly, the density function for Xd is

f x
f x d

F d x d d
d

x d
xX

X

X
d ( )

( )
( )

( )
( )

( ) = +
−

= αβ
+ + β

β
+ β







= α + β
+ + β

< < ∞
α

α+

α α

α+1
, 0 .1 1

Hence, Xd is also Pareto-distributed, with parameters (a, d + b). The mean E[Xd] exists 
whenever a > 1, and it is an increasing linear function of the lower limit d:

E X
d

d[ ] = + β
α − 1

. n

Example 5.3.  The table below displays grouped claim-size data derived from a 
sample of 300 claims from an unlimited population with an unknown distribution. 
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Before the data were tabulated these claims were censored by a $50,000 
policy limit and then subjected to a $1,500 straight deductible. Using the 
minimum chi-square approach, we wish to find a log normal dis tribution 
function Fµ,s(x) for the population of the unlimited—non-truncated and 
non-censored—claims.

We begin by defining ten cells with boundaries ck = 5,000k (k = 0, 
1, . . . , 9) and c10 = ∞. The observed cell frequencies are just the tabulated 
group claim frequencies nk. In particular, note that n10 = 14.

The expected cell frequencies fk(µ, s) are expressed in terms of the 
(as yet unknown) unlimited and un modified population lognormal 
c.d.f. Fµ,s(x). The proba bility Pk(µ, s) of a claim being less than or 
equal ck is

)( )
)
(

(µ, σ =
+ −

−
=

=








 µ,σ µ,σ

µ,σ( )
1,500 1,500

1 1,500
if 1, 2, . . . , 9

1 if 10.

P
F c F

F
k

k

k

k

Therefore

P Pk k k( )( ) ( ) ( )( )φ µ σ = µ σ − µ σ− ., 300 , ,1

Minimizing the chi-square statistic

nk k

kk
∑ ( )( ) ( )

( )
χ µ σ =

− φ µ σ
φ µ σ=

,
,

,
2

2

1

10

as a function of µ and s yields a minimum value of c2(µ , s) = 1.6610 corresponding 
to the parameter estimates (µ , s) = (8.67593, 1.18109).

Because sample data were truncated by the 1,500 deductible, the number of claims 
entirely eliminated by the deductible is unknown. However, one can estimate this 
number by means of Fµ ,s (1,500) = 0.1243:

population claims ( ) ( )( )≤ ≈
−

= =# 1,500
300

1 0.1243
0.1243 343 0.1243 43. n

5.2. Excess Severity
The expectation E[Xa] obtained in (5.4), with respect to the unlimited random 

variable X, is called the mean excess claim size at a or excess severity at a.49 As with 
the limited expected value, we can express the mean excess claim size, when it exists, 

49  Illogically in the context of loss distributions, E[Xa] is also known as the mean residual life at a. The term, 
however, makes sense when the random variable X is a failure-time variable encountered in reliability theory. The 
expression apparently found its way into actuarial usage because many distributions used by actuaries have also 
played prominent roles in reliability theory.

Size Group # Claims

0–5,000 139

5,001–10,000 68

10,001–15,000 32

15,001–20,000 15

20,001–25,000 11

25,001–30,000 8

30,001–35,000 5

35,001–40,000 4

40,001–45,000 4

45,001–48,500 14

Total 300
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as a function of the associated limit x. In this context E[Xx] is commonly denoted by 
e(x)—or by eX(x) when dependence on the random variable X must be indicated:

e x
E X E X x

F x
xX

X

[ ] [ ]( ) =
−

−
< < ∞

;
1 ( )

, 0 . (5.8)

The behavior of e(x) for large values of x is characteristic for all distributions in 
a given parametric family and tends to differ from one such family to another. 
For example, when X is exponentially distributed, e(x) is a constant function of x,  
as shown in Example 5.1. Example 5.2 indicates that for Pareto-distributed X with  
a > 1, e(x) is an increasing linear function of x. In the case of the lognormal family, 
e(x) increases without bound as x → ∞, whereas for gamma-distributed X the func-
tion decreases toward a horizontal asymptote as x → ∞. The Weibull e(x) function 
behaves like a/xb for some a and b and large values of x. Typical shapes for the graph 
of y = e(x) are shown in Figure 5.1. Refer to Problem 5.26 for hints on verifying 
these results.

The asymptotic behavior of y = e(x) is occasionally useful when it comes to fitting 
a parametric distribution to a set of sample data. The shape of the graph of the sample 
excess severity function en(x) may suggest an appropriate family of distributions. If 
this graph is approximately linear with positive slope, then a Pareto distribution could 
be used. If it is nearly constant for large x, a gamma or exponential model would be 
indicated. Otherwise, if the graph lies between these extremes, then a lognormal or 
Weibull distribution could be used.

y

x

exponential

lognormal

gamma

Pareto

Weibull

Figure 5.1.  Characteristic Excess Severity 
Function Graphs50

50 Figure 5.1 is suggested by a similar display in Hogg and Klugman [8], p. 109.
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There is, however, a practical restriction in the use of this asymptotic test. The 
characteristic behavior of y = e(x) becomes apparent only for large x, the region for 
which sample data is typically the most sparse. It is therefore essential that the claim 
data contain enough large claims so that en(x) can be reliably calculated for sufficiently 
large values of x.

Example 5.4.  The table displays grouped sample claim data for n = 1,000 policies.

Size Group # Claims Total Loss Severity

0–100 100 6,000 60

101–500 300 95,000 317

501–1,000 240 145,000 604

1,001–2,000 185 260,000 1,405

2,001–4,000 140 450,000 3,214

4,001–5,000 15 66,000 4,400

5,001–10,000 20 150,000 7,500

Total 1,000 1,172,000 1,172

To investigate the behavior of the sample excess severity function for large x, begin by 
calculating values for the relevant sample statistics at the right-hand endpoints of the 
group intervals. For example, values of Fn(2,000), En[X̂; 2,000], and en(2,000) for the 
discrete sample variable X̂ are, respectively,

F

E X

e

( )

( )( )

( )

= + + + =

  = + + +

+ + + =

= −
−

=

2,000
100 300 240 185

1,000
0.8250,

ˆ ; 2,000
6,000 95,000 145,000 260,000

1,000

140 15 20 2,000
1,000

856,

2,000
1,172 856
1 0.8250

1,806.

1000

1000

1000

The complete set of end-point values is shown in Table 5.1.
The tabulated values of en(x) along with a least-squares regression line are displayed 

graphically in Figure 5.2. It is evident that the sample values are very nearly aligned—
the coefficient of determination for the linear regression is R2 = 0.9823. A Pareto model 
is obviously indicated. To fit such a distribution, observe that the regression function 
0.257335x + 1,208.50 can be equated with the Pareto e(x) and the resulting equation 
solved for parameters a and b:

x x+ = + β α −0.257335 1,208.50 ( ) ( 1).
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Thus, (a, b) = (4.88599; 4,696.22). Corresponding end-point values for this Pareto 
distribution are shown in Table 5.1 for comparison.

The technique of estimating Pareto parameters from the slope and intercept of 
the regression line seems to work well in this example, but it should be used with some 
caution. The slope of the regression line is sensitive to the size of the largest claims, and 
the calculated distribution parameters could be significantly affected by changes in just 
a few of these numbers. n

Example 5.5.  Figure 5.3 shows the graph of the sample excess severities for the 
data of Examples 2.6 and 2.7. Superimposed on this graph are the corresponding graphs 
of y = e(x) for the fitted gamma and lognormal distributions obtained in those examples. 
The graph of the gamma model reasonably approximates that of the sample function, 
but the lognormal function diverges significantly from the sample values for x > 1,500. 
This suggests that of the two probability distributions obtained in Chapter 2 the gamma 
might provide the better fit. n

Table 5.1.  Sample and Pareto Excess Severity Functions [Example 5.4]

Sample Distribution (n = 1,000) Pareto Distribution

Size x Fn(x) En[X̂; x] en(x) F(x) E[X; x] e(x)

0 0.0000 0 1,172 0.0000 0 1,208

100 0.1000 96 1,196 0.0978 95 1,234

500 0.4000 401 1,285 0.3900 393 1,337

1,000 0.6400 606 1,572 0.6106 638 1,466

2,000 0.8250 856 1,806 0.8233 904 1,723

4,000 0.9650 1,096 2,171 0.9507 1,098 2,238

5,000 0.9800 1,122 2,500 0.9711 1,136 2,495

10,000 1.0000 1,172 — 0.9962 1,194 3,782

0

1,000

2,000

0 1,000 2,000 3,000 4,000 5,000 x

y

y = 0.257335x+1,208.50
R2 = 0.9823

Figure 5.2.  Sample Excess Severities with  
Regression Line [Example 5.4]
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5.3. Layers of Coverage
In many situations an insurance policy may impose both an upper limit and a lower 

limit on the claims subject to the policy. How these are applied depends on the specific 
policy conditions—for example, on whether the lower limit represents a deductible or 
whether it is the limit of underlying coverage, as in the case of an umbrella or excess 
liability policy. We shall be primarily concerned with the latter case in this section and 
leave the main discussion of the deductible case to the next chapter.

If the excess variable Xa is subject to an upper limit l (as in the case of an excess policy 
written over underlying coverage), then the claim amount paid by the insurer is the 
unrestricted amount x first decreased by a and then limited by l. Such claims are said to 
belong to the layer of coverage defined by a and l. Limit a is called an underlying limit 
or attachment point, whereas l is the layer limit or the width of the layer. An unlimited 
claim of size x is said to penetrate the layer whenever x > a.

If a > 0 the layer is called an excess layer, whereas in the trivial case a = 0 claims 
in the layer are referred to as first-dollar or ground-up claims. The layer defined by 
a and l is sometimes denoted by the “interval” notation (a, a + l ]—although a layer of 
coverage is conceptually different from an interval of claims. This distinction is explored 
in Problems 5.14 and 5.15.

In the case of a straight deductible, however, the deductible limit is generally applied 
after the policy limit. In this situation, the layer width is the policy limit reduced by 
the deductible size, l - a, so that the insured layer is (a, l ]. Deductibles are explored in 
detail in Section 6.5.

Example 5.6 illustrates, in the context of a policy limit and deductible, how upper 
and lower policy limits serve to partition claims into a sequence of layers.

Example 5.6.  An insurance policy with a $3,000 limit and $100 straight 
deductible defines a three-layer structure: (i) the deductible layer between 0 and 100, 
(ii) the insured layer of width 2,900 between 100 and 3,000, and (iii) an uninsured 
layer excess of 3,000. Note that the deductible effectively reduces the policy limit 
from 3,000 to 2,900.

0

200

400

600

800

1,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Sample Gamma Lognormal

x

y

Figure 5.3.  Excess Severity Functions [Example 5.5]
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Suppose that the occurrence of insured events during the policy period gives rise 
to four claims—of sizes 50, 600, 1,800, and 4,000—for a total of 6,450. Three claims 
penetrate the insured layer, and one of these is limited by the policy limit. The table 
shows how they are distributed among the three layers.

Layer Claim 1 Claim 2 Claim 3 Claim 4 Total

[0; 100] 50 100 100 100 350

(100; 3,000] 0 500 1,700 2,900 5,100

(3,000; ∞) 0 0 0 1,000 1,000

Total 50 600 1,800 4,000 6,450

Here the insurer pays 5,100 in the insured layer, whereas the policyholder retains 
1,350 of the total claim amount—350 within the deductible layer plus 1,000 in the 
uninsured layer above 3,000. n

The random variable for claim size Xa,l in the layer (a, a + l ] is defined on the 
interval a < X < ∞ by the equation

X
X a a X a l

l a l X
a l =

− < ≤ +

+ < < ∞





if

if .
(5.9),

Accordingly, the cumulative distribution function of variable Xa,l is

F x

x

F x a F a
F a

x l

l x

X
X X

X
a l

( ) ( ) ( )
( )

=

−∞ < <

+ −
−

≤ <

≤ < ∞













0 if 0

1
if 0

1 if .

(5.10),

It is easy to verify that the moments of the layer distribution are just the limited 
moments of the excess variable Xa:

E X E X l
E X a l E X a

F aa l a
X

[ ] [ ] [ ] [ ]
( )

= =
+ −
−

;
; ;

1
, (5.11),

E X E X l
E X a l E X a a E X a l E X a

F aa l a
X

[ ] [ ] [ ] [ ] [ ] [ ]( )
= =

+ − − + −
−

;
; ; 2 ; ;

1 ( )
, (5.12),

2 2
2 2

E X E X l
E X a l E X a a E X a l E X a

F a
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a l a
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Example 5.7.  Random variable X has a Pareto distribution with parameters 
(a, b) = (2; 3,000). What is the average claim size in the layer 4,000 excess of the limit 
5,000?

We first calculate the limited severities at the attachment point 5,000 and at  
a + l = 9,000. At a = 5,000

E X[ ] ( )= β
α −

− β
+ β













= −



 =

α−

; 5,000
1

1
5,000

3,000 1
3,000
8,000

1,875.
1

A similar calculation yields E[X; 9,000] = 2,250. Therefore, the layer mean is

E X E X
FX

[ ] [ ]
( )
−

−
= −

−
=

; 9,000 ; 5,000
1 5,000

2,250 1,875
1 0.8594

2,667. n

Limits imposed on the size of claims serve to decrease the variability of a claim 
process. To compare the dispersion of different distributions in a meaningful way, one 
can use the coefficient of variation. For variable X the coefficient of variation CV [X ] 
is defined as the ratio of the standard deviation to the mean:

CV X
Var X
E X

SD X
E X

[ ] [ ]
[ ]

[ ]
[ ]

= = . (5.14)

Because the coefficient of variation is a dimension-less ratio, calculating CVs for 
random variables with different means can provide a basis for an apt comparison. 
In addition, CV [X ] has the useful property of remaining invariant whenever X is 
subjected to the linear transformation Lc(X ) = cX, where c > 0 (refer to Problem 2.31): 
CV [cX ] = CV [X ].

Example 5.8.  A claim-size variable 
X has a lognormal distribution with pa-
rameters (µ, s) = (5.9809, 1.800). Prob-
abilities and first and second limited mo-
ments at limits 3,000 and 8,000 for this 
distribution are displayed in the table.

The coefficient of variation of the 
unlimited variable X is

CV X[ ] = − =102,134,385 (2,000)
2,000

4.9531.
2

Limit l FX(l ) E [X; l ] E [X2; l ]

3,000 0.869761 891 1,853,050

8,000 0.952557 1,276 5,774,970

∞ 1.000000 2,000 102,134,385
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Not surprisingly, the distribution of X3K has a smaller CV:

E X

CV X

K

K

[ ]

[ ]
( )

= −
−

=

=

− − −
−

−

=

2,000 891
1 0.869761

8,515,

102,134,385 1,853,050 2(3,000)(2,000 891)
1 0.869761

8,515

8,515

2.9858.

3

3

2

Restricting claims to the layer between 3,000 and 8,000 by imposing on X3K an upper 
limit of 5,000 further reduces the coefficient of variation of the claim-size variable: 
CV [X3K ; 5,000] = 0.6452. n

5.4. Excess Claim Counts
We now investigate the distribution characteristics of the random variable Na, 

the number of claims excess of an underlying limit a. Because the very definition of an 
excess claim depends upon the size of the claim, distributions of excess claim counts 
involve not only the distribution of the ground-up claim count N, but also that of the 
unlimited claim size X.

If the distribution of X remains unchanged over time, then the probability of an excess 
claim also remains constant. Whenever this is true, the distribution of the excess claim 
count Na is related in a simple way to the distribution of the number N of unrestricted, 
ground-up claims.

Let FX(x) be the cumulative distribution function for the claim-size variable X. The 
probability that a claim exceeds a is p = 1 - FX(a), and the probability of obtaining n such 
claims is given by the conditional probability formula (5.15) below. This distribution 
function for Na is derived from the fact that the number n of excess claims, given the 
occurrence of k ground-up claims (n ≤ k), has a binomial distribution with parameters 
(k, p). The resulting formula is valid for every distribution of the ground-up claim-count 
variable N:
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f k kp

pE N

N
k
∑ ( )( )

[ ]

=

=
=

∞

. (5.16)

0

In a similar way one can obtain a formula for the second moment:

E N p E N p p E Na[ ] [ ] ( ) [ ]= + −1 , (5.17)2 2 2

so that

Var N p Var N p p E Na ( )[ ] [ ] [ ]= + −1 . (5.18)2

If N is known to have a specific parametric distribution, one can often determine the 
exact distribution of Na. For example, if N has a Poisson (l) distribution, then (5.15) 
becomes
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This means that Na is also Poisson-distributed, with parameter la = pl.
It is likewise true that if N has a negative binomial distribution of the form (3.17) 

with parameters (a, n), then Na has a negative binomial distribution as well, but with 
parameters (a, pn). A proof is requested in Problem 5.17.

Example 5.9.  The number of claims for a ground-up claim process is Poisson-
distributed with l = 15. Moreover, the unlimited claim-size variable X has the lognormal 
distribution of Example 5.8.

Consequently, the number of claims that penetrate a policy layer with attachment 
point 3,000 also has a Poisson distribution. The expected layer claim count is

E N FK X[ ] ( ) ( )( )( )= λ − = =1 3,000 15 0.130239 1.9536.3 n

5.5. Inflation Effects
In Chapter 2 we saw that the effect of a uniform inflationary trend factor applied 

to an unlimited claim-size variable is moderated by the presence of a policy limit. 
In particular, claims subjected to a positive rate of inflation r and limited by an upper 



154 Casualty Actuarial Society

Distributions for Actuaries

limit increase at a rate less than r. In this section we continue that previous discussion 
and explore the effects of uniform inflationary pressure on claims excess of a fixed 
lower limit.

Suppose that the inflation factor t = 1 + r is applied to the ground-up claim size X  
with c.d.f. FX(x). Then the average claim sizes excess of the limit a before and after trending 
are, respectively,

E X
E X E X a

F a
E X

E X E X a
F aa

X
a

X
[ ] [ ]

( )[ ] [ ] [ ]
( )

= −
−

τ =
τ − τ τ

− τ
[ ; ]

1
and

;
1

.

Consequently, the effective trend factor �τ for the excess claim size Xa is

E X
E X

E X E X a
E X E X a

F a
F a

a

a

X

X

� i i
[ ]
[ ]

[ ]
[ ] [ ]

( )
( )

[ ]τ =
τ

= τ
− τ
−

−
− τ

;
;

1
1

. (5.19)

Formula (5.19) for Xa can be easily generalized to the layer claim-size variable Xa,l, as 
requested in Problem 5.19.

Example 5.10.  Claim-size random variable X is Pareto-distributed with param-
eters (a, b) = (2; 3,000) and is subject to a uniform annual inflation rate of r = 10%. 
What is the annual trend rate for claims excess of 5,000?

The average excess claim size before trending is

eX ( ) = +
−

=5,000
5,000 3,000

2 1
8,000,

whereas the average trended claim size is

e X ( ) ( )= +
−

=5,000 1.10
5,000 1.10 3,000

2 1
8,300.1.10

Therefore, the effective excess trend rate is r� = 8,300/8,000 - 1 = 3.75%.
Similarly, the average trended claim size in the layer (5,000; 9,000] is

E X E X
FX

[ ] [ ]( ) ( )−
−

= −
−

=
1.10 ; 9,000 1.10 1.10 ; 5,000 1.10

1 (5,000 1.10)
2,415 1,988
1 0.841922

2,701.

The non-trended severity in this layer was found in Example 5.7 to be 2,667, so the rate 
of change for the layer claims is r� = 2,701/2,667 - 1 = 1.27%, yet another illustration 
of the damping effect of an upper limit. n

Having just examined what happens to the size of excess claims when the unrestricted 
claim size is subject to inflation, we turn now to a related question: How does such 
an inflationary trend affect the number of excess claims? One would reasonably expect 
that, all other things being equal, a positive rate of inflation applied to the claim size 
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should increase the number of claims excess of a fixed limit a—after trending, all claims 
are larger, so there ought to be more of them that exceed the limit.

In fact, if E[N] is the expected number of ground-up claims and tX is the claim-size 
trend factor, then the expected numbers of excess claims before and after trending are, 
respectively, (1 - FX(a))E [N ] and (1 - FX(a/tX))E [N ]. The effective trend factor �τN for 
the excess claim count due solely to the effect of inflation on the claim size X is therefore 
given by

F a
F aN

X X

X

� ( )
( )τ =

− τ
−

1
1

. (5.20)

To verify that a positive inflation rate applied to the unlimited claim size generally 
increases the excess claim count, observe that tX > 1 implies that a/tX < a, and so FX(a/tX) 
≤ FX(a). Application of this last inequality to (5.20) yields �τN ≥ 1, as expected. A similar 
argument shows that �τN ≤ 1 whenever tX < 1.

Example 5.11.  As in the previous example, claim-size variable X has a Pareto 
distribution with (a, b) = (2; 3,000). The effective annual trend factor for the number 
of claims excess of 5,000 due to 10% inflation in the claim size X is

F
FN

X

X

� ( )
( )τ =

−
−

= −
−

=
1 5,000 1.10

1 5,000
1 0.841922
1 0.859375

1.1241.n

The 12.41% increase in the number of excess claims in the last example turned 
out to be larger than the basic claim-size inflation rate. But this is not always the case. 
Problem 5.21 shows that the rate of change in the number of excess claims can be 
either larger or smaller than the claim-size inflation rate.

Nevertheless, it is possible to generalize about the change in the total aggregate 
excess loss due to an inflationary trend applied to the unrestricted size of loss. The 
expected aggregate loss amount S for claims excess of limit a is

E S E N E X

F a E N
E X E X a

F a

E N E X E X a

a a

X
X

i

[ ]
[ ] [ ]

[ ] [ ] [ ]
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( ) ( )

[ ] [ ]=

= −
−

−

= − .

1 [ ]
;

1

;

Combining equations (5.19) and (5.20) yields the effective trend factor for the aggregate 
variable S:

E X E X a
E X E X aS X

X� [ ] [ ]
[ ] [ ]τ = τ

− τ
−

;
;

. (5.21)

As before, tX > 1 implies that a/tX < a and E[X; a/tX ] ≤ E[X; a]. Consequently, the quotient 
expression in (5.21) cannot be less than 1, and so �τS ≥ tX. Similarly, �τS ≤ tX whenever 
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tX < 1. As we have just demonstrated, the existence of a fixed underlying limit magnifies, 
or leverages, the effect of the basic uniform claim-size trend on the aggregate excess loss.

Example 5.12.  As before in Examples 5.10 and 5.11, claim-size X has a Pareto 
distribution with (a, b) = (2; 3,000) and is subject to a uniform annual inflation rate 
of 10%. In addition, the ground-up claim count is increasing at an annual rate of 5%. 
What is the annual change in the total aggregate loss generated by claims excess of 5,000? 
How much of this change is due solely to claim-size inflation?

Example 5.11 showed that the claim count increases at a rate of 12.41% due to the 
increase in X, so the total increase in the claim count is

rN ( )( )= − =1.05 1.1241 1 18.03%.

Since the excess claim size increases at a rate of 3.75%, as shown in Example 5.10, the 
total aggregate loss increases at the annual rate of

rS ( )( )= − =1.1803 1.0375 1 22.46%.

Thus, 1.2246/1.05 - 1 = 16.6% is the annual rate of increase due only to the claim-size 
inflation. This result, of course, can also be obtained directly from equation (5.21):

rS� ( )= −
−

− =1.10
3,000 1,807
3,000 1,875

1 16.6%. n

5.6. Aggregate Layer Claims
The aggregate-loss random variable S for claims in the excess layer (a, a + l ] is 

defined just as in Section 4.2, but with the modified variables Na and Xa,l as components. 
Formulas for the mean, variance, and skewness of S, in terms of the ground-up claim 
count N and unlimited claim size X, are obtained by applying equations (5.11), (5.12), 
(5.13), (5.16), and (5.18) to the formulas of (4.9).

For example, if the distribution of N has mean E[N ] = l and contagion parameter g 
so that Var[N ] = l + gl2, then the layer mean, variance, and skewness can be obtained 
from the formulas

E S E X a l E X a[ ] [ ] [ ]( )= λ + −; ; , (5.22)

Var S E X a l E X a aE S E S[ ] [ ]( )[ ] [ ] [ ]( )= λ + − − + γ; ; 2 , (5.23)2 2 2

Sk S Var S E X a l E X a aVar S

a E S E S Var S E S

i [ ] [ ]( )[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

( )

( )

= λ + − −

− + γ − γ

; ; 3

3 3 . (5.24)

3 2 3 3

2 2 3

Example 5.13.  The components of a ground-up claim process are as described 
in Examples 5.8 and 5.9—that is, N has a Poisson distribution with mean l = 15, and 
the claim-size variable X is lognormally distributed with parameters (µ, s) = (5.9809, 
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1.8000). What are the distribution characteristics for random variable S for claims in 
the layer 5,000 excess of 3,000?

Formula (5.22) yields the mean

E S[ ] ( )( )= − =15 1,276 891 5,775,

and the variance and skewness are calculated from (5.23) and (5.24):

Var S

Sk S

[ ]

[ ]

( )

( )( )
( )

( )( ) ( )( ) ( )
( )

( ) ( )( )= − − =

=
−

−
−

=

15 5,774,970 1,853,050 6,000 5,775 24,178,800,

15 37,049,701,689 4,790,705,259
24,178,800

9,000 24,178,800 3 3,000 5,775
24,178,800

0.92816.

3 2

2

3 2

Because the expected layer claim count l3K = 1.9536 is small, one should expect the 
cumulative distribution function for S to have significant discontinuities at the smaller 
multiples of the layer limit 5,000. This is clearly evident in Figure 5.4, which displays 
the graph of y = FS(x) as well as that of the continuous shifted gamma approximation 
to the function. n

The distribution of Example 5.13 exhibits some properties typical of the distributions 
of aggregate loss in an excess layer. It is often the case, especially for small portfolios of 
policies or even for large single policies, that the expected layer claim count is small. 
As we have seen, this leads to jump discontinuities of substantial size at the lower 
end of the distribution, thus complicating the task of approximating the distribution 
with one of the continuous approximation models. Nevertheless, these methods can 
still return reasonable results for the long tail of the distribution, usually the most 
important region for applications of the aggregate distribution.
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Figure 5.4.  Layer Aggregate Loss Distribution 
Function [Example 5.13]
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5.7. Problems

5.1 The claim-size random variable X for a claim process has an exponential dis-
tribution with mean 1,000. The expected number of claims for the ground-up 
claim process is 20. However, policy conditions limit claims to the layer between 
1,000 and 3,000.

 (a) Compute the mean and variance of the layer claim size.
 (b) Compute the expected number of layer claims.
 (c)  How do the policy conditions alter the coefficient of variation of the claim-size 

variable?
 (d )  If a uniform inflation rate of 10% per annum is applied to X, what is 

the annual percentage increase in the layer claim size? . . . the layer claim 
count? . . . the total layer aggregate loss?

5.2 Compute eX(3,000) for the following distributions of X. Note that the unlimited 
severity for each distribution is the same: E[X ] = 2,000.

 (a) uniform on [0; 4,000]. (b) gamma, (a, b) = (2; 1,000).
 (c) exponential, b = 2,000. (d ) shifted Pareto, (a, b) = (3; 4,000).
 (e) lognormal, (µ, s) = (5.9809, 1.8000).

5.3 Verify formulas (5.5) and (5.6) for the second and third moments of Xa.

5.4 Verify formulas (5.11), (5.12), and (5.13) for the moments of Xa,l.

5.5 Prove: E X e a e a l
F a l

F aa l X X
X

X
[ ] ( ) ( ) ( )

( )
= − +

− +
−

1
1

.,

5.6 Claim-size variable X has the mixed cumulative distribution function F(x) =  
Sm

k=1wkFk(x), where {Fk} are the component distribution functions and the weights 
{wk} satisfy wk > 0 and Sm

k=1wk = 1. Show that

e x
e x F x

F x
xX

k k kk
m

k kk
m

∑
∑

( )( ) ( ) ( )
( )

=
ω −
− ω

< < ∞=

=

1
1

, 0 .1

1

5.7 Compute Pr{Xd > x }, where 0 < d < x, and the distribution of X is:
 (a) exponential (b). (b) shifted Pareto (a, b).

5.8 Prove: If E [X ] exists, then E [X ] = E [X; x] + e(x) (1 - F(x)) for all x > 0.

5.9 (a)  Show that the excess severity function eX(x) can be expressed by the integral 
formula

e x u x dF u dF u xX Xx Xx∫ ∫( )( ) ( ) ( )= − < < ∞∞ ∞ , 0 .

 (b)  The unlimited claim-size observations x1, x2, . . . , xn from a random sample 
of size n are grouped into a sequence of intervals of the form (ck-1, ck], where 
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nk = # claims in the kth interval, Sknk = n, and x–k = mean claim size in the  
kth interval. Show that the sample excess severity function en(ck) is

e c n x c nn k i i k
i k

i
i k

∑ ∑( )( ) = −
> >

.

5.10 For the lognormal claim-size random variable X of Example 5.8 calculate:
 (a ) CV [X; 3,000] and CV [X; 8,000]. Compare these numbers to CV [X ].
 (b ) Sk[X ], Sk[X; 3,000], and Sk[X; 8,000].

5.11 Calculate CV [X ] in terms of the distribution parameters when the distribution 
of X is:

 (a ) exponential (b). (b ) gamma (a, b).
 ( c ) lognormal (µ, s). (d ) shifted Pareto (a, b) with a > 2.
 ( e ) uniform on the interval [0, a ], a > 0.

5.12 Assume that the policy of Example 5.6 has a ground-up claim process with 
E [N ] = 5 and that the claim-size variable X is Pareto-distributed with (a, b) = 
(3; 5,000). For each layer L defined in that example compute:

 (a ) probability PL that a claim penetrates the layer L.
 (b ) expected number of layer claims E[NL].
 ( c ) expected layer claim size E [XL].
 (d ) expected aggregate layer loss E[SL].

Layer L PL E [NL] E [XL] E [SL]

[0; 100] ____________ ____________ ____________ ____________

(100; 3,000] ____________ ____________ ____________ ____________

(3,000; ∞) ____________ ____________ ____________ ____________

[0; ∞) 1.0000 5.0000 2,500.00 12,500

5.13 Assume that E[X ] exists and that the partition

b b b b bm m= < < < < < = ∞−0 . . .0 1 2 1

 defines a sequence of m contiguous layers. Prove: if µk is the mean claim size for 
the kth layer (bk-1, bk] and pk = Pr{X > bk-1}, then E [X ] = Sm

k=1pkµk.

5.14 Let X denote an unlimited claim-size variable with distribution function F, and 
assume that 0 ≤ a < b. The claim interval between a and b is just the set of claims 
of size X such that a < X ≤ b.

 (a)  Explain how the claim interval between a and b differs from the layer defined 
by a and b.

 (b)  If l is the mean number of ground-up claims, what is the expected number 
of claims in the interval a < X ≤ b?

 (c) Prove that the average claim size in the interval a < X ≤ b is

E X a X b
E X b E X a b F b a F a

F b F a
[ ] [ ] [ ] ( )( ) ( )

( )
( )

( )
< ≤ =

− − − + −
−

; ; 1 1
.
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5.15 For the grouped data of Example 5.4 the indicated groups can be used to define 
either a sequence of claim intervals or a sequence of layers of coverage. Calculate 
the average claim size for each interval and each layer.

Interval/Layer Interval Mean Layer Mean

(0; 100] ___________ ___________

(100; 500] ___________ ___________

(500; 1,000] ___________ ___________

(1,000; 2,000] ___________ ___________

(2,000; 4,000] ___________ ___________

(4,000; 5,000] ___________ ___________

(5,000; 10,000] ___________ ___________

5.16 Verify formula (5.17) for the second moment of the excess claim-count random 
variable Na.

5.17 Prove that whenever the ground-up claim count N has a negative binomial 
distribution of the form (3.17) with parameters (a, n), then the distribution of 
the claim count Na excess of an underlying limit a is also negative binomial, with 
parameters (a, pn), where X is the claim-size variable and p = 1 - FX(a).

5.18 The ground-up claim count N has mean l and contagion parameter g. Prove 
that for the excess claim count Na, the contagion parameter is unchanged: ga = g.

5.19 Derive a generalization of formula (5.19) for the effective trend factor �τ 
associated with the layer claim size Xa,l.

5.20 Show that the leveraging effect on the aggregate excess loss disappears when-
ever the underlying limit a is also trended at the same rate as the claim-size 
variable X.

5.21 Claim-size random variable X is lognormally distributed with (µ, s) = (5.9809, 
1.8000) and is subject to an inflation rate of 10% per annum. Calculate the 
corresponding effective inflation rate on the excess claim count for each of the 
following underlying limits, thus demonstrating that the induced claim-count 
rate of change can be either more or less than the basic claim-size inflation rate.

 (a) a = 3,000. (b) a = 8,000.

5.22 Variable X has a lognormal distribution as in Problem 5.21 and is also subject to 
a 10% inflation rate. Calculate the effective inflation rate on the excess aggregate 
loss for each of the following excess layers. What can be said about the effective 
layer inflation rate as compared to the basic rate of inflation?

 (a) (a, a + l ] = (3,000; 5,000]. (b) (a, a + l ] = (3,000; 8,000].
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5.23 As in Example 5.3, the table summarizes grouped 
claim-size data from a sample of 1,000 claims. 
These claims are excess of a 500 straight deductible 
and have been censored by a policy limit of 
100,000.

 (a)  Use the minimum chi-square method to 
obtain estimates of lognormal parameters 
for the ground-up population claim-size 
distribution.

 (b)  Estimate the number of claims eliminated 
by the policy deductible.

5.24  Assume that X is a continuous claim-size random 
variable for which E[X ] exists as a finite number. 
Derive this integral formula for eX(x):

e x
F u du
F xX

Xx

X

∫ ( )
( )

( )
( )

=
−
−

∞ 1
1

.

5.25 Establish the following asymptotic properties of the mean excess claim size 
function eX(x). In each case it is useful to express eX(x) by the integral formula of 
Problem 5.24.

 (a) If X has the gamma density function

f x x e x( )
( )

=
Γ α βα

α− − β1
,1

then eX(x) ≈ x/(x/b + a - 1) for large x so that limx→∞eX(x) = b. [Hint : Apply 
l’Hôpital’s Rule.]

 (b) If X has a Weibull density function

f x x x x( )( )( ) = α
β

− β < < ∞α
α− αexp , 0 ,1

then eX(x)≈ ba/(axa-1) for large x. [Hint : use l’Hôpital’s Rule to show that

e x
xx

X

( )
( ) ]

β α
=

→∞ α α−lim 1.1

Size Group # Claims

0–1,000 236

1,001–2,000 161

2,001–3,000 107

3,001–5,000 135

5,001–10,000 159

10,001–15,000 71

15,001–25,000 62

25,001–50,000 43

50,001–75,000 11

75,001–100,000 15

Total 1,000
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In this chapter we explore some common applications of the claim-count, claim-
size, and aggregate-loss distributions in property/casualty insurance. In particular, we 
investigate the pricing of policies with various coverage limitations such as deductible 
options, and per-claim and aggregate limits with a variety of properties. We begin by 
reviewing some basic premium concepts and how they relate to distributional theory.

6.1. Premium Concepts
Every insurance policy has an associated loss process described jointly by a claim-count 

random variable N and a claim-size variable Y. In the following discussion Y represents 
the entire claim amount: the indemnity payment plus loss adjustment expense allocated 
to the claim, as limited by policy conditions. Allocated loss adjustment expenses (ALAE) 
are those incurred during the settlement process for an individual claim: attorneys’ fees, 
investigation expense, expert witness fees, and the like. (Unallocated loss adjustment 
expenses, such as claim department overhead, are usually treated as general expenses and 
are not included in the policy aggregate loss.) The expected loss for the policy is then 
E [N ]E [Y ], the mean of the policy aggregate loss distribution. Premium charged for 
such a policy is based on this expected loss, loaded for general expenses, underwriting 
profit, and a charge for risk.

The mean E [N ] of the claim-count variable represents the expected number of 
claims per policy. In most situations, the expected claim count is seen to depend on an 
exposure unit associated with the policy coverage. The exposure unit is usually chosen 
to have certain desirable characteristics: (i) it should be a meaningful indicator of the 
policy’s expected number of claims—the more exposure units covered by the policy 
the greater the expected number of claims, and (ii) one should be able to determine 
an expected number of claims—constant over at least a moderate period of time—
associated with a single exposure unit.

For example, a single auto is the customary exposure unit for an auto liability policy 
with a term of one year. For such a policy the expected number of policy claims E[N ] is 
obtained by multiplying the number of autos covered by the policy for a year, referred to 
as the number of vehicle years, and the expected number of claims per auto per year—
that is, the number of claims per vehicle year. Other common measures of exposure 
include dollars of annual payroll for workers’ compensation policies, the number of 
objects manufactured in a year or dollars of annual sales for product liability coverages, 
and building area measured in square feet for premises liability coverages.

6. Limits and Deductibles
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The expected number of claims per unit exposure is called the claim frequency. 
If m denotes the number of exposure units and j the claim frequency, then obviously

[ ]ϕ = . (6.1)m E N

In addition, the claim severity is the average claim size E [Y ] for the policy. The product 
of frequency and severity, denoted by p, is called the pure premium:

[ ]( )( )= = = ϕ . (6.2)p pure premium frequency severity E Y

It is clear that the pure premium represents the expected aggregate claim amount per unit 
of exposure. Accordingly, exposure times pure premium yields the policy expected loss:

[ ] [ ] [ ]( )= ϕ = . (6.3)mp m E Y E N E Y

In the case that a policy involves more than a single line of business—each with its own 
exposure, frequency, and severity—then the policy expected loss is obtained by summing 
over all component coverages the corresponding products of exposure, frequency, and 
severity.

Example 6.1.  For a certain general liability coverage the exposure unit is $1,000 
of annual sales, the claim frequency is 0.000825 claims per $1,000 sales per year, and 
the claim severity is $5,200.

An insured has $650,000 of sales revenue per year. Consequently, the number 
exposure units for an annual policy is

= =$650,000
$1,000

650,m

the pure premium is p = (0.000825)(5,200) = 4.29, and the expected loss for the policy 
is mp = (650)(4.29) = 2,789. n

To calculate the policy premium one must first load the pure premium amount 
with a provision for general expenses, underwriting profit, and risk. General expenses 
include acquisition expense—commission paid to agents and brokers—salaries and 
overhead, taxes and fees, and other costs of doing business. Underwriting profit is the 
expected excess of premium over paid losses and expenses. (In some lines of business 
the underwriting profit could be zero, or even negative, in anticipation of an offset 
from investment income.) The risk charge is extra premium collected by the insurer to 
cover such contingencies as (i) random fluctuations of losses about the expected values 
and (ii) uncertainty inherent in the selection of critical parameters used in modeling 
the underlying loss process. Insurer risk from the first source is called process risk and 
that from the second, parameter risk.

Provisions for expense, profit, and risk can be treated either as variable—loaded as a 
percent of the final premium amount—or as fixed—added as a dollar amount per unit 
of exposure to the pure premium. Agent and broker commission is generally a variable 
expense, whereas the overhead cost of issuing a policy could be loaded as a fixed expense.
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If variable expenses, plus the load for profit and risk, constitute the fraction v of 
the total policy premium,51 and fixed expenses are f dollars per unit exposure, then the 
modified pure premium

= +
−1

(6.4)R
p f

v

is the rate per unit exposure. The number of exposure units m times the rate R yields 
the final policy premium P:

( ) [ ] [ ]= =
+

−
= +

−1 1
. (6.5)P mR

m p f
v

E N E Y m f
v

In the case that f = 0—that is, all expense amounts are assumed to be variable and 
expressed by the expense ratio v—the factor

ψ =
−
1

1
(6.6)

v

is called a loss-cost multiplier. Rate formula (6.4) then reduces to the simpler form 
R = yp, and the premium formula becomes

( ) [ ] [ ]= = ψ = ψ . (6.7)P mR m p E N E Y

In subsequent sections we shall generally assume that expenses are loaded by means of 
a loss-cost multiplier y, as in (6.7).

Example 6.2.  A business owner wishes to buy annual insurance coverage for 
general liability and auto liability for a business operation that involves premises of 
20,000 square feet and four automobiles. General and auto liability premiums are 
rated separately, as indicated below.

For the general liability coverage the insurer has determined a claim frequency 
of 0.004 per 1,000 square feet per year and a claim severity of 6,500. The general 
liability pure premium is therefore p = (0.004)(6,500) = 26.00. Variable expenses plus 
profit load amount to 30% of the premium; fixed expenses are 4.10 per exposure unit. 
Therefore, the general liability annual rate is

= +
−

=26.00 4.10
1 0.30

43.00 per 1,000 square feet.RGL

For the auto coverage the claim frequency is 0.052 per vehicle year, with a claim severity 
of 2,800 and fixed expense of 9.80 per vehicle year, and so the auto liability rate is

( )( )=
+

−
=

0.052 2,800 9.80
1 0.30

222.00 per vehicle year.RAL

51 As we shall see in Section 6.3, the risk load is often calculated as an amount that varies with the policy limit, as 
well as one that varies with premium.
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Annual liability premium P is obtained by multiplying the number of exposure units 
and the rate for each coverage and summing the results:

( )( ) ( )( )= + = + =20,000
1,000

4 20 43 4 222 $1,748.P R RGL AL
 
n

6.2.  Increased Limit Factors
The premium for many property/casualty policies is calculated first for a basic per-

claim policy limit, and then this basic-limit premium is multiplied by an appropriate 
increased limit factor (ILF) to determine the full policy premium. A set of increased 
limit factors—one for each of the available policy limit options—can be obtained 
from an empirical loss distribution based on loss data organized around the required 
policy per-claim limits, or it can be derived from an appropriate parametric size-of-
loss distribution. Such an analytic distribution fit to empirical sample data is often 
useful for obtaining factors for those higher limits for which data are either sparse or 
nonexistent.

Let Pb denote the policy premium at the basic per-claim limit b and Pl the premium 
at a policy per-claim limit l. Then the increased limit factor I(l ) is defined by

( ) = , (6.8)I l
P
P

l

b

so that Pl = Pb z I(l ). Note also that if the policy premium is based on formula (6.7), 
then pl = pb z I(l ), where pl is the pure premium associated with the limit l.

In the discussion that follows, El[Y ] is the policy severity, including both indemnity 
payment and allocated loss adjustment expense, appropriately modified by the policy 
limit l . When expenses are loaded by means of a loss-cost multiplier y, ILF formula (6.8) 
becomes

[ ] [ ]
[ ] [ ]

[ ]
[ ]

( ) = = ψ
ψ

= . (6.9)I l
P
P

E N E Y
E N E Y

E Y
E Y

l

b

l

b

l

b

The specific form of El [Y ] depends on whether policy conditions stipulate that 
limit l applies to the full claim amount, including both indemnity and allocated loss 
adjustment expense portions of a claim, or whether it applies only to the indemnity 
payment.

Consider first the case that policy limit l applies to the total claim amount: indemnity 
loss plus loss adjustment expense. If Xt denotes the ground-up, unlimited total claim-
size random variable, then the policy severity is El[Y ] = E[Xt ; l ]. In these circumstances 
ILF formula (6.9) can be expressed as

[ ]
[ ]( ) =

;
;

. (6.10)I l
E X l
E X b

t

t
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On the other hand, suppose that the limit l applies only to the indemnity portion 
of the claim, as is usually the case. If random variable X denotes just the indemnity 
component of the claim, then one could write

[ ][ ] = + ε; , (6.11)E Y E X ll

where e is the average per-claim allocated loss adjustment expense, independent of the 
policy limit. In this case (6.9) has the form

[ ]
[ ]( ) =

+ ε
+ ε

;
;

. (6.12)I l
E X l
E X b

Provision for loss adjustment expense in formula (6.11) is an overall average amount e 
added to every claim, regardless of size. Amount e can thus be interpreted as the mean 
of a loss adjustment expense random variable, but in (6.11) it is unnecessary to know 
exactly how that variable is distributed.

As an alternative to this approach, it is sometimes useful to assume that loss 
adjustment expense bears some functional relationship to the size of the indemnity 
payment. One simple scheme is to assume that loss adjustment expense is a fixed multiple 
u of the indemnity amount. This assumption can be approximately true provided that 
the indemnity payment is not too large. (An alternative, hybrid method of expense 
loading is described in Problem 6.6.) Again, assuming that the policy limit applies only 
to the indemnity portion of the claim, one can write

[ ] [ ] [ ] [ ]( )= + = +; ; ; 1 . (6.13)E Y E X l u E X l E X l ul

Then ILF formula (6.9) becomes

[ ]
[ ]

[ ]
[ ]( ) ( )

( )=
+
+

=
; 1
; 1

;
;

. (6.14)I l
E X l u
E X b u

E X l
E X b

The three approaches to loss adjustment expense incorporated into formulas (6.12), 
(6.13), and (6.14) can be combined into a single general formula for the policy severity:

[ ] [ ]( )( )= + ε +; 1 . (6.15)E Y E X l ul

In case that limit l applies to indemnity loss plus loss adjustment expense, set X = Xt  
and e = u = 0 in (6.15). Otherwise, when the limit applies only to the indemnity 
payment, let variable X represent the indemnity-only portion of a claim and set either 
e = 0 or u = 0, as desired.

The Insurance Services Office (ISO) increased limits methodology treats allocated 
loss adjustment expense additively like the constant e in formula (6.15) and loads 
unallocated adjustment expense multiplicatively like the factor 1 + u in that formula.52

52 For an extended discussion of the ISO method, refer to a current ISO Actuarial Service Circular for increased limits 
data and analysis for General and/or Commercial Auto Liability (Jersey City, NJ: Insurance Services Office, Inc.).
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Example 6.3.  Indemnity losses for a portfolio of insurance policies have a lognormal 
claim-size distribution with parameters (µ, s) = (7.000, 2.400). The policy per-claim limit 
applies only to the indemnity portion of a claim, and the average per-claim loss adjustment 
expense is 2,200. Claim frequency for these policies is j = 0.0005 per exposure unit, and 
variable expenses equal 35% of premium.

A set of increased limits factors based on (6.15) with b = 100,000, e = 2,200, and 
u = 0 is shown in the third column of Table 6.1. For example,

( ) = +
+

=1,000
15,345 2,200
8,896 2,200

1.5812.I K

For a policy with 400 exposure units, so that E [N ] = (400)(0.0005) = 0.2000, the 
basic-limit premium is

( )( )=
+

−
=

0.2000 8,896 2,200
1 0.35

$3,414.100P K

The corresponding premium for a policy limit of 1,000,000 is therefore

( ) ( )( )= = =P P I KK K i 1,000 3,414 1.5812 $5,398.1,000 100

Alternatively, if the loss adjustment expense is treated as 20% of the indemnity 
portion of the claim, then the resulting increased limit factors are displayed in the 
fourth column of Table 6.1. For example, in this case

( ) ( )( )
( )( )= =1,000
15,345 1.20
8,896 1.20

1.7249.I K

For the policy with 400 exposure units the basic-limit premium is

( )( )( )=
−

=
0.2000 8,896 1.20

1 0.35
$3,285,100P K

Table 6.1.  Increased Limit Factors [Example 6.3]

Limit l
($000) E[X; l ]

I (l )
ALAE = 2,200

I (l )
ALAE = 20%

100 8,896 1.0000 1.0000

500 13,626 1.4263 1.5317

750 14,668 1.5202 1.6488

1,000 15,345 1.5812 1.7249

2,000 16,738 1.7067 1.8815

3,000 17,390 1.7655 1.9548

4,000 17,782 1.8008 1.9989

5,000 18,048 1.8248 2.0288



168 Casualty Actuarial Society

Distributions for Actuaries

and with a 1,000,000 limit,

( )( )= =3,285 1.7249 $5,666.1,000P K  n

Excess Layer Pricing
Increased limit factors can also be applied to price an excess layer of coverage, 

defined by a policy limit l and attachment point a (l > 0, a > 0), as discussed in 
Section 5.3. If j and Ea,l[Y ] denote, respectively, the ground-up claim frequency and 
the severity for the policy layer (a, a + l ], then the layer pure premium is

( ) [ ]( )= ϕ −1 ,, ,p F a E Ya l X a lt

where Xt is the total ground-up claim amount. In the case that Xt is subject to the layer 
limits we rearrange the pure premium formula as follows:

[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ]

[ ]
[ ]

( )

( )

( )
( )

= ϕ −
+ −
−

= ϕ + −

= ϕ
+

−





1
; ;
1

; ;

;
;

;
;
;

. (6.16)

,p F a
E X a l E X a

F a

E X a l E X a

E X b
E X a l

E X b
E X a
E X b

a l X
t t

X

t t

t
t

t

t

t

t

t

In this special case, a layer factor, applied to the basic-limit pure premium to calculate 
the pure premium for the excess layer, is just the difference of two ground-up increased 
limit factors of the form (6.9), namely,

i ( )( ) ( )= + − .,p p I a l I aa l b

Since Pa,l = m (ypa,l) = m (ypb) (I(a + l ) - I (a)), premium for the excess layer (a, a + l ] 
can be calculated by using the layer formula for policy premium P:

i ( )( ) ( )= + − . (6.17)P P I a l I ab

The simplicity of this basic formula makes it very easy to apply. Because of this, 
it is widely used in increased limits pricing, even in situations where it is not strictly 
appropriate. For example, suppose that the layer limits l and a apply only to the indemnity 
portion of a claim and ALAE is added as in formula (6.11). Then the excess-layer 
premium based on that model would be

[ ] [ ] [ ]

[ ] [ ] [ ]( )

( )

( )

( )
( )

( )

= ψ −
+ −
−

+ ε





= ψ + − + − ε

1
; ;

1

; ; 1 . (6.18)

,P E N F a
E X a l E X a

F a

E N E X a l E X a F a

a l X
X

X



Casualty Actuarial Society 169

Distributions for Actuaries

On the other hand, the layer formula for P yields

[ ] [ ] [ ]
[ ]

[ ]
[ ]

[ ] [ ] [ ]

( )

( )

= ψ + ε
+ + ε

+ ε
−

+ ε
+ ε







= ψ + − .

;
;

;
;
;

; ; (6.19)

P E N E X b
E X a l

E X b
E X a
E X b

E N E X a l E X a

Notice that P = Pa,l and that the load for loss adjustment expense has dropped out 
of the premium calculation in (6.19) entirely. In the situation where such an excess 
policy is written over a primary policy providing first-dollar coverage for the primary 
layer [0, a], this state of affairs is consistent with the assumption that allocated loss 
adjustment expense is paid in its entirety by the primary insurer.

On the other hand, if loss adjustment expense is loaded by means of the factor 
1 + u, then

[ ] [ ] [ ]( )( )= ψ + − +; ; 1 ,,P E N E X a l E X a ua l

where the provision for ALAE in the excess premium is

[ ] [ ] [ ]( )= ψ + −; ; .ALAE E N E X a l E X a u

The layer formula for P yields the premium amount

( )−[ ] [ ]

[ ] [ ] [ ]
[ ]

[ ]
[ ]

[ ]

( )

( )

= ψ +
+

−





= ψ + +

; 1
;

;
;
;

; ; 1 . (6.20)

P E N E X b u
E X a l

E X b
E X a
E X b

E N E X a l E X a u

In this case, for which the ALAE multiplier u is the same for both primary and excess 
policies, the basic layer formula preserves the loss adjustment expense loading exactly 
and P = Pa,l .

Example 6.4.  We return to the portfolio of policies described in Example 6.3 
and calculate the premium for successive excess layers of insurance for a policy with 
m = 400. We use the ILFs constructed in that example under the assumption that the 
average per-claim ALAE payment is e = $2,200.

The basic limit premium was calculated in the previous example to be $3,414. Thus, 
premium P for the layer (1,000,000; 2,000,000] given by the layer formula (6.17) is

( )( ) ( )( )= = =3,414 1.7067 – 1.5812 3,414 0.1255 $428.P

Similarly, for the layer (2,000,000; 3,000,000], we obtain

( )( ) ( )( )= = =3,414 1.7655 – 1.7067 3,414 0.0588 $201.P

Premium amounts for the successive million-dollar layers obtained from these layer 
factors applied to the basic-limit premium are displayed in Table 6.2. n
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Consistency
The premiums calculated in Example 6.4 illustrate an important and desirable 

characteristic of excess layer pricing—premium amounts for successively higher layers 
of constant width decrease as the attachment point becomes larger. In that example, 
premium for the ground-up million-dollar layer is $5,398, and for successively 
higher layers of one-million-dollar width the calculated premium steadily declines 
with increasing attachment point: $428, $201, $121, $82. As we shall see, this is a 
property common to all pricing methods based on expected losses and reasonable 
distributions for the claim-size random variables.

Consider a set of increased limit factors based on the general severity formula 
(6.15). If the claim-size variable X has a continuous probability density function 
fX(x) = F ′X(x), then the ILF function I(x) is twice differentiable with respect to the 
limit x (refer to Problem 2.9). Specifically, for all x > 0

( )
[ ] [ ]( ) ( ) ( ) ( ) ( )( )

′ =
+ −

+ ε
′′ =

− +
+ ε

<
1 1

;
and

1
;

0.I x
u F x

E X b
I x

u f x
E X b

X X

A set of increased limit factors for which I ″(x) < 0 for all limits x is said to be consistent. 
Thus, every set of increased limit factors based on severity formula (6.15) for which the 
claim-size density function is continuous is always consistent.

Consistent sets of increased limit factors share a common property: the premium 
P calculated from the layer formula (6.17) applied to successive excess layers of constant 
width is a decreasing function of the attachment point limit. It is easy to verify this 
assertion in the case that the claim-size variable has a continuous probability density 
function. Assume that in the formula

i ( )( ) ( )= + −P P I x l I xb

the attachment point x is variable, whereas the layer width l is a fixed constant. Then 
the rate of change of premium P with respect to x is

( ) ( )= + −



 .

dP
dx

P
d
dx

I x l
d
dx

I xb

Table 6.2.  Layer Premium [Example 6.4]

Layer ($000) Layer Factor Premium

    [0; 100] 1.0000 3,414

    [0; 1,000] 1.5812 5,398

(1,000; 2,000] 0.1255 428

(2,000; 3,000] 0.0588 201

(3,000; 4,000] 0.0353 121

(4,000; 5,000] 0.0240 82
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Consistency means that I ′(x) is a decreasing function of x, so that

( ) ( )+ < <and hence 0.
d
dx

I x l
d
dx

I x
dP
dx

Therefore, for each fixed l, premium P for the layer (x, x + l ] decreases as the attachment 
point x increases.

6.3. Risk Load
Increased limit factors based on expected-value concepts have generally been thought 

to be inadequate for pricing insurance policies with high limits or attachment points 
unless they were loaded with a charge for insurer risk. With lower claim probabilities 
for such policies, loss behavior associated with excess policies is more volatile and less 
predictable than that of primary policies with lower limits. Insurer risk due to such 
variability is process risk, in contrast to the parameter risk derived from estimation 
errors in selecting the claim-count and claim-size distributions. Process risk has long 
been understood by actuaries as a function of the variance of the basic stochastic claim 
process for a portfolio of policies or line of property/casualty insurance business.

In most approaches to risk-loaded increased limit factors, the risk load r(l ) is 
usually defined as an increasing function of the policy limit l , which is added to the 
expected total policy severity for the policy. The severity formula (6.15) is thus modified

[ ]( )( ) ( ) ( )[ ] + ρ = + ε + + ρ; 1 , (6.21)E Y l E X l u ll

and the resulting risk-loaded increased limit factors are

[ ]
[ ]

( )
( )( ) ( ) ( )

( ) ( )=
+ ε + + ρ
+ ε + + ρ

; 1
; 1

. (6.22)I l
E X l u l
E X b u b

The merits of different methods of quantifying process risk for increased limit 
factors have been debated since the mid-1970s. Robert Miccolis53 suggested in 1977 
that process risk load be added to the policy expected aggregate loss as a constant 
multiple of the variance of the policy aggregate indemnity-loss random variable S:

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]
[ ]

( )

+

= +
+





;

;
; ;

.
2

E N E X l kVar S

E N E X l k
E N Var X l Var N E X l

E N

The multiplier k in this formula is selected arbitrarily to produce the desired level of 
risk loading. The risk load function r(l ) in formula (6.21) is thus given by

( )[ ] [ ]( )( ) [ ]
[ ]

ρ = = + δ ,; ; (6.23)2 2l k
Var S
E N

k E X l E X l

53 Miccolis [16].
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where d = Var [N ]/E [N ] - 1. Setting d = 0, of course, is consistent with the assumption 
that N has a Poisson distribution. Note also that when d = 0 the risk load r(l ) is 
independent of the claim-count random variable and dependent only upon the claim-
size variable. Such a variance-based approach to process risk load was adopted by ISO 
in the early 1980s.54

By mid-decade, however, ISO changed to a method based on the standard deviation 
of the policy aggregate indemnity-loss distribution:

[ ]

[ ]

[ ]
[ ]

[ ]
[ ]

[ ]

( )

( )

( )ρ =

= + δ

= ′ + δ

; ;

; ; , (6.24)

2 2

2 2

l k
Var S
E N

k
E N

E X l E X l

k E X l E X l

where d is defined as in the variance formula (6.23). ISO actuaries cited several reasons 
for this change. Risk-loaded factors based on (6.23) and (6.24) with thick-tailed Pareto 
distributions for X were sometimes inconsistent (for example, refer to Problem 6.10). 
Moreover, it seemed preferable to express the risk load as a dollar amount rather than in 
terms of (dollars)2. In 1991 ISO introduced a new risk-loading method that includes a 
measure of parameter risk as well as process risk. But this new method returned to the 
earlier variance approach to process risk.55

Example 6.5.  We turn again to the portfolio of policies described in Example 6.3. 
Indemnity losses are distributed lognormally with parameters (µ, s) = (7.000, 2.400), 
and allocated loss adjustment expense is 20% of the indemnity payment. We generate 
a set of risk-loaded increased limit factors by using formula (6.22) with e = 0 and  
u = 20%. The risk load r(l ) is obtained by the standard deviation method (6.24) 
with k′ = 0.0277 and d = 0. Thus,

( ) ( )

( ) ( )

ρ = =

ρ = =

100,000 0.0277 512,509,058 627,

1,000,000 0.0277 5,283,276,848 2,013,

so that

( ) ( )( )
( )( )=

+
+

=1,000,000
15,345 1.20 2,013

8,896 1.20 627
1.8074.I

Two sets of increased limit factors—risk-loaded and non-risk-loaded—are displayed 
in Table 6.3. The average increased limit factor in each column is obtained by using the 
indicated portfolio weights for the given set of limits. The ratio of these two averages 

54 Insurance Services Office [9].
55 This approach is based on the paper by Glenn Meyers [15].
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indicates an increase of 1.7955/1.6938 - 1 = 6.0%. This means that using the risk-
loaded factors on a portfolio with this distribution of policy limits would generate 6% 
more premium than would be obtained by using the unloaded factors. n

Unfortunately, both the variance and standard deviation approaches to risk load 
are incompatible with the layer formula (6.17) for pricing an excess layer. For example, 
if the risk load ra,l for the excess layer (a, a + l ] is defined as a multiple of the variance 
of the aggregate indemnity-loss variable S for the layer, then ra,l ≠ r(a + l ) - r(a), 
where r(l ) is defined by (6.23).

To show this in a special case, we first calculate the layer risk load. For simplicity, 
assume that N is the ground-up claim-count variable with d = 0 and that X is the 
ground-up claim-size variable. Then

[ ] [ ]( )

[ ]
[ ]

[ ] [ ]
( )

( )
( )ρ =

−

= + − − + −

1

; ; 2 ; ; .

,

2 2

kVar S
F a E N

k E X a l E X a a E X a l E X a

a l
X

But this means that

[ ] [ ]( )( ) ( ) ( ) ( )ρ = ρ + − ρ − + − < ρ + − ρ2 ; ; ., a l a ka E X a l E X a a l aa l

That is, the risk load ascribed to the layer (a, a + l ] by the basic layer formula, namely 
r(a + l ) - r(a), is larger than the risk load based on the actual variance of the layer 
aggregate-loss random variable.

Overstatement of the risk load remains a technical problem when one uses the 
basic layer formula with risk-loaded ILFs to price excess layers of insurance. Ideally, 
one should first determine the layer premium by applying the basic formula with 
non-risk-loaded factors and then add on the risk load for the layer. Such an approach, 

Table 6.3.  Risk-Loaded Increased Limit Factors [Example 6.5]

Limit l
($000)

E [X; l ]
× 1.20

Risk 
Load
r(l )

I (l )
w/o Risk 

Load

I (l )
w/ Risk 
Load

Limit
Weight

100 10,675 627 1.0000 1.0000 15%

500 16,351 1,473 1.5317 1.5770 10%

1,000 18,414 2,013 1.7249 1.8074 30%

2,000 20,086 2,663 1.8815 2.0128 20%

3,000 20,868 3,090 1.9548 2.1197 10%

4,000 21,338 3,410 1.9989 2.1897 10%

5,000 21,658 3,668 2.0288 2.2407 5%

Average 1.6938 1.7955
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probably too cumbersome to be widely adopted, is more frequently used by reinsurers 
providing excess-of-loss coverage.

6.4.  Aggregate Limits
It is often the case with liability lines of insurance that policies are written not 

only with a per-claim limit but also with an aggregate limit as well. Whereas the per-
claim limit is the maximum the insurance company would pay on a single claim, an 
aggregate limit is the maximum amount that would be paid during the policy term for 
all claims combined.

The policy expected loss under the restrictions imposed by a per-claim limit l 
and an aggregate limit L (where L > l ) is just the expected value E [Sl ; L], where Sl is 
the aggregate-loss random variable based on a claim-size variable N and a claim-size 
variable X limited at l. Thus, the unlimited aggregate mean is

[ ] [ ] [ ]= ; . (6.25)E S E N E X ll

It is often more efficient and accurate to calculate the expected aggregate loss 
eliminated by the limit L—namely E [Sl ] - E [Sl ; L ]—and subtract this amount from 
the unlimited mean (6.25) than it is to calculate E [Sl ; L ] directly. For example, if the 
(unlimited) aggregate distribution function FS(s) has been approximated by one of the 
deterministic models discussed in Chapter 4, then expected excess loss E [Sl ] - E [Sl ; L] 
can be obtained from the integral formula

∫ ∫

∫

[ ] [ ] ( )( ) ( ) ( )

( ) ( )

− = − − −

= −

∞

∞

; 1

. (6.26)

0 0E S E S L s dF s s dF s L F L

s L dF s

l l S S
L

S

SL

In practice, the improper integral in (6.26) is most easily evaluated by numerical 
integration techniques. When a deterministic approximation is not practicable, then 
an approximation to E [Sl ; L ] could be obtained by stochastic simulation.

Thus, when N is the claim-count variable, X is the unlimited indemnity-only 
claim-size variable, and allocated loss adjustment expense is loaded multiplicatively by 
the factor 1 + u, the increased limit factor from the basic limit b with no aggregate limit 
to a per-claim limit l combined with an aggregate limit L is given by

[ ]
[ ] [ ]

[ ]
[ ] [ ]( ) ( )

( )=
ψ +

ψ +
=,

; 1
; 1

;
;

. (6.27)I l L
E S L u

E N E X b u
E S L

E N E X b
l l

The next example illustrates the use of formula (6.27).

Example 6.6.  For a portfolio of liability policies the unlimited indemnity claim 
size distributed lognormally with (µ, s) = (7.000, 2.400). Claim count N is distributed 
so that E [N ] = 1.20 with contagion parameter g = 0.100. Allocated loss adjustment 
expense is assumed to be 20% of the indemnity payment.
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At the basic limit of 500,000 with no aggregate limit the expected policy indemnity 
loss is

[ ] [ ] ( )( )[ ] = = =; 500,000 1.20 21,743 26,092.0.5E S E N E XM

With a per-claim limit of 2,000,000 the expected loss is

[ ] [ ] ( )( )[ ] = = =; 2,000,000 1.20 28,338 34,006.2E S E N E XM

Consider now the case for which the per-claim limit of 2,000,000 is accompanied 
by an aggregate limit of 3,000,0000. In addition to the mean 34,006, the aggregate-
loss variable S2M has SD[S2M] = 151,311 and Sk[S2M] = 9.4728. A numerical integration 
of ∫ ∞

3M(s - 3,000,000) dF̃ (s), where  ̃F (s) is the shifted gamma approximation to FS2M(s), 
yielded

[ ][ ] − =; 3,000,000 91.2 2E S E SM M

Thus,

[ ] = − =; 3,000,000 34,006 91 33,915.2E S M

The ILF for the 2,000,000/3,000,000 limit combination is therefore

( ) = =2 , 3
33,915
26,092

1.2998.I M M

Compare this result with the factor for the 2,000,000 per-claim limit with no aggregate 
limit:

( ) = =2
34,006
26,092

1.3033.I M

The expected policy aggregate losses for several combinations of per-claim and aggregate 
limits for this portfolio, as well as the increased limit factors calculated from them, 
are shown in Table 6.4. n

6.5. Deductibles
The deductible is a coverage modification often used to decrease the policy claim 

count by eliminating small claims less than the deductible amount. It also serves 
possibly to encourage the policyholder to take steps to prevent or limit the occurrence 
of claims. We discuss in this section the standard straight deductible, as well as the less 
common franchise and diminishing deductible options.

By reducing the amount paid by the insurer for some or all claims, deductible 
provisions also serve to lower the premium charged for a policy. Deductible premium 
credits are easily calculated with the help of the claim-size limited pure premium and the 
loss elimination ratio concepts. In many cases, where there are sufficient data available, 
deductible credits can be calculated empirically. In other cases, analytic models involving 
parametric distributions are useful.
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Straight Deductible
The straight deductible is the most common deductible coverage modification. 

It eliminates, from the standpoint of the insurer, all claims less than or equal to the 
deductible amount d, and it reduces the size of larger claims by d. If X represents 
the unmodified, ground-up claim-size variable, excluding allocated loss adjustment 
expense, then application of a straight deductible of size d yields a modified random 
variable, truncated from below and shifted by d:

= − < < ∞, . (6.28)X X d d Xd

Clearly, claims net of such a deductible are excess over an underlying limit d, as 
discussed in Section 5.1.

For all deductible options discussed in this section we shall assume that allocated 
loss adjustment expense is not included in the deductible or policy limit and that 
the policy severity is modeled by the general formula (6.15) with ALAE parameters 
e and u. Thus, the basic-limit pure premium before application of the deductible is

[ ]( )( )= ϕ + ε +; 1 , (6.29)p E X b ub

where b is the basic limit and j the claim frequency.
In practice, the basic-limit pure premium (6.29) is modified to reflect the presence 

of a deductible by applying a deductible credit factor C(d ):

i ( )( )= − < <1 , 0 . (6.30),p p C d d bd b b

Table 6.4.  Expected Aggregate Loss and ILFs with Aggregate Limits 
[Example 6.6]

Per-Claim 
Limit

Aggregate Limit ($000)

1,000 2,000 3,000 4,000 5,000 Unlimited

500,000 26,050 26,092 26,092 26,092 26,092 26,092

1,000,000 29,702 30,306 30,333 30,335 30,335 30,335

2,000,000 — 33,524 33,915 33,988 34,002 34,006

3,000,000 — — 35,421 35,696 35,781 35,821

4,000,000 — — — 36,604 36,808 36,949

5,000,000 — — — — 37,428 37,733

500,000 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000

1,000,000 1.1384 1.1615 1.1625 1.1626 1.1626 1.1626

2,000,000 — 1.2848 1.2998 1.3026 1.3032 1.3033

3,000,000 — — 1.3575 1.3681 1.3713 1.3729

4,000,000 — — — 1.4029 1.4107 1.4161

5,000,000 — — — — 1.4345 1.4462
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Of course, this implies that the deductible-modified policy premium is obtained in the 
same way:

i ( )( )= −1 . (6.31),P P C dd b b

The deductible premium credit amount is therefore Pb C(d ). Note also that the existence 
of the deductible reduces the basic limit policy layer width to b - d.

A formula for the deductible credit factor C (d ) is easily derived by starting with 
the modified basic-limit pure premium, calculated from first principles as the product 
of the policy frequency and severity:

[ ] [ ]

[ ] [ ]

( )

( )

( ) ( )

( ) ( )

( )

( )

= ϕ −
−

−
+ ε





+

= ϕ − + − ε +

1
; ;
1

1

; ; 1 1 . (6.32)

,p F d
E X b E X d

F d
u

E X b E X d F d u

d b X
X

X

Equating the two expressions for pd,b in (6.30) and (6.32), we solve for C (d ):

[ ] [ ]
[ ]( ) ( ) ( ) ( )=

ϕ + ε +
=

+ ε
+ ε

( ); 1 ;
;

. (6.33)C d
E X d F d u

p
E X d F d

E X b
X

b

X

The expression in (6.33) is merely the ratio of the pure premium eliminated by 
the deductible to that of the unmodified policy layer [0, b]. Accordingly, the ratio is 
referred to as a loss elimination ratio. The loss elimination ratio concept is useful 
in quantifying the effects of a variety of coverage modifications mandated by policy 
conditions.

Formula (6.31) yields the basic-limit premium modified by the straight deductible d, 
but how should the premium for a higher limit l be so adjusted? Recall that Pl =  
Pb z I(l ), where I(l ) is the increased limit factor for limit l with respect to the basic limit b, 
and that the premium credit amount for the existence of the deductible is Pb z C(d ). 
Therefore,

i ( )( ) ( ) ( )= − = − . (6.34),P P P C d P I l C dd l l b b

Example 6.7  As in Example 6.3, consider a portfolio of policies for which the 
ground-up indemnity claim size X has a lognormal distribution with parameters 
(µ, s) = (7.000, 2.400) and allocated loss adjustment expense is u = 20% of the 
indemnity amount. The basic limit is b = 100,000. We calculate the credit factors, 
as well as the resulting frequency and severity, for five straight deductible options: 
{1,000; 2,000; 3,000; 4,000; 5,000; 10,000}. Results are tabulated in Table 6.5. For 
example, equation (6.33) with u = 20% and e = 0 implies that

[ ]
[ ]( ) = = =2,000

;
;

1,111
8,896

0.1249.C
E X d
E X b
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The ground-up claim frequency for this portfolio is j = 0.000500. Consequently, for a 
policy with deductible d = 2,000 we have an deductible-adjusted frequency

( )( ) ( )( )ϕ − = − =1 0.000500 1 0.5989 0.000201.F dX

In addition, the modified severity is

[ ] [ ]
( ) ( ) ( )−

−
+ = −

−
=

; ;
1

1
8,896 1,111

1 0.5989
1.20 23,291,

E X b E X d
F d

u
X

yielding the pure premium p = (0.000201)(23,291) = 4.671.
In Example 6.3 we calculated the basic-limit premium for a policy with 400 exposure 

units to be $3,285. Accordingly, premium for this policy with a limit of 1,000,000 and 
a 2,000 deductible is P = (3,285)(1.8074 - 0.1249) = $5,527. n

Franchise Deductible
The franchise deductible was one of the first coverage modifications to arise. Marine 

underwriters from the earliest times used it with policies insuring cargo shipments. It is 
now utilized in some types of workers’ compensation coverages. The franchise deductible 
eliminates all claims less than or equal to the deductible or “franchise” amount d, and 
claims in excess of d are paid in full. Consequently, application of a franchise deductible d 
to the unlimited, ground-up random variable X results in the truncated, but non-shifted 
variable

= < < ∞, .X X d Xd

In this case, the deductible-modified basic-limit pure premium is

[ ] [ ]( )( )( ) ( ) ( )= ϕ − + − + ε +; ; 1 1 . (6.35),p E X b E X d F d d ub d X

Table 6.5.  Straight Deductible Credit Factors [Example 6.7]

Ded d E [X ; d ] FX(d ) C (d ) Frequency Severity Pure Prem

0 0 0.0000 0.0000 0.000500 10,675 5.338

1,000 659 0.4847 0.0741 0.000258 19,182 4.942

2,000 1,111 0.5989 0.1249 0.000201 23,291 4.671

3,000 1,478 0.6625 0.1661 0.000169 26,375 4.451

4,000 1,793 0.7051 0.2016 0.000147 28,903 4.262

5,000 2,071 0.7364 0.2328 0.000132 31,070 4.095

10,000 3,144 0.8215 0.3534 0.000089 38,669 3.451
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It is easy to show that the deductible credit factor for a franchise deductible of size d 
and basic limit pure premium given by (6.29) is

[ ]
[ ]
( )( ) ( ) ( )

=
− − + ε

+ ε
; 1

;
. (6.36)C d

E X d d F d F d
E X b

X X

Example 6.8.  We recalculate the deductible credit factors of Example 6.7 in the 
case that d is a franchise deductible. For instance,

[ ]
[ ]

( )( ) ( ) ( )( )=
− −

=
− −

=2,000
; 1

;
1,111 2,000 1 0.5989

8,896
0.0347.C

E X d d F d
E X b

X

Moreover, the resulting claim frequency and severity for a deductible of size 2,000 are, 
respectively,

( )ϕ = −
−

+





=0.000201 and
8,896 1,111

1 0.5989
2,000 1.20 25,691.

The full set of results is displayed in Table 6.6. As one would expect, the premium 
credit for a franchise deductible is less than that for a straight deductible of equal 
size—the straight deductible eliminates a larger fraction of the pure premium than is 
eliminated by the corresponding franchise deductible. n

Diminishing Deductible
The diminishing (or disappearing) deductible is an alternative that incorporates 

features of both the straight and franchise deductibles. Such a policy modification 
eliminates all claims less than a positive deductible amount d and pays in full all claims 
in excess of a larger amount D, D > d. Claims between d and D in size are paid net of 
a deductible amount that declines linearly from size d at X = d to 0 at X = D—that 

Table 6.6.  Franchise Deductible Credit Factors [Example 6.8]

Ded d E [X ; d ] FX(d ) C (d ) Frequency Severity Pure Prem

0 0 0.0000 0.0000 0.000500 10,675 5.338

1,000 659 0.4847 0.0162 0.000258 20,382 5.251

2,000 1,111 0.5989 0.0347 0.000201 25,691 5.152

3,000 1,478 0.6625 0.0523 0.000169 29,975 5.058

4,000 1,793 0.7051 0.0690 0.000147 33,703 4.970

5,000 2,071 0.7364 0.0846 0.000132 37,070 4.886

10,000 3,144 0.8215 0.1528 0.000089 50,669 4.522
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is, the deductible “disappears” at D. Thus, the deductible amount, as a function of 
the unrestricted claim value x, is

( )
( )

= −
− ≤ ≤

< < ∞








if

0 if .

(6.37)Ded x

d
D d

D x d x D

D x

Like the franchise deductible, the diminishing deductible has the advantage of 
eliminating, from the standpoint of the insurer, numerous small claims while at the 
same time paying larger claims in full. However, the diminishing deductible can be 
more difficult to administer.

It is a straight-forward exercise to show that the deductible-modified random 
variable Xd,D is defined for X > d by

( )
= −

− < ≤

< < ∞
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The distribution function for variable Xd,D is therefore
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In the case that allocated loss adjustment expense is loaded multiplicatively (with e = 0 
in (6.29)), the credit factor C(d, D) for the disappearing deductible defined by d and D is

+
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F D F d

X

X X

X X

Example 6.9.  We now calculate the deductible credit factors for the policies 
of Example 6.7 with a diminishing deductible for which D = d + 1,000. The factors 
are displayed in Table 6.7, compared with those obtained in Examples 6.7 and 6.8. 
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Note that for a given d the straight deductible eliminates the largest percent of the 
total policy loss, the franchise deductible the least percentage, and the diminishing 
deductible eliminating an amount between the two extremes. n

Deductibles and Inflation
Because the characteristics of claims net of a straight deductible are similar to those 

of excess claims, the deductible exerts a comparable leveraging effect on an inflationary 
trend, as discussed in Section 5.5.

Suppose, for example, that the pure premium for a policy with a fixed straight 
deductible of size d is subjected to a uniform trend factor t = 1 + r. Assuming first that 
claim-size variable X is unlimited from above by the policy conditions, we calculate the 
trended pure premium:

( )[ ] [ ] ( )( ) ( )= ϕ + − τ + − τ ε1 ; 1 .p r E X E X d F dr X

The effective trend factor is therefore

� � [ ] [ ]
[ ] [ ]

( )
( )( ) ( )

( )τ = + = +
− τ + − τ ε

− + − ε
1 1

; 1
; 1

. (6.41)r r
E X E X d F d

E X E X d F d
X

X

Both E [X ; x] and FX (x) are nondecreasing functions of x, so that

� �< ≤ ≤ <0 or 0. (6.42)r r r r

Thus, in the absence of other policy limits, the straight deductible magnifies the effect 
of a uniform trend.

However, if policy claims are limited by an upper limit b, then

� [ ] [ ]
[ ] [ ]

( )
( )( ) ( )

( )τ = +
τ − τ + − τ ε

− + − ε
1

; ; 1
; ; 1

. (6.43)r
E X b E X d F d

E X b E X d F d
X

X

The damping effect of the upper limit in this case sometimes prevents inequalities (6.42) 
from holding for certain combinations of b, d, and r. This phenomenon is illustrated in 
the next example.

Table 6.7.  Deductible Credit Factors [Example 6.9]

Ded d
Straight 

C (d )
Diminishing 

C (d,D )
Franchise 

C (d )

1,000 0.0741 0.0233 0.0162

2,000 0.1249 0.0424 0.0347

3,000 0.1661 0.0599 0.0523

4,000 0.2016 0.0766 0.0690

5,000 0.2328 0.0917 0.0864



182 Casualty Actuarial Society

Distributions for Actuaries

Example 6.10.  A policy has a straight deductible of d = 500. The ground-up claim-
size variable X has a shifted Pareto distribution with (a, b) = (2; 8,000). Moreover, j = 0.25 
and e = 50. If claims are unlimited by policy conditions, then the policy pure premium is

[ ] [ ]( )( )
( )

( )
( )( )( )

= ϕ − + − ε

= − + −

=

; 1

0.25 8,000 471 1 0.1142 50

1,893.

0p E X E X d F dX

However, if claims are subjected to a 5% uniform trend, then

[ ] [ ]( )( )
( )

( ) ( ) ( ) ( )
( )( )( )

= ϕ − + − ε

= − + −

=

1.05 1.05 ; 1.05 1 1.05 1.05

0.25 8,400 472 1 0.1092 52.5

1,994.

5%p E X E X d F dX

Thus, the effective trend rate is

� = − = − =1
1,994
1,893

1 5.3%,5%

0
r

p
p

greater than the nominal 5%.
On the other hand, if policy conditions limit claims to l = 5,000, replace E [X ] in 

the above calculations with the limited severity E [X ; 5,000] = 3,007. Then

� = − = − =1
677.3
662.7

1 2.2%. (6.44)5%

0
r

p
p

Here the natural increase in the effective trend rate has been dampened by the presence 
of the policy limit. n

6.6. Problems
6.1 For a certain liability coverage the claim frequency is j = 0.00075 and the 

severity is E [Y ] = 6,000. For these policies expenses are all variable with  
v = 25%. For a policy for an insured with 2,500 exposure units, calculate:
(a) pure premium p. (b) expected # policy claims E[N ].
(c) policy expected loss. (d ) loss-cost multiplier g.
(e) rate R. ( f ) policy premium P.

6.2 A product liability policy is issued for a premium of $13,000. The insured’s 
exposure amount is $2,100,000 of product sales, and the exposure unit is 
$1,000 of sales. For this line of business the severity at the policy limit is 
9,950, and the policy has a loss-cost multiplier y = 1.60. Calculate:
(a) rate R. (b) pure premium p.
(c) claim frequency j. (d ) expected # policy claims E[N ].
(e) policy expected loss. ( f ) variable expense ratio v.
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6.3 For the policy of Problem 6.2 instead of treating all expenses as variable 
assume that there is fixed expense of $0.50 per exposure unit and variable 
expense is 30% of premium. Calculate:
(a) rate R. (b) pure premium p.
(c) claim frequency j. (d ) expected # policy claims E[N].
(e) policy expected loss.

6.4 The average claim frequency for a portfolio of policies is j = 0.000800 per 
policy year. If the claim-count distribution is Poisson, compute the probability 
that an individual annual policy selected from this portfolio will give rise to 
more than a single claim when the number of exposure units is
(a) 1,000. (b) 2,000.

6.5 Assume that the distribution of the unlimited indemnity claim size X for a portfolio 
of policies is lognormally distributed with (µ, s) = (6.800, 2.600).
(a)  Complete the following table of increased limit factors based on formula 

(6.12) with an average per-claim ALAE = 2,500.

Limit l E [X; l ] ALAE I (l )

100,000 9,178 2,500 1.000

250,000 ____________ ____________ ____________

500,000 ____________ ____________ ____________

1,000,000 ____________ ____________ ____________

2,000,000 ____________ ____________ ____________

5,000,000 ____________ ____________ ____________

(b)  Alternatively, assume that ALAE is 25% of the indemnity payment. Complete 
the following table of increased limit factors based on formula (6.14).

Limit l E [X; l ] ALAE = 25% I (l )

100,000 9,178 2,295 1.000

250,000 ____________ ____________ ____________

500,000 ____________ ____________ ____________

1,000,000 ____________ ____________ ____________

2,000,000 ____________ ____________ ____________

5,000,000 ____________ ____________ ____________

6.6 Consider the following alternative to the two methods of loading allocated loss 
adjustment expense in an ILF formula—the per-claim average amount e of 
formula (6.12) and the fixed multiple u of the indemnity payment in formula 
(6.14). Here the ALAE for smaller claims is loaded as a percent of the indemnity 
payment, and for larger claims ALAE is fixed at a constant per-claim average.
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Let X be the unlimited claim-size (indemnity only) random variable. Assume 
that the allocated loss adjustment expense is a fixed multiple r (r > 0) of claim 
size X whenever X is not larger than the claim size c and that ALAE has the 
constant value rc when X > c. Thus the policy claim amount is

=
+ ≤

+ >





if

if .
Y

X r X X c

X rc X c

Show that in this case the policy severity at limit l is

[ ]
[ ]
[ ] [ ]

( )
=

+ ≤

+ >







; 1 if

; ; if .
E Y

E X l r l c

E X l r E X c l c
l

6.7 For the portfolio of policies of Example 6.3 construct an ILF table using the method 
of loading allocated loss adjustment expense described in Problem 6.6. Assume that 
r = 20% and c = 750,000. Compare the results to those obtained in Example 6.3.

Limit l
($000)

I (l )
e = 2,200

I (l )
u = 20%

I (l )
limited

100 1.0000 1.0000 1.0000

500 1.4263 1.5317 __________

750 1.5202 1.6488 __________

1,000 1.5812 1.7249 __________

2,000 1.7067 1.8815 __________

3,000 1.7655 1.9548 __________

4,000 1.8008 1.9989 __________

5,000 1.8248 2.0288 __________

6.8 (a)  Construct the following ILF table using the risk-loaded formula (6.22). Assume 
that the unlimited indemnity claim size X has a shifted Pareto distribution 
with (a, b) = (3; 6,000) and that e = 0, u = 20%. Use the standard deviation 
method of risk loading (6.24) with k′ = 0.5000 and d = 0.1000.

Limit l E [X; l ] ALAE r(l )
I (l )  

w/o RL
I (l )  

w/ RL Weight

1,000 796 159 447 1.0000 1.0000 10%

2,000 ______ ______ ______ _______ _______ 5%

3,000 ______ ______ ______ _______ _______ 15%

4,000 ______ ______ ______ _______ _______ 15%

5,000 ______ ______ ______ _______ _______ 25%

7,500 ______ ______ ______ _______ _______ 10%

10,000 ______ ______ ______ _______ _______ 20%
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(b)  Calculate the overall premium effect of using the risk-loaded factors in place 
of the unloaded factors.

6.9 Show that the risk-load parameter d of formulas (6.23) and (6.24) can be 
expressed as d = gE [N ], where g denotes the contagion parameter for the claim-
count variable N.

6.10 Construct the following table of increased limit factors using the risk-loaded 
formula (6.22). Assume that the unlimited indemnity claim size X has a shifted 
Pareto distribution with (a, b) = (0.780, 100) and that e = u = 0. Use the variance 
method (6.23) for calculating the risk-load function r(l ) with k = 0.0000005 
and d = 0. Calculate the layer factors for successive layers of 1,000,000 width 
and thereby demonstrate the inconsistency of this set of ILFs.

Limit l E [X; l ] r(l ) I (l ) Layer Factor

1,000,000 2,994   622 1.0000 —

2,000,000 3,562 1,448 1.3858 0.3858

3,000,000 3,936 2,375 1.7458 0.3600

4,000,000 _________ _________ _________ _________

5,000,000 _________ _________ _________ _________

6,000,000 _________ _________ _________ _________

7,000,000 _________ _________ _________ _________

8,000,000 _________ _________ _________ _________

9,000,000 _________ _________ _________ _________

10,000,000 _________ _________ _________ _________

6.11 Consider a policy selected from the portfolio of Example 6.6 with per-claim 
limit l. Calculate the loss eliminated by the addition of an aggregate limit of size l  
and obtain the resulting loss elimination ratio when l equals:
(a) 1,000,000. (b) 2,000,000. (c) 3,000,000.
(d ) 4,000,000. (e) 5,000,000.

6.12 (a)  Assuming that variable expenses and profit load are 25% of premium, 
calculate the premium for a policy selected from the portfolio of Example 6.6  
with a per-claim limit of 1,000,000 and no aggregate limit.

(b)  What is the premium credit if the policy in part (a) is written with an 
aggregate limit of 1,000,000?

6.13 The following set of twelve (unadjusted) losses are incurred on a policy with a 
per-claim limit of l = 20,000 and a deductible of size d = 2,000:

{
}

1,000; 1,550; 1,700; 2,200; 2,500; 3,000;

5,200; 9,000; 11,000; 12,500; 15,000; 19,800 .
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Compute the total amount paid by the insurer (exclusive of loss adjustment 
expense) and the empirical loss elimination ratio for this set of claims if the 
deductible is
(a) a straight deductible. (b) a franchise deductible.

6.14 Repeat the calculations requested in Problem 6.13 if the policy in that problem 
has a per-claim limit of l = 12,000.

6.15 Derive formula (6.33) for the franchise deductible credit factor.

6.16 (a)  Calculate the straight deductible factors and corresponding pure premiums 
for the portfolio of policies of Example 6.7, this time with ALAE parameters 
e = 500 and u = 0.

(b)  Calculate the franchise deductible factors and corresponding pure premiums 
for the portfolio of policies of Example 6.8 with ALAE parameters of part (a).

6.17 A policy has a basic limit b = 5,000 and a deductible of size d. Assume that 
the underlying claim size variable X has a shifted Pareto distribution with 
(a, b)=(3.00;10,000). Assume also that the unlimited claim frequency is  
j = 0.005 and e = 250. Compute C(d ), the policy frequency and severity, 
and the pure premium for deductibles of sizes {0; 250; 500; 750; 1,000} in 
the case of
(a) a straight deductible. (b) a franchise deductible.

6.18 Prove that on the interval 0 < d < b the deductible credit factors (6.33) and 
(6.36)
(a) are increasing functions of d.
(b) satisfy the inequality 0 < C(d ) < 1.

6.19 Verify formulas (6.38), (6.39), and (6.40) for the diminishing deductible.

6.20 Verify inequalities (6.42) for a deductible-modified uniform trend rate.

6.21 A portfolio of policies described in Example 6.7 has a total expected ground-up 
claim count of 500.
(a)  For each of the indicated straight deductibles calculate (i ) the total number 

of claims eliminated by the deductible and (ii) the percent of the total 
ground-up basic-limit loss eliminated by the deductible.

Deductible
# Claims

Eliminated
% BL Premium

Eliminated

1,000 ____________ ____________

2,000 ____________ ____________

3,000 ____________ ____________

4,000 ____________ ____________

5,000 ____________ ____________
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(b)  Assuming that the claim-size X is subjected to a 10% uniform trend, perform 
the same calculations requested in part (a).

Deductible
# Claims

Eliminated
% BL Premium

Eliminated

1,000 ____________ ____________

2,000 ____________ ____________

3,000 ____________ ____________

4,000 ____________ ____________

5,000 ____________ ____________

6.22 Verify the calculation of the pure premium amounts used in equation (6.44).
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A.1. Distribution Approximation
Normal Distributions

The cumulative distribution function of the standard normal random variable Z is 
defined by the integral

∫ ( )( )Φ =
π

− −∞ < < ∞−∞

1
2

exp , .1
2

2z u du zz

This integral cannot be evaluated by the elementary method involving an antiderivative 
of the integrand. Consequently, mathematicians have developed approximation formulas 
involving easily calculated expressions. One such formula, based on a rational function, is 
cited by Abramowitz and Stegun:56

z
Q z z

Q z z
( )

( )
( )

Φ ≈
− −∞ < <

− ≤ < ∞







if 0

1 if 0 ,
(A.1)

where

Q z a zk
k

k
∑( ) = +



=

−1
2

1
1

6 16

and

a a a

a a a

= = =

= = =







0.0498673470 0.0211410061 0.0032776263

0.0000380036 0.0000488906 0.0000053830.

1 2 3

4 5 6

The error in approximation (A.1) is bounded by 1.50 × 10-7.
For users of Microsoft Excel, the built-in worksheet function norm.s.dist provides 

an approximation with precision similar to that of (A.1):

56 Abramowitz and Stegun [1], p. 932. Formula (A.1) is one of several approximations to F included in this standard 
reference work.

Appendix
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FALSE

z z z
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In addition, Excel provides the related worksheet function norm.dist, which returns 
values of the distribution functions for the normal random variable Y = sZ + µ with 
parameters µ and s (µ > 0, s > 0):

( )

( )( ) ( )

( ) ( )

( )

( )

µ σ ≈ = Φ − µ σ − ∞ < < ∞

µ σ ≈ =
πσ

− − µ σ .

, , , , ,

, , ,
1

2
exp (A.3)1

2
2 2

y F y y z

y f y y

Y

YFALSE

NORM.S.DIST TRUE

NORM.S.DIST

For the purpose of Monte Carlo simulation it is also useful to have available 
an approximation to the inverse function F-1(u). Abramowitz and Stegun offer the 
following rational function (as usual, log x denotes the natural logarithm function):57

u x
b x b x b x

c x c x c x
( )Φ ≈ −

+ +
+ + +

− ,
1

(A.4)1 0 1 2
2

1 2
2

3
3
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2log if 0 0.5

2 log 1 if 0.5 1

and

b b b

c c c

= = =

= = =







2.515517 0.802853 0.010328

1.432788 0.189269 0.001308.

0 1 2

1 2 3

The error in (A.4) is bounded by 4.50 × 10-4. Excel also provides the useful worksheet 
function

u u u( ) ( )≈ Φ < <−NORM.S.INV , 0 1. (A.5)1

Gamma Distributions
The gamma function, defined by the convergent improper integral

x u e du xx u∫( )Γ = < < ∞− −∞ , 0 ,1
0

57 Ibid., p. 933.
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can be approximated on the interval 1 ≤ x ≤ 2 by the polynomial

x d x xk
k

k
∑( ) ( )Γ ≈ + − ≤ ≤
=

1 1 , 1 2, (A.6)
1

8

where

d d d

d d d

d d

= − = = −

= = − =
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0.577191652 0.988205891 0.897056937

0.918206857 0.756704078 0.482199394

0.193527818 0.035868343.

1 2 3

4 5 6

7 8

This approximation, of course, can be extended to all positive x by use of the recursive 
formula G(x) = (x - 1)G(x - 1). Error in (A.6) is bounded by 3 × 10-7.58 In Microsoft 
Excel, G(x) can be calculated by using the composition of two worksheet functions: 
exp(gammaln(x)) ≈ G(x) for x > 0.

In Section 2.3 we showed that the gamma cumulative distribution function (2.16) 
can be expressed by the formula

F x

x

x
x
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0 if 0

,
if 0 0, 0 ,

(A.7)

where G(x, a) is the incomplete gamma function:

x u e du xux
∫( ) ( )Γ α = α > ≤ < ∞α− −, 0 , 0 . (A.8)1
0

The incomplete gamma function (A.8) has a power series expansion:
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so that the gamma distribution function (A.7) has a corresponding power series 
representation

F x
x e x

k

x k

k
∑( ) ( )

( )
( )

( ) ( )=
β

Γ α +
+

β
α + α +







α − β

=

∞

1
1

1 . . .
. (A.9)

1

An approximation to the gamma distribution function (A.7) can thus be obtained by 
using an appropriate partial sum of the series (A.9).

58 Ibid., p. 257.
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Again, for users of Microsoft Excel, the worksheet function gamma.dist 
provides an approximation to both the probability density and the cumulative 
distribution functions:

x f x x e x

x F x f x dx

x

x
∫

( ) ( ) ( )

( ) ( ) ( )

α β ≈ =
β Γ α

≤ < ∞

α β ≈ =

α
α− − β

GAMMA.DIST FALSE

GAMMA.DIST TRUE

,, , ,
1

0 ,

, , , . (A.10)

1

0

In addition, the worksheet function gamma.inv returns an approximation to the 
inverse cumulative distribution function:

u F u u( ) ( )α β ≈ ≤ <−GAMMA.INV , , , 0 1. (A.11)1

Lognormal Distributions
For the lognormal distribution function Microsoft Excel provides two worksheet 

functions. lognorm.dist approximates the lognormal density and cumulative distri-
bution functions with parameters µ and s (µ > 0, s > 0):

x F x x x

x
x

x( )

( )( ) ( ) ( )

( ) ( )
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− − µ σ
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, , ,
1
2

exp log (A.12)1
2

2 2

lognorm.inv provides values of the inverse c.d.f.:

u F u u( ) ( )µ σ ≈ ≤ <−LOGNORM.INV , , , 0 1. (A.13)1

Weibull Distributions
As in the case of the previously mentioned distributions, the single Excel worksheet 

function weibull.dist provides an approximation to both the probability density and 
the cumulative distribution functions of the Weibull distribution with parameters b 
and d (b > 0, d > 0):

x F x x x

x f x x x

( )

( )

( ) ( ) ( )

( ) ( ) ( )

δ β ≈ = − − β ≤ < ∞

δ β ≈ = δ
β

− β

δ

δ
δ− δ
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WEIBULL.DIST FALSE

, , , 1 exp , 0 ,

, , , exp . (A.14)1

A.2. Answers to Selected Problems

1.1 (b) Hint: (Ec ∪ Fc)c = E ∩ F.
 (c) S = {∅, {a}, {d }, {a, d }, {b, c}, {a, b, c}, {b, c, d }, W}.
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1.2 (a) P(E ) + P(Ec) = P(E ∪ Ec) = P(W) = 1.
 (e) P(F ) = P(F ∩ E ) + P(F ∩ Ec) = P(E ) + P(F ∩ Ec) ≥ P(E ).

1.3 (a) limn→∞ P(En) = limn→∞ P(∪n
k =1 Ek) = P(∪n En).

1.4 (a) 0.1429.    (b) 0.2857.    (c) 0.8571.

1.5 (b)  P(E ∪ F ) = P(E ) + P(F ) - P(E )P(F ) = P(E )P(Fc) + P(F ) =  
P(E )P(Fc) + 1 - P(Fc) = 1 - P(Ec)P(Fc).

1.7 (a) 0.2500.   (b) 0.1875.   (c) 0.8125.   (d ) 3.8125.   (e) 1.7773.

1.10 (b) (1 - p)/p.    (c) E[N ] = 1/(1 - p), Var[N ] = p/(1 - p)2.

1.11 (a) 0.7500.    (b) 0.    (c) 0.8484.    (d ) 0.0597.     
(e) 0.5000.    ( f ) 1.7500.

1.12 (b) Pr{X = x} = 0 implies Pr{X < x} = Pr{X ≤ x} = F(x) for all x.

1.13 (a) 2/3.    (b) 4.    (c) 1.    (d ) 15.

1.14 (a) 1.5.    (b) 3.    (c) 0.125 + 0.375et + 0.375e2t + 0.125e3t.

1.15 (a) 
1
2

(a + b).    (b) 
1
3

(a2 + ab + b2).    (c) (ebt - eat)/((b - a)t).

1.16 (b) E[X ] = 180, Var[X ] = 35,600.

1.17 E[X ] = 
1
2

(a + b), Var[X ] = 
1

12
(b - a)2.

1.18 E[Xa] = 75.00, Var[Xa] = 9,375.

1.19 E[Y ] = µ, Var[Y ] = s2.

1.20 (b) exp(µt + 1
2 s2t2).

1.21 (a) pet/[1 - (1 - p)et], t < log(1 - p).    (b) 1/p.    (c) (1 - p)/p2.
 (d ) p/[1 - (1 - p)2].

1.23 b̂ = M1.

2.1 (a) 1,500. (b) 750,000. (c) 0.1250. (d ) 1,375.

2.2 (a) 875. (b) does not exist. (c) 0.2500. (d ) 687.50.

2.3 (200)(1 - e-y/250).

2.4 E[X̂ ] = 1,532; E[X̂ ; 1,000] = 892, E[X̂ ; 1,500] = 1,203.

2.6 M1 ≈ 
n
1 Sm

k=1 nk ak.
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2.7 E[X; x] ≤ ∫
x
0 u dF(u) + x < ∞.

2.9 (a) 
d
dx

[∫
x
0 u f (u)du + x(1 - F(x))] = 1 - F(x).    (b) Use E[X; 0] = 0 with (a).

2.10 (b) Set v = u2.    (c) Set v = log(1/u).

2.11 (b) Integration by parts.    (d ) Apply (2.18) inductively to G(x + 1)/G(x) = x.

2.13 a = 1, b = E[X ].

2.14 Pr{X > a + bX > a} = Pr{X > b}.

2.15 (a) wb1 + (1 - w)b2. (b) wb2
1 + (1 - w)b2

2 + w(1 - w)(b1 - b2)2.

2.16 Excel Solver yields (â, b̂) = (4.7432, 337.31).59

2.17 (b) 556.    (d ) 0.1461.    (e) 0.2108.    ( f ) 1,023.    (g) 9,689.

2.18 (b) (µ̂, ŝ) = (7.235292, 0.477366).

2.19 (b) 1,040.    (d ) 0.1866.    (e) 0.3254.    ( f ) 1,347.    (g) 6,500.

2.20 Var[X ] = 
α

α − 2
(E[X])2 > (E[X ])2.

2.21 b(log(x + b) - log b).

2.24 (a) b log 2.    (b) eµ.    (c) b(21/a - 1).

2.25 (a) 1,282.    (b) 1,315.    (c) 1,428.

2.26 Hint: E[(L(X ) - E[L(X )])3] = a3E[(X - E[X ])3], Var[L(X )] = a2Var[X ].

2.27 L(X ) = b(X/g - 1).

2.28 (a) exponential (2).    (b) shifted Pareto (a, b).    (c) Burr (a, b, d).
 (d ) Weibull (b, d).    (e) exponential (1/a).

2.29 (a) bm/d G(a - m/d) G(1 + m/d)/G(a), ad > m.

2.30 (a) F y

y

y
y

Y ( )( )( ) =

−∞ < ≤

Γ β α
Γ α

< < ∞









0 if 1

log ,
( )

if 1 .
    (b) E[Y m] = (1 - mb)-a.

2.31 CV X Var X E X CV X CV X[ ] [ ] [ ] [ ] [ ]( )τ = τ τ = τ τ = .

59 Results obtained by an iterative algorithm applied by the Excel Solver may vary slightly, depending on how the 
problem is set up in the worksheet and the process is initiated.
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2.32 t∼ = tE [X ; tl/t]/E [X; l ] = t.

2.33 (a) Weibull (abb+1, 1/(b + 1)).    (b) Burr (a, abb+1, 1/(b + 1)).
 (c) Weibull (abb+1, d/(b + 1)).    (d ) Burr (a, abb+1, d/(b + 1)).

2.34 (a) 0.6321.    (b) G(a, a)/G(a).    (c) F(s/2).    (d ) 1 - (1 - 1/a)a.

2.37 (a) none.    (b) b.    (c) none.    (d ) b.    (e) b.    ( f ) none.

2.38 fcq(x) = (1/c) fq(x/c) = (1/cq) f1(x/c q).

2.39 (a) Excel Solver yields (µ̂, ŝ) = (9.778102, 1.444776).
 (c) c2 = 5.89 < c2

0.95(5) = 11.1.

2.40 Excel Solver yields (µ̂, ŝ) = (9.701968, 1.535797).

2.41 (a) F y
F y F l y l

l y
Y

X X ( )
( )

( )
=

−∞ < <

≤ < ∞







if

1 if .

2.42 (a) F y

y a

F y F a
F a

a y
Y X X

X

( )
( )

( ) ( )=

−∞ < ≤

−
−

≤ < ∞









0 if

1
if .

2.43 (a) Excel Solver yields (µ̂, ŝ) = (9.495111, 1.084180).
 (b) M1 = 14,840, E[Y ] = 14,930.

3.1 (a) M ′N(0) = mp, M″N(0) = mp + m(m - 1)p2.

 (b) M t
m

e e
m
mp

N
m

t
m

t( ) ( )( )( ) = + λ −



 = λ −

→∞
=λ

→∞
lim lim 1 1 exp 1 .

3.3 (b) 2.50, 0.7576.    (c) 6.25, 0.1303.    (d ) 2.00, 0.8571.     
(e) 4.00, 0.4335.

3.4 (a) 0.0012.    (b) 0.0069.    (c) 0.0164.

3.7 
d
dλ

log L(l) = -m + Sm
i=1 ni/l.

3.8 Integrate ∫∞
l tne-t dt/n! by parts n times.

3.10 (a) E N n
u e

n
f u du n

u e
n

f u du

u u f u du E E

n

n u n u

n
∑ ∫ ∑∫

∫

[ ]

[ ][ ]

( ) ( )

( ) ( )

= =










= + = λ + λ

=

∞ −

λ

∞ −

=

∞∞

λ

λ
∞

! !

.

2 2

0
0

2

0
0

0
22

3.11 (a) 2.    (b) 4.    (c) 0.8125.

3.12 0.9070, 0.0864, 0.0062, 0.0004.
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3.13 (b) 0.7500, 0.8175, 1.3125.
 (c) n\i (1) (2) (3)

0 0.4724 0.4869 0.5714

1 0.3543 0.3373 0.2449

2 0.1329 0.1283 0.1050

3 0.0332 0.0365 0.0450

4 0.0062 0.0087 0.0193

5 0.0009 0.0018 0.0083

3.14 (a) Excel Solver yields l̂1 = 0.114493, l̂2 = 0.797855, p̂1 = 0.986380.

3.15 Method-of-moments estimates are (â, n̂) = (0.685714, 0.120000). Using 4 cells 
{0, 1, 2, ≥3 claims}, c2 = 0.3288 < 3.8415 = c2

0.95(1).

3.16 ( )( ) ( ) ( ) ( ) ( )( )−



 =

− − − − − − − +
= −

+ − + +1 2 . . . 1
!

1
1 . . . 2 1

!
.

r
n

r r r r n
n

r n r r r
n

n

3.19 a = 1 - q, b = (r - 1)(1 - q).

3.21 (a) Set r = 1, q = p in (3.19).    (b) E[N ] = (1 - p)/p, Var[N ] = (1 - p)/p2.

3.22 (a) fN(n) = 1/((n + 1)(n + 2)).    (b) fN(n) = (0.9)n+1/((n + 1)log 10).

3.23 (a) Substitute b = n/a into (2.26).

3.24 â = M 2
1/(M2 - M 2

1 - M1), n̂ = M1.

3.25 (a) 0.6316.    (b) 0.6316.    (c) 0.6667.

3.26 (a) g = 0.05.    (b) 0.8000, 0.8077, 0.7692, 0.8000.
 (c) 0.0034, 0.0342, 0.1538, 0.3761, 0.4325.

3.27 Hint: Divide numerator and denominator of (3.26) by cm. Observe that

 
/ / /( ) ( ) ( )+ =

γ
+ + = −

γ
+ + + =

γ
+1

,
1

,
1

.w ic c i r ic c
p

p
i w r ic c

p
i

3.28 0.4019, 0.3349, 0.1674, 0.0651, 0.0217, 0.0065.

3.29 (a) g = 0.1000.

3.30 0.5543.

3.31 624.

3.32 limm→∞ gm = 0.

3.33 (a) 
d
dt

F t
t e
k

t e
k

t e
nn

k t k t

k n

n n t

∑( ) ( ) ( )
( ) ( )

=
λ λ

−
−

λ λ





= λ
−

− −λ −λ

=

∞ − −λ

1 ! ! 1 !
.

1 1

 (b) E [Tn] = n/l, Var [Tn] = n/l2.

3.34 (a) 4.651 years.    (b) 0.1935, 0.1560.    (c) 0.0201, 0.0497.

3.35 N * is Poisson-distributed with parameter pl.
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4.1

   

Amount s FS (s) Amount s FS (s)

0 0.2000

500 0.2400 3,500 0.9047

1,000 0.4025 4,000 0.9507

1,500 0.5427 4,500 0.9781

2,000 0.6795 5,000 0.9934

2,500 0.7580 5,500 0.9988

3,000 0.8418 6,000 1.0000

4.4 (a) FS(s) = fN(0) + fN(1)FX(s).
 (b) FS(s) = fN(0) + fN(1)FX(s) + fN(2)(FX * FX)(s).

4.6 if s e
s

n n
F s e

n
s
k

sS
s

n n

n
n

S
s

n k

k
k nn

∑ ∑∑( ) ( ) ( )= λ
β −

= λ
β

>−λ− β

=

∞
−λ− β

=

∞

=

∞

! 1 !
,

! !
, 0.

1 0

4.7 See Problem 4.13 solution.

4.11 m m m m( )( )( ) ( ) ( ) ( )χ ≈ Φ − +−2 9 0.95 2 9 1 .0.95
2 1 3

4.12 

4.13

d.f. m c2
0.95(m) W-H Rel Error

 5 11.070 11.044 –0.24%

10 18.307 18.292 –0.08%

15 24.996 24.985 –0.04%

20 31.410 31.402 –0.03%

25 37.652 37.645 –0.02%

30 43.773 43.767 –0.01%

Amount s FS (s) Normal
Relative 

Error
Normal 
Power

Relative 
Error

Shifted 
Gamma

Relative 
Error

Wilson-
Hilferty

Relative 
Error

     0 0.0003 0.1241 — 0.0756 — 0.0263 — 0.0312 —

 3,000 0.3420 0.2819 –17.57% 0.3654 +6.84% 0.3362 –1.70% 0.3322 –2.87%

 6,000 0.6070 0.5000 –17.63% 0.5981 –1.47% 0.6054 –0.26% 0.6043 –0.44%

 9,000 0.7774 0.7181 –7.63% 0.7608 –2.14% 0.7782 +0.10% 0.7797 +0.30%

12,000 0.8782 0.8759 –0.26% 0.8642 –1.59% 0.8793 +0.13% 0.8810 +0.32%

15,000 0.9349 0.9584 +2.51% 0.9257 –0.98% 0.9356 +0.07% 0.9367 +0.19%

18,000 0.9658 0.9895 +2.45% 0.9605 –0.55% 0.9661 +0.03% 0.9666 +0.08%

21,000 0.9823 0.9981 +1.61% 0.9796 –0.27% 0.9824 +0.01% 0.9824 +0.01%

24,000 0.9910 0.9997 +0.88% 0.9896 –0.14% 0.9909 –0.01% 0.9908 –0.02%

27,000 0.9954 1.0000 +0.46% 0.9948 –0.06% 0.9953 –0.01% 0.9952 –0.02%
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4.15 All terms in the sum (4.33) for which k > m̂ are zero.

4.16 

4.17 g(0) + Sm̂-1 
k-1 g(k) + g(m̂) = 

 F h F h F m h F m hX X X X[ ]( )( ) ( )( ) ( ) ( )− + − + − − =ˆ 1 ˆ 1.1
2

1
2

1
2

1
2

4.20 If Y = FX(X ), then FY( y) = Pr{FX(X ) ≤ y} = Pr{X ≤ F -1
X ( y)} = y for 0 < y < 1.

4.21 F
∼-1(u) = b(-log(1 - u))1/d, 0 < u < 1.

4.22 n = 5.

4.23 
Trial

Uniform 
u

Exponential 
x1

Pareto 
x2

Lognormal 
x3

Weibull 
x4

(1) 0.2097 471 296 30 55

(2) 0.3562 881 578 79 194

(3) 0.6970 2,388 1,837 553 1,426

(4) 0.8245 3,480 3,017 1,384 3,028

(5) 0.9882 8,879 14,716 25,871 19,711

4.25 (a) Because E{Un} = 
1
2

 and Var[Un] = 
1

12
, E[X ] = 0 and Var[X ] = 1. The Central 

       Limit Theorem implies that X is approximately normal.

5.1 (a) 865; 440,343.    (b) 7.4.    (d ) 6.6%, 9.5%, 16.7%.

5.2 (a) 500.    (b) 1,250.    (c) 2,000.    (d ) 3,500.    (e) 8,518.

5.7 (a) e-x/b.    (b) ((d + b)/(x + d + b))a.

5.9 (a) e x
u dF u u dF u x dF u

dF u

u x dF u

dF u
X

x

x

x
x

x

∫∫∫
∫

∫
∫

( )( )
( ) ( ) ( )

( )
( ) ( )

( )
=

− +

−
=

−
∞∞ ∞

∞1
.00

0

5.10 (a) 1.1551, 1.5959.    (b) 136.38, 1.1487, 2.2616.

Amount s FS (s)

0 0.2592

500 0.2942

1,000 0.4366

1,500 0.5606

2,000 0.6838

3,000 0.8306

4,000 0.9223

5,000 0.9670

6,000 0.9872
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5.11 (a) 1.    (b) 
α

α1
.     (c) ( )σ −exp 1.2     

 (d ) ( )α α − 2 .    (e) 
1
3

3.

5.12 

5.13 Hint: µ1 = E [X; b1], µk = (E [X; bk] - E [X; bk-1])/pk, 1 < k < m.

5.14 (b) l(F(b) - F(a)).    (c) E[X | a < X ≤ b] = ∫b
a x dF(x)/∫b

a dF(x).

5.15 Interval means: 60; 317; 604; 1,405; 3,214; 4,400; 7,500.
 Layer means: 96; 339; 342; 694; 1,371; 743; 2,500.

5.16 ∑ ∑

∑ ∑

∑

[ ]

[ ]( ) [ ] [ ]

( ) { }

{ } ( )

{ }

= 



 − =

= = 



 −

= = + − = + −

=

∞

=

∞ −

=

∞ −

=

=

∞

1 Pr

Pr 1

Pr .

2 2

0

0

2

0

2 2 2 2 2 2

0

E N n
k
n

p p N k

N k n
k
n

p p

N k k p kp kp E N p E N p E N p

a
n k n

n k n

k

n k n

n

k

k

5.18 Var N E N
E N

p Var N p p p
p

Var N
a

a a

a

[ ] [ ]
[ ]

[ ] [ ]
( )

( )γ =
−

=
+ − λ − λ

λ
=

− λ
λ

= γ
1

.2

2

2 2 2

5.20 �
E X E X a

E X E X aS X
X X

X
[ ][ ]

[ ] [ ]
( )τ = τ

− τ τ
−

= τ
;

;
.

5.21 (a) 8.9%.    (b) 11.5%.

5.22 (a) 9.5%.    (b) 10.2%.

5.23 (a) (µ̂, ŝ) = (7.960294, 1.428801).    (b) 125.

5.24 E[X ] - E[X; x] = ∫∞
0(1 - F(u))du - ∫x

0(1 - F(u))du.

6.1 (a) 4.50.    (b) 1.875.    (c) 11,250.    (d ) 1.3333.    (e) 6.00. 
( f ) 15,000.

6.2 (a) 6.1905.    (b) 3.8690.    (c) 0.0003888.    (d ) 0.8166. 
(e) 8,125.    ( f ) 0.3750.

6.3 (a) 6.1905.    (b) 3.8333.    (c) 0.0003853.    (d ) 0.8090. 
(e) 8,050.

Layer L PL E[NL] E[XL] E[SL]

[0, 100] 1.0000 5.0000 97.08 485

(100, 3000] 0.9423 4.7116 1,513.66 7,132

(3000, ∞) 0.2441 1.2207 4,000.00 4,883
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6.4 (a) 0.1912. (b) 0.4751.

6.5 

6.7 ILFs: 1.0000, 1.5317, 1.6488, 1.7122, 1.8427, 1.9038, 1.9405, 1.9655.

6.8 (a) 

6.9 1 + d = Var[N ]/E[N ] = (E[N ] + g(E[N ])2)/E[N ] = 1 + gE[N ].

6.10 

6.11 (a) 0.0209. (b) 0.0142. (c) 0.0112. (d ) 0.0093. (e) 0.0081.

6.12 (a) $40,447. (b) $844.

6.13 (a) 62,200; 0.2635. (b) 80,200; 0.0503.

6.14 (a) 50,900; 0.3973. (b) 68,900; 0.1841.

Limit l E [X; l ] ALAE [a] I(l ) [a] ALAE [b] I(l ) [b]

100,000 9,178 2,500 1.0000 2,295 1.0000

250,000 12,548 2,500 1.2885 3,137 1.3671

500,000 15,180 2,500 1.5139 3,795 1.6539

1,000,000 17,702 2,500 1.7299 4,426 1.9288

2,000,000 19,968 2,500 1.9240 4,992 2.1756

5,000,000 22,404 2,500 2.1325 5,601 2.4410

Limit l E [X; l ] ALAE r(l ) I(l ) w/o RL I(l ) w/ RL

1,000 796 159 447 1.0000 1.0000

2,000 1,313 263 778 1.6490 1.6787

3,000 1,667 333 1,034 2.0940 2.1645

4,000 1,920 384 1,238 2.4123 2.5267

5,000 2,107 421 1,404 2.6478 2.8055

7,500 2,407 481 1,710 3.0247 3.2805

10,000 2,578 516 1,919 3.2392 3.5759

Limit l E [X; l ] r(l ) I(l ) Layer Factor

4,000K 4,223 3,374 2.1014 0.3556

5,000K 4,459 4,429 2.4585 0.3571

6,000K 4,660 5,533 2.8194 0.3609

7,000K 4,836 6,678 3.1849 0.3655

8,000K 4,994 7,859 3.5553 0.3705

9,000K 5,137 9,074 3.9309 0.3755

10,000K 5,268 10,319 3.4114 0.3806
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6.16 

6.17 

6.21  (a) Ded # Claims % BL Prem (b) Ded # Claims % BL Prem

1,000 242 7.4% 1,000 234 7.1%

2,000 299 12.5% 2,000 292 12.0%

3,000 331 16.6% 3,000 324 16.1%

4,000 353 20.2% 4,000 346 19.5%

5,000 368 23.3% 5,000 362 22.6%
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Distributions for Actuaries 

Errata 

 

Page 145, Table, line 10:   Replace  4 [claims]  with  3 [claims]  

 Table, line 11:   Replace  14 [claims]  with  15 [claims]  

 line 8:   Replace  n10 = 14  with  n10 = 15 

 line 13:   Replace  k = 1, 2, …, 9  with  k = 0, 1, 2, …, 9 

 
Page 170, line 12:   Replace  )()( xFxf XX    with  0)()(  xFxf XX  

 line 14:   Delete factor (1+u) from both equations 

 line 17:   Replace  continuous   with  positive and continuous 

 

Page 173, line 11 from bottom:  Delete factor (1−F
X

(a)) 

 

Page 174, line 9:   Replace  claim-size variable N  with  claim-count variable N 

 Example 6.6, line 3 from bottom:   Replace  (, ) = (7.000, 2.400)  with  

(, ) = (7.600, 2.400) 

 

Page 175, line 7:   Replace  3,000,0000  with  3,000,000 

 

Page 177, line 4 from bottom:   Replace  five straight  with  six straight 

 

Page 182, line 15:   Replace   3,007 with   3,077 

 Problem 6.1(d):   Replace    with   

 

Page 189, equation (A.3), both lines:   Replace  NORM.S.DIST  with  NORM.DIST 

 

Page 199, Problem 6.10, line 8 of table::   Replace   3.4114  with  4.3114 
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AN ACTUARIAL NOTE ON THE CREDIBILITY OF 
EXPERIENCE OF A SINGLE PRIVATE PASSENGER CAR 

BY 
ROBERT A. BAILEY AND LEROY J. SIMON 

The experience of the Canadian merit rating plan’ for private pas- 
senger cars provides a means of evaluating the experience rating 
credibility of the experience of one car. The Canadian experience in- 
cludes the experience of virtually every insurance company operating 
in Canada and is collated by the Statistical Agency (Canadian Under- 
writers’ Association-Statistical Department) acting under instruc- 
tions from the Superintendent of Insurance. 

Merit ratings in Canada depend on the number of full years since 
the insured’s most recent accident or since the insured became li- 
censed. The ratings of A, X, Y and B correspond to three or more, 
two, one, and no years since the most recent accident or since licens- 
ing.a A + X would be the experience for two or more accident-free 
years and A + X + Y would be the experience for one or more acci- 
dent-free years. Table 1 presents the data upon which this study is 
based. Earned premiums are converted to a common rate basis by 
use of the relationship in the rate structure that A:X:Y :B = 
65 :80 :90 :lOO. Other calculations in the table are self-explanatory. 
The authors have chosen to calculate Relative Claim Frequency on the 
basis of premium rather than car years. This avoids the maldistribu- 
tion created by having higher claim frequency territories produce 
more X, Y, and B risks and also produce higher territorial premiums. 

The experience rating formula commonly used may be expressed in 
the form i 

- 

Modification = ZR + (1 - Z) where 
Z = credibility and 
R = the ratio of the actual losses to the expected losses. 

If the modification is made equal to the subsequent experience of ex- 
perience-rated risks relative to the average experience of all risks, and 
if R is made equal to the past experience on which the experience rat- 
ing is based relative to the average of all risks, then the formula can 
be solved for the credibility. Where R = 0 as it is for accident-free 
risks, the credibility equals 1 - Modification. Referring to Table 1 and 
setting the Modification equal to the “Relative Claim Frequency”, the 
credibilities obtained for a private passenger car for experience pe- 

1 See also “The Canadian Merit Rating Plan for Individual Automobile Risks,” 
Herbert E. Wittick, P. C. A. S. XLV, pg. 214. 

2 Class 1A Select was introduced effective September 1, 1969 and uses a five- 
year period, but such risks are still a part of Class 1A in data used in the paper. 
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riods of one, two, or three years are shown in Table 2. For example, 
in Class 1A the Modification = .920 which gives Credibility = .080 as 
shown in Table 2 for a three-year period. As another example, in 
Class 5, A + X + Y, the Modification = .962 which gives Credibility 
= .038 as shown in Table 2 for a one-year period. 

Table 2 also shows the average claim frequency of each class and 
the ratio of the three-year credibility to the annual claim frequency. 
If the variation of individual insureds’ chances for an accident were 
the same within each class, the credibility (for experience rating) 
would be expected to vary approximately in proportion to the aver- 
age claim frequency.3 Classes 2,3,4 and 5 are more narrowly defined 
than Class 1, and the fact that the ratios in the last column of Table 2 
for these classes are less than the ratio for Class 1 confirms the expec- 
tation that there is less variation of individual hazards in those 
classes. This also illustrates that credibility for experience rating 
depends not only on the volume of data in the experience period but 
also on the amount of variation of individual hazards within the class. 

Table 3 shows the credibility of a two or three-year period in rela- 
tion to the credibility for one year. If an individual insured’s chance 
for an accident remained constant from one year to the next and if 
there were no risks leaving the class or no new risks entering the 
class, the credibilities for experience periods of one, two and three 
years would be expected to vary approximately in proportion to the 
number of years.4 It should be remembered that experience rating 
is a procedure to find the deviation of an individual risk from the aver- 
age risk and is different from class rate-making, which is a procedure 
to find the average and where an increase in the volume of the ex- 
perience increases the reliability of the indication only in proportion 
to the square root of the volume. The fact that the relative credibili- 
ties in Table 3 for two and three years are much less than 2.00 and 
3.00 is partially caused by risks entering and leaving the class. But it 
can be fully accounted for only if an individual insured’s chance for 
an accident changes from time to time within a year and from one 
year to the next, or if the risk distribution of individual insureds has 
a marked skewness reflecting varying degrees of accident proneness. 

If Class 1B risks have an average of 1.044 accidents in the year 
prior to the rating5 the credibility for 1B risks for a one-year experi- 
ence period is found to be : 

Modification = ZR + (1 - Z) 

1.476 = Z + + 1 - Z 

z = .043 

3 See Appendix I. 
4 See Appendix I. 
6 See Appendix II. 
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This gives an interesting confirmation to the credibility of .046 pro- 
duced by considering the combined A + X + Y group. 

Tables 1, 2 and 3 are based on accident frequency in order to reduce 
chance fluctuations caused by variations in the size of claims. How- 
ever, we noticed that B risks had an average cIaim cost consistently 
higher than average and A risks consistently lower. This tends to in- 
crease the credibility. Table 4 shows for Class 1, which has enough 
volume to make the average claim cost reliable, the same data as is 
presented in Tables 1, 2 and 3 except that losses are used instead of 
number of claims. 

In summary, we feel that the Canadian merit rating data for pri- 
vate passenger cars leads to the following conclusions : 

(1) The experience for one car for one year has significant and 
measurable credibility for experience rating. 

(2) In a highly refined private passenger rating classification 
system which reflects inherent hazard, there would not be 
much accuracy in an individual risk merit rating plan, but 
where a wide range of hazard is encompassed within a classi- 
fication, credibility is much larger. 

(3) If we are given one year’s experience and add a second year 
we increase the credibility roughly two-fifths. Given two 
years’ experience, a third year will increase the credibility 
by one-sixth of its two-year value. 



162 EXPERIENCE OF A SINGLE PRIVATE PASSENGER CAR 

TABLE 1 

Canada excluding Saskatchewan 

Policy Years 1957 & 1958 as of June 30,195s 

Private Passenger Automobile Liability-Non-Farmers 

Earned Prem. No. of Claim Freq. 
Merit Earned at Present Claims per $1000 

Rating Car Years B Rates Incurred of Prem. 

Class 1 - Pleasure - no male operator under 25 

:: w;;w; 169,108,000 7,910,000 217,161 13,792 
Y 1631644 9,862,OOO 19,346 
!hal 3,325,714 273,944 194,106,OOO 1’7,226,OOO 288,019 37,730 

2,888,226 167,018,OOO 230,943 
3,061,770 176,880,OOO 250,289 

Class 8 - Pleasure - Non-principal male operator under 25 

XA 130,636 7,233 11,840,000 712,000 14,506 1,001 

E 9,726 944,000 21,504 1,992,ooo 1,430 3,421 
Total 168,998 15,488,OOO 20,368 

137,768 12,562,OOO 15,607 
147,494 13,496,OOO 16,937 

Class 3 - Business use 
:: 247,424 25,846,OOO 31,964 

15,868 1,783,000 2,695 
Y 20,369 2,281,OOO 3,546 
;0tFl1 37,666 4,129,OOO 7,666 

321,327 
A+X 263,292 

34,039,000 46,770 

A+X+Y 283,661 
27,629,OOO 34,659 
29,910,000 38,205 

Class 4 - Unmarried owner or principal operator under 25 

:: 156,871 18,460,000 22,884 
17,707 2,130,OOO 3,054 

Y 21,089 2,523,OOO 3,618 
!0ta1 56,730 

262,397 
6,608,OOO 40,901 11,346 

AS-X 174,678 
29,711,ooo 

A+X+Y 196,667 
20,680,OOO 
23,103,000 

26,938 
29,556 

Class 5 -Married owner or principal operator under 25 

:: 64,130 4,039 5,33;;*;;; 6,660 487 
Y 4,869 413:ooo 613 
B 8,601 1,291 
Total 

761,000 
81,639 6,868,OOO 8,951 
68,169 5,694,OOO 7,047 
73,038 6,107,OOO 7,660 

1.366 
1.744 
1.962 
2.190 
1.484 
1,383 
1.415 

.920 
1.176 
1.322 
1.476 
1.000 

:“gi f 

1.225 
1.406 
1.615 
1.717 
1.314 
1.235 
1.255 

.932 
1.070 
1.153 

:% 
:940 
.955 

1.237 .920 
1.611 1.123 
1.665 1.166 
1.832 1.362 
1.345 1.000 
1.254 .932 
1.277 .949 

1.240 .901 
1.434 1.041 
1.434 1.041 
1.717 1.247 
1.377 1.000 
1.260 .915 
1.279 .929 

1.226 .941 
1.412 1.084 
1.484 1.139 
1.696 1.302 
1.303 1.000 
1.238 .960 
1.264 .962 
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TABLE 2 
Credibility Claim 

cluss 
Frequency 

1 uear 2 years 3 years perca+gear 

:. .046 .045 .068 .060 ,080 .068 .087 .120 

z .051 .071 :82 .080 .oss .142 6162 
5 .038 .050 .069 .llO 

Ratio 8 year 
cred. to annuul 

claim frequency 

.920 

.567 

.563 

.611 
536 

TABLE 3 

Class 
1 
I 

t 

RELATIVE CREDIBILITY 
1 year 2 years 3 years 

1.00 1.48 1.74 
1.00 1.00 1.33 1.33 1.67 1.61 

1.00 1.00 1.20 1.32 1.39 1.66 

TABLE 4 

Canada excluding Saskatchewan 

Policy Years 1957 & 1968 as of June 30,196s 
Private Passenger Automobile Liability-Non-Farmers 

Earned Premiums 
Merit at Present Incurred Relutive 

Rating B Rates Losses Loss Ratio Loss Ratio 

Class l-Pleasure-no male operator under 25 
A 159,108,OOO 63,191,000 911 

: ;W&J;; 
17:226:000 

4,066,OOO 5,662,OOO 

:E 

.663 1.177 1.291 
B 11,809,OOO .686 1.673 
Total 194,106,OOO 84,607,OOO .436 1.000 
A+X 167,018,OOO 67,246,OOO .403 .924 
A+X+Y 176,880,OOO 72,798,OOO .412 .946 

Credibility 
Class 1 year 2 years 3 years 

1 .056 .076 .089 

Relative Credibility 
Class 1 year 2 years 9 years 

1 1.000 1.38 1.62 
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APPENDIX I 
To illustrate that the credibilities would vary approximately in pro- 

portion to the number of years* for the first few years and for typical 
frequencies, consider a model in which 100,000 risks have an inherent 
hazard, as measured by their true claim frequency, of .06, 100,000 
risks have a claim frequency of .lO and 50,000 risks have a frequency 
of 20. The number of persons claim-free for the past t years assum- 
ing a Poisson approximation to the distribution is as follows: 

Frequency t=o t=1 t=2 t=3 
.05 100,000 96,123 90,484 86,071 
.lO 100,000 90,484 81,873 74,082 
.20 50,OO~ 40,937 33,516 27,441 

Total 250,000 226,544 205,873 187,694 
The number of claims in the subsequent year will be : 

Frequency t=o t=1 t==2 t=s 
.05 5,000 4,766 4,624 4,304 
.lO 10,000 9,048 8,187 7,408 
.20 10,000 8,187 6,703 6,488 -__- 

Total 25,000 21,991 19,414 17,200 
Claim frequency of 
total group .10000 .09707 .09430 .09169 
Relative to t = 0 1.0000 .9707 .9430 .9169 
Credibility .0293 .0570 .0831 
Relative credibility 1.000 1.945 2.836 

APPENDIX II 
Class 1B risks are known to have had one or more claims in the 

past year. Using the Poisson distribution as an approximation to the 
risk distribution (another curve which we have used in practice fits 
more exactly, but for theoretical considerations such as these, the 
Poisson is a good approximation), we observe that the number of per- 
sons having no claim last year is Ne-“I, where m is the claim frequency 
of the class and N is the radix or total number of persons in the popu- 
lation under consideration. Therefore, N (l-e-m) persons produce the 
one or more claims with which we are concerned. The number of 
claims produced by the entire group is Nm. Hence the average num- 
ber of claims produced by those risks which have one or more claims 
is Nm/N (1-e-m) or m/ (l-e-m). 

In our specific problem, the Class 1 claim frequency is .087 per car 
which means that risks that had one or more claims last year (and 
are Class 1B this year) had an average of .087/( l-e-.usi’) = 1.044 
claims. 

* This illustration may be used equally as well to demonstrate that the credi- 
bilities vary approximately in proportion to the average annual frequency because 
in the Poisson distribution an increase in the annual frequency has the same effect 
as an increase in the length of time. 
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not immoral. Mr. Tarbell’s paper indicates that we can learn from the 
N.A.U.A. He has clearly demonstrated that the N.A.U.A.3 ratemaking 
procedures are not crude. The N.A.U.A has done an excellent job-one 
worthy of actuarial approbation. 

Once papers such as Mr. Tarbell’s are printed in the P.C.A.S., another 
end is accomplished. We then have something available for all to discuss 
and to improve upon. This is a most desirable end. Our business is not 
static and our ratemaking procedures cannot be allowed to become staid 
or sterile. We must be alert to the requirements of the insuring public- 
probably the largest public of any American industry. What better way to 
lay the groundwork for this activity than by a general airing of the facts 
in the form of papers on ratemaking? 

Papers on the fundamental ratemaking procedures of the various casualty, 
property and fire and accident and health lines have been sorely needed. Is 
not ratemaking basic to our industry ? Is it not the actuary’s main stock in 
trade? Regardless of where we work-for ourselves or for another; a private 
concern, an insurance department, a rating bureau, or an insurance company; 
an independent company or a bureau company; a stock company or a mutual 
company-regardless of our primary concern in our own particular job, 
do not all of our activities eventully devolve to ratemaking? 

A start has been made, but additional papers on ratemaking are still 
needed. We should have a paper on General Liability ratemaking-an 
enormous task. The areas of burglary, fidelity and surety also require 
coverage. An important ratemaking area, almost completely devoid of papers 
in our Proceedings, is the Accident and Health field. We should have rate- 
making papers on both Group and Individual Accident and Health. Accident 
and Health, incidentally, is a most timely and important topic. 

These are the thoughts Mr. Tarbell’s excellent paper has evoked from me. 

DISCUSSIONS OF PAPERS READ AT THE 
NOVEMBER 1959 MEETING 

AN ACTUARIAL NOTE ON THE CREDIBILITY OF EXPERIENCE 
OF A SINGLE PRIVATE PASSENGER CAR 

BY 

ROBERT A. BAILEY AND LEROY J. SIMON 

Volume XLVI, Page 159 
DISCUSSION BY W. J. HAZAM 

The authors are to be congratulated for their very valuable contribution 
to our knowledge of credibility. Presented, as it was, at a time when a large 
segment of the industry is embarking on merit rating programs for individual 
private passenger risks, it provides a basis for the actuarial evaluation of 
plans now available and perhaps many we have yet to see. 

While the data underlying the paper are exclusively the results under the 
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Canadian Merit Rating Plan,‘“) the conclusions are not so geographically 
restricted. The most provocative of these conclusions is that the experience 
for one car-year has significant and measurable credibility. In the years 
prior to the current flurry of merit rating plans, this demonstrable fact 
had been all but lost, if at all recognized, in the generally prevailing opinion 
that merit rating was unfeasible. Our current plans may yet prove to be 
unfeasible. However, this paper demonstrates a means or concept by which 
to measure the actuarial justification for experience credits (credibilities) 
for one, two, three, etc., claim-free years. 

In developing their credibihties, the authors have placed heavy reliance on 
frequencies in terms of premiums to correct for the maldistribution deriving 
from the use of an exposure base. I would be remiss as a reviewer to fail to 
point out that of which the authors are no doubt aware: that a premium base 
eliminates maldistribution only if ( 1) high frequency territories are also 
high premium territories and (2) if territorial differentials are proper. How- 
ever, premium, although not perfect, is an improvement over exposure as a 
base for this type of study. The fact that either or both of these inherent 
assumptions may not always exist does not detract from the qualitative nature 
of the conclusions but may alter somewhat the basic relative frequencies of 
Table 1 and the consequent values in Tables 2 and 3. 

The authors make the statement, “. . . the credibilities for experience 
periods of one, two, and three years would be expected to vary approximately 
in proportion to the number of years.” This holds largely true only for low 
credibilities; large credibilities would render such a statement inaccurate. 
However, even in a low credibility area such as the authors are working 
with in the Canadian results, the theoretical relative credibilities would be 
less than 1 .OO, 2.00, and 3.00 for one, two, and three years claim free. For 

P 
example, using the actuarially accepted - 

P+K 
formula for credibility in expe- 

rience rating, the theoretical relativities to .046 (1 year credibility of class 
l-see Table 2) would be as folIows (Note: the k value of 2074 used below 
was derived on the assumption of 100 claims per year producing a one-year 
credibility of .046) : 

Relative Observed 
Credibility Credibility Result (Table 3) 

100 
= .046 

100 + 2074 

200 = .088 
200 + 2074 

300 
= .126 

300 + 2074 

1 .oo 

1.91 

2.74 

1.00 

1.48 

1.74 

(a) See also “The Canadian Merit Rating Plan for Individual Automobile Risks” 
Herbert E. Wittick, CAS XLV, p. 214. 
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This observation should be added to the other reasons why the observed 
relative credibilities in Table 3 are not 1.00, 2.00, and 3.00. 

It may be surmised from this approach to the Canadian results that, in a 
balanced merit rating plan, there is not enough credibility by class to warrant 
the magnitude of credits now being offered by many U. S. plans. We must 
remember, however, that these results are based strictly on claim frequencies, 
not claim frequencies plus convictions frequencies. Adding convictions no 
doubt helps substantiate larger credits but it is dubious that it will support 
current merit rating differentials, if the Canadian experience is at all indica- 
tive of what we might expect in this country. 

This paper with its original concepts sets forth a basis for analysis of 
current U. S. plans when the data by class becomes available. 

SOME CONSIDERATIONS ON AUTOMOBILE RATING SYSTEMS 
UTILIZING INDIVIDUAL DRIVING RECORDS 

BY 

LESTER B. DROPKIN 

VOLUME XLVI, PAGE 165 

Discussion by R. A. Bailey 

As Mr. R. E. Beard, secretary and editor of Astin, said,’ 
“The literature in the English language relating to analytical 

expressions of the risks involved in general insurance is scanty and 
largely limited to papers presented to International Congresses of 
Actuaries and the Proceedings of the Casualty Actuarial Society. 
There are, however, a number of contributions to the subject in 
various other languages, scattered over various journals, mainly, 
insurance publications of European countries, e.g. Skandinavisk 
Aktuarietidskrift and a few books.” 

The C.A.S. can rightfully be proud of its contributions in this field which have 
been ably enhanced by Mr. Dropkin’s treatment of the negative binomial dis- 
tribution. 

The analytical expression of risk distributions provides a valuable insight 
into many practical problems. One of the important results of Mr. Dropkin’s 
paper is a realization of the large amount of variation among individual risks. 
Automobile risks even within a single class or merit rating group are far from 
being all alike. In order to help visualize this variation there are shown in 
Figure 1 the graphs of the distribution of risks which Mr. Dropkin shows to 

be inherent in the negative binomial distribution. Four graphs are shown, all 

for an average accident frequency: = . 100, and with variances of the accident 

frequency (not the variances of m, the inherent haza.rd) of .120(r = 4) , 
.llO(r=l), .lOS(r=2) and .lOl(r=lO). 
1Transactions of the XVth International Congress of Actuaries, Volume II, 1957, p. 230. 
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Basics of Reinsurance Pricing 
 

Introduction 
 
Like primary insurance, reinsurance is a mechanism for spreading risk.  A reinsurer 
takes some portion of the risk assumed by the primary insurer (or other reinsurer) for 
premium charged.  Most of the basic concepts for pricing this assumption of risk are the 
same as those underlying ratemaking for other types of insurance.  This study note will 
assume a knowledge of basic ratemaking concepts on the part of the reader. 
 
A major difference between reinsurance and primary insurance is that a reinsurance 
program is generally tailored more closely to the buyer; there is no such thing as the 
"average" reinsured or the "average" reinsurance price.  Each contract must be 
individually priced to meet the particular needs and risk level of the reinsured.  This 
leads to what might be called the “pricing paradox”: 
 

If you can precisely price a given contract, the ceding company will not want to 
buy it. 

 
That is to say, if the historical experience is stable enough to provide data to make a 
precise expected loss estimate, then the reinsured would be willing to retain that risk.  
As such, the "basic" pricing tools are usually only a starting point in determining an 
adequate premium.  The actuary proves his or her worth by knowing when the 
assumptions in these tools are not met and how to supplement the results with 
additional adjustments and judgment. 
 
For the different types of reinsurance outlined in this study note, the basic pricing tools 
will be introduced in Section A, and criticisms and advanced topics will be introduced in 
Section B.  Section A will include the methods generally accepted and standard 
throughout the industry.  Section B will include areas which require the actuary's 
expertise but have not been solved to universal agreement. 
 
This study note will focus on domestic treaty covers.  Pricing for facultative covers or 
international (non-U.S.) treaties will not be addressed explicitly, but may be viewed as 
variations on the same themes.  Differences exist in accounting, loss sensitive features 
and the amount of judgment needed, but the underlying theory does not change. 
 
Finally, this study note will give numerical examples where needed.  The numbers used 
are meant to illustrate the pricing techniques with realistic amounts, but in no way should 
be taken as recommendations for actual factors. 
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1.  Proportional Treaties 
 
Section 1A.  Basic Tools 
 
A proportional treaty is an agreement between a reinsurer and a ceding company (the 
reinsured) in which the reinsurer assumes a given percent of losses and premium.  The 
simplest example of a proportional treaty is called "Quota Share".  In a quota share 
treaty, the reinsurer receives a flat percent, say 50%, of the premium for the book of 
business reinsured.  In exchange, the reinsurer pays 50% of losses, including allocated 
loss adjustment expenses, on the book.  The reinsurer also pays the ceding company a 
ceding commission which is designed to reflect the differences in underwriting expenses 
incurred. 
 
Another, somewhat more complicated, proportional treaty is known as "Surplus Share"; 
these are common on property business.  A surplus share treaty allows the reinsured to 
limit its exposure on any one risk to a given amount (the "retained line").  The reinsurer 
assumes a part of the risk in proportion to the amount that the insured value exceeds the 
retained line, up to a given limit (expressed as a multiple of the retained line, or 
"number" of lines).  An example should make this clear: 
 

Retained Line: $100,000 
1st Surplus:  4 lines ($400,000) 

 

Risk Insured Value
Retained 

Portion
Reinsured 

Portion
1st Surplus 

Percent

1 50,000 50,000 0 0%
2 100,000 100,000 0 0%
3 250,000 100,000 150,000 60%
4 500,000 100,000 400,000 80%
5 1,000,000 100,000 400,000 40%
6 10,000,000 100,000 400,000 4%

1st Surplus

 
 
It is important to remember that this is not excess insurance.  The retained line is only 
being used to establish the percent of the risk reinsured.  Once the ceded percent is 
calculated, the reinsurer is responsible for that percent of any loss on the risk. 
 
Other types of proportional treaties include fixed and variable quota share arrangements 
on excess business (e.g., commercial umbrella policies).  For these contracts, the 
underlying business is excess of loss, but the reinsurer takes a proportional share of the 
ceding company's book.  Umbrella treaties will be addressed in the section on casualty 
excess contracts. 
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The present section will focus primarily on a proportional property treaty.  Most of the 
techniques described follow standard ratemaking procedures. 
 
The following steps should be included in the pricing analysis for proportional treaties: 
 
Step 1:  Compile the historical experience on the treaty. 

 
Assemble the historical premium and incurred losses on the treaty for five or more 
years.  If this is not available, the gross experience (i.e., prior to the reinsurance 
treaty) should be adjusted "as if" the surplus share terms had been in place, to 
produce the hypothetical treaty experience.  Because a surplus share treaty 
focuses on large risks, its experience may be different than the gross experience. 
 
The treaty may be on a "losses occurring" basis for which earned premium and 
accident year losses should be used.  Alternatively, the treaty may be on a "risks 
attaching” basis, which covers losses on policies written during the treaty period.  
For risks attaching treaties, written premium and the losses covered by those 
policies are used. 
 

Step 2:  Exclude catastrophe and shock losses. 
 
Catastrophe losses are due to a single event, such as a hurricane or earthquake, 
which may affect a large number of risks.  Shock losses are any other losses, 
usually affecting a single policy, which may distort the overall results.  For 
property contracts, catastrophes are generally defined on a per-occurrence 
(multiple risk) basis, whereas shock losses are large losses due to a single risk.  
For casualty contracts, catastrophes may include certain types of claims 
impacting many insureds (e.g., environmental liability), whereas shock losses 
would represent a large settlement on a single policy. 
 

Step 3:  Adjust experience to ultimate level and project to future period. 
 
The historical losses need to be developed to an ultimate basis.  If the treaty 
experience is insufficient to estimate loss development factors, data from other 
sources may need to be used.  Depending on the source of these factors, 
adjustments for the reporting lag to the reinsurer or the accident year / policy year 
differences may need to be made. 
 
The next step is to adjust historical premiums to the future level.  The starting 
point is historical changes in rates and average pricing factors (e.g., changes in 
schedule rating credits).  Rate level adjustment factors can be calculated using 
the parallelogram method for "losses occurring" treaties.  The impact of rate 
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changes anticipated during the treaty period must also be included.  This is an 
area requiring some judgment, as these percents may not actually have been 
filed or approved at the time the treaty is being evaluated. 
 
If the premium base is insured value (for property), or some other inflation 
sensitive base, then an exposure inflation factor should also be included in the 
adjustment of historical premium. 
 
Finally, the losses need to be trended to the future period.  Various sources are 
available for this adjustment, including the amounts used in the ceding company’s 
own rate filings. 
 

Step 4:  Select the expected non-catastrophe loss ratio for the treaty. 
 
If the data used in Step 3 is reliable, the expected loss ratio is simply equal to the 
average of the historical loss ratios adjusted to the future level.  It is worthwhile 
comparing this amount to the ceding company’s gross calendar year experience, 
available in its Annual Statement, and to industry averages. 
 

Step 5:  Load the expected non-catastrophe loss ratio for catastrophes. 
 
Typically, there will be insufficient credibility in the historical loss experience to 
price a loading for catastrophe potential.  However, this amount is critical to the 
evaluation of property treaties. 
 
In the past, reinsurers had priced catastrophe loads based on “spreading” large 
losses over expected payback periods.  A 1-in-20-year event would be included 
as a loading of 5% of the loss amount.  The payback approach may still be used 
for casualty events but is only referenced as a reasonability check for property. 
 
The most common procedure is now for a company to select a property 
catastrophe load based on an engineering-based model that incorporates the risk 
profile of the ceding company.  These models will be discussed in Section 5A 
below. 
 

Step 6:  Estimate the combined ratio given ceding commission and other expenses. 
 
After the total expected loss ratio is estimated, the other features of the treaty 
must be evaluated.  These include: 

1. Ceding Commission - often on a "sliding scale" basis (see Section 1B) 
2. Reinsurer's general expenses and overhead 
3. Brokerage fees (where applicable) 
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If the reinsurer’s business is produced through a broker, there is typically a fee 
paid by the reinsurer as a percent of treaty premium.  If the reinsurer markets the 
business directly to the ceding company, there is no brokerage fee, but the 
general expense loading may be higher. 
 
Finally, the reinsurer must evaluate whether or not the projected combined ratio 
on the treaty is acceptable.  The evaluation of treaty terms should take into 
account potential investment income and the risk level of the exposures to 
determine if they meet the target return of the reinsurer. 

 
 
The remainder of this section will be devoted to an example of the pricing for a 
proportional treaty. 
 
The ceding company has requested a property quota share treaty effective 1/1/97, to be 
written on a "losses occurring" basis.  The submission includes six years of historical 
experience, rate changes, and a loss development triangle. 
 
The first step involves compiling the historical experience, which in this case is six years 
with a partial period for 1996.  The incurred losses shown are on an accident year basis 
and include case reserves and allocated loss adjustment expenses but do not include 
IBNR. 
 
Accident Year Experience evaluated 9/30/96: 
 

Accident Earned Incurred Loss Ratio
Year Premium Losses to date

1991 1,640,767 925,021 56.4%
1992 1,709,371 2,597,041 * 151.9%
1993 1,854,529 1,141,468 61.6%
1994 1,998,751 1,028,236 51.4%
1995 2,015,522 999,208 49.6%
1996 1,550,393 625,830 40.4%

Total 10,769,333 7,316,804 67.9%  
 

*Includes 1,582,758 due to Hurricane Andrew 
 
The catastrophe loss for Hurricane Andrew is identified in the 1992 period. 
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The losses, excluding the Andrew loss, are trended at 4% a year and developed to an 
ultimate basis.  The development factor on the 1996 year is selected so as to project 
losses for the full year. 
 

Trended
Incurred Trend Ultimate

Accident Losses Factor Incurred
Year (excl. cats) LDF at 4% Losses

1991 925,021 1.000 1.265 1,170,152
1992 1,014,283 1.000 1.217 1,234,382
1993 1,141,468 1.000 1.170 1,335,518
1994 1,028,236 1.000 1.125 1,156,766
1995 999,208 1.075 1.082 1,162,229
1996 625,830 1.600 1.040 1,041,381

Total 5,734,046 7,100,428  
 
 
In addition, the rate change information shown below is provided.  It should be noted  
that the +10% rate increase to be effective 4/1/97 is an estimate based on the rate filing 
that the ceding company expects to make in the coming year.  The rate level adjustment 
assumes that this amount will be approved. 
 

Effective Average
Date Rate Change

1/1/1991 2.00%
1/1/1993 10.00%
7/1/1994 -4.00%
4/1/1997 10.00%   (pending)  

 
The earned premium amounts above are then adjusted to the average 1997 rate level 
using factors based on a standard parallelogram method.  The other adjustments are 
that the 1996 premium has been adjusted from a 9 month basis to a full year basis, and 
all premiums are trended based on average property value inflation of 3%. 
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Earned
Unadjusted Trend Premium

Accident Earned On Level Factor at 1997
Year Premium Factor at 3% Level

1991 1,640,767 1.096 1.194 2,147,147
1992 1,709,371 1.086 1.159 2,151,541
1993 1,854,529 1.034 1.126 2,159,198
1994 1,998,751 0.992 1.093 2,167,158
1995 2,015,522 1.023 1.061 2,187,654
1996 2,067,191 1.028 1.030 2,188,825

Total 11,286,131 13,001,523  
 

 
The non-catastrophe loss ratio is estimated to be 54.6% based on the projections of loss 
and premium to the 1997 level. 
 

Earned Trended
Premium Ultimate

Accident at 1997 Incurred Projected
Year Level Losses Loss Ratio

1991 2,147,147 1,170,152 54.5%
1992 2,151,541 1,234,382 57.4%
1993 2,159,198 1,335,518 61.9%
1994 2,167,158 1,156,766 53.4%
1995 2,187,654 1,162,229 53.1%
1996 2,188,825 1,041,381 47.6%

Total 13,001,523 7,100,428 54.6%  
 
 
The loading for catastrophe losses now needs to be made.  For the historical period, the 
catastrophe loss associated with Hurricane Andrew would have added about 15% to the 
loss ratio if it had not been excluded.  A loading from a catastrophe model might add in a 
smaller amount.  For our example, we will assume that we have selected a 10% loading 
for catastrophe losses, making our final expected loss ratio approximately 65%. 
 
The final step in the evaluation is the determination of the reinsurer’s combined ratio.  A 
ceding commission of 30% has been suggested by the reinsured.  The other expenses 
are listed below: 
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Expected Loss Ratio  65.0% 
Ceding Commission  30.0% 
Brokerage fees     5.0% 
Administrative expenses    1.0% 
Unallocated expenses    1.0% 
 
Indicated Combined Ratio  102.0% 

 
The reinsurance actuary must then evaluate the profitability of these proposed terms.  A 
102% combined ratio is unlikely to produce an acceptable return for the reinsurer so a 
reduction in the ceding commission may be the actuary's recommendation.  Other 
provisions, such as a loss occurrence limit or adjustable features (discussed in the next 
section) may also be considered. 
 
 
Section 1B.  Special Features of Proportional Treaties 
 
After the expected loss ratio is estimated for a proportional treaty, the actuary's work is 
not yet done.  There will often remain disagreement between the ceding company and 
reinsurer about the loss ratio and the appropriate ceding commission.  In theory, a 
reinsurer should "follow the fortunes" of the ceding company, but in practice their results 
may be quite different.  Reinsuring a profitable insurer is no guarantee of profits for the 
reinsurer.  In the negotiations to resolve these differences, adjustable features are often 
built into the treaty. 
 
 
a) Sliding Scale Commission 
 
A common adjustable feature is the "sliding scale" commission.  A sliding scale 
commission is a percent of premium paid by the reinsurer to the ceding company which 
"slides" with the actual loss experience, subject to set minimum and maximum amounts.    
 
For example: 
 

Given the following commission terms: 
 

Provisional Commission:   30% 
 

Minimum Commission:  25% at a 65% loss ratio 
   Sliding  1:1 to   35% at a 55% loss ratio 

Sliding .5:1 to a Maximum  45% at a 35% loss ratio 
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Then the results may follow, for different loss scenarios, 
 

Actual         Adjusted 
Loss Ratio        Commission 
 
30% or below  45.0% 
35%    45.0% 
40%    42.5% 
45%    40.0% 
50%    37.5% 
55%    35.0% 
60%    30.0% 
65% or above  25.0% 

 
In a "balanced" plan, it is fair to simply calculate the ultimate commission for the 
expected loss ratio.  However, this may not be appropriate if the expected loss ratio is 
towards one end of the slide.  For example, if the expected loss ratio is 65%, the 
commission from a simple calculation is 25%, producing a 90% technical ratio (i.e., the 
sum of the loss and commission ratios).  If the actual loss ratio is worse than 65%, the 
reinsurer suffers the full amount, but if the actual loss ratio is better than 65%, the 
reinsurer must pay additional commission. 
 
It is more correct to view the loss ratio as a random variable and the expected loss ratio 
as the probability-weighted average of all possible outcomes.  The expected ultimate 
commission ratio is then the average of all possible outcomes based on the loss ratio. 
 
The simplest approach is to estimate the expected commission based on the historical 
loss ratios, adjusted to future level as above but including the catastrophe and shock 
losses.  This is a good calculation to make as a reasonability check but may be distorted 
by historical catastrophes or years with low premium volume.  It also leaves out many 
possible outcomes. 
 
A better approach is the use of an aggregate loss distribution model.  Several models 
are available and these are described in Section 4.  The results of any of these models 
may be put into the following format: 
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Average Probability Sliding
Range of Loss Ratio of being Scale

Loss Ratios in Range in Range Commission

0% - 35% 31.5% 0.025 45.0%
35% - 55% 46.9% 0.311 39.0%
55% - 65% 59.9% 0.222 30.1%

65% or above 82.2% 0.442 25.0%

0% or above 65.0% 1.000 31.0%

 
Note that in this example, the expected technical ratio is 96% (=65%+31%) rather than 
the 90% (=65%+25%) naively estimated above. 
 
A further complication is the introduction of a carryforward provision in the commission.  
A carryforward provision allows that if the past loss ratios have been above the loss ratio 
corresponding to the minimum commission, then the excess loss amount can be 
included with the current year’s loss in the estimate of the current year's commission.  In 
the long run, this should help smooth the results. 
 
Two approaches may be taken to pricing the impact of carryforward provisions.  The first 
is to include any carryforward from past years and estimate the impact on the current 
year only.  This amounts to shifting the slide by the amount of the carryforward.  For 
example, if the carryforward from prior years amounts to a 5% addition to the loss ratio, 
the terms above would become: 
 
   Minimum Commission:  25% at a 60% current year loss ratio 

Sliding  1:1 to   35% at a 50% current year loss ratio 
Sliding .5:1 to a Maximum  45% at a 30% current year loss ratio 

 
The analysis above would then be restated as follows: 
 

Average Probability Sliding
Range of Loss Ratio of being Scale

Loss Ratios in Range in Range Commission

0% - 30% 27.4% 0.006 45.0%
30% - 50% 43.0% 0.221 38.5%
50% - 60% 55.1% 0.222 29.9%

60% or above 78.3% 0.551 25.0%

0% or above 65.0% 1.000 29.2%
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The problem with this approach is that it ignores the potential for carryforward beyond 
the current year.  For example, in the first year of the program we would calculate the 
expected commission for the current year as though the program would be cancelled at 
the end of the year.  The same price would result with or without the carryforward 
provision - which does not seem right because the benefit of the carryforward is ignored. 
 
A second approach is to look at the "long run" of the contract.  The sliding scale is 
modeled as applying to a longer block of years rather than just the single current year.  
The variance of the aggregate distribution would be reduced on the assumption that 
individual bad years would be smoothed by good experience on other years.  The 
variance of the average loss ratio for a block of years should be significantly less than 
the variance of the loss ratio for a single year (roughly equal to dividing by the number of 
years in the block).  As an example: 
 

Average Probability Sliding
Range of Loss Ratio of being Scale

Loss Ratios in Range in Range Commission

0% - 35% 34.1% 0.000 45.0%
35% - 55% 51.6% 0.118 36.7%
55% - 65% 60.4% 0.408 29.6%

65% or above 72.3% 0.474 25.0%

0% or above 65.0% 1.000 28.3%

 
This example reduces the aggregate variance, putting greater probability in the ranges 
closer to the expected loss ratio of 65%.  The first problem with this approach is that the 
method for reducing the variance is not obvious; the example above reduces the 
standard deviation of the aggregate distribution by the square root of 5, assuming that 
the commission applies to a five-year block.  A second problem is that it ignores the fact 
that the contract may not renew the following year, potentially leaving the reinsured with 
no carryforward benefit. 
 
This issue is further complicated when a commission deficit can be carried forward but 
not a credit.  There is no standard method for handling these questions so far as this 
author is aware. 
 
 
b) Profit Commission 
 
A profit commission subtracts the actual loss ratio, ceding commission and a "margin" 
for expenses from the treaty premium and returns a percent of this as additional 
commission.  For example: 
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Actual Loss Ratio  55% 
Ceding Commission 25% 
Margin   10% 
Reinsurer’s Profit  10%  (100%-55%-25%-10%) 

 
Percent Returned  50% (as a percent of Reinsurer’s Profit) 
Profit Commission    5%  (10% profit times 50%) 

 
Like the sliding scale commission, this should be evaluated using an aggregate 
distribution on the loss ratio.  Also like the sliding scale commission, there is some 
ambiguity concerning the handling of carryforward provisions. 
 
 
c) Loss Corridors 
 
A loss corridor provides that the ceding company will reassume a portion of the 
reinsurer's liability if the loss ratio exceeds a certain amount.  For example, the corridor 
may be 75% of the layer from an 80% to a 90% loss ratio.  If the reinsurer's loss ratio is 
100% before the application of the loss corridor, then it will have a net ratio of 92.5% 
after its application, calculated as:  
 

Before  After 
  Corridor Corridor  
 

Below corridor 80.0%  80.0%  100% capped at 80% 
Within corridor 10.0%    2.5%    10% minus 75% of 90%-80% 
Above corridor 10.0%  10.0%  100% minus 90% 
 
Total Loss Ratio 100.0% 92.5%  

 
As above, the proper estimate of the impact of the loss corridor should be made using 
an aggregate distribution.  The probability and expected values for the ranges below, 
within and above the corridor can be evaluated. 
 

Average Probability Loss Ratio
Range of Loss Ratio of being Net of Loss

Loss Ratios in Range in Range Corridor

0% - 80% 64.1% 0.650 64.1%
80% - 90% 84.7% 0.156 81.2%

90% or above 103.9% 0.194 96.4%

0% or above 75.0% 1.000 73.0%  
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For this example, the expected loss ratio is 75.0% before the application of the loss 
corridor.  Even though this is less than the 80% attachment point for the corridor, the 
corridor still has the effect of lowering the reinsurer's expected loss ratio. 
 
Many variations on these features can be used with a proportional treaty.  Bear and 
Nemlick [1] provide further background on handling loss sensitive features.  This should 
serve to illustrate that the actuary's job is not finished after the expected loss ratio is 
calculated. 
 
 
2.  Property Per Risk Excess Treaties 
 
Section 2A.  Experience and Exposure Rating Models 
 
Property per risk excess treaties provide a limit of coverage in excess of the ceding 
company’s retention.  The layer applies on a "per risk" basis, which typically refers to a 
single property location.  This is narrower than a "per occurrence" property excess treaty 
which applies to multiple risks to provide catastrophe protection. 
 
The treaty premium is set as a percent of a subject premium base.  The subject 
premium goes by the oxymoronic title "gross net earned premium income” (GNEPI) for 
losses occurring policies or "gross net written premium income” (GNWPI) for risks 
attaching policies.  This premium is net of any other reinsurance inuring to the benefit of 
the per risk treaty, such as a surplus share treaty, but gross of the per risk treaty being 
priced. 
 
The main tools available for pricing per risk treaties are experience and exposure rating. 
 
 
a) Experience Rating 
 
Experience rating is sometimes referred to as a "burn cost" model though that phrase 
more commonly denotes just the unadjusted experience and not the projected cost.  The 
basic idea of experience rating is that the historical experience, adjusted properly, is the 
best predictor of future expectations.  The analysis proceeds as follows: 
 
Step 1: 
 

Gather the subject premium and historical losses for as many recent years as 
possible.  Ten years should be sufficient, though the number of years relied upon 
in the final analysis should be a balance between credibility and responsiveness.  
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The historical losses should include all losses that would pierce the layer being 
priced after the application of trend factors. 
 

Step 2: 
 
Adjust the subject premium to the future level using rate, price and exposure 
inflation factors as outlined in the section on proportional treaties. 

 
Step 3: 

 
Apply loss inflation factors to the historical large losses and determine the amount 
included in the layer being analyzed.  Sum up the amounts which fall in the layer 
for each historical period.  If allocated expense (ALAE) applies pro-rata with 
losses, it should be added in individually for each loss. 

 
Step 4: 

 
Apply excess development factors to the summed losses for each period.  As in 
any experience rating model, the loss development factors should be derived 
from the same ceding company data if possible.  Along with the LDF, frequency 
trend, if determined to be needed, should be applied at this step. 

 
Step 5: 

 
Dividing the trended and developed layer losses by the adjusted subject premium 
produces loss costs by year.  These may be averaged to project the expected 
loss cost. 

 
 
The projected loss costs from this analysis should be randomly distributed about the 
average.  If the loss costs are increasing or decreasing from the earliest to latest years 
in the experience period, then the assumptions of the model may need to be 
reexamined.  The trend or development factors may be too high or low.  Alternatively, 
there may have been shifts in the types of business or sizes of risks written by the 
ceding company. 
 
As an example of experience rating for a property excess of loss treaty, assume the 
following terms are requested: 
 

Effective Date:  1/1/97 
Treaty Limit:   $400,000 
Attachment Point:  $100,000 
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The losses shown below have been recorded for the treaty.  For each loss, a 4% annual 
trend rate is applied to project the loss from its accident date to the average date in the 
prospective period.  For each trended loss, we then calculate the portion that penetrates 
into the treaty layer being priced. 
 

Trend Loss in
Accident Untrended Factor Trended Treaty

Date Total Loss at 4% Total Loss Layer

9/20/1988 240,946 1.411 339,975 239,975
10/11/1988 821,499 1.408 1,156,671 400,000
3/15/1989 158,129 1.385 219,009 119,009
6/21/1990 114,051 1.317 150,205 50,205

10/24/1990 78,043 1.300 101,456 1,456
1/10/1991 162,533 1.289 209,505 109,505
2/23/1992 324,298 1.234 400,184 300,184
4/30/1992 100,549 1.225 123,173 23,173
9/22/1992 75,476 1.206 91,024 0
1/1/1993 171,885 1.193 205,059 105,059

5/18/1993 94,218 1.175 110,706 10,706
8/1/1993 170,297 1.166 198,566 98,566

8/15/1994 87,133 1.119 97,502 0
7/12/1995 771,249 1.080 832,949 400,000  

 
 
The losses that trend into the proposed layer are then summed for each historical 
accident year.  The subject premium for each year is listed after adjustment for rate level 
changes and inflation trend of the insured values.  The application of the loss 
development factor projects the ultimate trended loss cost for the treaty. 
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On Level Trended Trended
Accident Subject Losses Ultimate Loss

Year Premium in Layer LDF in Layer Cost

1988 1,422,554 639,975 1.000 639,975 45.0%
1989 1,823,103 119,009 1.000 119,009 6.5%
1990 2,054,034 51,661 1.000 51,661 2.5%
1991 2,147,147 109,505 1.000 109,505 5.1%
1992 2,151,541 323,357 1.010 326,591 15.2%
1993 2,159,198 214,331 1.050 225,048 10.4%
1994 2,167,158 0 1.150 0 0.0%
1995 2,187,654 400,000 1.300 520,000 23.8%

Total 16,112,389 1,857,838 1,991,789 12.4%
 
 
b) Exposure Rating 
 
The second pricing tool for property per risk treaties is exposure rating.  The advantage 
of this approach over experience rating is that the current risk profile is modeled, not 
what was written years earlier.  The exposure rating model is fairly simple, but may at 
first appear strange since nothing similar is found on the primary insurance side. 
 
The approach was first developed by Ruth Salzmann in 1963 for Homeowners business 
and eventually adapted for commercial property as well.  The method centers on an 
exposure curve (P).  This represents the amount of loss capped at a given percent (p) of 
the insured value (IV) relative to the total value of the loss.  This may be represented 
mathematically as: 
 

ܲሺሻ  ൌ   
 ݔ · ݂ሺݔሻ ݀ݔ
·ூ


   · ܸܫ · ݂ሺݔሻ ݀ݔ

ஶ

·ூ

 ݔ · ݂ሺݔሻ ݀ݔ
ஶ



 ൌ   
 ሾ1 െ ݔ݀ ሻሿݔሺܨ
·ூ



ሾܺሿܧ
 

 
 where f(x) = distribution of individual loss dollar amount 

 
For a property of a given insured value, we calculate the retention and limit as percents 
of that insured value.  The portion of the expected loss on the risk which falls in the 
treaty layer is then given by: 
 

P((Retention+Limit)/Insured Value)  -  P(Retention/Insured Value) 
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As an example, suppose the proposed treaty is intended to cover a per-risk layer of 
$400,000 excess of $100,000.  For a single risk with an insured value of $500,000, we 
would calculate the difference between the exposure factors for 20% (from $100,000 / 
$500,000) and 100% (from $400,000+$100,000 / $500,000).  From the table below, this 
results in an exposure factor of 44% (= 93%-49%). 
 

Percent Exposure 
 of I.V.    Factor 
    0%       0% 
  10%     37% 
  20%     49% 
  30%     57% 
  40%     64% 
  50%     70% 
  60%     76% 
  70%     81% 
  80%     85% 
  90%     89% 
100%     93% 
110%     97% 
120%    100% 

 
The exposure curve provided above is for illustration purposes only.  The curve does 
allow for exposure above the insured value; this is due to the fact that often the limits 
profile provided does not include business interruption coverage for commercial policies 
or living expenses for homeowners policies. 
 
For a portfolio of risks, this same calculation is performed on a distribution of premium 
by different ranges of insured values, known as the "limits profile".  The limits profile 
must also be questioned to verify that the size of risk ranges are on a per location basis. 
If it is assembled using total values for policies covering multiple locations, distortions 
will result. 
 
For the example below, it is assumed that all locations within the range are exactly equal 
to the midpoint of the range. 
 

Treaty Limit:  $400,000 
Treaty Retention: $100,000 
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Range of Insured Retention as Ret+Limit Exposure
Values  ($000s) Midpoint % of I.V. % of I.V. Factor

20 - 100 60 167% 833% 0%
100 - 250 175 57% 286% 26%

250 - 1,000 625 16% 80% 41%
1,000 - 2,000 1,500 7% 33% 33%  

 
Range of Insured Subject Expected Expected Reinsurer's
Values  ($000s) Premium Loss Ratio Losses Losses

20 - 100 682,000 65% 443,300 0
100 - 250 161,000 65% 104,650 27,209

250 - 1,000 285,000 65% 185,250 75,953
1,000 - 2,000 1,156,000 65% 751,400 247,962

Grand Total 2,284,000 65% 1,484,600 351,124  
 
The reinsurer's loss cost is 15.37% (Reinsurer's Losses 351,124 over Subject Premium 
2,284,000).  This loss cost is then loaded for expenses and profit. 
 
The expected loss ratio is of critical importance as the final rate will move proportionally 
with this amount.  A rigorous projection of the expected loss ratio, following the 
procedures for proportional treaties, should be made. 
 
An implicit assumption in the exposure rating approach outlined above is that the same 
exposure curve applies regardless of the size of the insured value.  For example, the 
likelihood of a $10,000 loss on a $100,000 risk is equal to the likelihood of a $100,000 
loss on a $1,000,000 risk.  This assumption of scale independence may be appropriate 
for homeowners business, for which this technique was first developed, but may be a 
serious problem when applied to large commercial risks.  The Lloyds scales, previously 
an industry standard, did not recognize this shortcoming. 
 
Ludwig [4] gives an excellent, more detailed description of this topic. 
 
  
Section 2B.  Other Issues on Property Per Risk Treaties 
 
After loss costs are estimated using the experience and exposure rating models, the 
actuary's task is to reconcile the results and select a final expected loss cost. 
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a) Free Cover 
 
One difficulty in this reconciliation is the issue of "free cover".  This refers to an 
experience rating in which no losses trend into the highest portion of the layer being 
priced.  For example, if you are comparing prices for a layer $750,000 excess of 
$250,000 with a layer $250,000 excess of $250,000, and your largest trended loss is 
$500,000 from ground up, then you will produce the same loss cost for either option.  
The top $500,000 excess of $500,000 layer would be implicitly a "free cover".  One 
approach to this problem is to use the experience rating as a basis for the lowest portion 
of the layer and then use the relativities in the exposure rating to project the higher layer. 
 
The table below gives an example of this approach: 
 

Experience Exposure
Layer to Rating Rating Selected

be Priced Loss Cost Loss Cost Loss Cost

$250k xs $250k 16% 20% 16%
$500k xs $500k 0% 10% 8% *

$750k xs $250k 16% 30% 24%  
* 8% = 16%  ͯ  (10%/20%) 

 
 
b) Credibility 
 
A first measure of credibility is the number of claims expected during the historical 
period.  Note that this is not the same as the actual number observed during the period.  
If credibility is set based solely on the historical number, then more credibility will be 
assigned to experience rating projections that are fortuitously worse than average. 
 
Because the expected number of claims may not be easily calculable, the dollars of 
expected loss, based on the exposure rating, may be used.  For example, if the 
exposure rating indicates that $2,000,000 in losses was expected during the historical 
period, but only $1,000,000 was actually observed, then the credibility given to the 
experience rating should still be based on the $2,000,000 expected. 
 
As a second measure of credibility, it is appropriate to look at the year-to-year variation 
in the projected loss cost from each of the historical periods.  Stability in this rate should 
add credibility even if the number of claims is relatively small. 
 
Assigning credibility is, in part, a subjective exercise.  Often significant credibility is given 
to experience rating simply because there are too many limitations to the exposure 
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rating alternative.  Discussions on reconciling the experience and exposure rating results 
are given in Mashitz and Patrik [5] and Clark [9]. 
 
 
c) Inuring Reinsurance 
 
An additional problem which may be encountered in both methods is that the excess 
treaty may apply to the ceding company's retention after a surplus share treaty is 
applied.  The $750k xs $250k layer may apply to a $1,000,000 loss which is actually a 
10% share of a $10,000,000 loss.  For experience rating, the only accurate way to 
reflect this underlying reinsurance is to restate the historical loss experience on a basis 
net of the inuring reinsurance. 
 
The exposure rating can be applied directly to a risk profile adjusted to reflect the terms 
of the inuring surplus share treaty.  However, if the actuary has exposure curves varying 
by size of insured value, the curve should be selected based on the insured value before 
the surplus share is applied, but the exposure factor should apply to the subject 
premium after the surplus share is applied. 
 
For example, suppose the ceding company from Section 2A decides to purchase a 
surplus share treaty in which it retains a maximum of $200,000 on any one risk.  On its 
net retention, it then wishes to purchase a per-risk excess cover of $100,000 excess of 
$100,000.  Its risk profile and the single exposure rating curve are the same as used in 
the earlier example. 
 
Range of Insured Ins. Value Gross
Values  ($000s) Midpoint after S/S Premium GNEPI

20 - 100 60 60 682,000 682,000
100 - 250 175 175 161,000 161,000

250 - 1,000 625 200 285,000 91,200
1,000 - 2,000 1,500 200 1,156,000 154,133

Grand Total 2,284,000 1,088,333  
 
Range of Insured Net Retention Ret+Limit Exposure
Values  ($000s) Ins. Value % of I.V. % of I.V. Factor

20 - 100 60 167% 333% 0%
100 - 250 175 57% 114% 24%

250 - 1,000 200 50% 100% 23%
1,000 - 2,000 200 50% 100% 23%  
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Range of Insured Subject Expected Expected Reinsurer's
Values  ($000s) Premium Loss Ratio Losses Losses

20 - 100 682,000 65% 443,300 0
100 - 250 161,000 65% 104,650 25,116

250 - 1,000 91,200 65% 59,280 13,634
1,000 - 2,000 154,133 65% 100,186 23,043

Grand Total 1,088,333 65% 707,416 61,793  
 
The loss cost for the $100,000 excess of $100,000 layer is 5.68% (Reinsurer’s Losses 
61,793 over Subject Premium 1,088,333) for the per-risk excess treaty net of the surplus 
share.  The exposure factors for the two highest ranges are the same because a single 
exposure curve is used. 
 
 
3.  Casualty Per Occurrence Excess Treaties 
 
Section 3A.  Experience and Exposure Rating Models 
 
Like property excess, casualty lines use experience and exposure rating models.  This 
discussion of casualty will refer to general liability (including products), auto liability and 
workers compensation.  The same techniques described can be adapted for other 
casualty lines, such as professional liability, with some modifications. 
 
Casualty per occurrence excess treaties are often separated into three categories:  
 

Working Layer: 
Low layer attachment which is expected to be penetrated, often multiple 
times in each annual period. 

 
Exposed Excess: 

Excess layer which attaches below some of the policy limits on the 
underlying business - that is, there are policies for which a full limit loss 
would cause a loss to the treaty.  Typically, these losses will be less 
frequent and there will be some years in which the treaty layer is not 
penetrated. 

 
Clash Covers: 

High layer attachment excess - typically a loss on a single policy will not 
penetrate the treaty layer.  A clash cover will be penetrated due to multiple 
policies involved in a single occurrence, or when extra-contractual 
obligations (ECO) or rulings awarding damages in excess of policy limits 
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(XPL) are determined in a settlement.  The method for including allocated 
loss adjustment expenses in the treaty may also expose the clash layer. 

 
The distinctions between these categories are generally soft in the pricing process.  A 
perfect working layer would produce stable enough results to be retained by the ceding 
company.  Experience rating techniques are still used even when the experience 
approaches the "exposed excess" category.  On the other hand, for large ceding 
carriers, "clash" losses may be common enough that the experience rating procedure 
provides guidance for the price. 
 
 
a) Experience Rating 
 
The steps in the experience rating procedure follow those of property experience rating, 
but some additional complications arise. 
 
Step 1: 
 
Gather the subject premium and historical losses for as many years as possible.  Along 
with the historical losses, it is very important that allocated loss adjustment expenses 
(ALAE) be captured separately from losses.  For general liability and auto liability losses, 
the underlying policy limit should also be listed.  For auto losses on a split limits rather 
than a combined single limit (CSL) basis, other modifications may be needed in order to 
separately cap losses for bodily injury and property damage. 
 
Workers compensation (WC) losses will not have an explicit limit associated with them.  
However, because large workers compensation losses are often shown on a discounted 
case reserve basis, a request should be made for these losses on a full undiscounted 
basis.  Further discussion of handling WC losses will be given in the next section. 
 
Step 2: 
 
Adjust the subject premium to the future level using rate, price and exposure inflation 
factors.  These adjustment factors will vary for each line of business included. 
 
Step 3: 
 
Apply loss inflation factors to the individual historical losses.  Inflation factors should also 
vary by line of business. 
 
The selection for a source of loss inflation is difficult.  The Insurance Services Office 
(ISO) estimates basic and total limits trend factors for general and auto liability for use in 
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ratemaking.  Theoretically, what should be used is an unlimited trend factor derived from 
large losses only.  Using losses capped at the underlying policy limit as a source may 
understate the final results.  There is also an implicit assumption that the same trend 
factor applies to all losses regardless of amount.  In the final analysis, the actuary must 
make a selection of loss inflation rates by year. 
 
The trended losses must then be capped at applicable policy limits.  This represents 
another problem for which there is no generally accepted solution.  Theoretically, we 
want to cap losses at the limit applicable if the same policy were written in the future 
treaty period.  One possible approach is to apply the historical policy limit to each 
trended loss; this leaves out the fact that the insured will generally increase its policy 
limits over time.  A second approach is to apply the trend factor to the historical loss 
without applying a policy limit cap; this assumes that policy limits "drift" upwards to 
precisely match inflation.  If this second approach is used, then the subject premium 
must also be adjusted to the level that would have been charged had the higher limits 
been in effect; otherwise an overstatement of the expected loss cost will result. 
 
The discussion by Mata and Verheyen [10] gives some more advanced concepts on 
making use of exposure rating techniques to adjust for changes in the policy limit profile. 
 
After the loss and ALAE amounts are trended, the portion of each in the treaty layer is 
calculated.  Allocated expenses are usually included in one of two ways: 
 

Pro-rata with loss: 
ALAE in the layer allocated in proportion to losses. 
 

ALAE as Part-of-Loss (aka "on top" or "add-on"): 
ALAE added to loss and the treaty limit applies to the sum. 

 
Example 1: 
 

Trended Loss:  $640,000 
Trended ALAE:  $320,000 
Treaty Attachment:  $400,000 
Treaty Limit:   $600,000 

 



Page 25 of 52 
 

 

ALAE as
Part-of-Loss

Loss ALAE Loss+ALAE Loss+ALAE

Retained 400,000 200,000 600,000 400,000
In Treaty 240,000 120,000 360,000 560,000
Above Treaty 0 0 0 0

Total 640,000 320,000 960,000 960,000

Pro-Rata Treatment of ALAE

 
 
 
Example 2: 
 

Trended Loss:  $920,000 
Trended ALAE:  $460,000 
Treaty Attachment:  $400,000 
Treaty Limit:   $600,000 

ALAE as
Part-of-Loss

Loss ALAE Loss+ALAE Loss+ALAE

Retained 400,000 200,000 600,000 400,000
In Treaty 520,000 260,000 780,000 600,000
Above Treaty 0 0 0 380,000

Total 920,000 460,000 1,380,000 1,380,000

Pro-Rata Treatment of ALAE

 
 
These two examples should serve to illustrate the two methods of including ALAE in a 
treaty.  It should also be noted that the amount in the treaty layer is not necessarily 
higher or lower for either method, but depends on the actual experience. 
 
Step 4: 
 
Apply excess development factors to the summed losses for each period.  For casualty 
lines, this step is critical due to the very large factors needed to reflect future 
development.  If possible, historical patterns should be derived for the excess layer 
using ceding company data.  Where this is not available, other benchmarks are needed. 
 
The Reinsurance Association of America (RAA) publishes a loss development study on 
a biennial basis, which is considered an industry benchmark.  The historical data in that 
study includes more than thirty years of development, broken out by line of business.  Its 
statistics show a significant lag between reported losses for a primary company and a 



Page 26 of 52 
 

reinsurer.  The graphs included in the 2012 edition of the RAA Study, attached as a 
supplement to this study note, illustrate this lag. 
 
The use of compiled industry data gives a level of stability to the estimate of excess 
development patterns that is often superior to that for individual ceding companies. 
 
While the RAA statistics may be considered a benchmark, the user should remember 
that the data is simply what is reported by its members.  Some cautions: 
 

1.  The reporting lag from the occurrence of an event to the establishment of a 
reinsurer's case reserve may vary by company.  Included in the data is 
retrocessional business which may include several levels of reporting lag. 
 
2.  The mix of attachment points and limits is not cleanly broken out.  In recent 
studies, the RAA has begun publishing statistics by attachment point ranges, but 
this data is considerably less stable than the total triangle.  Loss development 
varies significantly for different attachment points so every effort should be made 
to adjust the selected factors to the layer of the treaty being priced. 
 
3.  The RAA requests data exclusive of Asbestos and Environmental claims which 
could distort the patterns.  It cannot be known if all member companies have 
done this consistently.  Other long term exposure claims, such as medical 
products, mold, or tobacco, are not excluded. 
 
4.  For workers compensation, the members may not handle the tabular discount 
on large claims in a consistent manner.  If a ceding company reports a loss on a 
discounted basis, and the reinsurer establishes a case reserve as the amount of 
the discounted value that falls into the reinsured layer, a very high development 
factor may result due to the unwinding of the discount. 

 
As a practical matter, having a very slow development pattern will often produce results 
showing either zero or very high projected ultimate layer losses by year.  The actuary 
will often need to use smoothing techniques, such as a Bornhuetter-Ferguson approach 
or Cape Cod (aka Stanard-Bühlmann), to produce a final experience rate. 
 
Step 5: 
 
Dividing the trended and developed layer losses by the adjusted subject premium 
produces loss costs by year.  These amounts are averaged and a final expected loss 
cost selected.  The loss cost may be adjusted for the time value of money, expenses 
and risk load; these adjustments are dealt with in the last section of this study note. 
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b) Exposure Rating 
 
The second pricing method is exposure rating.  As was the case for property, this 
method estimates a loss cost based on the premium and limits expected to be exposed 
during the treaty period.  The exposure rating approach uses a severity distribution, 
based on industry statistics, to estimate layer losses.  The severity distribution is used to 
calculate increased limits factors (ILF) for general liability and auto liability, and excess 
loss factors (ELF) for workers compensation.  The theory is the same for these different 
lines, but the practical calculation is different. 
 
For all of these approaches, we begin with a Cumulative Distribution Function (CDF) 
representing the probability that a loss is a given size or smaller. 
 

x =  random variable for size of loss 
F(x) =  probability a loss is x or smaller, the CDF 
f(x) =  density function, first derivative of F(x) 
E[x] =  expected value or average unlimited loss 
E[x;L] = expected value of losses capped at L 

 
The severity distribution is used to calculate expected losses in any given layer. 
 
We define: 
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For general liability and auto liability, one option is to use the truncated Pareto 
distribution for loss severity.  The form of E[x;L] is given by 
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for Q<>1, L>T. 
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The five parameters for this distribution follow some intuitive meanings: 
 

T = Truncation point, "small" losses are below this point, 
"large" losses follow a Pareto distribution 

P = probability of a "small" loss 
S = average small loss severity 
B = scale parameter for Pareto distribution 
Q = shape parameter for Pareto distribution 

 
The scale of the distribution is easily adjusted for inflation by multiplying the parameters 
T, S and B by the same amount.  Two limitations of this formula should be noted: 
 

1. The formula shown above only applies for losses above the truncation point T.  
As a practical matter, this is not a problem as that parameter is set at an amount 
well below any treaty attachment point. 

2. The excess factors for higher layers become very dependent on the Q parameter.  
This parameter must be watched very carefully when the curves are updated. 

 
A curious note on the truncated Pareto distribution is that when B=0 and Q=1, the 
distribution becomes a log-logistic distribution of the form below. 
 

;ݔሾܧ ሿܮ  ൌ ܲ · ܵ     ሺ1 െ ܲሻ · ܶ · 1 െ  ݈݊ ൬
ܶ
ܮ
൰൨ 

 
This has the property that expected losses in layers are equal if the limit and attachment 
point are in the same ratio. 
 

;ݔሾܧ ܷሿ െ ;ݔሾܧ ሿܮ  ൌ ;ݔሾܧ  ܷ݇ሿ െ ;ݔሾܧ  ሿ    for any constant kܮ݇
 
This property may be approximated when the B parameter is small and the Q parameter 
is close to 1.  It should be remembered, however, that this relationship holds for 
severities for individual claims, but not necessarily for treaty loss costs, which will 
decrease for higher layers due to fewer policies being exposed. 
 
The “BQPST” form of the Pareto is not the only choice available.  There is great 
flexibility possible with discrete mixture models.  A discrete mixture is a weighted 
average of relatively simple curve forms that approximates a more complex but realistic 
shape. 
 
A popular example of a mixture model is the Mixed Exponential, which is a weighted 
average of several exponential distributions. 
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Once a severity distribution is selected, an exposure factor can be calculated.  This 
factor is analogous to the factor used for excess property and should likewise be applied 
to ground-up expected losses to estimate the loss cost to the treaty layer. 
 

Exposure Factor  ൌ   
,ܮሺܲ݊݅݉;ݔሾܧ ܲܣ  ሻሿ݉݅ܮ െ ,ܮሺܲ݊݅݉;ݔሾܧ ሻሿܲܣ
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Where  PL = Ceding Company Policy Limit 

AP = Treaty Attachment Point 
Lim = Treaty Limit 

 
If the treaty includes ALAE in proportion to losses, this exposure factor can be applied to 
subject premium times an expected loss and ALAE ratio.  If the ALAE is included with 
losses, the following exposure factor formula can be used: 
 

Exposure Factor  ൌ   
ܧ ݔ;݉݅݊ ൬ܲܮ,

ܲܣ  ݉݅ܮ
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ܲܣ
ሺ1  ݁ሻ൰൨

;ݔሾܧ ሿܮܲ
 

 
Where: 

PL = underlying Policy Limit applying to loss only 
AP = Treaty Attachment Point applying to ALAE plus loss capped at PL 
Lim = Treaty Limit applying to ALAE plus loss capped at PL 
e = ALAE as a percent of loss capped at PL 

 
The key assumption in both cases is that ALAE varies directly with capped indemnity 
loss.  This is not an accurate model in that ALAE is not a constant percent of any given 
loss.  For example, losses which close without an indemnity payment may still incur a 
large expense.  In general, as the size of a loss increases, the ALAE as a percent of the 
loss will tend to decrease.  The assumption that loss and ALAE are perfectly correlated 
will tend to result in an overstatement of expected amounts in the higher layers. 
 



Page 30 of 52 
 

Another limitation of the formula for the latter case is that an exposure factor of zero will 
be applied to high layers which are indeed exposed.  For example, if the underlying 
policy limit is $1,000,000 and the ALAE loading is 1.500, then  a treaty attaching at 
$1,500,000 will not be considered exposed by this formula. 
 
A more refined analysis of the effect of ALAE would require modeling of how ALAE 
varies with loss size. 
 
Another use for the severity curves is for proportional treaties on excess business.  
These proportional treaties may be on a quota share basis, where the reinsurer takes a 
set percent of each contract the ceding company writes, or on a "cessions" basis for 
which the percent depends on the attachment point and limit written on each policy.  A 
cessions basis treaty will typically require the ceding company to use increased limits 
factors to price the portion of its policies exposing the treaty.  The exposure factors 
calculated above can be compared with the factors used by the ceding company in 
pricing its business. 
 
For workers compensation, the severity distributions used most commonly come from 
the National Council on Compensation Insurance (NCCI), which publishes excess 
factors for retrospective rating plans in many states.  Its curves vary by state and hazard 
group.  The underlying data incorporates different injury types as well.  It is not always 
possible to calculate the underlying severity distribution directly. 
 
The NCCI curves, or other excess factors, can easily be approximated by an inverse 
power curve of the form: 
 

ܨܮܧ  ൌ  
ሿݔሾܧ െ ;ݔሾܧ ሿܮ

ሿݔሾܧ
 ൌ   ܽ ·  ିܮ

 
The parameters "a" and "b" are estimable from selected excess factors.  The fitted 
factors behave in the higher layers much like the Pareto distribution described above. 
 
Workers compensation does not have policy limits corresponding to those on liability 
policies.  The WC limits refer instead to limitations on annual benefits specific to 
individual states.  The exposure factor is therefore calculated using only the treaty 
attachment point (AP) and limit. 
 

Exposure Factor = ELFAP - ELFAP+Limit 

 
The exposure factor is estimated separately for each state and hazard group for which 
the ceding company projects premium for the treaty period.  Expected loss ratios are 
also needed for each of these divisions. 
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An example of exposure rating would look as follows: 
 

Treaty Limit:     750,000 
Treaty Attachment Point:  250,000 

 
Standard ELF at ELF at Exposure Treaty

State H.G. Premium ELR 250,000 1,000,000 Factor Losses

AL B 100,000 70% 0.030 0.006 0.024 1,680
AL C 100,000 70% 0.040 0.008 0.032 2,240
NJ B 100,000 85% 0.070 0.020 0.050 4,250
NJ D 100,000 85% 0.100 0.035 0.065 5,525

400,000 13,695
 
The loss cost for the treaty will be 3.42% (Treaty Losses 13,695 over Standard Premium 
400,000). 
 
 
Section 3B.  Special Problems on Casualty Excess Treaties 
 
This section will deal with a number of problems which commonly arise with casualty 
excess treaties.  Issues about credibility or "free cover" have been addressed in the 
section on property per risk excess treaties, but should equally be considered for 
casualty treaties.  The methods described are the author's suggestions and should not 
be viewed as the consensus opinion.  However these issues are addressed, they cannot 
be ignored in the pricing process. 
 
 
a) Including Umbrella Policies 
 
The ceding company may include umbrella policies in the business subject to the treaty.  
These policies are excess of an underlying retention and "drop down" if an underlying 
aggregate is exhausted. 
 
If the umbrella policies are above primary policies written by the ceding company, then it 
is best to consider the combination of the primary and excess as a single policy with a 
higher limit.  For experience rating the primary and excess pieces are simply added 
together.  When the umbrella policies are above primary policies from other carriers, the 
procedures are more difficult. 
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For experience rating, the main difficulty is in selecting the appropriate trend factor.  The 
limit on the underlying policy should be added to losses on the umbrella policy before 
the application of trend, then subtracted after it: 
 

Trended Loss  =  (Loss + Underlying Limit)·(Trend Factor) - Underlying Limit 
 
This procedure will still leave out losses from the underlying policy which historically did 
not exhaust the underlying limit, but which would have after the application of a trend 
factor. 
 
For exposure rating, the exposure factor on an excess policy is calculated as: 
 

Exposure Factor  ൌ   
ܮሺܷ݊݅݉;ݔሾܧ  ,ܮܲ ܮܷ  ܲܣ  ሻሿ݉݅ܮ െ ܮሺܷ݊݅݉;ݔሾܧ  ,ܮܲ ܮܷ  ሻሿܲܣ 

;ݔሾܧ ܮܷ  ሿܮܲ െ ;ݔሾܧ ሿܮܷ
 

 
Where: 
 

UL = Limit of Underlying Policies (attachment point of the umbrella) 
PL = Policy Limit on Umbrella 
AP = Treaty Attachment Point 
Lim = Treaty Limit 

 
For example, if the ceding company sells an umbrella policy for $1,000,000 excess of 
$1,000,000 and the treaty covers losses for the layer $500,000 excess of $500,000, 
then the exposure factor would be: 
 

Exposure Factor  ൌ   
;ݔሾܧ 2ሿ െ ;ݔሾܧ 1.5ሿ
;ݔሾܧ 2ሿ െ ;ݔሾܧ 1ሿ

 

 
The graphic below illustrates how this treaty would apply. 
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This formula leaves out the possibility of the "drop down" feature of the umbrella policy.  
An approximation to include this additional exposure would be: 
 

Exposure Factor  ൌ   
ሼܧሾݔ; 2ሿ െ ;ݔሾܧ 1.5ሿሽ · ሺ1 െ ߶ሻ  ሼܧሾݔ; 1ሿ െ ;ݔሾܧ 0.5ሿሽ · ߶

ሼܧሾݔ; 2ሿ െ ;ݔሾܧ 1ሿሽ · ሺ1 െ ߶ሻ  ሼܧሾݔ; 1ሿ െ 0ሽ · ߶
 

 
The ϕ in the formula represents the aggregate excess factor on the underlying policy.  
This is analogous to a Table M charge factor, and will be given a more explicit definition 
in the section on Aggregate Distributions. 
 
 
b) Loss Sensitive Features 
 
For working layer excess, the ceding company is often willing to retain more of the 
losses.  In these cases, an annual aggregate deductible (AAD) may be used.  The AAD 
allows the ceding company to retain the first losses in the layer, but maintain protection 
in case there are more losses than anticipated.  The treaty then becomes an excess of 
aggregate cover, where the aggregate losses are per occurrence excess losses in the 
layer. 
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The savings due to aggregate deductibles can be estimated directly from the experience 
rating if they are set at a sufficiently low level (say, half of the expected value).  A better 
approach is the use of an aggregate distribution model.  An excess charge factor for a 
given AAD is defined as: 
 

߶ ൌ   
 ሺݕ െ ݕ݀ ሻݕሻ ݃ሺܦܣܣ
ஶ


ሿݕሾܧ
 

 
where g(y) is the distribution of aggregate losses in the layer 

 
The form of this expression may be recognized as that underlying Table M; it is also 
analogous to the ELF calculation used for per occurrence excess.  This charge may be 
estimated from a number of different methods.  These methods are outlined in a 
separate section on aggregate distributions. 
 
The charge factor ϕAAD is multiplied by the loss cost for the layer gross of the AAD to 
estimate the net loss cost. 
 
A second type of loss sensitive program is the "swing plan" which is a type of 
retrospective rating program.  Actual losses to the layer are loaded for expenses and the 
result is charged back to the ceding company, subject to maximum and minimum 
constraints. 
 
Swing plans likewise require aggregate distribution models to be evaluated correctly.  A 
swing plan formula may work as follows: 
 

Retro Premium = (Actual Layer Losses) x 100/80 
Provisional Rate = 15% 
Maximum Premium = 30% x Subject Premium 
Minimum Premium = 10% x Subject Premium 

 
For example, if actual losses in the layer are $100,000, then the ultimate premium paid 
to the reinsurer will be $125,000, subject to the maximum and minimum. 
 
This formula may apply to a block of years instead of to a single year.  Following the 
example of sliding scale commissions, the calculation of expected premium is as 
follows: 
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Range of Average Loaded Capped
Loss Cost Probability in Range Loss Cost Premium

0% < LC < 8% 0.120 6.0% 7.5% 10.0%
8% < LC < 24% 0.630 18.0% 22.5% 22.5%

24% < LC    0.250 40.0% 50.0% 30.0%

Total 1.000 22.1% 27.6% 22.9%
  
In this example, the expected loss ratio is 96.5% (= 22.1%/22.9%), not 80% (from the 
100/80 loading) because the maximum and minimum amounts are not in "balance".  The 
loading, maximum or minimum rates can be adjusted to produce an acceptable loss 
ratio.  A second issue on the swing plan is that the provisional rate of 15% is well below 
the expected ultimate swing plan premium rate of 22.9%; this difference is an added 
cash flow advantage for the ceding company which must be included in the final pricing 
evaluation. 
 
 
c) Workers Compensation Experience Rating 
 
As described above, experience rating for workers compensation may be distorted 
depending on how tabular discounts are taken into account.  A way to avoid this 
distortion is to collect sufficient information for individual claimants to project their 
expected costs into the treaty layer.  The information needed is: 
 

1. Claimant's current age 
2. Claimant's sex (M/F) 
3. Estimate of annual indemnity cost including escalation, if any 
4. Estimate of annual medical cost 
5. Amounts paid to date 

 
For claims with the potential for penetrating the layer, all future payments (both 
indemnity and medical costs adjusted for escalation) should be determined.  For those 
potential payments which fall within the excess layer, an appropriate mortality factor 
should be applied to determine the expected amount in the treaty layer.  It is important to 
note that some claims, for which the incurred amount reported by the ceding company 
falls below the treaty retention, will show an expected amount in the layer.  A smaller 
development factor would then be needed to include only "true IBNR" claims. 
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4.  Aggregate Distribution Models 
 
Throughout the pricing discussions above, aggregate distribution models have been 
used for pricing a variety of treaty features.  This section will outline a number of tools 
which can be used for these calculations.  As a general rule, aggregate models produce 
results which are very sensitive to the input assumptions; wherever possible, sensitivity 
analysis on the parameters, or even several approaches, should be used. 
 
All of the approaches in this section may be considered "advanced", but this is not to say 
that they are optional.  Improper evaluation of features which vary with loss experience 
could lead to significant under- or over-pricing. 
 
 
a) Empirical Distribution 
 
For most of the adjustable features outlined in this paper, the historical experience can 
be used to estimate the impact of the adjustable feature.  For example, if the actuary has 
five or more years of loss ratios on a surplus share treaty, then a sliding scale 
commission can be priced by calculating the commission as if the current terms had 
been in effect over the historical period (adjusted to current rate level). 
 
The empirical approach is generally very easy to calculate and should be examined at 
least as a check on other methods.  However, some caveats should be recognized: 
 

1) The experience does not take into account all possible outcomes, and may miss 
the possibility of events outside of what has been observed. 

2) If the volume or mix of business has been changing, then the volatility of the 
future period may be very different than the historical period. 

3) If loss development has been performed using a Bornhuetter-Ferguson or Cape 
Cod method, then the historical periods may present an artificially smooth 
sequence of loss ratios that does not reflect future volatility. 

 
 
b) Single Distribution Model 
 
The single distribution approach assumes that the aggregate of all losses to the treaty 
follows a known CDF form.  This is in contrast to a "collective risk" model for which there 
is explicit modeling of frequency and severity distributions. 
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A commonly used model is the lognormal distribution.  The lognormal has been shown 
to be a reasonable approximation to empirical distributions, and most spreadsheet 
software applications allow it to be programmed directly. 
 
The lognormal cumulative distribution function (CDF) has the form: 
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The parameters can be easily set based on a method of moments, given an expected 
value and coefficient of variation (CV = standard deviation over the mean). 
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The limited expected loss function is given by: 
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Related to that is the excess charge function: 
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Finally, the expression for the conditional expected value within a given range is given 
by the formula below.  The first term in the numerator and denominator is replaced by 1 
if U is equal to infinity.  The second term in the numerator and denominator is replaced 
by 0 if L=0. 
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Where: L = lower end of range 

U = upper end of range 
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The formula for the expected value in a given range is very useful because most 
adjustable features can be broken down into piecewise linear functions, and only the 
expected value is needed within each linear range. 
 
For example, in the swing plan program illustrated above, the ultimate premium is at the 
minimum when the loss cost is below 8%, and it increases at a rate of 100/80 with loss 
until hitting the maximum of 30% at a 24% loss cost.  The premium needs only to be 
estimated for the expected value in each of the three ranges.  The ultimate premium 
estimates are then weighted together using the probabilities of the loss being in each 
range. 
 
The procedure may be generalized as follows: 
 

Aggregate  Expected  Probability 
Loss Range  In Range  In Range 
 
0 to P1  E[y | 0<y<P1] G(P1) 
P1 to P2  E[y | P1<y<P2] G(P2)-G(P1) 
P2 to P3  E[y | P2<y<P3] G(P3)-G(P2) 
     …        …       … 
Pn & Above  E[y | Pn<y]  1-G(Pn) 

 
This table can be set up for sliding scale commissions, profit commissions, swing plans, 
loss corridors, or many other common features.  The formulae above make use of the 
lognormal distribution, which is often used in the actuarial literature and can be included 
in a spreadsheet program.  Other curve forms, such as transformed gamma (see Venter 
[8]) or inverse Gaussian, have been recommended as also providing good fits to 
aggregate loss data. 
 
The single distribution model has the advantage of being relatively simple to use, even 
when the source data is limited.  A reasonable fit is provided even when frequency and 
severity distributions are not known.  There are two main disadvantages: First, there is 
no allowance for the loss free scenario; in fact the lognormal is not defined for y=0.  
Second, there is no easy way to reflect the impact of changing per occurrence limits on 
the aggregate losses.  Bear and Nemlick [1] offer several useful suggestions for 
modifying the single distribution model to overcome these disadvantages. 
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c) Recursive Calculation of Aggregate Distribution 
 
The recursive formula, introduced into the actuarial literature by Panjer (see Panjer 
and Willmot [6]), is a very convenient tool for calculating an aggregate distribution for low 
frequency scenarios.  The frequency distribution is assumed to be Poisson, negative 
binomial or binomial, and the severity distribution is defined in discrete steps. 
 
For an example, assume that the frequency distribution is Poisson with a mean of λ.  
 
This has the well-known form: 
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This can also be given the recursive form: 
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Next, a severity distribution must be defined.  For the recursive formula, each possible 
severity must be equally spaced from the preceding amount.  The largest severity may 
be set equal to the per occurrence limit on an excess treaty, or to the limit times a 
loading for ALAE.  In this example, we will define: 
 

Notation  Severity Probability 
    S1    250   .400 
    S2    500   .150 

      S3    750  .100 
    S4  1,000  .350 

 
This example uses four points, but the formula can be expanded to handle any finite 
number.  The severity distribution must sum to one (1=S1+S2+S3+S4). 
 
For the aggregate distribution, the probability of zero losses is simply equal to the 
Poisson probability of zero, Pr(0)=.050 for E[n]=λ=3.  The probability of the aggregate 
losses totaling 250 is the probability of one loss, Pr(1)=.150, times the probability that 
that one loss is equal to 250, S1=.400.  This may be restated in terms of A0: 
 

A0   =  Pr(0)         .050 
A1   =  Pr(1) • .400  =  (λ/1) • S1 • A0     .060 

 



Page 40 of 52 
 

The probability that the aggregate distribution is 500 is the addition of two pieces: the 
probability of one 500 loss, plus the probability of two 250 losses.  Again this can be 
restated recursively: 
 

A2   =  Pr(1) • .150 + Pr(2) • .400 • .400 
       =  (λ/2) • (S1 • A1 + 2 • S2 • A0)     .059 

 
Likewise, the probabilities for higher amounts are easily calculable: 
 

A3  =  (λ/3) • (1 • S1 • A2 + 2 • S2 • A1 + 3 • S3 • A0)   .057 
 

A4  =  (λ/4) • (1 • S1 • A3 + 2 • S2 • A2 + 3 • S3 • A1 + 4 • S4 • A0) .096 
 

A5  =  (λ/5) • (1 • S1 • A4 + 2 • S2 • A3 + 3 • S3 • A2 + 4 • S4 • A1) .094 
 
Notice that for aggregate amounts above the largest possible individual severity, the 
number of terms does not increase.  A simple table can be set up to illustrate this 
calculation: 
 

Sev. Agg. 
Amount  Prob.  Prob. Calculation 
 
       0  .000 .050  
   250  .400 .060 (3/1)(.400 •.050) 
   500  .150 .059 (3/2)(.400 •.060+2 •.150 •.050) 
   750  .100 .057 (3/3)(.400 •.059+2 •.150 •.060+3 •.100 •.050) 
1,000  .350 .096 (3/4)(.400 •.057+2 •.150 •.059+3 •.100 •.060+4 •.350 •.050) 
1,250  .000 .094 (3/5)(.400 •.096+2 •.150 •.057+3 •.100 •.059+4 •.350 •.060) 
1,500  .000 .083 (3/6)(.400 •.094+2 •.150 •.096+3 •.100 •.057+4 •.350 •.059) 
 
This calculation continues indefinitely using the following formula: 
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When the Poisson frequency distribution is used, the mean and variance of the 
aggregate distribution are easily estimated as: 
 

Mean  =  λ (250 • S1 + 500 • S2 + 750 • S3 + 1000 • S4) 
 

Variance  =  λ (2502 • S1 + 5002 • S2 + 7502 • S3 + 10002 • S4) 
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The recursive formula can be generalized for frequency distributions other than 
Poisson: 

ܣ  ൌ   ൬ܽ 
ܾ
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The "a" and "b" parameters are defined as follows: 
 
Poisson: 
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Negative Binomial: 
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Binomial: 
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The use of a negative binomial or binomial frequency distribution allows for greater 
flexibility in the aggregate distribution. 
 
The recursive formula has the major advantage of being simple to work with and 
providing an accurate handling of low frequency scenarios.  The number of points 
evaluated on the severity distribution can be expanded to closely approximate 
continuous curves.  The disadvantages are: 1) For higher expected frequencies, the 
calculation is inconvenient because all the probabilities up to the desired level must be 
calculated and 2) only a single severity distribution can be used in the analysis.  
 
 
d) Other Collective Risk Models 
 
In general, collective risk models are distributions for which frequency and severity are 
explicitly recognized.  The recursive method outlined above is a straightforward example 
of a collective risk model.  For handling continuous functions and higher expected 
frequencies, more advanced techniques may be needed. 
 
A collective risk model assumes the severity of loss, represented by the random variable 
"x", has a given distribution.  The aggregate loss is the sum of "n" of these severities, 
where "n" is also a random variable.  Most aggregate loss models allow for more than a 
single severity distribution to be used. 
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The aggregate distribution may be evaluated using simulation or numerical methods.  
Numerical methods have been developed which can provide very close approximations 
to the theoretical distribution, with efficient computer time.  The underlying calculations 
are well beyond the scope of this paper (see Heckman and Meyers [3], Robertson [7] or 
Wang [12] for detailed, readable accounts). 
 
The inputs needed are the severity distribution(s) and parameters for the frequency 
distribution.  Most models then will produce the cumulative distribution function G(y) and 
excess charge factor ϕ(y) at requested points. 
 
The expected aggregate loss in a given range can be estimated as: 
 

ܮ | ݕሾܧ ൏ ݕ ൏ ܷሿ  ൌ  
ሿݕሾܧ · ሼ߶ െ ߶ሽ  ܮ · ሼ1 െ ሻሽܮሺܩ െ ܷ · ሼ1 െ ሺܷሻሽܩ

ሺܷሻܩ െ ሻܮሺܩ
 

 
The results of the aggregate model are very useful in pricing the adjustable features 
described in this study note.  They become even more important on "pure" excess of 
aggregate covers such as Stop Loss treaties, which cover losses in excess of a set loss 
amount or loss ratio.  The collective risk model is generally the best way to price these 
treaties but some words of caution are in order: 
 

1. The complexity of the calculations can lead to a "black box" mentality - assuming 
the numbers must be right because of the accuracy of the computer.  Whenever 
possible, more than one set of results should be produced, as a check on the 
sensitivity of the answer to the starting assumptions.  Some basic statistics, such 
as the coefficient of variation (standard deviation over mean) and percentiles, 
should be compared to the empirical data for reasonability. 

2. Most models assume that each occurrence is independent of the others and that 
the frequency and severity distributions are independent of each other.  This may 
be a reasonable assumption in many cases, but could be false in others. 

3. Some collective risk models use numerical methods with a large error term for 
low frequency scenarios.  Check the output of the model; the expected error term 
should be given. 

4. The aggregate distribution reflects the process variance of losses but does not 
reflect the full parameter variance.  "Process variance" refers to the random 
fluctuation of actual results about the expected value.  "Parameter variance" in 
the narrow sense refers to uncertainty about the parameters and may be 
calculable from outside sources.  Some models allow for a prior distribution to 
apply to the selected parameters.  "Parameter variance" in the broader sense of 
not being sure if you are even using the right model is harder to estimate and is 
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best reflected by repeated sensitivity analysis.  This broader sense could perhaps 
be called "model risk". 

 
 
5.  Property Catastrophe Covers 
 
Section 5A.  Traditional Products and Methods 
 
A property catastrophe cover provides protection for a catastrophic event, such as a 
hurricane or earthquake.  The occurrence may often affect multiple risks and multiple 
policies.  Typically, the catastrophe cover applies to the ceding company's retained 
exposure net of surplus share, per risk excess treaties and facultative certificates.  That 
is, other reinsurance inures to the benefit of the catastrophe cover. 
 
The limit is defined in excess of a total loss amount.  A cover may be $10,000,000 in 
excess of $30,000,000 per occurrence.  Because the limit is often a substantial dollar 
amount, the contract provides a limited number of reinstatements.  Without 
reinstatements, the catastrophe cover would provide $10,000,000 of limit, but after the 
full layer is exhausted, there is no more protection.  Additional reinstatements are 
available “pro-rata as to amount” and less often "pro-rata as to time". 
 
Pro-rata as to amount means that if half the limit is exhausted, it can be reinstated for 
premium proportional to the amount reinstated: 
 

Occurrence Limit:   $10,000,000 
Annual Premium:     $2,000,000 
Reinstatement Provision:   110% pro-rata as to amount 
Actual Loss Amount:    $4,500,000 
 
Reinstatement Premium:       $990,000  (= $2,000,000 X 1.10 X 4.5/10) 

  
The treaty effectively has an aggregate limit equal to one plus the number of 
reinstatements, times the occurrence limit.  For a cover with one reinstatement, the 
same results will be produced for four losses halfway through the layer as for two full 
limit losses. 
 
Less frequently, the reinstatement premium is pro-rata as to time, meaning that the 
premium would be further reduced to reflect only the amount of time left in the policy 
period.  Given the seasonal nature of some types of catastrophes (e.g., hurricanes), 
relatively few contracts include reinstatements pro-rata as to time. 
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Before the widespread development of catastrophe models there had been few tools 
available to systematically price catastrophe covers.  The most common method was 
known as the payback approach, in which premium was set so the offered limit was paid 
back over a given period of time.  For the example above, the payback period is five 
years, meaning that the $2,000,000 of annual premium would cover a single total loss of 
$10,000,000 every five years. 
 
Catastrophe models are now the generally accepted approach for pricing of natural and 
some man-made events.  There are four main components of typical catastrophe 
models: 
 

 Event sets that simulate the covered hazards (e.g., hurricanes, earthquakes, 
terrorist events).  These events cover the full range of possible sizes of a hazard 
at all relevant locations and are simulated based on estimates of frequency and 
intensity at specific locations. 

 Calculation of local event intensity for each property within a portfolio. 

 Estimation of damage for each property within a portfolio impacted by a given 
event. 

 Insured loss estimates based on policies written by the ceding company. 

 
The event sets are generally created and stored within the model prior to pricing of a 
catastrophe cover.  The damage and insured loss estimates are specific to the portfolio 
written by the ceding company and therefore require additional information. 
 
A catastrophe model will require several types of information: 

 
1.  Measure of exposure: 

This should be insured values, construction types, occupancies, along with 
attachment points for excess contracts. 

 
2.  Geographical information: 

Property address information is converted into latitude and longitude 
coordinates by a geocoding engine that is provided with the model.  In 
some cases insured value information may be less precisely aggregated 
by zip code or state, resulting in less precise model results. 

 
3.  Terms of the insurance policies: 

Include deductible and coinsurance provisions of the original policies. 
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4.  Details of inuring reinsurance: 
If a surplus share treaty inures to the benefit of the catastrophe treaty, any 
features such as occurrence caps or loss corridors will affect the 
catastrophe exposure. 

 
The output of a catastrophe model is a distribution of possible losses on the subject 
business.  The expected amount in the treaty layer, usually referred to as the average 
annual loss (AAL), can be calculated, along with its standard deviation.  This can be 
used as a starting point for a loss cost on the cover. 
 
The model output is also used for management of accumulations, so typically an 
Occurrence Exceedance Probability (OEP) curve is calculated.  The OEP represents the 
probability that at least one event during the year will exceed a given loss amount.  
There may also be an Annual Exceedance Probability (AEP) given, which represents the 
probability that the total of all modeled events in a single year exceeds a given loss 
amount. 
 
Catastrophe models are a major advance in the ability of insurers and reinsurers to 
assess their risks.  There are additional items that may or may not be included in the 
results.  If not explicitly modeled, these may need to be included more subjectively: 
 

1. Workers compensation losses may be included within the cover.  If there is an 
earthquake during standard working hours, this exposure could be substantial. 

 
2. The inuring reinsurance terms may not be calculable by the model. 

 
3. Even if earthquake coverage is not sold by the ceding company, there may still be 

exposure due to a "fire following” the earthquake. 

 
4. Other coverage terms, such as the portion of policyholders purchasing 

replacement cost coverage instead of actual cash value, may be critical.  After a 
major catastrophe event, there may be increased demand for materials and labor 
which raises the total cost borne by the insurer. 

 

One last complication that should be addressed is due to the basis of coverage for the 
catastrophe cover: whether it is "losses occurring” during the period or "losses occurring 
on risks attaching" during the period.  As before, "risks attaching" contracts cover losses 
on policies written during the treaty period.  For risks attaching contracts, there is the 
potential for the reinsurer to pay twice on the same loss event. 
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Consider a treaty renewing on 1/1/95 for a layer of $10,000,000.  A loss event takes 
place on 3/15/95.  The ceding company has policies that are affected, some effective 
7/1/94 and some effective 1/1/95.  The catastrophe reinsurance treaty effective 1/1/94 
covers the losses on the 7/1/94 policies and the treaty effective 1/1/95 covers the losses 
on the 1/1/95 policies.  The reinsurer may end up paying $20,000,000 for the single 
event.  To address this difficulty, many treaties include an “interlocking clause”, designed 
to equitably apportion losses that may be covered under more than one contract. 
 
  
Section 5B.  Alternative Risk Products 
 
A great variety of products are grouped under the titles "financial reinsurance" or "finite 
reinsurance".  For this study note, the term "finite risk" will refer to property catastrophe 
covers for which the maximum loss amount is reduced relative to traditional covers.  
This distinction is very soft because traditional covers are already "finite" in the sense 
that there is a definite limit that can be paid.  Further, the relationship between the 
ceding company and the reinsurer on traditional covers is often viewed as a partnership; 
there is an unspoken understanding that the ceding company is expected to pay its own 
losses over the long term. 
 
Two characteristics are common to most finite risk covers: 
 

1. Multiple year features. 

2. Loss sensitive features such as profit commissions and additional premium 
formulas. 

 
For example, there may be a provision that the contract applies to a three-year period 
and is cancelable after the first or second year only if premium to date exceeds the loss 
payments.  On the other side, there may be a profit commission which returns, say, 75% 
of premium if the contract is loss free for three years.  In exchange for the profit 
commission, a relatively high annual premium is charged up front. 
 
These types of features may greatly reduce the downside risk on the contract but it is 
rarely eliminated.  The ceding company can only consider this insurance if two 
conditions are met: 
 

1. The reinsurer assumes significant insurance risk under the reinsured portions of 
the underlying insurance agreements. 

2. It is reasonably possible that the reinsurer may realize a significant loss from the 
transaction. 
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The reinsurance actuary is likely to be called upon to help quantify the risk on the 
contract to verify that these criteria are met.  Timing risk as well as underwriting risk 
should be evaluated.  The actuary charged with this task should refer to the American 
Academy of Actuaries’ “Risk Transfer Testing Practice Note” [11] for guidance. 
  
It is also important to remember that features like profit commissions may substantially 
reduce the ''upside" of the contract from the reinsurer’s perspective.  It is all well and 
good to limit the loss to $500,000 in the event of a hurricane, but if this is in exchange for 
a maximum profit of $10,000 on a loss free year, then more attention needs to be given.  
In a limited sense, there is an equivalent traditional risk cover corresponding to the 
possible results from a finite risk cover. 
 
Assume that the following terms are provided on a finite basis: 
 

Annual Premium:  $2,500,000  (25% nominal rate on line) 
Occurrence Limit:  $10,000,000 
Profit commission:  80% after 10% margin on Annual Premium 
Additional Premium: 50% of (Loss + Margin - Annual Premium) 

 
Loss Free  One Full Loss 
Scenario   Scenario 

Premium  $2,500,000    $2,500,000 
Loss    $0  $10,000,000 
Profit Commission $1,800,000   $0 
Add'l Premium  $0    $3,875,000 
 
U/W Result*     $700,000     ($3,625,000) 

 
Now consider the following terms on a traditional basis: 
 

Loss Free  One Full Loss 
Scenario   Scenario 

Premium  $700,000      $700,000 
Loss    $0   $4,325,000 
 
U/W Result*  $700,000   ($3,625,000) 

 
* U/W result here excludes expenses 

 
The rate on line for the traditional risk program is 16%, and produces an underwriting 
result equivalent to that of the more complex finite risk program.  In this case, the 
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question becomes: would the reinsurer be willing to offer this cover on a traditional basis 
at a 16% rate on line?  If not, the pricing for the alternative cover is also inadequate. 
 
This type of analysis becomes more complicated when reinstatement provisions, 
expenses, and carryforward provisions from earlier years are taken into account, but 
those features can be reflected in an expanded analysis.  More difficult are provisions in 
which the additional premium and profit commission percents change each year of the 
program or depend on whether the ceding company or the reinsurer cancels the cover. 
 
The best approach to these programs is to estimate the different possible outcomes for 
a one-year time horizon.  Using a simplifying assumption that any penetrations into the 
layer will exhaust the full limit, probabilities can be assigned to each scenario using a 
Poisson or other distribution. 
 
Using a frequency distribution is convenient because the mean of the distribution is 
related to the "payback period" for traditional risk covers.  The payback which produces 
an acceptable expected result can be compared to the results of catastrophe models or 
other pricing analysis. 
 
A final consideration on finite reinsurance relates to the credit risk of the ceding 
company.  In the example above, the reinsurer depends upon the contingent "additional 
premium” to minimize the downside risk on the contract.  However, there is a new risk 
introduced that the ceding company will be financially unable to make the payment, 
especially after experiencing the loss that makes it necessary.  A careful review of the 
ceding company's annual statement needs to be made. 
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6.  Calculating the Final Price 
 
Up to this point, this study note has focused on estimating the reinsurer’s expected 
losses.  The final program must be structured to cover this amount but also to cover the 
reinsurer's expenses and the risk that is borne by the stockholder.  The timing of the 
payment of these amounts is also considered because investment income will contribute 
to profitability. 
 
Turning first to expenses, it should be noted that the reinsurer's expenses are not the 
same as those of the ceding company.  For instance, reinsurers are not subject to 
premium tax.  The reinsurer's expenses can be broken into three types: 
 
1. Expenses varying with premium 

 ceding commission paid to the reinsured 

 brokerage fees (where applicable) 

 federal excise tax (where applicable) 

 
2. Fixed expenses 

 general overhead costs (salaries, real estate) 

 underwriting and claims audit expenses 

While these expenses may vary somewhat with the size of the account, it is clear 
that they would not increase simply by taking a larger share of a given treaty.  These 
company expenses should be set independently of variable expenses such as 
ceding commissions. 
 
Similarly, an excess of loss reinsurance treaty may be quoted with and without an 
Annual Aggregate Deductible (AAD).  The expected loss to the reinsurer net of the 
AAD is less than for the treaty without an AAD, but the expenses incurred may not be 
different.  The reinsurer needs an expense structure that covers its costs regardless 
of whether an AAD is selected. 

 
3. Expenses varying with losses 

 reinsurer's unallocated loss adjustment expenses 

This percent should also vary with the type of reinsurance contract.  A working layer 
excess treaty may require extensive work; a quota share contract may require a 
review of a loss bordereau, but less claim file review.  These amounts can be 
estimated after discussion with the claims department. 
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If it is desired simply to load the losses for these expense categories, the final premium 
could be estimated as: 
 

Premium  ൌ  
Loss Cost · ሺ1  ULAEሻ  Fixed Expense

ሺ1 െ Variable Expense %ሻ
 

 
The "traditional" loading of 100/80, often applied on excess treaties, is an example of 
this formula.  In that case, all expenses are considered variable with premium and 
assumed to total 20%. 
 
However, consideration must also be given to the timing and risk elements of the 
contract.  The cash flows on the treaty need to be estimated for the treaty, including 
premium and loss payments and any adjustable features (e.g., swing plan premium). 
 
The considerations for profit or risk load are more complex, and beyond the scope of this 
study note.  Feldblum [2] has given a description of various approaches to accounting 
for risk. 
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Comparison of Primary and Reinsurance Development 
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Foreword 
By Lawrence McTaggart 
 
This study note introduces concepts and methods employed when supporting Excess, Deductible 
and Individual Risk pricing.  The authors intend to provide a better experience for candidates by 
consolidating insights from several foundational papers, providing examples beyond U.S.-based 
workers’ compensation practice, and introducing a few fresh insights.   
Chapter 1 provides a summary of experience rating.  An experience rating plan prospectively 
adjusts manual premium based on a policyholder’s past experience.  The more an individual 
risk’s past experience differs from what is expected of risks in the rating manual classification, 
the greater the experience modification to the individual risk’s manual premium.   
Chapter 2 provides an overview of various loss sensitive rating plans.  As insureds grow in size 
their appetite for risk grows.  Loss sensitive rating plans allow insureds to retain a portion of 
their actual loss experience, fulfilling their desire to share in the risk, or reward, of their actual 
loss experience.  Insureds and insurers negotiate the terms of loss sensitive policies, and an 
actuary will be asked to provide pricing for many different combinations of per-occurrence and 
aggregate retentions.   
Chapter 3 introduces aggregate excess loss estimation.  Estimates of aggregate excess loss 
contemplate both the severity of claims and the number of claims.  The expected number of 
claims for a policy is, in part, a function of the size of the risk.  Thus aggregate excess loss 
estimation considers risk size.  Claim severity is a function, in part, of retentions and limits.  
Visualizing how a loss sensitive plan’s insured retentions and insurer limits for both per-
occurrence and aggregate boundaries is an important first step when pricing individual loss 
sensitive rating plans. 
Chapter 4 concludes the study note with cautions associated with pricing excess and aggregate 
loss.  Understanding a few of the ways bias can creep into an estimate begins to build the ability 
to discern estimates that may be biased, and defend estimates that are perceived by others to be 
biased. 
The Excel-based Case Study applies the methods from the readings to a single set of fictional 
claims data.  The Case Study is intended to provide greater clarity and understanding.  In 
practice, or on the exam, the combinations of loss sensitive contract retentions, limits and 
aggregates is practically unlimited.   
The authors hope this study note will help casualty actuaries world-wide understand and master 
these concepts. 
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Chapter 1: Experience Rating 
By Rebecca Pettingell 
 
1. Introduction/Definition 
 
Experience Rating is the use of an insured’s past loss experience to determine rates for a future 
exposure period. The compilation of rules, definitions, formulas, etc., needed to calculate such a 
rate is referred to as the experience rating plan. 
It is generally in the form of a multiplicative factor applied to manual rates, such that: 
Standard Premium = E-mod * Manual Premium.  
An experience rating modification factor, or e-mod, greater than 1.0 implies the insured’s 
experience is worse than average for its class. This is called a debit mod. A factor of less than 1.0 
implies the insured’s experience is better than average for its class. This is called a credit mod. 
Note: a risk with a debit mod should not be viewed as a “bad” risk, nor should a risk with a 
credit mod be viewed as a “good” or “better” risk. The mod merely indicates the risk’s expected 
loss relative to other risks in its class.  
There is a misconception that experience rating is an attempt to “charge back” or make up for the 
past loss experience of an insured. This is incorrect! What experience rating does is determine 
how much an insured’s past loss experience is predictive of its future loss potential and 
incorporate that prediction into a prospective rate which is better tailored to that risk’s loss 
potential. 
 
2. Advantages of Experience Rating  
There are several advantages to using experience rating. It allows us to account for differences 
between risks within a class. It also allows us to account for differences due to variables that are 
difficult, impractical, or impossible to quantify via rating variables. Experience rating is a further 
refinement of classification rating since an individual risk’s rate can be further tailored to its loss 
potential beyond the use of the class and rating variables that make up an insurer’s manual rates. 
 
3. Differences within Class 
Experience rating is particularly useful when insureds don’t fit neatly into a rating class. This 
could happen if a risk has unique operations, or if the classification system is not sophisticated. 
The fewer number of rating classes or the broader the range of rating classes in a classification 
system, the more useful experience rating will be because it allows us to pick up differences 
within a rating class. Another way to think about this is experience rating allows us to account 
for the variance of the hypothetical means of the risks within a rating class.  
Let’s consider two different companies that are very similar in size and operations. Both would 
be in the same rating class because their operations are so similar. In one company, management 
is very safety conscious. They require all employees to complete regular safety courses and 
frequently inspect their premises for safety hazards. If there are any accidents or safety incidents, 
they conduct a thorough review to determine what went wrong and how another incident could 
be avoided in the future. In the second company, management thinks that safety is just common 
sense and spending time discussing safety is a waste of time and money.  
If we used strictly manual rating criteria, these two companies would likely be rated the same or 
very similarly. However, it is pretty clear that the first company will likely have fewer claims 
and better loss experience. The application of an experience rating plan would likely pick up the 
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differences between these two companies and allow an insurance company to charge each of 
these insureds a rate that is more closely tailored to their loss potential.  
 
4. Objectives/Goals 
Experience rating accomplishes several objectives. First and foremost, it leads to greater risk 
equity. By charging a rate that is more commensurate with an insured risk’s expected losses, we 
have increased fairness.  
Second, experience rating creates an increased incentive for safety. By attaching a financial 
consequence to loss experience, there is an additional incentive to prevent or minimize losses on 
top of the incentives that already exist. 
Also, experience rating enhances market competition. The same arguments that are made about 
classification rating systems enhancing market competition can also be made about experience 
rating. Since experience rating allows an insurer to charge a rate that is more in line with a risk’s 
loss potential, the insurer will view more risks as being desirable to write. For example, imagine 
a risk that consistently has higher loss experience than other risks in its class. If an insurer has no 
mechanism to charge this risk a higher rate, it will not want to write this risk. However, by using 
experience rating the insurer can charge a premium that is more reflective of the risk’s future loss 
potential. 
 
5. Equity 
When thinking about experience rating, it is natural to ask “Is it really equitable to base an 
insured’s future rates on its past experience? Isn’t this just a way to charge back an insured for 
poor loss experience?” Gary Venter answers this question very elegantly. In his article 
“Experience Rating—Equity and Predictive Accuracy,” he states “to the extent that the loss 
experience is indicative of true differences from the classification average, it appears equitable to 
charge for it.” The experience mod is intended to be a prospective measure of loss potential for 
the future exposure period. It is not intended to be a penalty or reward for past experience or to 
recoup past losses. 
 
6. Credibility 
Arguably the most important consideration in designing an experience rating plan is credibility—
specifically how much credibility should be given to the individual insured’s experience in the 
determination of the premium adjustment.  
You can think of experience rating as a way of treating each risk as its own rating class. Just as 
an insurer might credibility weight the experience of a small rating class with the experience of 
the larger group it is a part of (e.g., the general liability experience of a small state might be 
credibility weighted with the country-wide indication), the experience of a single insured can be 
credibility weighted with that of other risks in its rating class.  
First, let’s review some basic credibility concepts. Then, we will explore those concepts in an 
individual risk rating and experience rating context, discussing specific credibility provisions and 
how they are incorporated into the determination of a risk’s premium. 
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6.1 Credibility Review1 
In determining a rate or premium (or, what is ultimately equivalent, the modification factor 
applied to the old rate or the manual rate), the amount of weight given to the insured’s own 
experience represents the level of credibility ascribed to that experience. The complement of 
credibility is applied to the expected loss experience represented by the manual rate. 
Over the years, a number of mathematical approaches to determining credibility have been 
explored—in particular: 

• Classical credibility—also known as “limited fluctuation” credibility, since the volume of 
expected losses (or expected number of claims, or number of exposures) necessary for a 
risk’s loss experience to be given full credibility is based upon the potential fluctuation of 
results from expected levels. 

• Bühlmann credibility—also known as “greatest accuracy” or “least squares” credibility, as it 
involves the analysis of the variance associated with the stochastic situation being evaluated. 

• Bayesian credibility, which updates prior hypotheses in light of emerging experience. Under 
certain circumstances, the Bühlmann and Bayesian credibility approaches give the same 
result. 

Regardless of the particular approach used, there are certain characteristics that a credibility 
factor Z (which represents the level of credibility associated with a risk’s observed loss 
experience) is expected to have: 

• Z is a value between 0 and 1:  0 ≤ 𝑍𝑍 ≤ 1. 
• Z does not decrease as the size of the risk (the level of expected losses, or E) increases: 

𝑑𝑑𝑍𝑍
𝑑𝑑𝑑𝑑� ≥ 0. 

• As the size of a risk increases (i.e., as E increases), the ratio of Z to E decreases: 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑍𝑍
𝑑𝑑
� < 0. 

This amounts to the charge for a loss of any given size decreasing as the size of the risk 
increases. 

For purposes of experience rating, a Bühlmann credibility framework is used. The basic formula 
for credibility in this context is: 

𝑍𝑍 =
𝑑𝑑

𝑑𝑑 + 𝐾𝐾
 

where K is a constant for a particular situation. More specifically, in accordance with Bühlmann 
credibility, 

𝐾𝐾 = 𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 𝑜𝑜𝑜𝑜 𝐸𝐸ℎ𝐸𝐸 𝑃𝑃𝑃𝑃𝑜𝑜𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸𝐸𝐸
𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐸𝐸ℎ𝐸𝐸 𝐻𝐻𝑦𝑦𝐸𝐸𝑜𝑜𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉 𝑀𝑀𝐸𝐸𝑉𝑉𝑉𝑉𝑃𝑃

. 
Basically, the difference between a risk’s actual loss experience and its expected loss experience 
can be divided into two categories. First, there is the variation that is purely random and results 
from the loss process being inherently stochastic, i.e., the process variance. Second, there is 
variation from the expected experience that is due to a risk being innately different from other 
risks within its class, i.e., the variance of the hypothetical means. We do not want to penalize or 

 
1 There are some excellent sources of information and explanation about credibility in the actuarial literature—e.g., Philbrick, 
1981, “An examination of Credibility Concepts,” Proceedings of the Casualty Actuarial Society (PCAS), 68:195-219, and Mahler and 
Dean, 2001, “Chapter 8: Credibility,” in Foundations of Casualty Actuarial Science, fourth edition, pp. 485-659. 
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reward a risk for experience that is truly random, but we do want the risk to take ownership of 
experience that is due to the risk’s inherent differences. The weighting factor given to a risk’s 
experience, Z, represents the portion of experience that is due to a risk’s inherent differences. 
From this basic credibility framework emerges a set of formulas by which rates and premiums 
can be determined, either directly or as an adjustment to current rate levels, in light of the risk’s 
own recent loss experience. While there are a number of specific formulas tailored to particular 
experience rating approaches, the general idea is reflected in a basic version of a rate 
modification factor. Letting M be the experience modification factor (or “mod”): 

𝑀𝑀 =
𝑍𝑍𝑍𝑍 + (1 − 𝑍𝑍)𝑑𝑑

𝑑𝑑
= ⋯ =

𝑍𝑍 + 𝐾𝐾
𝑑𝑑 + 𝐾𝐾

 
where the last expression can be derived algebraically from the previous one. 
 
7. Credibility Issues in Experience Rating 
Two common elements of experience rating plans that relate to the issue of credibility as applied 
in experience rating are: 

1) MSL—The Maximum Single Loss is the amount at which individual large losses are capped 
when they are included in the calculation of a risk’s experience, A.  This prevents a single 
random event from exerting too much influence on the calculation of the mod. 

2) Min and Max Adjustment—The calculated modification factor is often subject to a 
minimum and maximum value. These function as a final measure to ensure that the 
experience rating adjustment is not too extreme. 

These two elements, along with the basic credibility framework and the credibility factor itself, 
Z, will vary with the size of the risk. The loss experience of larger risks will receive greater 
credibility than the loss experience of smaller risks. In practice, the size of a risk could be 
measured using manual premium, expected loss, expected number of claims, or an exposure base 
(such as sales receipts for GL or power units for commercial auto).  
 
8. Split Loss Plans  
Another potential feature of an experience rating plan is to separate the individual claims of a 
risk’s loss experience into different layers. This plan is known as a split loss plan.  
For example, let’s suppose we have an experience rating plan which uses a single loss split at 
$5,000 and a risk has the following loss experience: 

Claim # Incurred Loss Amount 
001 $1,150 
002 $5,000 
003 $3,000 
004 $500 
005 $50,000 
006 $2,000 
007 $10,000 
008 $6,000 
009 $350 
010 $12,025 
011 $4,500 
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Now let’s look at the losses after we split them into layers of $0 – $5,000 and $5,000+. 

Claim # 
Incurred Loss 

Amount 
Primary Loss 

Amount 
Excess Loss 

Amount 
001 $1,150 $1,150 $0 
002 $5,000 $5,000 $0 
003 $3,000 $3,000 $0 
004 $500 $500 $0 
005 $50,000 $5,000 $45,000 
006 $2,000 $2,000 $0 
007 $10,000 $5,000 $5,000 
008 $6,000 $5,000 $1,000 
009 $350 $350 $0 
010 $12,025 $5,000 $7,025 
011 $4,500 $4,500 $0 

Total $94,525 $36,500 $58,025 
 
Now instead of comparing just the total loss experience of this risk to an expected amount, we 
will compare the primary and excess components independently.  
Split rating plans—which ordinarily give much more weight to the small portion of losses than to 
the large portion—can also be thought of as a linear approximation to assigning credibility to the 
log of the loss amount. Many real loss distributions are skewed with extremely heavy tails. The 
most predictive estimate might be obtained by normalizing the distribution in some way, such as 
taking a logarithm of it. But that could lead to messy and complex rating algorithms. The split 
rating plan is a compromise between simplicity and precision.    
One can view these primary and excess components of loss as representing the frequency and 
severity of the experience, respectively. If the limit for the primary portion of the loss is 
relatively low, when the actual primary losses exceed the expected primary losses it must mean 
there have been a higher number of losses than expected. Since the primary losses are truncated 
from above, a higher than expected outcome cannot be due to a single or small number of very 
large losses.  
The excess component of the loss experience represents severity. It would be difficult for a large 
number of smaller losses to cause the excess portion of the loss experience to greatly exceed 
expectation unless the severity of the losses was higher than expected. 
The NCCI WC Experience Rating Plan is an example of a split loss plan. The split plan has been 
found to produce empirically better results for the WC plan than a total or limited loss plan, 
perhaps because WC loss distributions are very heavy tailed2. This can also be thought of as 
separating the claim count uncertainty (the parameter risk, mostly driven by lots of small Med-
only and TT claims) and the severity uncertainty (the process risk, driven by relatively few but 
influential Major PP, PT, and Fatal claims). 

 
2 See Gillam, W.R., “Parameterizing the Workers’ Compensation Experience Rating Plan,” PCAS LXXIX, 1992, pp21-
56 and Meyers, G., “An Analysis of Experience Rating”, PCAS LXXII 1985, pp278-317 for this result and discussions 
for and against using a split rating plan, and some practical and statistical considerations in choosing an experience rating 
plan structure. 
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With respect to credibility, a split plan necessitates a credibility-weighted modification factor 
(M) formula that is adjusted to reflect the two tiers of losses, primary and excess. Using the same 
underlying framework as described in the prior section, a split plan formula for the mod factor is: 

𝑀𝑀 = �𝑍𝑍𝐸𝐸𝑍𝑍𝐸𝐸 + �1 − 𝑍𝑍𝐸𝐸�𝑑𝑑𝐸𝐸 + 𝑍𝑍𝐸𝐸𝑍𝑍𝐸𝐸 + (1 − 𝑍𝑍𝐸𝐸)𝑑𝑑𝐸𝐸� ÷ 𝑑𝑑 
where A, E, and Z are defined as before, and the subscripts p and e refer to “primary” and 
“excess,” respectively. This formula can then be algebraically manipulated to yield: 

𝑀𝑀 = 1 + 𝑍𝑍𝐸𝐸
(𝐴𝐴𝑝𝑝−𝑑𝑑𝑝𝑝)

𝑑𝑑
+ 𝑍𝑍𝐸𝐸

(𝐴𝐴𝑒𝑒−𝑑𝑑𝑒𝑒)
𝑑𝑑

 . 
This is the framework for determining the modification factor in the context of credibility 
factors. The NCCI uses a mathematically equivalent formula, but describes the components in 
terms of “weighting” and “ballast”: 

𝑀𝑀 =
𝑍𝑍𝐸𝐸 + (1 −𝑤𝑤)𝑑𝑑𝐸𝐸 + 𝐵𝐵 + 𝑤𝑤𝑍𝑍𝐸𝐸
𝑑𝑑𝐸𝐸 + (1 −𝑤𝑤)𝑑𝑑𝐸𝐸 + 𝐵𝐵 + 𝑤𝑤𝑑𝑑𝐸𝐸

=
𝑍𝑍𝐸𝐸 + (1 − 𝑤𝑤)𝑑𝑑𝐸𝐸 + 𝐵𝐵 + 𝑤𝑤𝑍𝑍𝐸𝐸

𝑑𝑑 + 𝐵𝐵
 

where w is the excess loss weighting factor, B is the ballast value, and other terms are as defined 
earlier. 
 
9. Schedule Rating  
Schedule rating is a series of credits and debits that can be used to modify a risk’s rates to reflect 
the risk’s individual characteristics. Rates can be modified either upward (increased) or 
downward (decreased), depending on the expected impact on the risk’s loss experience.  
A schedule rating plan for commercial general liability coverage might look something like this: 

 
Under this plan, a risk that had a particularly good safety program might receive up to a 2% 
credit to its manual rates. However, a risk that has a much more inexperienced than average 
workforce could receive a debit of up to 6% to reflect the fact that inexperienced employees are 
correlated with worse than average loss experience.  
One must be careful to prevent overlap when both schedule rating and experience rating will be 
applied to a policy. If a risk has made a recent change that will likely impact its loss experience, 
then it is appropriate to use a schedule credit (or debit). For example, suppose a risk has recently 
hired a full time safety manager who will oversee operations and be responsible for enforcing 
appropriate safety measures. This would be expected to have a favorable effect on loss 
experience and it would be appropriate to apply a schedule credit to reflect this expectation of 
improved loss experience. Contrast this to another risk who has always had a full-time safety 
manager on its staff. The effect of the safety manager on this second risk’s experience will 
already be reflected in its loss experience since the safety manager was there during the 
experience period. If one applied a schedule credit for having a safety manager to this second 
risk, the effect of the safety manager would be double-counted—first by the schedule credit and 

Range of Modifications:
Risk Characteristic Description Credit Debit
Location Exposure inside the premises 5% to 5%

Exposure outside the premises 5% to 5%
Premises Condition and care of premises 10% to 10%
Equipment Type, condition, and care of equipment 10% to 10%
Classification Peculiarities of classification 10% to 10%
Employees Selection, training, supervision, experience 6% to 6%
Cooperation Medical facilities 2% to 2%

Safety Program 2% to 2%
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second by the experience mod. However, if the risk is too small to have fully credible 
experience, it might be appropriate to give some schedule credit for the safety manager—but less 
than for the first risk, since the impact of the safety manager is partially credited by the 
experience mod for the second risk, but not at all for the first. 
 
10. Evaluating and Comparing Plans 
The following definitions will be helpful for this section: 

• Manual Premium—the manual premium refers to the premium calculated based on the 
criteria in the rating manual. In its simplest form, this is the exposure multiplied by the rates 
found in the rating manual. This is effectively the premium for a risk before the application 
of experience rating.  

• Standard Premium—this is the premium after the application of the experience rating mod. 
This is sometimes also referred to as the modified premium, in reference to the fact that it 
includes the impact of the experience rating modification factor. 

In the following discussions of Standard Premium and Standard Loss Ratios in this chapter, we 
ignore the schedule mod.  
An effective experience rating plan should do two things. It should identify risk differences 
among otherwise similar risks, and it should adjust for them. There is a simple qualitative test 
that can be used to evaluate a plan based on these criteria, sometimes referred to as the Quintile 
Test, because it relies on observing the impact of the e-mod among quintiles of the set of risks 
subject to the plan3.  
The procedure is as follows: 

• Rank order risks by the size of their mod and then collapse into five groups.  
• Calculate the manual loss ratio and the standard (modified) loss ratio for each group. 
• Observe any trends in the manual or standard loss ratios across the groups. 

Consider the following sample of insurance risks which have been experience rated. They have 
already been ordered from lowest to highest mod. 

Risk 
Manual 

Premium Loss Mod 
(1) (2) (3) (4) 

A 950 475 0.52 
B 1,075 645 0.59 
C 1,225 858 0.70 
D 1,100 880 0.81 
E 1,175 999 0.83 
F 1,050 945 0.91 
G 1,000 950 0.96 
H 925 925 0.99 
I 1,025 1,040 1.05 

 
3 Paul Dorweiler discussed a slightly more general version of this test as applied to New York Workmen’s Compensation 
in his presidential address to the Casualty Actuarial Society at its twentieth anniversary, “A Survey of Risk Credibility in 
Experience Rating,” PCAS XXI, 1934. 
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J 995 1,055 1.06 
K 1,150 1,254 1.08 
L 1,200 1,300 1.11 
M 900 1,040 1.14 
N 875 1,030 1.18 
O 1,125 1,450 1.22 

These fifteen risks would collapse into the following five groups: 

Risk 
Group 

Manual 
Premium Loss 

Avg. 
Mod 

Manual Loss 
Ratio 

Standard 
Loss Ratio 

(5) (6) (7) (8) (9)=(7)/(6) (10)=(7)/[(6)*(8)] 

A-B-C 3,250 1,978 0.61 0.61 1.00 
D-E-F 3,325 2,824 0.85 0.85 1.00 
G-H-I 2,950 2,915 1.00 0.99 0.99 
J-K-L 3,345 3,608 1.08 1.08 1.00 

M-N-O 2,900 3,520 1.18 1.21 1.03 
 
Column (6) is equal to the sum of the manual premium in column (2) for all the risks in the 
group; (7) is the sum of the loss in column (3) for all risks in the group; the average mod (8) is 
equal to the premium weighted average of the mods for each risk in the group. 
The first thing we want to check is whether this experience rating plan correctly identifies 
differences in risks. To do this, we compare the manual loss ratios for the groups. In this plan, 
there is a distinct and upward trend in the manual loss ratio as the average modification factor 
increases. Risks with the lowest manual loss ratio received the lowest mods (i.e., they received 
the most credit) and the risks with the highest manual loss ratio received the highest mods. One 
would reasonably conclude that this plan does indeed identify differences in risks.  
The second thing to check for is whether the plan reasonably adjusts for differences in the risks. 
To do this, we compare the standard loss ratios for the groups. Notice that the standard loss ratios 
are much less dispersed than the manual loss ratios and that there is no discernable trend in the 
standard loss ratios. It would be reasonable to conclude that this plan does indeed account for the 
differences in the risks. 
Now let’s look at this same set of risks, but use a different experience rating plan. In this 
example, the loss and premium experience for each risk is the same as in the previous example, 
but the mod for each risk is different. 

Risk 
Manual 

Premium Loss Mod 
(1) (2) (3) (4) 

A 950 475 0.49 
B 1,075 645 0.57 
C 1,225 858 0.67 
D 1,100 880 0.78 
E 1,175 999 0.83 
F 1,050 945 0.89 
G 1,000 950 0.95 
H 925 925 1.01 
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I 1,025 1,040 1.04 
J 995 1,055 1.09 
K 1,150 1,254 1.10 
L 1,200 1,300 1.14 
M 900 1,040 1.23 
N 875 1,030 1.24 
O 1,125 1,450 1.34 
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Grouping the risks and calculating the manual and standard loss ratios by group as we did above 
will give us: 

Risk 
Group 

Manual 
Premium Loss 

Avg. 
Mod 

Manual Loss 
Ratio 

Standard Loss 
Ratio 

(5) (6) (7) (8) (9)=(7)/(6) (10)=(7)/[(6)*(8)] 

A-B-C 3,250 1,978 0.59 0.61 1.04 
D-E-F 3,325 2,824 0.83 0.85 1.02 
G-H-I 2,950 2,915 1.00 0.99 0.99 
J-K-L 3,345 3,608 1.11 1.08 0.97 

M-N-O 2,900 3,520 1.28 1.21 0.95 
 
Notice that there is a downward trend in the standard loss ratios by group as the average mods 
increase. The risks with the best loss experience in the past now actually have higher loss ratios 
than the risks with the worst past loss experience in the group. This indicates that the experience 
rating plan is giving too much credibility to the risks’ actual experience.  The risks with the 
lowest mods are getting credit for better than average experience more than the experience is 
predictive of their future loss experience. The result is that their premium is reduced so much 
that their loss ratios are now higher than average. Likewise, the risks with the highest past loss 
experience are getting penalized too much under this plan. The result is that they now have lower 
loss ratios than the rest of the risks in the group. 
This scenario is undesirable. Recall from earlier that the objectives of an experience rating plan 
include increasing equity and enhancing market competition. This second rating plan does not 
enhance equity because the risks with the highest mods are paying more premium than is 
equitable. This plan also does not enhance market competition. This plan generates a scenario 
where risks with higher past loss experience will generate a lower loss ratio and therefore higher 
profits. These risks will be more desirable for the insurer to write than risks with better past loss 
experience. This is contrary to the desire to enhance market competition by making ALL risks 
equal in terms of profit potential and therefore equally desirable to write. 
Analogous to the previous example would be a scenario where there was an upward trend 
(higher standard loss ratios for groups with higher mods). This would indicate that the plan does 
not give enough credibility to actual experience. Risks with better than average past loss 
experience would not get enough credit and would continue to have lower than average loss 
ratios. Meanwhile, risks with higher than average past loss experience would continue to produce 
higher loss ratios even after the experience rating plan is applied. A good experience rating plan 
will have no discernable trend in the modified loss ratios. 
We can also quantify the efficiency of an experience rating plan by comparing its results across 
the quintiles. Similar to above, we rank risks by their mod and combine them into five groups. 
We then calculate the manual and standard loss ratios for each group. For each plan, calculate the 
efficiency test statistic as the ratio of the variance of the standard loss ratio to the variance of the 
manual loss ratio4. The plan with the lower variance ratio is “better”—it does a better job at 
adjusting premium; i.e., it makes “risks of differing experience more equally desirable”. 

 
4 This test statistic was first described by Robbin Gillam as a “quintiles test” in “Worker’ Compensation Experience 
Rating: What Every Actuary should know”, PCAS LXXIX, 1992, pp. 215-239. 
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Let’s use the Efficiency Test to compare the experience rating plans in the last two examples. 
For clarity, we’ll refer to the experience rating plan in the first example as Plan A and the second 
as Plan B. 

Risk Group Manual Loss 
Plan A 

Standard 
Plan B 

Standard 
  Ratio  Loss Ratio  Loss Ratio 

(1) (2) (3) (4) 

A-B-C 0.61 1.00 1.04 
D-E-F 0.85 1.00 1.02 
G-H-I 0.99 0.99 0.99 
J-K-L 1.08 1.00 0.97 

M-N-O 1.21 1.03 0.95 
Sample Variance 0.0536 0.0002 0.0013 
Efficiency Test Statistic 0.0039 0.0237 

 
The test statistic for Plan A is lower than for Plan B. As expected, the result of the Efficiency 
Test is that Plan A is a better experience rating plan. 
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Questions 
1. What are the objectives of experience rating? 

2. Explain how experience rating increases equity. 

3. Consider two insurance companies writing an identical line of business. Company A has 
developed a very sophisticated classification plan for rating risks which incorporates many 
different risk characteristics to assign a risk into one of several dozen classes. Company B 
has a much simpler rating plan which considers fewer risk characteristics and has only half a 
dozen rating classes. Which company would benefit more from using experience rating? 

4. Explain how the use of experience rating can help an insurance company avoid adverse 
selection.  

5. Discuss the concepts of process variance and the variance of the hypothetical means (VHM) 
and how they relate to experience rating.  

6. Suppose you are pricing a risk (which will be experience rated). This particular risk has a 
significantly better safety program than most other risks. Would it be appropriate to apply a 
schedule credit to reflect lower than average loss potential due to this superior safety 
program? 

 
 
 
Acknowledgments 
This chapter would not have been possible without significant contributions by Rick Gorvett.  I 
would also like to thank Ginda Fisher, Lawrence McTaggart, and Jill Petker for their support, 
advice, and assistance.   
  



15 

 
  



16 

Chapter 2: Risk Sharing Through Retrospective Rating and 
Other Loss-Sensitive Rating Plans 
By Jill Petker 
 
1. Risk Sharing: Risk Retention and Risk Transfer 
Retrospective rating and other loss-sensitive rating plans allow risk sharing between the insured 
and the insurer.  This chapter will look at how risk sharing is achieved through retrospective 
rating, large deductibles, self-insurance arrangements, and other loss-sensitive rating plans.  This 
risk-sharing contrasts with guaranteed-cost policies, where the insured’s premium is fixed up 
front and the insured does not share in their own risk, except perhaps through a small deductible.  
We start with retrospective rating because it is a direct contrast to the experience rating that you 
already learned about through the Basic Ratemaking syllabus and in Chapter 1 of this study note. 
In current practice, however, large deductible plans are more common than retrospective rating. 
When sharing risk, the insured’s risk tolerance and financial capacity are typically better suited 
to their retaining the risk associated with the more predictable primary losses while transferring 
the risk associated with the more volatile and uncertain per-occurrence excess losses to the 
insurer.  However, even the primary layer of loss can be volatile (driven by frequency or even 
severity within the primary layer).  Therefore, the primary risk that the insured retains is often 
limited in aggregate to a specified amount.  The risk of having primary losses in excess of the 
insured’s aggregate retention is transferred to the insurer. 
The advantages to the insured of risk sharing through loss-sensitive rating plans include: 

• An incentive for loss control, which affects their direct costs as well as indirect costs, such as 
lost productivity for Workers Compensation 

• The immediate reflection of good loss experience, without the lag and credibility-weighting 
that come with experience rating 

• Cash flow benefits from paid loss retrospective rating plans, large deductible plans, and self-
insurance, all of which are described further below 

• A possible reduction in premium-based taxes and assessments (under large deductible plans 
in particular) 

The disadvantages to the insured include: 
• Uncertain costs, compared to a fixed premium under guaranteed-cost plans 
• The loss of the immediate tax deductibility of full guaranteed-cost premium 
• The immediate reflection of bad loss experience 
• Impact on future financial statements 
• Ongoing administrative costs, e.g., paying bills long into the future 
• The need to post security as collateral against credit risk (discussed further below) 
• Added complexity, compared to guaranteed-cost plans 

The advantages to the insurer include: 
• The insured’s incentive for loss control, which is stronger than the incentive provided by 

experience rating alone 
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• Ability to write some risks which the insurer would not find acceptable to write on a 
guaranteed-cost basis 

• Less capital required to write policies under which the insured shares in their risk. (See 
section on capital and profit provisions below.) 

The disadvantages to the insurer include: 
• Higher administrative costs 
• Credit risk (discussed below) 
• A reduction in cash flow to the extent that insureds pay for their retained losses over time, as 

opposed to paying premium to cover all of their expected losses during the policy period, as 
under guaranteed-cost plans 

• Insureds’ tendency to second-guess claims handling and ALAE costs 
• Insureds’ tendency to question the size of profit provisions since they are taking on a share 

of the risk. (Again, see section on capital and profit provisions below.) 

 
2. What is Retrospective Rating? 
You have learned about how experience rating uses an insured’s loss experience from historical 
policy periods to adjust their premium for the upcoming policy period.  In contrast, retrospective 
rating uses an insured’s loss experience from a policy period to adjust the premium for that same 
policy period.  Adjustments to the policy premium are made “retrospectively” upon review of 
actual loss experience. 
Risk sharing under a retrospective rating plan follows the format outlined in the section above, in 
that it is generally a primary layer of loss that is used to retrospectively adjust the policy 
premium.  However, to protect the insured from volatility, the primary losses that influence the 
retrospectively rated premium will generally be subject to a maximum “ratable” loss amount.  
That maximum ratable loss amount may either be established directly, or it may correspond to a 
maximum premium amount.  In addition, the primary losses that influence the retrospectively 
rated premium may be subject to a minimum ratable loss amount, which again may either be 
established directly or may correspond to a minimum premium amount. 
 
 
3. The Retrospective Rating Formula 
Premium under a retrospective rating plan is calculated as Premium = (B + cL) × T, where B is 
the basic premium amount, c is the loss conversion factor, L is the loss amount that will be used 
in the calculation, and T is the tax multiplier.  Each of these components is discussed further 
below.5   
B is called the basic premium amount.  It reflects fixed charges (i.e., those that won’t vary with 
actual losses), such as:   

 
5 If you are practicing in the US, you may find it helpful to review both NCCI’s and ISO’s retrospective rating plan 
manuals for detailed requirements and options specific to their lines of business.  Examples of specifics related to 
those retrospective rating plans are included in the footnotes below.  This chapter is intended to be a general 
discussion not specific to either the NCCI’s or ISO’s specific retrospective rating plans. 
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• Expenses for which the charge will be a fixed amount.  Typical fixed expenses include 
underwriting expenses and commission (if commission is a fixed amount or a percentage of 
guaranteed-cost premium). 

• Expected per-occurrence excess losses, if losses influencing the premium are subject to a 
per-occurrence loss limit.  Estimating an appropriate charge for per-occurrence excess losses 
is often done by applying an expected ratio of excess/total losses to the total loss estimate 
for the policy.  The estimation of expected ratios of excess/total losses is discussed in the 
CAS monograph Distributions for Actuaries.  Sometimes you will see the per-occurrence excess 
loss component as a separate provision.6  In that case, it may be called an excess loss 
premium.  This excess loss premium generally includes a provision for the loss adjustment 
expenses associated with the per-occurrence excess losses (see more on this below).  

• Expected aggregate excess losses, if losses influencing the premium are subject to a 
maximum ratable loss amount or if the retrospectively rated premium is subject to a 
maximum premium amount.  This is often referred to as the insurance charge.  Estimating 
an appropriate charge for aggregate excess losses will be discussed in Chapter 3.  This 
component of the basic premium also generally includes a provision for the loss adjustment 
expenses associated with the aggregate excess losses. 

• A credit if losses influencing the premium are subject to a minimum ratable loss amount or 
if the retrospectively rated premium is subject to a minimum premium amount.  This 
amount is often referred to as the (insurance) savings.  The combination of the savings and 
the insurance charge described above is often referred to as the net insurance charge.  
Estimating the savings will be discussed in Chapter 3.  

• The underwriting profit provision, which will be discussed further below. 

c is called the loss conversion factor.  It covers expenses for which the charge is going to vary 
with actual losses.  Typically the loss conversion factor would include loss adjustment expenses, 
and may also include loss-based assessments.  If desired, expenses can be shifted back and forth 
between the basic premium and the loss conversion factor.  However, it may not be prudent to 
charge for expenses that don’t vary with losses through the loss conversion factor.  If losses are 
lower than expected, those expenses will not be fully recouped. 
To reflect the ability to shift expenses back and forth between the basic premium and the loss 
conversion factor, the following formula is often used to calculate the expense portion of the 
basic premium (as a percentage of the guaranteed-cost premium):  e – (c-1) × E, where: 

• e is the expense ratio underlying the guaranteed-cost premium.  This expense ratio reflects 
the premium discount (recognizing that expenses are a lower percentage of premium for 
large accounts) but excludes premium-based taxes and assessments.  It includes loss 
adjustment expenses. 

• c is the selected loss conversion factor. 

 
6 Under NCCI’s and ISO’s retrospective rating plans, the charge for per-occurrence excess losses is a separate 
component in the formula. So the formula for retrospective premium becomes: Premium = (Basic Premium + Excess 
Loss Premium + c × Ratable Loss) × T  
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• E is the expected loss ratio underlying the guaranteed-cost premium. 

You can see that as c increases, the expense portion of the basic decreases, and vice versa. 
L represents the losses that will be used to calculate the retrospective premium.  These losses are 
often called “ratable” losses because they are used to calculate the retrospectively rated 
premium amount.  Options related to these losses include: 

• They may or may not include Allocated Loss Adjustment Expense (ALAE).7  When the 
ratable losses include ALAE: 

o The loss adjustment expenses that would be typically covered through the loss 
conversion factor c would be just Unallocated Loss Adjustment Expense (ULAE). 

o Similarly, the expense ratio e would include ULAE but not ALAE. 
o The expected loss ratio E mentioned above would be an expected loss-and-ALAE 

ratio. 
When the ratable losses exclude ALAE: 

o The loss adjustment expenses that would be typically covered through the loss 
conversion factor c would be both ALAE and ULAE. 

o Similarly, the expense ratio e would include both ALAE and ULAE. 
o The expected loss ratio E mentioned above would be an expected loss-only ratio. 

• They may or may not be subject to a per-occurrence loss limit.  If they are, as mentioned 
above, the charge for the expected losses above the per-occurrence loss limit may be 
included in the basic premium amount or may be kept separate from the basic premium. 8,9 

o Note that E in the formula above (for the expense amount to be included as fixed in 
the basic premium) represents total losses – limited to the policy limit if there is one, 
but not limited otherwise.  As such, the loss conversion factor c is intended to be 
applied to total losses.  Therefore, the charge for expected losses above the per-
occurrence loss limit needs to have the loss conversion factor c applied to it. 

• They may or may not be subject to an aggregate loss limit.  If they are, as mentioned above, 
the charge for the expected (limited per occurrence, if applicable) losses above the aggregate 
loss limit is generally included in the basic premium amount.10  This charge needs to have the 
loss conversion factor c applied to it for the same reason described above.  Aggregate loss 
limits are often set in one of these two ways: 

o As a multiple of the expected losses that will be subject to the aggregate limit (i.e., 
either full losses or losses limited by the per-occurrence loss limit mentioned above).  
For example, if the per-occurrence loss limit is $250,000 and the expected limited 

 
7 Under ISO’s retrospective rating plan, losses for commercial auto liability, general liability, and hospital professional 
liability must include ALAE.  See their retrospective rating plan manual for details. 
8 A per-occurrence loss limit is required under ISO’s retrospective rating plan but is optional under NCCI’s plan.  See 
their retrospective rating plan manuals for details. 
9 Under ISO’s retrospective rating plan, ALAE is included on an unlimited basis for commercial auto liability, general 
liability, and hospital professional liability.  However, there is an optional cross-lines accident limitation that does limit 
ALAE.  See their retrospective rating plan manual for details. 
10 Under both NCCI’s and ISO’s retrospective rating plan, a maximum premium amount is required.  See their 
retrospective rating plan manuals for details. 
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losses are $300,000, then the aggregate loss limit might be set at twice the expected 
limited losses, or $600,000.  If the selected multiple is 2.5, then the aggregate loss 
limit would be $750,000. 

o So that the maximum premium under the retrospective rating plan will be a multiple 
of the guaranteed-cost premium.  For example, if the guaranteed-cost premium is 
$1,000,000 and the selected multiple is 1.25, then the aggregate loss limit would be 
set such that the maximum retrospectively rated premium would be $1,250,000.  
This method requires an iterative pricing approach, since backing into the implied 
maximum ratable loss increases the basic premium amount by adding a charge for 
the expected losses above that maximum ratable loss amount, in turn reducing the 
implied maximum ratable loss that will produce the selected maximum premium.  
Reducing the maximum ratable loss amount will then increase the insurance charge, 
thereby further reducing the implied maximum ratable loss.  A few rounds of 
iteration should stabilize the maximum ratable loss amount. 

Notice that under the second approach, the aggregate loss limit will automatically 
increase or decrease if exposures increase or decrease, since the exposure change will be 
reflected in the guaranteed-cost premium after the premium (exposure) audit.  Under the 
first approach, the aggregate loss limit can also be made to increase or decrease with 
exposures if the limit is first calculated based on expected limited losses but then 
translated to a rate per exposure. 

• They may or may not be subject to a minimum ratable loss amount.  If they are, as 
mentioned above, the basic premium amount generally includes a credit.  Note that even if 
there is no minimum ratable loss amount, there is still a minimum premium amount that will 
be charged – you can see from the retrospective rating formula that the minimum premium 
will be equal to the basic premium times the tax multiplier. 

• They may be paid or incurred.  If the premium is calculated based on paid losses, the plan is 
called a paid loss retrospective rating plan.  If the premium is calculated based on incurred 
losses, the plan is called an incurred loss retrospective rating plan.  Paid loss retrospective 
rating plans are often converted to an incurred loss basis at a pre-determined point in time 
(e.g., after five years). 

There must be either a per-occurrence loss limit or an aggregate loss limit (or both) for there to 
be risk transfer to the insurer. 

• If there is a per-occurrence loss limit but not an aggregate loss limit, and the coverage is 
Workers Compensation or Auto Liability (coverages with no aggregate policy limit), the 
insured is technically retaining an unlimited amount of loss exposure. 

• If there is an aggregate loss limit but no per-occurrence loss limit, and if the aggregate loss 
limit is relatively low, then the aggregate loss limit can be used up by a few (and sometimes 
just one) large losses.  This could eliminate the insured’s loss control incentive before the 
policy is expired.  If there is no per-occurrence loss limit and the aggregate loss limit is 
relatively high, the retrospective premium can be very unstable (driven by the volatility of 
large losses). 
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Note that total expected loss amount equals the sum of these components:  the expected per-
occurrence excess losses, the expected aggregate excess losses (net of any savings related to 
minimum ratable losses), and the expected ratable losses.  Were it not for the increased incentive 
for loss control under loss-sensitive rating plans, the total expected loss amount under a 
retrospective rating plan would equal the total expected loss amount under a guaranteed-cost 
plan.  It is a requirement under some retrospective rating plans filed in the US that the expected 
premium under a retrospective rating plan also equal the expected premium under a guaranteed-
cost plan.  However, this requirement (often called “the balance principle”) does not make sense 
given the difference in risk transfer and the resulting difference in capital needed to support a 
retrospective rating plan vs a guaranteed-cost plan.  See the section on Capital and Profit 
Provisions below. 
For incurred loss retrospective rating plans, losses are typically first evaluated as of 6 months 
after the policy expiration (i.e. 18 months of development), and then annually thereafter.  Since 
losses at 18 months are typically much lower than their ultimate level, the insured would 
typically receive a partial return of premium at that first evaluation.  Then, as losses develop 
upwards at later evaluations, the insured would typically pay additional premium amounts.  
These additional premium amounts create credit risk for the insurer.  See the section on Credit 
Risk below for a further discussion of credit risk and the ways in which insurers can mitigate that 
risk. 
For paid loss retrospective rating plans, losses are typically evaluated monthly, beginning with 
the first month of the policy period.  Therefore, the retrospectively rated premium amount 
increases as paid losses develop upwards.  This creates credit risk for the insurer, which again, is 
discussed below. 
T is called the tax multiplier.  It is calculated as 1/(1 – tax rate), where the tax rate may include 
residual market and other premium-based assessments.  If commission is a percentage of the net 
premium (i.e., net of retrospective rating adjustments), then commission would be included with 
the tax rate, and not in the basic premium amount.  
 
4. Regulatory Approval and the Large Risk Alternative Rating Option (LRARO) 
In the US, the pricing methodology and parameters for retrospective rating plans generally must 
be filed and approved by state regulators.11  Those plan parameters include the expected loss 
ratio to be applied to guaranteed-cost premium in order to estimate the total expected losses, the 
expense ratio, per-occurrence excess losses as a ratio to total losses, the table of insurance 
charges that will be discussed further in Chapter 3, and the tax multiplier. 
However, there is a Large Risk Alternative Rating Option under both ISO’s and NCCI’s 
retrospective rating plans in most states that allows large insureds to be retrospectively rated “as 
mutually agreed upon by carrier with insured.”  “Large” is generally defined in terms of standard 
premium individually or in any combination with WC, GL, Auto, Crime, and a few other lines of 
business.  A key assumption underlying LRARO is that large risks are knowledgeable and 
sophisticated enough to negotiate with insurers their retrospective rating parameters.  Although 
LRARO allows for pricing flexibility, pricing still must comply with regulatory principles and 
not be inadequate, excessive, or unfairly discriminatory. 
In addition to allowing flexibility in pricing, LRARO also allows flexibility in structure.  
Examples include: 

 
11 Outside of the US, there is much less rate regulation for commercial insurance.  Wherever you are practicing, be sure 
to understand and follow the rate regulation in place for that jurisdiction. 
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• NCCI’s standard retrospective rating plan for WC only includes incurred loss retrospective 
rating plans.  A paid loss basis requires the use of LRARO.  Here, LRARO’s pricing 
flexibility is important so that the insurer can reflect in its pricing the loss of investment 
income under a paid loss basis relative to an incurred loss basis. 

• Maximum and minimum ratable loss amounts can be set directly, rather than indirectly 
through maximum and minimum premium amounts. 

• The basic premium factor and/or the maximum and minimum ratable loss amounts can be 
based on exposures instead of standard premium, if that is deemed to be more appropriate 
or convenient. 

 
5. Other Loss-Sensitive Plans 
Other loss-sensitive plan types include the following: 

• Large Deductibles:  In the US, large deductibles for casualty lines of business are generally 
considered to be those at or above $100,000 per occurrence. 

o Because insurers wish to direct the handling of casualty claims from the start (and 
insureds are not typically set up to adjust and pay claims) insurers pay all claims up 
front and bill the insured for deductible reimbursements up to the per-occurrence 
deductible amount. 

o Like a retrospective rating plan, the losses that are subject to deductible 
reimbursement may or may not include ALAE. 

o Unlike a retrospective rating plan, however, the losses that are subject to deductible 
reimbursement must be subject to a per-occurrence loss limit (i.e., the deductible). 

o Like a retrospective rating plan, the insured’s deductible reimbursements may or may 
not be capped at an aggregate deductible limit. 

o Unlike a retrospective rating plan, however, there is no analog to the minimum 
ratable loss amount.  That is, there is no minimum deductible reimbursement. 

o Notice that the risk transfer under a large deductible is the same as the risk transfer 
under a retrospective rating plan that has a per-occurrence loss limit and a maximum 
ratable loss amount but does not have a minimum ratable loss amount.  Per-
occurrence and aggregate excess loss risk are transferred to the insurer. 

o Under a large deductible plan, the premium is generally fixed.  However, the 
insured’s cost (premium plus loss reimbursements under the deductible) is not fixed.  
A large deductible plan is considered to be a loss-sensitive plan because the insured’s 
total cost for the policy period varies based on actual loss experience. 

o The premium for a large deductible must cover the same components that a 
retrospective rating plan’s premium covers, with one exception:  The premium does 
not cover the expected cost of losses below both the per-occurrence deductible and 
aggregate deductible limit. 

o Net premium (i.e., premium net of the deductible credit) still must cover the 
expected per-occurrence excess losses, expected aggregate excess losses (if 
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applicable), expenses, and an underwriting profit provision.  Relative to the premium 
for a retrospectively rated policy: 
 The charge for expected excess losses is the same. 
 The provisions for most expenses are the same, except: 

• The provisions for premium tax and some premium-based 
assessments (if based on net-of-deductible premium) are lower 
because the deductible reimbursements are not premium and 
therefore are not subject to those taxes and assessments. 

• The provision for commission may be lower if commission is a 
percentage of net premium.  (Alternatively, commission may be a 
percentage of guaranteed-cost premium, a flat allowance, or zero if a 
fee for service is paid directly by the insured to the agent or broker.  
Note that these same alternatives are available for retrospective rating 
plans as well.) 

• Because of these exceptions, the insured’s expected cost is generally 
lower under a large deductible plan. 

See question 9, the appendix, and the companion case study for examples of how 
to calculate the net premium under a large deductible plan. 

o Note that as the deductible becomes large, the expected (excess) loss component of 
the premium can become very small relative to the expense and underwriting profit 
provisions.  Thus the premium for a high deductible can appear to be surprisingly 
large.  However, the expenses do not go away and the risk load applicable to the 
excess losses can be quite large due to the significant amount of both parameter risk 
and process variance.  

• Self-Insured Retentions:  Self-insured retentions (SIRs) are similar to large deductibles, but 
differ in these important ways: 

o In the US, self-insurance for Workers Compensation and Auto Liability requires 
regulatory approval, because they are both legally required coverages. 

o The insured is responsible for adjusting and paying claims or making arrangements 
for someone else to do those tasks.  They may self-administer the claims or hire a 
third-party claims administrator.  Many insurers have affiliated third-party claims 
administrators, so the insured may find it convenient to purchase claims-handling 
services from the same insurer from whom they buy excess loss coverage (per-
occurrence and/or aggregate).  However, some insureds value the control that 
choosing the party responsible for claims handling gives them.  Insurers reimburse 
the insured for loss amounts in excess of the self-insured retention. 

o Because the insurer is not handling claims up front, it is not incurring ALAE for 
claims that stay within the self-insured retention.  Therefore, the retention generally 
applies to pure loss only, and ALAE is generally shared pro-rata for claims that 
exceed the retention. 
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o In addition, because the insurer is not handling claims up front, only a minimal 
amount of ULAE is included in the premium for excess-over-SIR coverage.  
Therefore there is an even greater expense savings due to having a lower base for 
premium taxes and some premium-based assessments. 

o Because the insurer is not responsible for claims until after they have been paid by 
the insured, the insurer does not take on credit risk for the loss-sensitive feature.  See 
below for more on credit risk. 

o The policy limit for excess-over-SIR coverage is generally not eroded by the self-
insured retention.  This contrasts with the limit for large deductible coverage, which 
generally is eroded by losses within the deductible.  For example, excess-over-SIR 
coverage with a $1m limit over a $250k per-occurrence retention would cover the 
layer of losses between $250k and $1,250k.  However, a large deductible policy with 
a $1m limit and a $250k deductible transfers the layer of losses between $250k and 
$1m, essentially only providing $750k of coverage.  Note that when excess-over-SIR 
coverage is provided for Workers Compensation, a policy limit can be applied (as 
opposed to the usual statutory limits, which is essentially unlimited). 

• Dividend Plans:  Some dividend plans have loss-sensitive features that act similar to incurred 
loss retrospective rating plans, but with two important distinctions: 

o If the insured’s losses are lower than expected, the money that is returned to the 
insured is not considered a premium credit for accounting purposes.  Instead, it is 
considered to be an expense paid by the insurer.  As such, there is no savings in 
premium-based taxes and assessments. 

o If the insured’s losses are higher than expected, no additional money is collected 
from the insured.  In this way, loss-sensitive dividend plans are not balanced in terms 
of the expected “ratable” losses. 

Like incurred loss retrospective rating plans, losses under loss-sensitive dividend plans 
are often evaluated six months after the policy expires and then annually thereafter.  If 
reported losses develop upwards (the most likely scenario), the indicated dividend will 
decrease.  Dividend amounts already paid at earlier evaluations may need to be partially 
recouped from the customer.  Thus loss-sensitive dividend plans also create credit risk for 
the insurer, which is discussed below. 
Dividend payments generally are not contractually guaranteed and generally require 
approval from the insurer’s board of directors. 

 
6. Other Variations on Loss-Sensitive Plans 

• Clash Coverage:  When an insured has exposures covered by more than one loss-sensitive 
plan, they may wish to limit their exposure to a single occurrence that impacts their 
retentions across multiple lines of business.  Often referred to as a Clash Deductible or 
Clash Aggregate, the coverage defines a single dollar amount for the sum of retained loss 
payments from an occurrence that impacts multiple lines of business.  For example, an 
insured may have large deductible policies for Workers Compensation and Auto Liability 
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with deductibles of $250k and $100k, respectively.  They may purchase clash coverage so 
that if an at-fault auto accident injures both their employee and a third party, their total 
retention will be only $300k instead of $350k.  This coverage is difficult to price and may 
require the use of simulations with assumptions around frequencies, severities, and 
correlations between lines of business. 

• Basket Aggregate Coverage:  When an insured has exposures covered by more than one loss-
sensitive plan, a Basket Aggregate (sometimes called Account Aggregate) policy can provide 
a total aggregate limit on all reimbursable or ratable losses from the underlying plans.  
Typically, the underlying plans are written with no aggregate deductible limits or maximum 
ratable loss amounts.  A separate GL policy reimburses the insured for losses in excess of a 
specified maximum aggregate retention for the insured, up to a specified policy limit. 

• Multi-Year Plans:  Retrospective rating plans, large deductible plans, and basket aggregates 
are sometimes written as multi-year plans.  Three years is a typical term.  One goal is to 
stabilize costs by lengthening the experience period.  The thought here is that good and bad 
years offset each other and reduce the insurance charge.  However, loss trends for the longer 
policy period must be built into the charges for both per-occurrence and aggregate excess 
exposure.  In addition, contract wording should allow for rate adjustment when exposures 
change significantly during the policy period.  Also, credit risk increases as the insurer must 
evaluate the potential for the financial condition of the insured to deteriorate over a longer 
time horizon.  Multi-year plans tend to become popular during soft markets as insureds 
attempt to lock in favorable rates. 

• Captives:  Captives are insurance companies formed to serve the insurance needs of their 
parent companies.  They offer another avenue for risk sharing, although the risk sharing 
mechanism here is often reinsurance.  That is, insurers will often write policies to provide 
coverage and then cede losses (usually primary, and usually limited to an aggregate amount) 
to the captive. 

 
7. Credit Risk 
Retrospective rating, large deductible, and loss-sensitive dividend plans subject insurers to credit 
risk.  Insurers are depending on the customer to be willing and able to pay additional premium 
amounts, loss reimbursements, or returns of dividend amounts in the future.  This is particularly 
true for paid loss retrospective rating plans and large deductible plans, but it is also true of 
incurred loss retrospective rating plans and loss-sensitive dividend plans at early maturities.  
Note that credit risk increases for long-tailed lines and for higher loss limits or deductibles.  This 
is because the timeframe for collectible amounts grows longer, so the insurer is at greater risk of 
the insured becoming unable or unwilling to continue to pay those amounts during that 
timeframe. 
There are several approaches available to insurers to protect themselves from this credit risk: 

1. Security:  The insurer can hold collateral against the amounts that are expected to be paid by 
the insured in the future.  This approach can be used for either retrospective rating plans or 
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large deductible plans.  For insureds with a weaker financial position, insurers may want to 
hold collateral to an amount higher in the range of loss outcomes. 

2. Loss Development Factors:  The insurer can apply loss development factors to the losses 
used in the retrospective premium or dividend formula.  This is typically not done for paid 
loss retrospective rating plans, as those plans are typically intended to mimic the cash flows 
of a large deductible plan (see the appendix for examples of expected cash flows under an 
incurred retrospective rating plan vs. a large deductible plan).  The loss development factors 
are generally established up front when the retrospective rating plan is written.12 This option 
is not available for large deductible plans. 

3. Holdbacks:  The insurer and the insured can agree up front to defer all or a portion of 
retrospective premium adjustments and/or dividend payments until a specified maturity.13 
Again, this is typically not done for paid loss retrospective rating plans.   

 
8. Setting Retention Levels 
There are several considerations that should be taken into account when setting retentions levels 
for an insured: 

• Per-occurrence retentions should generally be set so that the insured keeps the more 
predictable “working layer” of losses, which is the layer in which there is a relatively high rate 
of frequency.  The insurer should take on the more volatile loss exposure above that level, 
where there is less frequency but where the claims can become quite large. 

• The retentions should be within the insured’s risk tolerance.  Insureds who are more risk 
averse or who want more stability in their insurance-related costs will not feel comfortable 
taking on high retentions. 

• The retentions should reflect the insured’s financial capacity.  When credit risk is an issue, 
the insurer may wish to set lower retentions in order to reduce credit risk. 

• The retentions should increase with loss trend.  If they do not, over time the effectiveness of 
the retentions will erode.  This is particularly an issue for per-occurrence retentions, which 
are established as fixed dollar amounts.  With inflation, more and more claims will exceed a 
fixed dollar amount.  This is less of an issue for aggregate retentions, if they are set as a 
multiple of the expected primary losses or to produce a multiple of the guaranteed-cost 
premium. 

 
9. Capital and Profit Provisions 
With the exception of dividend plans, the risk transferred from the insured to the insurer under a 
loss-sensitive plan is lower than the risk transferred under a guaranteed-cost plan.  This is 

 
12 Under both NCCI’s and ISO’s retrospective rating plans, the provision for IBNR is accomplished through factors 
that get applied to standard premium and then get multiplied by the loss conversion factor and the tax multiplier, for the 
first three adjustments (NCCI) or the first four adjustments (ISO).  See their retrospective rating plan manuals for 
details. 
13 Holdbacks are not part of the NCCI’s or ISO’s filed retrospective rating plan manuals.  They require the use of 
LRARO where those filed plans apply.  
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because the insured is retaining the risk for their own primary losses, up to an aggregate limit.  
Therefore, the capital required to support these plans is lower than the capital required to support 
a guaranteed-cost plan.  Note, though, that the capital is not reduced in proportion to the loss 
sharing.  As mentioned above, the customer is sharing in their less risky primary losses, and their 
risk is often capped.  The insurer takes on the riskier per-occurrence and aggregate excess losses.  
Therefore the capital reduction is significantly less than the reduction in the expected loss dollars 
transferred to the insured.  As a result, the profit provision (in dollars) is reduced, but is increased 
as a percentage of insured loss. 
 
10. The Dissolution of Loss-Sensitive Rating Plans for Long-Tailed Lines 
Retrospective rating adjustments and large deductible reimbursements typically continue until 
both parties agree to close the plan.  (Sometimes there is a predetermined limit on the number of 
annual premium adjustments for an incurred retrospective rating plan.)  An insured might want 
to close the plan in order to free up their balance sheet from the liabilities under the plan.  This is 
often a desire if the insured is putting itself up for sale.  Or they may want to eliminate the need 
to post collateral, thereby freeing up credit lines and/or saving costs associated with posting the 
collateral.  An insurer might want to close the plan in order to eliminate the administrative costs 
associated with billing additional premium or loss reimbursement amounts.  Or, if the insured is 
going through a bankruptcy or reorganization, it may be in the interests of both parties to close 
the plan.  However, unless the insured and insurer are at least somewhat in agreement about the 
amount of future development on the losses under the plan, or unless the terms of closing the 
plan are predetermined at the time of sale, it is unlikely that an agreement on the cost of closing 
the plan will be reached. 
Retrospective rating plans are generally closed through what is called a retrospective rating plan 
closeout.  This closeout is generally achieved by applying final loss development factors to the 
losses in order to determine the final premium amount.  As mentioned above, sometimes the 
terms of a future closeout are predetermined when the plan is initially written. 
Large deductible plans may be closed through either a large deductible buyout or a loss 
portfolio transfer.  A buyout is an agreement between the insurer and insured where, for a fee, 
the insurer assumes the liabilities related to the deductible layer of loss.  These liabilities may 
include loss-based assessments associated with those losses.  A loss portfolio transfer is a 
separate policy under which the insured’s remaining loss obligations are ceded to an insurer or 
reinsurer. 
Self-insured retentions are closed through loss portfolio transfers. 
 
 



28 

Questions 
1. Why is there no credit risk related to self-insured retentions? 

2. Given a tax rate of 5%, calculate the tax multiplier. 

3. Given a tax multiplier of 1.05, calculate the tax rate. 

4. Why is the tax multiplier minus 1 higher than the tax rate? 

5. Given the following, calculate the amount of expenses (as a percentage of guaranteed-cost 
premium) that will be collected through the basic premium, as a percentage of the guaranteed-
cost premium: 

• The loss conversion factor is 1.10. 
• The expected loss ratio is 0.70. 
• The expense ratio (excluding premium-based taxes and assessments) is 0.20. 

6. Given the following, calculate the loss conversion factor: 
• The expense ratio (excluding premium-based taxes and assessments) is 0.25. 
• The expected loss ratio is 0.65. 
• The amount of expenses to be collected through the basic premium, as a percentage of 

the guaranteed-cost premium, is 0.15. 

7. Given the following, calculate the retrospectively rated premium amount: 
1. The basic premium amount is $150,000. 
2. The loss conversion factor is 1.10. 
3. The tax multiplier is 1.031. 
4. The per-occurrence loss limit is $100,000. 
5. The maximum ratable loss amount is $500,000. 
6. There are 15 claims on the policy.  Ten of those claims are under $10,000 and total 

$25,000.  The other 5 claims have values of: 
o $15,000 
o $25,000 
o $50,000 
o $100,000 
o $1,000,000 

8. How does the basic premium as a percentage of guaranteed-cost premium change as: 
• The loss conversion factor increases? 
• The loss limit increases? 
• The maximum premium or maximum ratable loss increases? 
• The minimum premium or minimum ratable loss increases? 
• The account size increases? 
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9. Given the following cost components, calculate the premium for a large deductible plan. 
• Fixed expenses are $35,000.  This includes a flat dollar commission for the broker. 
• The underwriting profit provision is $5,000. 
• Loss-based expenses are 10% of losses. 
• The premium tax rate is 3%. 
• Expected losses are $300,000. 
• Expected losses limited to $250,000 per-occurrence are $270,000. 
• Expected losses limited to $250,000 per-occurrence and to $500,000 in aggregate are 

$260,000. 

10.  In what way is a loss-sensitive dividend plan unbalanced? 

11. Under what conditions is the risk transfer the same for a retrospective rating plan and a large 
deductible plan? 
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Appendix:  Examples of Expected Cash Flow 
Examples ignore processing lags and assume no aggregate excess loss exposure. 

Pricing Assumptions     
1 Initial Premium 1,100,000    
2 Expected Primary Loss & ALAE     600,000    
3 Expected Excess Loss & ALAE     300,000    
4 Commission        55,000    
5 General Expense       15,000    
6 Underwriting Profit Provision         5,000    
7 ULAE 10.0%   
8 Tax Rate 3.0%   
  

  
  

  Incurred Retrospective Rating Plan   
9 Basic Premium     405,000   = (3) x (10) + (4) + (5) + (6) 
10 Loss Conversion Factor         1.100   = 1 + (7) 
11 Tax Multiplier         1.031   = 1.0 / (1.0 - (8)) 
  

  
  

  Large Deductible Plan 
 

  
12 Premium     479,381   = {(3) + (4) + (5) + (6) + (7) * [(2) + (3)]} x (11) 

 
Payment Patterns        

Time 
Initial 

Premium 

Primary 
Incurred 
Loss & 
ALAE 

Primary 
Paid Loss 
& ALAE 

Excess 
Paid Loss 
& ALAE 

Total Paid 
Loss & 
ALAE Commission 

General 
Expense ULAE 

          
0.00 1.000     1.000 0.250   
0.25  0.107 0.021 0.001 0.014  0.438 0.073 
0.50  0.263 0.072 0.005 0.050  0.625 0.162 
0.75  0.454 0.145 0.020 0.103  0.813 0.265 
1.00  0.655 0.234 0.050 0.173  1.000 0.380 
1.50  0.773 0.409 0.150 0.323   0.492 
2.50  0.879 0.635 0.350 0.540   0.655 
3.50  0.939 0.798 0.600 0.732   0.799 
4.50  0.974 0.904 0.800 0.869   0.902 
5.50  0.989 0.956 0.900 0.937   0.953 
6.50  0.997 0.977 0.950 0.968   0.976 
7.50   1.000 1.000 1.000 1.000     1.000 
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1 Premium under the Incurred Retrospective Rating Plan begins as the Initial premium of $1,100,000.  Starting at 18 
months (time 1.5), the retrospective rating formula applies.  Here, the policyholder gets a partial return of premium at 18 
months, but then pays additional premium amounts at 30, 42, 54, 66, 78, and 90 months.  These additional premium 
amounts create credit risk for the insurer. 
2 Cash flow for the policyholder includes both premium payments and deductible loss reimbursements.  

Time

Primary 
Incurred Loss 

& ALAE Premium1
Cumulative 
Cash Flow

Incremental 
Cash Flow

0.00 -              1,100,000    (1,100,000)   (1,100,000)   
0.25 64,200         1,100,000    (1,100,000)   -              
0.50 157,800       1,100,000    (1,100,000)   -              
0.75 272,400       1,100,000    (1,100,000)   -              
1.00 393,000       1,100,000    (1,100,000)   -              
1.50 463,800       943,485       (943,485)      156,515       
2.50 527,400       1,015,608    (1,015,608)   (72,124)        
3.50 563,400       1,056,433    (1,056,433)   (40,825)        
4.50 584,400       1,080,247    (1,080,247)   (23,814)        
5.50 593,400       1,090,454    (1,090,454)   (10,206)        
6.50 598,200       1,095,897    (1,095,897)   (5,443)          
7.50 600,000       1,097,938    (1,097,938)   (2,041)          

Time Premium

Deductible 
Loss 

Reimburse-
ments

Cumulative 
Cash Flow2

Incremental 
Cash Flow

0.00 479,381       -              (479,381)      (479,381)      
0.25 479,381       12,600         (491,981)      (12,600)        
0.50 479,381       43,200         (522,581)      (30,600)        
0.75 479,381       87,000         (566,381)      (43,800)        
1.00 479,381       140,400       (619,781)      (53,400)        
1.50 479,381       245,400       (724,781)      (105,000)      
2.50 479,381       381,000       (860,381)      (135,600)      
3.50 479,381       478,800       (958,181)      (97,800)        
4.50 479,381       542,400       (1,021,781)   (63,600)        
5.50 479,381       573,600       (1,052,981)   (31,200)        
6.50 479,381       586,200       (1,065,581)   (12,600)        
7.50 479,381       600,000       (1,079,381)   (13,800)        

Large Deductible Plan

Policyholder Cash Flows

Incurred Retrospective Rating Plan
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3 Insurer cash flows under the Incurred Retrospective Rating Plan equals the premium collected less losses and 
expenses paid. 
4 Insurer cash flows under the Large Deductible Plan equals the premium and deductible loss reimbursements 
collected less losses and expenses paid. 
  

Time Premium
Total Paid 

Loss & ALAE Commission Premium Tax
General 

Expense ULAE
Cumulative 
Cash Flow3

Incremental 
Cash Flow

0.00 1,100,000      -              55,000         33,000         3,750           -           1,008,250    1,008,250    
0.25 1,100,000      12,900         55,000         33,000         6,570           6,570       985,960       (22,290)        
0.50 1,100,000      44,700         55,000         33,000         9,375           14,580      943,345       (42,615)        
0.75 1,100,000      93,000         55,000         33,000         12,195         23,850      882,955       (60,390)        
1.00 1,100,000      155,400       55,000         33,000         15,000         34,200      807,400       (75,555)        
1.50 943,485         290,400       55,000         28,305         15,000         44,280      510,500       (296,900)      
2.50 1,015,608      486,000       55,000         30,468         15,000         58,950      370,190       (140,310)      
3.50 1,056,433      658,800       55,000         31,693         15,000         71,910      224,030       (146,160)      
4.50 1,080,247      782,400       55,000         32,407         15,000         81,180      114,260       (109,770)      
5.50 1,090,454      843,600       55,000         32,714         15,000         85,770      58,370         (55,890)        
6.50 1,095,897      871,200       55,000         32,877         15,000         87,840      33,980         (24,390)        
7.50 1,097,938      900,000       55,000         32,938         15,000         90,000      5,000           (28,980)        

Time Premium

Deductible 
Loss 

Reimburse-
ments

Total Paid 
Loss & ALAE Commission Premium Tax

General 
Expense ULAE

Cumulative 
Cash Flow4

Incremental 
Cash Flow

0.00 479,381         -             -              55,000         14,381         3,750           -           406,250       406,250       
0.25 479,381         12,600        12,900         55,000         14,381         6,570           6,570       396,560       (9,690)          
0.50 479,381         43,200        44,700         55,000         14,381         9,375           14,580      384,545       (12,015)        
0.75 479,381         87,000        93,000         55,000         14,381         12,195         23,850      367,955       (16,590)        
1.00 479,381         140,400      155,400       55,000         14,381         15,000         34,200      345,800       (22,155)        
1.50 479,381         245,400      290,400       55,000         14,381         15,000         44,280      305,720       (40,080)        
2.50 479,381         381,000      486,000       55,000         14,381         15,000         58,950      231,050       (74,670)        
3.50 479,381         478,800      658,800       55,000         14,381         15,000         71,910      143,090       (87,960)        
4.50 479,381         542,400      782,400       55,000         14,381         15,000         81,180      73,820         (69,270)        
5.50 479,381         573,600      843,600       55,000         14,381         15,000         85,770      39,230         (34,590)        
6.50 479,381         586,200      871,200       55,000         14,381         15,000         87,840      22,160         (17,070)        
7.50 479,381         600,000      900,000       55,000         14,381         15,000         90,000      5,000           (17,160)        

Large Deductible Plan

Incurred Retrospective Rating Plan

Insurer Cash flows
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Chapter 3: Aggregate Excess Loss Cost Estimation 
By Ginda Kaplan Fisher 

1. Overview 

1.1. Who Pays, and How Much? 

A critical part of modeling the cost of an insurance contract is determining who pays, and how 
much.  When an insurance policy includes risk sharing at an aggregate level, it can be quite 
challenging to model these aggregate losses and to determine the coverage responsibilities among 
the parties to an insurance contract—e.g., the policyholder and/or the insurer. How to do so will 
depend upon the specific nature and parameters of the contract.  Estimating the cost of various 
slices of the aggregate losses is important in estimating insurance costs when: 

• A retrospectively rated policy (or “retro”) is considered, as retrospectively rated polices have 
a maximum ratable loss (max). The impact of aggregate losses on the policy premium are 
limited by the max. 

• A retrospectively rated policy has a minimum ratable loss (min). 

• A deductible policy has an aggregate limit. 

• A policy is written over a self-insured retention, limiting the customer’s aggregate losses.   

• A (re)insurance policy has an aggregate limit on the total it will pay out, but the data (or 
mathematical functions used to estimate the data) used to price the policy is not subject to 
that limit. 

Americans are probably most familiar with aggregate loss costs in health insurance. It is common for 
US health insurance policies to have a deductible and/or co-payment, but an annual limit on “out of 
pocket” costs. That is, there is an aggregate limit on the deductible plus co-payment (where a co-
payment is really just another type of deductible—so the two combined are the total deductible for 
the policy). 

For example, a policy might pay 80% of medical costs incurred after you pay a $2000 annual 
deductible. (That is, a 20% co-payment.) But your out-of-pocket medical costs will be capped at 
$10,000. So if you get very ill, the costs you are charged and the insurance payments might look like 
this:  
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Exhibit 3.1. Illustrative medical costs 

Date Gross 
Medical 
Cost 
Incurred 

Payment 
toward 
Annual 
Deductible 

Insured’s 
Co-
Payment 

Insurance 
Payment 

Insured’s 
Cost for 
this 
month 

Insured’s 
cost so 
far this 
year 

Jan $1,000 $1,000 0 0 $1,000 $1,000 
Feb $5,000 $1,000 $800 $3,200 $1,800 $2,800 
Mar $20,000 0 $4,000 $16,000 $4,000 $6,800 
Apr $20,000 0 $3,200 $16,800 $3,200 $10,000 
May $10,000 0 0 $10,000 0 $10,000 
Jun $4,000 0 0 $4,000 0 $10,000 

Here, you finished paying the $2000 flat deductible partway through February, and then paid 20% of 
the medical expenses incurred until you paid the out-of-pocket cap of $10,000 partway through 
April. In this example, you recovered in June and stopped incurring medical payments that year. 

A commercial liability policy might have a per-claim deductible of $100K and an aggregate limit on 
the deductible of $500K. In the insurance industry, this type of policy is often referred to as a “large 
deductible policy” or a “large dollar deductible policy,” in order to distinguish it from, for example, a 
Homeowners’ policy with a $500 deductible. For simplicity, hereafter it will just be referred to as a 
deductible policy. A similar example for this policy might look like this: 

Exhibit 3.2. Illustrative general liability costs 

Date Dollars of loss 
on claims that 
are each less 
than $100K 

Number 
of 
claims 
over 
$100K 

Dollars of 
loss on 
claims over 
$100K 

Deductible Insurance 
payment 

Insured’s 
cost so far 
this year 

   Q1 $132,500 0 0 $132,500 0 $132,500 
   Q2 $93,000 2 $350,000 $293,000 $150,000 $425,500 
   Q3 $105,000 0 0 $74,500 $30,500 $500,000 
   Q4 $122,500 1 $150,000 0 $272,500 $500,000 

In this case, the insured pays all the losses on claims less than $100K, and pays the first $100K of 
each large claim, until the aggregate limit of the deductible is reached in Q3. After that, the insurance 
company pays the rest of the losses incurred under the policy. Of course, in typical years, the insured 
would not incur enough large claims to exhaust the aggregate limit. 

The out-of-pocket maximum or aggregate limit on the deductible is a benefit to the insured (and a 
cost to the insurer).  In general, the same mathematical tools can be used to estimate any “slice” of 
aggregate loss, whether a cost or a savings to the insurer. It is important to pay attention to which 
party benefits from any particular aggregate limit. When confused, it is often helpful to imagine a 
specific situation and ask, “how much does the insured pay before the insurer is responsible? How 
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much does the insurer pay before hitting its policy limits? How much is the insured responsible for 
above the policy limits?  

This chapter focuses on retrospectively rated and deductible plans. It is clearer to develop the math 
of aggregate loss cost limitations in the context of a simple retrospective policy that has no per-
occurrence loss limits. This allows us to delay introducing the complications of also needing to 
consider the impact of any per-occurrence limitations, so much of the chapter will be written from 
that perspective. Then this chapter will go on to explain how to incorporate per-occurrence 
limitations. Keep in mind that the tools described in this chapter can work for all the situations 
above.  

This approach is consistent with the historical development of the math around aggregate insurance 
losses. Many of the early papers on aggregate excess loss costs were written from the perspective of 
US workers’ compensation policies. Retrospective rating was introduced for workers’ compensation 
a couple decades after the coverage was invented, as a way to more fairly charge premium to safer 
and less safe employers.14 Workers’ compensation policies have no policy limit on the insurer’s 
liability (except for the limitations imposed by the human lifespan) and some retrospectively-rated 
polices have no per-claim loss limitation on ratable losses used in calculating the retrospective 
premium.  

But the reader should be aware that deductible policies are far more important and widespread than 
retrospective policies today. For that reason, deductibles will be discussed alongside retros when the 
topic is relevant to policies with per-occurrence loss limitations.  

For simplicity of language, this chapter will often refer to unlimited losses. This is a natural way to 
describe workers’ compensation losses, because there is no limit to the insurer’s liability under the 
policy. And most of this material was originally developed in the context of US worker’s 
compensation, so this language is consistent with most of the literature. However, all the math 
works the same if you substitute “losses to policy limit” for “unlimited losses” when you are 
working with other coverages. In real life, the actuary must be careful to keep track of whether the 
word “limit” refers to a policy limit, a deductible limit, or some other limit. 

From the point of view of the policyholder, a deductible with an aggregate limit looks the same as a 
retro with a loss limit (with respect to ultimate losses retained). For example, the insured who buys a 
large deductible policy with a deductible of $250,000 and an aggregate deductible limit of $500,000 is 
in essentially the same position as an insured who purchases a retro with a maximum that translates 
to $500,000 of loss, and a per loss limit of $250,000 (ignoring the fact that there might be some 
differences in the treatment of expenses).  The language is a little different—what we call the per-
claim (or per-occurrence) deductible on a large deductible policy corresponds to the loss limitation 

 
14 The first retrospective rating plan for Workmen's Compensation, as it was then called, was approved by Massachusetts 
in 1936, as described by Sydney Pinney in "Retrospective Rating Plan for Workmen's Compensation Risks," PCAS 
XXIV. 
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on a retro; what we call an aggregate limit on a deductible corresponds to the maximum on a retro—
but the general structures are the same.  In particular, the risk transfer is the same.15  

The reader should be aware that the timing and accounting for the monies that flow between insurer 
and insured are different for different types of policies, even if the risk transfer is essentially the 
same. For example, in a retro plan, risk-sensitive future cash flows are typically premium, and 
typically they only happen once a year. Those cash flows are losses in a deductible plan, and the 
deductible losses may be billed and paid monthly. There are also plans with loss-sensitive dividends, 
which are an expense to the insurer (not premium or loss) and are usually calculated annually. But 
while the timing of cash flows and other aspects of the plans might differ, the expected ultimate loss, 
which is the subject of this chapter, is the same. Loss sensitive dividend plans and self-insured 
retention plans can have similar loss provisions, as discussed in chapter 2. 

This chapter focuses mostly on aggregate limits of primary losses, because insurers typically have 
more information about those losses, and thus more methods of estimating them. But similar 
methods can be used to price policy limits when the actuary lacks a history of relevant data but has a 
reasonable idea of the underlying frequency and severity distributions. 

 

1.2. Some definitions and notation to describe aggregate losses 

It is important to remember that losses are random processes, and a particular outcome (for 
example, the losses that a risk incurs during a policy year) is unlikely to match the expected value.  

First, consider a retrospectively rated policy with no per-claim limit. This is common on smaller 
policies, where the maximum ratable loss might easily be breached by one large claim.  

The following notation and definitions are used throughout this chapter: 

N: the random variable representing the number of claims that a risk incurs during the relevant 
period (usually the life of a policy).  

The expected claim frequency is the expected number of claims divided by the exposures or 
premium of the risk. We might also consider the frequency of large or small claims.16 

 
15 Or nearly the same. There might be some differences due to the timing of the payments, and what sort of security is 
required. 
16 A policy might be written per-claim, or per-occurrence, but for simplicity, this chapter will refer to the insured event 
as a claim, and use the terms “claim” and “occurrence” interchangeably. In real life, there might be sub-limits per claim, 
as well as limits per-occurrence, or other differences between a claim and an occurrence. The same general methods can 
be used to estimate expected losses under such policies, but working out the details is beyond the scope of this chapter. 
Similarly, a loss sensitive rating plan might contemplate loss or loss + ALAE. The two would have different expected 
loss distributions. But investigating the expected difference is beyond the scope of this study note.  
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X:  random variable representing a claim incurring to a risk. 

The expected severity is E{X}, the expected value of a single claim, should it occur. 

A:  random variable representing the actual total aggregate loss incurring to a risk.17 

E= E{A}:  expected loss. 

Note that E{A} = E{N}*E{X} 

Entry ratio: r = 
𝐴𝐴
𝑑𝑑

: the ratio of actual to expected losses (or, equivalently, the ratio of the actual 
policy loss ratio to the expected loss ratio) 

For example, a policy was written on a commercial auto fleet. The underwriter expected total 
losses on the policy to be $200,000. At the end of the year, actual losses on the policy were 
estimated to have been $189,000. In this case, the entry ratio r = 189K/200K = 0.945. 

If the premium for that policy was $250,000, the expected loss ratio would have been 80.0% 
($200K/$250K). The actual loss ratio would have been 75.6% ($189K/$250K). The entry 
ratio calculated from loss ratios is 75.6%/80.0% = 0.945. The two methods of determining 
the entry ratio are equivalent: the loss ratio calculation is simply the loss calculation with 
both numerator and denominator divided by the premium. 

The entry ratio, r, is also a random variable. Although policies of different sizes tend to have 
different distributions of r, similarly sized policies of the same type of coverage (e.g., 
commercial auto policies in the Midwest covering fleets of private passenger vehicles, with 
expected losses of a few million dollars) will behave similarly, and it is customary to estimate 
expected aggregate excess losses in terms of their entry ratio. When aggregate charges were 
published in tabular form, in printed books, the charges were calculated separately for 
various expected loss groups (ELGs) that were similar enough to group together for analysis, 
and the actuary “entered the table” at the appropriate entry ratio. Empirical studies of 
aggregate charges are still done by grouping similar policies in this way. 

The approximate size of a policy has a large influence on how its aggregate excess losses will 
behave. This is mostly because the variance of the loss distribution is very sensitive to the 
expected number of claims. Historically, policies were grouped by their expected losses (into 
expected loss groups) as a proxy for the expected number of claims. Policies can also be 
grouped directly by their expected number of claims (into expected claim count groups.) The 
rationale for grouping policies by size (either expected loss or expected number of claims) is 
discussed later in this chapter, in section 6. 

 
17 Note that some textbooks use S to designate this amount. 
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ϕ(r):  Table M charge18 =  the ratio of a risk’s average amount of loss in excess of r times its 
expected loss, divided by the total expected loss, or the expected percent of losses excess of rE.  

ϕ(r) is also known as the Aggregate Excess Loss Factor, Aggregate Excess Ratio, 
Excess Pure Premium Ratio, or Insurance Charge. (Note that this chapter will use 
“insurance charge” to refer to an amount, not a ratio, but the phrase is used both ways in the 
literature.) 

Table M: a collection of related aggregate excess loss factors (and related savings, defined below). 
When there is a per-occurrence limit, “Table M” will refer to those factors calculated ignoring the 
impact of that limit. See Table MD below. 

Insurance Charge: ϕ(r) times the expected loss, E.  

This value, the expected aggregate excess loss, is often called the insurance charge because 
on a retrospectively rated policy, this is the portion of the retrospective premium that is fixed 
and pays for losses.19 (The other premium components are variable or pay for expenses.) 

For example, consider an insurer with a book of 5 similar policies, each with an expected 
loss of $100K. In a typical year, the actual losses on those policies are $80K; $90K; $100K; 
$110K; and $120K. The average loss for the book is, as expected, $100K per policy.  

(This is not a realistic example, it was chosen to be symmetric and with small variation for 
illustrative purposes only.) 

At r=1, the aggregate excess ratio, ϕ(1), is the portion of each loss above 100K, divided by 
the expected loss:  

(0+0+0+10K+20K)/(100K+100K+100K+100K+100K) = 0.06. 

At r = 0.6, the aggregate excess ratio, ϕ(0.6), is the portion of each loss above 60K (60K = 
0.6 * expected loss):  

(20K+30K+40K+50K+60K)/(500K) = 0.40. 

At r = 1.2, the aggregate excess ratio, ϕ(1.2), is the portion of each loss above 120K, or zero. 

ψ(r):   Table M Savings  = the expected amount by which the risk’s actual aggregate loss falls short 
of r times the expected loss, divided by the expected loss, (so, an expected percent, not an expected 
amount.)  Or, 

 
18 Historically, the National Council of Compensation Insurers (NCCI) published aggregate excess loss factors and 
aggregate minimum loss factors for use with retrospectively rated US workers’ compensation in a large table. Those 
factors were referred to collectively as “Table M.” For example, see The 1965 Table M, by LeRoy Simon, PCAS LII, 
1965. The terminology has passed into common usage and will be used throughout this paper. 
19 If a retro policy also has a per claim loss-limit, the charge for that is sometimes considered part of the insurance 
charge, and sometimes considered a separate charge. The terminology is not entirely consistent across the industry, and 
the actuary should be careful to understand what is being measured or estimated. 
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𝝍𝝍(𝐫𝐫) = 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒 𝑜𝑜𝑜𝑜 𝑚𝑚𝑣𝑣𝑒𝑒 [𝑟𝑟 − 𝐴𝐴
𝑑𝑑

, 0], 

An empirical estimate over several similar risks could be calculated as: 

𝝍𝝍(𝐫𝐫) =  �𝑚𝑚𝑣𝑣𝑒𝑒 [𝑟𝑟 −
𝑍𝑍𝑉𝑉
𝑑𝑑𝑉𝑉

, 0]
𝑁𝑁

𝑉𝑉=1

/𝑁𝑁 

ψ(r) is also known as the insurance savings or aggregate minimum loss factor. (As with 
the phrase “insurance charge”, note that this chapter will use “insurance savings” to refer to 
an amount, not a ratio, but the phrase is used both ways in the literature.) 

 

Retrospectively rated policies often have a minimum ratable loss as well as a maximum 
ratable loss. This is the minimum aggregate loss that factors into the retrospective premium 
calculation. Just as the maximum aggregate loss that the insured will pay for generates an 
insurance charge, the minimum ratable loss the insured will pay for even if it incurs no 
claims over the policy period generates an insurance savings that offsets the insurance charge 
(or is subtracted from the charge to generate a net insurance charge. The ratio of the net 
insurance charge to the expected loss is called the Net Table M charge, or the net aggregate 
loss factor).  
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Continuing the simple example as above, a book of 5 similar policies, each with an expected 
loss of $100K, and a typical loss distribution of $80K, $90K, $100K, $110K, and $120K: 

At r=1, the insurance savings, ψ(1), is the portion that each loss falls short of 100K, divided 
by the expected loss:  

(20K+10K+0+0+0)/(100K+100K+100K+100K+100K) = 0.06. 

At r = 0.6, the insurance savings, ψ(0.6), is the portion that each loss falls short of 60K (0.6 
* expected loss):  

(0+0+0+0+0)/(500K) = zero. 

At r = 1.2, the insurance savings, ψ(1.2), is the portion that each loss falls short of 120K: 

(40K + 30K + 20K + 10K + 0)/(500K) = 0.20. 

Charges and Savings:  More precisely, let 

Y = A/E, actual loss in units of expected loss (i.e., the entry ratio) 

F(Y) = the cumulative distribution function of Y. 

Then  

ϕ(r) = ∫ (𝑦𝑦 − 𝑟𝑟)𝑑𝑑𝑑𝑑(𝑦𝑦)∞
𝑃𝑃  

and 

ψ(r) = ∫ (𝑟𝑟 − 𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦)𝑃𝑃
0  

By definition, both ϕ(r) and ψ(r) are non-negative for every r. 

While the expected loss to the risk is E, there is often a great deal of variance in the 
distribution of A, the actual loss. For example, if 100 similar risks each have the same 
expected loss, E, we would expect some of them to actually have more loss, and others less 
than expected. Thus, in general, we expect both ϕ(r) and ψ(r) to be positive numbers for 
most non-negative values of r.20 

AD: The actual policy loss, with each claim or occurrence limited to D21. 

 
20 Note that in unusual cases where all risks always have losses close to what is expected, the charges and savings 
are zero for many values of r, such as in the overly simple example of five policies, above.  
21 It was pointed out to the author that Bahnemann uses the same notation to refer to excess rather than primary losses.  
This is unfortunate for candidates studying both for CAS exam 8, but actuaries should always be aware of what notation 
means in context. 
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Many policies have per-occurrence limits as well as aggregate limits. If a retrospective policy 
has a per-occurrence limit, the actuary might estimate the expected excess loss separately, 
and then look at the function of limited losses. 

Expected Primary Losses:  E{AD}, the expected value of the losses limited by the per-occurrence 
limit. 

k: the excess ratio for the per-occurrence limit. That is, 𝑘𝑘 = 𝑑𝑑−𝑑𝑑{𝐴𝐴𝐷𝐷}
𝑑𝑑

 

Table MD : A table of related aggregate excess loss factors and related saving developed using data 
in which the individual losses have been limited by a per-occurrence limit prior to being aggregated 
into policy outcomes for use in developing those charges and savings. 

For example, M$100,000 has had a per-occurrence limit of $100,000 applied. 

Limited Table M factors are developed exactly the same as unlimited Table M factors, except 
we use the distribution of limited (primary) losses. 

r = AD/ E{AD}, the entry ratio of the limited distribution, the actual policy loss on the 
policy in units of expected primary loss; and  

FD(r) = the cumulative distribution function of r, the limited losses whose unlimited 
cumulative distribution function was given by F. 

Note that the limited Table M charge (or savings) in this case will be the ratio of a risk’s 
average amount of limited loss in excess of (entry ratio) r times its expected limited loss, 
divided by the total expected limited loss. 

Table L: It is also possible to calculate the total amount of loss that will be covered by the policy 
(per-occurrence excess plus aggregate excess) directly, as a single factor to expected loss.  That 
amount is known as the Table L charge, for the California Table L.22 It will be described in more 
detail in section 5.1. 

Note that when considering Table L calculations, the entry ratio (r) is defined as the actual 
limited aggregate losses divided by the expected unlimited aggregate losses. 

𝝓𝝓𝐃𝐃
∗ (r):   the Table L charge at entry ratio r and per-occurrence limit D for aggregate and per-

occurrence loss. This is defined as the average difference between a risk’s actual unlimited loss 
and its actual limited loss, plus the risk’s limited loss in excess of rE.  
The Table L insurance charge at entry ratio r ≥0 is defined as: 

𝜙𝜙𝐷𝐷∗ (𝑟𝑟) = � (𝑦𝑦 − 𝑟𝑟)𝑑𝑑𝑑𝑑∗(𝑦𝑦)
∞

𝑃𝑃
+ 𝑘𝑘 

 
22 Skurnick, D., “The California Table L,” PCAS LXI, 1974, pp. 117-140. 
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𝝍𝝍𝐃𝐃
∗ (r):  the Table L savings at entry ratio r and per-occurrence limit D, 𝜓𝜓𝐷𝐷∗ (r), is defined as the 

average amount by which the risk’s actual limited loss falls short of r times the expected 
unlimited loss. 

 𝜓𝜓𝐷𝐷∗ (𝑟𝑟) = � (𝑟𝑟 − 𝑦𝑦)𝑑𝑑𝑑𝑑∗(𝑦𝑦)
𝑃𝑃

0
 

Note that the Table L charge and savings are both expressed as ratios to expected 
unlimited loss. 

As mentioned above, the claims covered by a deductible policy with an aggregate deductible limit are 
the same as the claims covered by a retrospectively rated policy with the same per-claim limit and 
maximum ratable loss entering the retrospective rating formula. 

The amount of premium will be different, however. For a retrospective policy, the insurer pays all of 
the losses and the insured pays premium. The premium will be comparable to that of a fully insured 
policy, although the actual amount of premium to be paid to the insurer is uncertain until all the 
claims have settled. In contrast, for a deductible policy the insurer is reimbursed for losses below the 
deductible (subject to limit of the aggregate deductible amount) and the insured's premium is a fixed 
amount much smaller than that for a fully insured policy. For a deductible policy, the pure premium 
is the sum of the expected per-occurrence excess loss and the expected aggregate excess loss, and 
the total premium is the pure premium grossed up for the risk charge and other expenses. In the 
case of a deductible policy, the uncertainty is in the amount and timing of the loss reimbursements 
that the insured will have to pay to the insurer. 

In Section 2 of this chapter we will try to give a better intuitive understanding of these entities by 
drawing pictures of them. This will be accompanied by descriptions of some important relevant 
calculations. 
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Questions 

 
1. A policy has a $10,000 per-occurrence deductible, a $25,000 aggregate deductible limit, 
and a per-occurrence policy limit of $1M. Over the course of the policy, the insured incurs the 
following losses, in chronological sequence: 

$3,000     $8,000     $14,000     $12,000     $18,000 
Determine (i) the total insurance policy coverage, and (ii) the amount for which the insured is 
responsible after the insurance coverage, for each of the following: 
(a) After the first three claims have been incurred 
(b) After the first four claims have been incurred 
(c) After all five claims have been incurred 
 

2. Medium Manufacturing Company (MMC) buys a General Liability policy with a large 
deductible. The policy has a $250K per-claim deductible, covers claims up to $1M per claim (from 
the first dollar, so the insured amount is actually $1M less $250K, or $750K xs $250K23) with an 
aggregate limit on the policy of $5M and an aggregate limit on the deductible of $1M. During the 
policy period, MMC has the following claims: 

• 25 small claims that collectively cost $500K 
• 1 claim for $100K 
• 1 claim for $300K 
• 1 claim for $2M 

(a) What is the total loss sustained by MMC prior to any consideration of insurance? 

(b) What is MMC’s total loss responsibility under the per-claim deductible (but before consideration 
of the aggregate limit of the deductible)? 

(c) How much of MMC’s deductible losses are above the aggregate limit on the deductible? 

(d) How much is over the per-claim policy limit? 

(e) How much loss would be paid by the insurer prior to consideration of the policy’s aggregate 
limit? 

(f) How much loss is over the policy’s aggregate limit? 

(g) How much in total will the insurance company need to pay for MMC’s liability? 

 
3. Let A, the total aggregate loss random variable, have a continuous uniform distribution 
from 0 to 100.  Let E, the expected aggregate losses, be the mean of the uniform distribution, or 
50.  Find the Table M Insurance Charge associated with 

 
23 This is often denoted just “$750K x $250K”, or even “750x250” in practice. 
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(a) A = 40 
(b) A = 50 
(c) A = 60 
 

4. Let aggregate loss random variable A be an exponential distribution with a mean of 10.  Find 
the Table M (Insurance) Savings associated with 

(a) A = 5 

(b) A = 10 

(c) A = 15 

  



47 

2. Visualizing Aggregate Excess Losses 

The mathematics of per-occurrence excess and aggregate excess loss coverage can often be 
challenging, so it can be helpful to think about the questions graphically. Section 2 of this chapter is 
adapted from a paper by Yoong-Sin Lee.24 This paper is so widely used in the casualty actuarial field 
that the graphs he described are often referred to as “Lee diagrams.” 

While formulas are good for calculations, graphs often provide insight into the structure of a 
problem, and help with developing intuition. Many problems are hard to understand until you draw 
a picture. Per-occurrence excess and aggregate excess loss calculations can be unintuitive, and it’s 
often helpful to draw a picture specifying which layers will be paid by which party before 
commencing with the calculations.  A good graphical presentation can not only provide insight into 
the abstract relations, it can also make the mathematical procedure much easier to follow compared 
with algebraic manipulations. For those who always prefer algebra, it will serve at least as a very 
useful supplement to the algebraic treatment. 

Note that a key feature of Lee diagrams is that “size” (severity, or aggregate loss, or entry ratio) is on 
the vertical axis, and the horizontal axis represents the cumulative claim count or cumulative % of 
loss distribution. In that sense, Lee diagrams are slightly different from what many actuaries are used 
to seeing with respect to probability functions. 

2.1. Lee Diagrams of Severity Distributions 

To develop the idea of what Lee diagrams look like, consider the case of per-occurrence deductibles 
and limits. 

To start with, consider a large number of losses, of ordered sizes x1, x2, . .  ,xk, occurring nl, n2, . . . , 
nk times, respectively, with n = n1+ . . . +nk.  

We might, for example, look at the distribution of those losses.  In Exhibit 3.3, we show the 
incremental and cumulative loss distribution of a set of losses, with size of loss on the X-axis.   

  

 
24 Lee, Yoong-Sin, “The Mathematics of Excess of Loss Coverages and Retrospective Rating—A Graphical Approach,” 
PCAS LXXV, 1988. 
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Exhibit 3.3. Size-of-loss on the X-axis 
Incremental and Cumulative loss distributions 

 

 
In Exhibit 3.4 we represent these same losses by means of a cumulative frequency curve, in which 
the y-axis represents the loss size, and the x-axis represents the cumulative number of losses, ci = 
nl+ . . . +ni, i ≤ k. This is how Lee diagrams are constructed. 

Exhibit 3.4. A Cumulative Frequency Curve—Size-of-loss on the Y-axis

The curve is a step function (with argument along the vertical axis) which has a jump of ni at the 
point xi. Consider the shaded vertical strip in the graph. It has an area equal to nixi. Summing all 
such vertical strips we have 

Total amount of loss = n1x1+ . . . +nkxk.                                                        
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We may therefore interpret the area of the vertical strip corresponding to xi as the amount of loss of 
size xi, and the total enclosed area below the cumulative frequency curve as the total amount of loss.  

In fact, we have a new way of viewing the cumulative frequency function curve. This curve can be 
constructed by arranging the losses in ascending order of magnitude, and laying them from left to 
right with each loss occupying a unit horizontal length. 

Now let X be a random variable representing the amount of loss incurred by a risk. Define the 
cumulative distribution function (cdf) F(x) as 

F(x) = Pr(X ≤ x). 

Exhibit 3.5 shows the graph of a continuous cdf. Consider the vertical strip in the graph, with area 
xdF (x). If we sum up all these strips, we will obtain the expected value of X (where E{X} 
represents the expected value of a random variable X), 

E{X} = ∫ 𝑒𝑒𝑑𝑑𝑑𝑑(𝑒𝑒)∞
0 , 

which is represented by the enclosed area below the cdf curve (the shaded area in the graph). We 
may interpret the expected loss as composed of losses of different sizes, and the strip xdF (x) as the 
contribution from losses of size between x and x+dx.  

 

Exhibit 3.5. CDF Curve and Expectation 

 

 

We can readily modify this diagram to visualize limits and deductibles: 
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Limits: 

Consider a coverage which pays for losses up to a limit L only. Exhibit 3.6(a) shows that a loss of 
size not more than L, such as S1, is paid in full, while a loss of size S2 which is greater than L, is paid 
only an amount L. By summing up vertical strips as before, except that strips with length greater 
than L are limited to length L, we obtain the expected payment per loss under such a coverage as the 
shaded area in Exhibit 3.6(a). 

Deductibles: 

Likewise, a coverage which pays for losses subject to a flat deductible D and up to limit L has 
expected payment per loss represented by the shaded area in Exhibit 3.6(b). 

 

Exhibit 3.6. Expected Loss with (a) Limit and (b) Deductible 

 

 

We have shown the integral along the x-axis, but as with any other measurement of area, one 
could just as well integrate in horizontal slices along the y-axis. One method is often easier than 
the other in actual practice, depending on what data is available and what curves are used to 
estimate the underlying process. 
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A vertical strip has area xdF(x), and we define  

S(x) = 1 – F(x). 

So a horizontal strip has area S(x) dx, as shown in Exhibit 3.7(a). 

 

Exhibit 3.7. Size and Layer Views of Losses 

 

Summing up the vertical strips and the horizontal strips separately must give us the same area, so we 
have  

� 𝑒𝑒𝑑𝑑𝑑𝑑(𝑒𝑒) =  � 𝑆𝑆(𝑒𝑒)𝑑𝑑𝑒𝑒 = 𝑑𝑑{𝑋𝑋}
∞

0

∞

0
 

This result can also be derived algebraically via integration by parts. 

The two modes of summation correspond, in fact, to two views of the losses. The vertical strips 
group losses by size, whereas the horizontal strips group the loss amounts by layer. We may 
therefore call them the size method and the layer method. It is often more convenient to evaluate 
the expected loss in a layer by layer fashion, i.e., summing horizontal strips, than by the size method, 
i.e., summing vertical strips. For example, consider the layer of loss between a and b in Exhibit 
3.7(b). The expected loss in this layer is represented by the shaded area. The layer method of 
summation gives simply 

∫ 𝑆𝑆(𝑒𝑒)𝑑𝑑𝑒𝑒𝑏𝑏
𝑉𝑉 . 
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To express this integral by the size method is more difficult. However, some reflection, with the 
help of Exhibit 3.7(b), yields the following expression for the integral: 

∫ 𝑒𝑒𝑑𝑑𝑑𝑑(𝑒𝑒) + 𝑏𝑏𝑆𝑆(𝑏𝑏) − 𝑣𝑣𝑆𝑆(𝑣𝑣)𝑏𝑏
𝑉𝑉 . 

Again, the equality of the two expressions can be established via integration by parts. 

The more complicated expression derived from the size method is the form commonly found in the 
literature. Although the integral associated with the layer method is simple in form, S(x) is a function 
that is generally more difficult to integrate. This disadvantage vanishes, however, when the 
distribution is given numerically, as, for example, when actual experience is used. The retrospective 
rating Table M and Table L have been constructed by the layer method, as described in subsequent 
sections of this chapter; see also Simon25 and Skurnick.26 

2.2. Lee Diagrams of Aggregate Loss Distributions 

Lee diagrams are a very effective way to visualize aggregate policy provisions. They can be used — 
looking at an individual policy — to keep track of who owes what when, and also to visualize the 
outcome of a large group of similar policies, to aid in calculating expected aggregate excess losses.  

In practice, when pricing aggregate policy provisions, the actuary needs actual numbers, and 
those are commonly pre-calculated, or estimated with an accessible set of formulas. This study 
note will show how such factors can be calculated. It will start by considering the simple case, 
where there is no per-occurrence loss limitation. It will later consider the more general cases 
where a policy might have both per-occurrence and aggregate loss limitations, looking at limited 
Tables M and Table L. 
The mathematical basis of Table M is a distribution of entry ratios and its underlying distribution 
of aggregate losses. Recall from Section 1.2 that r is the entry ratio (actual loss divided by 
expected loss). 

𝐼𝐼𝐼𝐼𝐼𝐼𝑣𝑣𝑟𝑟𝑣𝑣𝐼𝐼𝑒𝑒𝑒𝑒 𝐶𝐶ℎ𝑣𝑣𝑟𝑟𝑎𝑎𝑒𝑒  𝑣𝑣𝑡𝑡 𝑟𝑟 = 𝑋𝑋 = 𝜙𝜙(𝑟𝑟) = � (𝑦𝑦 − 𝑟𝑟)𝑜𝑜(𝑦𝑦)𝑑𝑑𝑦𝑦
∞

𝑃𝑃
 

𝐼𝐼𝐼𝐼𝐼𝐼𝑣𝑣𝑟𝑟𝑣𝑣𝐼𝐼𝑒𝑒𝑒𝑒 𝑆𝑆𝑣𝑣𝑣𝑣𝑆𝑆𝐼𝐼𝑎𝑎𝐼𝐼 𝑣𝑣𝑡𝑡 𝑟𝑟 = 𝑆𝑆 = 𝜓𝜓(𝑟𝑟) = � (𝑟𝑟 − 𝑦𝑦)𝑜𝑜(𝑦𝑦)𝑑𝑑𝑦𝑦
𝑃𝑃

0
 

𝑆𝑆 = 𝑋𝑋 + 𝑟𝑟 − 1 𝑜𝑜𝑟𝑟 𝜓𝜓(𝑟𝑟) = 𝜙𝜙(𝑟𝑟) + 𝑟𝑟 − 1 
(To be derived subsequently). 
In estimating the expected aggregate excess loss, we need to consider the distribution of outcomes 
of the total claims on a policy. As with severity distributions, it can be helpful to visualize the data to 
gain an intuitive understanding of how the elements relate to each other. We can draw a picture, 
remembering that we are graphing the probability distribution of aggregate losses (which can be 
thought of as multiple simulations of a single policy).  

 
25 LeRoy J. Simon, “1965 Table M,” PCAS LII, 1965, p. 1. 
26 David Skurnick, “The California Table L,” PCAS LXI, 1974, p. 117. 
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Exhibit 3.8. Functions in Retrospective Rating 

 

In Exhibit 3.8 the cdf F(y) is graphed against the entry ratio y. The functions ϕ(r) and ψ(r) are 
represented by the areas indicated in the graph. A number of mathematical properties are now 
clearly demonstrated. 

(1) By definition, the bounded area below the F(y) curve is equal to 1. Hence ϕ(0) = 1. 
(2) ϕ(r) is a decreasing function of r, and ϕ(r) →0 as r →∞.  
(3) ψ(r) is an increasing function of r; its value is unbounded as r →∞. 
(4) Consider a small strip at y= r in the graph. This shows that an increment dr from r will yield 
a decrease S(r)dr in ϕ(r).  Hence   

ϕ’(r) = (d/dr) ϕ(r) = -S(r). 
Using the fact that S'(x) = -f(x), a second differentiation yields 

ϕ’’(r)= f(r), 
where f(r) is the density function of the entry ratio.27  Similarly, we may deduce from Exhibit 3.8 
that 

𝜓𝜓’(r) = (d/dr) 𝜓𝜓(r) = F(r) 
and 

𝜓𝜓’’(r)= f(r). 
(5) Consider the area of the rectangle on the interval from 0 to r in Exhibit 3.8. This gives the 
relation 

r = [1- ϕ(r)] + 𝜓𝜓(r) 
or 

𝜓𝜓(r)= ϕ(r) + r - 1;    (Formula 3.1) 
this is a fundamental relation connecting 𝜓𝜓(r) and ϕ(r). 
In general, consider a policy that has both a minimum ratable loss and a maximum ratable loss.  
Let L be the aggregate loss subject to a minimum of r1E and a maximum of r2E. So: 

 
27 Nels M. Valerius, “Risk Distributions Underlying Insurance Charges in the Retrospective Rating Plan,” PCAS XXIX, 
1942, p. 96. 
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     r1E if  A <= r1E 

L =   A if  r1E <= A <= r2E 

r2E if  r2E <= A 

 
If the actual loss is less than r1E, L equals r1E, the minimum loss. If the actual loss falls between 
r1E and r2E, L will be the actual loss. If the actual loss exceeds r2E, the maximum loss, L will be 
r2E. 
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Then a result more general than Formula 3.1 can also be obtained quite easily from examining 
Exhibit 3.9.  

Exhibit 3.9. Expectation of Insured Loss (L) in Retrospective Rating 

 

The shaded area in Figure 3.9 represents the quantity E{L}/E and we have 
E{L}/E - 𝜓𝜓(r1)+ ϕ(r2)  = 1, 

or 
E{L}/E = 1 + 𝜓𝜓(r1)- ϕ(r2).     (Formula 3.2) 

See Skurnick.28 

Lee diagrams can also be used to motivate the derivation of key formulas used in Retrospective 
Rating.  
(Note that for ease of exposition, we ignore the tax factor in this chapter. Real premium 
calculations, would, of course, include a component for taxes.29) 
Recall from Chapter 2 that in a Retrospective Rating Plan, the retrospective premium R is given 
by 

R= B+ cA, 
where B is the basic premium and c is the loss conversion factor (LCF), and where B is 
alternatively represented by 

B = bP, 
with P as the standard premium (before any applicable expense gradation) and b as the basic 
premium ratio.  
For this section, we will assume the policy is subject to a maximum premium G and a minimum 
premium H. 
Let LG be actual loss that will produce the maximum premium: 

G = B + cLG  
and let 

 
28 David Skurnick, “The California Table L,” PCAS LXI, 1974, p. 117. 
29 The otherwise calculated retrospective premium would be multiplied by T, which is called the tax multiplier. Chapter 2 
shows this more complete version of the formula. 



56 

rG = LG/E. 
Similarly, define LH to be 

H = B+ cLH, 
rH = LH/E.  

Further, let 
LH if  A <= LH 

L =  A if  LH <= A <= LG 

LG if  LG <= A 

So if the actual loss is less than LH, L equals LH, the minimum ratable loss. If the actual loss falls 
between LH and LG, L will be the actual loss. If the actual loss exceeds LG, the maximum ratable loss, 
L will be LG.  

Then the retrospective premium can be represented by 
R = B + cL. 

If we identify rH and rG with rl and r2, respectively, then Exhibit 3.10 shows the quantity E{L}/E 
as the area of the shaded region OFDCBA.  
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Exhibit 3.10. Retrospective Rating Premium 

 
 
It then follows that 

E{L} = E - ϕ(rG) E + 𝜓𝜓(rH)E  

=E-I, 

where 
I = [ϕ(rG) - 𝜓𝜓(rH)]E 

is called the net insurance charge of Table M. If the plan is to cover the expected costs of the 
policy, the expected retrospective premium must be equal to the sum of the total expenses, e, and 
the expected loss, E: 

E{R} = e + E. 
On the other hand, it also follows from the above that 

E{R} = B + c(E - I). 
Equating these two quantities we obtain the basic premium in terms of the expense, expected 
loss, and the net insurance charge: 
 

B + c(E - I) = e + E 
or 

 B = e - (c - l)E + cI.     (Formula 3.3) 
A formula relating the charge difference to the minimum premium, expected loss and expense 
provision has been used to facilitate the determination of retrospective rating values from 
specified maximum and minimum premiums. This formula can be derived with the help of 
Figure 3.11 below. 
 
Consider the equation 

R=B+cL 
Taking the expectation of both sides, recalling that E{R} = e + E, and representing the 
expectation E{L}/E by the shaded area of Exhibit 3.11 (areas U and V combined, equivalent to 
OFDCBA in Exhibit 3.10) 
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Exhibit 3.11. Retrospective Rating Premium 

 
we have 

e + E = B + cE[U+V]. 
On the other hand, we have for the minimum premium H: 

H = B + cErH  
= B + cE [V]. 

Taking the difference on both sides of the two equations above we have 
(e+ E) - H = cE[U] 

= cE [ϕ(rH)  - ϕ(rG)]. 
Or  

𝜙𝜙(𝑟𝑟𝐻𝐻) − 𝜙𝜙(𝑟𝑟𝐺𝐺) =
(𝑒𝑒 + 𝑑𝑑) − 𝐻𝐻

𝑒𝑒𝑑𝑑
 

  (Formula 3.4) 
We can also derive a formula relating the entry ratios themselves to the major plan parameters.  
The losses at the minimum premium are rHE. So  

H = crHE + B. 
Similarly, the losses at the maximum premium are rGE. So  

G = crGE + B. 
Subtracting these two equations you find 

G - H = cE(rG - rH) 
or 

𝑟𝑟𝐺𝐺 − 𝑟𝑟𝐻𝐻 =
𝐺𝐺 − 𝐻𝐻
𝑒𝑒𝑑𝑑

 
(Formula 3.5) 

Formulas 3.4 and 3.5 can be used to determine the rating values given the maximum and 
minimum premiums. They are commonly referred to as the balance equations for aggregate 
losses. 

One may interpret the difference in charge, ϕ(rH) - ϕ(rG), as indicated by area U in Exhibit 3.11, to 
be the difference between the expected retrospective premium and the minimum premium, apart 
from conversion factor cE. 
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Questions 

 

5. Label each of the three areas, A, B, and C in the Lee diagram below in terms of the 
Insurance Charge and the Insurance Savings. 

 

 

6. For the Lee diagram below, identify the areas associated with 

(a) Insurance Charge at R 

(b) Insurance Charge at S 

(c) Insurance Savings at R 

(d) Insurance Savings at S 

 

3. Estimating Aggregate Loss Costs Using Table M 
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3.1. How Table M is Used 
To summarize: Table M contains insurance charges and savings by entry ratio and by size of 
policy, possibly by limit, and other key considerations.30  The entry ratio is defined as the 
aggregate losses divided by the expected aggregate losses (unlimited, or limited in the case of a 
limited Table M). Because different sized policies will have very different aggregate loss 
distributions, they must be grouped by approximate size, usually determined either by expected 
loss or expected number of claims31 to estimate an appropriate insurance charge.  
The mathematical basis of Table M is a distribution of entry ratios and its underlying distribution 
of aggregate losses. 

𝐼𝐼𝐼𝐼𝐼𝐼𝑣𝑣𝑟𝑟𝑣𝑣𝐼𝐼𝑒𝑒𝑒𝑒 𝐶𝐶ℎ𝑣𝑣𝑟𝑟𝑎𝑎𝑒𝑒  𝑣𝑣𝑡𝑡 𝑟𝑟 = 𝑋𝑋 = 𝜙𝜙(𝑟𝑟) = � (𝑦𝑦 − 𝑟𝑟)𝑜𝑜(𝑦𝑦)𝑑𝑑𝑦𝑦
∞

𝑃𝑃
 

𝐼𝐼𝐼𝐼𝐼𝐼𝑣𝑣𝑟𝑟𝑣𝑣𝐼𝐼𝑒𝑒𝑒𝑒 𝑆𝑆𝑣𝑣𝑣𝑣𝑆𝑆𝐼𝐼𝑎𝑎𝐼𝐼 𝑣𝑣𝑡𝑡 𝑟𝑟 = 𝑆𝑆 = 𝜓𝜓(𝑟𝑟) = � (𝑟𝑟 − 𝑦𝑦)𝑜𝑜(𝑦𝑦)𝑑𝑑𝑦𝑦
𝑃𝑃

0
 

𝑆𝑆 = 𝑋𝑋 + 𝑟𝑟 − 1 𝑜𝑜𝑟𝑟 𝜓𝜓(𝑟𝑟) = 𝜙𝜙(𝑟𝑟) + 𝑟𝑟 − 1 
For example, we might consider a workers’ compensation insurance policy with expected 
aggregate losses of $200,000. It is a loss-sensitive policy, with a limit of $80,000 to the losses 
the insured is responsible for. That is, the maximum the insured will pay is the first $80,000 of 
aggregate losses, and the insurer will pay the rest.  The entry ratio for the aggregate limit is 0.4 
(=$80,000/$200,000). Assume that in this example the Table M for this sized insured has a 
corresponding insurance charge of 0.72 for an entry ratio of 0.4. Then the loss cost of the 
aggregate deductible policy is $144,000 (=$200,000*0.72), the expected losses to be owed by the 
insurer. 
 
  

 
30 Other key considerations include product being priced, types of losses covered, the jurisdiction where the policy is in 
force, etc. The size of the policy is highlighted because it has an enormous impact on the insurance charges and savings, 
as discussed later in this chapter. 
31 Grouping policies either by expected total loss (expected loss group) or expected number of claims (expected claim 
count group) serves the purpose of bucketing risks whose aggregate loss distributions have a similar variance component 
due to claim frequency. Grouping explicitly by expected number of claims has the advantage of getting at that aspect of 
the risk more directly, and is less subject to inflation. But the expected loss is a core element of any pricing exercise, and 
may be more readily available. 
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3.2. Empirical Construction of Table M32 

While Table M can now be stored electronically, often as a function (or set of functions) of the 
plan parameters, rather than as a giant look-up table, the starting point for developing those 
functions are empirical methods. It is instructive to understand how this is done. 
In order to construct Table M empirically, the first step is to obtain data on the annual aggregate 
losses for many insureds. The data needs to be split into groups of insureds which are expected to 
have similar distribution of aggregate losses. A separate analysis should be done for each of 
these groups.  
Ideally, this means the insureds have a similar frequency-of-loss distribution and have similar 
patterns of claim severity. In practice, actuaries usually group insureds that are similar in size 
and are subject to similar risks. (E.g., workers’ compensation risks engaged in moderately 
hazardous activities with between 35 and 40 expected claims.)  
For each group, we need actual aggregate losses for the year, or the actual aggregate loss ratios, 
or some other measure that will allow us to compare a group’s aggregate loss experience with 
that of the average risk of the group.33  Typically, we use the average of the actual aggregate 
losses as the expected loss for the group. Note that if we use some other estimate of expected, the 
empirically calculated ϕ(0) will not equal 1.   
The final published table of insurance charges is then organized by the groups examined (risk 
size and other key characteristics) as well as the entry ratio. 
A representative sample of the data is shown in Exhibit 3.12, focusing on a single group. 
  

 
32  Section 3.2 is adapted from a study note by J. Eric Brosius, “Table M Construction,” 2002, published by the Casualty 
Actuarial Society as part of the Syllabus of Exams.  
33 Developing those losses to ultimate without dampening the underlying variance is a complex problem which is beyond 
the scope of this study note, but which the practitioner should be aware of.  A common solution is the use of a 
stochastic development procedure. 
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Exhibit 3.12.  

Experience for a Group of Risks with Approximately 500 Expected Claims (N)  
Risk Actual Aggregate Loss 

1 1,000,000 
2 2,500,000 
3 3,000,000 
4 3,500,000 
5 4,000,000 
6 4,000,000 
7 4,500,000 
8 5,000,000 
9 7,500,000 
10 15,000,000 

 
The second step is to compute entry ratios. As defined previously, the entry ratio is the ratio of 
the actual aggregate losses to the expected aggregate losses. In the example above, the empirical 
average aggregate loss per policy is $5M. So the entry ratios can be found as in Exhibit 3.13. 

Exhibit 3.13.  
Entry Ratios for a Group of Risks with N ~ 500,  

and observed average aggregate loss of $5,000,000 
Risk Actual Aggregate Loss Entry Ratio (r) 

1 1,000,000 0.2 
2 2,500,000 0.5 
3 3,000,000 0.6 
4 3,500,000 0.7 
5 4,000,000 0.8 
6 4,000,000 0.8 
7 4,500,000 0.9 
8 5,000,000 1.0 
9 7,500,000 1.5 
10 15,000,000 3.0 

 
Then we will start to find the insurance charges in Table M. There are two methods for 
calculating the insurance charges: vertical slicing method and horizontal slicing method. The 
former is from the viewpoint of per risk, while the latter is from the viewpoint of per layer. It can 
be helpful to construct a Lee diagram of the data at this point. 
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Exhibit 3.14. Raw Data 

 
 
(I) Vertical Slicing Method 
We will explain the vertical slicing method first. In the example above, we will calculate the 
insurance charge of the entry ratio at 1.2, or 𝜙𝜙(1.2). 
 

Exhibit 3.15. Aggregate Excess at an Entry Ratio of 1.2 

 
 

Exhibit 3.16. Calculation with vertical slices 
Risk Actual Aggregate Loss Entry Ratio ( r) Excess of r=1.2 

1 1,000,000 0.2 0 
2 2,500,000 0.5 0 
3 3,000,000 0.6 0 
4 3,500,000 0.7 0 
5 4,000,000 0.8 0 
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6 4,000,000 0.8 0 
7 4,500,000 0.9 0 
8 5,000,000 1 0 
9 7,500,000 1.5 0.3 
10 15,000,000 3 1.8 

 
Then the average value of the excess column is the insurance charge of the entry ratio at 1.2.  
That is, 𝜙𝜙(1.2)=(0.3+1.8)/10=0.21. We can find the insurance charges for all the other entry 
ratios, using the same procedure. A Table M with an equal height of 0.1 can be constructed as 
below. 
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Exhibit 3.17. Table M: For N ~ 500 

r ϕ(r) 
0 1 

0.1 0.9 
0.2 0.8 
0.3 0.71 
0.4 0.62 
0.5 0.53 
0.6 0.45 
0.7 0.38 
0.8 0.32 
0.9 0.28 
1.0 0.25 
1.1 0.23 
1.2 0.21 
1.3 0.19 
1.4 0.17 
1.5 0.15 
1.6 0.14 
1.7 0.13 
1.8 0.12 
1.9 0.11 
2.0 0.1 
2.1 0.09 
2.2 0.08 
2.3 0.07 
2.4 0.06 
2.5 0.05 
2.6 0.04 
2.7 0.03 
2.8 0.02 
2.9 0.01 
3.0 0 

 
It can be seen that it takes lots of work to calculate the insurance charges for all the entry ratios if 
the vertical slicing method is used, although it is easy to understand and explain. 
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(II) Horizontal Slicing Method 
Now, we will introduce the other method of constructing Table M, the horizontal slicing method. 
In comparison with the former method, the latter method is much easier to calculate insurance 
charges for multiple entry ratios although to some extent it is less intuitive and harder to explain.  
This is exactly comparable to slicing a distribution horizontally (instead of vertically) on a Lee 
diagram, as shown in Exhibit 3.18 
 

Exhibit 3.18. Horizontal Slices 

 
The procedure of the horizontal slicing method of calculating Table M charges is shown in 
Exhibit 3.19. Starting from the entry ratio (r) column, we find the number of risks in the group 
with the corresponding entry ratio as shown in the “# Risks” column. Then the “# Risks over r” 
shows the number of risks which have entry ratios exceeding a given entry ratio. The “% Risks 
over r” column converts the number in the “# Risks over r” into a percentage basis by dividing 
by the total number of risks (here it is 10). The “Difference in r” column shows the difference 
between the entry value in this row and the entry value in the next row. Finally, the last column 
in the table is the insurance charge. The last column begins from the bottom row which is 0 and 
then works up; the value in each row is equal to the value in the row beneath plus the product of 
the “% Risks over r” and the “Difference in r” in that row. 
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Exhibit 3.19. Calculation with horizontal slices 

r # Risks 
# Risks 
over r 

% Risks 
over r Difference in r ϕ(r) 

0 0 10 100% 0.2 1 
0.2 1 9 90%     0.3=0.5-0.2 0.8 
0.5 1 8 80%     0.1=0.6-0.5 0.53 
0.6 1 7 70% 0.1 0.45 
0.7 1 6 60% 0.1 0.38 
0.8 2 4 40% 0.1 0.32 
0.9 1 3 30% 0.1 0.28 
1.0 1 2 20% 0.5 0.25=0.15+20%*0.5 
1.5 1 1 10% 1.5 0.15=0+10%*1.5 
3.0 1 0 0% 0 0 

 
Using the horizontal slicing method, we can construct a Table M with an equal height of 0.1, as 
shown previously in Exhibit 3.17. The results of the vertical and horizontal slicing methods are 
the same so long as we calculate horizontal slices at all the data points, because we use the same 
data. When a real Table M is constructed, the entry ratios are usually chosen so as to have 
intervals of 0.01 between rows.34 
  

 
34 If the entry ratios of the data points (the aggregate loss seen on a policy divided by the expected aggregate loss) falls 
between the “slices” chosen, we would not actually be adding the area of rectangles, and unless adjustments are made, 
the calculated charges will be slightly off. This is rarely a serious problem in real-life analyses, where many slices are used 
and there are enough observations that simple adjustments, such as adding the area of trapezoids instead of rectangles, 
and linearly interpolating between observed entry ratios, will yield adequate accuracy, but it can make a significant 
difference in the sort of simplified examples that might come up when studying this material. See question 7 for an 
example of this effect. 
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Finally, we can also calculate the insurance savings for each entry ratio by using the formula 
𝜓𝜓(𝑟𝑟) = 𝜙𝜙(𝑟𝑟) + 𝑟𝑟 − 1. If the observed data does not match all entry ratios we want in our table, 
we can interpolate. Exhibit 3.20 was developed by linearly interpolating the values in Exhibit 
3.19. For example, the charge at 0.3 is gotten by linearly interpolating between the charges at 0.2 
and 0.5 of 0.8 and 0.53 respectively: 

(2/3)(0.8) + (1/3)(0.53) = 0.71. 
Thus, the Table M with an equal height of 0.1 can be constructed as shown in Exhibit 3.20. 

Exhibit 3.20. Table M: For N ~ 500 
r ϕ( r) ψ( r) 
0 1 0 

0.1 0.9 0 
0.2 0.8 0 
0.3 0.71 0.01 
0.4 0.62 0.02 
0.5 0.53 0.03 
0.6 0.45 0.05 
0.7 0.38 0.08 
0.8 0.32 0.12 
0.9 0.28 0.18 
1.0 0.25 0.25 
1.1 0.23 0.33 
1.2 0.21 0.41 
1.3 0.19 0.49 
1.4 0.17 0.57 
1.5 0.15 0.65 
1.6 0.14 0.74 
1.7 0.13 0.83 
1.8 0.12 0.92 
1.9 0.11 1.01 
2.0 0.1 1.1 
2.1 0.09 1.19 
2.2 0.08 1.28 
2.3 0.07 1.37 
2.4 0.06 1.46 
2.5 0.05 1.55 
2.6 0.04 1.64 
2.7 0.03 1.73 
2.8 0.02 1.82 
2.9 0.01 1.91 
3.0 0 2 
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3.3. Calculating Table M from a parameterized aggregate loss distribution 
In many cases, the aggregate loss distribution can be modeled by parameterized functions which 
are amenable to manipulation. In a very simple example, one might assume that the number of 
claims can be modeled by a Poisson distribution and the severity of resulting claims can be 
modeled by a Pareto distribution. Or the aggregate loss distribution might be directly 
approximated using a lognormal distribution. 
This might be done for a reinsurance contract, where there is not a statistically credible body of 
similar policies that can be used to construct an empirical aggregate loss density function.  The 
actuary might, however, have evidence that similar policies tend to have loss frequency and 
severity distributions of certain general types, and might have nothing better on which to base 
their prices than the results of fitting the available claim data to those types of distributions. 
When data is thin, pricing actuaries should be careful to test the sensitivity of their loss cost 
estimates to a variety of assumptions. Even with an abundance of data, parameterized functions 
make it easy to develop a large number of consistent insurance charges.  
Once the underlying frequency and severity distributions have been selected, the aggregate loss 
distribution can be simulated or, in many cases, calculated using a variety of closed-form 
methods. In either case, the resulting aggregate loss distribution can be used to generate Table M 
charges according to the horizontal slicing method described above.  Chapter 4 of the CAS 
monograph “Distributions for Actuaries” by David Bahnemann discusses these methods, and 
those calculations are beyond the scope of this study note.35   
In practice, a hybrid of empirical data and models is often used. For example, in order to 
accumulate enough data to have reasonably credible groups, we might not be able to split the 
data into buckets small enough to provide accurate charges across the whole range of the data. 
So the data might be split into a modest number of large groups, whose aggregate loss 
distribution can be fitted to parameterized distributions. In doing this, it is best to look at each 
policy’s aggregate loss as a ratio to its expected loss, so as not to introduce extra variation due to 
the different expectations of loss. Once an empirical distribution is found, parameterized curves 
can be fit to it. Then the parameters can be interpolated to generate aggregate loss distributions 
for smaller, more homogeneous groups. The details of these procedures are beyond the scope of 
this study note, but the actuary should be aware that issues of loss development,36 trend, and the 
heterogeneous nature of the underlying exposures all need to be considered. 
 
Questions 
 
7. Eight identical risks incur the following actual aggregate loss ratios, respectively: 

20%     40%     40%     60%     80%     80%     120%     200% 
Assume that the expected loss ratio for those risks is the observed average loss ratio.  

(a) Construct a Table M showing the insurance charge for entry ratios from 0 to 3.0 in 
increments of 0.5. 

 
35 Two methods that have been used to create aggregate distributions from underlying frequency and severity 
distributions are the recursive method, described by Harry Panjer, “Recursive Evaluation of a Family of Compound 
Distributions,” Astin Bulletin, Vol. 12, No. 1, 1981, pp. 22-26 and the Heckman-Meyers method, described by Philip E. 
Heckman and Glenn G. Meyers in "The Calculation of Aggregate Loss Distributions from Claim Severity and Claim 
Count Distributions," PCAS LXX, 1983. 
See also D. Bahnemann, “Distributions for Actuaries,” CAS Monograph # 2, Chapter 4. 
36 Some discussion of these topics can be found in H. C. Mahler, Discussion of “Retrospective Rating: 1997 Excess Loss 
Factors,” PCAS LXXXV, 1998, pp. 316-344. 
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(b) Calculate the Insurance Charge at a 70% loss ratio. 
(c) Calculate the Insurance Savings at a 70% loss ratio. 
(d) Calculate the Insurance Charge at a 110% loss ratio. 
(e) Calculate the Insurance Savings at a 110% loss ratio. 

 
 
8. What are some advantages and disadvantages of using parameterized distributions to 
develop Tables M? 
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4. Estimating Limited Aggregate Excess Loss Costs37 

4.1. Introduction of Limited Aggregate Deductible Policies 
The original Table M was developed for retrospectively rated workers’ compensation policies, 
and for historical reasons it was originally calculated based on aggregate losses with no per-
claim limit.  
But we often want to price aggregate insurance charges on limited losses. For example, a large 
dollar deductible workers’ compensation policy might have a per-occurrence limit to ratable 
losses (or deductible) of $100,000 for each loss occurring to it. When the amount of a claim38 is 
less than $100,000, the insured is responsible for the amount of the claim. If the amount of a 
claim exceeds the per-occurrence limit of $100,000, the insured will only be responsible for the 
first $100,000 of the loss.   
However, if the insured also wanted to limit its total liability, it may also have negotiated an 
aggregate deductible limit of $250,000, so the insured would never have to pay more than 
$250,000 in losses occurring on this policy, regardless of actual experience. The policy could 
reach that limit if there are more than two claims larger than $100,000, or if there are lots of 
small claims, or some combination of the two. In this situation, the actuary needs to calculate the 
limited aggregate excess charge. 
In pricing the loss portion of a deductible policy with an aggregate deductible limit, or a 
retrospectively rated policy with a per-occurrence limit, the actuary can either price for the 
excess losses and the aggregate deductible losses simultaneously (as is done in the California 
Table L, discussed in section 5) or can charge separately for losses in excess of the deductible 
and for the deductible losses in excess of the aggregate limit. We will first consider calculating 
the two charges separately—directly calculating a Table M appropriate to aggregate limited 
losses, which produces charges suitable to add to per-occurrence excess loss charges. We will 
then consider other methods of pricing such polices in section 5.  
The following text will use the notation "limited Table M," or “Table MD” where D is the limit 
or deductible amount to refer to a table of charges for the aggregate of limited losses. 
 
4.2. Considerations for Table MD 
Often it is expedient to calculate the charges for the per-occurrence excess and the aggregate 
excess separately.  The actuary might have enough data to update the estimate for the per-
occurrence excess more frequently than the aggregate excess charge, or might have reasons to 
rely on different data sources for the two calculations. Both ISO and the NCCI take this approach 
for policies with a per-loss limitation on their retro plans, including an excess loss premium 
factor in addition to the Table M charge. 
Throughout this section, we assume that the per-occurrence excess charge is known, and has 
been calculated based on losses not subject to an aggregate limit. So as not to double-count 
losses that might be subject to either the per-occurrence or the aggregate limit, the limited 
aggregate excess loss charge must be developed or estimated based on the distribution of limited 
losses, that is, losses to which the per-occurrence limit has already been applied. 

 
37 Section 4 is adapted from a study note by Ginda Kaplan Fisher, “Pricing Aggregates on Deductible Policies,” 2002, 
published by the Casualty Actuarial Society as part of the Syllabus of Exams. 
38 This chapter assumes that a single insured occurrence will generate at most one claim, which would be subject to the 
per-occurrence limit. In real insured events, an occurrence can generate multiple claims which might apply to one or 
more insurance policies and interact with the limits of those policies in complicated ways. However, those details are 
beyond the scope of this study note. 
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For example, consider a policy which has a per-occurrence limit of $100,000 and an aggregate 
deductible limit of $250,000. Four claims occur: 
$50,000 
$50,000 
$50,000 
$300,000 
After the first three claims, the insured is responsible for paying $150,000. Then the $300,000 
claim occurs. The insured is only responsible for the first $100,000 of loss on that claim. But is 
the other $200,000 excess of the aggregate limit, or of the per-occurrence limit? This is an 
example of the overlap of the per-occurrence limit (deductible) and aggregate limit. It is 
customary to apply the per-occurrence limit first, so those $200,000 are considered excess of the 
per-occurrence limit, and should be contemplated in the per-occurrence excess charge.  
If the actuary calculated Table M charges without limiting the aggregate losses for the effect of 
the $100,000 deductible, those $200,000 would increase the Table M charge, and there would be 
an overlap between the Table M charge and the per-occurrence excess charge, leading to 
inappropriate Table M charges. Simply limiting the aggregate losses for the effect of the 
$100,000 deductible before using any of the methods above to estimate Table M removes this 
problem.39  
Actuaries can determine limited aggregate excess charges through the same methods used for 
any other aggregate excess loss: they can gather a large body of policy data which is expected to 
be similar to that for the policies being priced and build an empirical table or they can use 
information about the expected distribution of losses to model the charges.  
The shape of the distribution of limited (or primary) losses is different from the shape of the 
distribution of the same losses when not subject to a limit40, as the severity distribution can be 
quite different—nevertheless, it is just another loss distribution.  In particular, all the same 
relationships used in constructing Table M charges apply to calculating limited loss insurance 
charges, as described above. 
Because the size of the deductible has an impact on the shape of the aggregate loss distribution, a 
separate table MD must be calculated for a wide range of deductibles, spanning the range of 
deductibles offered. Fortunately, this does not require masses of data at every deductible or loss 
limit. If the unlimited losses are known (as is often the case with both retrospectively rated and 
large deductible plans) the same losses can be used to calculate Table M charges at any limit 
simply by limiting each loss before adding it to the aggregate used. The actuary should be careful 
to limit individual occurrences prior to aggregating the losses of each policy. 
In general, the lower the deductible (or the smaller the per-occurrence limit), the less variance 
there is in the severity distribution and thus the less variance there is in the resulting limited 
aggregate loss.  This is because loss distributions tend to be positively skewed, with many small 
losses and few large losses. Therefore much of the variance of the severity distribution is driven 
by the extreme (high) losses, and after the application of the per-occurrence limit, the variance of 
severity is reduced. (Limiting the losses does not change the frequency distribution.) The 
reduction in variance of limited aggregate losses reduces the probability of unusually large 

 
39 Note that adjusting the excess charges to remove aggregate losses would be a much more complicated process, and 
would mean that excess charges would depend on the size of the policy, and not just the severity distribution of the 
losses.  
40 Or when subject to a much higher policy limit. 



74 

limited aggregate losses in a given year. Therefore, lower deductibles usually lead to lower 
insurance charges for entry ratios greater than 1. 
 
4.3. Construction of Table MD 
When working with a limited Table M, it is important to remember to use limited losses 
consistently.  The expected losses used in calculating the entry ratio must be the expected 
deductible (or limited) losses, and not the total expected ground-up losses on the policy.   
For example, an insured has a per-occurrence deductible of $250,000 and its expected limited 
aggregate losses are $800,000. The aggregate deductible limit is $1,000,000. First, we need to 
compute the appropriate entry ratio, r:  

1.25 = 𝑟𝑟 = $1,000,000/$800,000 
Assume that the insurance charge for an entry ratio of 1.25 in Table MD with a per-occurrence 
limit of $250,000 is 0.18. Then the loss cost of the aggregate deductible limit is $144,000 
(=$800,000*0.18). 
The methods of constructing a Limited Table M or Table MD are the same as those of 
constructing a standard Table M, except that the data of aggregate losses are required to be the 
limited aggregate losses rather than the unlimited aggregate losses. Therefore, in Table MD the 
entry ratio (r) is defined as the actual limited aggregate losses divided by the expected limited 
aggregate losses. 
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For example, an insured risk has a per-occurrence limit (deductible) of 100,000 and it has five 
claims in a year. The five claims are shown in Exhibit 3.21. 

Exhibit 3.21. Experience for a Group of Risks with a Per-Occurrence Limit of $100,000 
Claim No. Unlimited Amount Limited Amount 

1 60,000 60,000 
2 70,000 70,000 
3 90,000 90,000 
4 110,000 100,000 
5 120,000 100,000 

Total 450,000 420,000 
 
In this case, the unlimited aggregate losses of $450,000, the sum of all the five claims, can be 
used to construct a standard Table M. In order to construct a Limited Table M, however, we 
should use the sum of the limited aggregate losses, $420,000. 
All the same methods that are used to construct unlimited Tables M (vertical or horizontal slicing 
of empirical data, manipulating parameterized loss distributions) can be used to construct a Table 
MD.  A Limited Table M has three dimensions: the expected size of the policy, the entry ratio, 
and the per-occurrence loss limit, D. Alternately, one can think of Table MD as a set of tables, 
one for each deductible or per-occurrence loss limit. 
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Examples of using Tables MD to price the insurance charge of an insurance policy with a 
deductible and an aggregate: 
Expected total losses = $700,000 
Deductible = $250,000 
Expected Primary Losses41 = $500,000 
Expected number of claims = 60 
Entry Ratio = 2.0 (which means the aggregate limit is 2.0 x $500,000 = $1,000,000) 
Table MD for policies around $500K in size is shown in Exhibit 3.22.42  

Exhibit 3.22. Sample Table MD 
Insurance Charge
 Factor 

Deductible 

Entry Ratio 100K 250K 500K 
1.0 .240 .250 .260 
1.5 .100 .110 .120 
2.0 .030 .040 .050 
2.5 .018 .022 .030 

 
The factor at 250K for an entry ratio of 2.0 is 0.040, for an insurance charge of 0.040 x $500,000 
= $20,000. 
The total expected loss cost for this policy would be $220,000 ($20,000 plus the difference 
between $700,000 and $500,000). 
Now consider the situation if the policy had been written with a deductible of $150,000. 

Expected total losses = $700,000 
Deductible = $150,000 
Expected Primary Losses = $400,000 
Entry Ratio = 2.5 (which means the aggregate limit is 2.5 x $400,000 = $1,000,000) 
Note that the Expected Primary Losses are less because the deductible is now $150,000 rather 
than $250,000. 
Using the table in Exhibit 3.22 again,  
Interpolating43 between the factor for an entry ratio of 2.5 at 100K (0.018) and at 250K (0.022) 
gives an insurance charge factor of .019, for an insurance charge of 0.019 x $400,000 = $7,733. 
The total expected loss cost for this policy would be $307,733  ($7,733 plus the difference 
between $700,000 and $400,000). 
 
Questions 
 
9. For the Lee diagram below, identify the areas associated with 
(a) Table MD Charge at R 
(b) Table MD Savings at S 
(c) Per-occurrence excess charge at D 
 

 
41 E{A250,000} 
42 A real Table MD would have many more entry ratios than this simplified example. 
43 Because the differences are small, any reasonable interpolation will do.  I have used a linear interpolation for 
simplicity. 
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For questions 10 and 11,44 please refer to chapter 2 for the retrospective premium formula, 
including the tax multiplier. 

10. Let us assume a retrospectively rated insured had a basic premium of $30,000, an excess loss 
premium of $10,000, a loss conversion factor of 1.1, a tax multiplier of 1.05, an accident limit of 
$100,000, and a maximum premium of $250,000. Refer to chapter 2 for the retrospective premium 
formula including the tax factor. 

a: If the insured has small losses totaling to $150,000 in year, what is the retro premium? 
b: If the insured has small losses totaling to $200,000 in year, what is the retro premium? 
c: If the insured has one large loss of $150,000 in year, what is the retro premium? 
d: If the insured has one large loss of $150,000 in year plus $100,000 in small losses, what is the retro 
premium? 
 
11. Let us assume a retrospectively rated insured had a basic premium of $300,000, an excess 
loss premium of $100,000, a loss conversion factor of 1.1, a tax multiplier of 1.05, an accident 
limit of $100,000, and a minimum premium of $650,000. Refer to chapter 2 for the retrospective 
rating formula, including the tax factor. 
(a) If the insured has small losses totaling to $150,000 in year, what is the retro premium? 
(b) If the insured has one large loss of $150,000 in year, what is the retro premium? 
 
12. You price a retrospective policy with an expected loss of $150,000 and aggregate limit of 
$300,000, and find that the insurance charge is $15,000. 
The customer requests that you also add a per-occurrence loss limitation of $100,000 to the 
losses subject to the retrospective calculation.  You determine that if there were no aggregate 
limit, the cost of the per-occurrence limit would be $50,000 
Would the combined charge for the per-occurrence limit and the aggregate limit be more, less, or 
the same as the sum of the two charges, $65,000? Why? 
 
13. You are given the following table of insurance charges, by per-occurrence deductible: 

 
44 Questions 10 and 11 were adapted with permission from material written by Howard Mahler. 
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   r  $100,000 deductible  $200,000 deductible  
 
 1.0   0.20    0.22   
 1.5   0.10    0.12   
 2.0   0.04    0.05   
 2.5   0.02    0.03   
 
The expected unlimited losses are $40,000. 
The expected primary losses at a per-occurrence limit of $100,000 are $20,000. 
The expected primary losses at a per-occurrence limit of $200,000 are $30,000. 
 
(a) A policy has a $100,000 per-occurrence deductible and a $40,000 aggregate deductible 
limit.  Find the cost of the $40,000 aggregate deductible limit. 
(b) Find the cost of the $40,000 aggregate deductible limit if the policy had a $200,000 per-
occurrence deductible.  (Use linear interpolation in the table, if necessary.) 
(c)  Which policy will the insurer charge more for? Why? 
5. Other Methods of Combining Per-Occurrence and Aggregate Excess Loss Cost45  
5.1. Estimating Per-Occurrence and Aggregate Combined Excess Loss Cost Using Table L 
Consider the case of an insured with a per-occurrence limit of $50,000 for each loss occurring to 
it, and an aggregate limit of $250,000.  For example, if the policy had the following claims: 
$20,000 
$30,000 
$45,000 
$55,000 
$100,000 
$120,000 
 
The insured would be responsible for the first $50,000 of each claim, or 

$20𝐾𝐾 + $30𝐾𝐾 + $45𝐾𝐾 + 3 × ($50𝐾𝐾) = $245𝐾𝐾 . 
If one more claim of $10,000 were incurred, the insured would only be responsible for an 
additional $5,000, because the aggregate limit on the limited loss would have been reached.  
a. Table L and its Implication  

 
Table L is a method to estimate a per-occurrence and aggregate combined excess policy 
simultaneously, in a single table.  Like Table MD, that table has three dimensions: the expected 
size of the policy, the entry ratio, and the per-occurrence loss limit. Alternately, one can think of 
Table L as set of tables, with one per each per-occurrence limit. 
It is defined as follows: Assume that a formula for limiting or adjusting individual occurrences is 
given. The entry ratio (r) at any actual loss incurred by the risk is defined as the actual limited 

 
45 Section 5 is adapted from David Skurnick, "The California Table L," PCAS LXI, 1974; Yoong-Sin Lee, “The 
Mathematics of Excess of Loss Coverages and Retrospective Rating—A Graphical Approach,” PCAS LXXV, 1988; and 
a study note by Ginda Kaplan Fisher, “Pricing Aggregates on Deductible Policies”, 2002, published by the Casualty 
Actuarial Society as part of the Syllabus of Exams. 
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aggregate losses divided by the expected unlimited aggregate losses.  The Table L charge at 
entry ratio r, 𝜙𝜙𝐷𝐷∗ (r), is defined as the average difference between a risk’s actual unlimited loss 
and its actual loss limited to D, plus the risk’s limited loss in excess of r times the risk’s expected 
unlimited loss. The Table L savings at entry ratio r, 𝜓𝜓𝐷𝐷∗ (r), is defined as the average amount by 
which the risk’s actual limited loss falls short of r times the expected unlimited loss. The Table L 
charge and savings are both expressed as ratios to expected unlimited loss46. 
This differs from Table M in that Table L looks at how much loss, on average, will be limited by 
the combination of the per-occurrence limit and the aggregate excess limit.  
Recall that FD(Y) = the cumulative distribution function of Y, the limited losses whose unlimited 
cumulative distribution function was given by F. Then the Table L insurance charge at entry ratio 
r ≥0 is defined as a formula: 

        𝜙𝜙𝐷𝐷∗ (𝑟𝑟) = ∫ (𝑦𝑦 − 𝑟𝑟) 𝑑𝑑𝑑𝑑𝐷𝐷(𝑦𝑦)∞
𝑃𝑃 + 𝑘𝑘   (Formula 3.6) 

and  
𝜓𝜓𝐷𝐷∗ (𝑟𝑟) = ∫ (𝑟𝑟 − 𝑦𝑦)𝑑𝑑𝑑𝑑𝐷𝐷(𝑦𝑦)𝑃𝑃

0    (Formula 3.7) 
where k is the excess ratio for the per-occurrence limit. That is, 

𝑘𝑘 = 𝑑𝑑−𝑑𝑑{𝐴𝐴𝐷𝐷}
𝑑𝑑

  ,    (Formula 3.8) 
where E is the total expected loss, and E{AD} is the expected loss after application of the per-
occurrence limit. 
Note that if there is no loss limit, “k” will be zero, FD(y) = F(y), and the above formulas reduce 
to the Table M formulas. 
Both the per-occurrence limit and the aggregate limit remove losses from the portion the insured 
owes (whether the ratable losses in a retro policy or the deductible losses in a deductible policy). 
If estimated separately, without considering both, the effects of the per-occurrence and aggregate 
limits overlap, as discussed in section 4. It is important not to double-count any losses excluded 
by these provisions. The formula for the Table L charge avoids this by using the limited 
distribution, FD, in the integral.  
We can see that the second part, k, of the 𝜙𝜙𝐷𝐷∗ (r) equation stands for the loss cost of the per-
occurrence excess portion and the first part is the additional effect of the aggregate limit beyond 
that of the occurrence limit.  
 
  

 
46 Or policy limit loss, as mentioned in section 1.1, page 40. 
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Exhibit 3.23. Lee Diagram of Table L charge and savings 

 
In Exhibit 3.23, the upper curve is F, the lower curve is FD, and r corresponds to aggregate limit.  
As with Table M, r = (aggregate limit) / (expected unlimited losses).  The area under the upper 
curve (T+U+W+X) represents the unlimited loss distribution. It has area = 1, since all entities are 
defined in terms of the expected unlimited loss. 
The area between the curves (T+W) represents the distribution of loss above the per-occurrence 
limit, and together they have area k. 
The area under the lower curve (U+X) represents the distribution subject to the per-occurrence 
limit, or 1-k. 
Area X represents the distribution of loss after application of the per-occurrence limit that is 
above the aggregate limit. 
The Table M charge at entry ratio r (ignoring the per-occurrence limitation) is W+X. 
The Table L charge at entry ratio r, 𝜙𝜙𝐷𝐷∗ (r), is T+W+X. 
The Table M savings at entry ratio r (ignoring the per-occurrence limitation) is S. 
The Table L savings at entry ratio r, 𝜓𝜓𝐷𝐷∗ (𝑟𝑟), is S+T. 
Also, r = S + T + U and 1 = the area under F(y) = T + U + W + X. 
So 𝜙𝜙𝐷𝐷∗ (r) + r – 1 = (T + W + X) + (S + T + U) – (T + U + W + X) = T + S = 𝜓𝜓𝐷𝐷∗ (𝑟𝑟). 
And (reading the above from right to left) the relationship between the insurance charge and the 
insurance saving in Table L is similar to that for Table M: 

𝜓𝜓𝐷𝐷∗ (𝑟𝑟) = 𝜙𝜙𝐷𝐷∗ (r)  + 𝑟𝑟 − 1 .   (Formula 3.9) 
b. Construction of Table L 
 
Here we will show an illustration of a Table L construction from empirical data.  
To construct Table L, we need to obtain data on both the unlimited aggregate losses and the 
limited aggregate losses for each of the risks.  
 

Exhibit 3.24. Experience for a Group of Risks with a Per-Occurrence Limit of $50,000 

Risk 
Actual Unlimited 
Aggregate Loss 

Actual Limited 
Aggregate Loss 

1 20,000 20,000 
2 50,000 50,000 
3 60,000 60,000 
4 70,000 70,000 
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5 80,000 80,000 
6 80,000 80,000 
7 90,000 90,000 
8 100,000 100,000 
9 150,000 120,000 
10 300,000 250,000 

Average 100,000 92,000 
 
First, we compute the excess ratio (k) for the per-occurrence limit:  

k = 0.08 = ($100,000-$92,000) / $100,000. 
Next we compute the entry ratios. As stated previously, the entry ratio is the ratio of the actual 
limited aggregate losses to the expected unlimited aggregate losses. In this illustration, the 
expected unlimited aggregate losses of the group are $100,000. So the entry ratios, shown in 
Exhibit 3.25, are: 
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Exhibit 3.25. Entry Ratios for a Group of Risks with a Per Occurrence Limit of $50,000 

Risk 
Actual Unlimited 
Aggregate Loss 

Actual Limited 
Aggregate Loss 

Entry 
Ratio 
( r) 

1 20,000 20,000 0.2 
2 50,000 50,000 0.5 
3 60,000 60,000 0.6 
4 70,000 70,000 0.7 
5 80,000 80,000 0.8 
6 80,000 80,000 0.8 
7 90,000 90,000 0.9 
8 100,000 100,000 1 
9 150,000 120,000 1.2 
10 300,000 250,000 2.5 

 
Then construct the Table L using the horizontal slicing method. The procedure is similar to the 
one we used to construct a Table M, and is shown in Exhibit 3.26. Note that the average r is 0.92 
= 1-k. 

Exhibit 3.26. Calculation of Table L 

r 
# 

Risks # Risks over r 
% Risks over 

r 
Difference in 

r 𝜙𝜙𝐷𝐷∗ (r)-k 𝜙𝜙𝐷𝐷∗ (r) 
0 0 10 100% 0.2 0.92 1 

0.2 1 9 90% 0.3 0.72 0.8 
0.5 1 8 80% 0.1 0.45 0.53 
0.6 1 7 70% 0.1 0.37 0.45 
0.7 1 6 60% 0.1 0.3 0.38 
0.8 2 4 40% 0.1 0.24 0.32 
0.9 1 3 30% 0.1 0.2 0.28 
1 1 2 20% 0.2 0.17=0.13+20%*0.2 0.25 

1.2 1 1 10% 1.3 0.13=0+10%*1.3 0.21 
2.5 1 0 0% 0 0 0.08 

 
Starting from the entry ratio (r) column, we find the number of risks in the group with the 
corresponding entry ratio as shown in the “# Risks” column. Then the “# Risks over r” shows the 
number of risks which have entry ratios exceeding a given entry ratio. The “% Risks over r” 
column converts the number in the “# Risks over r” into a percentage basis by dividing by the 
total number of risks (here it is 10). The “Difference in r” column shows the difference between 
the entry value in this row and the entry value in the next row.  
Then, the “𝜙𝜙𝐷𝐷∗ (r)-k” column is calculated similarly to ϕ(r) for an unlimited Table M. We begin 
from the bottom row with 0, as there are no expected losses greater than the largest entry ratio. 
Then we work up; the value in each row is equal to the value in the row beneath plus the product 
of the “% Risks over r” and the “Difference in r” in that row. Finally, the last column “𝜙𝜙𝐷𝐷∗ (r)” is 
the “𝜙𝜙𝐷𝐷∗ (r)-k” column plus the excess ratio (k) for the per-occurrence limit. Recall that k was 
calculated as 0.08 in the first step. 



83 

Note that if there is no loss limit, “k” will be zero, and this formula is the same as the formula for 
the Table M charge.  
Finally, we can also calculate the insurance savings for each entry ratio by using the formula 
𝜓𝜓𝐷𝐷∗ (𝑟𝑟) = 𝜙𝜙𝐷𝐷∗ (r)  + 𝑟𝑟 − 1. Thus, the Table L can be constructed as shown in Exhibit 3.27. 
 

Exhibit 3.27. Table L 
r 𝜙𝜙𝐷𝐷∗ (𝑟𝑟) 𝜓𝜓𝐷𝐷∗ (𝑟𝑟) 
0 1 0 

0.2 0.8 0 
0.5 0.53 0.03 
0.6 0.45 0.05 
0.7 0.38 0.08 
0.8 0.32 0.12 
0.9 0.28 0.18 
1 0.25 0.25 

1.2 0.21 0.41 
2.5 0.08 1.58 

 
Note that as with calculating Table MD, we do not need to have a large body of data at every per-
occurrence loss limit in order to calculate Table L from empirical data. If the unlimited data is 
known at the claim level, we can create “as if” data at any per-occurrence loss limit. (When 
working with losses from coverages that might have varying policy limits, such as commercial 
auto insurance, it might be necessary to estimate “unlimited” claims/occurrences above lower 
per-occurrence policy limits if data from many policy limits is to be combined.) 
As with Tables M, Tables L can also be calculated from simulated data (or other methods) if we 
have a parameterized loss distribution. But to calculate the Table L charge from simulated data, 
we need to separately simulate the number of claims and the severity of each claim, so that the 
per-claim loss limit can be appropriately applied.  More detail is needed than the (unlimited) 
aggregate distribution, even if the excess ratio k is known. 
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5.2. The ICRLL Method 

In some cases, it might be expedient to use an existing table of insurance charges, and apply 
reasonable modifications to it so it reflects the impact of limiting the losses. When tables were 
large printed documents, this was a very appealing option, even when there was adequate data or 
a robust enough model to explicitly calculate aggregate loss charges for a variety of deductible 
limits. Now, electronic or formulaic Tables M are generally available for both limited and 
unlimited policy losses, in which case, this sort of adjustment is not needed. However, until 
2019, the NCCI published only unlimited Table M, and used an adjustment of this type in its 
workers’ compensation rating manual: the Insurance Charge Reflecting Loss Limitation (ICRLL) 
procedure.47 This procedure uses an unlimited Table M, and adjusts it to approximate Table MD. 
The ICRLL method is presented here as an example of the sort of estimate an actuary can make 
when perfect data isn’t available. Note that the 1998 NCCI Table M was published by Expected 
Loss Group (ELG) rather than by expected number of claims, and a State/Hazard Group 
adjustment was used to account for the different severities (and thus a different implied expected 
number of claims) within an ELG depending on the state and hazard group of the risk. 
As mentioned above, Table MD must be indexed by three variables:  the expected size of the 
policy48, the deductible, and the entry ratio.  In effect, the ICRLL procedure can be used to map 
the three indices of MD into the two used by the (unlimited) Table M, and can be thought of as a 
mapping of Table MD onto Table M.  Both the entry ratio and the size category (ELG) are 
modified to account for the deductible. 
The Loss Group Adjustment Factor used in the ICRLL procedure is 

1+0.8∗𝑘𝑘
1−𝑘𝑘

 (Formula 3.10) 
where k is the fraction of losses expected to be above the per-claim limit or deductible amount.49 
For example, a workers’ compensation insured has a per-occurrence limit of $250,000 and its 
expected limited aggregate losses are $490,000. In addition, its expected unlimited aggregate 
losses are $650,000. An aggregate deductible policy covers the insured and the aggregate 
deductible limit is $750,000.  
We also know that this risk has a State/Hazard Group relativity of 0.9. 
First, we compute the entry ratio: 1.53 = $750,000/$490,000.  
Then we compute the ICRLL adjustment 

1 + 0.8 ∗ ($650,000 − $490,000)/$650,000
1 − ($650,000 − $490,000)/$650,000

= 1.588 

In an unlimited Table M, as excerpted below, the expected unlimited aggregate losses of 
$650,000 would correspond to Expected Loss Group 31.  But in this case, we adjust the expected 
loss by the SHG and ICRLL adjustment to yield 

$650,000 ×  0.9 ×  1.588 = $929,000. 
So we will use an Expected Loss Group 29 to enter Table M.   
 

 
47 The ICRLL procedure was originally described by Ira Robbin in “Overlap RevisitedThe ‘Insurance Charge 
Reflecting Loss Limitation’ Procedure,” Pricing, Casualty Actuarial Society Discussion Paper Program, 1990, Volume 2.  
 
48 ICRLL used expected limited loss for this, consistent with grouping policies by expected unlimited loss for the 
unlimited Table M 
49 This excess ratio, k, was referred to as “ER” in the pre-2019 NCCI retrospective rating manual. 
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Exhibit 3.28. Table of Expected Loss Group50 
Expected Loss Group Range of Values 

31 630,000-720,000 
30 720,001-830,000 
29 830,001-990,000 
28 990,001-1,180,000 
27 1,180,001-1,415,000 
26 1,415,001-1,744,000 

 
Looking this up in the excerpt of Table M below gives us a Table M charge of 0.1583, which 
indicates a dollar charge of 0.1583 x $490,000 or $77,567. This is the additional charge for the 
aggregate limit. The charge for the per-occurrence limit is $650,000 - $490,000 = $160,000. So 
the total expected loss cost for this policy is $160,000 + $77,567 = $237,567. 
 

Exhibit 3.29. Table of Insurance Charges 
 Expected Loss Group 

Entry Ratio 31 30 29 28 27 26 
0.75 0.4150 0.4069 0.3989 0.3911 0.3833 0.3755 
0.81 0.3864 0.3777 0.369 0.3605 0.3521 0.3436 
1.07 0.2867 0.2764 0.2661 0.2557 0.2453 0.2349 
1.15 0.2628 0.2522 0.2417 0.231 0.2203 0.2096 
1.53 0.1797 0.169 0.1583 0.1476 0.1369 0.1261 

 
 
 
Questions 

14. Draw a Lee diagram illustrating a policy that has: 

• A continuous uniform unlimited loss distribution from 0 to 500 
• A continuous uniform limited loss distribution from 0 to 400 
• An entry ratio of 1.5 times the expected unlimited loss 

 
a) Label: 
𝜙𝜙𝐷𝐷∗ (1.5), the Table L charge at the entry ratio 
𝜓𝜓𝐷𝐷∗ (1.5), the Table L savings at the entry ratio 
 
b)  Calculate the value of  
𝜙𝜙𝐷𝐷∗ (1.5), the Table L charge at the entry ratio 
𝜓𝜓𝐷𝐷∗ (1.5), the Table L savings at the entry ratio 
 
15. For the Lee diagram below, identify the areas associated with 

 
50 The Table of Expected Loss Groups changed over time, with inflation. This example is just illustrative.  
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 (a) Table L Charge at R 

(b) Table L Savings at S 
 

 
 

16. What are some advantages to using ICRLL as compared to a limited Table M? 

What are some disadvantages? 
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17.51 A large dollar deductible workers’ compensation policy requires the insured to reimburse 
the insurer for each occurrence up to $250,000, subject to an aggregate reimbursement of 
$1,200,000. The following attributes also apply to this policy: 
Standard Premium:  $1,000,000 
Hazard Group Relativity:  0.900 
Expected Unlimited Loss Ratio:  75% 
K (Excess Ratio):  20%  
Table MD: Limited Insurance Charges with D = 250,000 

Entry Ratio 1.0 1.5 2.0 2.5 
Insurance Charge 0.250 0.110 0.040 0.022 

 
Table of Expected Loss Ranges 

Expected Loss 
Group 

Expected Losses 
 

31 630,000 −    720,000 
30 720,001 −    830,000 
29 830,001 −    990,000 
28 990,001 − 1,180,000 
27 1,180,001 − 1,415,000 

 
Table M: Unlimited Insurance Charges 

Entry 
Ratio 

Expected Loss Group 
31 30 29 28 27 

0.5 0.415  0.407 0.399 0.391 0.383 
1.0 0.386  0.378 0.369 0.361 0.352 
1.5 0.287  0.276 0.266 0.256 0.245 
2.0 0.263  0.252 0.242 0.231 0.220 

 
a. Use a limited Table M approach to calculate the Insurance Charge. 
b. Use the ICRLL procedure to calculate the total expected loss cost for this policy. 
 

18. What was the purpose of the state/hazard group relativity? What implicit assumption is 
made when using a state/hazard group relativity? 

 
  

 
51 Exercise 17 was adapted with permission from material written by Howard Mahler. 
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6. Understanding Aggregate Loss Distributions 

To get an intuitive feel for how the distribution of deductible losses should behave, it is helpful 
to consider the extreme cases.   
Consider first some extreme plan designs: A deductible policy with an infinite deductible but an 
aggregate limit on the deductible behaves like a retrospectively rated policy with a maximum, 
but no per-loss limitation and a minimum equal to basic times tax.  Alternatively, a 
retrospectively rated policy with a per-loss loss limitation but an infinite maximum behaves 
exactly like a deductible policy with no aggregate limit.   
Remember that a distribution of aggregate losses is information about the range of outcomes of 
many similar insurance policies.  We will largely be concerned with the distribution of entry ratios, 
which are scaled with respect to expected aggregate losses.  The shape of the distribution of entry 
ratios is largely driven by the variance of the underlying aggregate distribution. So it can be helpful to 
visualize some extreme outcomes, or extreme underlying severity distributions. 

First, what would the aggregate loss distribution look like if every policy’s losses were exactly equal 
to the expected losses? For example, every policy had exactly $100 of loss.  

 

Exhibit 3.30. Twenty-five policies that all incur exactly their expected loss  
(Only 25 shown so they can be seen) 

 

The smallest outcome equals the expected loss of $100 equals the largest outcome. 

At an entry ratio r = 0.8, the charge would be the part of the shaded area above the line y= (0.8 * E) 
= 80 divided by the total shaded area.  

𝜙𝜙(0.8) = (100-80)*25/(100*25) = 0.2. 
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At an entry ratio r = 1.2, the charge would be the part of the shaded area above the line y= (1.2 * E) 
= 120 divided by the total shaded area. It can be seen there is no shaded area above 120, so 

𝜙𝜙(1.2) = 0 

In fact, The Table M charge at any entry ratio r greater than or equal to 1 would be zero and the 
Table M charge for any entry ratio less than one would be 1-r.  

Next consider the other extreme. What if a policy rarely had any losses, but if it had a loss, that loss 
would be enormous. For example, you might have a policy with a 1/10,000 chance of having any 
claims at all, but if it did have a claim, the claim was $1,000,000. This policy also has an expected loss 
of $100, but it has a very high variance.  In this case, the Table M charge at an entry ratio of 1 would 
be nearly 1 (999,900/1,000,000 to be precise) because that one time in 10,000 when there is a loss, 
999,900 of it will be in excess of the aggregate limit, and the other 9999 times when there is no loss 
the aggregate limit is irrelevant. 

 

Exhibit 3.31.  
Twenty-five policies, only one of which incurs any loss, with the same overall expected value as 

the policies pictured in Exhibit 3.30.  (only 25 in this example, so they can be seen) 

 

These extremely simple examples were chosen so the values are obvious and easy to calculate, 
but the same principles apply to real policies. Very small policies can be similar to the second 
extreme, because on very small policies the likelihood of even one claim is small, so most of the 
expected value of the aggregate loss is in the “tail,”52 or unusually high outcomes (the rare cases 
when a loss occurs).  In contrast, very large commercial policies are more like the first extreme. 

 
52 Mathematically, this is the right-hand tail of the distribution, but as most aggregate distributions that actuaries 
encounter are only defined between zero and infinity, the right hand tail is often referred to simply as “the tail.” 
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They are expected to have a large number of claims, each of which is relatively small as 
compared to the total expected loss for the policy. 
All other things being equal, the higher the expected number of claims, the lower the variance on the 
distribution of entry ratios, and the smaller the Table M charge is for entry ratios above 1.  The 
possibility of extremely severe individual claims also increases the variance of the distribution of 
entry ratios. 

For many types of insurance policies, the losses are driven by injuries to human beings. Some 
polices will tend to have more severe injuries than other policies (for example, a policy covering 
large trucks may have higher average liability severity than a policy covering private passenger 
vehicles, and a policy covering injuries to foundry workers will tend to have more severe claims 
than one covering injury to office workers.) But the difference in variance due to size of policy 
usually overwhelms those differences.  That is, most of the difference in variance of aggregate 
loss among policies (and thus difference in Table M charge) is driven by the variance in the 
claim frequency.   
But the variation of the severity distribution matters, too. For example, consider two policies, each 
of which has an expected frequency of 1 claim and no variance in the frequency—these imaginary 
polices will always have exactly 1 claim. Each claim on the first policy is equally likely to be $1000 or 
$5000. So the expected loss for the policy is $3000.  Each claim on the second policy has a 60% 
change of costing $500, a 30% chance of costing $5000, and a 10% chance of costing $12,000.  This 
policy also has an expected aggregate loss of $3000. Exhibit 3.32 compares the aggregate loss 
distributions of ten policies like the first, and ten like the second. 

  



91 

Exhibit 3.32. Comparing two policies with the same frequency and expected loss,  
but with different severity distributions 

 

In this example, The charge at entry ratio of 1 is 0.33 = (2000*5)/(1000*5 + 5000*5) for policy 1 
and 0.5 = (2000*3 + 9000)/(1000*6 + 5000*3 + 12,000) for policy 2. 
For example, workers’ compensation covers the same types of injuries to people all across the 
US. But some industries have a higher proportion of serious claims, and others have a higher 
proportion of minor claims. For instance, workers in metal foundries are subject to serious burns, 
whereas office workers are more likely to develop repetitive stress disorders. Because of this, the 
NCCI assigns workers’ compensation job classes into seven Hazard Groups, A-G. Job classes in 
Hazard Group A have the smallest probability of serious injury leading to unusually high-
severity claims, and those in Hazard Group G have the largest probability of a serious injury. 
Another driver of severity is location. The cost of the same injury may vary from place to 
place—medical care may be more expensive in one state than another. Also between the 
different states in the United States, workers’ compensation laws vary significantly in the 
benefits they provide to injured workers for lost wages, and the courts may be more or less 
inclined to award very large liability verdicts.   
In US workers’ compensation, the NCCI reflects these differences by considering the state and 
hazard group of each risk when parametrizing the expected severity distribution used to generate 
aggregate loss factors. Similarly, when using the NCCI’s new countrywide Table of Aggregate 
Loss Factors (Table M), the expected number of claims for a risk having a given expected loss 
will vary based on the average severity of its losses, which can be estimated by looking up the 
severity relativity of the appropriate state and hazard group mix of the policy. This can adjust the 
expected number of claims to reflect fewer (more) expected claims when a risk has a higher 
(lower) expected severity, so as to increase (decrease) the assumed variability of the risk. In 
general, for a given expected loss size, we treat a risk expected to have more severe individual 
claims as if it is smaller (and thus more variable) than a risk with the same expected loss due to a 
larger number of (on average) less severe claims.  
To summarize, Table M shows different columns of aggregate loss factors for different expected 
claim count groups due to the impact of the size of a risk on the claim count distribution; all 
other things being equal, a larger insured has a tighter distribution of the ratio of observed claim 
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frequency over expected claim frequency than does a smaller insured. But severity distributions 
can vary as well, even within an insurance coverage.  
If the severity distribution differs in scale, while having the same shape—in other words, the 
mean is different but the coefficient of variation and the skewness are approximately the same—
simply adjusting the expected number of claims should yield reasonably accurate Table M 
charges (aggregate loss factors). However, if the difference is more extreme, we may need to 
also adjust the severity distribution, potentially needing to calculate a different Table M. Note 
that General Liability policies (especially products policies) and excess-of-loss reinsurance 
policies are more likely to differ significantly from other groups of policies due to their severity 
distribution. 
Adjustments treating the differences as if they are driven mostly by scale have been used to adapt 
a table of expected aggregate charges developed from one coverage to be used for another 
coverage. For instance, some US insurers have used severity adjustment factors analogous to 
State/Hazard Group relativity factors in order to adapt a workers’ compensation Table M to be 
used to estimate aggregate loss costs for Commercial Auto or General Liability. As always, care 
should be used when extrapolating that the resulting charges are reasonable. But sometimes there 
is not enough data to come up with a better estimate.  
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Questions 

19. When all else is equal, if the variance of the loss distribution is larger, will the Table M 
charge be larger or smaller than with a smaller variance? 
 
20. An actuary calculates the insurance charges on an aggregate deductible for a general 
liability policy for house painters.  All the losses in the historical data used in the analysis 
resulted from inadequate and/or sloppy paint jobs, which were relatively inexpensive to fix.  
Later, it is discovered that some paint contained a toxic substance and those painters are liable 
for very expensive remediation of the painted properties. 
The new claims are 10% as common as the historical claims. For every 10 claims that would 
have been expected before, there are now 11, one of which is cleaning up toxic paint. 
Had this been known, the expected cost of a policy would have been twice the cost the actuary 
used. 

(a) At an entry ratio of 2.00, with no per-occurrence loss limit, explain whether the insurance 
charge would increase, decrease, or stay the same.  

(b) Explain how a per-occurrence limit would affect the change in the insurance charge for the 
aggregate deductible. 

 
Acknowledgments 

I would like to thank the many people who helped with everything from brainstorming the 
overall shape of this chapter to proofreading it. Jill Petker, Fran Sarrel, and Lawrence McTaggart 
helped with overall support and suggestions. X. Sherwin Li helped incorporate prior study notes 
and articles into this format and also helped review a draft. Dylan Lei and Matthew Iseler 
provided helpful and insightful feedback on a draft. Rick Gorvett provided some sample 
questions and pedagogic guidance. Teresa Lam, Jill Petker, Kirk Bitu, and Tom Daley helped me 
understand the changes to the NCCI retro rating plan. Nedzad Arnautovic, Elena Blagojevic, 
Brian Choi, Melanie_Dufour, Joe Harkman, Alex Leitheiser, Colin Rizzio, Josh Taub, and Matt 
Veibell, all helpfully submitted errata and suggestions to the earlier editions of this chapter. And 
I would especially like to thank Howard Mahler who reviewed multiple drafts of this chapter and 
found any number of typos and inelegant or confusing sections, suggested numerous 
clarifications and examples, and generously allowed me to use some of the exercises published 
in his study guide. 
 
  



94 

Index of equivalent terms 
There are a great many names for many of the entities described in Chapter 3. As a convenience 
to the reader, I have tried to collect some of them here. 
 
Table M Charge 
Insurance Charge 
Aggregate Excess Loss Factor 
Aggregate Excess Ratio 
 
Table M Saving 
Insurance Saving 
Aggregate Minimum Loss Factor 
 
Net Insurance Charge 
Net Aggregate Loss Factor 
Net Table M Charge 
 
Table M 
Table of Insurance Charges 
Table of Aggregate Loss Factors 
 
Excess Loss Factor 
 
  



95 

Chapter 4: Concluding Remarks  
By Ginda Kaplan Fisher 

1. General Observations  
In general, the premium for an insurance policy should pay for the expected costs, including the 
cost of capital supporting the policy.  When retrospectively rated policies were developed, it was 
considered desirable that the expected premium to be paid by the insured would be the same, 
regardless of the retrospective policy provisions. (Obviously, the actual premium could vary, if 
actual losses were more or less than expected.) This was called a Balanced Plan. 
Since then, large deductible policies and other policies that remove a significant fraction of the 
costs from “premium” have been developed. Also, as discussed in Chapter 2, the risk load and 
expected expenses to be paid may be significantly different with different policy provisions.  
There are still some highly regulated types of insurance where the expected premium must 
remain the same, but for most policy types, it is not necessary or desirable to balance the 
premium. It is still important that the pure premium or expected losses be balanced, however. 
It is worth noting that there can be a great deal of uncertainty or risk in both the aggregate and 
per-occurrence excess loss. Especially when very high layers are insured, it is common for the 
risk charge to be greater than the loss cost for some portions of the coverage. Sometimes, the 
actual expected loss is so much less than the value of the risk that neither party cares much about 
the actual loss cost.  

This study note focuses on loss cost, so it deals with those cases where the loss cost is significant 
enough to be worth estimating, and Chapter 3 provides tools for the actuary to estimate the cost 
of the aggregate excess loss. However, if the actuary uses these methods and comes up with 
some insignificant loss charge, it is usually appropriate to charge something for the coverage. 
The same is true for high layers of per-occurrence loss. Remember that if the customer wants to 
buy protection for some layer of risk, it is worth something to the insured. Maybe the insured 
knows something they aren’t sharing. Even if the actuary is very comfortable with the total or 
primary loss pick,53 the risk load and the expected expense of maintaining a loss-sensitive 
provision should be carefully evaluated. 

Questions: 

1. Would you expect a fair premium for a retrospective plan with a high aggregate loss limit 
to be more or less than the fair premium for a guaranteed cost plan covering the same risk? 

2. Why should you generally recommend charging a non-negligible premium for high 
layers of aggregate or per-occurrence loss even though you estimated the loss cost for those 
layers to be negligible?  

 
53 A common name for the actuary’s best estimate of E or E(AD). In some cases, rather than estimate the total 
expected loss, the actuary will use the more stable limited loss data to select a limited expected loss, the “primary 
loss pick” and estimate the other loss components from that. 
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2. Sensitivity of Table M charges to the Accuracy of the Loss Pick or Rate Adequacy 

Also, whenever an actuary is pricing a loss sensitive plan (e.g., a deductible or retrospective 
policy) with an aggregate limit/maximum, the actuary should be aware of the leverage that the 
primary loss pick has on the insurance charge. This section has been adapted from a prior CAS 
study note54 
It is tempting to think that this loss pick isn’t very important, because the insured is responsible 
for those losses.  This may be true if the entry ratio is very high and the deductible relatively low, 
as most of the insured losses will be in the per-occurrence excess portion, not the aggregate 
excess portion.55  However, if the primary entry ratio is relatively low, or the deductible is very 
high, a significant portion of the expected insured losses will come from the aggregate.  The loss 
pick might be inadequate on a large account because the underwriter has been optimistic, or on a 
small account because the state has demanded inadequate filed rates.  In any case, as every 
actuary knows, it is hard to predict the level of future expected losses. An excessive loss pick 
will also lead to an inappropriate insurance charge.   
The following example was priced using the Countrywide Table of Aggregate Loss Factors 
found in NCCI’s Circular CIF-2017-32 “Countrywide–Announcement of Item R-1414–
Revisions to Retrospective Rating Plan Manual Appendix B and All Related Rules and 
Endorsements”  
Assume the actuary and underwriter expected there to be $500K total loss on a policy, and priced 
the policy accordingly. The underwriter sold an aggregate loss limit with an intended entry ratio 
of 2, or $1M. But in fact, the true expected loss is $550,000. Assume the error in estimation is 
due to frequency. What happens to the Table M charge? 
The actuary determined this account would have about 42 claims, and so fit Expected Claim 
Group 41. The aggregate excess loss factor for an unlimited loss (k=0) in Expected Claim Group 
41, at an entry ratio of 2 is 0.2108. So the Table M charge the actuary calculates is 
$500,000*0.2108 = $105,400. 
But the true expected loss is $550,000. So the actual entry ratio at which aggregate losses will be 
capped is $1M/$550K = 1.82 
The true expected number of claims is closer to 46, pushing the account into the slightly cheaper 
expected claim group 40. Even so, the aggregate excess loss factor in Expected Claim Group 40, 
at an entry ratio of 1.82 is 0.2228. And the true expected Table M charge is $550,000*0.2228 = 
$122,540.  The aggregate limit has been underpriced by more than 16%. 
 
  

 
54 Ginda Kaplan Fisher, “Pricing Aggregates on Deductible Policies,” 2002, published by the Casualty Actuarial 
Society as part of the Syllabus of Exams. 
55 Of course, if the excess portion is priced as a fraction of the primary loss pick, then the primary loss pick is 
important in pricing this component, too. 
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Exhibits 4.1 through 4.5 show an example of the impact on the insurance charge of an inadequate 
or excessive loss.56  
 
In this example, the NCCI countrywide subtable 6 Table M charges were used, that is, this 
example represents a retrospective policy with a loss limitation of about 12%.  However, the 
same effect would occur on any other insurance charge priced in a similar way (using Table MD, 
ICRLL, etc.)  Notice that the dollar error in insurance charges is greatest for large policies at low 
entry ratios, but the largest (absolute value) observed percent error in insurance charge is for a 
large policy at entry ratio 2.  The percent error in the total expected losses for a deductible policy 
would also depend on the expected deductible losses.  In any case, it is easy to see that adequate 
(primary) loss estimates are important to the profitability of a book of loss-sensitive policies. 
 

 
Exhibit 4.1. If rates/loss picks are correct; Tables of % and $ Charge57 

    At Entry Ratio 

true 
expected 

loss Loss Pick 
expected 
severity 

true 
expected 

number of 
claims 

Expected 
Claim 
Count 
group 

 
1 1.2 1.7 2 3 

3,000,000 3,000,000 12,000 250.0 29 0.25 0.18 0.07 0.04 0.01 
1,000,000 1,000,000 12,000 83.3 36 0.32 0.25 0.13 0.09 0.02 
500,000 500,000 12,000 41.7 41 0.37 0.31 0.18 0.13 0.04 
100,000 100,000 12,000 8.3 57 0.54 0.49 0.39 0.34 0.23 

 

     

true 
expected 

loss Loss Pick 
expected 
severity 

true expected 
number of 

claims 

Expected 
Claim Count 

group 1 1.2 1.7 2 3 
 3,000,000   3,000,000   12,000  250.0 29  762,600   543,900   220,500   124,500   16,500  
 1,000,000   1,000,000   12,000  83.3 36  319,400   247,900   128,400   85,300   20,700  
 500,000   500,000   12,000  41.7 41  186,300   152,750   91,600   66,550   22,400  
 100,000   100,000   12,000  8.3 57  54,440   49,310   39,170   34,440   23,240  

 
 

 

 

  

 
56 Using an inappropriate aggregate loss distribution can also produce significant pricing problems. 
57 $Charge based on true “expected loss.” 
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If rates or loss picks are 10% inadequate, charges may be more than 20% inadequate: 

  
Exhibit 4.2. If rates are 10% inadequate; Table of % and $Charge58 

 
  Entry Ratio 

 

true 
expected 

loss 
Loss 
Pick 

expected 
severity 

True 
expected 
number 
of claims 

Expected 
Claim 
Count 
group 1 1.2 1.7 2 3 

3,300,000  3,000,000   12,000  275.0 28 0.29 0.21 0.09 0.05 0.01 
1,100,000  1,000,000   12,000  91.7 35 0.35 0.27 0.15 0.10 0.03 

 550,000   500,000   12,000  45.8 40 0.40 0.33 0.20 0.15 0.05 
 110,000   100,000   12,000  9.2 56 0.56 0.51 0.41 0.36 0.24 

 

     

true 
expected 

loss Loss Pick 

expecte
d 

severity 

true 
expected 
number 
of claims 

Expected 
Claim 
Count 
group 1 1.2 1.7 2 3 

3,300,000  3,000,000  12,000  275.0 28 945,120  694,320  297,330 175,230  26,070  
1,100,000   1,000,000   12,000  91.7 35 382,030  302,170  161,810  110,550  28,930  

550,000   500,000   12,000  45.8 40 218,460  181,280  110,935  82,225  29,150  
110,000   100,000   12,000  9.2 56 61,589   56,012   44,649  39,413  26,774  

 
%error with 10% inadequate loss pick 
 

% Error at Sold or intended Entry Ratio 
1 1.2 1.7 2 3 

24% 28% 35% 41% 58% 
20% 22% 26% 30% 40% 
17% 19% 21% 24% 30% 
13% 14% 14% 14% 15% 

 
 

   

 
  

 
58 $Charge based on true “expected loss.” 
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If rates or loss picks are 10% excessive, charges may be more than 25% excessive: 

  
Exhibit 4.3. If rates are 10% Excessive; Table of % and $Charge59 

 
  Entry Ratio 

 

true 
expected 

loss Loss Pick 

expect
ed 

severit
y 

True 
expected 
number 
of claims 

Expected 
Claim 
Count 
group 1 1.2 1.7 2 3 

2,727,273  3,000,000   12,000  227.3 29 0.22 0.15 0.05 0.03 0.00 
 909,091  1,000,000   12,000  75.8 36 0.28 0.21 0.10 0.06 0.01 
 454,545   500,000   12,000  37.9 42 0.35 0.28 0.17 0.12 0.04 
 90,909   100,000   12,000  7.6 58 0.53 0.48 0.38 0.33 0.22 

 

     

true 
expected 

loss Loss Pick 

expecte
d 

severity 

true 
expected 
number 
of claims 

Expected 
Claim 
Count 
group 1 1.2 1.7 2 3 

2,727,273  3,000,000   12,000  227.3 29 586,636  400,909  145,364   76,364   7,909  
 909,091  1,000,000   12,000  75.8 36  256,000  193,000  2,727   58,818  12,182  
 454,545   500,000   12,000  37.9 42 158,500  128,682  75,227  53,682  17,091  
 90,909   100,000   12,000  7.6 58  48,100   43,436  34,309  30,082  20,173  

 
%error with 10% excessive loss pick 
 

% Error at Sold or intended Entry Ratio 
1 1.2 1.7 2 3 

-23% -26% -34% -39% -52% 
-20% -22% -28% -31% -41% 
-15% -16% -18% -19% -24% 
-12% -12% -12% -13% -13% 

 
 

   

  

 
59 $Charge based on true “expected loss.” 
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Questions: 

3. Given a large deductible WC policy with the following features: 

• $2M expected total loss 

• Expected average severity of $10,000 per claim 

• The insured retains 86% of expected loss under the per-occurrence deductible (14% is 
expected to be excess of the deductible) 

• There is a limit on the aggregate deductible retained by the insured of $3M 

a.) What is the insurance charge for the aggregate limit? 

 If the account is larger than the pricing actuary realized, and the expected total losses should have 
been $2.5M, what should the insurance charge have been? 

  
3. Consistency of Assumptions 
The actuary should also be cautious of mismatched assumptions. Using different methods to 
calculate the per-occurrence excess charges and aggregate excess charges can sometimes lead to 
disjointed results.  For instance, a company might have developed estimates of per-occurrence 
excess losses independently of the method used to develop its estimate of aggregate excess 
losses. Perhaps the company has estimated its own per-occurrence excess loss factors, but is 
relying on a rating bureau for aggregate excess loss factors. When this happens, a plan might 
come up with different pricing depending on how it is described. For instance, if the per-
occurrence limit on a retrospectively rated plan is greater than or equal to the aggregate limit, the 
actuary’s pricing model ought to recommend the same loss cost whether or not the per-
occurrence limit is mentioned.  But if the estimated charges were developed independently, that 
might not happen. 
Mismatches in assumptions can creep into calculations in all sorts of places, including systematic 
errors.  For instance, an actuary might look at a rating bureau’s “pure premium” for a slice of the 
risk. But sometimes rating bureau pure-premium is “loaded” with various non-loss items, such as 
provisions for loss based assessments and LAE.  If unadjusted rating bureau excess factors are 
multiplied by a loss estimate that doesn’t include those components (and thus is smaller), excess 
losses can be underestimated, sometimes substantially so60.   
The actuary should be careful to monitor pricing assumptions for consistency and reasonability. 
When designing a pricing model, the actuary should compare the sum of the predicted primary, 
per-occurrence excess, and aggregate excess losses for various types of policies that might be 
written on various types of accounts, and ensure that the sums of the parts compare reasonably 
with the predicted total losses for those accounts.  If not, an investigation of the assumptions 
used in estimating the per-occurrence excess and aggregate excess losses is in order.   
 

 
60 Whenever using factors from somewhere else, an actuary should ideally be familiar with the assumptions behind 
the calculation of those factors. 



101 

 

Acknowledgments 

I would like to thank Jill Petker and Paul Ivanovskis for bringing many of these issues to my 
attention, and encouraging me to include them in the scope of a study note. 

  



102 

Solutions to Chapter Questions 

Chapter 1 Answers 

1. The objectives of experience rating are to: 
a. Increase equity 
b. Incentive for safety 
c. Enhance market competition 

2. Experience rating adjusts a risk’s rate to be more in line with that risk’s expected loss 
experience. Risks whose expected loss experience is lower than average will pay less 
premium, and risks whose expected loss experience is higher will pay more premium. 

3. Company B—since Company B has fewer rating classes, there will probably be more 
variation in risks within each rating class. The use of experience rating will allow the 
company to further tailor each risk’s premium with its loss potential. 

4. Without experience rating, a company would charge better than average and worse than 
average risks the same rate. Better than average risks might be able to find a lower rate with 
another company that recognizes the risk’s lower loss potential. If enough of the better than 
average risks do this, the company will be left with only the worse than average risks. 

5. In a group of risks, some of the difference in experience is due to underlying differences in 
the loss potential of the different risks. This is the variance of the hypothetical means. Some 
of the difference in experience among the risks is purely random, i.e., the process variance. 
Experience rating attempts to identify and adjust for the VHM, while at the same time not 
penalizing risks for differences in experience that are purely random. 

6. Probably not. If the safety program in question does in fact reduce this risk’s loss potential, 
this will be reflected in the risk’s past experience and will be picked up by the experience 
rating. Using a schedule credit would double-count the expected benefit of the safety 
program. However, if the safety program is new (i.e., it was implemented during or after the 
experience period used by the experience rating program) then there is some expected 
benefit that would not be reflected in the past experience.  
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Chapter 2 Answers 
 
1. There is no credit risk related to self-insured retentions because the insurer does not pay the 

retained losses up front, and therefore does not need to seek reimbursement from the self-
insured. 

2. 1.053 = 1 / (1 – 0.05) 

3. 0.048 =1 - 1/1.05 

4. The tax multiplier needs to account for the fact that premium tax is part of premium and 
therefore is itself taxed. 

5. 13% = 0.20 – (1.10 – 1) x 0.70.  That is, 13% of the guaranteed-cost premium will be collected 
as a fixed expense through the basic premium amount. 

6. 1.15 = 1 + (0.25 - 0.15) / 0.65 

7. Total losses, limited to the per-occurrence loss limit, are 315,000 = 25,000 + 15,000 + 25,000 +  
50,000 + 2 x 100,000.  This is below the maximum ratable loss amount. 

The retrospective premium is $511,892 = (150,000 + 1.1 x 315,000) x 1.031 
8. As the loss conversion factor increases, expenses are shifted out of the basic premium, and the 

basic premium decreases. 

As the loss limit increases, the charge for per-occurrence excess exposure decreases, and the 
basic premium decreases. 
As the maximum premium or maximum ratable loss amount increases, the charge for 
aggregate excess exposure decreases, and the basic premium decreases. 
As the minimum premium or minimum ratable loss amount increases, the net charge for 
aggregate excess exposure (i.e., the net insurance charge) decreases, and the basic premium 
decreases. 
As the account size increases, there are two effects.  The amount of premium discount 
increases, reducing the percentage expense provision in the basic premium.  In addition, 
larger accounts have more stable loss experience, so the charge for aggregate excess 
exposure decreases.  (The latter impact may become clearer after reading chapter 3.)  For 
both of these reasons, the basic premium decreases. 

9. The premium is calculated as: 

  35,000 fixed expense 
  30,000 loss-based expense = 300,000 x 10% 
  5,000 underwriting profit 
  30,000 per-occurrence excess = 300,000 – 270,000 
  10,000 aggregate excess = 270,000 – 260,000 
 110,000 subtotal 

  113,402 including premium tax = 110,000 x (1/.97) 
10. A loss-sensitive dividend plan is unbalanced because if loss experience is better than expected, 

the insured receives a dividend, but if loss experience is worse than expected, the insured does 
not incur any additional costs. 
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11. The risk transfer is the same for a retrospective rating plan and a large deductible plan when: 
a. The loss limit for the retrospective rating plan equals the per-occurrence deductible. 
b. The maximum ratable loss amount for the retrospective rating plan equals the aggregate 

deductible limit. 
c. There is no minimum ratable loss amount for the retrospective rating plan. 
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Chapter 3 Answers 
 
1. 

 
   Problem 

  Claim 
# 

  Claim 
$000 

  Occ.-Ltd. 
  Agg. Sum 

Occ. 
Excess 

Agg. 
Excess 

Total 
   Insurance 

Insured 
Payment 

(a) 1 3 3 0 0 0 3 
 2 8 11 0 0 0 8 
 3 14 21 4 0 4 10 

(b) 4 12 31 2 6 8 4 
(c) 5 18 41 8 10 18 0 

 
(a) Insurer = 0+0+4 = 4; Insured = 3+8+10 = 21 
(b) Insurer = 4+8 = 12; Insured = 21+4 = 25 
(c) Insurer = 12+18 = 30; Insured = 25+0 = 25 
 
 
2. 
(a) $500K + $100K + $300K + $2,000K = $2,900K 
(b) $500K + $100K + $250K + $250K = $1.1M 
(c) $1.1M - $1.0M = $100K 
(d)  Only the $2M claim breaches the per-claim policy limit, so $1M 

(e) Prior to application of the policy’s aggregate limit, the policy would cover 

• $0 on the small claims 
• $0 on the $100K claim 
• $50K on the $300K claim 
• $750K on the $2M claim 
• $100K for the aggregate on the deductible 

For a total of $900K. 
(f) Zero (900K < 5M)  
(g) $900K 
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3.  
The Table M insurance charge associated with a 
given outcome is the ratio of the area bounded by 
F(A) and that outcome to the total area under F(A). 
The total area under the curve F(A) = 100*1/2 = 
50. 
 
a) The area above the line A = 40 and below F(A) 
has area = 60 * 0.6 * ½ = 18  
18/50 = 0.36 
b) The area above the line A = 50 and below F(A) 
has area = 50 * 0.5 * ½ = 12.5  
12.5/50 = 0.25 
c) The area above the line A = 60 and below F(A) has area = 40 * 0.4 * ½ = 8  
8/50 = 0.16 
 
Calculus: 
First we normalize the Lee diagram so that the area under the curve (the distribution of the 
probability of aggregate loss) adds to 1. Then 
 

𝐿𝐿𝑒𝑒𝑡𝑡 𝑌𝑌 =  𝑍𝑍 𝑑𝑑� ~𝑈𝑈𝐼𝐼𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚(0,2) 
 

𝑇𝑇ℎ𝑒𝑒𝐼𝐼 𝑜𝑜(𝑦𝑦) = 0.50 
 
(a) 𝑟𝑟 = 40

50� = 0.80            𝜙𝜙(0.80) =  ∫ 0.50(𝑦𝑦 − 0.80)𝑑𝑑𝑦𝑦 = 𝟎𝟎.𝟑𝟑𝟑𝟑2
0.8  

(b) 𝑟𝑟 = 50
50� = 1            𝜙𝜙(1) =  ∫ 0.50(𝑦𝑦 − 1)𝑑𝑑𝑦𝑦 = 𝟎𝟎.𝟐𝟐𝟐𝟐2

1  
(c) 𝑟𝑟 = 60

50� = 1.20            𝜙𝜙(1.20) =  ∫ 0.50(𝑦𝑦 − 1.20)𝑑𝑑𝑦𝑦 = 𝟎𝟎.𝟏𝟏𝟑𝟑2
1.2  

 
 
4.   

𝑑𝑑 = 10       𝑌𝑌 = 𝑍𝑍
𝑑𝑑� ~𝑑𝑑𝑒𝑒𝑒𝑒𝑜𝑜𝐼𝐼(𝑚𝑚𝑒𝑒𝑣𝑣𝐼𝐼 = 1)        𝑜𝑜(𝑦𝑦) = 𝑒𝑒−𝑦𝑦 

 

𝜓𝜓(𝑟𝑟) =  � (𝑟𝑟 − 𝑦𝑦)𝑒𝑒−𝑦𝑦𝑑𝑑𝑦𝑦
𝑃𝑃

0
 

(a) 𝑟𝑟 = 5
10� = 0.50           𝜓𝜓(0.50) = 𝟎𝟎.𝟏𝟏𝟎𝟎𝟑𝟑𝟐𝟐 

(b) 𝑟𝑟 = 10
10� = 1           𝜓𝜓(1) = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

(c) 𝑟𝑟 = 15
10� = 1.5           𝜓𝜓(1.5) = 𝟎𝟎.𝟑𝟑𝟐𝟐𝟑𝟑𝟏𝟏 
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5. 
 

 
 
6. 
(a) Φ(R) = A 
(b) Φ (S) = A + D + E 
(c) ψ(R) = B + C + F  
(d) ψ(S) = F 
 
 
7. 
(a) Step 1: Expected loss ratio = Average Loss Ratio = 

(20%+40%+40%+60%+80%+80%+120%+200%)/8 = 80% 
So for each risk, r = loss ratio/0.8 
 
To solve this precisely, we need to look at every slice at which there is at least one data point, 
plus all the other points we want factors for: 

 
r 

# Risks 
from 

prior to 

# Risks 
Above 

% Risks 
Above 

Difference 
in r 

 
Φ(r) 

 
ψ(r) = Φ(r)+r-1 

0 0 8 1.000 0.25 1.00 0 
.25 1 7 0.875 0.25 .75 0 
.50 2 5 0.625 0.25 .53125 .03125 
.75 1 4 0.500 0.25 .25+.5*.25=.375 .375+.75-1=.125 
1.0 2 2 0.250 0.50 .125+.25*.5=.25 0.25+1-1=.25 
1.5 1 1 0.125 0.50 .125+.125*1=.125 0.125+1.5-1=0.625 
2.0 0 1 0.125 0.50 0+.125*.5=.0625 .0625+2-1=1.0625 
2.5 1 0 0.000 0.50 0 0+2.5-1=1.5 
3.0 0 0 0.000 0 0 0+3-1=2 
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Total 8      
 
This can then be summarized as: 

 
r 

 
Φ(r) 

 
ψ(r) = Φ(r)+r-1 

0 1.00 0 
.50 .53125 .03125 
1.0 .25 .25 
1.5 0625+.125*.5=.125 0.125+1.5-1=0.625 
2.0 0+.125*.5=.0625 0.0625+2-1=1.0625 
2.5 0 0+2.5-1=1.5 
3.0 0 0+3-1=2 

Total   
 
Note what happens if we just look at intervals of 0.5 

 
r 

 Risks 
from 
prior to 

# Risks 
Above 

% Risks 
Above 

fference in r  
Φ(r) 

 
ψ(r) = Φ(r)+r-1 

0 0 8 1.000 0.5 1.0625 .0625 
.50 3 5 0.625 0.5 .5625 .0625 
1.0 3 2 0.250 0.5 .25 .25 
1.5 1 1 0.125 0.5 0625+.125*.5=.125 0.125+1.5-1=0.625 
2.0 0 1 0.125 0.5 0+.125*.5=.0625 0.0625+2-1=1.0625 
2.5 1 0 0.000 0.5 0 0+2.5-1=1.5 
3.0 0 0 0.000 0 0 0+3-1=2 

Total 8      
 
All looks well until we get to r = 0.5. Then we end up with 0.5625 for the charge, rather than 
0.53125. The calculated charge is too large by 0.03125. The error grows at r=0 to 0.0625. This is 
because when we “integrate” under the curve, we are assuming each piece we are adding is a 
rectangle. But if we look at the Lee diagram of the outcomes: 
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We can see that there are two extra pieces in the boxes, but above the area representing the 
outcomes. Each has area = 0.25 x (1/8) = 0.03125. That is the source of the extra in the 
calculation. This is an example of the problem described in footnote 30 on page 66. 
(b) 70% L/R  r=0.875 
It helps to look again at the Lee diagram to understand the situation 

 
There are a few ways to approach this problem. First, we will solve it precisely, using the 
horizontal method:  
The width of the distribution between 1.0 and 0.875 is 0.5, four of the 8 claims. So the additional 
insurance charge is 0.5 times the height of the additional band, or (1-0.875) * 0.5 = 0.0625. so  
 

Φ(0.875) = Φ(1.0) + 0.0625 = 0.25 + 0.625 = 0.3125 
 
We could also have interpolated. Had we estimated Φ(0.875) with a linear interpolation, we 
would have gotten: 
 (Φ(0.5) * (1-0.875) + Φ(1.0) * (0.875 – 0.5))/(1.0 - 0.5) = 
 (0.53125 * 0.125 + 0.25 * 0.375)/(0.5) = 0.3203 
 
Note that the interpolation does not give the exact answer, but is reasonably close. 
Since we are interested in the insurance charge at a single point, we might also use the vertical 
method. 
 

 
Risk 

Actual 
Agg. L/R 

Entry 
Ratio 

Excess of 
r = 70/80 = 0.875 

Excess of 
r = 110/80 = 1.375 

1 20% 0.25 0 0 
2 40 0.50 0 0 
3 40 0.50 0 0 
4 60 0.75 0 0 
5 80 1.00 0.125 0 
6 80 1.00 0.125 0 
7 120 1.50 0.625 0.125 
8 200 2.50 1.625 1.125 

Total:   2.500 1.250 
Average   0.3125 0.15625 
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(c) ψ(0.875) = 0.3125 + 0.875 – 1 = 0.1875 
(d) 110% L/R  r=1.375.  Φ(1.375) = 0.15625  (work done in section b) 
(e) ψ(1.375) = 0.15625 + 1.375 – 1 = 0.53125 
 
8. Using Parameterized distributions to develop Tables M 
Advantages: 

1. When you don’t have a statistically credible group of policies to base your pricing on, but 
you have an idea of what shape the distribution of outcomes is likely to approximate, you 
can fit curves to what data you have. 

2. When data is thin, and you have large gaps between empirical entry ratios, you don’t have to 
rely on linear interpolation. 

3. Even with large body of data, fitting distributions to frequency and severity can help develop 
charges that are consistent with the excess charges.  

Disadvantages: 
1. If the assumptions underlying the selected distribution aren’t close enough to reality, you can 

generate plausible, internally consistent, precise, but misleading charges. 
2. It might be more computationally complex to build a model than to use empirical data for 

the desired degree of precision. 
 

9. 
(a) MD Charge at R = G 
(b) MD Savings at S = Q+T+U 
(c) Per-Occ XS Charge at D = A+D+E+J+L+N+T+U 

 
10. 

(a) {40,000 + (1.1)(150,000)} (1.05) = 215,250. 

Comment: The insured benefited from neither the maximum premium nor the accident limit. 

 

(b) {40,000 + (1.1)(200,000)} (1.05) = 273,000. Limited to the maximum of $250,000. 

Comment: The insured benefited from the maximum premium. 

 

(c) {40,000 + (1.1)(100,000)} (1.05) = 157,500. 

Comment: The insured benefited from the accident limit. 
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(d) {40,000 + (1.1)(200,000)} (1.05) = 273,000. Limited to the maximum of $250,000. 

Comment: The accident limit decreased the losses entering the calculation, but the insured ended up paying the 
maximum premium anyway. 

 
The last case is an example of the “overlap” between the effects of the maximum 
premium and the accident limit. In some years, even though there are large accidents, the 
accident limit will not provide any additional benefit to the insured beyond that provided 
by the maximum premium. In other words, for large accidents the accident limit and the 
maximum premium overlap 

 
11. 
(a) {400,000 + (1.1)(150,000)}(1.05) = 593,250.  The insured pays the minimum premium, 
$650,000. 
(b)  {400,000 + (1.1)(100,000)}(1.05) = 535,500. The insured pays the minimum premium, 
$650,000. 

The last case is an example of the “underlap” between the effects of the minimum 
premium and the accident limit. In some years, even though there are large accidents, the 
accident limit will not provide any benefit to the insured due to the minimum premium. 
This has a relatively small overall impact. 

 
 
12. 
E=150,000 
Agg Limit = 300,000 
R = 300 / 150 = 2.0 
Φ(2.0) x 150,000 = 15,000 
Φ(2.0) = 0.10 
 
With only Per-Occurrence Deductible: 
k * E = 50,000  k = 50,000 / 150000 = 0.333 
 
Note that the Aggregate Limit of 300,000 is three time the expected limited loss of 100,000, so 
the entry ratio, r, of the limited loss distribution is 300,000 / 100,000 = 3. 
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Together, the combined charge 
would be 0.333+0.10 = 0.433, 
or 0.433 x 150,000 = 65,000 
However, the combined charge 
is very unlikely to be equal to 
65,000. It will generally be less 
than 65,000 because there is 
overlap between the two 
charges, as shown by region B 
in the graph. 
 
 
13. 
 

a) The expected primary losses = 20,000.   
Entry ratio = 40,000/20000=2.0  
The aggregate excess loss factor is 0.04, so the insurance charge = 0.04 x 20,000=800. 
(Which would be in addition to the $20,000 charge for the per-occurrence deductible, for a 
total expected loss cost within the policy of $20,800.) 
 

b) The expected primary losses = 30,000.   
Entry ratio = 40,000/30,000=1.333.  
Interpolate the aggregate excess loss factors on the table to get 
(1/3)*0.22 + (2/3)*.12 =0.1533 = the aggregate excess loss factor.  
So the insurance charge is 0.1533 x 30000 = 4600 
(which would be in addition to the $10,000 charge for the per-occurrence deductible, for a 
total expected loss cost within the policy of $14,600.) 
 

c) The insurer will charge more for (a) because even though the aggregate insurance charge is 
less than (b), the insured has a much smaller per-occurrence deductible which transfers more 
expected losses to the insurer. 
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14. 

 
a) Φ*D(1.5) = B + D + E 

ψ*D(1.5) = A + B 
 

b) The normalized area of the total loss (the area of the large triangle, B+C+D+E) is 1. The 
area of the limited loss is 400/500 times the total, or 0.8. It is also the area of the small 
triangle, C + E. 
So the area of B + D is 0.2. 
 
The area of E is the ½ the height times the length. The height is 1.6 – 1.5 = 0.1. 
E is the same shape as C+E, which has height 1.6 and length 1. So the length of E must be 
(0.1/1.6) = 0.0625.  
So the area of E is 0.1 * 0.0625 / 2 = 0.003125. 
 
So  Φ*D(1.5) = B + D + E = 0.2 + 0.003125 = 0.203125 
And 
ψ*D(1.5) = Φ*D(1.5) + r – 1 = 0.203125 + 1.5 – 1 = 0.703125. 
 

 
 
15. 
 

a) T+U+J+L+N+D+E+A+G 
b) Q+U+T 
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16. 
Advantages: 

- When large tables were awkward (either as a vast pile or paper or a computer file that was 
difficult to store) ICRLL allowed a single unlimited Table M to be used to generate 
reasonable charges that would otherwise have required a large number of Tables MD. 

- The ICRLL procedure is an expedient way of approximating Table MD when a suitable 
Table MD is unavailable. For example, this method can be used to adjust a Table M 
developed based on one book of business to a similar book for which there isn’t adequate 
data to develop its own Tables M. 

 
Disadvantages: 

- It is only an approximation to Table MD and may introduce additional error in the estimate 
of the charge for the aggregate limit. 

 
 
17. 
 
a) Expected Unlimited Losses = 1,000,000 x 0.75 = 750,000 

Expected Limited Losses = 750,000 x (1 – 0.2) = 600,000 
r = 1,200,000 / 600,000 = 2.0  Ins Charge = 0.04 x 600,000 = 24,000 

b) Loss Group Adjustment Ftr = 1+0.8(0.2)
1−0.2

= 1.45 
 
 Losses used in group selection = 750,000 x 0.90 x 1.45 = 978,750  ELG 29 
 r = 1,200,000 / 600,000 = 2.0 
 Insurance Charge Factor = 0.242 
 Total Expected Loss Cost = 0.2(750,000) + 0.242(600,000) = 295,200 
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18. 
 
The State/Hazard Group Relativity makes an adjustment to reflect for differences in claim size 
by class of business and geographic location. For a given expected loss size, it treats a risk 
expected to have more severe individual claims as if it is smaller (and thus more variable) than a 
risk with the same expected loss resulting from a larger number of less severe claims. 
 
The implicit assumption with using the State/Hazard Group Relativity is that the actual severity 
distribution has a similar shape as that which is used to determine the insurance charges, and 
differs mostly due to scale. If the difference is extreme, the severity distribution may need to be 
adjusted, potentially requiring a different Table M 
 
 
19. 
 
The Table M charge will be larger when the variance of the loss distribution is larger, all else 
being equal – see Exhibit 3.32.  
 
 
20. 
a) The insurance charge would increase. The toxic paint claims have a low frequency and a very high 
severity compared to the historical claims. This means they greatly increase the variance of the 
severity, which increases the variance of the aggregate losses. In particular, with the original 
assumptions, an insured would have had to experience twice the expected claims frequency to 
breach the aggregate, but with the revised understanding of the liability, a single large claim would be 
almost enough to do so. This will result in a much larger insurance charge at an entry ratio of 2.0.  

b) A per-occurrence limit, assuming it is high enough to be above the historical losses, but 
substantially limits the toxic paint claims, would shift losses from the aggregate limit charge to the 
per-occurrence charge. Therefore, the charge for the aggregate deductible would decrease.  
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Chapter 4 Answers 
 
1. The fair premium should be lower, as the insured is responsible for a significant fraction of 
the risk. 

2. Because you need to price for the risk involved and the expenses of monitoring the claims 
experience. The risk includes the risk that the insured knows more about the liability than you do. 
The expenses may include annual or monthly reports to the insured whether or not any losses 
breach the insurable threshold.  

3. Given a large deductible WC policy with the following features: 

• $2M expected total loss 

• Expected average severity of $10,000 per claim 

• The insured retains 86% of expected loss under the per-occurrence deductible (14% is 
expected to be excess of the deductible) 

• There is a limit on the aggregate deductible retained by the insured of $3M 

b.) What is the insurance charge for the aggregate limit? 

 If the account is larger than the pricing actuary realized, and the expected total losses should have 
been $2.5M, what should the insurance charge have been? 
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1. Introduction

Generalized linear models have been in use for over thirty years, and there is no shortage 
of textbooks and scholarly articles on their underlying theory and application in solving 
any number of useful problems. Actuaries have for many years used GLMs to classify 
risks, but it is only relatively recently that levels of interest and rates of adoption have 
increased to the point where it now seems as though they are near-ubiquitous. GLMs 
are widely used in the personal lines insurance marketplace, especially in operations 
of meaningful scale. But as far as the authors are aware there is no single text written 
for the practicing actuary that serves as a definitive reference for the use of GLMs in 
classification ratemaking. This monograph aims to bridge that gap. Our ultimate goal 
is to give the knowledgeable reader all of the additional tools they need to build a 
market-ready classification plan from raw premium and loss data.

The target audience of this monograph is a credentialed or very nearly credentialed 
actuary working in the field of property/casualty or general insurance (for example, in 
the United States, a member or soon-to-be member of the Casualty Actuarial Society). 
It is assumed that the reader will be familiar with the material covered in the earlier 
exams of the CAS syllabus, including all of the Actuarial Standards of Practice and 
the ratemaking material covered in depth in Werner and Modlin’s Basic Ratemaking 
(2010) (or their international equivalents, for readers outside the United States). Prior 
knowledge of the mathematics underlying GLMs will make for faster reading but is 
not absolutely necessary. Familiarity with a programming language is not required to 
read the text, but will be necessary to implement models.

If you should have a suggestion or discover any errors in this document, please 
contact the authors. Current contact information can be found in the CAS directory.
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2. Overview of Technical Foundations

Generalized linear models (GLMs) are a means of modeling the relationship between 
a variable whose outcome we wish to predict and one or more explanatory variables.

The predicted variable is called the target variable and is denoted y. In property/
casualty insurance ratemaking applications, the target variable is typically one of the 
following:

• Claim frequency (i.e., claims per exposure)
• Claim severity (i.e., dollars of loss per claim or occurrence)
• Pure premium (i.e., dollars of loss per exposure)
• Loss ratio (i.e., dollars of loss per dollar of premium)

For quantitative target variables such as those above, the GLM will produce an 
estimate of the expected value of the outcome.

For other applications, the target variable may be the occurrence or non-occurrence 
of a certain event. Examples include:

• Whether or not a policyholder will renew their policy.
• Whether a submitted claim contains fraud.

For such variables, a GLM can be applied to estimate the probability that the event 
will occur.

The explanatory variables, or predictors, are denoted x1 . . . xp, where p is the 
num ber of predictors in the model. Potential predictors are typically any policy terms 
or policyholder characteristics that an insurer may wish to include in a rating plan. 
Some examples are:

• Type of vehicle, age, or marital status for personal auto insurance.
• Construction type, building age, or amount of insurance (AOI) for homeowners 

insurance.

2.1. The Components of the GLM
In a GLM, the outcome of the target variable is assumed to be driven by both a 

systematic component as well as a random component.
The systematic component refers to that portion of the variation in the outcomes 

that is related to the values of the predictors. For example, we may believe that driver 
age influences the expected claim frequency for a personal auto policy. If driver age 
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is included as a predictor in a frequency model, that effect is part of the systematic 
component.

The random component is the portion of the outcome driven by causes other than 
the predictors in our model. This includes the “pure randomness”—that is, the part 
driven by circumstances unpredictable even in theory—as well as that which may be 
predictable with additional variables that are not in our model. As an example of this 
last point, consider the effect of driver age, which we describe above as being part of 
the systematic component—if driver age is in the model. If driver age is not included 
in our model (either due to lack of data or for any other reason), then, from our 
perspective, its effect forms part of the random component.

In a general sense, our goal in modeling with GLMs is to “explain” as much of the 
variability in the outcome as we can using our predictors. In other words, we aim to 
shift as much of the variability as possible away from the random component and into 
the systematic component.

GLMs make explicit assumptions about both the random component and the 
sys tematic component. We will examine each in turn, beginning with the random 
component.

2.1.1. The Random Component: The Exponential Family
In a GLM, y—the target variable—is modeled as a random variable that follows a 

probability distribution. That distribution is assumed to be a member of the exponential 
family of distributions.

The exponential family is a class of distributions that have certain properties that are 
useful in fitting GLMs. It includes many well-known distributions, such as the normal, 
Poisson, gamma and binomial distributions. (It also includes a less widely known 
distribution—the Tweedie distribution—that is very useful in modeling insurance data; 
more on that later.) Selection and specification of the distribution is an important part 
of the model building process.

The randomness of the outcome of any particular risk (denoted yi) may be formally 
expressed as follows:

y Exponentiali im f( ), (1)

Note that “Exponential” above does not refer to a specific distribution; rather, it is a 
placeholder for any member of the exponential family. The terms inside the parentheses 
refer to a common trait shared by all the distributions of the family: each member takes 
two parameters, m and f, where m is the mean of the distribution. f, the dispersion 
parameter, is related to the variance (but is not the variance!) and is discussed later in 
this chapter.

The parameter m is of special interest: as the mean of the distribution, it represents 
the expected value of the outcome. The estimate of this parameter is said to be the 
“prediction” generated by the model—that is, the model’s ultimate output.
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If no information about each record other than the outcome were available, the 
best estimate of m  would be the same for each record—that is, the average of historical 
outcomes. However, GLMs allow us to use predictor variables to produce a better 
estimate, unique to each risk, based on the statistical relationships between the 
predictors and the target values in the historical data. Note the subscript i applied 
to m in Equation 1 above, which denotes that the m parameter in the distribution is 
record-specific. The subscript-less parameter f, on the other hand, is assumed to be 
the same for all records.

2.1.2. The Systematic Component
GLMs model the relationship between mi (the model prediction) and the predictors 

as follows:

g x x xi i i p ipm b b b b( ) = + + + +. . . . (2)0 1 1 2 2

Equation 2 states that some specified transformation of mi (denoted g(m i)) is equal 
to the intercept (denoted b 0) plus a linear combination of the predictors and the 
coefficients, which are denoted b 1 . . . bp. The values for the intercept (b 0) and the 
coefficients (b 1 . . . bp) are estimated by GLM software. The transformation of mi 
represented by the function g(.) on the left-hand side of Equation 2 is called the link 
function and is specified by the user.

The right-hand side of Equation 2 is called the linear predictor; when calculated, 
it yields the value g(mi)—that is, the model prediction transformed by our specified link 
function. Of course, the value g(mi) per se is of little interest; our primary interest lies in 
the value of mi itself. As such, after calculating the linear predictor, the model prediction 
is derived by applying the inverse of the function represented by g(.) to the result.

The link function g(.) serves to provide flexibility in relating the model prediction 
to the predictors: rather than requiring the mean of the target variable to be directly 
equal to the linear predictor, GLMs allow for a transformed value of the mean to be 
equal to it. However, the prediction must ultimately be driven by a linear combination 
of the predictors (hence the “linear” in “generalized linear model.”)

In a general sense, the flexibility afforded by the ability to use a link function is a 
good thing because it gives us more options in specifying a model, thereby providing 
greater opportunity to construct a model that best reflects reality. However, when using 
GLMs to produce insurance rating plans, an added benefit is obtained when the link 
function is specified to be the natural log function (i.e., g(x) = ln(x)): a GLM with that 
specification (called a log link GLM) has the property of producing a multiplicative 
rating structure.

Here’s why: when a log link is specified, Equation 2 becomes

m b b b bln . . . .0 1 1 2 2x x xi i i p ip= + + + +
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To derive mi, the inverse of the natural log function, or the natural exponential 
function, is applied to both sides of the equation:

x x x e e ei i i p ip
x xi p ipm b b b b b b b( )= + + + + = × × ×exp . . . . . . .0 1 1 2 2

0 1 1

As demonstrated, the use of a log link results in the linear predictor—which begins 
as a series of additive terms—transforming into a series of multiplicative factors when 
deriving the model prediction.

Multiplicative models are the most common type of rating structure used for 
pricing insurance, due to a number of advantages they have over other structures. To 
name a few:

• They are simple and practical to implement.
• Having additive terms in a model can result in negative premiums, which doesn’t 

make sense. With a multiplicative plan you guarantee positive premium without 
having to implement clunky patches like minimum premium rules.

• A multiplicative model has more intuitive appeal. It doesn’t make much sense to 
say that having a violation should increase your auto premium by $500, regardless 
of whether your base premium is $1,000 or $10,000. Rather it makes more sense 
to say that the surcharge for having a violation is 10%.

For these and other reasons, log link models, which produce multiplicative struc-
tures, are usually the most natural model for insurance risk.

2.1.3. An Example
Suppose we construct a GLM to predict the severity of auto claims using driver 

age and marital status as predictors. The data we use contains 972 rows, with each row 
corresponding to a single claim. For each claim, the loss amount is recorded, along 
with several policyholder characteristics, among which are our predictors: driver age 
(in years, and denoted x1 in our example) and marital status (coded as 0 = unmarried,  
1 = married, and denoted x2). We aim to produce a multiplicative rating algorithm, so a 
log link is used. We believe that the loss amount generated by a claim, after accounting 
for the effect of age and marital status, is random and follows a gamma distribution.

For this setup, our model inputs are:

• The data
• The model specifications:

• Target variable: loss amount
• Predictors: driver age (x1) and marital status (x2)
• Link function: log
• Distribution: gamma

The above are entered into the GLM fitting software. The outputs of the model 
fitting process are: estimates for the intercept, the two coefficients (for age and marital 
status), and the dispersion parameter (f ).
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Suppose the software returns the following:
Parameter coefficient
Intercept (b 0): 5.8
Coefficient for driver age (b 1): 0.1
Coefficient for marital status (b 2): -0.15
Dispersion parameter (f ): 0.3

We then wish to use this information to predict average claim severity for a 25-year-old 
married driver. We use Equation 2, plugging in the following values: b 0 = 5.8, b 1 = 0.1, 
b 2 = -0.15, x1 = 25, and x2 = 1. We solve for mi, which represents average claim severity 
for this driver as indicated by the model. Per Equation 2,

g i i im m m( ) ( ) ( )= = + + − = → =ln 5.8 0.1 25 0.15 1 8.15 3, 463.38

Thus, the model predicts the loss amount for a claim from this class of driver to 
follow a gamma distribution with parameters m = 3,463.38 and f  = 0.3. The value 
3,463.38 is the mean, or the expected severity for this driver; that figure may then be 
multiplied by an estimate of frequency to derive an expected pure premium which 
would underlie the rate charged for that class of driver.

Equivalently, the model prediction can be represented as a series of multiplicative 
rating factors by exponentiating both sides of the equation above:

e e eim [ ]( ) ( )= + + − = × ×

= × × =

( ) ( )−exp 5.8 0.1 25 0.15 1

330.30 12.182 0.861

5.8 0.1 25 .15 1

3, 464.42

which is similar to the result above. (The difference is due to rounding.)
The advantage of this last formulation is that it can be easily translated as a simple 

rating algorithm: begin with a “base” average severity of $330.30, and apply the factors 
applicable to driver age 25 and married drivers (12.182 and 0.861, respectively), to 
arrive at the expected severity for this particular class of driver: $3,464.

We might also use this model to predict mean severity for a 35-year-old unmarried 
driver; that prediction is exp[5.8 + (0.1)35 + (-0.15)0] = 10,938, meaning the loss amount 
follows a gamma distribution with parameters  m = 10,938 and f  = 0.3. Note that the 
f  parameter is the same as for the first driver in our example, since f  is constant for 
all risks in a GLM.

In this simple example, the specifications of the model—the distribution, the target 
variable and predictors to include—are given. In the real world, such decisions are often 
not straightforward. They are continually refined over many iterations of the model 
building process, and require a delicate balance of art and science.1 The tools and concepts  

1 As for the link function, it is usually the case that the desirability of a multiplicative rating plan trumps all other 
considerations, so the log link is almost always used. One notable exception is where the target variable is binary 
(i.e., occurrence or non-occurrence of an event), for which a special link function must be used, as discussed later 
in this chapter.
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that help guide proper model specification and selection for the purpose of building an 
optimal rating plan are the primary focus of this monograph.

2.2. Exponential Family Variance
The particulars of the exponential family of distributions are complex, and most 

are not important from the viewpoint of the practitioner and will not be covered in 
this monograph. [For a fuller treatment, see Clark and Thayer (2004).] However, it is 
necessary to understand the first two central moments of this family of distributions 
and how they relate to the parameters.

Mean.  As noted above, the mean of every exponential family distribution is m.

Variance.  The variance is of the following form:

Var y Vf m[ ] ( )= (3)

That is, the variance is equal to f (the dispersion parameter) times some function 
of m, denoted V(m). The function V(m) is called the variance function, and its actual 
definition depends on the specific distribution being used. Table 1 shows the variance 
functions for several of the exponential family distributions.

As shown in Table 1, for the normal distribution, the function V(m) is a constant, 
and so the variance does not depend on m. For all other distributions, however, V(m) 
is a function of m, and in most cases it is an increasing function. This is a desirable 
property in modeling insurance data, as we expect that higher-risk insureds (in GLM-
speak, insureds with higher values of m) would also have higher variance. Recall that 
a constraint of GLMs that we need to live with is that the f parameter must be a 

Table 1.  The Exponential Family Variance Functions

Distribution Variance Function [V(m)] Variance [fV(m)]

normal 1 f

Poisson m fm

gamma m2 fm2

inverse Gaussian m3 fm3

negative binomial2 m (1+km) fm (1+km)

binomial m (1-m) fm (1-m)

Tweedie mp fmp

2 Note that for the negative binomial distribution, the dispersion parameter f is restricted to be 1. As such, although 
this table shows expressions for both the variance function and the variance (for the sake of completeness), they 
are in fact equivalent.
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constant value for all risks. Thanks to the variance function of the exponential family, 
however, this doesn’t mean the variance must be constant for all risks; our expectation 
of increasing variance with increasing risk can still be reflected in a GLM.

To illustrate this last point, recall our previous example, where we predicted the 
average severities for two drivers using the same model, with the predictions being $3,464 
and $10,938. In both cases, the f parameter was held constant at 0.3. Following 
Equation 3 and the gamma entry for V(m) in Table 1, we can calculate the variance 
in loss amount for the first driver as 0.3 × 3,4642 = 3.6 × 106, while the second 
driver has a variance of 0.3 × 10,9382 = 35.9 × 106. Thus the higher-risk driver has 
a higher variance than the lower-risk driver (an intuitive assumption) despite the 
restriction of constant f .

The third column in Table 1 reminds the reader that the variance function is not 
the variance. To get the actual variance, one must multiply the variance function by the 
estimated f, which in effect serves to scale the variance for all risks by some constant 
amount.

2.3. Variable Significance
For each predictor specified in the model, the GLM software will return an estimate 

of its coefficient. However, it is important to recognize that those estimates are just 
that—estimates, and are themselves the result of a random process, since they were 
derived from data with random outcomes. If a different set of data were used, with all 
the same underlying characteristics but with different outcomes, the resulting estimated 
coefficients would be different.

An important question for each predictor then becomes: is the estimate of the 
coefficient reasonably close to the “true” coefficient? And, perhaps more importantly: 
does the predictor have any effect on the outcome at all? Or, is it the case that the 
predictor has no effect—that is, the “true” coefficient is zero, and the (non-zero) 
coefficient returned by the model-fitting procedure is merely the result of pure chance?

Standard GLM software provides several statistics for each coefficient to help answer 
those questions, among which are the standard error, p-value, and confidence interval.

2.3.1. Standard Error
As described above, the estimated coefficient is the result of a random process. 

The standard error is the estimated standard deviation of that random process. For 
example, a standard error of 0.15 assigned to a coefficient estimate may be thought of 
as follows: if this process—collecting a dataset of this size (with the same underlying 
characteristics but different outcomes) and putting it through the GLM software with 
the same specifications—were replicated many times, the standard deviation of the 
resulting estimates of the coefficient for this predictor would be approximately 0.15.

A small standard deviation indicates that the estimated coefficient is expected to 
be close to the “true” coefficient, giving us more confidence in the estimate. On the 
other hand, a large standard deviation tells us that a wide range of estimates could be 
achieved through randomness, making it less likely that the estimate we got is close to 
the true value.



Casualty Actuarial Society 9

Generalized Linear Models for Insurance Rating

Generally, larger datasets will produce estimates with smaller standard errors than 
smaller datasets. This is intuitive, as more data allows us to “see” patterns more clearly.

The standard error is also related to the estimated value of f : the larger the estimate 
of f , the larger the standard errors will be. This is because a larger f  implies more variance 
in the randomness of the outcomes, which creates more “noise” to obscure the “signal,” 
resulting in larger standard errors.

2.3.2. p-value
A statistic closely related to the standard error (and indeed derived from the stan-

dard error) is the p-value. For a given coefficient estimate, the p-value is an estimate 
of the probability of a value of that magnitude (or higher) arising by pure chance.

For example, suppose a certain variable in our model yields a coefficient of 1.5 with 
a p-value of 0.0012. This indicates that, if this variable’s true coefficient is zero, the 
probability of getting a coefficient of 1.5 or higher purely by chance is 0.0012.3 In this 
case, it may be reasonable to conclude: since the odds of such a result arising by pure 
chance is small, it is therefore likely that the result reflects a real underlying effect—that 
is, the true coefficient is not zero. Such a variable is said to be significant.

On the other hand, if the p-value is, say, 0.52, it means that this variable—even 
if it has no effect—is much more likely to yield a coefficient of 1.5 or higher by 
chance; as such, we have no evidence from the model output that it has any effect at 
all. Note that this is not to say that we have evidence that it has no effect—it may be 
that the effect is actually there, but we would need a larger dataset to “see” it through 
our GLM.

Tests of significance are usually framed in terms of the null hypothesis—that is, the 
hypothesis that the true value of the variable in question is zero. For a p-value sufficiently 
small, we can reject the null hypothesis—that is, accept that the variable has a non-zero 
effect on the expected outcome. A common statistical rule of thumb is to reject the 
null hypothesis where the p-value is 0.05 or lower. However, while this value may seem 
small, note that it allows for a 1-in-20 chance of a variable being accepted as significant 
when it is not. Since in a typical insurance modeling project we are testing many 
variables, this threshold may be too high to protect against the possibility of spurious 
effects making it into the model.

2.3.3. Confidence Interval
As noted above, the p-value is used to guide our decision to accept or reject the 

hypothesis that the true coefficient is zero; if the p-value is sufficiently small, we reject it. 

3 It is perhaps worth clarifying here what is meant by “the probability of getting a coefficient of 1.5 or higher.” 
Certainly, there is no randomness in the GLM fitting process; for any given set of data and model specifications, 
the GLM will produce the same result every time it is run, and so the probability of getting the coefficient of 1.5 
with this data is 100%. However, recall that the estimates produced are random because they are derived from 
a dataset with random outcomes. Thus, the interpretation of the p-value may be stated as: if the true coefficient 
is zero—that is, the variable has no correlation with the outcome—there is a 0.0012 probability of the random 
outcomes in the data being realized in such a way that if the resultant dataset is entered into a GLM the estimated 
coefficient for this variable would be 1.5 or higher.
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However, a hypothesis of zero is just one of many hypotheses that could conceivably 
be formulated and tested; we could just as easily hypothesize any other value and test 
against it, and the p-value would be inversely related to the degree to which the estimated 
coefficient differs from our hypothesized coefficient. It is then natural to ask: what range 
of values, if hypothesized, would not be rejected at our chosen p-value threshold? This 
range is called the confidence interval, and can be thought of as a reasonable range of 
estimates for the coefficient.

Confidence intervals are typically described by the complement of the p-value 
threshold used to compute them, expressed as a percentage. E.g., the confidence 
inter val based on a p-value threshold of 0.05 is called the 95% confidence interval. 
SAS and other GLM software typically return the 95% confidence interval by 
default but provide the option to return a confidence interval for any chosen p-value 
threshold.

As an example: suppose, for a particular predictor, the GLM software returns 
a coefficient of 0.48, with a p-value of 0.00056 and a 95% confidence interval of 
[0.17, 0.79]. In this case, the low p-value indicates that the null hypothesis can be 
rejected. However, all values in the range 0.17 to 0.79 are sufficiently close to 0.48 
such that, if set as initial hypotheses, the data would produce p-values of 0.05 or 
higher. Assuming that we are comfortable with a threshold of p = 0.05 for accept/
reject decisions, hypotheses of values in that range would not be rejected, and so that 
range could be deemed to be a reasonable range of estimates.

2.4. Types of Predictor Variables
Predictor variables that go into a GLM are classified as being either categorical or 

continuous, and each of those types of variable is given a different treatment.
A continuous variable is a numeric variable that represents a measurement on a 

continuous scale. Examples include age, amount of insurance (in dollars), and population 
density.

A categorical variable is a variable that takes on one of two or more possible values, 
thereby assigning each risk to a “category.” A categorical variable may be numeric 
or non-numeric. Examples are: vehicle primary use (one of either “commute” or 
“pleasure”); vehicle type (one of “sedan,” “SUV,” “truck,” or “van”); or territory  
(a value from 1 to 8, representing the territory number). The distinct values that  
a categorical value may take on are called levels.

2.4.1. Treatment of Continuous Variables
The treatment of continuous variables in a GLM is straightforward: each continuous 

variable is input into the GLM as-is, and the GLM outputs a single coefficient for it. 
This results in the linear predictor holding a direct linear relationship with the value of 
the predictor: for each unit increase in the predictor, the linear predictor rises by the 
value of the coefficient (or declines, in the case of a negative coefficient). If a log link 
was used, this in turn results in the predicted value increasing or decreasing by some 
constant percentage for each unit increase in the predictor.
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Logging Continuous Variables.  When a log link is used, it is often appropriate 
to take the natural logs of continuous predictors before including them in the model, 
rather than placing them in the model in their original forms. This allows the scale of 
the predictors to match the scale of the entity they are linearly predicting, which in 
the case of a log link is the log of the mean of the outcome.

When a logged continuous predictor is placed in a log link model, the resulting 
coefficient becomes a power transform of the original variable. To see this mathematically, 
consider the simple case of a model with only an intercept term and a single continuous 
predictor x. Applying a log link, and logging predictor x, Equation 2 becomes:

xm b b= +ln ln0 1

To derive m, we exponentiate both sides:

e e e xxm b b b b= × = ×ln0 1 0 1

As demonstrated, when deriving the prediction, the coefficient b 1 becomes an 
exponent applied to the original variable x. To make this example more concrete, 
suppose x represents amount of insurance (AOI) in thousands of dollars; we log AOI 
and place it into a log link model, and the resulting coefficient is 0.62. We can use 
this information to derive a relativity factor for any AOI relative to a “base” AOI by 
raising the AOI to a power of 0.62 and dividing that by the base AOI raised to that 
same power. If our base AOI is $100,000, the indicated relativity for $200,000 of 
AOI is 2000.62/1000.62 = 1.54—in other words, a property with $200,000 of AOI has 
an expected outcome 54% higher than that of a property with $100,000 of AOI.

Including continuous predictors in their logged form allows a log link GLM flexibility 
in fitting the appropriate response curve. Some examples of the indicated response curves 
for different positive values of the coefficient are shown in the left panel of Figure 1. If the 
variable holds a direct linear relationship with the response, the estimated coefficient will 

Figure 1.  Indicated Response Curve for Logged 
Continuous Variable (left) and Unlogged Continuous 
Variable (right)
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be near 1.0 (solid line). A coefficient between 0 and 1 (such as the 0.6 coefficient illustrated 
by the dashed line) would indicate that the mean response increases with the value of 
the predictor, but at a decreasing rate; this shape is often appropriate for predictors in 
insurance models. A coefficient greater than 1—such as 1.2, the dotted line—will yield a 
curve that increases at a mildly increasing rate. (Negative coefficients would yield response 
curves that are the “flipped” images of those illustrated here; a coefficient of -1.0 would 
indicate a direct inverse relationship, -0.6 would indicate a function that decreases at a 
decreasing rate, and the curve for -1.2 would be decreasing at an increasing rate.)

On the other hand, if the variable x is not logged, the response curve for any 
positive coefficient will always have the same basic shape: exponential growth, that is, 
increasing at an increasing rate. The right panel of Figure 1 illustrates the kinds of fits 
that might be produced for variables similar to those in the left panel if the variable x 
were not logged. As can be seen, a direct linear relationship (the gray line) is no longer 
an option. Only an exponential growth curve can be achieved; the magnitude of the 
growth varies with the coefficient. To be sure, there may be some instances where 
such a shape may be warranted; for example, if x is a temporal variable (such as year) 
meant to pick up trend effects, it may be desirable for x to yield an exponential growth 
relationship with the response, as trend is often modeled as an exponential function. 
In general, though, rather than viewing logging as a transformation of a continuous 
variable, it is often useful to consider the logged form of a variable the “natural” state 
of a predictor in a log link model, with the original (unlogged) variable viewed as a 
“transformation” that should only be used in certain specific cases.

Note that this suggestion is not due to any statistical law, but rather it is a rule 
of thumb specific to the context of insurance modeling, and is based on our a priori 
expectation as to the relationship between losses and the continuous predictors typically 
found in insurance models. For some variables, logging may not be feasible or practical. 
For example, variables that contain negative or zero values cannot be logged without  
a prior transformation. Also, for “artificial” continuous variables (such as credit scores) 
we may not have any a priori expectation as to whether the natural form or the logged 
form would better capture the loss response.

Also note that when including a logged continuous variable in a log link model, 
the underlying assumption is that the logged variable yields a linear relationship with 
the logged mean of the outcome. Certainly, there are many instances of predictors for 
which such will not be the case. An example is the effect of driver age on expected auto 
pure premium, which is typically at its highest for teen drivers and declines as drivers 
mature into their twenties and thirties, but rises again as the drivers enter their senior 
years. Regardless of whether the original variable has been logged or not, it is crucial to 
test the assumption of linearity and make adjustments where appropriate. Techniques 
for detecting and handling such non-linear effects will be discussed in Chapter 5.

2.4.2. Treatment of Categorical Variables
When a categorical variable is used in a GLM the treatment is a bit more involved. 

One of the levels is designated as the base level. Behind the scenes, the GLM software 
replaces the column in the input dataset containing the categorical variable with a 
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series of indicator columns, one for each level of that variable other than the base level. 
Each of those columns takes on the values 0 or 1, with 1 indicating membership of 
that level. Those columns are treated as separate predictors, and each receives its own 
coefficient in the output. This resulting dataset is called the design matrix.

To illustrate: suppose, in an auto frequency model, we wish to include the 
categorical variable “vehicle type,” which can be either “sedan,” “SUV,” “truck” or 
“van.” We designate “sedan” as the base level.

Table 2 shows the target variable and vehicle type columns for the first five rows of 
our dataset. The vehicle type variable is named “vtype” in the data.

Prior to fitting the GLM, the software will transform the data to create indicator 
variables for each level of vtype other than “sedan,” our base level. Table 3 shows the 
resulting design matrix.

Record 1, which is of vehicle type “SUV,” has a 1 in the vtype:SUV column and 
zeros for all other columns relating to vehicle type. Similarly, record 2 has a 1 in the 
vtype:truck column and zeros in all the others. There is no column corresponding to 
vehicle type “sedan”; record 3’s membership in that level is indicated by all three vehicle 
type columns being zero. Each of the newly-created vehicle type columns is treated as 
a separate predictor in Equation 2.

For a risk of any non-base level, when the values for the indicators columns are 
linearly combined with their respective coefficients in Equation 2, the coefficients 

Table 2.  Input Data to the GLM

freq vtype . . . other predictors . . .

0 SUV . . .

0 truck . . .

1 sedan . . .

0 truck . . .

0 van . . .

. . . . . . . . .

Table 3.  Design Matrix

predictor: freq vtype:SUV vtype:truck vtype:van . . . other predictors . . .

symbol: y x1 x2 x3 x4 . . . xp

0 1 0 0 . . .

0 0 1 0 . . .

1 0 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .

. . . . . . . . . . . . . . .
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relating to all other levels are multiplied by zero and drop out, while the coefficient 
relating to the level to which it belongs is multiplied by one and remains. For a risk of 
the base level, all the coefficients drop out. As such, the coefficient for each non-base 
level indicates the effect of being a member of that level relative to the base level.

Continuing with our example, suppose the GLM returns the estimates shown in 
Table 4 for the three non-base vehicle types.

To use this output to derive the linear predictor for an SUV, we plug the coefficients 
of Table 4 and the x predictors of Table 3 into Equation 2:

m b b b

b b b

1.23 1 0.57 0 0.30 0 . . .

1.23 . . .

0 4 4

0 4 4

g x x

x x

p p

p p

( ) ( )= + × + × + − × + + +

= + + + +

As seen, all coefficients related to vehicle type for types other than “SUV” drop 
out of the equation, and only the coefficient for SUVs (1.23) remains. Since for a risk 
of vehicle type “sedan” all the vehicle type coefficients would drop out, the positive 
coefficient applied to SUVs indicates that their claim frequency is greater than that of 
sedans. Similarly, the negative coefficient attached to “van” indicates that claims are less 
frequent for vans than for sedans.

If a log link was used, a factor table for vehicle type can be constructed from this 
output by exponentiating each of the above coefficients. For the base level (sedan in 
this example) the factor is 1.000, since the effect of this vehicle type on the linear 
predictor is zero (and e0 = 1). An SUV would get a rating factor of e1.23 = 3.421, 
indicating that the expected frequency for SUVs are 242% greater than that of sedans. 
The rating factor for a van would be e -0.30 = 0.741, indicating an expected frequency 
that is 25.9% lower than that of sedans.

We now turn our attention to the significance statistics for this model (that is, 
the rightmost two columns of Table 4). These statistics help us assess our confidence 
in the values the parameters being non-zero. In the context of this model—where the 
parameters relate each level of vehicle type to the base level—a parameter of zero 
would mean that the level has the same mean frequency as the base level. It follows 
that the significance of the parameter measures the confidence that the level is 
significantly different from the base level.

The low p-value assigned to the vtype:SUV parameter indicates that the frequency 
for SUVs is significantly higher than that of sedans. For vans, on the other hand, the 
high p-value tells us that there is not enough evidence in the data to conclude that the 
frequency for vans is indeed lower than that of sedans.

Table 4.  GLM Parameter Estimates for Vehicle Type

Parameter Coefficient Std. Error p-Value

vtype:SUV (b 1) 1.23 0.149 <0.0001

vtype:truck (b 2) 0.57 0.175 0.0011

vtype:van (b 3) -0.30 0.436 0.4871
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A graphical representation of the estimates of Table 4 can be seen in the left panel 
of Figure 2. The filled squares show the GLM estimates, and the error bars around them 
indicate the 95% confidence intervals around those estimates. The vertical gray bars 
at the bottom are proportional to the volume of data for each vehicle type. We can see 
that “van,” the level with the least amount of data, has the widest error bar. In general, 
for categorical variables, sparser levels tend to have wider standard errors, indicating 
less confidence in their parameter estimates, since those estimates are based on less 
data. The “van” error bar also crosses the zero line, indicating that this estimate is not 
significant at the 95% confidence level.

2.4.3. Choose Your Base Level Wisely!
In the above example, we’ve set the base level for vehicle type to be “sedan.” Table 5 

shows what the output would be had we used “van” as the base level instead.
This model is equivalent to that of Table 4 in that both would produce the same 

predictions. To be sure, the coefficients are different, but that is only because they are 
relating the levels to a different base. To see this, subtract the coefficient for “sedan” 

Table 5.  Parameter Estimates After Setting “van” 
as the Base Level

Parameter Coefficient Std. Error p-Value

vtype:sedan (b 1) 0.30 0.436 0.4871

vtype:SUV (b 2) 1.53 0.425 0.0003

vtype:truck (b 3) 0.88 0.434 0.0440

Figure 2.  Graphical representation of the parameter 
estimates for vehicle type, with “sedan” as the base level 
(left panel ) and with “van” as the base level (right panel ). 
The filled squares show the GLM estimates, and the error 
bars around them indicate the 95% confidence intervals 
around those estimates. The vertical gray bars at the 
bottom are proportional to the volume of data for each 
vehicle type.
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from that of any of the other levels (using 0 for “van”), and compare the result to the 
corresponding coefficient on Table 4.

What has changed, though, are the significance statistics. Whereas for the prior 
model the “SUV” and “truck” estimates were highly significant, after running this 
model the p-values for both have increased, indicating less confidence in their estimates. 
The parameters are plotted in the right panel of Figure 2. We can see that the error bars 
have widened compared to the prior model.

To understand why, recall that the significance statistics for categorical variable 
parameters measure the confidence in any level being different from the base level. As such, 
to be confident about that relationship, we need confidence about both sides of it—the 
mean response of the parameter in question, as well as that of the base level. In this case, 
our base level has sparse data, which does not allow the model to get a good read on its 
mean frequency, and so we can’t be certain about the relativity of any other level to it either.

As such, when using categorical variables, it is important to set the base level to 
be one with populous data—and not simply take the default base assigned by the 
software—so that our measures of significance will be most accurate.

2.5. Weights
Frequently, the dataset going into a GLM will include rows that represent the 

averages of the outcomes of groups of similar risks rather than the outcomes of individual 
risks. For example, in a claim severity dataset, one row might represent the average loss 
amount for several claims, all with the same values for all the predictor variables. Or, 
perhaps, a row in a pure premium dataset might represent the average pure premium for 
several exposures with the same characteristics (perhaps belonging to the same insured).

In such instances, it is intuitive that rows that represent a greater number of 
risks should carry more weight in the estimation of the model coefficients, as their 
outcome values are based on more data. GLMs accommodate that by allowing the user 
to include a weight variable, which specifies the weight given to each record in the 
estimation process.

The weight variable, usually denoted w , formally works its way into the math of 
GLMs as a modification to the assumed variance. Recall that the exponential family 
variance is of the form Var[ y ] = fV(m). When a weight variable is specified, the assumed 
variance for record i becomes

Var y
V

i
i

i

f m
w

[ ] ( )= ,

that is, the “regular” exponential family variance divided by the weight. The variance 
therefore holds an inverse relation to the weight.

When the weight variable is set to be the number of records that an aggregated 
row represents, this specification of variance neatly fits with our expectations of the 
variance for such aggregated records. Recall that a basic property of variances is that 
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for a random variable X, Var X n
n

Var Xi∑[ ]( ) [ ]= 1
; in other words, the variance of 

the average of n independent and identically distributed random variables is equal to 
1/n times the variance of one such random variable. As such, a row representing the 
average loss amount of two claims would be expected to have half the variance of a 
single-claim row, and so on. Setting the weight to be the number of claims allows the 
GLM to reflect that expectation.

2.6. Offsets
When modeling for insurance rating plans, it is often the case that the scope of the 

project is not to update the entire plan at once; rather, some elements will be changed 
while others remain as-is. Some common examples:

• Rating algorithms typically begin with a base loss cost that varies by region or class, 
which is derived outside of the GLM-based analysis and may even be separately 
filed. The scope of the GLM project may be to update the rating factors only while 
the relative base loss costs remain static.

• When updating deductible factors, it is frequently desirable to calculate them using 
traditional loss elimination-based techniques, while the GLM is used for factors 
other than deductible. (Section 9.1 discusses this in more detail.)

In such instances, the “fixed” variable (base loss cost or deductible in the above 
examples) would not be assigned an estimated coefficient by the GLM. However, 
since it will be part of the rating plan the GLM is intended to produce, the GLM 
must be made aware of its existence so that the estimated coefficients for the other 
variables are optimal in its presence. GLMs provide the facility to do so through the 
use of an offset.

An offset is formally defined as a predictor whose coefficient is constrained to be 1. 
Mathematically, it is an added term to Equation 2:

g x x xi i i p ipm b b b b( ) = + + + + + ooffffsseett0 1 1 2 2

When including an offset in a model, it is crucial that it be on the same “scale” as 
the linear predictor. In the case of a log link model, this requires the offset variable to 
be logged prior to inclusion in the model.

As an example, suppose the rating plan we intend to produce using a log-link 
GLM will include a factor for deductible, for which the base deductible level is $500, 
with the other options being $1,000 and $2,500. The deductible factors, having been 
separately estimated using non-GLM methods, are 0.95 for the $1,000 deductible 
and 0.90 for the $2,500 deductible. (The $500 deductible, being the base level, is 
assigned a factor of 1.00.) As we do not wish to alter these factors—but would like  
to ensure that the other factors estimated by the GLM are optimized for a rating 
plan that includes them—we include the deductible factors in the GLM as an offset. 
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To do so, we create a new variable, set to be ln(1.00) = 0 for those records with the base 
deductible of $500, ln(0.95) = –0.0513 for those records with $1,000 deductibles, 
and ln(0.90) = –0.1054 for records with $2,500 deductibles. That variable is set as the 
offset in the GLM specification.4

Multiple offsets can be included by simply adding them together (after first 
transforming them to the linear predictor scale). So, supposing we wish to offset a log-
link model for both the territorial base loss cost and the deductible, a record for a risk 
in a territory with a base loss cost of $265 having a deductible factor of 0.90 would 
have its offset variable set to be ln(265) + ln(0.90) = 5.5797 + (–0.1054) = 5.4744.

Exposure Offsets.  Offsets are also used when modeling a target variable that is 
expected to vary directly with time on risk or some other measure of exposure. An 
example would be where the target variable is the number of claims per policy for an 
auto book of business where the term lengths of the policies vary; all else equal, a policy 
covering two car years is expected to have twice the claims as a one-year policy. This 
expectation can be reflected in a log-link GLM by including the (logged) number of 
exposures—car years in this example—as an offset.

Note that this approach is distinct from modeling claims frequency, i.e., where the 
target variable is the number of claims divided by the number of exposures, which is 
the more common practice. In a frequency model, the number of exposures should be 
included as a weight, but not as an offset. In fact: a claim count model that includes 
exposure as an offset is exactly equivalent to a frequency model that includes exposure 
as a weight (but not as an offset)—that is, they will yield the same predictions, 
relativity factors and standard errors.5

To gain an intuition for this relationship, recall that an offset is an adjustment 
to the mean, while the weight is an adjustment to the variance. For a claim count 
model, additional exposures on a record carry the expectation of a greater number 
of claims, and so an offset is required. While the variance of the claim count is 
also expected to increase with increasing exposure—due to the exponential family’s 
inherent expectation of greater mean implying greater variance—this is naturally 
handled by the GLM’s assumed mean/variance relationship, and so no adjustment 
to variance (i.e., no weight variable) is necessary. For a claim frequency model, on the 
other hand, additional exposure carries the expectation of reduced variance (due to 
the larger volume of exposures yielding greater stability in the average frequency), 
but no change to the expected mean, and therefore a weight—but no offset— 
is needed.6

4 This example is for a log-link GLM. For an example of the use of an offset in a logistic model, see CAS Exam 8, 
Fall 2018 Question 7. (Logistic regression is discussed later in this chapter.)

5 Note that while this equivalence holds true for the Poisson (or overdispersed Poisson) distribution, it does not 
work for the negative binomial distribution since the two approaches may yield different estimates of the negative 
binomial parameter k. (These distributions are discussed in the next section.)

6 See Yan et al [2009] for a more detailed discussion of this equivalence and its derivation.



Casualty Actuarial Society 19

Generalized Linear Models for Insurance Rating

The following table summarizes this equivalence.

Claim Count Frequency

Target Variable # of claims
of claims

of osures
#

# exp

Distribution Poisson Poisson

Link log log

Weight None # of exposures

Offset ln(# of exposures) None

2.7. An Inventory of Distributions
The following sections describe several of the exponential family distributions 

available for use in a GLM, with a focus on the types of target variables typically modeled 
when developing rating plans: severity, frequency, pure premium and loss ratio.

2.7.1. Distributions for Severity
When modeling the severity of claims or occurrences, two commonly used dis-

tributions are the gamma and inverse Gaussian distributions.

Gamma.  The gamma distribution is right-skewed, with a sharp peak and a long 
tail to the right, and it has a lower bound at zero. As these characteristics tend to 
be exhibited by empirical distributions of claim severity, the gamma is a natural fit 
(and indeed the most widely used distribution) for modeling severity in a GLM. The  
gamma variance function is V(m) = m2, meaning that the assumed variance of the severity 
for any claim in a gamma model is proportional to an exponential function of its mean.

Figure 3 shows several examples of the gamma probability density function (pdf ) 
curves for varying values of m and f . The two black lines illustrate gamma with f  = 1, 
with means of 1 and 5. The two gray lines show gamma curves with those same means 

Figure 3.  The Gamma Distribution

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

m = 1, f = 1
m = 5, f = 1
m = 1, f = 0.25
m = 5, f = 0.25



20 Casualty Actuarial Society

Generalized Linear Models for Insurance Rating

but with a lower value of f. As you would expect, the gray lines indicate lower variance 
than their corresponding black lines. However, also note that the value of f does not 
tell the full story of the variance. Comparing the two gray lines, it is clear that gamma 
with m = 5 (dashed line) has a much wider variance than gamma with m = 1 (solid line), 
despite their having the same value of f . This, of course, is due to the variance function 
V(m ) = m 2, which assigns higher variance to claims with higher expected means, and is 
a desirable characteristic when modeling severity in a GLM. We would expect claims 
with higher average severity to also exhibit higher variance in severity, and this property 
allows us to reflect that assumption in a GLM even though the dispersion parameter f 
must be held constant for all claims.

Inverse Gaussian.  The inverse Gaussian distribution, like the gamma distribution, 
is right-skewed with a lower bound at zero, which makes it another good choice for 
modeling severity. Compared to the gamma, it has a sharper peak and a wider tail, 
and is therefore appropriate for situations where the skewness of the severity curve is 
expected to be more extreme. (Later in this text we will discuss formal tests that can be 
applied to the data to assess the appropriateness of the various distributions.)

The variance function for the inverse Gaussian distribution is V(m) = m 3; like 
the gamma, the inverse Gaussian variance scales exponentially with the mean, but 
at a faster rate.

Figure 4 shows two examples of the inverse Gaussian distribution (the two solid 
lines) each compared to a gamma distribution with the same mean and variance (the 
dotted lines). As can be seen, the shapes of the inverse Gaussian distributions have 
sharper peaks and are more highly skewed than their gamma counterparts.7

Figure 4.  The Inverse Gaussian Distribution  
(as compared with the gamma distribution)
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7 For the two m = 5 curves (the gray lines) in Figure 4, a gamma distribution with f = 0.25 is compared to an inverse 
Gaussian distribution with f = 0.05. This is so that the variance of the gamma curve (fm 2 = 0.25 × 52 = 6.25) is 
equal to that of the inverse Gaussian curve (fm 3 = 0.05 × 53 = 6.25). The intent is to demonstrate the difference 
in the curves that would be yielded by the two distributions for the same data; typically, the f  parameter under the 
inverse Gaussian distribution will be much lower than under the gamma distribution to compensate for the much 
larger values of V(m) in keeping the overall assumed variance roughly constant.
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2.7.2. Distributions for Frequency
When modeling claim frequency (e.g., expected claim count per unit of exposure or 

per dollar of premium), the most commonly used distribution is the Poisson distribution. 
Another available choice is the negative binomial distribution. Both are explained in the 
following sections.

Poisson.  The Poisson distribution models the count of events occurring within a fixed 
time interval, and is widely used in actuarial science as a distribution for claim counts. 
Although the Poisson is typically a discrete distribution (defined only for integral 
values) its implementation in a GLM allows it to take on fractional values as well. 
This feature is useful when modeling claim frequency, where claim count is divided 
by a value such as exposure or premium, resulting in a non-integral target variable.  
(In such instances it is usually appropriate to set the GLM weight to be the denominator 
of frequency.)

The variance function for a Poisson distribution is V(m) = m, meaning that the 
variance increases linearly with the mean. In fact, for a “true” Poisson distribution, the 
variance equals the mean; stated in terms of the exponential family parameters, this 
would mean that f = 1 and so it drops out of the variance formula, leaving Var[ y ] = m. 
However, claim frequency is most often found to have variance that is greater than the 
mean, a phenomenon called overdispersion.

Overdispersion arises mainly because in addition to the natural variance arising 
from the Poisson process, there is another source of variance: the variation in risk level 
among the policyholders themselves. In statistical terms: in addition to the Poisson 
variance, there is variance in the Poisson mean (m ) among risks. To be sure, determining 
the appropriate mean, and thereby separating the good risks from bad risks, is precisely 
the purpose of our modeling exercise. However, our model will not be perfect; there 
will always be some variation in risk level among policyholders not explained by our 
model’s predictors, and so the data will exhibit overdispersion.

One way to deal with this scenario is to use the overdispersed Poisson (ODP) 
distribution in place of the “true” Poisson. The overdispersed Poisson is similar to the 
Poisson distribution, with the main difference being the f  parameter: ODP allows 
it to take on any positive value rather than being restricted to 1 as is the case with 
the true Poisson.

When modeling claims frequency with the Poisson distribution, it is recommended 
that the overdispersed Poisson be used; otherwise, the variance will likely be under-
stated, thereby distorting the model diagnostic measures such as standard error and 
p-value. (Note that the Poisson and ODP distributions will always produce the same 
estimates of coefficients, and therefore the same predictions; it is only the model 
diagnostics that will be affected.)

Negative Binomial.  Another way of dealing with the overdispersion in the Poisson 
distribution resulting from random variation in the Poisson mean among risks is 
to treat the Poisson mean for any given risk as a random variable itself. Doing so, 
we would need another probability distribution to model the Poisson mean; a good 
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choice for that might be the gamma distribution. Such a setup would be stated 
mathematically as follows:

 y Poisson gammam q q ( )( )= , . . . . (4)

In words, the outcome ( y) is Poisson-distributed with a mean of q , where q  is itself 
random and gamma-distributed. This combination results in y following a negative 
binomial distribution.

For the negative binomial distribution, the standard exponential family dispersion 
parameter, f , is restricted to be 1. However, this distribution includes a third parameter, 
k , called the overdispersion parameter, which is related to the variance of the gamma 
distribution of Equation 4.

The negative binomial variance function is

V m m km( )( ) = +1

and so the k parameter serves to “inflate” the variance over and above the mean, which 
would be the variance implied by the Poisson distribution. Indeed, as k approaches zero, 
the negative binomial distribution approaches Poisson. (Note that for the negative 
binomial distribution, f , restricted to be 1, drops out of the variance formula and thus 
the variance function V(m ) is the full expression of the variance.)

2.7.3. A Distribution for Pure Premium: the Tweedie Distribution
Modeling pure premium (or loss ratio) at the policy level has traditionally been 

challenging. To see why, consider the properties these measures exhibit, which would 
need to be approximated by the probability distribution used to describe them: they are 
most often zero, as most policies incur no loss; where they do incur a loss, the distribution 
of losses tends to be highly skewed. As such, the pdf would need to have most of its mass 
at zero, and the remaining mass skewed to the right. Fortunately, a rather remarkable 
distribution that can capture these properties does exist: the Tweedie distribution.

In addition to the standard exponential family parameters m and f , the Tweedie 
distribution introduces a third parameter, p, called the power parameter. p can take on 
any real number except those in the interval 0 to 1 (non-inclusive: 0 and 1 themselves 
are valid values). The variance function for Tweedie is V(m ) = m p.

One rather interesting characteristic of the Tweedie distribution is that several of the 
other exponential family distributions are in fact special cases of Tweedie, dependent 
on the value of p:

• A Tweedie with p = 0 is a normal distribution.
• A Tweedie with p = 1 is a Poisson distribution.
• A Tweedie with p = 2 is a gamma distribution.
• A Tweedie with p = 3 is an inverse Gaussian distribution.

Going further, thanks to the Tweedie distribution, our choices in modeling 
claim severity are not restricted to the moderately-skewed gamma distribution and 
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the extreme skewness of the inverse Gaussian. The Tweedie provides a continuum  
of distrib utions between those two by simply setting the value of p to be between  
2 (gamma) and 3 (inverse Gaussian).

However, the area of the p parameter space we are most interested in is between 
1 and 2. At the two ends of that range are Poisson, which is a good distribution for 
modeling frequency, and gamma, which is good for modeling severity. Between 1 and 2,  
Tweedie becomes a neat combination of Poisson and gamma, which is great for 
modeling pure premium or loss ratio—that is, the combined effects of frequency and 
severity. (For the remainder of this text, references to the Tweedie distribution refer to 
the specific case of a Tweedie where p is in the range [1,2].)

A Poisson Sum of Gammas.  The Tweedie distribution models a “compound 
Poisson-gamma process.” Where events (such as claims) occur following a Poisson process, 
and each event generates a random loss amount that follows a gamma distribution, the 
total loss amount for all events follows the Tweedie distribution. In this way the Tweedie 
distribution may be thought of as a “Poisson-distributed sum of gamma distributions.”

In fact, the Tweedie parameters (m , f and p) bear a direct relationship to those of the 
underlying Poisson and gamma distributions; we will examine that more closely here.

Poisson has a single parameter, typically denoted l , which is both the mean and the 
variance. (In prior sections we’ve referred to the Poisson mean by the symbol m , following 
the Poisson’s exponential family form. For this section, we’ll use the “traditional” param-
eterizations of the underlying distributions, saving the symbol m  for the Tweedie mean.)

The gamma distribution takes two parameters: the shape and scale parameters, 
usually denoted a  and q , respectively. The mean is

, (5)•[ ] =a qE y

and the coefficient of variation is

CV a= 1 . (6)

The Tweedie mean can be related to those parameters as follows:

. (7)• •[ ] = =m l a qE y

Notice that this is the product of the Poisson mean (l ) and the gamma mean 
(a  z q ), as we would expect—pure premium equals expected frequency times expected 
severity.

The power parameter (p) is

p
a
a

= +
+

2
1

. (8)

As seen in Equation 8, the power parameter is purely a function of the gamma 
parameter a . Since a  is itself a function of the gamma coefficient of variation (as can 
be seen by rearranging Equation 6 above), it follows that the p parameter is a function 
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of the gamma CV. Specifically, as the gamma CV approaches zero, p approaches 1; 
as the gamma CV gets arbitrarily large, p approaches 2. Values of p used in insurance 
modeling typically range between 1.5 and 1.8.

The left panel of Figure 5 shows an example of a Tweedie density function where 
p = 1.02. A value of p so close to 1 implies very little variance in the gamma (or 
severity) component, and so the randomness of the outcome is mainly driven by the 
random count of events (or, the frequency component). As such, the shape of the 
distribution resembles a Poisson distribution, with spikes at discrete points, but with a 
small amount of variation around each point. Also note that the distribution features 
a point mass at 0, which allows for the (likely) possibility of no claims.

The right panel of Figure 5 illustrates a Tweedie pdf for the more realistic case of  
p = 1.67. In this example, the gamma variation is considerably larger and therefore the 
discrete Poisson points are no longer visible. However, the distribution still assigns a 
significant probability to an outcome of 0.

The formula for the Tweedie dispersion parameter (f ) is

2
. (9)

1 2
• ( )=

−

− −

f l aq
p

p p

Through equations 7, 8, and 9, the Tweedie parameters can be derived from any 
combination of the Poisson parameter (l ) and gamma parameters (a  and q )—and 
vice versa, with some algebraic manipulation.

In a Tweedie GLM, the m parameter varies by record, controlled by the linear 
predictor, while the f and p parameters are set to be constant for all records. One 
important implication of this is that a Tweedie GLM contains the implicit assumption 
that frequency and severity “move in the same direction”—that is, where a predictor 
drives an increase in the target variable (pure premium or loss ratio), that increase is 
made up of an increase in both its frequency and severity components. (To see this, 
try the following exercise: begin with any set of m, f  and p, and solve for l , a and q ; 

Figure 5.  The Tweedie Distribution, with p = 1.02 (left) 
and p = 1.67 (right)
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then, try increasing m  while holding f  and p constant. Both l and the product aq will 
move upward.) This assumption doesn’t always hold true, as often times variables in a 
model may have a positive effect on frequency while negatively affecting severity, or 
vice versa. However, Tweedie GLMs can be quite robust against such violations of 
its assumptions and still produce very strong models.

Determination of the p parameter.  There are several ways the Tweedie p parameter 
may be determined:

• Some model-fitting software packages provide the functionality to estimate p as 
part of the model-fitting process. (Note that using this option may increase the 
computation time considerably, particularly for larger datasets.)

• Several candidate values of p can be considered and tested with the goal of 
optimizing a statistical measure such as log-likelihood (discussed in Chapter 6) or 
using cross-validation (discussed in Chapter 4).

• Alternatively, many modelers simply judgmentally select some value that makes 
sense (common choices being 1.6, 1.67 or 1.7). This may be the most practical in 
many scenarios, as the fine-tuning of p is unlikely to have a very material effect on 
the model estimates.

2.8. Logistic Regression
For some models, the target variable we wish to predict is not a numeric value, 

but rather the occurrence or non-occurrence of an event. Such variables are called 
dichotomous or binary variables. Examples are:

• Whether or not a policyholder will renew their policy.
• Whether a newly-opened claim will wind up exceeding some specified loss 

amount threshold.
• Whether a potential subrogation opportunity for a claim will be realized.

Such a model would be built based on a dataset of historical records of similar 
scenarios for which the outcome is currently known. The target variable, yi, takes on 
the value of either 0 or 1, where 1 indicates that the event in question did occur, and 
0 indicates that it did not.

Distribution.  To model such a scenario in a GLM, the distribution of the target 
variables is set to be the binomial distribution. The mean of the binomial distribution—
that is, the prediction generated by the model—is the probability that the event will occur.

Link Function.  When modeling a dichotomous variable using the binomial dis-
tribution, a special type of link function must be used. Why not just use the log link? 
That’s because a basic property of GLMs is that the linear predictor—that is, the right-
hand side of Equation 2—is unbounded, and can take on any value in the range 
[-∞,+∞]. The mean of the binomial distribution, on the other hand, being a measure 
of probability, must be in the range [0,1]. As such, we will need a link function that 
can map a [0,1]-ranged value to be unbounded.
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There are several link function that are available for this purpose, but the most 
common is the logit link function,8 defined as follows:

g m m
m

( ) =
−

ln
1

. (10)

The left panel of Figure 6 shows a graph of the logit function. As can be seen, the logit 
approaches -∞ as m approaches zero, and becomes arbitrarily large as m approaches 1.

The right-hand side of Figure 6 shows the inverse of the logit function, called 
the logistic function, defined as 1/(1 + e -x). In a GLM, this function translates the 
value of the linear predictor onto the prediction of probability. A large negative linear 
predictor would indicate a low probability of occurrence, and a large positive linear 
predictor would indicate a high probability; a linear predictor of zero would indicate 
that the probability is 50%.

The full specification of a logistic regression model can be summarized as follows:

y binomiali im( ) (11)

x x xi

i
i i p ip

m
m

b b b b
−

= + + + +ln
1

. . . . (12)0 1 1 2 2

Interpreting Results of a Logistic Model.  The logit function of Equation 10 can 
be interpreted as the log of the odds, where the odds is defined as the ratio of the 
probability of occurrence to the probability of non-occurrence, or m

m− .1
 The odds is 

an alternate means of describing probability, which, unlike probability—which must 
lie in the region [0,1]—is unbounded in the positive direction. (Think of a near-certain 
event, which might be said to have “million-to-one” odds.)

Figure 6.  The Logit Function (left ) and Its Inverse, 
the Logistic Function (right )
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8 Others are the probit link and complementary log-log link, not covered in this text.
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Exponentiating both sides of Equation 12, the logistic GLM equation becomes 
a multiplicative series of terms that produces the odds of occurrence. This leads to 
a natural interpretation of the coefficients of the GLM (after exponentiating) as 
describing the effect of the predictor variables on the odds. For example, a coefficient 
of 0.24 estimated for continuous predictor x indicates that a unit increase in x increases 
the odds by e0.24 - 1 = 27%. A coefficient of 0.24 estimated for a given level of a 
categorical variable indicates that the odds for that level is 27% higher than that of the 
base level.

2.9. Correlation Among Predictors,  
Multicollinearity and Aliasing

Frequently, the predictors going into a GLM will exhibit correlation among them. 
Where such correlation is moderate, the GLM can handle that just fine. In fact, 
determining accurate estimates of relativities in the presence of correlated rating variables 
is a primary strength of GLMs versus univariate analyses; unlike univariate methods, the 
GLM will be able to sort out each variable’s unique effect on the outcome, as distinct 
from the effect of any other variable that may correlate with it, thereby ensuring that no 
information is double-counted.

As such, before embarking on a GLM modeling project, it is important to 
understand the correlation structure among the predictors. This will aid in interpreting 
the GLM output—particularly in understanding significant deviations between the 
GLM indications versus what would be indicated by a series of univariate analyses of 
individual predictors.

Where the correlation between any two predictors is very large, however, the GLM 
may run into trouble. The high correlation means that much of the same information 
is entering the model twice. The GLM—forced not to double-count—will need to 
apportion the response effect between the two variables, and how precisely best to do 
so becomes a source of great uncertainty. As such, coefficients may behave erratically; 
it is not uncommon to see extremely high or low coefficients result in such scenarios. 
Furthermore, the standard errors associated with those coefficients will be large, and 
small perturbations in the data may swing the coefficient estimates wildly. Such a model 
is said to be unstable.

Such instability in a model should be avoided. As such it is important to look out 
for instances of high correlation prior to modeling, by examining two-way correlation 
tables. Where high correlation is detected, means of dealing with this include the 
following.

• For any group of correlated predictors, remove all but one from the model. While 
this is certainly the simplest approach, a potential downside is that there may be 
some unique information, distinct from the common information, contained in 
individual predictors that will not be considered in our modeling process.

• Pre-process the data using dimensionality-reduction techniques such as principal 
components analysis (PCA) or factor analysis. These methods create multiple new 
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variables from correlated groups of predictors. Those new variables exhibit little 
or no correlation between them—thereby making them much more useful in a 
GLM—and they may be representative of the different components of underlying 
information making up the original variables. The details of such techniques are 
beyond the scope of this paper.

Multicollinearity.  Simple correlation between pairs of predictors are easy enough 
to detect using a correlation matrix. A more subtle potential problem may exist where 
two or more predictors in a model may be strongly predictive of a third, a situation 
known as multicollinearity. The same instability problems as above may result, since 
the information contained in the third variable is also present in the model in the form 
of the combination of the other two variables. However, the variable may not be highly 
correlated with either of the other two predictors individually, and so this effect will not 
show up in a correlation matrix, making it more difficult to detect.

A useful statistic for detecting multicollinearity is the variance inflation factor 
(VIF), which can be output by most statistical packages. The VIF for any predictor is 
a measure of how much the (squared) standard error for the predictor is increased due 
to the presence of collinearity with other predictors. It is determined for each predictor 
by running a linear model setting the predictor as the target and using all the other 
predictors as inputs, and measuring the predictive power of that model.

A common statistical rule of thumb is that a VIF greater than 10 is considered 
high. However, where large VIFs are indicated, it is important to look deeper into the 
collinearity structure in order to make an informed decision about how best to handle 
it in the model.

Aliasing.  Where two predictors are perfectly correlated, they are said to be aliased, 
and the GLM will not have a unique solution. Most GLM fitting software will 
detect that and automatically drop one of those predictors from the model. Where 
they are nearly perfectly correlated, on the other hand, the software may not catch 
it and try to run the model anyway. Due to the extreme correlation, the model will 
be highly unstable; the fitting procedure may fail to converge, and even if the model 
run is successful the estimated coefficients will be nonsensical. Such problems can 
be avoided by looking out for and properly handling correlations among predictors, 
as discussed above.

2.10. Limitations of GLMs
This section discusses two important limitations inherent in GLMs that one should 

bear in mind when using them to construct rating plans.

1. GLMs Assign Full Credibility to the Data.  The estimates produced by the 
GLM are fit under the assumption that the data are fully credible for every parameter. 
For any categorical variable in the model, the estimate of the coefficient for each level 
is the one which fits the training data best, with no consideration given to the thinness 
of the data on which it is based.
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To gain an intuition for what this means in a practical sense, consider the following 
simple example. Suppose we run a GLM to estimate auto severity, and the GLM 
includes only one predictor: territory, a categorical variable with five levels, coded A 
through E. Volume of data varies greatly by territory, and the smallest territory, E, has 
only 8 claims.

After running this model, the prediction for each risk will simply be the overall 
average severity for its territory.

That’s right. For a GLM with a single categorical variable as its only predictor, 
it actually makes no difference which distribution or link function is chosen, just so 
long as the GLM fitting process is able to converge. The answers will always be the 
same, and they will be the one-way averages of the target variable by levels of the 
categorical variable. (Of course, we would not need a GLM for this; we could get to 
the same place with a simple Excel worksheet.)

Now, continuing with our example, the indicated relativity for territory E, like the 
rest, will be based simply on the average severity for its 8 claims. As actuaries, if we 
had been using the one-way analysis to derive relativities, we would surely not select 
the raw indication for a territory with such little credibility with no modification; we 
would apply a credibility procedure, and, in absence of any additional information 
about the territory, probably select something closer to the statewide average. It stands 
to reason that for the GLM we should not just take the indicated relativity either.

To be sure, in such a scenario, the standard error for the territory E coefficient 
would be large, and its p-value high. In this way, the GLM warns you that the estimate 
is not fully credible—but does nothing about it.

Where multiple predictors or continuous variables are involved, the estimates 
are based on a more complicated procedure which could not be easily performed in 
Excel, and the answers would vary based on the chosen link function and distribution. 
However, the approach to deriving the estimates would similarly be one that gives full 
weight to the data at each level of each categorical variable.

Incorporating credibility into the GLM framework is generally beyond the scope 
of this monograph. However, Chapter 10 briefly discusses two extensions to the GLM 
that allow for credibility-like estimation methods: generalized linear mixed models 
(GLMMs) and elastic net GLMs.

2. GLMs Assume the Randomness of Outcomes is Uncorrelated.  Another 
important assumption built into GLMs is that the random component of the outcome 
of the target variable is uncorrelated among the records in the training set. Note the 
qualification “random component” in that sentence—that’s not the same thing as 
saying the outcomes are uncorrelated. If our auto severity model contains driver age 
and territory as predictors, we expect that drivers of similar ages or in the same territory 
would have similar outcomes, and thus be correlated in that way. After all, identifying 
and capturing such correlations is precisely the point of our modeling exercise. However, 
the assumption is that the random component of the outcome—which, from our vantage 
point, means the portion of the outcome driven by causes not in our model—are 
independent.
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This assumption may be violated if there exist groups of records that are likely to 
have similar outcomes, perhaps due to some latent variable not captured by our model. 
The following are examples of where this may arise in insurance models:

• Frequently, the dataset going into an insurance GLM will comprise several years of 
policy data. Thus, there will be many instances where distinct records will actually 
be multiple renewals of the same policy. Those records are likely to have correlated 
outcomes; after all, a policyholder who is a bad driver in year 1 will likely still be a 
bad driver in years 2, 3 and 4.

• When modeling a line that includes a wind peril, policyholders in the same area 
will likely have similar outcomes, as the losses tend to be driven by storms that 
affect multiple insureds in the area at once.

Where the correlation is small, this is usually nothing to worry about; GLMs are 
quite robust against minor violations of their assumptions. However, it is important to 
be wary of instances of large correlation. Since the parameter estimates and significance 
statistics of a GLM are all derived “as if ” all the random outcomes were independent, 
large instances of groups of correlated outcomes would cause the GLM to give undue 
weight to those events—essentially, picking up too much random noise—and produce 
sub-optimal predictions and over-optimistic measures of statistical significance.

There are several extensions to the GLM that allow one to account for such correlation 
in the data. One such method is the generalized linear mixed model (GLMM), briefly 
discussed in Section 10.1. Another is generalized estimating equations (GEE), not 
covered in this text.
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3. The Model-Building Process

The prior chapter has covered the technical details of model construction. While this is a 
very important component of the model building process, it is important to understand 
all of the steps involved in the construction and evaluation of a predictive model. While 
each project has different objectives and considerations, any predictive modeling project 
should include the following components:

• Setting objectives and goals
• Communicating with key stakeholders
• Collecting and processing the necessary data for the analysis
• Conducting exploratory data analysis
• Specifying the form of the predictive model
• Evaluating the model output
• Validating the model
• Translating the model results into a product
• Maintaining the model
• Rebuilding the model

3.1. Setting Objectives and Goals
Before collecting any data or building any models, it is important to develop a clear 

understanding and to gain alignment on the scope and goals of the project. Important 
questions to ask include:

• What are the goals of the analysis? While the examples in this text focus on the 
construction of a rating plan, the goal of an analysis may be to develop a set of 
underwriting criteria or to determine the probability of a customer renewing a 
policy.

• Given the goals of the project, what is the appropriate data to collect? Is this data 
readily available, or will it be costly and time-consuming to obtain it?

• What is the time frame for completing the project?
• What are the key risks that may arise during the project, and how can these risks be 

mitigated?
• Who will work on the project, and do those analysts have the knowledge and expertise 

to complete the project in the desired timeframe?
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3.2. Communicating with Key Stakeholders
One of the most common reasons for a project failing or falling significantly behind 

schedule is lack of alignment on the goals and outcomes of the project among its 
key stakeholders. Using the example of a rating plan, the modeler isn’t just creating a 
predictive model, but rather constructing a new product that will (hopefully) enter the 
market. For this project, key stakeholders may include:

• Regulators: The goal of any predictive modeling project is to include all variables 
that are predictive and add lift to the model. However, many variables are 
considered off limits in pricing insurance risk, either due to legal and regulatory 
considerations or potential reputational risk. It is important to understand these 
limitations. These restrictions may also vary by state, as insurance is regulated at 
the state level.

• IT: The model results will likely need to be coded into a new rating system, and 
IT systems generally have limitations. Before and during model construction, it is 
important to communicate the desired rating structure to the programmers who will 
be coding the rating changes. Some components of the desired rating plan may not 
be feasible from an IT perspective, in which case it is important to be aware of those 
limitations early on and adjust the models accordingly. Furthermore, programming 
changes into IT systems has a cost, and so budget and availability of resources may 
further limit the rating plan that can be implemented.

• Agents/underwriters: Once the models are complete and turned into a product, 
someone will have to sell that product. If the new rating structure isn’t understood 
by the policy producers, then it may be difficult to meet sales goals. By including 
agents in the discussion, the final product can better reflect their needs and concerns, 
which may in turn lead to a better business outcome.

3.3. Collecting and Processing Data
Collecting and processing data is often the most time-consuming component of 

a predictive modeling project, and modelers tend to underestimate the amount of 
time that will be required for this step. Most data is messy, so time must be spent 
figuring out how to clean the data, impute missing values, merge additional variables 
into the dataset, etc. Collecting and processing data are often iterative processes, as a 
modeler may discover later in the model-building process that a particular variable in 
the dataset is incorrect.

The data should also be split into at least two subsets, so that the model can be 
tested on data that was not used to build it. A strategy for validating the model should 
also be carefully formulated at this stage.

Chapter 4 discusses the process of collecting and preparing the data in greater 
detail.

3.4. Conducting Exploratory Data Analysis
Once the data has been collected, it is important to spend some time on exploratory 

data analysis (EDA) before beginning to construct models. EDA will help the modeler 
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better understand the nature of the data and the relationships between the target and 
explanatory variables. Helpful EDA plots include:

• Plotting each response variable versus the target variable to see what (if any) rela-
tion ship exists. For continuous variables, such plots may help inform decisions 
on variable transformations.

• Plotting continuous response variables versus each other, to see the correlation 
between them.

3.5. Specifying Model Form
Key questions in specifying the model form include:

• What type of predictive model works best for this project and this data? While 
this text is focused on generalized linear models, other modeling frameworks (e.g., 
decision trees) may be more appropriate for some projects.

• What is the target variable, and which response variables should be included?
• Should transformations be applied to the target variable or to any of the response 

variables?
• Which link function should be used?

Chapter 5 further explores considerations related to the specification of the model 
form for GLMs.

3.6. Evaluating Model Output
Once there are preliminary results, the modeler should begin evaluating the output 

to determine next steps. Model evaluation involves:

• Assessing the overall fit of the model, and identifying areas in which the model fit 
can be improved.

• Analyzing the significance of each predictor variable, and removing or transforming 
variables accordingly.

• Comparing the lift of a newly constructed model over the existing model or rating 
structure.

These steps are detailed in Chapters 6 and 7.

3.7. Validating the Model
Model validation is a very important component of the modeling process, and should 

not be overlooked or rushed. The validation process is discussed in detail in Chapter 7.

3.8. Translating the Model into a Product
The ultimate goal of most modeling projects is to turn the final model into a product 

of some kind. In the insurance industry, this product is often a rating plan. Important 
considerations when turning the results of a modeling project into a final product include:

• Is the product clear and understandable? In particular, there should be no ambiguity 
in the risk classification, and a knowledgeable person should be able to clearly 
understand the structure of the product.
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• Are there items included in the product that were not included in the model? Using 
the example of a rating plan, there are often rating factors included in the plan that 
are not part of the model because there is no data available on that variable. In such 
cases, it is important to understand the potential relationship between this variable 
and other variables that were included in the model. For example, if an insurer 
is offering a discount for safe driving behavior for the first time, this discount 
may overlap with other variables that were in the model. In such cases, it may be 
appropriate to apply judgmental adjustments to the variables in the rating plan.

3.9. Maintaining and Rebuilding the Model
The predictive accuracy of any model generally decreases over time, as the world 

changes and the data used to construct the model becomes less relevant. It is important 
to have a plan to maintain a model over time so that it does not become obsolete. 
Models should be periodically rebuilt in order to maximize their predictive accuracy, 
but in the interim it may be beneficial to refresh the existing model using newer data. 
This will allow model predictions to reflect the most recent experience.
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4. Data Preparation and Considerations

Data preparation is one of the most important parts of the model-building process, and 
is usually the part of the process that takes the most time. Although every organization 
has different processes and systems for collecting, storing, and retrieving the data needed 
to build a classification plan, there are some common themes and situations with which 
all actuaries should be familiar.

It’s important to remember that like the rest of the modeling process, the data 
preparation step is iterative. Correcting one error might help you discover another, and 
insights gleaned from the model-building process might prompt you to step back and 
revisit your approach to data preparation.

4.1. Combining Policy and Claim Data
In almost every case, the data most appropriate for use in building a classification 

plan is exposure-level premium (policy demographic) and loss (claim) data. Ideally, 
you would like to have a dataset with one record for each risk and each time period 
of interest. For some lines of business, it may suffice to attach claims to policy 
records and model at the policy level. For other lines, it may be beneficial to model 
at the level of individual risks within a policy. For example, when modeling for 
personal auto, claims should ideally be attached to the specific vehicles and drivers 
to which they pertain so that their characteristics can be included in the model  
as well.

The immediate difficulty with assembling such a dataset is that premium and loss  
data tend not to be stored in the same place. In many organizations, a policy-level 
premium database is housed within the underwriting area, and a claims database is 
housed within the claims area. In the normal course of business these two databases 
may never be matched against each other except at a very high level. So the first task of 
a modeling assignment is often to locate these two datasets and merge them.

If best practices have been followed and changes to these two datasets have tracked 
each other over time, merging them may not be time-consuming—it may even be 
trivial. But when dealing with legacy systems, or with policy and claims databases that 
have grown or evolved independently over time, problems may arise. The number of 
things that can go wrong is essentially unlimited. But here are some questions that the 
actuary may need to ask while in the process of doing a merge:
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Are there timing considerations with respect to the way these databases are 
updated that might render some of the data unusable?  If the policy database is  
updated at the end of every month and the claims database is updated daily, for example, 
the most recent claims data might not be usable because corresponding exposures are 
not available.

Is there a unique key that can be used to match the two databases to each 
other in such a way that each claim record has exactly one matching policy 
record?  The answer to this question should always be “yes.” If there are multiple 
policy records that match a single claim, merging may cause claims to be double 
counted. On the other hand, if the key does not match each claim to a policy record, 
some claim records may be orphaned.

What level of detail should the datasets be aggregated to before merging?   
This is a question whose answer is informed by both the goal of the model and 
practical considerations around resource limitations and run times. Data must often 
be aggregated across multiple dimensions. For the dimension of time, policy data is 
most often aggregated to the level of calendar year rather than any shorter period. 
Calendar-year data has several distinct advantages, among them that the calendar year 
is the usual policy period and that seasonality need not be addressed. When policy 
data is aggregated in this way, care must be taken to correctly count the exposures 
attributable to each record and store these exposure counts on the aggregated record. 
For example, a policy that is issued October 1 of a certain calendar year only contributes 
25% of a full exposure to that year.

Claim data is usually also aggregated to policy and calendar year. If a particular policy 
has two $500 claims in a certain calendar year, the aggregated claim record would have 
only a claim count field with a value of 2 and a loss field with a value of $1000. Note 
that this treatment is not precise and that meaningful data is lost in the aggregation—in 
this example, the aggregated claim record could have also represented one claim of $900 
and one claim of $100.

Depending on the goals of the model, further aggregation may be warranted. 
For example, in a book of small commercial property exposures, policies may be 
written at the level of the business entity, but demographic and loss data may be 
available by location. So a policy covering a business with two locations for one year 
may be aggregated to the business level (one exposure) or to the location level (two 
exposures). It usually makes sense to keep a finer level of detail in the model so that this 
information can be available to use for pricing, but if there are few enough businesses 
in the book with multiple locations, it may be more convenient to aggregate to the 
business level at the start of the project, retaining information on locations only in 
the form of a count.

Are there fields that can be safely discarded?  There may be fields in either 
database which for whatever reason it would not make sense to consider in the model. 
Removal of these fields will speed up every other part of the model-building process. 
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But removal of fields is not something that should be done lightly, since costs to re-add 
them may be high if it’s found that they’re needed later in the process. A special case is 
when two fields contain identical or near-identical information, resulting in aliasing or 
near-aliasing. As discussed in Section 2.9, if you add both of these fields to your model, 
it will break; and, in any case, there is no reason to preserve a field that contains no 
new information.

Are there fields that should be in the database but aren’t?  There may be 
policyholder data that may be predictive of future loss that is collected at the 
underwriting step but not stored for later use. And there may be predictive data 
that is not collected at all. This goes beyond just the data preparation step of the 
process, but the actuary should be just as cognizant of what fields may be missing 
as they are of the fields that are currently available for use. The actuary’s feedback 
to management on this issue may be critical to kickstarting the process of collecting 
new data and successfully evolving the classification plan over time.

4.2. Modifying the Data
Any dataset of sufficient size is likely to have errors. It’s impossible to present a 

formulaic approach to error detection that will catch every possible error, and so human 
judgment is critical. But there are a few steps that should always be taken to attempt to 
catch and remedy some of the more common errors that can occur.

Check for duplicate records.  If there are any records that are exactly identical, this 
likely represents an error of some sort. This check should be done prior to aggregation 
and combination of policy and claim data.

Cross-check categorical fields against available documentation.  If database 
doc umentation indicates that a roof can be of type A, B, or C, but there are records 
where the roof type is coded as D, this must be investigated. Are these transcription 
errors, or is the documentation out of date?

Check numerical fields for unreasonable values.  For every numerical field, there 
are ranges of values that can safely be dismissed as unreasonable, and ranges that might 
require further investigation. A record detailing an auto policy covering a truck with 
an original cost (new) of $30 can safely be called an error. But if that original cost is 
$5,000, investigation may be needed.

Decide how to handle each error or missing value that is discovered.  The solution 
to duplicate records is easy—delete the duplicates. But fields with unreasonable or 
impossible values that cannot be corrected may be more difficult to handle. In a large 
enough dataset, deletion of every record that has an error might leave you with very 
few records from which to build a model. And, even worse, there might be something 
systematic about the presence of the error itself. For example, policies written out of a 
certain office may be consistently miscoded, while policies written out of other offices 
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aren’t. In this case, deleting the offending records may leave you with no way to detect 
that this office also has less-skilled underwriters for a certain type of policy. A better 
solution is to replace erroneous or missing values with the mean or modal field value 
(to be used as the base level of your model), and add a new field for an error flag. The 
error flag can be included in the model and will proxy for the presence of the error.

Another means of handling missing or erroneous values in the data is to impute 
values for those predictors using information contained in the other predictors. This 
would involve building a second model, trained on the subset of data that is non-
problematic, with the problem predictor as the target and all the other predictors as 
predictors.

Errors are not the only reason to modify your data. It may be appropriate to convert 
a continuous variable into a categorical variable (this is called “binning”), to reduce the 
number of levels in a categorical variable, to combine separate fields into new fields, or 
to separate a single field into multiple fields. But usually these sorts of modifications are 
made as a part of the model building process. Some of these modifications are covered 
in more detail in Chapter 5.

4.3. Splitting the Data
Before embarking on a modeling project, it is essential that the available data be 

split into at least two groups. One of those groups is called the training set. This is 
used to perform all the model-building steps—selecting the variables, determining the 
appropriate variable transformations, choosing the distribution, and so on. Another 
group of data, called the test set (or holdout set), will be used to assess the performance 
of the model and may also be used to choose among several candidate models.

Why do we do this? One reason is because attempting to test the performance of 
any model on the same set of data on which the model was built will produce over-
optimistic results. After all, the model-fitting process optimizes the parameters to best 
fit the data used to train it, so we would expect it to perform better on this data than 
any other. Using the training data to compare our model to any model built on different 
data would give our model an unfair advantage.

Another reason is because, as we will see in later sections of this monograph, there 
are endless ways for us to make a GLM as complex as we wish. There may be many 
variables available to include. For any given variable, any number of polynomial terms 
or hinge functions can be created. We can also add interactions of any combination 
of variables (not to mention interactions of polynomial terms and hinge functions), 
and so on. As we increase the complexity, the fit to the training data will always get 
better. For data the model fitting process has not seen, on the other hand, additional 
complexity may not improve the performance of a model—in fact, it may actually 
make it worse.

For a GLM, model complexity is measured in terms of degrees of freedom, or the 
number of parameters estimated by the model-fitting procedure. Every continuous 
variable we include adds a degree of freedom. For a categorical variable, a degree of 
freedom is added for each non-base level. Furthermore, every polynomial term, every 
hinge function or interaction term—basically, anything for which the model will need 
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to estimate another parameter value—counts as a degree of freedom. As the name 
implies, each degree of freedom provides the model more freedom to fit the training 
data. Since the fitting procedure always optimizes the fit, additional flexibility to fit the 
data better means the model will fit the data better.

Figure 7 illustrates the relationship between the degrees of freedom and the per-
formance of the model on the training set as well as on the test set (or any “unseen” 
data). Model performance is measured here by model error, or the degree to which 
the predictions “miss” the actual values, with lower error implying better model 
performance. As we can see, the performance on the training set is always better than 
on the test set. Increasing the complexity of the model improves the performance on 
both training set and the test set—up to a point. Beyond that point, the performance 
on the training set continues to improve—but on the test set, things get worse.

The reason for this deterioration of performance is because, with enough flexibility, 
the model is free to “explain” the randomness in the training set outcomes (called the 
noise) in addition to the part of the outcome driven by the systematic effects (called the 
signal). The noise in the training data would obviously not generalize to new data, so to 
the extent this information is in our model estimates this becomes a liability. A model 
that includes significant random noise in its parameter estimates is said to be overfit.

Our goal in modeling is to find the right balance where we pick up as much of 
the signal as possible with minimal noise, represented by the vertical dotted line in 
Figure 7. Thus, in addition to paying careful attention to the significance statistics and 
model fit diagnostics during the modeling process, it is critical to retain holdout data 
on which to test the resulting models. This out-of-sample testing allows for a truer 
assessment of the model’s predictive power.

Since the divisions of data will remain intact throughout the entire modeling pro-
cess, it is crucial to formulate a proper data splitting strategy before model building 
begins. The following sections discuss different approaches to splitting the data, as 
well as a possible alternative to splitting, called cross validation. In Chapter 7 we describe 
several tests that can be performed on the holdout set to choose among candidate models.

Figure 7.  Illustration of the effect of model complexity 
(as measured by degrees of freedom, along the x axis), on 
the performance of the model (measured by model error, 
along the y axis) for both the training set and test set.
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4.3.1. Train and Test
The simplest split to create is two subsets of the data, called the training set and 

the test set. The training set should be used for the entire model building process, 
beginning with the initial exploration of variables using univariate analyses, all the 
way through the model refinement. The test set is used when the model building is 
complete, to compare the resulting model against the existing rating plan and/or to 
assess the relative performance of several candidate models.

Typical proportions used for this split are 60% training/40% test or 70% training/ 
30% test. Choice of split percentages involves a trade-off. More data available for the 
training set will allow for clearer views of patterns in the data. However, if too little 
data is left for the holdout, the final assessment of models will be have less certainty.

The split can be performed either by randomly allocating records between the two 
sets, or by splitting on the basis of a time variable such as calendar/accident year or 
month. The latter approach has the advantage in that the model validation is performed 
“out of time” as well as out of sample, giving us a more accurate view into how the 
model will perform on unseen years.

Out-of-time validation is especially important when modeling perils driven by 
common events that affect multiple policyholders at once. An example of this is the 
wind peril, for which a single storm will cause many incurred losses in the same area. 
If random sampling is used for the split, losses related to the same event will be present 
in both sets of data, and so the test set will not be true “unseen” data, since the model 
has already “seen” those events in the training set. This will result in over-optimistic 
validation results. Choosing a test set that covers different time periods than the training 
set will minimize such overlap and allow for better measures of how the model will 
perform on the completely unknown future.

4.3.2. Train, Validation and Test
If enough data is available, it may be useful to split the data three ways: in addition 

to the training and test sets, we create a validation set. The validation set is used to 
refine the model during the building process; the test set is held out until the end.

For example, a modeler may create an initial model using the training dataset, 
assess its performance on the validation dataset, and then make tweaks to the model 
based on the results. This is an iterative process. In this example, the validation dataset 
isn’t really a holdout set, since the model is being adjusted based on its fit on the 
validation data.

Typical proportions used for this split are 40% for training, 30% for validation 
and 30% for test. Care should be taken that none of the subsets are too thin, otherwise 
their usefulness will be diminished.

4.3.3. Use Your Data Wisely!
A key caution regarding the use of a test set is that it be used sparingly. If too-

frequent reference is made to the test set, or if too many choices of models are 
evaluated on it, it becomes less a test set and more of a training set; once a large part 
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of the modeling decision has been made based on how well it fits the test set, that 
fit becomes less indicative of how the model will behave on data that it has truly 
not seen.

Thus, the choice of how best to “spend” the available data throughout the refinement 
and validation of the model is an important part of the modeling strategy. Obviously, 
if a validation set is available (in addition to train and test), we have a bit more leeway, 
but the validation set will also diminish in usefulness if it is overused. As such, for a large 
part of the modeling process we will need to make use of the “in-sample” statistics—that 
is, the significant measures (such as p-values for parameter estimates and for the F-test, 
described in Section 6.2.1) derived using the training set.

As we may have many different ideas we wish to try in the course of refining 
and improving our model, the issue of precisely where reliance on the in-sample 
statistics will end and the validation or test metrics will begin should be carefully 
planned in advance.

An example strategy for this may be as follows. First, we might predefine a series of 
increasing levels of model complexity that we will evaluate as candidates for our final 
model. The simplest level of complexity might be to retain the current model and not 
change it all (yes, that should always be considered an option); as a second level, we may 
keep the structure of the current model intact, but change the numbers; for the third level, 
we may add some additional variables; the next level might add two-way interactions;  
subsequent levels may involve multiple-way interactions, subdivision of categorical 
variable groupings, and so on. Levels are ordered by the relative ease and cost of 
implementation. We build and refine a model at each level of complexity using the 
in-sample statistics (and validation set if available). When all the models are fully 
built, we evaluate them all on the test set, and their relative performance on this set is 
weighed together with all other business considerations in choosing which becomes 
the final model.

Once a final model is chosen, however, we would then go back and rebuild it using 
all of the data, so that the parameter estimates would be at their most credible.

4.3.4. Cross Validation
A common alternative to data splitting often used in predictive modeling is cross 

validation. Cross validation provides a means of assessing the performance of the model 
on unseen data through multiple splits of train and test.

There are several “flavors” of cross validation, but the most widely-used is called 
k-fold cross validation, for which the procedure is as follows:

1. Split the data into k groups, where k is a number we choose. (A common choice is 10.) 
Each group is called a fold. The split can either be done randomly or using a temporal 
variable such as calendar/accident year.

2. For the first fold:
• Train the model using the other k-1 folds.
• Test the model using the first fold.

3. Repeat step 2 for each of the remaining folds.
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The output of this procedure is k estimates of model performance, each of which 
was assessed on data that its training procedure has not seen. Several models can be 
compared by running the procedure for each of them on the same set of folds and 
comparing their relative performances for each fold.

For most predictive modeling and machine learning applications, this is superior 
to a single train/test split, since all of the data is being used to test out-of-sample model 
performance as opposed to a single subset. However, it is often of limited usefulness 
for most insurance modeling applications, since cross validation has an important 
limitation: in order for it to be effective, the “training” phase of the procedure must 
encompass all the model-building steps. For a GLM, where the bulk of the model-
building is the variable selection and transformation, that part would need to be 
included as well.

The reason for this is simple: if all the data was evaluated when deciding which 
variables to include, then even if the GLM fitting procedure was run on a subset of data, 
the remaining subset cannot be considered true “unseen” data. Some of the variables in 
our model may be there only because of outcomes “seen” in the test set.

Thus, using cross validation in place of a holdout set is only appropriate where a 
purely automated variable selection process is used. In such an instance, the same selec-
tion procedure can be run for each CV fold, and CV would then yield a good estimate 
(in fact, the best estimate) of out-of-sample performance. However, for most insurance 
applications, the variables are “hand-selected,” with a great deal of care and judgment 
utilized along the way, and so proper cross validation is nearly impossible. Therefore, 
splitting the data at the outset and retaining that split throughout, as described in the 
prior sections, is the preferred approach.

Cross validation may still have some usefulness during the model building process. 
For example, when evaluating some of the model’s “tuning parameters”—for example, 
how many polynomial terms to include, whether or not to use a certain variable as a 
weight, etc.—performing cross validation within the training set may yield valuable 
information on how a change to a model would affect its out-of-sample performance. 
However, the final model valuation should always be done using a distinct set of data 
held out until the end.
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5. Selection of Model Form

Selecting the form of a predictive model is an iterative process, and is often more of 
an art than a science. As preliminary models are built and refined into final models, 
the model form is likely to evolve based on an analysis of the results.

In a generalized linear modeling framework, important decisions on the model form 
include:

• Choosing the target and predictor variables.
• Choosing a distribution for the target variable.
• Making decisions on the best form for the predictor variables, including whether 

to make them continuous or categorical, whether to apply transformations to the 
variables, and how best to group variables.

5.1. Choosing the Target Variable
Based on the scope of the modeling project, there may be several options for the 

target variable. When modeling a rating plan, for example, the target variable might be 
pure premium, claim frequency, or claim severity. If the goal of the project is instead 
to identify deficiencies in the existing rating plan, loss ratio may be a more appropriate 
target variable. Or when evaluating a set of underwriting restrictions, the probability 
of a large loss may be a good option.

The decision of which target variable to choose generally comes down to data 
availability and the preferences of the modeler. There is usually not one right answer, 
and it may be beneficial to try several options to see which one produces the best 
model.

5.1.1. Frequency/Severity versus Pure Premium
Where the ultimate goal of a model is to predict pure premium, there are two 

approaches we can use to get there.

1. Build two separate models: one with claims frequency—that is, count of claims 
per exposure—as the target, and another targeting claim severity, i.e., dollars of 
loss per claim. The individual models are then combined to form a pure premium 
model. Assuming log links were used for both, this combination of the two models 
is achieved by simply multiplying their corresponding relativity factors together.

2. Build a single model targeting pure premium, i.e., dollars of loss per exposure, using 
the Tweedie distribution.
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This choice may be dictated by data constraints—for example, the data necessary to 
build separate models for claim frequency and severity may not be available. Further
more, as the former approach requires building two models rather than one, time 
constraints may factor in as well, especially if a large number of pure premium models 
must be produced (e.g., when separately modeling multiple segments of the business 
or different perils).

However, where possible, the frequency/severity approach confers a number of 
advantages over pure premium modeling, some of which are as follows:

• Modeling frequency and severity separately often provides much more insight than 
a pure premium model, as it allows us to see the extent to which the various effects 
are frequencydriven versus severitydriven—information that may prove valuable in 
the model refinement process. Furthermore, some interesting effects may get “lost” 
when viewed on a pure premium basis due to counteracting effects on its components; 
for example, a variable that has a strong negative effect on frequency but an equally 
strong positive effect on severity would show up as a zero effect (and an insignificant 
variable!) in a pure premium model, and therefore go completely unnoticed. In such 
a case, while we may choose to deem the total effect of the variable a “wash” and not 
include it in our rating plan, that knowledge of the underlying effects may be useful 
in other business decisions.

• Each of frequency and severity is more stable—that is, it exhibits less random 
variance—than pure premium. Therefore, separating out those two sources of 
variance from the pure premium data effectively “cuts through the noise,” enabling 
us to see effects in the data that we otherwise would not. For example, consider a 
variable that has a positive effect on frequency and no effect on severity, thereby 
having a positive total effect on pure premium. While this variable may show up 
as significant in a frequency model, when testing it in a pure premium model 
the high variance in severity may overwhelm the effect, rendering the variable 
insignificant. Thus, a predictive variable may be missed, leading to underfitting.

• Pure premium modeling can also lead to overfitting. Continuing with the above 
example of a variable that affects frequency only, if that variable does wind up 
included in our pure premium model, the model is forced to fit its coefficient to 
both the frequency and severity effects observed in the training data. To the extent 
the severity effect is spurious, that parameter is overfit.

• The distribution used to model pure premium—the Tweedie distribution—
contains the implicit assumption that frequency and severity “move in the same 
direction”—that is, where a predictor drives an increase in the target variable (pure 
premium or loss ratio), that increase is made up of an increase in both its frequency 
and severity components. (See Section 2.7.3 for a detailed discussion on this.) 
Modeling frequency and severity separately frees us from this restriction.

5.1.2. Policies with Multiple Coverages and Perils
Where the line of business we are modeling includes several types of coverage, it is 

usually a good idea to separate out the data pertaining to each coverage and model them 
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separately. For example, when modeling for a Businessowners package policy that includes 
building, business personal property and liability coverage, each of those items should be 
separately modeled. We may also consider subdividing the data further and modeling 
each peril (or group of perils) individually; for example, for our Businessowners building 
model, we may wish to create separate models for fire and lightning, wind and hail, and 
all other.

Even if the final rating plan must be structured on an “all perils combined” basis, 
there may be benefit to modeling the perils separately, as that will allow us to tailor 
the models to the unique characteristics of each peril. We can always combine the 
models at the end. A simple method for combining separate byperil models to form a 
combined allperil model is as follows:

1. Use the byperil models to generate predictions of expected loss due to each peril 
for some set of exposure data.

2. Add the peril predictions together to form an allperil loss cost for each record.
3. Run a model on that data, using the allperil loss cost calculated in Step 2 as the 

target, and the union of all the individual model predictors as the predictors.

The coefficients for the resulting model will yield the allperil relativities implied by 
the underlying byperil models for the mix of business in the data. Note that since the 
target data fed into this new model is extremely stable, this procedure doesn’t require 
a whole lot of data. Rather, the focus should be on getting the mix of business right. 
The data used for this procedure should reflect the expected mix going forward, and so 
using only the most recent year may be ideal.

5.1.3. Transforming the Target Variable
In some modeling contexts, it may also be necessary or beneficial to transform the 

target variable in some way prior to modeling. Some considerations include:

• For pure premium, loss ratio or severity models, the presence of a few very large 
losses can have undue influence on the model results. In such cases, capping losses 
at a selected large loss threshold may yield a more robust and stable model. The 
cap point should be set high enough so that the target variable still captures the 
systematic variation in severity among risks, but not too high such that random large 
losses create excessive noise. (In Section 6.4 we discuss a formal statistical measure of 
a record’s influence on the model results called Cook’s distance. This statistic can also 
be used to alert the practitioner to instances where capping the target variable may 
be warranted.)

• In addition to the effect of individual large losses, it is also important to look out 
for catastrophic events that would cause a large number of losses at once, which can 
skew both frequency and severity effects. If possible, losses related to such events 
should be removed from the data entirely—thereby limiting the scope of the model 
to predicting non-catastrophic loss only—and a catastrophe model should separately 
be used to estimate the effect of catastrophes on the rating variables. If that is not 
an option, the effect of catastrophic losses should be tempered, either by adjusting 
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the value of the target variable downward or by decreasing the weight, so that these 
events should not unduly influence the parameter estimates.

• Where the data includes risks that are not at full loss maturity such that significant 
further loss development is to be expected (such recent accident year exposures for 
longtailed lines), it may be necessary to develop the losses prior to modeling. Care 
should be taken so that the development factors applied match the type of entity 
being modeled. For example, for a severity model, the development factor should 
reflect only expected future development on known claims; for a pure premium or 
loss ratio model, the development factor should include the effect of pure IBNR 
claims as well.

• Where premium is used as the denominator of a ratio target variable (such as loss 
ratio), it may be necessary to onlevel the premium.

• Where multiyear data is used, losses and/or exposures may need to be trended.

Note that for the latter three items on that list, as an alternative to applying those 
transformations, a temporal variable such as year can be included in the model. This 
variable would pick up any effects on the target related to time—such as trend, loss 
development and rate changes, for which the target has not been specifically adjusted—
all at once. This is usually sufficient for most purposes, since the individual effects of 
development, trend, etc. are usually not of interest in models built for the purpose of 
rating. Rather, we wish to control for these effects so that they do not influence the 
parameter estimates of the rating variables, and the temporal variable does just that. 
Furthermore, the “control variable” approach also has the advantage in that the assumed 
temporal effects will be more “in tune” with the data the model is being estimated on.

On the other hand, there may be situations where adjusting the target using factors 
derived from other sources may be more appropriate. For example, where loss development 
factors are available that have been estimated from a wider, more credible body of data—
perhaps incorporating industry data sources—those may provide a truer measure of 
development. Also, as there may already be established factors that have been assumed 
in other actuarial analyses of this same line of business (such as rate change analyses 
or reserve reviews) it may be preferable to use those in our rating factor model as well, 
so that all reviews of this line will be in sync. When doing so, however, it may be a good 
idea to try including the temporal variable even after the target has been adjusted; any 
significant temporal effects would then suggest a deficiency in the assumed factors, which 
can then be investigated.

5.2. Choosing the Distribution
Once the target variable is selected, the modeler must select a distribution for the 

target variable. This list of options is narrowed significantly based on the selected target 
variable. If modeling claim frequency, the distribution is likely to be either Poisson, 
negative binomial, or binomial (in the case of a logistic model). If modeling claim severity, 
common choices for the distribution are gamma and inverse Gaussian. The decision on 
which distribution to select may be based on an analysis of the deviance residuals, 
which is described in Section 6.3. It’s important to realize, though, that the distribution 
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is very unlikely to fit the data perfectly. The goal is simply to find the distribution that fits 
the data most closely out of the set of possible options.

5.3. Variable Selection
For some modeling projects, the objective may be to simply update the relativity 

factors to be used in an existing rating plan. That is, the structure of the pricing formula 
will remain asis, and only the numerical factors will change to reflect what is indicated 
by the most recent data. For such instances, variable selection—that is, choosing which 
variables to include in the model—is not an issue, as the choice of variables has been 
fixed at the outset.

Frequently, though, a rating plan update provides the company an opportunity to 
revisit the rating structure. Are there additional variables—not currently rated on, but 
available in the data—that may provide useful information about the target variable, 
thereby allowing us to more finely segment risks? Or, perhaps, a rating plan is being 
formulated for a line of business for the first time, and no prior model exists. In such 
cases, the choice of which variables to include becomes an important concern in the 
modeling process.

Certainly, a major criteria is variable significance—that is, we would like to be 
confident that the effect of the variable indicated by the GLM is the result of a true 
relationship between that predictor and the target, and not due to noise in the data. 
To that end, we are guided by the pvalue, as described in Section 2.3.2. However, it 
is important to bear in mind a crucial limitation of the pvalue: it says nothing about 
the probability of a coefficient being nonzero; it merely informs us of the probability 
of an estimated coefficient of that magnitude arising if the “true” coefficient is zero. 
In assessing our confidence in the indicated factor, the pvalue should be viewed as 
one piece of information, which we combine with intuition and knowledge of the 
business to arrive at a decision on whether to include the variable. As such, there is 
no “magic number” pvalue below which a variable should automatically be deemed 
significant.

In addition to statistical significance, other considerations for variable selection 
include:

• Will it be costeffective to collect the value of this variable when writing new and 
renewal business?

• Does inclusion of this variable in a rating plan conform to actuarial standards of 
practice and regulatory requirements?

• Can the electronic quotation system be easily modified to handle the inclusion of 
this variable in the rating formula?

In practice, many different areas of the business may need to weigh in on the practicality 
and acceptability of any given variable in the final rating structure.

For more complex modeling projects—particularly where external data is attached 
to the insurer’s own data to expand the predictive power—there may be hundreds or 
thousands of potential predictors to choose from, and variable selection becomes much 
more challenging. For such scenarios, a number of automated variable selection algorithms 
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exist that may aid in the process. (They may also add lots of spurious effects to the model 
if not used with appropriate care!) Those methods are beyond the scope of this paper.

5.4. Transformation of Variables
For any variable that is a potential predictor in our model, deciding whether or 

not to include it is not the end of the story. In many cases the variable will need to 
be transformed in some way such that the resulting model is a better fit to the data. 
Continuous and categorical variables each have considerations that would require 
transformation.

When including a continuous variable in a loglink model—logged, as discussed in 
Section 2.4.1—the model assumes a linear relationship between the log of the variable 
and the log of the mean of the target variable. However, this relationship doesn’t always 
hold; some variables have a more complex relationship with the target variable that 
cannot be described by a straight line. For such instances, it is necessary to transform 
the variable in some way so that it can adequately model the effect.

To illustrate the ways a nonlinear effect can be handled in a GLM, we will use 
the example of a multiperil Businessowners building severity model that includes the 
building age (or age of construction) as one of its predictors. Building age is expressed 
in years, with a value of 1 signifying a new building.

Suppose, in this instance, the GLM returned a coefficient of -0.314 for log of 
building age. In log terms, this means that according to our model, each unit increase 
in the log of building age results in a 0.314 decline in the log of expected severity. We 
can also interpret this in “real terms”: the expected severity for any building age relative 
to a new building is the age raised to -0.314. However, this is the best loglinear fit. 
But is a linear fit the best way to model the relationship?

The next section presents a useful graphical diagnostic that will allow us to find out.

5.4.1. Detecting Non-Linearity with Partial Residual Plots
The set of partial residuals for any predictor xj in a model is defined as follows:

r y g xi i i i j ij= −( ) ′( ) +m m b , ( )13

where g ′(m i) is the first derivative of the link function. For a log link model, Equation 13 
simplifies as follows:

r
y

xi
i i

i
j ij= − +m

m
b . ( )14

In Equation 14, the residual is calculated by subtracting the model prediction from 
the actual value, and then adjusted to bring it to a similar scale as the linear predictor  
(by dividing by mi)9. Then, b j xij —that is, the part of the linear predictor that xj is 
responsible for—is added back to the result. Thus, the partial residual may be thought 

9 Note that this is the “working residual” discussed in Section 6.3.2.
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of as the actual value with all components of the model prediction other than the part 
driven by xj subtracted out. (Hence the “partial” in “partial residual.”) The variance 
in the partial residuals therefore contains the variance unexplained by our model in 
addition to the portion of the variance our model intends to explain with b j xj. We can 
then plot them against the model’s estimate of b j xj to see how well it did.

Figure 8 shows the partial residual plot for our example building age variable.10 The 
model’s linear estimate of the building age effect, or -0.314x, is superimposed over the 
plot. While the line may be the best linear fit to the points, it is certainly not the best fit, 
as the points are missing the line in a systematic way. The model is clearly overpredicting 
for risks where log building age is 2.5 (in real terms, building age 12) and lower. It under
predicts between 2.5 and 3.25, and once again overpredicts for older buildings. It is clear 
we will need something more flexible than a straight line to properly fit this data.

We present three ways such nonlinearities can be accommodated within a GLM:

• binning the variable
• adding polynomial terms
• using piecewise linear functions.

Each of these approaches is discussed in the following sections.

5.4.2. Binning Continuous Predictors
One possible fix for nonlinearity in a continuous variable is not to model it as 

continuous at all; rather, a new categorical variable is created where levels are defined 
as intervals over the range of the original variable. The model then treats it as it would 
any categorical variable; a coefficient is estimated for each interval, which applies to all 
risks falling within it.

Figure 8.  Partial Residual Plot of Age of  
Construction Variable
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10 Note that despite this model having been built on around 50,000 records, the plot shows only 100 points. As 
50,000 points would make for a very messy (and uninformative) scatterplot, the data has been binned prior to 
plotting. We discuss binning plotted residuals in Section 6.3.2. When binning partial residuals, the working 
weights, as described in that section, should be used.



50 Casualty Actuarial Society

Generalized Linear Models for Insurance Rating

Figure 9 shows the results of running age of construction through our model as a 
categorical variable. For this example, ten bins were created. Interval boundaries were 
designed such that the bins contain roughly equal number of records, and building 
ages 1 through 10 was designated as the base level.

As the graphical plot of the coefficients shows, the model picked up a shape 
similar to that seen in the points of the partial residual plot. Average severity rises 
for buildings older than ten years, reaching a peak at the 15to17 year range, then 
gradually declining.

Binning a continuous variable frees the model from needing to constrain its 
assumed relationship with the target variable to any particular shape, as each level is 
allowed to float freely.

There are, however, some drawbacks to this approach.
In a general sense, binning a continuous variable, and therefore giving it a large 

number of parameters in our model, may violate the goal of parsimony, or keeping 
the model simple; as a rule, we shouldn’t be giving the model more degrees of freedom 
than is necessary to adequately fit the data. The next paragraphs describe two more 
specific downsides to binning versus modeling a variable continuously.

Continuity in the Estimates is Not Guaranteed.  Allowing each interval to move 
freely may not always be a good thing. The ordinal property of the levels of the binned 
variable have no meaning in the GLM; there is no way to force the GLM to have the 
estimates behave in any continuous fashion, and each estimate is derived independently 
of the others. Therefore, there is a risk that some estimates will be inconsistent with 
others due to random noise.

This pitfall is illustrated in the results shown in Figure 9. The building age effect 
on severity seems to be declining past 17 years. However, the 21–23 year factor is 
slightly higher than the 18–20 year factor. We have no reason to believe this break in 
the pattern is real, and it is most likely due to volatility in the data.

Figure 9.  Coefficient Estimates for the Bucketed Age of Construction 
Variable (left) and a Graphical Representation (right)
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This issue may present an even bigger problem if the predictor variable is replace
ment cost of the building. The expectation is that, as the replacement cost increases, 
so does the expected loss cost for the policy. By including replacement cost in the 
model as a continuous variable (perhaps with some transformation applied), we can 
better ensure a monotonic relationship between replacement cost and predicted loss 
cost, which is a desirable outcome. If replacement cost is instead binned, there may be 
reversals in the variable coefficients due to volatility in the data. For example, buildings 
with a replacement cost of $300,000 may have a lower predicted loss cost than buildings 
with a $250,000 replacement cost, even though this result doesn’t make sense.

In our building age example, note that the problem can be remedied somewhat 
by combining those two levels to a single level representing ages 18 through 23. 
Alternatively, we can manually smooth out the pattern when selecting factors.

Variation within Intervals is Ignored.  Since each bin is assigned a single estimate, 
the model ignores any variation in severity that may exist within the bins. In our 
building age example, all buildings with ages between 1 and 10 years are assumed 
to have the same severity, which may not be the case. Of course, we could refine the 
interval boundaries to split that bin into two or more smaller ones. Doing so, however, 
would thin out the data, reducing the credibility of the estimates, thereby making 
them more susceptible to noise. Modeling building age as a continuous variable with 
a transformation (as discussed in the next sections) allows each building age to have a 
unique factor with no loss of credibility.

5.4.3. Adding Polynomial Terms
Another means of accommodating nonlinearity in a linear model is to include the 

square, cube, or higherorder polynomials of the variable in the model in addition to 
the original variable. In such a model, the original variable and the polynomial terms 
are all treated as separate predictors, and a separate coefficient is estimated for each. 
This enables the model to fit curves to the data; the more polynomial terms that are 
provided, the more flexible the fit that can be achieved.

The left panel of Figure 10 shows the results of adding the square of the logged 
building age—in addition to log building age itself—to our model. In this example, 
the model estimated a coefficient of 4.749 for log building age (denoted here as x) 
and a coefficient of –0.866 for log building age squared (denoted as x2). The graph 
shows the partial residuals with the curve formed by both building age terms super
imposed.11 Clearly this is a better fit to the data than the straight line shown in Figure 8.

In the right panel of Figure 10, a third term—the log building age cubed—was 
added. The additional freedom provided by this term allows the model to attenuate the 
downward slope on the righthand side of the curve. This perhaps yields a better fit, 
as the points seem to indicate that the declining severity as building age increases does 
taper off toward the higher end of the scale.

11 For this graph (as well as Figure 11) we extended the definition of partial residuals given in Equation 14 to 
include all terms related to the variable being evaluated (i.e., the βjxij’s for all polynomial terms are added back to 
the working residual rather than the single βjxij term).
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One potential downside to using polynomials is the loss of interpretability. 
From the coefficients alone it is often very difficult to discern the shape of the curve;  
to understand the model’s indicated relationship of the predictor to the target variable 
it may be necessary to graph the polynomial function.

Another drawback is that  polynomial functions have a tendency to behave 
erratically at the edges of the data, particularly for higherorder polynomials. For 
example, Figure 11 shows the partial residual plot that would result if we were to use 
five polynomial terms in our age of construction example. In this model, the fitted 

Figure 10.  Partial Residual Plot of Age of Construction Variable using  
Two Polynomial Terms (left) and Three Polynomial Terms (right)
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Figure 11.  Partial Residual Plot of 
Age of Construction Variable using 
Five Polynomial Terms
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curve veers sharply upward near the upper bound of the data, and would most likely 
generate unreasonably high predictions for ages of construction higher than typical.

5.4.4. Using Piecewise Linear Functions
A third method for handling nonlinear effects is to “break” the line at one or more 

points over the range of the variable, and allow the slope of the line to change at each 
break point.

Looking back at the partial residual plot in Figure 8, it is apparent that severity 
rises and reaches a peak at around age 2.75 (in log terms) and then declines. Thus, 
while a single straight line does not fit this pattern, a broken line—with a rising slope 
up to 2.75 and then declining—will likely do the job.

We can insert a break in the line at that point by defining a new variable as 
max(0,ln(AoC)-2.75), and adding it to the model. This new variable, called a hinge 
function, has a value of 0 for buildings with log age 2.75 or lower, and rises linearly 
thereafter, and so it will allow the GLM to capture the change in slope for older buildings 
versus newer ones.

Running the model with the addition of the hinge function breaking the line at 
2.75 yields the partial output shown in Table 6.

For log(AoC ) 2.75 and lower, the hinge function variable has a value of zero, and 
only the basic log(AoC ) function varies; as such, the slope of the loglog response is 
1.225. For log(AoC ) above 2.75, on the other hand, both variables are in play. Thus, 
to calculate the loglog slope for older buildings, we must add the two coefficients 
together, yielding a slope of 1.225 + (-2.269) = -1.044. Thus, the loglog response is 
a positive slope for newer buildings and a negative slope for older buildings.

The left panel of Figure 12 shows the partial residual plot of log(AoC ) under this 
model, with the broken line indicated by the model superimposed. This clearly does a 
much better job at fitting the points than the straight line of Figure 8.

As the points seem to indicate that the downward slope tapers off at the far 
right of the graph, we may try to improve the fit further by adding another break at 
log(AoC ) = 3.6. The resulting model output is shown in Table 7, and the right panel 
of Figure 12 graphs the partial residual plot.

The positive coefficient estimated for the second hinge function indicates that the 
slope of the line to the right of log(AoC ) = 3.6 is higher than slope to the left of it. 
As the graphed fit line shows, this has the effect of nearly straightening out the steep 

Table 6.  Model Output After Adding a Hinge 
Function for a Break Point at log(AoC )  2.75

Variable Estimate Std. Error p-Value

. . . . . . . . . . . .

log(AoC) 1.225 0.163 <0.0001

max(0,log(AoC)-2.75) -2.269 0.201 <0.0001

. . . . . . . . . . . .
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downward slope. The pvalue of 0.0082 indicates that the evidence for a change in 
slope following the 3.6 point is strong, but not as strong as for a change following 
the 2.75 point. However, this may simply be due to that estimate being based on 
a relatively small subset of the data. As this levelingoff effect comports with our 
intuition, we may decide to keep the third hinge function term in the model.

The use of hinge functions allows one to fit a very wide range of nonlinear patterns. 
Furthermore, the coefficients provided by the model can be easily interpreted as 
describing the change in slope at the break points; and, as we have seen, the significance 
statistics (such as pvalue) indicate the degree of evidence of said change in slope.

One major drawback of this approach is that the break points must be selected by 
the user. Generally, break points are initially “guesstimated” by visual inspection of the 
partial residual plot, and they may be further refined by adjusting them to improve 
some measure of model fit (such as deviance, which is discussed in the next section). 
However, the GLM provides no mechanism for estimating them automatically.  
(In Chapter 10 we briefly discuss a useful model called MARS, a variant of the GLM, 
which, among other things, fits nonlinear curves using hinge functions—and does it 
in an automated fashion with no need for tweaking by the user.) 

Table 7.  Adding an Additional Break Point  
at log(AoC )  3.6

Variable Estimate Std. Error p-Value

. . . . . . . . . . . .

log(AoC) 1.289 0.159 <0.0001

max(0,log(AoC)-2.75) -2.472 0.217 <0.0001

max(0,log(AoC)-3.60) 1.170 0.443 0.0082

. . . . . . . . . . . .

Figure 12.  Partial Residual Plot of Age of Construction Variable using  
a Break at 2.75 (left) and Breaks at Both 2.75 and 3.6 (right)
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Another potential downside is that while the fitted response curve is continuous, 
its first derivative is not—in other words, the fit line does not exhibit the “smooth” 
quality we would expect, but rather abruptly changes direction at our selected 
breakpoints.

5.4.5. Natural Cubic Splines 
A more advanced method for handling nonlinear effects—one that combines the 

concepts of polynomial functions and piecewise functions with breakpoints as discussed 
in the prior two sections—is the natural cubic spline. This is more mathematically 
complex than the prior two approaches, and we will not delve into the details here; the 
interested reader can refer to Hastie, Tibshirani & Friedman (Section 5.2.1 of 2nd Ed.) 
or Harrel (Section 2.4.4). We describe here some of its characteristics: 

• The first and second derivatives of the fitted curve function are continuous—which 
in a practical sense means that the curve will appear fully “smooth” with no visible 
breaks in the pattern. 

• The fits at the edges of the data (i.e., before the first selected breakpoint and after 
the last) are restricted to be linear, which curtails the potential for the kind of erratic 
edge behavior exhibited by regular polynomial functions. 

• The use of breakpoints makes it more suitable than regular polynomial functions for 
modeling more complex effect responses, such as those with multiple rises and falls.  

As with polynomial functions, natural cubic splines  do not lend  themselves  to 
easy interpretation based on the model coefficients alone, but rather require graphical 
plotting to understand the modeled effect.  

5.5. Grouping Categorical Variables
Some categorical predictor variables are binary or can only take on a small number 

of values. Others, though, can take on a large number of possible values, and for these 
variables it is generally necessary to group them prior to inclusion in the model. Consider, 
for example, driver age. If ungrouped, this variable is likely to consume too many degrees of 
freedom, which can lead to nonsensical results and the inability of the model to converge. 
In deciding how to group such variables, one strategy is to start with many levels and then 
begin grouping based on model coefficients and significance. For example, we may start 
with 30 buckets, then compare the coefficients for neighboring buckets. If one bucket 
is, say, drivers between the ages of 26 and 27, and another is drivers between 28 and 
29, and the coefficients for these two levels are similar, we can create a new bucket for 
drivers between 26 and 29. This is generally an iterative process and requires balancing the 
competing priorities of predictive power, parsimony, and avoiding overfitting to the data.

5.6. Interactions
Thus far, we have focused on optimizing the selection and transformation of 

variables for our model under the assumption that each variable has an individual 
effect on the target variable. However, we may also wish to consider the hypothesis that 
two or more variables may have a combined effect on the target over and above their 
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individual effects. Stated differently, the effect of one predictor may depend on the 
level of another predictor, and viceversa. Such a relationship is called an interaction.

An example of an interaction is illustrated in Figure 13. In this example we have 
two categorical variables: variable 1 has two levels, A and B, with A being the base 
level; variable 2 has levels X (the base) and Y.

The table in the left panel shows the mean response for each combination of levels 
with no interaction. For variable 1, the multiplicative factor for level B (relative to base 
level A) is 2.0, regardless of the level of variable 2. Similarly, the variable 2 relativity of 
level Y is 1.5, regardless of the level of variable 1. Simple enough.

The right panel shows an example of where an interaction is present. Where 
variable 2 is X, the relativity for level B is 2.0, as before; however, where variable 2 
is Y, the level B relativity is 2.2. Or, we can state this effect in terms of variable 2: 
the relativity for level Y is either 1.50 or 1.65, depending on the level of variable 1.

Another way of describing the situation in the right panel of Figure 13 is as 
follows: for each of the two variables, there are main effects, where the relativity of 
level B is 2.0 and the relativity of level Y is 1.5; plus, there is an additional interaction 
effect of being both of level Y and level B—with a multiplicative factor of 1.1. This 
is the setup typically used in GLMs, and it allows us to use the GLM signifi cance 
statistics to test the interaction effects distinctly from the main effects in order to 
determine whether the inclusion of an interaction significantly improves the model.

The above example illustrates the interaction of two categorical variables. It is also 
possible to interact two continuous variables, or a continuous variable with a categorical 
variable. In the following sections, we further explore the categorical/categorical 
interaction in a GLM, as well as the other two interaction types.

5.6.1. Interacting Two Categorical Variables
We present here a more concrete example to illustrate the handling of a categorical/

categorical interaction in a GLM.
Suppose, for a commercial building claims frequency model, which uses a Poisson 

distribution and a log link, we include two categorical predictors: occupancy class, 
coded 1 through 4, with 1 being the base class; and sprinklered status, which can 
be either “no” or “yes,” the latter indicating the presence of a sprinkler system in the 
building, with no sprinkler being the base case.

Figure 13.  An Example of a Mean Response for Each 
Level of Two Categorical Variables Without an Interaction 
(left panel) and With an Interaction (right panel)

Without Interaction With Interaction

Variable 1 Variable 1

A B A B

Variable 2
X 10 20

Variable 2
X 10 20

Y 15 30 Y 15 33
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Running the model with the main effects only yields the output shown in Table 8.  
The coefficient of -0.3046 indicated for “sprinklered:yes” indicates a sprinklered 
discount of 26.3% (as e-0.3046-1 = -0.263).

We then wish to test whether the sprinklered discount should vary by occupancy 
class. To do this, we add the interaction of those two variables in the model, in addition 
to the main effects. Behind the scenes, the model fitting software adds additional 
columns to the design matrix: a column for each combination of nonbase levels for 
the two variables. Each of those columns is valued 1 where a risk has that combination 
of levels, and is 0 otherwise. These new columns are treated as distinct predictors in 
Equation 2, and so the coefficient estimated for each of those new predictors will 
indicate the added effect—above the main effects—of a risk having that combination 
of levels. In our example, this results in three additional predictors being added to our 
model: the combination of “sprinklered:yes” with each of occupancies 2, 3, and 4.

Running this model results in the output shown in Table 9. In this context, the 
coefficient of -0.2895 for the main effect “sprinklered:yes” indicates a discount of 
25.1% for occupancy class 1. The three interaction effects yield the effect of having a 
sprinkler for the remaining three occupancy groups relative to the sprinklered effect 
for group 1.

Table 8.  Model with the Main Effects of 
Occupancy Class and Sprinklered Status

Estimate Std. Error p-Value

(Intercept) -10.8679 0.0184 <0.0001

occupancy:2 0.2117 0.0264 <0.0001

occupancy:3 0.4581 0.0262 <0.0001

occupancy:4 0.0910 0.0245 0.0005

sprinklered:Yes -0.3046 0.0372 <0.0001

Table 9.  The Model with the Addition of the 
Interaction Term

Estimate Std. Error p-Value

(Intercept) -10.8690 0.0189 <0.0001

occupancy:2 0.2303 0.0253 <0.0001

occupancy:3 0.4588 0.0271 <0.0001

occupancy:4 0.0701 0.0273 0.0102

sprinklered:Yes -0.2895 0.0729 0.0001

occupancy:2, sprinklered:Yes -0.2847 0.1014 0.0050

occupancy:3, sprinklered:Yes -0.0244 0.1255 0.8455

occupancy:4, sprinklered:Yes 0.2622 0.0981 0.0076
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Looking at the row for the first interaction term, the negative coefficient indicates 
that occupancy class 2 should receive a steeper sprinklered discount than class 1; 
specifically, its indicated sprinklered factor is e-0.2895-0.2847=0.563, or a 43.7% discount. 
The low pvalue of 0.005 associated with that estimate indicates that the sprinklered 
factor for this class is indeed significantly different from that of class 1.

The interaction of occupancy class 3 with sprinklered shows a negative coefficient 
as well. However, it has a high pvalue, indicating that the difference in sprinklered 
factors is not significant. Based on this, we may wish to simplify our model by combining 
class 3 with the base class for the purpose of this interaction.

The interaction term for occupancy class 4 has a significant positive coefficient of 
nearly equal magnitude to the negative coefficient of the main sprinklered effect. This result 
suggests that perhaps occupancy class 4 should not receive a sprinklered discount at all.

5.6.2. Interacting a Categorical Variable  
with a Continuous Variable

We extend the above example to add a continuous variable—amount of insurance 
(AOI)—to our frequency model. Following the practice discussed in Section 2.4.1, we 
will log AOI prior to inclusion in the model.

The maineffects model yields the estimates shown in Table 10. This model indicates 
a sprinklered factor of e-0.7167 = 0.488. The coefficient for log(AOI) indicates that the 
log of the mean frequency increases 0.416 for each unit increase in log(AOI)—or, 
equivalently, the frequency response to AOI (in real terms) is proportional to the power 
curve AOI 0.4161.

We now wish to test whether the AOI curve should be different for sprinklered 
versus nonsprinklered properties. To do so, we specify that we would like to add 
the inter action of sprinklered and log(AOI) to our model. The GLM fitting software 
adds a column to our design matrix that is the product of the indicator column 
for “sprinklered:Yes” and log(AOI). Thus, the resulting new predictor is 0 where 
sprinklered = No, and the log of AOI otherwise.

Running this GLM yields the output shown in Table 11. For this model, the 
coefficient for the log(AOI) main effect yields the AOI curve for risks of the base class 

Table 10.  A Model with Occupancy Class, 
Sprinklered Status and AOI as Main Effects

Estimate Std. Error p-Value

(Intercept) -8.8431 0.1010 <0.0001

occupancy:2 0.2909 0.0248 <0.0001

occupancy:3 0.3521 0.0267 <0.0001

occupancy:4 0.0397 0.0266 0.1353

sprinklered:Yes -0.7167 0.0386 <0.0001

log(AOI) 0.4161 0.0075 <0.0001
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of “sprinklered” (that is, risks for which sprinklered = “No”). The model also estimates a 
coefficient of -0.1032 for the interaction term, which indicates that the rise of frequency 
in response to AOI is less steep for sprinklered properties than for nonsprinklered 
properties. The pvalue indicates that this difference in curves is significant.

The positive coefficient estimated for “sprinklered:Yes” in this model may be a bit 
startling at first. Does this mean that a premium should now be charged for having a 
sprinkler?

Not quite. In interpreting the meaning of this, it is important to recognize that 
the model includes another variable that is nonzero for sprinklered properties—the 
interaction term, which captures the difference in the AOI slope between sprinklered 
and nonsprinklered risks. Thus, the main sprinklered effect may be thought of as an 
adjustment of the intercept of the AOI curve, or the indicated sprinklered relativity 
where log(AOI) = 0.

Of course, where log(AOI) is zero, AOI is $1—a highly unlikely value for AOI. 
The left panel of Figure 14 shows a graphical interpretation of this model’s indicated 
effects of AOI and sprinklered status. The xaxis is the log of AOI, and yaxis shows 
the (log) indicated relativity to the hypothetical case of a nonsprinklered property 
with an AOI of $1. The two lines show the effect of AOI on log mean frequency: the 
slope of the “sprinklered” line is less steep than that of “nonsprinklered,” due to the 
negative coefficient of the interaction term.

The vertical gray stripe at the bottom left highlights what the main sprinklered 
effect coefficient refers to: it raises the sprinklered AOI curve at log(AOI) = 0. However, 
as the AOI histogram overlaid on the graph shows, log(AOI) = 0 is way out of the range 
of the data, and so this “sprinklered surcharge” is just a theoretical construct, and no 
actual policy is likely to be charged such a premium.

An alternate way of specifying this model—one that leads to better interpretation—
is to divide the AOI by the base AOI prior to logging and including it in the model. 
Supposing our chosen base AOI (which would receive a relativity of 1.00 in our rating 
plan) is $200,000, we use log(AOI/200,000) as the predictor in our model. The 
resulting estimates are shown in Table 12.

Table 11.  Adding the Interaction of AOI  
and Sprinklered Status

Estimate Std. Error p-Value

(Intercept) -8.9456 0.1044 <0.0001

occupancy:2 0.2919 0.0247 <0.0001

occupancy:3 0.3510 0.0266 <0.0001

occupancy:4 0.0370 0.0265 0.1622

sprinklered:Yes 0.7447 0.3850 0.0531

log(AOI) 0.4239 0.0078 <0.0001

sprinklered:Yes, log(AOI) -0.1032 0.0272 0.0001
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This model is equivalent to the prior model; that is, they will both produce the 
same predictions. The sprinklered coefficient (now negative) still refers to the specific 
case where the value of the AOI predictor is zero—however, with the AOI predictor in 
this form it has a more natural interpretation: it is the (log) sprinklered relativity for a 
risk with the base AOI.

The right panel of Figure 13 illustrates the output of this model. (The xaxis in that 
panel spans only the values actually present in the data.) The gray stripe at center shows 
the main effect for sprinklered status, which is to lower the mean response at x = 0 
(the base AOI) by 0.5153 for sprinklered risks.

Note that in all this discussion, we described this interaction as “the slope of the 
AOI curve varying based on the sprinklered status.” Of course, it is just as valid to 
characterize it as “the sprinklered discount varying based on AOI.” Which way it is 
presented in the rating plan is a matter of preference.

Table 12.  The Model of Table 11 with log AOI Centered  
at the Base AOI

Estimate Std. Error p-Value

(Intercept) -3.7710 0.0201 <0.0001

occupancy:2 0.2919 0.0247 <0.0001

occupancy:3 0.3510 0.0266 <0.0001

occupancy:4 0.0370 0.0265 0.1622

sprinklered:Yes -0.5153 0.0635 <0.0001

log(AOI/200000) 0.4239 0.0078 <0.0001

sprinklered:Yes, log(AOI/200000) -0.1032 0.0272 0.0001

Figure 14.  Illustration of the Effect of the Interaction  
of Sprinklered and Amount of Insurance (left panel) and  
the Same Model After Dividing AOI by Its Base Amount 
(right panel)
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As an aside, note that this last model form, with AOI centered at the base AOI, 
has an additional benefit: the intercept term (after exponentiating) yields the indicated 
frequency at the base case (i.e., when all variables are at their base levels). In general, 
for a GLM to have this property, all continuous variables need to be divided by their 
base values prior to being logged and included in the model.

5.6.3. Interacting Two Continuous Variables
To understand the third type of interaction—a continuous variable with another 

continuous variable—it is useful to visualize the combined effects of the variables on 
the log mean response as perspective plots, with the two variables shown along the 
x and yaxes, and the relative log mean shown along the zaxis.

The left panel of Figure 15 graphs a scenario where two variables, x1 and x2, 
are included in a model as main effects only, and the GLM indicates coefficients for 
them of 0.02 and 0.04, respectively. The response curve slopes for those two variables 
can be seen by following the front edge of the plane along the x and yaxes; clearly, 
x2 has a steeper slope than x1, which is due to its coefficient being larger. However, 
for any given value of x2, the x1 curve, while in a different position vertically, has the 
same slope, and vice versa. As such, the effect of the two variables are independent 
of each other.

If we believe the slope for each variable should depend on the value of the other 
variable, we may include an interaction term. This term takes the form of the product of 
the two predictors. The right panel illustrates the case where the main effect coefficients 
are the same as before, but an added interaction term has a coefficient of 0.005. The 
slope of x1 where x2 = 0 (the front edge of the plane) is the same as in the left panel 
graph. However, moving inward, as x2 increases, we see the slope of x1 becomes more 
steep. Similarly, the slope of x2 steepens as x1 increases.

As with the earlier interaction types, the pvalue estimated for the interaction term 
guides us in our determination of whether this effect is significant, or whether the 
variables should be left independent.

Figure 15.  Perspective Plots of the Log Mean Response 
to Two Continuous Variables, both Without (left ) and With 
(right ) an Interaction Term
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6. Model Refinement

6.1. Some Measures of Model Fit
GLM software provides a number of statistical measures of how well the model fits 

the training data, which are useful when comparing candidates for model specifications 
and assessing the predictive power of individual variables. The most important such 
measures are log-likelihood and deviance.

6.1.1. Log-Likelihood
For any given set of coefficients, a GLM implies a probabilistic mean for each 

record. That, along with the dispersion parameter and chosen distributional form, 
implies a full probability distribution. It is therefore possible to calculate, for any 
record, the probability (or probability density) that the GLM would assign to the 
actual outcome that has indeed occurred. Multiplying those values across all records 
produces the probability of all the historical outcomes occurring; this value is called 
the likelihood.

A GLM is fit by finding the set of parameters for which the likelihood is the highest. 
This is intuitive; absent other information, the best model is the one that assigns the 
highest probability to the historical outcomes. Since likelihood is usually an extremely 
small number, the log of likelihood, or log-likelihood, is usually used instead to make 
working with it more manageable.

Log-likelihood by itself can be difficult to interpret. It is therefore useful to relate 
the log-likelihood to its hypothetical upper and lower bounds achievable with the 
given data.

At the low end of the scale is the log-likelihood of the null model, or a hypothetical 
model with no predictors—only an intercept. Such a model would produce the same 
prediction for every record: the grand mean.

At the other extreme lies the saturated model, or a hypothetical model with an  
equal number of predictors as there are records in the dataset. For such a model, 
Equation 2 becomes a system of equations with n equations and n unknowns, and 
therefore a perfect solution is possible. This model would therefore perfectly “predict” 
every historical outcome. It would also be, most likely, useless; overfit to the extreme, 
it is essentially nothing more than a complicated way of restating the historical data. 
However, since predicting each record perfectly is the theoretical best a model can 
possibly do, it provides a useful upper bound to log-likelihood for this data.



Casualty Actuarial Society 63

Generalized Linear Models for Insurance Rating

While the null model yields the lowest possible log-likelihood, the saturated model 
yields the highest; the log-likelihood of your model will lie somewhere in between. This 
naturally leads to another useful measure of model fit: deviance.

6.1.2. Deviance
Scaled deviance for a GLM is defined as follows:

2 (15)( )= × −scaled deviance ll llsaturated model

where llsaturated is the log-likelihood of the saturated model, and llmodel is the log-likelihood  
of the model being evaluated. This may be more formally stated as follows (with scaled 
deviance denoted as D*):

m m m∑ ( ) ( )= × = − =
=

* 2 ln ln (16)
1

D f y y f yi i i i i i
i

n

The first term after the summation sign is the log of the probability of outcome 
yi given that the model’s predicted mean is yi—the mean that would be predicted by 
the saturated model. The second term is the log probability assigned to the outcome 
yi by the actual model. The difference between those two values can be thought of as 
the magnitude by which the model missed the “perfect” log-likelihood for that record. 
Summing across all records and multiplying the result by 2 yields the scaled deviance.

Multiplying the scaled deviance by the estimated dispersion parameter f yields 
the unscaled deviance.12 The unscaled deviance has the additional property of being 
independent of the dispersion parameter and thereby being useful for comparing 
models with different estimates of dispersion.

However, irrespective of the type of deviance measure (i.e., scaled or unscaled), 
note that the fitted GLM coefficients are those that minimize deviance. Recall that 
the previous section stated that the GLM is fit by maximizing log-likelihood, and in 
fact those two statements are equivalent: maximizing log-likelihood is also minimizing 
deviance. It is easy to see that by examining Equation 15 above. The first term inside 
the parentheses, llsaturated, is constant with respect to the model coefficients, as it is purely 
a function of the data and the selected distribution. Since the log-likelihood of our 
model is subtracted from it, the coefficients yielding the maximum log-likelihood also 
yield the minimum deviance.

The deviance for the saturated model is zero, while the deviance for the null model 
can be thought of as the total deviance inherent in the data. The deviance for your 
model will lie between those two extremes.

12 See Anderson, et al. § 1.154-1.158 for a more formal and generalized definition of the unscaled deviance. Further 
note that there is some discrepancy in terminology among various GLM texts, as some (e.g., Dobson & Barnett 
[2008]) use the term “deviance” to refer to the measure presented here as “scaled deviance,” and use “scaled deviance” 
to refer to that measure multiplied by the estimated dispersion parameter (i.e., the “unscaled deviance” in this text). 
We have followed the terminology used in Anderson et al [2007] and McCullaugh and Nelder [1989].



64 Casualty Actuarial Society

Generalized Linear Models for Insurance Rating

6.1.3. Limitations on the Use of Log-Likelihood and Deviance
The next section discusses some statistical tests that can be used to compare the 

fits of different models using these measures. However, at the outset, it is important to 
note the following caveats:

Firstly, when comparing two models using log-likelihood or deviance, the comparison 
is valid only if the datasets used to fit the two models are exactly identical. To see 
why, recall that the total log-likelihood is calculated by summing the log-likelihoods 
of the individual records across the data; if the data used for one model has a different 
number of records than the other, the total will be different in a way that has nothing 
to do with model fit.

This, by the way, is something to look out for when adding variables to an existing 
model and then comparing the resulting model with the original. If the new variable 
has missing values for some records, the default behavior of most model fitting software 
is to toss out those records when fitting the model. In that case, the resulting measures 
of fit are no longer comparable, since the second model was fit with fewer records than 
the first.

For any comparisons of models that use deviance, in addition to the caveat above, it 
is also necessary that the assumed distribution must be identical as well. This restriction 
arises from deviance being based on the amount by which log-likelihood deviates from 
the “perfect” log-likelihood; changing any assumptions other than the coefficients 
would alter the value of the “perfect” log-likelihood as well the model log-likelihood, 
muddying the comparison.

6.2. Comparing Candidate Models
As described above, the process of building and refining a GLM is one that takes 

place over many iterations; frequent decisions need to be made along the way, such as: 
which predictors to include; the appropriate transformations, if any, to be applied to 
continuous variables; and the groupings of levels for categorical variables. This section 
presents several statistical tests, based on the measures of model fit just discussed, that 
can be used to compare successive model runs and guide our decision making.

6.2.1. Nested Models and the F-Test
Where a model uses a subset of the predictors of a larger model, the smaller 

model is said to be a nested model of the larger one. Comparisons of nested models 
frequently occur when considering whether to add or subtract predictors. We may 
have one model that includes the extra predictors being considered, and one that 
does not but includes all the other variables. We then wish to compare the model 
statistics to answer the question: is the larger model, with the added variables, better 
than the smaller one? In other words, do the added predictors enhance the predictive 
power of the model?

We can do that by comparing the deviance (subject to the caveats noted above). 
However, in doing so we must consider a basic fact: adding predictors to a model 
always reduces deviance, whether the predictor has any relation to the target variable 
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or not. This is because more predictors—which means more parameters available to 
fit—gives the model fitting process more freedom to fit the data, and so it will fit the 
data better. At the extreme end of that is the saturated model, where the model fitting 
process has enough freedom to produce a perfect fit—even if the predictors are purely 
random and have no predictive power at all; with n unknowns and n equations, a 
perfect fit is always mathematically possible.

Therefore the meaningful question when comparing deviances is: did the added 
predictors reduce the deviance significantly more than we would expect them to if they 
are not predictive? One way to answer that is through the F-test, wherein the F-statistic 
is calculated and compared against the F distribution.

The formula for the F-statistic is

f( )
= −

×
F

D D
of added parameters

S B

B# ˆ (17)

In Equation 17, the symbol “D” refers to the unscaled deviance, and the subscripts 
“S” and “B” refer to the “small” and “big” models, respectively. The numerator is the 
difference in the unscaled deviance between the two models—that is, the amount by 
which the unscaled deviance was reduced by the inclusion of the additional parameters. 
As described above, this value is positive, since deviance always goes down.

The f̂ B in the denominator is the estimate of the dispersion parameter for the big 
model. As it happens, this is also a good estimate of the amount by which we can 
expect unscaled deviance to go down for each new parameter added to the model—
simply by pure chance—if the parameter adds no predictive power. Multiplying this 
value by the number of added parameters gives us the total expected drop in deviance. 
For the added predictors to “carry their weight,” they must reduce deviance by 
significantly more than this amount. (If some of the added predictors are categorical, 
note that a categorical variable with m levels adds m - 1 parameters—one for each 
level other than the base level.)

Thus, the ratio in Equation 17 has an expected value of 1. If it is significantly 
greater than 1, we may conclude that the added variables do indeed improve the model.

How much greater than 1 is significant? Statistical theory says that the F-statistic 
follows an F distribution, with a numerator degrees of freedom equal to the number of  
added parameters and a denominator degrees of freedom equal to n - pB, or the number 
of records minus the number of parameters in the big model. If the percentile of the 
F-statistic on the F distribution is sufficiently high, we may conclude that the added 
parameters are indeed significant.

As an example, suppose the auto GLM we built on 972 rows of data with 6 param-
eters yields an unscaled deviance of 365.8 and an estimated dispersion parameter 
of 1.42. We wish to test the significance of an additional potential predictor: rating 
territory, a categorical variable with 5 levels.

We run the GLM with the inclusion of rating territory, thereby adding 5 - 1 = 4  
parameters to the model. Suppose the unscaled deviance of the resulting model is 352.1, 
and its estimated dispersion parameter is 1.42.
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Using this information and Equation 17, we calculate the F-statistic.

−
×

=365.8 352.1
4 1.42

2.412

To assess the significance of this value, we compare it against an F distribution 
with 4 numerator degrees of freedom and 972 - 10 = 962 denominator degrees of 
freedom. An F distribution with those parameters has 2.412 at its 95.2 percentile, 
indicating a 4.8% probability of a drop in deviance of this magnitude arising by  
pure chance. As such, rating territory is found to be significant at the 95% signifi-
cance level.

6.2.2. Penalized Measures of Fit
The F-test of the prior section is only applicable to nested models. Frequently, 

though we would want to compare non-nested models—that is, models having different 
variables, where one does not contain a subset of the variables of the other. As 
described above, deviance alone can not be used, since adding parameters always 
reduces deviance, and so selecting on the basis of lowest deviance gives an unfair 
advantage to the model with more parameters, which can lead to over-fitting.

A practical way to avoid the problem of over-fitting is to use a penalized measure 
of fit. While deviance is strictly a measure of model goodness of fit on the training 
data, a penalized measure of fit also incorporates information about the model’s 
complexity, and so becomes a measure of model quality. Using one of these measures, 
one can compare two models that have different numbers of parameters. The two most 
commonly used measures of deviance are AIC and BIC.

AIC, or the Akaike Information Criterion, is defined as follows:

AIC log likelihood p= − × +2 - 2 (18)

where p is the number of parameters in the model. As with deviance, a smaller AIC 
suggests a “better” model. The first term in the above equation declines as model fit on 
the training data improves; the second term, called the penalty term, serves to increase 
the AIC as a “penalty” for each added parameter. (The rationale for using twice the 
number of parameters as the penalty is grounded in information theory and out of the 
scope of this monograph.) Using this criterion, models that produce low measures of 
deviance but high AICs can be discarded.

Note that the first additive term of equation 18 is the same as the formula for  
scaled deviance in Equation 15 but without the llsaturated term, which is constant with 
respect to the model predictions. As such, the AIC can also be thought of as a penalized 
measure of deviance, when using it to compare two models. (AIC has little meaning 
outside of the context of a comparison anyway.) As a matter of fact, some statistical 
packages occasionally take advantage of this equivalence and substitute deviance for 
-2 × log-likelihood where it would simplify the calculation.
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BIC, or the Bayesian Information Criterion, is defined as -2 × log-likelihood + 
p log(n), where p is once again the number of parameters, and n is the number of 
data points that the model is fit on. As most insurance models are fit on very large 
datasets, the penalty for additional parameters imposed by BIC tends to be much 
larger than the penalty for additional parameters imposed by AIC.

Most statistical packages can produce either of these measures. In practical terms, 
the authors have found that AIC tends to produce more reasonable results. Relying too 
heavily on BIC may result in the exclusion of predictive variables from your model.

6.3. Residual Analysis
One useful and important means of assessing how well the specified model fits 

the data is by visual inspection of the residuals, or measures of the deviations of the 
individual data points from their predicted values. For any given record, we can think 
of the residual as measuring the magnitude by which the model prediction “missed” 
the actual value. In our GLM, this is assumed to be the manifestation of the random 
component of the model—that is, the portion of the outcome driven by factors other 
than the predictors, which our model describes using Equation 1 and our assumed 
distribution. Therefore, it is natural to inspect these values to determine how well our 
model actually does at capturing this randomness.

The simplest kind of residual is the raw residual which is just the difference 
between actual and expected, or yi - mi. For GLMs, however, two measures of deviation 
of actual from predicted that are much more useful are the deviance residual and the 
working residual. These measures have many useful properties for assessing model fit, 
and are discussed in the following sections.

6.3.1. Deviance Residuals
The square of the deviance residual for any given record is defined as that record’s 

contribution to the unscaled deviance. The deviance residual takes the same sign as 
actual minus predicted. Look back at Equation 16 (on page 63); the deviance residual 
for any record i is the square root of: twice the term to the right of the summation sign 
multiplied by the scale parameter. We use the negative square root where actual (yi) is 
less than expected (mi), and the positive square root where yi > mi.

Intuitively, we can think of the deviance residual as the residual “adjusted for” the 
shape of the assumed GLM distribution, such that its distribution will be approximately 
normal if the assumed GLM distribution is correct.

In a well-fit model, we expect deviance residuals to have the following properties:

• They follow no predictable pattern. Remember, the residuals are meant to be the 
random, or unpredictable, part of the data. If we discover any way the residuals can 
be predicted, then we are leaving some predictive power on the table and we can 
probably improve our model to pick it up.

• They are normally distributed, with constant variance. The raw residuals are 
certainly not expected to follow a normal distribution (assuming we selected a dis-
tribution other than normal); furthermore, the variance of the raw residual of any 
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record would be dependent on its predicted mean, due to the variance property 
of Equation 3. However, as the deviance residuals have been adjusted for the 
shape of the underlying distribution, they are expected to be normal and with 
constant variance. (The latter property is called homoscedasticity.) Any significant 
deviations from normality or homoscedasticity may indicate that the selected dis-
tribution is incorrect.

Figure 16 shows examples of two ways we might assess the normality of deviance 
residuals for a model of claim severity built using the gamma distribution. The left 
panel shows a histogram of the deviance residuals, with the best normal curve fit 
super-imposed. If the random component of the outcome indeed follows a gamma 
distribution, we would expect the histogram and the normal curve to be closely 
aligned. In this case, however, the histogram appears right-skewed relative to the 
normal curve, which suggests that the data exhibits greater skewness than what 
would be captured by a gamma distribution.

Another means of comparing the deviance residual distribution to normal is the 
q-q plot, shown on the right panel of Figure 16. In this plot, the theoretical normal 
quantile for each point is plotted on the x-axis, and the empirical (sample) quantile 
of the deviance residual is plotted on the y-axis. If the deviance residuals are indeed 
normal, the points should follow a straight line; a line passing through the 25 and 
75 theoretical quantiles is shown for reference. We observe that at the edges of the 
dis tribution, the points lie above the line; in particular the right-most points deviate 
significantly upward, which means that there are many more high-valued deviance 
residuals than would be expected under a normal distribution. This indicates that  
the dis tribution of deviance residuals is more skewed than normal—and by extension, 
the data is more skewed than gamma—confirming what we observed in the histogram.

Based on these results, we may suppose that an inverse Gaussian distribution, which 
assumes greater skewness, may be more appropriate for this data than the gamma 
distribution. Figure 17 shows the diagnostic plots for the same model but with the 
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assumption of inverse Gaussian as the underlying distribution. For this model, the 
histogram more closely matches the normal curve and the q-q plot better approximates 
the straight line, confirming that this model is indeed a better fit.

Discrete Distributions.  For discrete distributions (such as Poisson or negative 
binomial) or distributions that otherwise have a point mass (such as Tweedie, which 
has a point mass at zero), the deviance residuals will likely not follow a normal 
distribution. This is because while the deviance residuals factor in the shape of the 
distribution, they do not adjust for the discreteness; the large numbers of records having 
the same target values cause the residuals to be clustered together in tight groups. 
This makes deviance residuals less useful for assessing the appropriateness of such 
distributions.

One possible solution is to use randomized quantile residuals, which have similar 
properties as deviance residuals, but add random jitter to the discrete points so that they 
wind up more smoothly spread over the distribution. Randomized quantile residuals 
are described in detail in Dunn and Smyth (1996).13 Another possible solution is to use 
binned working residuals, as described in the next section.

Where discretely-distributed data is highly aggregated, such as for claims data 
where a single record may represent the average frequency for a large number of risks, 
the target variable will take on a larger number of distinct values, effectively “smoothing 
out” the resulting distribution. This causes the distribution to lose much of its discrete 
property and approach a continuous distribution, thereby making deviance residuals 
more useful for such data.
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Figure 17.  Graphical Comparisons of Deviance Residuals 
of the Inverse Gaussian Model with the Normal Distribution

13 In R, randomized quantile residuals are available via the qresiduals() function of the “statmod” package. Note, 
however, that for the Poisson distribution, randomized quantile residuals can only be calculated for the “true” 
Poisson distribution (with f = 1) but not the overdispersed Poisson; this diminishes their usefulness for most 
insurance data where “true” Poisson is unlikely to yield a good fit.
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6.3.2. Working Residuals
Another useful type of residual is called the working residual. Most imple-

mentations of GLM fit the model using the Iteratively Reweighted Least Squares 
(IRLS) algorithm, the details of which are beyond the scope of this monograph. 
Working residuals are quantities that are used by the IRLS algorithm during the fitting 
process. Careful analysis of the working residuals is an additional tool that can be 
used to assess the quality of model fit.

Working residuals are defined as follows:
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For a log link model, this simplifies to:
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The main advantage of working residuals is that they solve a key problem that 
arises when visually inspecting the residuals via graphical methods, such a scatterplot. 
Such graphical plots are a highly useful means of detecting misspecifications or other 
shortcomings of a model. As noted above in the discussion of deviance residuals, 
any predictable pattern observed in the residuals indicates that the model could 
(and should) be improved, and a graphical analysis is an effective means of looking out 
for such patterns. However, most insurance models have thousands or even millions 
of observations, and the quantity being modeled is usually highly skewed. It can be 
difficult to identify predictable patterns in the dense clouds of skewed individual 
residuals, even for models with gross errors in specification.

Therefore, for such models, it is critical to bin the residuals before analyzing them. 
That is, we group the residuals by similar values of the x-axis of our intended plot, 
and aggregate (by averaging) both the x-axis values and the residuals prior to plotting. 
Binning the residuals aggregates away the volume and skewness of individual residuals, 
and allows us to focus on the signal. The advantage of working residuals is that they can 
be aggregated in a way that preserves the common properties of residuals – that is, they 
are unbiased (i.e., have no predictable pattern in the mean) and homoscedastic (i.e., 
have no pattern in the variance) for a well-fit model.14

14 See the Appendix for the mathematical derivation of these properties.
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To accomplish this, the working residuals are aggregated into bins, where each bin 
has a (roughly) equal sum of working weights. Working weights are defined as:15
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For each bin, the binned working residual is calculated by taking the weighted 
average of the working residuals of the individual observations within the bin, weighted 
by the working weights. Mathematically, for bin b, binned residual brb is defined as:
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If, in the course of graphically analyzing the working residuals over the different 
dimensions of the data, we are able to find a way to sort the working residuals into 
bins such that binned residuals appear to be predictably biased or “fanning out”, then 
we have identified a shortcoming in the model specification. The following are several 
examples of binned working residual scatterplots that may be useful in revealing flaws 
in the model.

Plotting Residuals over the Linear Predictor.  Plotting the residuals over the value 
of the linear predictor may reveal “miscalibrations” in the model—that is, areas of the 
prediction space where the model may be systematically under- or over-predicting. 
Figure 18 shows examples of such plots for two example models.

Both plots use binned working residuals; the underlying models have thousands of 
observations, but we have binned the working residuals into 100 bins prior to plotting. 
Thus, for example, the left-most point of each plot represents those observations with 
the lowest 1% of linear predictor values, and the x-axis and y-axis values for that point 
are the average linear predictor and average working residual for those observations, 
both averages weighted by the working weights as described above.

The left-hand plot of Figure 18 reveals no structural flaws in the model. The plot 
points form an uninformative cloud with no apparent pattern, as they should for a 
well-fit model.

The right-hand plot, on the other hand, shows signs of trouble. The residuals in the 
left region tend to be below the zero line, indicating that the model predictions for those 

15 The following table shows the simplification of this formula for several common model forms:

Distribution Link function Working Weights

Poisson Log w i • mi

Gamma Log w i

Tweedie Log w i • m i
2–p

Binomial Logit w i • mi • (1 – mi)
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observations are higher than they should be. The model then seems to under-predict 
part of the middle region, and then once again over-predict for the highest-predicted 
observations. This may be caused by a non-linear effect that may have been missed, 
and the issue may be made clearer with plots of residuals over the various predictors, as 
discussed below.

Plotting Residuals over the Value of a Predictor Variable.  While it is good practice 
to check partial residual plots (discussed in section 5.4.1) during the modeling process 
to understand the effect of responses and adjust as necessary, plots of residuals over the 
various predictors in the model may also reveal non-linear effects that may have been 
missed or not properly adjusted for.

Figure 19 shows binned working residual plots over one of the predictor variables 
(labeled “Variable X”) for two example models.

The left-hand plot clearly reveals that Variable X has a non-linear relationship with 
the target variable that is not being adequately addressed. The right-hand shows the 
plot that results after this issue had been fixed with a hinge function.

Plotting Residuals over the Weight.  A plot of residuals over the weight variable 
used in the model (or over a variable that could potentially be a good choice of weight 
in the model) may reveal information about the appropriateness of the model weight 
(or lack thereof ). Figure 20 shows plots of residuals over the number of exposures.

The model that generated the left-hand plot of Figure 20 did not use exposure as a 
weight in the model. This shows a “fanning out” effect on the left side, which violates 
the expectation of homoscedasticity, i.e., no pattern in the variance. Specifically, the 
lower-exposure records show more variance, and the higher-exposure records show 
less variance. This might be expected if no weight is specified; observations based on 
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larger volume of exposure tend to be more stable (i.e., exhibit lower variance in the 
outcome) than lower-volume records, as discussed in Section 2.5.

The right-hand plot results after this issue is rectified by adding exposure as the 
weight in the model. In this model, the expectation of lower variance with higher 
exposure has already been assumed by the model, and so the residuals have this effect 
adjusted out, forming a homoscedastic cloud.

6.4. Assessing Model Stability
Model stability refers to the sensitivity of a model to changes in the modeling data. 

We assume that past experience will be a good predictor of future events, but small 
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changes in the past that we’ve observed should not lead to large changes in the future 
we predict. The classic example of this occurring is an unusually large loss experienced 
by an insured in a class with few members. A model run on all of the data may tell us 
with a high degree of confidence that this class is very risky. But if we remove the large 
loss from the dataset, the model may tell us with the same degree of confidence that 
the class is very safe. The model is not very stable with respect to the indication for this 
class, and so we may not want to give full weight to its results.

In the example above, the large loss is a particularly influential record, in that its 
removal from the dataset causes a significant change to our modeled results. Influential 
records tend to be highly weighted outliers. Assessing the impact of influential records 
is a straightforward way to assess model stability. A common measure of the influence 
of a record in GLM input data, calculable by most statistical packages, is Cook’s 
distance. Sorting records in descending order of Cook’s distance will identify those 
that have the most influence on the model results—a higher Cook’s distance indicates 
a higher level of influence. If rerunning the model without some of the most influential 
records in the dataset causes large changes in some of the parameter estimates, we may 
want to consider whether or not those records or the parameter estimates they affect 
should be given full weight.

Another way to assess model stability is via cross validation, as described in Sec-
tion 4.3.4 above. In that section, we presented cross validation as a means of testing 
the out-of-sample model performance. However, looking at the in-sample parameter 
estimates across the different model runs can yield important information about the 
stability of the model as well. The model should produce similar results when run on 
separate subsets of the initial modeling dataset.

Still another way to assess model stability is via bootstrapping. In bootstrapping, 
the dataset is randomly sampled with replacement to create a new dataset with the same 
number of records as the initial dataset. By refitting the model on many bootstrapped 
versions of the initial dataset, we can get a sense of how stable each of the parameter 
estimates are. In fact, we can calculate empirical statistics for each of the parameter 
estimates—mean, variance, confidence intervals, and so on—via bootstrapping. Many 
modelers prefer bootstrapped confidence intervals to the estimated confidence intervals 
produced by statistical software in GLM output.
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7. Model Validation and Selection

Before diving into this section, some explanation is in order. As described above, the 
process of model refinement is really a process of creating two candidate models and 
comparing them. To put it another way, all model refinement involves model selection. 
But sometimes model selection can be used for goals other than model refinement. 
Sometimes a decision needs to be made between a number of alternate final models. 
If the best efforts of two modelers working independently are not identical (and they 
will never be), how is one to choose between them? The techniques discussed below are 
suitable for making this decision, while the techniques discussed in Chapter 6 are not. 
There are two key reasons for this:

First, one or more of the alternate models may be proprietary. Any rating plan is 
a model, and rating plans can come from all sorts of places: subsidiaries, consultants, 
competitor filings, rating bureaus, and so on. Most of the time, the data used to 
build these rating plans will not be available and neither will the detailed form of the 
underlying model. Even if this information is available, it might be impractical to 
evaluate it—the rating plan need not have been created using a GLM! The techniques 
discussed in Chapter 6 cannot be used under these circumstances, but the techniques 
below can. In order for the techniques below to be used, one only needs a database of 
historical observations augmented with the predictions from each of the competing 
models. The process of assigning predictions to individual records is called scoring.

Second, while the model refinement process is entirely technical, choosing between 
two final models is very often a business decision. Those responsible for making the 
final decision may know nothing about predictive modeling or even nothing about 
actuarial science. The techniques below compare the performance of competing models 
in a way that is accessible.

Some of the techniques below can also be used for model refinement, to the extent 
that they produce new data or insights that can be acted on.

7.1. Assessing Fit with Plots of Actual vs. Predicted
A very simple and easily understandable diagnostic to assess and compare the per-

formance of competing models is to create a plot of the actual target variable (on the 
y-axis) versus the predicted target variable (on the x-axis) for each model. If a model 
fits well, then the actual and predicted target variables should follow each other closely.

Consider Figure 21, which shows plots of actual vs. predicted target variables for 
two competing models.
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From these charts, it is clear that Model 2 fits the data better than Model 1, as there 
is a much closer agreement between the actual and predicted target variables for Model 2 
than there is for Model 1.

There are three important cautions regarding plots of actual versus predicted target.
First, it is important to create these plots on holdout data. If created on training 

data, these plots may look fantastic due to overfitting, and may lead to the selection of 
a model with little predictive power on unseen data.

Second, it is often necessary to aggregate the data before plotting, due to the size 
of the dataset. A common approach is to group the data into percentiles. The dataset is 
first sorted based on the predicted target variable, then it is grouped into 100 buckets 
such that each bucket has the same aggregate model weight. Finally, the averages of the 
actual and predicted targets within each bucket are calculated and plotted, with the 
actual values on the y-axis and the predicted values on the x-axis.

Third, it is often necessary to plot the graph on a log scale, as was done in Figure 20. 
Without this transformation, the plots would not look meaningful, since a few very 
large values would skew the picture.

7.2. Measuring Lift
Broadly speaking, model lift is the economic value of a model. The phrase “economic 

value” doesn’t necessarily mean the profit that an insurer can expect to earn as a result 
of implementing a model, but rather it refers to a model’s ability to prevent adverse 
selection. The lift measures described below attempt to visually demonstrate or quantify 
a model’s ability to charge each insured an actuarially fair rate, thereby minimizing the 
potential for adverse selection.

Model lift is a relative concept, so it requires two or more competing models. That 
is, it doesn’t generally make sense to talk about the lift of a specific model, but rather 
the lift of one model over another.

In order to prevent overfitting, model lift should always be measured on holdout 
data.
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7.2.1. Simple Quantile Plots
Quantile plots are a straightforward visual representation of a model’s ability to 

accurately differentiate between the best and the worst risks. Assume there are two 
models, Model A and Model B, both of which produce an estimate of the expected 
loss cost for each policyholder. Simple quantile plots are created via the following steps:

1. Sort the dataset based on the Model A predicted loss cost (from smallest to largest).
2. Bucket the data into quantiles, such that each quantile has the same volume of 

exposures. Common choices are quintiles (5 buckets), deciles (10 buckets), or vigintiles 
(20 buckets).

3. Within each bucket, calculate the average predicted pure premium (predicted loss 
per unit of exposure) based on the Model A predicted loss cost, and calculate the 
average actual pure premium.

4. Plot, for each quantile, the actual pure premium and the pure premium predicted 
by Model A.

5. Repeat steps 1 through 4 using the Model B predicted loss costs. There are now 
two quantile plots—one for Model A and one for Model B.

6. Compare the two quantile plots to determine which model provides better lift.

In order to determine the “winning” model, consider the following 3 criteria:

1. Predictive accuracy. How well each model is able to predict the actual pure 
premium in each quantile.

2. Monotonicity. By definition, the predicted pure premium will monotonically 
increase as the quantile increases, but the actual pure premium should also increase 
(though small reversals are okay).

3. Vertical distance between the first and last quantiles. The first quantile contains 
the risks that the model believes will have the best experience, and the last quantile 
contains the risks that the model believes will have the worst experience. A large 
difference (also called “lift”) between the actual pure premium in the quantiles 
with the smallest and largest predicted loss costs indicates that the model is able to 
maximally distinguish the best and worst risks.

Figure 22 shows simple decile plots for an example comparison between the 
current rating plan (left panel) and a newly-constructed plan (right panel). For ease of 
interpretation, both the actual and predicted loss costs for each graph have been divided 
by the average model predicted loss cost.

In both plots, the solid line is the predicted loss cost (either by the current rating 
plan or by the new model) and the broken line is the actual loss cost. Which model 
is better?

1. Predictive accuracy—for the right panel graph, the plotted loss costs correspond more 
closely between the two lines than for the left panel graph, indicating that the new 
model seems to predict actual loss costs better than the current rating plan does.

2. Monotonicity—the current plan has a reversal in the 6th decile, whereas the model 
has no significant reversals.
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3. Vertical distance between the first and last quantiles—the spread of actual loss costs 
for the current manual is 0.55 to 1.30, which is not very much. That is, the best 
risks have loss costs that are 45% below the average, and the worst risks are only 
30% worse than average. The spread of the proposed model though is 0.40 to 1.60.

Thus, by all three metrics, the new plan outperforms the current one.

7.2.2. Double Lift Charts
A double lift chart is similar to the simple quantile plot, but it directly compares 

two models. Assume that there are two models, Model A and Model B, both of which 
produce an estimate of the expected loss cost for each policyholder. A double lift chart 
is created via the following steps:

1. For each record, calculate Sort Ratio = (Model A Predicted Loss Cost)/(Model B 
Predicted Loss Cost).

2. Sort the dataset based on the Sort Ratio, from smallest to largest.
3. Bucket the data into quantiles, such as quintiles or deciles.
4. Within each bucket, calculate the Model A average predicted pure premium, the 

Model B average predicted pure premium, and the actual average pure premium. 
For each of those quantities, divide the quantile average by the overall average.

5. For each quantile, plot the three quantities calculated in the step above.

In a simple quantile plot, the first quantile contains those risks which Model A thinks are 
best. In a double lift chart, the first quantile contains those risks which Model A thinks 
are best relative to Model B. In other words, the first and last quantiles contain those risks 
on which Models A and B disagree the most (in percentage terms).

In a double lift chart, the “winning” model is the one that more closely matches the 
actual pure premium in each quantile. To illustrate this, consider the example double 
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lift chart in Figure 23, in which we use a double lift chart to compare a proposed rating 
model to the current rating plan.

The solid line shows the loss costs predicted by the model, the thick broken line 
shows the loss costs in the current rating plan, and the dotted line shows the actual loss 
costs. The sort order for this graph is the model prediction divided by the current plan 
prediction, and the data is segmented into deciles.

It is clear that the proposed model more accurately predicts actual pure premium 
by decile than does the current rating plan. Specifically, consider the first decile. It 
contains the risks that the model thinks are best relative to the current plan. As it turns 
out, the model is correct. Similarly, in the 10th decile, the model more accurately 
predicts pure premium than does the current plan.

As an alternate representation of a double lift chart, one can plot two curves—the 
percent error for the model predictions and the percent error for the current loss costs, 
where percent error is calculated as (Predicted Loss Cost)/(Actual Loss Cost) - 1. In 
this case, the winning model is the one with the flatter line centered at y = 0, indicating 
that its predictions more closely match actual pure premium.

7.2.3. Loss Ratio Charts
In a loss ratio chart, rather than plotting the pure premium for each bucket, the 

loss ratio is instead plotted. The steps for creating a loss ratio chart are very similar to 
those for creating a simple quantile plot:

1. Sort the data based on the predicted loss ratio (= [predicted loss cost]/premium).
2. Bucket the data into quantiles, such that each quantile has the same volume of 

exposures.
3. Within each bucket, calculate the actual loss ratio for risks within that bucket.

Ideally, the model is able to identify deficiencies in the current rating program 
by segmenting the risks based on loss ratio. To illustrate this, consider Figure 24. If a 
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rating plan is perfect, then all risks should have the same loss ratio. The fact that this 
model is able to segment the data into lower and higher loss ratio buckets is a strong 
indicator that it is outperforming the current rating plan.

The advantage of loss ratio charts over quantile plots and double lift charts is that 
they are simple to understand and explain. Loss ratios are the most commonly-used 
metric in determining insurance profitability, so all stakeholders should be able to 
understand these plots.

7.2.4. The Gini Index
The Gini index, named for statistician and sociologist Corrado Gini, is commonly 

used in economics to quantify national income inequality.
The national income inequality Gini index is calculated as follows:

1. Sort the population based on earnings, from those with the lowest earnings to 
those with the highest earnings. (This could also be done based on wealth rather 
than earnings.)

2. The x-axis is the cumulative percentage of earners.
3. The y-axis is the cumulative percentage of earnings.

The locus of points created by plotting the cumulative percentage of earnings against 
the cumulative percentage of earners is called the Lorenz curve. The left panel of  
Figure 25 plots the Lorenz curve for year 2014 household income in the United States.16

The 45-degree line is called the line of equality, so named because, if every person 
earned the same exact income, then the Lorenz curve would be the line of equality. In 
that hypothetical scenario, if there are 100 people in the society, then each represents 
1% of the population and would earn 1% of the income. Everyone doesn’t earn the 
same income, though, so the Lorenz curve is bow-shaped. As the graph shows, the 
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16 Source: https://www.census.gov/hhes/www/income/data/historical/household/
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poorest 60% of households earn roughly 25% of the total income. The Gini index is 
calculated as twice the area between the Lorenz curve and the line of equality. (In 2014, 
that number was 48.0%).

The Gini index can also be used to measure the lift of an insurance rating plan by 
quantifying its ability to segment the population into the best and worst risks. The 
Gini index for a model which creates a rating plan is calculated as follows:

1. Sort the dataset based on the model predicted loss cost. The records at the top of 
the dataset are then the risks which the model believes are best, and the records at 
the bottom of the dataset are the risks which the model believes are worst.

2. On the x-axis, plot the cumulative percentage of exposures.
3. On the y-axis, plot the cumulative percentage of losses.

The locus of points is the Lorenz curve, and the Gini index is twice the area between 
the Lorenz curve and the line of equality.

The right panel of Figure 25 plots a sample Lorenz curve for a sample pure 
premium model. As can be seen, this model identified 60% of exposures which 
contribute only 20% of the total losses. Its Gini index is 56.1%.

Note that a Gini index does not quantify the profitability of a particular rating 
plan, but it does quantify the ability of the rating plan to differentiate the best and 
worst risks. Assuming that an insurer has pricing and/or underwriting flexibility, this 
will lead to increased profitability.

7.3. Validation of Logistic Regression Models
For logistic regression models (discussed in Section 2.8), the GLM yields a 

prediction of the probability of the occurrence of the modeled event. Many of the 
model validation diagnostics discussed in the previous sections can be applied to such 
models as well. For example, a quantile plot can be created by bucketing records of the 
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holdout set into quantiles of predicted probability and graphing the actual proportion 
of positive occurrences of the event within each quantile against the average predicted 
probability; a good model will yield a graph exhibiting the properties of accuracy, 
monotonicity and vertical distance between first and last quantiles, as described in 
Section 7.2.1. Similarly, a Lorenz curve can be created by sorting the records by 
predicted probability and graphing cumulative risks against cumulative occurrences 
of the event, and a Gini index can be computed from the resulting graph by taking 
the area between the curve and the line of equality.

For such models, a diagnostic called the receiver operating characteristic curve, or 
ROC curve, is commonly used due its direct relation to how such models are often 
used in practice, as discussed in the following section.

7.3.1. Receiver Operating Characteristic (ROC) Curves
While a logistic model predicts the probability of an event’s occurrence, for many 

practical applications that probability will need to be translated into a binary prediction 
of occurrence vs. non-occurrence for the purpose of deciding whether to take a specific 
action in response. For example, suppose we build a model to detect claims fraud; for each 
new claim, the model yields a probability that it contains fraud. Based on this prediction, 
we will need to decide whether or not to assign a team to further investigate the claim.

We can make such a determination by choosing a specific probability level, called 
the discrimination threshold—say, 50%—above which we will investigate the claim 
and below which we will not. This determination may be thought of as the model’s 
“prediction” in a binary (i.e., fraud/no fraud) sense.

Under this arrangement, for any claim, the following four outcomes are possible:

1. The model predicts that the claim contains fraud (that is, mi > 0.50), and the claim 
is indeed found to contain fraud. This outcome is called a true positive.

2. The model predicts fraud, but the claim does not contain fraud (i.e., a false positive).
3. The model predicts no fraud (i.e., mi < 0.50), but the claim contains fraud (i.e., a 

false negative).
4. The model predicts no fraud, and the claim does not contain fraud (i.e., a true negative).

Outcome #1—the true positive—clearly represents a success of the model, as 
it correctly identifies a fraudulent claim, thus preventing unnecessary payment and 
saving the company money. Outcome #4, the true negative, while not as dramatic, 
similarly has the model doing its job by not sending us on a wild-goose chase.

Outcomes #2 and #3—the false positive and false negative—are failures of the 
model, and each comes with a cost. The false negative allows a fraudulent claim to 
slip by undetected, resulting in unnecessary payment. The false positive also incurs a 
cost in the form of unnecessary resources expended on a claims investigation as well as 
possible impairment of goodwill with the insured.

If the model were perfect—that is, it would predict a probability of 0% for each 
non-fraud and 100% for each fraud—then the true positive and true negative would 
be the only possible outcomes, regardless of the threshold chosen. For real-life models, 
on the other hand, false negatives and false positives are possible, and selection of the 
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discrimination threshold involves a trade-off: a lower threshold will result in more true 
positives and fewer false negatives than a higher threshold, but at the cost of more false 
positives and fewer true negatives.

We can assess the relative likelihoods of the four outcomes for a given model 
and for a specified discrimination threshold using a test set. We use the model to 
score a predicted probability for each test record, and then convert the predictions of 
probability into binary (yes/no) predictions using the discrimination threshold. We 
then group the records by the four combinations of actual and predicted outcomes, 
and count the number of records falling into each group. We may display the results 
in a 2×2 table called a confusion matrix. The top panel of Table 13 shows an example 
confusion matrix for a claims fraud model tested on a test set that contains 813 claims, 
using a discrimination threshold of 50%.

The ratio of true positives to total positive events is called the sensitivity; in this 
example, that value is 39/109 = 0.358. This ratio, also called the true positive rate or the 
hit rate, indicates that with a threshold of 50%, we can expect to catch 35.8% of all 
fraud cases.

The ratio of true negatives to total negative events is called the specificity, and is 
673/704 = 0.956 in our example. The complement of that ratio, called the false positive 
rate, is 1 - 0.956 = 0.044. This indicates that the hit rate of 35.8% comes at the cost 
of also needing to investigate 4.4% of all non-fraud claims.

We may wish to catch more fraud by lowering the threshold to 25%. The bottom 
panel of Table 13 shows the resulting confusion matrix. As can be seen, the hit rate 
under this arrangement improves to 75/109 = 68.8%—but it comes at the cost of an 
increase in the false positive rate to 103/704 = 14.6%.

Table 13.  Confusion Matrices for Example Fraud Model  
With Discrimination Thresholds of 50% (top) and 25% (bottom)

Discrimination Threshold: 50%

Predicted

Actual Fraud No Fraud Total

Fraud true pos.:  39 false neg.:  70 109

No Fraud false pos.:  31 true neg.: 673 704

Total  70 743 813

Discrimination Threshold: 25%

Predicted

Actual Fraud No Fraud Total

Fraud true pos.:  75 false neg.:  34 109

No Fraud false pos.: 103 true neg.: 601 704

Total 178 635 813
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A convenient graphical tool for evaluating the range of threshold options available 
to us for any given model is the receiver operating characteristic curve, or ROC 
curve, which is constructed by plotting the false positive rates along the x-axis and the 
true positive rates along the y-axis for different threshold values along the range [0,1]. 
Figure 26 shows the ROC curve for our example claims fraud model.

The (0, 0) point of this graph represents a threshold of 100%, with which we catch 
no fraudulent claims (but investigate no legitimate claims either). Moving rightward, we 
see that lowering the threshold and thereby incurring some false positives yields large 
gains in the hit rate; however, those gains eventually diminish for higher false positive 
rates. The two example thresholds detailed in Table 13 are plotted as points on the graph.

The ROC curve allows us to select a threshold we are comfortable with after weighing 
the benefits of true positives against the cost of false positives. Different thresholds 
may be chosen for different claim conditions—for example, we may choose a lower 
threshold for a large claim where the cost of undetected fraud is higher. Determination 
of the optimal threshold is typically a business decision that is out of the scope of the 
modeling phase.

The level of accuracy of the model, though, will affect the severity of the trade-off. 
A model that yields predictions that are no better than random will yield true positives 
and false positives in the same proportions as the overall mix of positives and negatives 
in the data, regardless of the threshold chosen. Therefore, for such a model, the ROC 
curve will follow the line of equality. A model with predictive power will yield true 
positives at a higher rate than false positives, resulting in a ROC curve that is higher 
than the line of equality. Improved accuracy of the model will move the ROC curve 
farther from equality, indicating that the model allows us a better hit rate for any level 
of false positive cost.

The model accuracy as indicated by the ROC curve can be summarized by taking 
the area under the curve, called the AUROC (for “area under ROC”). A model with no 
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predictive power will yield an AUROC of 0.500. The ROC curve of the hypothetical 
“perfect” model described earlier will immediately rise to the top of the graph (as any 
threshold below 100% would correctly identify all fraud cases and trigger no false 
positives), thereby yielding an AUROC of 1.000. The ROC curve of our example 
model plotted in Figure 26 yields an AUROC of 0.857.

Note, however, that the AUROC measure bears a direct relationship to the Gini 
index discussed in the previous section, such that one can be derived from the other.17 
As such, AUROC and the Gini index should not be taken as separate validation 
metrics, since an improvement in one will automatically yield an improvement in 
the other.

17 Specifically, the AUROC is equal to 0.5 × normalized Gini + 0.5, where normalized Gini is the ratio of the 
model’s Gini index to the Gini index of the hypothetical “perfect” model (where each record’s prediction equals 
its actual value). 
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8. Model Documentation

8.1. The Importance of Documenting Your Model
Model documentation is important enough, and overlooked enough, that it 

deserves its own section. This section comes with some unsolicited career advice which 
we hope will be helpful even for those of you who don’t build models as part of 
your day job.

Model documentation serves at least three purposes:

• To serve as a check on your own work, and to improve your communication skills
• To facilitate the transfer of knowledge to the next owner of the model
• To comply with the demands of internal and external stakeholders

If you’re a credentialed actuary working in the United States, all of the documenta
tion you produce should comply with ASOP 41 on Actuarial Communications.

8.2. Check Yourself
Actuarial work tends to be complex; modeling work, even more so. You’re going 

to make mistakes. No matter how smart you are, no matter how experienced you are, 
no matter how brilliant or elegant your work product appears to be—it’s more likely 
than not that you’ve overlooked something. We’re all just human here and that’s just 
how it goes. As an actuary, you’re obliged to own up to the mistakes that you make. 
The first time that someone discovers you sweeping a mistake under the rug is the 
last time that anyone will trust you to do anything. The better you are at identifying  
and correcting mistakes you’ve made in your own work, the easier your life will be.  
If you want to succeed in your career you’d be wellserved to internalize this.

So how are you supposed to find mistakes in your own work? One of the best ways 
is to try to explain what you’ve done in writing. When you write down what you’ve 
done in a way that allows someone else to understand it, you’re forced to revisit your 
work in full detail, and to think critically about all of the decisions you made along 
the way. This has a way of bringing errors (especially conceptual errors) to the surface. 
This is especially true when you share your documentation with others. It may be easy 
for a peer to identify a conceptual error in a narrative that they would not have been 
able to detect in a package of code.

Another benefit of documentation is that it serves to reinforce your understanding of 
the work that you’re documenting. It’s been said that “to teach is to learn twice over”. 
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This is true! The level of understanding required to document or explain or teach a 
topic is greater than the level of understanding required to simply execute. When you 
start from a foundation of deeper understanding, your subsequent work product will 
be of higher quality, and will stand up better to scrutiny. This means that you should 
document your work as you go. Documentation isn’t a task for the end of the project, 
so that you discover mistakes when you no longer have time to address them. On the 
contrary, it’s a task for right this minute, so that in your very next project meeting, you’ll 
be able to field questions that no one else has even thought of yet.

A final benefit of documentation for you, personally, is that it serves to improve 
your communication skills. There is nothing more important to an actuary than their 
ability to communicate. Our work may involve any number of complex statistical 
analyses, but our work product is always a report to someone else that details the 
work we’ve done. Your ability to communicate will become more important as you 
progress through your career, as you will find yourself increasingly responsible for 
presenting to stakeholders who are not also actuaries. The Casualty Actuarial Society 
doesn’t have an exam on communication. If you’d like to improve in this area, you’re 
going to have to find a way to do it yourself. An easy way to do this is to force yourself 
to document the things that you do in such a way that a nontechnical person can 
follow along.

Nothing in this section is hypothetical. The authors of this monograph are actuaries, 
just like you, not too many years removed from taking exams. This monograph is a 
form of documentation and we’ve become better actuaries by writing it. (And yes, 
we’ve made our share of errors as well.)

8.3. Stakeholder Management
Every modeling project you work on will eventually come to an end, but as 

discussed in Section 3.9, models will need to be maintained and rebuilt. The tasks of 
maintaining and rebuilding the model may fall to someone else, or they may fall to 
you. In either case, good documentation will make everyone’s lives easier. Even if you 
retain ownership of the model forever, we can tell you from experience that it’s easy 
to forget important details of a project after only a few months of not working on it. 
Creating good documentation now will make life easier for you in the future.

Others may develop an interest in the models that you build, either now or in the 
future. Insurance is a highlyregulated field, and there’s a good chance that regulators 
will have questions for you, either during the filing process or during a regular 
examination. Internal and outside auditors and risk managers tend to have a keen 
interest in models and their documentation. And in a large organization, any number 
of internal stakeholders—including executives, underwriters, claims adjusters, other 
actuaries, and IT personnel—may eventually come calling with detailed questions on 
work that may have been done months or years ago. In all of these cases, we can tell you 
from experience that it’s easier to have good documentation on hand ready to send to 
anyone who asks for it than it is to try to answer questions from first principles when 
your memory of what you’ve done may be a little fuzzy.
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To meet the needs of these stakeholders, your documentation should:

• Include everything needed to reproduce the model from source data to model 
output

• Include all assumptions and justification for all decisions
• Disclose all data issues encountered and their resolution
• Discuss any reliance on external models or external stakeholders
• Discuss model performance, structure, and shortcomings
• Comply with ASOP 41 or local actuarial standards on communications

8.4. Code as Documentation
Your model code serves as a form of documentation. Your code should be clearly 

written and commented. Moreover, it should be easy to differentiate the “production” 
version of your code from any draft work that led up to it. If you use R, you should 
use the “tidyverse” package and adhere to the tidyverse style guide.18 Even if you don’t 
use R, we recommend that you give this style guide a read, as the philosophies that it 
espouses are more or less universal can be applied to work done on any platform.

18 We recognize that other packages, such as data.table, may be more appropriate than tidyverse packages in some 
situations. However, it is generally not advisable to use base R for functionality that has been implemented in 
more advanced packages such as tidyverse.
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9. Other Topics

9.1.  Modeling Coverage Options with GLMs  
(Why You Probably Shouldn’t)

The policy variables included in a rating plan can be broadly categorized into two 
types: characteristics of the insured or insured entity, such as driver age or vehicle type 
for auto liability, building construction type or territory for homeowners insurance, or 
industry classification for general liability; and options selected by the insured, such as 
deductible, limit, or peril groups covered.

When using GLMs to formulate such rating plans, it is tempting to try and estimate 
factors for coverage options by simply throwing those variables in with the rest in the  
GLM—only to sometimes discover that GLM produces seemingly counterintuitive 
results. For example, consider the case of the deductible factor. When including 
deductible as a categorical variable in a pure premium GLM—setting the basic deductible 
as the base level—it is not uncommon for the GLM to produce a positive coefficient 
(indicating a factor above unity) for a deductible higher than the base deductible. This 
result—and a highly significant one, to boot!—would seem to indicate that more 
premium should be charged for less coverage, and may leave actuaries scratching their 
heads. What gives?19

The answer may lie in the basic statistical truth that correlation does not imply 
causation. A coefficient estimated by a GLM need not be the result of a causal effect 
between the predictor and the target; there may be some latent variables or charac
teristics not captured by our model that may correlate with the variable in question, 
and those effects may influence the model result. In the case of deductible, there may 
be something systematic about insureds with higher deductibles that may make them 
a worse risk relative to others in their class. Possibilities of how this may arise are:

• The choice of high deductible may be the result of a high risk appetite on the part 
of an insured, which would manifest in other areas as well.

• The underwriter, recognizing an insured as a higher risk, may have required the 
policy to be written at a higher deductible.

19 We note that while a positive indication for a higher deductible may be considered counterintuitive in a frequency  
or pure premium model, in a severity model it is to be expected. This is because despite the deductible eliminating 
a portion of each loss, thereby lowering the numerator of severity, the deductible also eliminates many small 
claims, lowering the denominator of severity. As the latter effect is usually stronger than the former, the total 
effect of deductible on severity is most often positive.
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Thus, the coefficients estimated by the GLM may be reflecting some of this increased 
risk due to such selection effects.

Counterintuitive results such as these have led some to believe that GLMs “don’t 
work” for deductibles. This may not be a fair characterization; the factors estimated by 
the GLMs may very well be predictive—if the goal is to predict loss for an existing 
set of policies. But that isn’t usually our objective; rather, we are trying to estimate the 
pricing that would make sense for policies sold in the future.

To be sure, for most other variables, potential correlation with a latent variable is 
not a bad thing; if a variable we have collected also yields some information about one 
we haven’t, all the better.20 However, where the variable in question relates to a policy 
option selected by the insured, having its factor reflect anything other than pure loss 
elimination would not be a good idea. Even if the indicated result is not something 
as dramatically bad as charging more premium for less coverage, to the extent that 
the factor differs from the pure effect on loss potential, it will affect the way insureds 
choose coverage options in the future. Thus, the selection dynamic will change, and 
the past results would not be expected to replicate for new policies.

For this reason it is recommended that factors for coverage options—deductible 
factors, ILFs, peril group factors and the like—be estimated outside the GLM, using 
traditional actuarial loss elimination techniques. The resulting factors should then be 
included in the GLM as an offset.

9.2. Territory Modeling
Territories are not a good fit for the GLM framework. Unlike other variables you 

might consider in your model, which are either continuous or can easily be collapsed 
into a manageable number of levels, you may have hundreds or thousands or hundreds 
of thousands of territories to consider—and aggregating them to a manageable level 
will cause you to lose a great deal of important signal.

So the solution is to use other techniques, such as spatial smoothing, to model 
territories. Discussion of these techniques is beyond the scope of this monograph. 
But in creating a classification plan, you must still be aware of and have access to 
the output of these models. Since there are usually many complicated relationships 
between territory and other variables, your GLM should still consider territory. This is 
accomplished by including territory in your model as an offset. Offsetting for territory 
only requires populating policy records with their indicated territory loss cost (taken 
from the standalone model). This way, your classification plan variables will be fit after 
accounting for territorial effects, and so will not proxy for them.

But, of course, it’s a twoway street. Just as your classification plan model should 
be offset for territory loss costs, so too should the territory model be offset for the 
classification plan. So the process is iterative—both models should be run, using the 
other as an offset, until they reach an acceptable level of convergence. In theory this can 

20 An important exception is where a variable included in a model may correlate with a protected class or any other 
variable that may not be rated on. In such instances, the actuary must take care to ensure that the model is in 
accordance with all regulatory requirements and actuarial standards of practice.
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be done in one pass, but in practice these models may be updated at different times and 
by different groups of people, so convergence may only set in over a period of years.

9.3. Ensembling
Consider this scenario: your company assigns its two top predictive modelers, Alice 

and Bob, to develop a Homeowners pure premium model, and advises them to each 
work independently off the same set of data.

They get to work, and, after some time, each proposes their finished model. 
Naturally—since there is no one “right” way to build a model—the models are somewhat 
different: each has variables selected for inclusion that the other does not have; some 
continuous variables have been bucketed in one model while having been transformed 
using polynomial functions in the other; and so on. However, when testing the models, 
they both perform equally well: the loss ratio charts and double lift charts both show 
the same improvement over the existing plan, and calculating Gini indices on the 
holdout set and in cross validation yields very similar results between the two. We 
now need to make a decision: which model is better—Alice’s or Bob’s?

The answer, most likely, is: both. Combining the answers from both models is 
likely to perform better than either individually.

A model that combines information from two or more models is called an 
ensemble model. There are many strategies for combining models, and a full treat
ment of the subject is beyond the scope of this text. However, a simple, yet still very 
powerful, means of ensembling is to simply take the straight average of the model 
predictions.21 Two wellbuilt models averaged together will almost always perform 
better than one, and three will perform even better—a phenomenon known as the 
ensemble effect. Generally, the more models the better, though subject to the law of 
diminishing returns. In fact, ensembling is one notable exception to the parsimony 
principle in modeling (i.e., the “keep it simple” rule); adding more models to an 
ensemble—thereby increasing the complexity—will rarely make a model worse.

An interesting example of the ensemble effect in the real world is the “guess the 
number of jelly beans in the jar” game sometimes used for store promotions. In this 
game, any individual’s guess is likely to be pretty far off from the right answer; 
however, it is often observed that taking the average of all the submitted guesses will 
yield a result that is very close to correct. As individuals, some people guess too high 
and some guess low, but on average they get it right.

Predictive models, like people, each have their strengths and weaknesses. One 
model may overpredict on one segment of the data while underpredicting on another; 
a different model is not likely to have the same flaws but may have others. Averaged 
together, they can balance each other out, and the gain in performance can be 
significant.

21 If both models are loglink GLMs, the multiplicative structure of the resulting ensemble can be preserved by 
taking the geometric average of the predictions. Equivalently, one can construct multiplicative factor tables that 
use the geometric averages of the individual model factors. (When doing so, for any variable present in one model 
but absent in the other, use a factor of 1.00 for the model in which it is absent.)
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One caveat though—for the ensemble effect to work properly, the model errors 
should be as uncorrelated as possible; that is, the models shouldn’t all be systematically 
missing in the same way. (Much as the averaged jelly bean guesses would not work 
well if everyone guessed similarly.) Thus, if ensembling is to be employed as a model
building strategy, it is best if the models are built by multiple people or teams working 
independently, with little or no sharing of information. Done properly, though, ensembles 
can be quite powerful; if resources permit, it may be worth it.
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10.  Variations on the Generalized  
Linear Model

As we have seen in the preceding sections, the GLM is a flexible, robust and highly 
interpretable model that can accommodate many different types of target variables and 
covariate relationships. However, it does have a number of shortcomings, most notably:

• Predictions must be based on a linear function of the predictors. Certainly, there 
are workarounds to handle non-linearity (such as polynomials or hinge functions) 
but those must be explicitly specified by the modeler.

• GLMs exhibit instability in the face of thin data or highly correlated predictors.
• Full credibility is given to the data for each coefficient, with no regard to the thinness 

on which it is based.
• GLMs assume the random component of the outcome is uncorrelated among risks.
• The exponential family parameter f  must be held constant across risks.

Many of the more advanced predictive modeling techniques used by data scientists in 
other disciplines, such as neural nets, random forests or gradient boosting machines, do not 
have these flaws, and are therefore able to produce stronger models that yield more accurate 
predictions. However, using those methods would entail a huge loss of interpretability, 
which, for many actuarial applications, is as great a necessity as predictive accuracy,  
if not greater.

Fortunately, a number of extensions to GLMs have been developed that address 
some of the limitations noted above. We briefly discuss some of them in this section. As 
each of the models presented here is either based on the GLM framework or something 
very similar, using them sacrifices little or no loss in interpretability, while potentially 
yielding increased flexibility, robustness and accuracy.

We caution that the discussions below are meant to be brief overviews of these models, 
and are intended to introduce the reader to them and motivate further learning. Each has 
many nuances and complexities not covered here, and the reader is urged to refer to 
other statistical texts that cover these methods in greater detail prior to attempting to 
use them in a real business scenario.

10.1. Generalized Linear Mixed Models (GLMMs)
In a standard GLM, the randomness of the outcome is considered to be the only 

source of randomness in the model; the coefficients themselves are assumed to be 
fixed values. To be sure, from our perspective, where the coefficients are unknown 
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and will need to be estimated from random data, the estimates of those parameters are 
random. (This is the randomness that statistics such as the standard error are meant 
to describe.) However, the underlying model assumes that some fixed set of values 
exist that always describe the relationship between the predictors and the expected 
value of the target variable. To see this, take a look back at Equation 2: the equals sign 
indicates a deterministic relationship involving fixed values; the only tilde (denoting 
randomness) appears in Equation 1.

The practical effect of this is that in seeking to maximize likelihood, the fitting 
procedure “moves” the coefficients as close to the data as possible, even for those where 
the data is thin. In other words, it gives the data full credibility, since we have not 
supplied it with any information to signal that the coefficients should behave otherwise.

A useful extension to the GLM is the generalized linear mixed model, or GLMM, 
which allows for some of the coefficients to be modeled as random variables themselves. 
In this context, predictors with coefficients modeled as random variables are called 
random effects; parameters modeled as having fixed values are called fixed effects. In 
practice, random effects would be estimated for categorical variables with many levels 
that lack the credibility for their coefficients to be estimated fully from their own data.

To illustrate, we present a simple example of an auto severity model with three 
predictors: driver age (a continuous variable), marital status (coded as 0 = unmarried, 
1 = married) and territory, a categorical variable with 15 levels. Driver age and marital 
status will be designated as fixed effects in our model; territory, with many of its levels 
sparse and lacking credibility, will be designated as a random effect.

We denote driver age as x1 and marital status as x2. The territory variable is 
transformed to 15 dummy-coded (0/1) variables of a design matrix, where 1 indicates 
membership in that territory.22 Rather than denote those 15 predictors as x3 . . . x17, we 
will use a new symbol—namely, z—to distinguish random effects from fixed effects, 
and so the territory variables are denoted z1 . . . z15. The coefficients for the fixed effects 
are denoted b 1,b 2, and the coefficients for the random effects are denoted g 1 . . . g 15.

A typical setup for this model might be as follows:

g x x z zim b b b g g( ) = + + + + +. . . (19)0 1 1 2 2 1 1 15 15

y gamma im f( ), (20)

g normal n s, ( )( ) 21

Equations 19 and 20 are the familiar fixed and random components of a regular 
GLM. Equation 21 introduces a probability distribution for the fifteen g  parameters, 
which are taken to be independent and identically distributed random variables in this 
model. (The normal distribution is used here for illustrative purposes; depending on 
the implementation, a different distribution may be used.)

22 For random effects we do not designate a base level, and so all 15 levels get a column in the design matrix.
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In maximizing likelihood for this setup, we now have two probability distributions 
to simultaneously consider: the distribution of outcomes y of Equation 20, and the 
distribution of random coefficients g  of Equation 21. Moving any of the g  coefficients 
close to the data raises the likelihood of y, while moving it away from the mean of the 
other g s lowers the likelihood of g . In being forced to balance those two opposing 
forces, the model will produce territory relativities that are somewhere between the 
full-credibility estimates of a GLM and the grand mean for territory. The less data 
available for a territory, the closer its estimate will be to the mean. This effect is referred 
to as shrinkage.

Figure 27 shows an example of the estimates produced by a GLMM compared 
with those estimated by a standard GLM. The dotted line shows the grand mean 
log relativity across all territories. For territories where the data is the sparsest—and 
the standard errors the widest—the GLMM estimates move farther from the GLM 
indications and closer toward the mean.

In practice, GLMMs are estimated as a two-step process. First, estimates of all the 
“fixed” parameters underlying the model are produced. For the fixed effects, this stage 
would produce actual estimates of the coefficient; for the random effects, on the other 
hand, this stage produces estimates related to the probability distribution that their 
coefficients follow. The second stage produces estimates for all levels of categorical 
variables that were specified as random effects. These estimates use a Bayesian procedure 
that factors in the estimated randomness of the parameter as estimated by the first step 
as well as the volume of data available at each level.

In our example, the initial fitting procedure produces estimates for the following 
parameters: the intercept, b 0; the coefficients for the fixed effects, b 1 and b 2; the 

Figure 27.  A comparison of GLM and GLMM estimates. 
The filled squares show the GLM estimates, and the 
error bars indicate the 95% confidence intervals around 
those estimates. The unfilled squares show the GLMM 
estimates. The vertical bars are proportional to the 
volume of data within each territory.
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dispersion parameter, f ; and the parameters related to the distribution of the  
g  coefficients—namely, n and s . Note that at this stage, the g  coefficients themselves 
have not been estimated; we’ve only estimated their distribution.

A second stage will produce the estimates of the g  coefficients. Rather than basing the 
estimate for each territory entirely on its own data—as a regular GLM would do—the 
GLMM estimates will incorporate several pieces of information: the observed severity 
within the territory; the estimated distribution of the g  parameters; and the estimated 
variance of y. Generally, estimates for more dense levels will be closer to those indicated 
by the data, while estimates for more sparse levels are driven closer to the overall mean.

If any of this seems eerily similar to Bühlmann-Straub credibility, that’s because it is. 
In fact, the variance of the g  distribution—denoted s  above—is analogous to the familiar 
credibility concept of “between-variance” among the theoretical means; residual variance 
in the model—represented by f—corresponds to the “within-variance.” The estimated 
g  for each territory will in effect be a blend between the grand mean severity among 
territories (n ) and the territory’s own observed severity, with the weighting determined 
based on the expected “within-variance” given the volume of data in the territory, relative 
to the “between-variance.” Thus, the GLMM is a useful means of introducing classical 
credibility concepts into a GLM for multi-level categorical variables.23

Correlation Among Random Outcomes.  In addition to allowing for credibility, 
the GLMM is also a means of inducing correlation into a model. Consider the case 
where a multi-year dataset may contain multiple renewals of the same policy. If we are 
concerned that the correlation among policy records is large enough so as distort the 
GLM results, we may wish to include policy ID as a random effect in a GLMM. In 
this instance, although the GLMM will produce an estimate for each policy ID, those 
are probably not of interest to us.

10.2. GLMs with Dispersion Modeling (DGLMs)
Recall that a constraint built into GLMs is that the dispersion parameter of the 

exponential family (f ) must be held constant for all records. An extension to the GLM 
that loosens up this restriction is a GLM with a dispersion modeling component, 
which allows for each record to have a unique f  as well as m , controlled by a linear 
combination of coefficients and predictors. Those predictors may be the same as those 
that predict the m  parameter, or they may be different. This type of model is sometimes 
called a double-generalized linear model (or DGLM).24

The mathematical specification of a DGLM is as follows:

y Exponentiali i im f( ), (22)

g x x xi i i p ipm b b b b( ) = + + + +. . . (23)0 1 1 2 2

23 See Klinker (2011a) for a more detailed discussion on the relationship between classical credibility and GLMMs.
24 Smyth and Jørgensen (2002).
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. . . (24)0 1 1 2 2( ) = + + + +f g g g gg z z zd i i i n ip

Equation 22 is similar to Equation 1, with a subtle difference: the f  parameter now 
has a subscript i attached to it, indicating that it may vary by record. Equation 23 is 
identical to Equation 2.

The chief innovation of the DGLM is Equation 24, which specifies the relationship 
between the dispersion parameter and the predictors z1 . . . zp, which may or may not 
be the same as the m predictors, x1 . . . xp. Coefficients for z1 . . . zp—denoted here as 
g 1 . . . g p—are estimated by the model. The linear combination of those predictors and 
coefficients equals the dispersion parameter transformed by a link function, denoted 
here as gd(.). The subscript d is added to distinguish it from the link function applied 
to m in Equation 23, since those two need not be the same; in practice, though, it is 
common to use a log link for both.

Implementation.  DGLMs are implemented in the “dglm” package available for both 
the R and S-Plus statistical languages. However, where the distribution is a member 
of the Tweedie family (that is, either the normal, Poisson, gamma, inverse Gaussian or 
Tweedie distribution), the DGLM parameters can be closely approximated using any 
GLM estimation software with the following iterative procedure:25

1. Begin by assigning a value of 1 to all f i.
2. Run a GLM to estimate the b  coefficients as usual, but with one modification: the 

weight variable should be the inverse of the dispersion parameter for each record—
that is, 1/f i. If we wish to use a weight in the model, we must divide it by f  (i.e., 
set the weight variable to w i/f i).

3. Using the predictions generated by the model estimated in step 2, calculate the 
unit deviance for each record. The unit deviance is defined as:

d f y y f yi i i i i i i if m m m[ ]( ) ( )= = − =2 ln ln

 Note that this formula is the record’s contribution to the total unscaled deviance 
described in Section 6.1.2.26

4. Run a GLM specified as follows:
• The target variable is the unit deviance calculated in step 3.
• The distribution is gamma.
• As predictors, use whatever variables we believe may affect dispersion. These are 

the z variables of Equation 24, which may or may not be the same as the main 
GLM predictors.

25 Smyth and JØrgensen (2002).
26 For the Tweedie distribution, that formula works out to be the following:
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5. Set the dispersion parameters f i to be the predictions generated by the model of 
step 4.

6. Repeat steps 2 through 5 until the model converges (that is, the model parameters 
cease to change significantly between iterations).

Where to Use It.  In a general sense, using a DGLM rather than a GLM may produce 
better predictions of the mean, particularly in cases where certain classes of business are 
inherently more volatile than others. Allowing the dispersion parameter to “float” will in 
turn allow the model to give less weight to the historical outcomes of the volatile business, 
and more weight to the stable business whose data is more informative—thereby ignoring 
more noise and picking up more signal.

The following are particular scenarios where using a DGLM rather than a GLM 
may provide additional benefit:

• For some actuarial applications, the full distribution of the outcome variable, rather 
than just the mean, is desired. In such scenarios, a GLM with constant dispersion 
may be too simplistic to adequately describe the distribution. The DGLM, on the 
other hand, models two distributional parameters for each risk and thereby has 
greater flexibility to fit the distributional curves.

• GLMs that use the Tweedie distribution to model pure premium or loss ratio, 
by keeping the dispersion parameter constant, contain the implicit assumption 
that all predictors have the same directional effect on frequency and severity. (See 
Section 2.7.3 for further discussion on this.) The DGLM, on the other hand, by 
allowing the dispersion parameter to vary, provides the flexibility for the model to 
mold itself to the frequency and severity effects observed in the data.

10.3. Generalized Additive Models (GAMs)
As noted in the introduction to this chapter, a hallmark assumption of the GLM 

is linearity in the predictors. While non-linear effects can be accommodated by 
adding various transformations of the predictors into the linear equation, those are 
workarounds that must be specified manually.

The generalized additive model (GAM) is a GLM-like model that handles non-
linearity natively. The mathematical specification of a GAM is as follows:

y Exponentiali im f( ), (25)

g f x f x f xi i i p ipm b ( )( ) ( ) ( )= + + + +. . . (26)0 1 1 2 2

Equation 25 is identical to equation 1. GAMs, like GLMs, assume the random 
component of the outcome to follow an exponential family distribution.

Equation 26 is similar to equation 2, but with an important twist: the addends making 
up the linear predictor are no longer linear functions of the predictors—rather, they are 
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any arbitrary functions of the predictors. Those functions, denoted f1(.) . . . fn(.) specify the 
effects of the predictors on the (transformed) mean response as smooth curves. The shapes 
of these curves are estimated by the GAM software.

Note that the “additive” of “generalized additive model” refers to the fact that 
the linear predictor is a series of additive terms (though free from the constraint of 
linearity). As with a GLM, we can specify a log link, which would turn the model 
multiplicative.

Unlike in a GLM, where the effect of a variable on the response can be easily 
determined by examining its coefficient, for a GAM we are provided no such convenient 
numeric description of the effect. As such, predictor effects must be assessed graphically. 
Figure 28 shows examples of such graphs, using the example severity model discussed 
back in Section 5.4. For this illustration, two continuous variables—building age and 
amount of insurance, both logged—are included in a log link GAM, and their estimated 
smooth functions are graphed in the left and right panels, respectively.

For building age, the GAM estimated a clearly non-linear function, with mean 
severity first rising, reaching a peak at around building age e2.8 = 16 years, then 
declining. (Compare this to Figures 10 and 11.) For amount of insurance, on the other 
hand, although the GAM was free to fit any arbitrary function, the one it estimated is 
nearly linear (albeit with some curvature), indicating that a linear fit would probably 
suffice for this variable.

The GAM allows us to choose from among several different methods for estimating 
the smooth functions; we will not delve into those details here. Each of those methods 
allows us to specify parameters that control the degree of smoothness for each function. 
Those parameters must be fine-tuned carefully, as allowing for too-flexible a function 
runs the risk of overfitting.

Implementation.  GAMs are available through the R packages “gam” or “mgcv,” or 
through PROC GAM in SAS.
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10.4. MARS Models
Another GLM variant that is great at handling non-linearities is multivariate 

adaptive regression splines, or MARS. Rather than fit smooth functions for the 
predictors, as does the GAM discussed in the preceding section, MARS models operate 
by incorporating piecewise linear functions, or hinge functions, into a regular GLM. 
These hinge functions are the same as those discussed in Section 5.4.4. However, in 
that section we manually created the functions and determined cut points by eyeballing 
partial residual plots; MARS models create the functions and optimize the cut points 
automatically.

To illustrate, we continue with our example severity model of the previous section. 
This time, we will use a MARS model to capture potential non-linearity in the building 
age and amount of insurance variables. Table 14 shows the portion of the resulting 
coefficient table relating to those two variables.

In the output below, the function h(.) refers to the “hinge function” discussed in  
Section 5.4.4. For example, “h(log(AoC)-1.94591)” is defined as max(log(AoC )- 
1.94591,0).

Looking at the three hinge functions for building age, notice that this handling of 
that variable is fairly similar to the piecewise linear functions we set up in Section 5.4.4, 
which had cut points at 2.75 and 3.5. The MARS model also found another cut point 
at 1.95. MARS did not include the unaltered log(AoC) term in this model, meaning 
that the response curve for log(AoC) below 1.95 is flat. (In a practical sense, that means 
this model would not differentiate between buildings of ages 1 to 7 years.)

Figure 29 graphs the response curves indicated by this model for those two 
variables. The ×’s mark the locations of the cut points. Compare those to the curves 
indicated by the GAM output of the previous section.

As with GAMs, MARS has tuning parameters to control the flexibility of the fit.  
A more flexible model will create more cut points, allowing for finer segmentation. 
Of course, with that additional flexibility comes the risk of chasing noise.

Table 14.  Partial Output of MARS  
Coefficient Table

Parameter Estimate Std. Error p-Value

. . . . . . . . . . . .

‘h(log(AoC)-1.94591)’ 1.8977 0.1976 <0.0001

‘h(log(AoC)-2.70805)’ -2.9557 0.2598 <0.0001

‘h(log(AoC)-3.46574)’ 1.2980 0.3457 0.0002

‘h(log(AOI)-9.39124)’ 0.3949 0.0359 <0.0001

‘h(log(AOI)-13.2124)’ 0.0611 0.0657 0.3526

‘h(log(AOI)-15.7578)’ 0.7151 0.2263 0.0016

. . . . . . . . . . . .
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In addition to its natural ability to handle non-linearities, MARS has a number of 
additional highly useful features, including:

• It performs its own variable selection. Unlike a GLM—which will generate a coef-
ficient for each predictor input by the user—MARS will keep only those that are 
significant. (Tuning parameters are available to control how many variables are 
retained.)

• It can also search for significant interactions. It is quite flexible in this regard; in 
addition to the 2-way interactions discussed in Section 5.6, it can search for 3-way 
(or higher degree) interactions, as well as interactions among the piecewise linear 
functions.

Even where we require our final model to be in the form of a standard GLM, MARS 
may still be a very valuable tool in the model refinement process: we can run a MARS 
model on the data, examine its output—hinge functions it created, interactions it 
discovered, and so on—and copy whichever terms we like into our GLM. Consider the 
output shown in Table 14; it is very easy to simply replicate those same hinge functions 
in our GLM, and get the same benefit of the non-linear fit.

Used in this way, MARS may uncover non-linear transformations or interactions 
we may not have thought to try. Great care needs to be taken, though, as such a “deep 
search” through the data can easily turn up spurious effects.

Implementation.  MARS is available as commercial software from Salford Systems. 
Implementations of the same procedure (not called MARS, due to Salford Systems’ 
trademark on the name) are available through the “earth” package in R and PROC 
ADAPTIVEREG in SAS (beginning with SAS/STAT version 13.1).

10.5. Elastic Net GLMs
When modeling in situations where there are a large number of potential predictor 

variables, overfitting can be a real concern for GLMs. GLMs make full use of all the 
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predictors fed into them to fit the training data as best as possible—that is, it will find 
coefficients for all predictors such that the deviance of the training set is minimized. 
Including too many predictors will cause the model to pick up random noise in the 
training data, yielding a model that may perform poorly on unseen data. In such a 
scenario, variable selection—choosing the right variables to include in the model while 
omitting the others—can be quite challenging.

Elastic net GLMs provide a powerful means of protecting against overfitting even 
in the presence of many predictors. Elastic nets GLMs are, at the core, identical to GLMs 
in their mathematical specification. The chief difference is in the method by which the 
coefficients are fit. Rather than aggressively minimizing deviance on the training set—as 
a regular GLM would—elastic nets enable you to constrain the fit, by minimizing a 
function that is deviance subject to a penalty term for the size and magnitude of the 
coefficients. This penalty term can be fine-tuned to allow you to find the right balance 
where the model fits the training data well—but at the same time, the coefficients of 
the model are not too large.

The function minimized by elastic nets is as follows:27

Deviance l a b a b∑∑( )( )+ + −1
1
2

(27)2

The first additive term of the above expression is just the GLM deviance; if this were 
a regular GLM, we’d be minimizing just that. The elastic net adds the part following 
the plus sign, called the penalty term. Let’s examine that closely.

Inside the parentheses is a weighted average of the sum of the absolute values of the 
coefficients and the halved sum of squared coefficients, with the weights determined 
by a , a parameter between 0 and 1 that we control. This use of a weighted average is 
primarily due to the fact that this model is a generalization of two earlier variations on 
this same concept: the lasso model, which uses absolute value of coefficients, and ridge 
model, which uses squared coefficients. The important thing to recognize, though, is 
that the terms inside the parentheses yield an increasing function of the magnitude of 
the coefficients, or the degree by which the coefficients deviate from zero. Thus, a greater 
penalty is applied for larger coefficients.28

The more important tuning parameter in Equation 27 is the l that sits outside 
the parentheses. This allows us to control the severity of the penalty that gets applied. 
The practical effect of raising l is that it forces coefficients to shrink closer to zero, 
to compensate for the increased penalty, in minimizing Equation 27. Under certain  

27 In Equation 27, the vector of coefficients represented by b  does not include b 0, the intercept term, which does 
not contribute to the penalty.

28 In elastic net models, all predictor variables are automatically centered and scaled prior to running the model. 
This way, the resulting b  coefficients are on similar scales, and so the magnitude of deviation from zero means 
roughly the same thing for all variables, regardless of the scales of the original variables. Note, however, that 
most implementations of elastic nets will return the coefficients on the scales of the original variables, so this 
standardization that happens behind the scenes poses no obstacle to implementation of the resulting model.
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conditions, some less-important predictors will be assigned coefficients of zero 
(effectively removing them from the model entirely).

In Figure 30 we illustrate this effect for a simple model that has five predictors, 
which we name A through E. Each predictor is represented by a different curve. For 
each, the value that the coefficient assigns to the predictor is plotted on the y-axis for 
different values of l , with l  decreasing from left to right along the x-axis.

At the far left of the graph—where l  is at its highest—the penalty for coefficient 
size is severe, and so no variables make it in with a non-zero coefficient. As we move 
rightward, dialing down l  and thereby easing up on the penalty, Variable E—clearly the 
most significant variable here—enters our model and grows in influence as l  declines. 
Moving farther to the right, more variables make their way in and their coefficients 
grow—eventually converging toward the maximum likelihood estimates that a regular 
GLM would give them.

In practice, the l  parameter is usually fine-tuned through cross validation. Doing 
so produces a model that is likely to perform better on unseen data than would a 
regular GLM. After all, a GLM is just a special case of the elastic net (where l  = 0) 
and so the fine-tuning procedure has the flexibility to produce a standard GLM if 
in fact it is the best model. Usually, though, the model can be improved by setting a 
non-zero penalty.

As we have seen, a non-zero penalty causes the model parameters to exhibit the 
shrinkage effect that is characteristic of actuarial credibility models as well as GLMMs 
discussed above. In fact, it has been shown that elastic nets bear direct relationships 
to many classical credibility models.29 Thus, as with GLMMs discussed above, elastic 
nets provide a convenient means of incorporating familiar credibility concepts into the 
GLM framework.
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29 See Miller (2015) for further discussion on this equivalence and its derivation.
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Elastic nets also have the advantage of being able to perform automatic variable 
selection, as variables that are not important enough to justify their inclusion in the 
model under the penalty constraint will be removed.

Furthermore, elastic nets perform much better than GLMs in the face of highly 
correlated predictors. The penalty term provides protection against the coefficients 
“blowing up” as they might in a GLM. Rather, one or two variables of a group of correlated 
predictors will typically be selected, and they will be assigned moderate coefficients.

The main disadvantage of elastic nets is that they are much more computationally 
complex than standard GLMs. The computational resources and time needed to fit 
elastic nets and optimize l  may make elastic nets impractical for large datasets.

Implementation.  Elastic nets are implemented in the “glmnet” package in R.30 
It is also available in SAS (beginning with SAS/STAT version 13.1) using PROC 
GLMSELECT.

30 As of this writing, the glmnet package does not support the gamma or Tweedie distributions. Fortunately, 
the “HDtweedie” package provides an implementation of glmnet for the Tweedie distribution; the gamma 
distribution is accessible through this package by setting the Tweedie p parameter to be 2.
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Appendix

In section 6.3.2, which discusses binned working residuals, we noted two properties 
that such residuals hold for a well-specified model, which makes them highly useful 
for performing residual analysis on models built from large datasets: (1) They follow 
no predictable pattern, as the mean of these residuals is always zero; and (2) they are 
homoscedastic, i.e., their variance is constant. In this appendix we show the derivation 
of these properties.

Given a model with n observations, let i = 1, . . . , n be the index of the observations. 
We divide the observations into m bins; let b = 1, . . . , m be the index of the bins.

Define working residual as

m m( ) ( )= − ′•wr y gi i i i

Define working weight as

w
m m

ww
V gi

i

i i[ ]( ) ( )
=

′•
2

Define binned working residual as

br wr ww
wwb

i b i i

i b i
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We assign observations to bins such that all bins have equal sums of working 
weights, i.e., ∑i∈bwwi = k. It follows that
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For a properly specified model, the following holds:
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Assume that the working residuals are independent. Therefore,
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both over the entire GLM training data as well as over any subset 

 with the same level of a categorical variable. In a well-fit model there is no predictable pattern in the residuals, and so the
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for any individual observation as well.
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Plugging this simplified term back into the original equation,
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A good rule of thumb is to select the number of bins m such that Var (brb) ≤ 0.01.
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Abstract

This notes presents an errata and clarifying remarks to Section 2.4 Derivation
and Use of an Exceedance Probability Curve of Catastrophe Modeling: A New
Approach to Managing Risk.

1 Clarification
The use of the phrase “exceedance probability” in Section 2.4 is ambiguous.
Specifically, “exceedance probability” can be used in one of three ways:

Occurrence Exceedance Probability (OEP) The OEP is the probability
that at least one loss exceeds the specified loss amount.

Aggregate Exceedance Probability (AEP) The AEP is the probability
that the sum of all losses during a given period exceeds some amount.

Conditional Exceedance Probability (CEP) The CEP is the probability
that the amount on a single event exceeds a specified loss amount; this is
equal to 1-CDF of the severity curve as used by actuaries in other contexts.

For actuaries who have not worked with catastrophe models, the OEP may
be a new concept. Actuaries usually think of severity distributions, which corre-
spond to the CEP - not the OEP. In Section 2.4, the term “exceedance probabil-
ity” refers to the Occurrence Exceedance Probability (OEP). The OEP
is the distribution of the largest loss in the period and is based on the theory of
order statistics.

∗This note was originally prepared by Rajesh Sahasrabuddhe, FCAS, MAAA, CAS Syllabus
Committee Chairperson in 2013. It has been revised based on similar comments provided
contemporaneously by Josh Taub, FCAS and Matthew M. Iseler, FCAS.
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2 Errata
• The end continued paragraph at the top of page 30 is corrected as follows:

A list of 15 141 such events is listed in Table 2.1 ranked in descending
order of the amount of loss. In order to keep the example simple and
the calculations straightforward, these events were chosen so the set is
exhaustive (i.e., sum of probabilities for all events equals one).

• The first complete paragraph on page 30 is corrected as follows:

The events listed in Table 2.1 are assumed to be independent Bernoulli
random variables ., each with a. It is assumed that each event only occurs
at most once with the probability mass function defined as: …

• The second complete paragraph on page 30 is corrected as follows:

If an event Ei does not occur, the loss for that event is 0. …

• The fourth complete paragraph on page 30 is corrected as follows:

Assuming that during a given year, at most only one of each disaster oc-
curs, the OEP exceedance probability for a given level of loss, OEP (Li),
can be determined by calculating: …

• The first sentence of the fifth complete paragraph on page 30 is corrected
as follows:

The resulting OEP is the probability that at least one loss exceeds a
given value exceedance probability is the annual probability that the loss
exceeds a given value.

• The upper limit of the product in the last equation on page 30 is corrected
from i to i− 1 as follows:

OEP (Li) = 1−
i∏

j=1

i−1∏
j=1

(1− pi)

1Editor’s note: The definition of Ei includes events that “could damage a portfolio of
structures” (emphasis added). We assume that event #15 in the original Table 2.1 would
have met this standard (e.g. a hurricane that turns away from land). We have removed
event #15 in order to emphasize that the probabilities need not sum to 1.000.

2



• Table 2.1 is replaced with the following:

Table 2.1: Events, Losses and Probabilities
Annual Occurrence

Probability of Exceedance
Event Occurrence Loss Probability E[L] =
(Ei) (pi) (Li) [OEP (Li)] pi × Li

1 0.002 $25,000,000 0.0000 $50,000
2 0.005 15,000,000 0.0020 75,000
3 0.010 10,000,000 0.0070 100,000
4 0.020 5,000,000 0.0169 100,000
5 0.030 3,000,000 0.0366 90,000
6 0.040 2,000,000 0.0655 80,000
7 0.050 1,000,000 0.1029 50,000
8 0.050 800,000 0.1477 40,000
9 0.050 700,000 0.1903 35,000
10 0.070 500,000 0.2308 35,000
11 0.090 500,000 0.2847 45,000
12 0.100 300,000 0.3490 30,000
13 0.100 200,000 0.4141 20,000
14 0.100 100,000 0.4727 10,000

Total Average Annual Loss (AAL) 760,000

3
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AN EXAMPLE OF CREDIBILITY AND SHIFTING RISK 
PARAMETERS 

HOWARD C. MAHLER 

Abstract 

In this paper. the won-lost record of baseball teams will 
be used to examine and illustrate credibility concepts. This 
illustrative example is analogous to the use of experience 
rating in insurance. It provides supplementary reading ma- 
terial for students who are studying credibility theory. 

This example illustrates a situation where the phenomenon 
of shifring parameters over time has a very significant impact. 
The effects of this phenomenon are examined. 

Three different criteria that can be used to select the 
#primal credibility are examined: least squares, limited jluc- 
tuation and MeyersJDorweiler. In applications, one or more 
of these three criteria should be useful. 

it is shown that the mean squared error can be written as 
a second order polynomial in the credibilities with the coef- 
jicients of this polynomial written in terms of the covariance 
structure of the data. It is then shown that linear equation(s) 
can be solved for the least squares credibiliries in terms of 
the covariance structure. 

The author wishes to thank Julie Jannuzzi and Gina Brewer for typing this paper 

1. INTRODUCTION 

In this paper, the won-lost record of baseball teams will be used to 
examine and illustrate credibility concepts. This illustrative example is 
analogous to the use of experience rating in insurance. The mathematical 
details are contained in the appendices. 
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One purpose of this paper is to provide supplementary reading ma- 
terial for students who are studying credibility theory. However, this 
paper also contains a number of points which should prove of interest 
to those who are already familiar with credibility theory. 

Of particular interest is the effect of shifting risk parameters over 
time on credibilities and experience rating. This example illustrates a 
situation where the phenomenon of shifting parameters over time has a 
very significant impact. 

The general structure of the paper is to go from the simplest case to 
the more general. The mathematical derivations are confined to the 
appendices. 

Section 2 briefly reviews the use of credibility in experience rating. 

Section 3 describes the data sets from baseball that are used in this 
paper in order to illustrate the concepts of the use of credibility in 
experience rating. 

Section 4 is an analysis of the general structure of the data. It is 
demonstrated that the different insureds (baseball teams) have signifi- 
cantly different underlying loss potentials. It is also shown that for this 
example a given insured’s relative loss potential does shift significantly 
over time. 

Section 5 states the problem whose solution will be illustrated. One 
wishes to estimate the future loss potential using a linear combination 
of different estimates. 

Section 6 discusses simple solutions to the problem presented in 
Section 5. 

Section 7 discusses three criteria that can be used to distinguish 
between solutions to the problem in Section 5. 

Section 8 applies the three criteria of Section 7 to the forms of 
solution presented in Section 6. The results of applying the three different 
criteria are compared. The reduction in squared error and the impact of 
the delay in receiving data are both discussed. 
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Section 9 discusses more general solutions to the problem than those 
presented in Section 6. 

Section 10 applies the three criteria of Section 7 to the forms of the 
solution presented in Section 9. 

Section I1 shows equations for Least Squares Credibility that result 
from the covariance structure assumed. 

Section 12 discusses miscellaneous subjects. 

Section 13 states the author’s conclusions. 

2. CREDIBILITY AND EXPERIENCE RATlNG 

Experience rating and merit rating modify an individual insured’s 
rate above or below average. From an actuarial standpoint, the experience 
rating plan is using the observed loss experience of an individual insured 
in order to help predict the future loss experience of that insured. Usually 
this can be written in the form: 

New Estimate = (Data) X (Credibility) 
+ (Prior Estimate) X (Complement of Credibility) 

For most experience rating plans, the prior estimate is the class 
average. However, in theory the prior estimate could be a previous 
estimate of the loss potential of this insured relative to the class average. 
This paper will treat both possibilities. 

2.1 Shifting Parameters Over Time 

There are many features of experience rating plans that are worthy 
of study by actuaries. Meyers [I], Venter [2], Gillam [3], and Mahler 
[4] present examples of recent work. The example in this paper will deal 
with only one aspect, that is, how to best combine the different years of 
past data. 

The author, in a previous paper [5], came to the following conclusion 
concerning this point: 
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“When there are shifting parameters over time, older year\ of datil should be 
given substantially less credibility than more recent year\ of data. There may be 
only a minimal gain in efficiency from using additional year\ of data.” 

3. THE DATA SET-S 

This paper will examine two very similar sets of data in order to 
illustrate certain features of credibility. Each set of data is the won-lost 
record for a league of baseball teams.’ One set is for the so-called 
National League while the other is for the American League? Each set 
of data covers the sixty years from 1901 to 1960. During this period of 
time each league had eight teams. 

For each year, called a season in baseball. for each team, we have 
the losing percentage, i.e., the percentage of its games that the individual 
team lost. 

3.1 Ad\untqes oj’ this Datu 

This example has a number of advantages not to be found using 
actual insurance data. First, over a very extended period of time there 
is a constant set of risks (teams). In insurance there are generally insureds 
who leave the data base and new ones that enter. 

Second, the loss data over this extended period of time are readily 
available, accurate and final. In insurance the loss data are sometimes 
hard to compile or obtain and are subject to possible reporting errors and 
loss development. 

Third, each of the teams in each year plays roughly the same number 
of games.J Thus the loss experience is generated by risks of roughly 
equal “size.” Thus, in this example. one need not consider the depen- 
dence of credibility on size of risk. 

’ Meyers ( I ( defines the efficiency of an espcriencc rafing plan as the reduction in expected squared 
error accomplished by the use of the plan. The higher the efhciency the vnaller the expected 
squared error. 
2 Appendix A gives some relevant features of the sport of baseball. 
’ These two leagues are referred to as the major league\ They generalI) contain the best player\ 
in North America. The data for the two leagues xc independent of each other. since no inter-league 
game\ are included in the data. 
’ Over the 60 years in question, teams usually played ahout I St1 games per year. 
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4. ANALYSIS OF THE GENERAL STRUCTURE OF DATA 

The loss experience” by risk (team) by year are given in Table 1 for 
the National League and Table 2 for the American League.” 

4.1 Is There an inherent Difference Between Teams? 

The first question to be answered is whether there is any real differ- 
ence between the experience of the different teams, or is the apparent 
difference just due to random fluctuations. This is the fundamental ques- 
tion when considering the application of experience rating. 

It requires only an elementary analysis in order to show that there is 
a non-random difference between the teams. The average experience for 
each team over the whole period of time differs significantly from that 
of the other teams. If the experience for each team were drawn from the 
same probability distribution, the results for each team would be much 
more similar. The standard deviation in losing percentage over a sample 
of about 9000 games’ would be .5%.x Thus if all the teams’ results were 
drawn from the same distribution, approximately 95% of the teams would 
have an average losing percentage between 49% and 5 l%.” 

The actual results are shown on Table 3. In fact, only 3 of 16 teams 
have losing percentages in that range. The largest deviation from the 
grand mean is 15 times the expected standard deviation if the teams all 
had the same underlying probability distribution. 

5 For each of 60 years. the percentage of games lost is given for each team. The data are from The 
Sports Encyclopediu [6]. 
h For the National League the teams are in order: Brooklyn, Boston, Chicago, Cincinnati, New 
York, Philadelphia, Pittsburgh and St. Louis. For the American League the teams are in order: 
Boston, Chicago, Cleveland, Detroit, New York, Philadelphia, St. Louis and Washington. In both 
cases, the city given is that in which the team spent the majority of the data period. 
’ About 150 games for a team each year times 60 years. 
8 A binomial distribution with a 50% chance of losing, for 9000 games, has a variance of 
9000(1/2)(1 - 112) = 2250. This is a standard deviation of 47 games lost, or 47 + 9OOQ = .5% 
in losing percentage. 
9 Using the standard normal approximation, 95% of the probability is within two standard deviatioins 
of the mean which in this case is 50%. 
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IYOI ,500 .419 .6lY .626 
1902 ,467 .457 ,504 SO0 
1903 ,580 ,485 .406 ,468 
1904 ,641 ,634 ,392 ,425 
1905 .669 ,684 ,399 .3x4 
1906 ,675 ,566 ,237 .S7h 
1907 ,608 ,561 ,296 ,569 
1908 ,591 ,656 ,357 ,526 
1909 ,706 ,641 .320 .4Y7 
1910 ,654 .584 ,325 ,513 
1911 ,709 ,573 .403 ,542 
1912 ,660 ,621 ,393 .SlU 
1913 ,543 ,564 ,425 .sx2 
1914 ,386 ,513 .4Y4 .6lO 
1915 ,354 ,474 ,523 ,539 
1916 ,414 ,390 ,562 ,608 
1917 ,529 ,536 ,510 ,494 
1918 ,573 .54X ,349 .469 
1919 ,590 ,507 ,464 ,313 
1920 ,592 ,396 ,513 .464 
1921 ,484 .493 ,582 .542 
1922 ,654 ,506 .481 ,442 
1923 ,649 ,506 .461 .3OY 
1924 ,654 ,403 .47 I .45x 
1925 ,542 ,556 ,558 .477 
1926 .566 ,536 ,468 .435 
1927 ,610 ,575 .444 ,510 
1928 .673 ,497 ,409 ,487 
I929 .636 .542 ,355 .57l 
I930 ,545 ,442 ,416 ,617 

NLI 
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TABLE 1 

NATIONAL LEAGUE LOSING PERCENTAGES 

NL2 NL3 NL4 NLS NL6 NL7 NL8 

.620 ,407 ,353 .457 

.647 ,591 .25Y ,582 
,396 ,637 ,350 ,686 
,307 -658 ,431 ,513 
,314 ,454 ,373 ,623 
.36X ,536 .392 ,653 
.4hl .43s ,400 ,660 
,364 ,461 ,364 ,682 
.3YY .Sl6 ,276 ,645 
.4OY ,490 .438 .588 
,353 .4x0 ,448 ,497 
.3 I8 520 ,384 ,588 
.336 ,417 ,477 .660 
.455 ,519 .552 ,471 
,546 .40X ,526 ,529 
,434 .3os .57x ,608 
.3b4 .42x ,669 .461 
,427 ,553 ,480 ,605 
,379 .hS7 ,489 ,606 
,442 ,595 ,487 ,513 
,386 ,669 ,412 .43 I 
.3Y6 .627 .448 ,448 
,379 ,675 ,435 ,484 
.3’32 .636 ,412 ,578 
,434 .SSh .379 ,497 
,510 .hlh .45 1 ,422 
,303 ,669 ,390 ,399 
,396 ,717 ,441 ,383 
.444 ,536 ,425 .487 
,435 .662 .4x1 .403 



CREDIBILITY AND SHIFTING PARAMETERS 231 

1931 ,584 ,480 ,455 ,623 ,428 ,571 .513 ,344 
1932 ,500 .474 .416 ,610 ,532 ,494 .442 .532 
1933 ,461 ,575 ,442 ,618 ,401 ,605 ,435 .464 
1934 ,483 ,533 .430 ,656 ,392 ,624 ,507 .379 
1935 ,752 .542 .35l ,556 ,405 ,582 ,438 ,377 
1936 .539 .565 .435 .519 ,403 .649 ,455 ,435 
1937 ,480 ,595 ,396 ,636 ,375 ,601 ,442 ,474 
1938 ,493 ,537 ,414 ,453 ,447 ,700 ,427 ,530 
1939 ,583 .45 1 ,455 .370 ,490 ,702 ,556 ,399 
1940 ,572 ,425 ,513 ,346 ,526 ,673 .494 .45 1 
1941 ,597 ,351 ,545 ,429 ,516 ,721 ,474 ,366 
1942 .601 ,325 .558 ,500 .441 ,722 .551 ,312 
1943 ,556 ,471 ,516 ,435 ,641 ,584 ,481 .318 
1944 ,578 ,591 .513 ,422 ,565 ,601 ,412 ,318 
1945 ,559 ,435 ,364 ,604 ,487 ,701 ,468 ,383 
1946 ,385 ,471 ,464 ,565 ,604 ,552 .591 .372 
1947 ,390 .442 ,552 ,526 ,474 .597 ,597 ,422 
1948 ,455 ,405 ,584 ,582 ,494 ,571 ,461 ,448 
1949 ,370 ,513 ,604 .597 ,526 ,474 ,539 ,377 
1950 ,422 ,461 ,582 .569 ,442 .409 .627 ,490 
1951 .382 ,506 ,597 ,558 ,376 ,526 ,584 ,474 
1952 ,373 ,582 ,500 ,552 ,403 ,435 ,727 ,429 
1953 .318 ,403 .578 ,558 .545 .46 I ,675 ,461 
1954 .403 ,422 ,584 ,519 ,370 ,513 ,656 .532 
1955 ,359 ,448 ,529 .513 ,481 .500 ,610 .558 
1956 ,396 ,403 ,610 .409 ,565 .539 ,571 ,506 
1957 ,455 ,383 ,597 ,481 ,552 .500 .597 .435 
1958 ,539 ,403 ,532 .506 ,481 ,552 .455 ,532 
1959 ,436 ,449 ,519 ,519 ,461 ,584 ,494 ,539 
1960 .468 ,429 ,610 ,565 .487 ,617 ,383 ,442 

NLI NL2 NL3 

TABLE I 

(CONTINUED) 

NL4 NL5 NL6 NL7 NL8 
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1901 ,419 ,390 ,599 ,452 
1902 ,438 .44X .493 ,615 
1903 .34l .562 ,450 ,522 
1904 ,383 ,422 ,430 ,592 
1905 ,487 ,395 ,506 ,484 
1906 ,682 ,384 .41X ,523 
1907 .604 ,424 ,441 ,387 
1908 .513 ,421 ,416 ,412 
I909 .417 ,487 ,536 ,355 
1910 .47 I ,556 ,533 .442 
1911 ,490 ,490 ,477 .422 
1912 ,309 ,494 ,510 ,549 
1913 ,473 ,487 ,434 ,569 
1914 ,405 ,545 .667 ,477 
1915 ,331 ,396 ,625 .351 
1916 ,409 ,422 .500 .435 
1917 ,408 ,351 ,429 ,490 
1918 ,405 ,540 ,425 ,563 
1919 .51X ,371 ,396 .42Y 
1920 ,529 ,377 ,364 .604 
1921 .513 ,597 ,390 .536 
1922 ,604 ,500 ,494 ,487 
1923 .599 552 .464 ,461 
1924 ,565 .569 .562 ,442 
1925 ,691 .4X7 ,545 ,474 
1926 ,699 .47 I .429 .4X7 
1927 ,669 .542 ,569 .464 
1928 .627 .532 .597 ,558 
1929 ,623 ,612 ,467 ,545 
1930 ,662 ,597 ,474 ,513 

AL1 

TABLE 2 

AMERICAN LEAGUE LOSING PERCENTAGES 

AL2 AL3 AL4 AL5 AL6 AL7 AL8 

.4x9 ,456 .650 ,545 

.63X ,390 ,426 ,551 
,463 ,444 ,532 ,686 
,391 .464 ,572 .74X 
,523 .37X ,647 ,576 
,404 ,462 ,490 ,633 
,527 ,393 ,546 .675 
,669 .556 ,454 ,559 
.510 ,379 ,593 ,724 
.417 .320 ,695 ,563 
,500 ,331 ,704 ,584 
.67 I ,408 ,656 .401 
,623 .373 ,627 .416 
,545 ,349 ,536 .474 
,546 ,717 .59l ,444 
.4X 1 ,765 .4X7 ,503 
,536 ,641 ,630 .516 
,512 594 ,525 .437 
,424 ,743 ,518 ,600 
.3X3 .68X ,503 ,553 
,359 .654 ,474 ,477 
,390 ,578 ,396 ,552 
,355 ,546 ,513 .5lO 
,414 .533 ,513 .403 
.552 ,421 ,464 ,364 
,409 .447 ,597 .460 
,286 .4OY .614 .44X 
,344 .3.59 .46X ,513 
,429 ,307 ,480 ,533 
,442 .33X .5x4 ,390 
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1931 ,592 
1932 ,721 
1933 ,577 
1934 .500 
1935 ,490 
1936 .519 
1937 ,474 
1938 .409 
1939 .41 I 
1940 .46X 
1941 ,455 
1942 ,388 
1943 ,553 
1944 ,500 
1945 ,539 
1946 ,325 
1947 .46l 
1948 .3X1 
1949 ,377 
1950 ,390 
1951 .435 
1952 .506 
1953 .45 I 
1954 ,552 
1955 ,455 
1956 ,455 
1957 ,468 
1958 ,487 
1959 ,513 
1960 .57x 

ALI AL2 AL3 

,634 .494 
,675 .42X 
,553 .503 
,651 ,448 
,513 ,464 
,464 .4x1 
.442 .461 
,561 ,434 
.44x ,435 
.46X ,422 
,500 ,513 
,554 ,513 
.46X ,464 
.539 ,532 
,523 ,497 
,519 ,558 
,545 ,481 
.664 .374 
,591 .422 
,610 ,403 
,474 ,396 
,474 ,396 
,422 ,403 
,390 ,279 
,409 ,396 
.44X .429 
,416 .503 
,468 .497 
.390 ,422 
,435 ,506 

TABLE 2 

(CONTINUED) 

AL4 AL5 

,604 ,386 
,497 .305 
,513 .393 
,344 ,390 
.3x4 .403 
,461 ,333 
,422 ,338 
,455 ,349 
.474 .29X 
.416 ,429 
.513 ,344 
,526 ,331 
,494 ,364 
,429 ,461 
.425 ,467 
,403 ,435 
.44X ,370 
.494 ,390 
.435 ,370 
.3x3 .364 
.526 ,364 
,675 .3x3 
.6lO .344 
,558 ,331 
.4x7 ,377 
,468 ,370 
,494 .364 
,500 .403 
,506 .4x7 
,539 ,370 

AL6 AL7 AL8 

,296 ,591 .403 
,390 ,591 ,396 
.477 ,636 ,349 
,547 ,559 ,566 
.61 I ,572 ,562 
,654 ,625 ,464 
,642 ,701 .523 
,651 ,638 .503 
,638 ,721 ,572 
,649 ,565 .5x4 
,584 ,545 .545 
.643 .457 .5x9 
.6X2 ,526 .45 I 
.532 ,422 .5x4 
.653 ,464 ,435 
,682 ,571 ,506 
.494 .617 ,584 
,455 .614 .634 
,474 .656 ,675 
,662 .623 ,565 
,545 .662 ,597 
.4x7 .5x4 ,494 
,617 .649 ,500 
,669 ,649 ,571 
.59l .630 ,656 
,662 ,552 .617 
.614 .500 ,643 
,526 ,516 ,604 
,571 ,519 ,591 
.623 .422 ,526 
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TABLE 3 

AVERAGE LOSING PERCENTAGES (1901-1960) 

Risk (Team) NLI NL2 NL3 NL4 NLS NL6 NL7 NL8 

National League 53.4 49.9 47.3 51.x 44.7 56.5 47.8 48.8 

Risk (Team) ALI AL2 AL3 AL4 AL5 AL6 AL7 AL8 - ~ - __ ~ ~ ~ ~ 

American League 49.5 49.4 47.0 4X.5 42.6 52.9 56.4 53.5 

Thus there can be no doubt that the teams actually differ.“’ It is 
therefore a meaningful question to ask whether a given team is better or 
worse than average. 

A team that has been worse than average over one period of time is 
more likely to be worse than average over another period of time. If this 
were not true, we would not have found the statistically significant 
difference in the means of the teams. 

Thus if we wish to predict the f’uture experience of a team, there is 
useful information contained in the past experience of that team. In other 
words, there is an advantage to experience rating. 

4.2 Shifting Parumeters Over Time 

A similar, but somewhat different question of interest is whether for 
a given team the results for the different years arc from the same 
distribution (or nearly the same distribution). In other words, are the 
observed different results over time due to more than random fluctuation? 
The answer is yes. This is a situation where the underlying parameters 
of the risk process shift over time. 

I” The situation here is somewhat complicated by the fact that one team’s loss is another team’s 
win. Thus the won-loss records of seven teams determine that of the remaining team. However, 
the author contirmed with a stratghtforward simulation that in this case this phenomenon would not 
affect the conclusion. For 8 teams each with the 50% loss rate playing 9OM) games each, in 32 out 
of 600 cases (5%) a team had a winning percentage lower than 49% or more than 51%. In none of 
the 600 cases did a team have a winning percentage as low as 48% or as high as 52%. 
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As discussed in Section 2.1, the extent to which risk parameters shift 
over time has an important impact on the use of past insurance data to 
predict the future. 

Whether the risk parameters shift over time can be tested in many 
ways. Two methods will be demonstrated here. These methods can be 
applied to insurance data as well as the data presented here. 

The first method of testing whether parameters shift over time uses 
the standard chi-squared test. For each risk, one averages the results 
over separate 5 year periods. ” Then one compares the number of games 
lost during the various 5 year periods. One can then determine by 
applying the chi-squared test that the risk process could not have the 
same mean over this entire period of time. The results shown in Table 
4 are conclusive for every single risk. Even the most consistent risk had 
significant shifts over time. 

In the second method of testing whether parameters shift over time, 
one computes the correlation between the results for all of the risks for 
pairs of years. Then one computes the average correlation for those pairs 
of years with a given difference in time. Finally, one examines how the 
average correlation depends on this difference. The results in our case 
are displayed in Table 5. 

Observed values of the correlation different from zero are not nec- 
essarily statistically significant. For this example, a 95% confidence 
interval around zero for the correlation is approximately plus or minus 
.10. I? Thus, for this example, the correlation decreases as the difference 
in time increases until about ten years when there is no longer a signif- 
icant correlation between results.r3 

‘I The data were grouped in five year intervals for convenience. Other intervals could also have 
been used. 
I2 For larger distances between the years, we have fewer observations to average, so the confidence 
interval expands to approximately plus or minus .12. The confidence intervals were- determined via 
repeated simulation in which the actual data for each year were separately assigned to the individual 
risks at random; thus for the simulated data any observed correlation is illusory. 
I’ For a difference of between I5 and 20 years there is again a small but significant positive 
correlation. The author has no explanation for this long term cycle. 
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TABLE 4 

KESULTS OF CHI-SQUARED TEST OF SHIFTING PARAMETERS OVER TIME 

For each risk (team) its experience over the 60 year period was 
averaged into 12 five-year segments. (The simplifying assumption was 
made of 150 games each year; this did not affect the results.) Then for 
each risk separately, the chi-square statistic was computed in order to 
test the hypothesis that each of the five year segments was drawn from 
a distribution with the same mean. The resulting chi-square values are: 

NLl NL2 NL3 NL4 NLS NL6 NL7 NL8 ___ - __ __ __ - 
107 45 98 35 39 73 114 119 

ALI AL2 AL3 AL4 AL5 AL6 AL7 AL8 .- - _I ___ ___ ~ 
114 69 34 30 97 162 53 65 

For example, for the risk (team) NL2 the data by tive-year segments 
are as follows: 

The sum of row (3) is 45, which is the chi-square value for this risk. 

For each risk there is less than a .2% chance that the different tive- 
year segments were drawn from distributions with the same mean.*** 
Thus we reject the hypothesis that the means are the same over time; 
we accept the hypothesis of shifting risk parameters over time. 

*Assuming 150 games per year. and the ohserved losing percentage for the five year 
segment. 
**Assuming 150 games per year, and the observed losing percentage for the whole 60 
years. 
***For I1 degrees of freedom. there is a .Ih% chance of having a ch-square value of 
30 or more. There is a .004% chance of having a chi-square value of 40 or more. 
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TABLE 5 

AVERAGE CORRELATIONSOF RISKS EXPERIENCE 

OVER TIME ( I901 - 1960) 

Difference Between 
Pairs of 

Years of Experience 

Correlation 

NL AL 

I .651 .633 
2 ,498 .513 
3 .448 .438 
4 .386 .360 
5 .312 .265 
6 .269 .228 
7 ,221 .157 
8 .I90 .124 
9 .135 .078 

10 .lOO .090 
11 .083 .058 
12 .I03 .063 
13 .154 ,101 
14 ,176 .I04 
15 .I80 .141 
16 .246 .178 
17 .278 .166 
18 .219 .198 
19 .176 .219 
20 .136 ,225 
21 .090 .159 
22 .065 .125 
23 .055 .093 
24 .004 ,048 
2.5 - ,024 ,006 

237 
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TABLE 5 

(CONTINUED) 

Difference Between 
Pairs of 

Years of Experience 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Correlation 

NL AL - 

- ,028 ,010 
- ,095 ~ ,002 
-~.I28 -.Ol3 
-.I07 - ,032 
~ ,062 ,006 
-.06l -.019 
- ,028 ,027 
-.OlS .002 

,017 .088 
,038 .I43 

-.014 .I56 
~- ,024 .314 
-- 0 I 2 ,238 
-.017 .138 
~ ,095 ,093 
-.I74 ,055 
-- .?I6 ,028 
~~ ,332 - ,043 
-~ ,423 p.018 
-~ ,363 - ,035 
- ,332 ,066 
~- ,324 ,069 
- ,373 ,136 
-- ,423 ,075 
- ,475 ,145 
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The correlation between years that are close together is significantly 
greater than those further apart. This implies that the parameters of the 
risk process are shifting significantly over time. If the parameters were 
reasonably constant over time, the correlations would not depend on the 
length of time between the pair of years. 

On the other hand, there is a significant correlation between the 
results of years close in time. Thus recent years can be usefully employed 
to predict the future. 

5. STATEMENT OF THE PROBLEM 

Let X be the quantity we wish to estimate. In this case, X is the 
expected losing percentage for a risk. 

Let YI , Y2, Y3, etc., be various estimates for X. Then one might 
estimate X by taking a weighted average of the different estimates Y;. 

?I 

i= I 

where X = quantity to be estimated, 
Y, = one of the estimates of X, 
Z, = weight assigned to estimate Y; of X. 

Here only linear combinations of estimators are being considered. In 
addition, the estimators themselves will be restricted to a single year of 
past data for the given risk or to the grand mean (which is 50% in this 
case). I4 No subjective information or additional data beyond the past 
annual losing percentages will be used. I5 In other words, this is a 
situation analogous to (prospective) experience rating. This is not a 
situation analogous to schedule rating. 

I3 In other words. in this case, Y either equals the observed losing percentage for the risk in one 
year or equals the grand mean of 50%. Credibility methods can be applied to more general 
estimators. 
I5 The use of information on the retiremenl of players or acquisition of new players might enable 
a significant increase in the accuracy of the estimate. The breakdown of the data into smaller units 
than an entire year might enable a significant increase in the accuracy of the estimate. 
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The problem to be considered here is what weights 2, produce the 
“best” estimate of future losing percentage. In order to answer that 
question, criteria will have to be developed that allow one to compare 
the performance of the different methods to determine which is better. 
In the example being dealt with in this paper, it is easy to get unbiased 
estimators. Since all of the estimators being compared will be unbiased, 
the question of which method is better will focus on other features of 
the estimators. 

Usually the weights Z, are restricted to the closed interval between 0 
and 1. In the most common situation we have two estimates. i.e., i = 
2. In that case we usually write: 

X=Z.Y, +(I -Z).Yz 

where Z is called the credibility and (1 - Z) is called the complement 
of credibility. However, it is important to note that the usual terminology 
tempts us into making the mistake of thinking of the two weights and 
two estimates differently. The actual mathematical situation is symmet- 
ric. 

6. SIMPLE SOLUTIONS TO THE PROBLEM 

In this section, various relatively simple solutions to the problem will 
be presented. 

6. I Every Risk is Average 

The first method is to predict that the future losing percentage for 
each risk will be equal to the overall mean of 50%. This method ignores 
all the past data; i.e., the past data are given zero credibility. While this 
is not a serious candidate for an estimation method in the particular 
example examined in this paper, it is a useful base case in general. 

6.2 The Most Recent Year Repeats 

The second method is to predict that the most recent past year’s 
losing percentage for each risk will repeat. This is what is meant by 
giving the most recent year of data 100% credibility. 
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6.3 Credibility Weight the Most Recent Year and the Grand Mean 

In the third method, one gives the most recent year of data for each 
risk weight Z, and gives the grand mean, which in this case is 50%, 
weight I - Z. 

When Z = 0, one gets the first method; when Z = 1, one gets the 
second method. Since each of these is a special case of this more general 
method, by the proper choice of Z one can do better than or equal to 
either of the two previous methods. This is an important and completely 
general result. It does not depend on either the criterion that is used to 
compare methods or the means of deciding which value of Z to use. 

6.4 Determining the Credibility 

When employing the third method, the obvious question is how does 
one determine the value of credibility to use. Ideally one would desire 
a theory or method that would be generally applicable, rather than one 
that only worked for a single example. There have been many fine papers 
on this subject in the actuarial literature. 

Generally, the credibility considered “best” is determined by some 
objective criterion. This will be discussed later. 

Using either Biihlmann/Bayesian credibility methods or classical/ 
limited fluctuation credibility methods, one determines which credibility 
will be expected to optimize the selected criterion in the future. One can 
also empirically investigate which credibility would have optimized the 
selected criterion if it had been used in the past; i.e., one can perform 
retrospective tests. This will be discussed in more detail later. 

6.5 Equal Weight to the N Most Recent Years of Data 

In the fourth method, one gives equal weight to the N most recent 
years of data for each risk, and gives the grand mean, which in this case 
is 50%, weight 1 - Z. This method gives each of the N most recent 
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years weight of Z/N. I6 When N = 1 this reduces to the previous method. 
Thus this method will perform at least as well as the previous method. 
with the proper choices of N and Z. 

7. CRITERIA TO DECIDE BETWEEN SOLUTIONS 

In this section, we will discuss three criteria that can be used to 
distinguish between solutions. These criteria can be applied in general 
and not just to this example. 

7.1 Least Squared Error 

The first criterion involves calculating the mean squared error of the 
prediction produced by a given solution compared to the actual observed 
result. The smaller the mean squared error, the better the solution. 

The BiihlmannlBayesian credibility methods attempt to minimize the 
squared error; i.e., they are least squares methods. Minimizing the 
squared error is the same as minimizing the mean squared error. 

7.2 Small Chtrnce of‘ Large Errors 

The second criterion deals with the probability that the observed 
result will be more than a certain percent different than the predicted 
result. The less this probability. the better the solution. 

This is related to the basic concept behind “classical” credibility 
which has also been called “limited fluctuation” credibility [7]. In clas- 
sical credibility. the full credibility criterion is chosen so that there is a 
probability, P, of meeting the test that the maximum departure from 
expected is no more than k percent. 

The reason the criterion is stated in this way rather than the way it 
is in classical credibility is that, unlike the actual observations, one 
cannot observe directly the inherent loss potential.” However, the two 
concepts are closely related, as discussed in Appendix G. 

Ih In later methods. the weights glccn to the different vear\ ot data ~111 be allowed to differ from 
each other. 
I7 It has been shown that the loss potential vary for ;L rlsh O\CI lime. Thu\ it cannot be e\tlmated 
as the average of many uhservations over time. 
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7.3 Me~~erslDonveiler 

The third criterion has been taken from Glenn Meyers’ paper [ 11. 
Meyers in turn based his criterion upon the ideas of Paul Dorweiler [8]. 

This criterion involves calculating the correlation between two quan- 
tities. The first quantity is the ratio of actual losing percentage to the 
predicted losing percentage. The second quantity is the ratio of the 
predicted losing percentage to the overall average losing percentage. The 
smaller the correlation between these two quantities, i.e., the closer the 
correlation is to zero, the better the solution. 

To compute the correlation, the Kendall T statistic is used.lx This is 
explained in detail in Appendix B. The relation of this criterion as used 
here and as it is used by Meyers to examine experience rating is also 
discussed in that appendix. 

8. THE CRITERIA APPLIED TO THE SIMPLE SOLUTIONS 

In this section the three criteria in Section 7 will be applied to the 
simple solutions given in Section 6. More knowledgeable readers may 
wish to skip to Section 8.4 which compares the results of applying the 
three different criteria. Section 8.5 discusses the reduction in squared 
error. Section 8.6 examines the impact of a delay in receiving data. 

8. I The Two Buse Cases 

The two simplest solutions either always use as the estimate the 
overall mean (2 = 0), or always use as the estimate the most recent 
observation (Z = 1). While neither of these solutions is expected to be 
chosen, they serve as the base cases for testing the other solutions. 

lx Meyers in 1 I] used the Kendall 7 statistic. In the example here, any other reasonable measure of 
the correlation could be substituted. 
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The first criterion is the smallest mean squared error. For the two 
data sets the results are: 

Mean Squared Error 

NL AL 

z=o .OOY 1 00% 
z= 1 .005Y .006X 

The second criterion is to produce a small probability of being wrong 
by more than k percent. For the two data sets the results are as follows: 

Percent 
Percent Percent of time that 

of time that of time that the estimate 
the estimate the estimate is in error 
is in error is in error by more than 

by more than 5% by more than 10%~ 20% 

NL AL NL AL NL AL 

z=o 82.2% 80.3% 64.8% 63.8% 29.0% 31.4% 
z= 1 75.8% 72.9% 52.3% 55.7% 19.1% 22.0% 

The third criterion is to have a correlation as close to zero as possible 
between the ratio of the actual to estimated and the ratio of estimated to 
the overall mean. For the two data sets the results are as follows: 

Correlation (Kendall 7) 

NL AL .____. 

z = o* .4x .46 
z= 1 -.24 -.27 

* Limit as Z approaches Nero. 



CREDIBILITY AND SHIFTING PARAMETERS 245 

8.2 Applying Credibility to the Latest Year of Data 

The third prediction method, explained in Section 6.3, uses credi- 
bility to combine the latest year of data and the grand mean. The mean 
squared error depends on the credibility. As shown in Table 6, the mean 
squared error is a minimum for Z between 60% and 70%.i9 The proba- 
bility of having errors of 20% or more is displayed in Table 7. Based 
on this second criterion, the optimal Z is between 50% and 80%.20 This 
criterion does not distinguish very sharply between the different values 
of credibility. 

The correlations used in the third criterion are displayed in Table 8. 
Based on the third criterion the optimal Z is approximately 70%.21 

8.3 Applying Credibility to the Latest N Years of Data 

The fourth method, explained in Section 6.4, uses credibility to 
combine the grand mean with the latest N years of data (giving each 
year of data the same weight.) 

The results of applying the first criterion are shown in Table 6. Based 
on most actuarial uses of credibility, an actuary would expect the optimal 
credibilities to increase as more years of data are used. In this example 
they do not. In fact, using more than one or two years of data does an 
inferior job according to this criterion. 

This result is to be expected, since the parameters shift substantially 
over time. Thus the use of older data (with equal weight) eventually 
leads to a worse estimate.22 

I’) For the NL data set, the minimum occurs when Z = 68’S, For the AL data set, the minimum 
occurs when 2 = 66%. Also, it should be noted that the squared errors for Z = 0 vary somewhat 
with the number of years of data used, solely due to the differing periods of time over which the 
test can be performed. 
X’ For the NL data set, the optimal Z is 75%. For the AL data set. the optimal Z is 55%. It should 
be noted that, given the limited number of observations, two values of Z can produce identical 
results for this criterion. 
21 For the NL data set, the correlation is closest to zero for Z = 71%. For the AL data set, the 
correlation is closest to zero for Z = 66%. 
I2 The number of years of data to use to get the best estimate will depend on the particular example. 
This general subject was explored in Mahler 151. 
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07 .07 
12 -.lI 
I6 m.15 

.2Y 

.26 

.27 

.I8 
I4 
IO 

.os 

.Ol 
03 
08 
12 

2.5 
22 
IX 

.I4 
IO 
06 
.02 
.02 

-.06 
-~.I0 

I4 

N 7 20 N = 2s 
- - 

27 30 
25 28 
21 25 
IX 22 
IS .I9 
II I6 
07 I2 
03 09 

- 01 05 
- 05 01 
-09 02 
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The results of applying the second criterion are displayed in Table 
7. This criterion does not sharply distinguish between the different values 
of credibility. There is a broad range of credibilities all of which do 
reasonably we11.2J This is particularly true for larger values of N. Again 
the use of more years of data eventually leads to an inferior estimate. 

The results of applying the third criterion are displayed in Table 8. 
Again the optimal credibility does not increase as N increases. Unlike 
the other criteria, the third criterion cannot be used to distinguish between 
values of N. For each N, there is a Z, such that the correlation is zero. 
Thus each value of N performs as well as all the others. 

Meyers points out that the distribution of Kendall’s T can be used to 
obtain a confidence interval for the credibility. As explained in Appendix 
B, for this example a 95% confidence interval for 7 around zero has a 
radius of about .07. 

For example, using 10 years of data, the optimal credibility using 
the Meyers/Dorweiler criterion for the NL set of data is 63%. However, 
this point estimate for the credibility is actually an estimate of an interval 
of credibilities that correspond to ‘I between plus and minus .O’?. The 
optimal credibility is 63% 2 13%.2J 

8.4 Comparison of the Results of the Three Criteria 

In Table 9 the optimal credibilities are displayed as determined by 
the three criteria for various values of N. Note that the listed values of 
credibility are those that happened to work best over the period of time 
observed. Values close to these values would also work well over this 
period of time. 

One should think of the point estimates listed in Table 9 as the 
centers of interval estimates. This is illustrated when one compares the 
different estimates obtained by analyzing the NL and AL data sets. There 
is no inherent difference in the two data sets. Thus one would expect 
the credibilities from the two analyses to be the same. They are similar, 

*3 This is true to a lesser extent for the first criterion. This subject is explored in Mahler 191 
M ForZ = 63.3%. 7 = 0. ForZ = 50.1%, 7 = .07. For Z = 76.4%, ,r = -.07. 
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but far from identical. This indicates that the peculiarities of the specific 
observed values are sufficient to affect the answers somewhat. There is 
some lack of precision in the estimates in Table 9. 

TABLE 9 

OPTIMAL CKI-INHILJT Y 

Number of 
Years of 

Data Used 

2 
3 
4 
5 
7 

10 
IS 
20 
25 

NL AL, 

Criterion Criterion Criterion 
#I #2 #3 

68% 75% 
71 X0 
14 87 
76 57 
74 61 
71 64 
60 49 
63 43 
71 40 
64 30 

71% 65(/r sssi 66% 
72 70 56 70 
76 72 77 73 
77 72 69 72 
77 7(1 7u 71 
73 67 51 68 
63 62 70 64 
64 65 69 62 
73 XI x2 77 
64 97 61 94 

Criterion Criterion Criterion 
#I #2 #3 __- -- - 

Criterion #I : Least Squares (Section 7. I 1 
Criterion #?: Small Chance of Large Errors (SectIon 7.2) 
Criterion #i: Meyers:l>orweiler (Section 7.31 

This can be illustrated further by reversing the time arrow and ana- 
lyzing the data sets going backwards in time rather than forwards. For 
example, one could use data from years 1902 to 19 1 1 to “predict” 190 1. 
This analysis is equally valid for determining optimal credjbilities jn this 
example as was the original anlysis. 

For N = 10, one gets the following optimal credibilities for the 
different data sets, where NLR and ALR represent respectively the NL 
and AL data sets reversed in time. 
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Criterion # 1 
Criterion #2 
Criterion #3 

NLR 

72% 
58 
77 

Optimal Credibilities (N = 10) 

NL ALR AL - - 

60% 57% 62% 
49 42 70 
63 58 64 

Average 

63% 
55 
65 

The optimal credibilities differ between the four data sets. The 
amount of variation provides some idea of the imprecision of the different 
estimates. While the optimal credibilities differ between the three criteria, 
the differences do not appear to be sufficiently large to allow one to 
draw any definitive conclusions. 

In this case, the use of any value of credibility between 50% and 
70% would perform reasonably well according to all three criteria for 
all four data sets. As a practical matter, the difference in the predictions 
will not vary that much depending on which value of credibility is chosen 
in that range. 25 

In most applications of credibility, values for the credibility that 
differ somewhat from optimal perform reasonably well and the choice 
between these values has a relatively small practical impact. 

8.5 Putting the Reduction in Squared Error in Context 

The first criterion used to determine the optimal credibility is to 
minimize the squared error. Using the optimal credibility based on this 
criterion will reduce the squared error between the observed and predicted 
result. What should be considered a significant reduction in squared 
error? 

lJ The maximum difference in any prediction for N = 10 between using 50% and 70% credibility 
is 3.3% in the losing percentage. In most cases it is much smaller. On average it would make about 
a 1% difference. 



Let us examine an example. For the NL data, using one year of data, 
the optimal credibility is 68% as shown in Table 9. As shown in Table 
6 the mean squared errors are: 

Z - 

0 
68% 

100% 

Mean 
Squared Error 

OOY I 
.004Y 
.005Y 

In this case, by the use of credibility, the squared error has been 
reduced from .0059 if the data were relied upon totally, or .0091 if the 
data were totally ignored, to .0049. In this case, the squared error has 
been reduced to 83% (.0049/.0059) of its previous value.‘h 

As discussed in Appendix E, in the current case. the best that can 
be done using credibility to combine two estimates is to reduce the mean 
squared error between the estimated and observed values to 75% of the 
minimum of the squared errors from either relying solely on the data or 
ignoring the data. ?’ 

The reduction of the squared error to 837~ of its previous value 
appears significant in light of the maximum possible reduction to 75%.“x 

8.6 Effect of Deiay in Receiving Data 

It has been shown previously for the data set examined in this paper 
that the further apart in time two years are, the lower the correlation 
between them. Thus if there is a delay before the data are available for 
use in experience rating, the resulting estimate of the future will be less 
accurate. 

>o The “previous” value of the squared error is considered to be the minimum of the squared errors 
that result from either ignoring the data entirely or relying on the data entirely. 
s When using more than two or more years of data, the reduction in squared error depends on the 
impact of shifting parameters over time. However, in the absence of shifting parameters over time, 
for N years with the same weight applied 10 each year. the maximum possible reduction is 1 + 
(2(N + I)). 
2” The maximum reduction is possible when the squared error\ for 2 = 0 and Z = I are equal. 
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As is shown in Table 10, as the delay increases, the squared error 
increases significantly. The increase in squared error is particularly sig- 
nificant as one goes from a situation of having the data from the most 
recent year available to predict the coming year to a situation of having 

TABLE 10 

MINIMUM SQUARED ERROR(.OOOI) 

Time Between Latest 
Data Point and 

Future Prediction N= 1 N=2 N=3 N=4 N=5 

2 
3 
4 
5 
6 
7 
8 
9 

IO 

Time Between Latest 
Data Point and 

Future Prediction 

49 52 51 51 53 
66 62 60 60 60 
69 66 65 64 65 
73 71 69 69 70 
77 73 73 72 72 
76 75 75 73 74 
78 77 75 75 75 
79 77 77 76 75 
78 78 77 76 75 
78 78 76 75 75 

AL 

N=l N=2 N=3 Iv=4 Iv=5 

NL 

8 
9 

10 

56 56 59 61 66 
71 70 71 74 76 
78 77 80 81 83 
83 85 85 87 88 
89 89 90 91 91 
91 91 92 93 93 
93 93 94 93 94 
95 94 94 94 93 
95 94 94 93 93 
94 94 93 93 94 



254 CREDIBII.II’Y AND SIiIFI IN<; P4RAblI;IERS 

only the next most recent year available. Unfortunately. the latter situ- 
ation is more common in insurance than is the former. 

As is shown in Table 11, the optimal credibility (as determined using 
the least squares criterion) decreases as the delay increases. Less current 
information is less valuable for estimating the future 

TABLE I1 

OPTIMAL CREDIBILITY (CRITERION #I. LF.AS.I SUUAKES) 

Time Between Latest 
Data Point and 

Future Prediction 

8 
9 

IO 

Time Between Latest 
Data Point and 

Future Prediction 

N= I N=2 N=3 N :zr 4 
-- N=5 

68 71 74 76 74 
51 s9 64 64 63 
47 53 55 56 55 
40 45 47 47 45 
33 38 40 39 36 
30 33 34 32 30 
24 26 26 25 24 
19 20 31 2 1 20 
14 I6 I7 18 20 
II I3 I5 IX 21 

AL - 

N= 1 N=2 N=3 N=4 N=5 

8 
9 

IO 

65 70 72 72 70 
51 57 58 57 56 
42 47 46 46 45 
35 36 37 36 36 
25 2x 28 28 25 
21 22 22 19 18 
15 16 14 14 13 
II 9 IO IO 9 
6 7 8 7 9 
7 7 7 9 IO 

NL - 



CREDIBILITY AND SHIFTING PARAMETERS 255 

9. MORE GENERAL SOLUTIONS 

In Section 6, four relatively simple forms of a solution were given. 
In this section, more general forms of a solution will be given. 

9.1 Combine Previous Estimate and Most Recent Data 

In the fifth method, one gives the latest year of data weight 2, and 
gives the previous estimate weight 1 - Z. Of course, one has to choose 
an initial estimate.” In this case, for each risk the initial estimate will 
be taken as the grand mean of 50%.“’ Once this estimation method has 
been used for several years, the initial estimate has very little weight. 

For example, let us assume Z = 60%. Then the weights assigned to 
the given years of data used in estimating the result for the year 191 1 
would be as follows: 

Year of Data Weight in Estimate of 1911 

1910 
1909 
1908 
1907 
1906 
1905 
1904 and Prior 

Z = 60% 
Z(1 -z)=4O%x60%=24% 
Z (1 - Z)’ = 40% x 40% x 60% = 9.6% 
Z (I - Z)” = 9.6% x 40% = 3.84% 
Z (1 - Z)” = 3.84% x 40% = 1.54% 
Z (I - Z)’ = 1.54% x 40% = .61% 
(1 - Z)h = .41% 

The above assumes that the latest year of data is always given 60% 
weight, while the current estimate is given 40% weight. 

Thus in this case, one gets a geometrically decreasing weight. This 
procedure is called (single) exponential smoothing [lo]. It is an example 
of what mathematicians call a “filter.““’ Once the process of exponential 

x This is precisely analogous to choosing a “seed” value in exponential smoothing. 
w One could use subjective judgement to choose the initial estimate for each risk. Also one could 
use data from the period prior to that displayed in this paper; this has been avoided for the sake of 
simplicity. 
I’ Morrison [ 1 I] gives this as an example of a “fading-memory polynomial filter.” 
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smoothing gets “up to speed, ” it is equivalent to a weighted least squares 
regression, where the fitted line is horizontal,” and where the weights 
are geometrically decreasing as the data get less recent. 

9.2 More Genrral Varying Weights 

In Section 9. I, one gave geometrically decreasing weight to years of 
data further in the past. More generally one can make the estimate: 

F = CZiX, + (1 _ EZ,)M 

where the weights Zi depend on how far in the past are the data X,. For 
years for which data are not available (presumably because they are too 
far in the past) one uses the grand mean M instead of the data. This 
method is a generalization of the methods in Sections 6 and 9.1. 

Unfortunately, calculating or empirically determining the optimal 
values of the weights Z, becomes difticult as more years of data are used. 
241so, there are many vectors of Z, that are very close to optimal; i.e., 
the n-dimensional volume of values ZI, .Z,, that produce close to 
optimal results is relatively large. 

10. THE CRITERIA APPLIED TO THE MORE: GENEtRAI. SOLUTIONS 

In this section the three criteria in Section 7 will be applied to the 
more general solutions to the problem given in Section 9. For simplicity, 
the results will be shown for the situation where there is no delay in 
obtaining the data for use in making the next estimate. In Section 8.6, 
an example was given of the results of such a delay in receiving data. 
The same general pattern would apply here. 

10.1 Geometrically Decreasing Weights 

In Section 9. I, weight Z is applied to the latest available year of 
data, while weight I -- Z is applied to the previous estimate. 

l2 Double exponential \moothiny. SometImes called linear exponential bmoothmg. would be equiv- 
alent to a weighted linear least squares regressIon, with geometrically decreasing weights as the 
data got less recent. 
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Table 12 gives the mean squared errors for various values of Z. The 
optimal values of Z, using criterion #1 (least squares), are all close to 
55%.” This results in weights to the various years of data very similar 
to those in the example in Section 9.1. 

TABLE 12 

MEAN SQUARED ERRORS* (.OOOl) THAT RESULT FROM 

APPLYING Z TO LATEST YEAR OF DATA 

AND 1 - Z TO PREVIOUS ESTIMATE 

Z - 

0 
.I 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

1.0 

NL NLR** AL ALR** 

79 97 95 96 
61 70 72 78 
56 63 65 71 
52 60 60 67 
50 57 57 64 
49 56 55 63 
50 56 55 63 
50 57 55 64 
52 58 56 66 
54 59 58 69 
57 62 61 73 

* First IO years are not included in the computation of the squared 

errors in order to eliminate the calibration period. 
** Data reversed in time. 

In this case there is no significant reduction in squared error beyond 
what was previously obtained by applying credibility to the latest avail- 
able year. 34 

Table 13 displays the results of applying criterion #2, limited fluc- 
tuation. Values of the credibility between 40% and 80% generally per- 
form well. 

” For the NL data set the optimal credibility is 53%. For the NLR data set, it is 58%. For the AL 
data set it is 60%. For the ALR data set it is 54%. 

14 Compare the results in Table 6 for N = 1 with those in Table 12. 
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Table 14 displays the results of applying criterion #3, Meyers/ 
Dorweiler.j5 Unlike the previous two cases, the optimal credibilities are 
close to zero; 5% to 10% credibility produces correlations close to zero. 
The use of such small credibilities is approximately the same as using 
10 to 20 years of data as the basis for the estimate. since the geometrically 
decreasing weights decline only slowly. 

TABLE 13 

PERCENT- OF TIME* THAT THE ESTIMATI. IS IN ERROR BY 

MORE THAN 20% 
APPLYING Z fo LATEST YEAR OF DATA 

AND 1 - Z I’O PREVIOUS ESTI~~AI-F. 

Z NL NLR** AL ALR”* 

0 
.I 
3 .- 
3 ._ 

.4 

.5 

.6 

.7 

.8 

.9 
1.0 

25 31 33 31 

23 2.1 2s 26 
21 22 24 25 
1X 21 21 23 
16 21 20 21 

16 20 I9 22 
16 20 I9 21 
17 I9 20 22 
IX I9 I9 22 
18 20 IX 23 
19 21 I9 26 

* First IO years are not included In the computation in order to 
eliminate the calibration period. 

** Data reversed in time. 

‘5 In this case, the results of the first 20 years were excluded from the computation. in order to 
eliminate the calibration period. Twenty years were used, rather than ten years as in the previous 
two tables, since in this case smaller credibilities are optimal and smaller credibilities require a 
longer calibration period. 
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TABLE 14 

Z 
- 

NL NLR** AL ALR** 

o*** .I1 

.l - .03 

.2 -.05 

.3 -.08 

.4 -.I0 

.5 -.I3 

.6 -.I5 

.7 -.I8 

.8 -.20 

.9 -.23 
I.0 -.26 

CORRELATIONS* (KENDALL TAU) THAT RESULT FROM 

APPLYINGZTO LATEST YEAR OF DATA 

AND I - ZTO PREVIOUS ESTIMATE 

.I6 .28 .I4 

.Ol .oo -.09 
-.05 -.04 -.I0 
-.09 -.07 -.I2 
-.I2 -.lO -.13 
-.I5 -.I2 -.15 
-.I8 -.I4 -.I7 
-.20 -.I6 -.20 
-.23 -.I8 -.22 
-.25 -.2l -.24 
-.27 -.23 -.28 

* First 20 years are not included in the computation of the correlations 
in order to eliminate the calibration period. 

** Data reversed in time. 
*** Limit as Z approaches zero. 

10.2 More General Varying Weights 

In Section 9.2, varying weights 2, are applied to the most recent N 
years, while the remaining weight is given to the grand mean. This 
method will only be examined using criterion #I, least squares. One 
can solve numerically for the set of weights which produce the least 
squared error, using a given number of years of data.36 The results are 
as follows: 

lb Unfortunately, as the number of years increases, the amount of computer time required also 
increases. 
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Using Most Recent Two Years of Data (N = 2. A = I) 

Credibility 

Second Most Most Recent Mean Squared 
Recent Year Year Error (.OOOl) 

NL 9.6% 61.1% 48 

AL 13.1% 56.9% 54 

Using Most Recent Three Years of Data (N = 3. A = I) 

Credibility 

NL 
AL 

Third Most Second Most 
Recent Year Recent Year 

16.4% I. 1%’ 

8.1% 9.1% 

Most 
Recent Year 

59.0% 

55.7% 

Mean Squared 
Error (.OOOl) 

45 

53 

Most of the credibility is assigned to the most recent year. The 
complement of credibility, which is assigned to the grand mean, is about 
25 to 35 percent, decreasing as N increases. 

Complement of Credibility 

N= l* N=3 N=3 __- 

NL 32% 29% 24%’ 

AL 35% 30% 274 

* One minus the optimal credibility from Table c). 

The mean squared error is reduced from that using only the latest 
year of data. j7 

j7 Since the use of fewer years of data ih just a special case, the least squarr:d error using more 
years of data must be less than or equal that uvng leper years of data. 
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Mean Squared Error (.OOOl) 

N= I” N=2 N=3 

NL 49 48 45 

AL 56 54 53 

* From Table 6. 

1 1. EQUATIONS FOR LEAST SQUARES CREDIBILITIES 

In Section 11.2 are equations to solve for the least squares credibility. 
These equations follow from the assumed covariance structure discussed 
in Section 11.1. In Section 1 I .3 the equations in Section 11.2 are 
modified to constrain them to place no weight on the grand mean. Section 
1 I .4 compares the mean squared errors that result from different credi- 
bilities. Section 11.5 briefly discusses the validity of the results derived 
in this paper. 

II. I The Covariunce Structure 

By analyzing the covariance structure, one can set up matrix equa- 
tions to solve for the credibilities that minimize the squared error. These 
matrix equations are discussed in the next section. 

As shown in Appendix D, the variance of the data can be broken 
down into two pieces. There is the variance between the risks.j8 There 
is also the variance within the risks.‘” These two variances add up to the 
total variance. 

NL 
AL 

Between Variance 

.001230 

.001619 

Within Variance 

.007892 

.007875 

Total VarianceJo 

.009121 

.009494 

lx This has been denoted as 7’. 
Iq This has been denoted as 6’ + 5’. 6’ is what is usually termed process variance, while 6’ is the 
variance due IO shifting parameters over time. 
J(i May differ slightly from the sum of the other two variances due to rounding. 
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Also of interest is the covariance between the years of data. It is 
assumed that this is a function of the number of years separating the 
data. The observed values are given in Table IS. As was seen in Table 
5, the covariance decreases as the years of data are further apart. After 
about 6 years the covariances are relatively close to zero. 

TABLE 15 

C~VAKIAN(.~ I .OoOl ) 

Years 

Separating 
Data NL AL 

0* 
I 
2 

4 

5 

6 

7 

8 

9 

IO 

11 

12 

13 

14 

15 

16 

17 

I8 

19 

20 

7x92 

4Yl9 

3416 

3128 

7551 

1x10 

I566 

MS 

3x7 

- 74 

- 394 

-558 

- 3x9 

59 

212 

603 

7X6 

302 

47 

-268 

7875 

4527 

3175 

241 I 

1766 

780 

3x3 

-YY 

--561 

- 1068 

-87X 

-980 

~ lOY2 

-737 

-814 

-453 

-39 

-139 

214 

279 

41s 

*Equal by definition to the within variance 
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It is possible to divide the within variance into two parts. The first 
part is the process variance excluding the effect of shifting parameters 
over time.4’ The second part is that portion of the within variance due 
to shifting parameters over time. 42 While this division may aid our 
understanding, it is not necessary for the calculation of the least squares 
credibilities. Not coincidentally, this division cannot be performed based 
solely on the reported data contained in Tables 1 and 2. This subject is 
discussed in more detail in Appendix D. 

I I .2 Matrix Equations for Least Squares Credibilities 

Using the estimation method described in Section 9.2: 

F= gZ,X;+(1 - $Z,)M (11.1) 
i=l i= I 

As derived in Appendix C, one gets the following expression for the 
expected squared error between the observation and prediction: 

V(Z) = 5 5 ZiZj (T2 + C(li - jl>> 

- 2 f$ Zi (T’ + C(iV + A - i)) 
i=l 

+ T2 + C(0) (11.2) 

In equation (11.2) we have used the following quantities defined in 
Appendix D. 

T2 = between variance 
C(k) = covariance for data for the same risk, k years apart 

= “within covariance” 
C(0) = within variance 
A = the length of time between the latest year of data used and 

the year being estimated 

J’ This has been denoted as a2. 
*> This has been denoted as [‘. 



Equation 11.2 shows that the squared error is a second order poly- 
nomial in the Z,.j3 This equation is the fundamental result for analyzing 
least squares credibility. 

One can differentiate equation I I .2 in order to get N linear equations 
in N unknowns, which can be solved for the optimal credibilities. 

5 zj(T’ + c(/i - jl)) = T2 + C(N + A - i) i = 1, 2, . N (11.3) 
J=I 

The set of equations 1 1.3 can be solved on a computer relatively 
easily using the usual methods from matrix theory. The results of doing 
so for A = 1, using the average of the variances and covariance deter- 
mined from the NL and AL data separately.” arc shown in Table 16. 

TABLE I6 

LEAST SQUARES CREDIBILITIES, SOLU I IONS 01: MAI RIX Ecju.4 IIONS I 1.3 (A = I) 

Number 
of Years ot 

Year\ Between Ihta and Estimate 

Data Used (N) I 2 1 -1 5 6 7 x Y 10 
- - - - - - - - - - 

I 
2 
3 
4 
5 
6 
7 
x 
9 

IO 

fj6,y3 - ~ ~ -~ ~~ 
51.1 12.6 - ~~ ~ -- ~ - - ~ 

56. I 4.8 13.5 ~ 
55.6 4.6 Il..5 3.5 - - - 
55.7 5.1 I I.7 6.0 -4.4 ~ ~ 
55.9 4.9 I I.3 5.x 6.6 3.9 ~ 
56.0 4.7 Ii.5 6.2 -6.S 5.9 -3,s - - - 
56.0 4.7 II.4 6.2 --6.3 5.9 -2.8 -1.2 - - 
Sh. I 3.9 I I.0 6.6 -6.7 5.3 -~?.I -5.3 5.6 - 
55.9 5.0 II.2 6.4 -6.4 5.1 3.4 4.5 3.6 3.5 

The complement of credibility i\ applied to the grand mean 

First column is the credibility applied to the mo\t recent yu~-. wcond column is, the credibility applied 
to the next most recent year. etc 

Vote: Based on the average of the variances and co\arinnc,e\ dctcrmined from the NL and AL data 
separately: houcver. awmles that for a wparation of clght )ear\ or m~vr. the covariance is Len). 

4’ When N = 1, the squared error is a parabola as a function of the credikhty. l‘his has been noted 
before, for example in Appendix B of Meyers [I?]. 
* It is assumed that for a separation of eight year!, or more, the covariancc i\ Lro. 
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The results conform reasonably well to those determined in Section 
10.2. 

The credibilities applied to the most recent year quickly converge to 
about 56%. The credibilities for the less recent years are much smaller. 
However, these credibilities do not monotonically decline as the years 
get less recent. There is a complicated pattern of weights determined by 
the covariance matrix. Some of the weights are even less than zero.4s 

The optimal credibilities are uniquely determined given the covari- 
ante structure. However, there are many other sets of credibilities which 
produce expected squared errors very close to minimal. The precise 
values of the credibilities are not particularly important, although the 
general range of credibilities that perform well might be instructive. 

One can apply equation (1 I .2) to the method discussed in Sections 
6.5 and 8.3 of applying equal weight Zi to the latest N years of data, 
where 

Z; = ZIN for i = 1, . . . , N 

As shown in Appendix C, the least squares credibility in this case is 
given by: 

NT* + 5 C(N + A - i) 
1=l 

Z=N 

N? + $ 5 C(li - jl) 

(11.4) 

i=l j=l 

The results of applying this equation for A = 1, using the average 
of the variances and covariances determined from the NL and AL data 
separately,46 are shown in Table 17. 

Table 17 can be compared to Table 11. 

The results in Table 11 conform reasonably well to those determined 
empirically for each data set (for A = 1). 

45 Giving negative weight to some years allows a larger weight IO be given to other years. The net 
effect is to reduce the expected squared error. 
+C It is assumed that for a separation of eight years or more, the covariance is zero. 
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TABLE 17 

LEAST SQUARES CREDIHIL.I.I \I’. SOI.UTION TO 
EQUA IION I I .3 (A = I) 

Number of Years 
of Data Used (N) Z Z+N 

I 66.0% 66.0%~ 
2 70.3 35.2 
3 72.9 24.3 
4 73.h 18.4 
5 72.2 14.4 
6 71.3 11.9 
7 69.9 10.0 
8 68.2 8.5 
9 67.3 7.5 

IO 66.9 6.7 

Equal weight Z/N 1s applied IO each of the N most recent years of data. 
The complement of credibility. I ~ Z. is applied to the grand mean. 

Note: Based on the average of the variances and covariances determined 
from the NL and AL data separately: however, assumes that for a 
separation of eight years or mom. the covariancc is zero. 

11.3 Placing No Weight on the Grad Mean 

Once the estimation method described in Sections 9.1 and 10. I gets 
“up to speed,” the initial estimate, which was taken as the grand mean, 
has very little weight. For all intents and purposes each risk is estimated 
based on its own past data, without relying on the data of other risks, 
in particular the grand mean.“’ 

47 The covariance structure is herein estimated using the data for all ri\ks. Thia in turn is used to 
estimate the optimal credibilities. However. the credihilities are applied to the dala fur the particular 
risk we are rstimating. 



CREDIBILITY AND SHIFTING PARAMETERS 267 

One can constrain the credibilities used in equation I 1.1, so that they 
add to unity, thus giving no weight to the grand mean. Equation 11.1 
then becomes 

F = 5 Z;X, (11.5) 
1=I 

with the constraint 

: z; = 1. (11.6) 
,= I 

The least squres credibilities for equations 11.5 and 11.6 are derived 
in Appendix C using the method of Lagrange Multipliers. The result is 
a set of N + 1 linear equations in N + 1 unknowns, the Z; for i = 
1 3 ..., N, and A, the Lagrange Multiplier. There is the single constraint 
equation 11.6, plus the N equations 11.7. 

2 Z, C((i - j() = C(N + A - i) + ; , i = 1, 2, . . . . N (11.7) 
J=i 

The set of equations 11.6 and 11.7 can be solved on a computer 
relatively easily using the usual methods from matrix theory. The results 
of doing so for A = 1, using the average of the variances and covariances 
determined from the NL and AL data separately,4x are shown in Table 
18. 

11.4 Mean Squared Et-t-cm 

The mean squared errors that result from using the credibilities in 
Tables 16, 17, and 18 are displayed in Table 19. 

When applying general weights to the latest N years of data, giving 
the most remote year of data no weight is equivalent to the case of using 
the latest N - 1 years of data. Since using the latest N - 1 years of 
data is a special case of using the latest N years of data, we expect the 
squared errors to decline, or remain constant. 

This is what we observe for the credibilities from Table 16. They 
decline until N = 6, where the point of diminishing returns is reached. 

‘” It is assumed that for a separation of eight years oc more. the covariance is zero. 



TABLE 18 

LEAST SQUARES CREIXBILITIES, SOI.UTIONS OF EQUATIONS 11.6 AND 11.7 (A = 1) 

Number 
of Years of 

Years Between Data and Estimate 

Data Used (A? I 2 3 4 5 6 I 8 9 IO 
;: 
z - - - - - - - - - - 
z 

1 1()o.oq - - - - - - - - - E 
2 12.6 27.3 :: - - - - _ - - - 

P 
3 66.1 10.3 23.6 - - - - ;5 
4 63.5 9.1 16.0 11.4 - - - - - - 

2 
5 63.1 X.7 15.8 9.5 2.9 - ; 

6 62.X 7.6 14.1 8.6) -3.9 10.8 - - _.“. ~ z 
7 62.5 7.7 13.8 8.2 -4. I 9.0 2.9 c: - - - 
8 h2.3 7.3 I-1.0 7.7 -4.x X.6 -0.2 5.1 2 -- - 

9 61.X 1.3 13.0 x.3 -5.7 7.0 -1.1 -’ I.9 I I .2 
F 

-..- K IO 60.X 7.5 13.1 1.7 -5.2 6.3 -2.2 -2.5 6.1 X.4 : 
2 
c 

The credibihtirs are conatrainod to sum to unit]. 

Flrsr column is the crediblhty applied to the most recent qear. second column is the crediknhty applied to the 
next most recent year. etc. 

Note: Based on the average of the variances and covarlances determined from the NL and AL data separately: 
however. assumes that for a separation of eight years or more, the covanance is zero. 
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Applying the same weight to each year is a special case of using the 
general weights. Thus the squared errors that result from using the 
credibilities from Table 17 should be greater than or equal to those that 
result from the credibilities from Table 16. This is the case, as shown 
in Table 19. Also, as was observed in Section 8.3, using more years of 
data leads in this case to larger squared errors. 

Applying no weight to the grand mean is a special case of using the 
general weights. Thus the squared errors that result from using the 
credibilities from Table 18 should be greater than or equal to those that 
result from the credibilities from Table 16. As is shown in Table 19, the 
squared errors are substantially greater, with the gap narrowing as the 
number of years increases. 

TABLE 19 

Number 
of Years of 

Data Used (N) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mean Squared Errors (.OOOl)* 

Using the Using the Using the 
Credibilities Credibilities Credibilities 

From From From 
Table 16** Table 17*** Table 18**** 

52 52 63 
51 54 58 
49 55 54 
48 57 52 
48 60 52 
47 61 51 
47 64 51 
47 66 51 
47 68 51 
47 70 50 

* Mean squared error using the stated credibiiities to predict for the NL and AL data 
sets. 

** The complement of credibility is given to the grand mean. 
*** Equal weight to N years, with the complement of credibility given to the grand 

mean. 
**** The credibilities add up to one, and thus no weight is given to the grand mean. 
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1 I .S Vulidity of Results 

The credibilities determined in Sections 10 and prior are all deter- 
mined empirically by directly working with the data. In this section 
equations for the least squares credibilities have been introduced along 
with an assumed covariance structure. 

The credibilities resulting from the use of the equations in this section 
are comparable to those determined in the previous sections empirically. 
As is shown in Appendix F, the observed pattern of squared errors is 
comparable to that derived from the assumed covariance structure. 

Therefore, the results of this section are an appropriate means of 
estimating least squares credibilities for this example. How well these 
results would apply to another situation would depend on the covariance 
structure that underlies the particular data set. 

12. MISCELLANEOUS 

Section 12.1 contrasts the Meyers/Dorweiler Criterion vs. the other 
criteria. Section 12.2 discusses a somewhat artificial ratemaking exam- 
ple. It is intended to point the way towards applying these or similar 
methods to practical situations. Section 12.3 compares the baseball ex- 
ample to typical insurance applications. Section 12.4 shows that the 
estimates that result herein from the use of the credibilities are in balance. 
Section 12.5 discusses the question of what estimation method to select 
for predicting the future loss record of baseball teams. It is included in 
order to complete the illustrative example used throughout this paper. 

12. I Contrasting the Me~erslDorcveiler Criterion 1~s. the Other 
Criteria 

Section 10.1 provides a good example of how criterion #3, Meyers/ 
Dorweiler, differs on a basic conceptual level from the first two criteria. 
Both of the other criteria are concerned with eliminating large errors.4” 
Criterion # 1, least squares, does this since even a few large errors will 

1v Mahler 171 compares the credibilities that result from the application of the Biihlmannileast 
squares criterion and the credibilities that result from the application of the classical/limited fluc- 
tuation criterion. 
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greatly increase the sum of squared errors. Criterion #2, limited fluc- 
tuation, does this directly by minimizing the number of errors larger than 
the selected size. 

In contrast, criterion #3, Meyers/Dorweiler, is concerned with the 
pattern of the errors. Large errors are not a problem, as long as there is 
no pattern relating the errors to the experience rating modifications. For 
example, consider the following two situations. In each case, for sim- 
plicity, only four risks are assumed. 

Situation # 1 
Modification Error 

1.20 +30% 
1.20 -30% 
.80 +40% 
.80 -40% 

Situation #2 
Modification Error 

1.30 +2% 
1.10 +I% 
.90 -1% 
.70 -2% 

Situation #2 with its small errors is preferable under the first two 
criteria. Situation #I with its lack of a pattern of errors is preferable 
under the MeyersiDorweiler criterion. Most actuaries would prefer Sit- 
uation #2. 

This example is not meant to discourage use of the Meyers/Dorweiler 
criterion. Rather it is meant to point out the potential hazards of relying 
solely on any single criterion, as well as the importance of understanding 
exactly what is being tested by any criterion that is being used. 
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12.2 A Ratemaking Example 

Assume for a given line of insurance that the five most recent annual 
loss ratios are being combined to calculate a rate level indication.50 
Assume that it is three years from the latest year of data to the average 
date of loss under the proposed new rates.s’ A weighted average of the 
annual loss ratios will be used to estimate the future loss ratio. 

If we assume a given covariance structure, equations 11.6 and 11.7 
can be used to calculate the optimal least squares set of weights, Z;, such 
that 

Assume the covariance of the loss ratios separated by a given number 
of years is as follows:s2 

Separation in Years Covariance in Loss Ratios (.OOOOl) 

0 130 
1 60 
2 55 
3 50 
4 45 
5 40 
6 35 
7 30 

Then the optimal weights are: 11.6%, 13.4%, 17.3%, 23.8%, 33.9%, 
with the more recent data receiving more weight. It is interesting to note 
that these weights can be reasonably approximated by the weights used 
in Walters [ 131, i.e., 1 O%, IS%, 20%. 25%. and 30%. 

This example is for illustrative purposes only. It should not be taken 
as a derivation of the correct weights to use in any real world application. 
Unfortunately, in order to apply this idea to real world applications one 

* The loss ratios for the separate years are preuned to have been adjusted for trend. development. 
and any other factors such as law changes. 
‘I This period will vary, but A = 3 is not uncommon 
‘! This would be produced by 6’ = .0004, c2 = .(xX)9, ((I) = .667. t(2) = ,611. P(3) = ,556. 
C(4) = ,500. ((5) = ,494. C(6) = ,389. t(7) = 333. where the quantities are defined as in 
Appendix D. 
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has to estimate the covariance matrix. This will be affected by shifting 
parameters over time. It will also be affected by the varying quantity of 
data available in each year.“” It will be affected by the uncertainty in the 
trend estimates and loss development estimates applied to each year. 
These complications are beyond the scope of this paper. 

12.3 Baseball Example 1’s. TJ@cal Insurance Applications 

In many typical insurance applications, credibility is used in the 
process of determining relativities. For example, credibility is used to 
determine the rate for a class or territory relative to the overall rate level. 
Credibility is also used in experience rating, where the rate for an 
individual risk is adjusted relative to an average. 

In these situations, where a class, territory, or individual risk is 
compared relative to an average, the result depends on the other classes, 
territories, or risks which make up the average. An automobile territory 
with a low relativity in Massachusetts could have a higher loss potential 
than a automobile territory with a high relativity in Vermont. A workers 
compensation insured could have a credit experience modification simply 
because of the bad loss experience of several other employers in the 
same business in the same state. An insured with a .9 experience mod- 
ification could have a higher loss potential than another risk with 1.1 
modification in a different business or in a different state. The baseball 
example has this same feature. A team is being compared relative to the 
average in the league. The losing percentage only has relevance to rank 
teams in a single league relative to the average for that league. The 
difference in this example is that the average is a known constant. The 
grand mean is always .500. 

In baseball if somebody loses, then somebody else wins. Thus the 
win-loss records of seven teams determine that of the remaining team in 
an eight team league.‘” 

51 In this paper, each year of baseball data represented a comparable number of games, so this 
aspect was not important. 
54 The win-loss record of teams in the same league should be negatively correlated by an amount 
proportional to the number of games the two teams have played. 
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This could have had a major impact on the analysis of this example. 
However, each team played each other team in the league approximately 
the same number of times each year and each team played approximately 
the same number of games in total.55 Thus no team had its results 
distorted by playing a weaker or stronger schedule 

12.4 Estimates in Balance 

The estimation methods used herein are always 

The most general estimation method considered 
equation 9.1, where the subscript j has been added 

in balance. 

herein was given by 
to identify teamj: 

Then the average of the estimates F, for all the teams in the league 
is given by: 

=M 

Note that for a given year i, the credibility Z, assigned to each team’s 
experience Xi, for that year is the same for all teams. Also note the fact 
that the grand mean is the same for all years. 

That the estimates are in balance can be verified directly for the 
example given in Table 20. The predicted losing percentages for each 
year average to ,500, subject to rounding. 

12.5 Choice qf u Prrdiction Method 

The example in this paper is for illustrative purposes only; the purpose 
of this paper was not to predict baseball teams’ win-loss records. Never- 
theless, it may be of interest to choose a reasonable prediction method 

w The schedule was exactly balanced. but a few scheduled games we sometimes not played 



1904 ,541 ,479 ,461 ,495 ,469 ,575 ,379 ,606 
1905 ,582 ,568 ,432 .456 ,398 ,610 ,423 .534 
1906 ,615 ,613 ,424 ,480 ,368 ,504 ,408 ,588 
1907 ,627 ,568 ,334 .533 ,389 ,531 .421 ,598 
1908 ,594 ,559 ,351 ,544 ,448 ,463 ,426 ,616 
1909 ,578 .598 ,375 .529 ,408 ,476 .405 ,631 
1910 ,633 ,599 ,366 ,508 .427 ,498 ,354 .614 
1911 ,614 ,576 ,371 .509 ,426 ,492 ,430 .581 
1912 ,651 ,563 ,411 ,524 .400 .490 ,443 .522 
1913 ,624 ,582 ,414 ,511 ,376 ,508 ,425 ,557 
1914 ,561 .555 .438 ,550 ,377 ,454 ,471 ,596 
1915 ,458 ,526 ,478 ,570 ,441 .504 .515 ,509 
1916 ,468 ,493 ,505 ,541 ,504 ,443 ,517 ,529 
1917 ,437 ,438 ,536 ,574 ,464 ,440 ,551 ,559 
1918 ,503 .506 ,519 ,511 .423 ,442 .603 ,492 
1919 .534 ,519 ,425 ,493 ,440 ,512 ,514 ,565 
1920 ,560 ,512 .467 ,394 ,413 ,584 ,509 ,565 
1921 ,567 ,448 ,488 ,458 ,449 ,573 .490 .528 
1922 ,509 ,486 ,543 .501 ,419 ,618 ,449 .474 
1923 ,592 .492 .499 .469 ,426 ,596 ,461 ,466 
1924 ,596 ,503 ,485 ,448 ,412 ,626 ,450 .479 
1925 ,615 ,448 ,478 .462 .418 ,605 .440 ,536 
1926 ,553 ,522 ,525 ,474 ,441 ,562 ,418 ,505 
1927 ,556 ,516 ,485 ,458 ,488 ,583 .452 ,465 
1928 ,571 ,550 ,472 .497 ,441 ,610 ,422 ,436 
1929 ,613 ,509 .441 ,487 .434 ,648 ,452 ,418 
1930 .603 ,530 .406 ,539 ,449 ,558 ,442 .47 1 
1931 ,556 .472 .430 .570 ,448 ,614 .476 ,434 
1932 ,564 ,487 ,452 ,586 .448 ,559 .498 ,403 
1933 ,513 .418 ,441 ,584 ,504 ,520 ,467 ,492 
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TABLE 20 

NATIONAL LEAGUE,PREDICTIONS OF LOSING PERCENTAGES 

NLI NL2 NL3 NL4 NL5 NL6 NL7 NL8 
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1934 ,487 .537 ,455 .sxx ,442 ,564 ,460 ,468 
1935 .487 ,523 ,447 .6OY ,334 ,578 ,492 ,433 
1936 .b33 ,534 ,405 ,558 ,427 .56X .460 .417 
1937 ,545 ,543 ,442 .532 ,426 ,603 ,470 ,440 
1938 ,518 .563 ,421 ,582 ,412 .579 ,457 ,467 
1939 ,498 ,536 .436 .4YO ,449 ,635 ,450 ,507 
1940 ,543 ,486 ,456 ,437 ,477 ,641 .518 .445 
1941 ,541 ,458 ,494 .39x ,508 ,635 ,495 ,466 
1942 ,569 .406 ,522 ,433 ,510 ,659 ,491 ,411 
1943 ,572 ,381 ,538 .417 ,412 .661 ,525 .378 
1944 .551 ,452 ,519 ,457 ,573 .590 .492 ,368 
1945 ,559 ,530 ,515 ,451 .544 ,586 ,455 ,363 
1946 ,546 ,470 ,428 ,543 .s13 ,629 ,472 ,399 
1947 ,450 ,487 .468 ,538 .5b2 ,559 .538 .4OO 
1948 .434 ,459 .511 ,531 ,495 ,579 ,559 .433 
1949 ,453 ,439 ,548 .553 so4 .554 ,497 ,451 
1950 ,413 ,492 ,571 ,564 .Sll ,502 .527 .41Y 
1951 ,440 ,470 ,564 .55b .47O .454 ,570 .477 
1952 ,414 .501 ,572 .54x .42Y ,503 ,563 .472 
1953 .411 ,542 ,518 .SJl ,428 .45x .646 ,457 
1954 ,315 .455 ,553 ,543 ,503 ,475 ,627 ,469 
195s ,416 ,456 .554 ,521 .423 .497 ,626 ,507 
1956 .395 ,454 .532 .SlS .48 1 ,497 ,594 .531 
1957 ,419 ,434 ,572 .453 ,521 .523 ,566 ,512 
1958 .45 1 ,421 ,567 ,482 ,533 ,504 ,571 ,471 
1959 ,507 ,425 .538 ,492 ,501 s32 ,492 ,512 
1960 ,464 .45 1 ,523 SOY ,382 .55 1 ,502 ,518 

NLI NL2 NL3 

TABLE 20 

(CONTINUED) 

NL4 NL5 NL6 NL7 NL8 

Note: Using late\t three years of data, with weight\ of 10%. 10%. 55% (55% weight to the most 
recent year; 2SRm weight to grand mean). 
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for this particular problem. Assume that A = 1, i.e., 1910 data are 
available to predict 19 1 1, etc. 

Based on Table 19, the credibilities in Table 16 work well. 

The author would recommend avoiding using many years of data 
unless it substantially improved the accuracy. It is better to keep things 
simple. For this particular problem, based on Table 19, there seems little 
advantage to using more than 3 years of data. For example, giving 55% 
weight to the most recent year, 10% weight to the next most recent year, 
10% weight to the third most recent year, and the remaining 25% weight 
to the grand mean works reasonably well.5h 

The predictions that result from this method of estimation applied to 
the National League data are shown in Table 20.s7 The errors are shown 
in Table 21. 

The mean squared error is .0046.sx There is a 14% chance of an 
error of more than 20%. The correlation used in the Meyers/Dorweiler 
criterion is .02, not significantly different from zero. Thus according to 
all three criteria this prediction method works well. 

13. CONCLUSIONS 

The data from baseball used in this paper provide a useful way to 
examine and illustrate credibility concepts. 

The methods and concepts illustrated here can be applied to problems 
actuaries deal with in insurance. However, this paper is only a first step; 
there is further work required to apply these general concepts to any 
specific practical situation. 

x Many other choices would also work reasonably well. This illustrates the typical situation where 
once the general form of the weights is determined, there is a range of weights that work well. 
Usually, the specific choice of weights within that range has relatively little impact on the final 
result. 
v For example, the 1904 entry under NL2: ,479 = (.10)(.419) + (.10)(.457) + (X)(.485) + 
(.25)(.500), where the first three values are from Table I, and .500 is the grand mean. 
?” The mean squared error is .0049 when the method is applied to both the AL and NL data sets. 
This is a standard deviation of 10% losses out of a season of 150 games; the process standard 
deviation is about 6 losses out of a season of 150 games 
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TABLE 21 

NATIONAL LEAGUE, ERRORS OF PRWICTIONS IN TABLE, 20 

NLl 

1904 -.I00 
1905 -.087 
1906 - ,060 
1907 ,019 
1908 ,003 
1909 -.I28 
1910 -.021 
1911 - .095 
1912 -.cQ9 
1913 ,081 
1914 ,175 
1915 .OiM 
1916 ,054 
1917 ~ ,092 
1918 - .070 
1919 - .056 
1920 - ,032 
1921 ,083 
1922 -.I45 
1923 - ,057 
1924 - ,058 
1925 ,073 
1926 -.013 
1927 - .054 
1928 -.I02 
I929 - ,023 
1930 ,058 
1931 - ,028 
1932 ,064 
1933 ,052 

NL2 

-.I55 
-.I16 

,047 
,007 

- ,097 
- ,043 

,015 
,003 

-.058 
.018 
.042 
,052 
,103 

- .098 
- ,042 

.Ol2 
,116 

- ,045 
- ,020 
-.014 

,100 
-.I08 
-.014 
~- ,059 

,053 
-.033 

.088 
- ,008 

.Ol3 
- ,097 

NL3 NL4 

,069 
,033 
,187 
,038 

-.006 
,055 
,041 

- ,032 
.018 

-.Oll 
- ,056 
- ,045 
- ,057 

,017 
,170 

- ,039 
- ,046 
- ,094 

,062 
.038 
,014 

-.0X0 
,057 
,041 
,063 
.086 

-.OlO 
- ,025 

,036 
- ,001 

.070 
-.02x 
- ,096 
- ,036 

.01X 

.032 
- ,005 
~ ,033 

,014 
- ,071 
- ,060 

.O3 I 
- ,067 

.0x0 
,043 
.17Y 

- ,070 
~ ,084 

.OSY 
,060 

-.OlO 
-.OlS 

,039 
~ .052 

.OlO 
- .0x4 
~ ,078 
- ,053 
- ,024 
~ ,033 

NL5 NL6 
__ - 

.I62 - ,083 
,084 .I.56 
.ooo - ,032 

- ,075 ,096 
,084 ,002 
,009 - .040 
.018 .008 
,073 ,012 
,082 - ,030 
,040 .091 

-.078 ~ ,065 
-.I05 ,096 

,070 .03x 
,100 .Ol? 

- .004 -.I11 
,061 p.14.5 

.~ ,029 - ,011 
,063 - .096 
,023 -- ,009 
.041 - ,079 
,020 - .OlO 

-.016 ,049 
.06Y - .054 
.0x.5 ~ .08h 
,045 -.I07 

~ .OlO .I I2 
,014 --.I04 
,020 ,043 

~ ,084 .06S 
I03 ~ .0x5 

NL7 NL8 

-- ,052 ,093 
,050 - ,089 
,016 - ,065 
,012 - .062 
,062 - ,066 
.I29 -.014 

-- ,084 ,026 
--,018 .084 

,059 - ,066 
~~ ,052 -.I03 
mm.081 .I25 
m.O1l - ,020 

-- ,061 - .07Y 
m.118 ,098 

,123 -.I13 
.025 -.04l 
,022 ,052 
.078 ,097 
,001 .026 
,026 -.018 
,038 - ,099 
.06l ,039 

- ,033 ,083 
,062 ,066 

-.Ol9 .053 
,027 - .06Y 

- ,039 .06X 
- ,037 .090 

.056 -.I29 

.032 .028 
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TABLE 2 I 

(CONTINUED) 

NLI 

1934 .004 
1935 -.265 
1936 ,094 
1937 ,065 
1938 ,025 
1939 - ,085 
1940 -.029 
1941 - ,050 
1942 - ,032 
1943 ,016 
1944 - ,027 
I945 ,000 
1946 ,161 
1947 ,060 
1948 -.02l 
1949 ,083 
1950 -.009 
1951 ,058 
1952 ,041 
I953 ,093 
1954 - ,028 
1955 ,057 
1956 -.OOl 
1957 - ,036 
1958 -.088 
1959 ,071 
1960 - ,004 

NL2 NL3 NL4 NL5 - - - - 

,004 ,025 
-.019 ,096 
-.031 - ,030 
- ,052 .046 

,026 ,007 
,085 -.019 
,061 - ,057 
.I07 -.051 
,081 - ,036 

- ,090 ,022 
-.I39 ,006 

,095 ,151 
-.OOl - ,036 

,045 - .084 
.054 -.073 

-.074 -.056 
,031 -.Oll 

- ,036 - ,033 
-.08f ,072 

,139 - ,060 
,033 -.031 
.008 .025 
.05 I - ,078 
,051 - ,025 
,018 ,035 

- ,024 ,019 
,022 - ,087 

- ,068 ,050 
,053 ,029 
,039 ,024 

-.104 ,051 
.I29 - ,035 
,120 -.041 
,091 -.049 

-.031 - .008 
- ,067 ,069 

,042 -.I69 
.035 .008 

-.I53 ,057 
- ,022 -.091 

,012 ,088 
-.05l .OOl 
- ,043 - ,022 
- ,005 ,069 
-.002 .094 
-.004 .026 
-.017 -.117 

,024 ,133 
,008 -.058 
.I06 - ,084 

- ,028 -.03l 
- ,024 ,052 
- ,027 ,040 
- ,056 - ,005 

NL6 

- ,060 
-.004 
-.081 

,002 
-.I21 
- .067 
- ,032 
- ,086 
- ,063 

,077 
-.Ol I 
-.I15 

,077 
-.038 

,008 
,080 
.093 

- ,072 
,068 

- .OO3 
- ,038 
- ,003 
- ,042 

,023 
- ,048 
- ,052 
- .066 

NL7 NL8 

- ,047 .089 
,054 .056 
,005 -.018 
,028 - ,034 
,030 -.063 

-.I06 ,108 
,024 - ,006 
,021 ,100 

-.060 ,099 
,044 .060 
.080 ,050 

-.013 -.020 
-.I19 ,027 
- ,059 - .022 

,098 -.015 
-.042 ,074 
-.I00 -.07l 
- ,014 ,003 
-.I64 ,043 
-.029 -.004 
-.029 - .063 

,016 -.05l 
.023 ,025 

-.03l ,077 
.I16 -.061 

- ,002 - ,027 
,119 ,076 

Note: Predicted Losing Percentage minus Actual Losing Percentage 
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When shifting parameters over time is an important phenomenon, 
older years of data should be given substantially less credibility than 
more recent years of data. The more significant this phenomenon, the 
more important it is to minimize the delay in receiving the data that is 
to be used to make the prediction. 

In this paper three different criteria were examined that can be used 
to select the optimal credibility: least squares. limited fluctuation, and 
Meyers/Dorweiler. In applications, one or more of these three criteria 
should be useful. While the first two criteria arc closely related, the third 
criterion can give substantially different results than the others. 

Generally the mean squared error can be written as a second order 
polynomial in the credibilities. The coefficients of this polynomial can 
be written in terms of the covariance structure of the data. This in turn 
allows one to obtain linear equation(s) which can be solved for the least 
squares credibilities in terms of the covariance structure. 
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APPENDIX A 

SOME RELEVANT FEATURES OF BASEBALL 

Baseball is a competitive sport involving a combination of luck and 
skill. Two teams play against each other in a game; the team that scores 
the most “runs” wins the game, the other team loses.’ 

Each team has nine players in the game at a time.2 Players may be 
substituted for, but once they leave the game they cannot return. Over 
this period of time each team had 20 to 25 players on its roster.” The 
individual skills of the players, as well as how their skills complement 
each other, has a direct impact on the quality of the team. 

In addition to the players, a team has coaches and a field manager. 
By supervising the players’ training and conditioning, providing advice, 
deciding who plays, and by various decisions throughout the game, these 
people have some effect on the percentage of games lost or won by the 
team. 

Each team has an owner(s) and other office personnel.4 By developing 
new players, trading for players with other teams, etc., management has 
some effect on the percentage of games lost or won by the team. 

All of these elements that affect the quality of the team shift over 
time. A team’s roster of players typically changes a little during the 
course of a single year; over the course of several years the changes are 
substantial. It is unusual for a player to be with a single team for more 
than 10 years, although on very rare occasions a player has played for 
a single team for 20 years. 

Even if the identity of the players were to stay the same, the skill 
level of individual players changes over time. The most important effect 
is aging; as a player gets older he generally improves until he reaches a 

I While it is possible for a baseball game to end in a tie, such games are ignored in major league 
standings. 
z Currently the American League has added a tenth player, the designated hitter. 
’ Of the players on the roster, about half get most of the playing time, while the remainder see 
much less playing time. 
J During the latter half of this period a team had a general manager. 
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peak and then declines. Injuries can have a profound impact on a player’s 
skill; sometimes that impact is temporary while sometimes it is perma- 
nent. 

The field managers and coaching staff also change over time.s In 
addition, the owner(s) and upper management change, but much less 
frequently. 

Finally, a team occasionally relocates to another city. 

It might be useful to think of the following analogy to a workers 
compensation risk. The baseball players correspond to the workers in 
the factory. The field manager corresponds to the plant manager. The 
baseball upper management corresponds to the corporation’s upper man- 
agement 

’ Quite often the departure of the field manager will be rrlatcd TV rhr potjr record of the team 
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APPENDIX B 

MEYERS/DORWEILER CRITERION AND KENDALL’S TAU 

If an experience rating plan works properly, then after the application 
of experience rating, an insurer should be equally willing to write debit 
and credit risks. In other words, the modified loss ratio of expected 
losses to modified premiums should be the same for debit and credit 
risks. 

Mathematically, we desire that the correlation between the experience 
modification and the modified loss ratio be zero. r 

In the example in this paper, the experience modification corresponds 
to the ratio of predicted losing percentage to the grand mean losing 
percentage.z For example, a predicted losing percentage of 60% is equiv- 
alent to an experience modification of 60% + 50% = 1.2. The modified 
loss ratio corresponds to the ratio of the actual losing percentage and the 
predicted losing percentage.3 The third criterion used in this paper is that 
the correlation between these two ratios be zero. This corresponds to the 
criterion used by Meyers. 

Meyers [I] uses the Kendall T to measure correlation. 

Let X and Y be two vectors of length IT.~ Kendall’s T can be calculated 
as follows [ 141. Suppose Y is arranged in its natural order. Assume that 
the corresponding ranks of X are XI, XZ, . . . X,,, a permutation of 1, 2, 
. . . n. Let Q be the number of inversions in Xi, X2, . . . X,.5 Then let 

7= l- 4Q 
n(n - 1) 

’ If the correlation is positive, then insurers would prefer to write credit risks. The credits and 
debits given are on average too small, i.e., the credibility assigned to the experience is too small. 
The situation is reversed for a negative correlation. 
2 The predicted losses are equal to the experience modification times the expected losses for an 
average risk in the class. In a more general situation one would have classifications of risks; in this 
example we have only one such classification and thus use the grand mean rather than the class 
mean. 
/ In general the modified loss ratio is equal to the expected loss ratio times the actual losses over 
the predicted losses. In this example, the expected loss ratio can be thought of as unity. 
J In our case, X would be the experience modifications and Y would be the corresponding modified 
loss ratios. 
’ For example, in the X-ranking 3214 for 11 = 4. there are 3 inversions of order. 
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T is symmetrically distributed on the range [ - I, + 11. As is usual 
for measures of correlation, + 1 signifies complete agreement and - 1 
signifies complete disagreement. 

As shown in Kendall and Stuart [ 141, 

Var T = *ml + 5) 
9n(n - 1) 

As II approaches infinity the distribution of r approaches the normal 
distribution. 

In the examples in this paper, the variance of r varies from .0009 to 
.0016.h The standard deviation of T goes from .031 to .040. Thus an 
approximate 955X confidence interval around zero for T has a radius of 
approximately .07. about two standard deviations. 
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APPENDIX C 

MATRIX EQUATIONS FOR LEAST SQUARES CREDIBILITY 

In this appendix, equations 11.2, 11.3, 11.4, and 11.7 in the main 
text are derived. The squared error is written as a second order polyno- 
mial in the credibilities, with the coefficients depending on the covariance 
structure discussed in Appendix D. This squared error is minimized by 
setting the partial derivative(s) with respect to the credibilities equal to 
zero. 

Assume an estimate for year N + A, using N years of data, is given 
by: 

F= $Z;X;+(I -xZ;)M 
i= I 

where Xi is the data for year i, and A4 is the grand mean.’ Let Z. = 1 - 
EZ;. Write Z for the vector Zo, Zr, . . ., Z,V. 

Then the mean squared error between the prediction and the obser- 
vation is given by the expected value of the squared difference between 
F and XN+a. 

V(z) = E[(F - X,v+& 

= E[ ( ;i, Z (Xi - X,_,) + zo ( M - xv+a 

= 5 ZfE[(Xi - X,V+,)*] 
,= I 

+ 5 c Z;Z, E[(X; - &+a)(X, - Xv+.dl 
i=l Jfl 

+ 2 2 Z&Z; E[(X, - xN+A)(M - x,+A)l 
i= I 

+ Z:, E[(M - &‘+A>‘] 

’ It is assumed that the grand mean is known. This is the case in this paper. It is the case whenever 
one is only concerned with relativities compared to the overall average. 
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From Appendix D we have,? 

E[(X, - XN+.$] = 26* + 25*(1 - rf(N + A - 8) 

E[(X, - XN+A)(xj - XN+A)] = 8’ + c’(1 + c’((i - jl) 

- t(N + A -- i) - t(N + A - j,, 

E[(X, - X,+~)(M -- X,v + s,] = 6’ + 1;? 1 - Y(N + A - i)) 

E[(M - X,,..)‘] = 6’ + c’ + T’ 

Therefore 

v(z) = 5 Z;(26’ + 25’( 1 - ((N + A - i))) 
I- I 

+ 5 c zz, 
,= I /iI [ 

6’ + c2( I + I+ - ,jl, ~ C(N t A - i) 

- t'(N + A -- j) 
I 

+ 2.5, 2 .z;@ + t’(1 - 1(N + A -- i)) 
1-l 

+ z,‘,@ + T2 + c’, 

V(z> = 6’ + z; T1 

+ 5’ 
L 

5 2 Z,Z, + 2 i Z,Zj(t( /i - ,;I) - t (a%’ + A - i) 
i-0 ,--(I r-l ,=I 

- t(N + A - j)) - 2Zo $ %t(N + A ~ i) 
I-. I I 

but 

i zi = Z() + i: z; = (I - i Z,) + 5 z, = I 
r=o i-1 ,= I ,-I 

? In Appendix D, X(O,r) = the observation for risk H at time I. Smce in thls appendix none of the 
calculations are performed for individual risks. the H has been wppresed in order to simplify the 
notation. 
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Therefore 

289 

V(z) = s2 + Z(‘,T2 + 5’ + 6” 5 z,’ 
,= I 

+ 5’ 2 2 ZZj(t(li - jl) - @I + A - i) - t!(N + A - j)) ;=I j=l 

- 5’zo2 5 Z&V + A - i) 
;= I 

V(z) = 6’ + 5’ + T2 + T2 2 - 2T2 2 Zi 
i=l 

+ S*g Zf + 5’ 2 2 - - + A - 
i= 1 

Z,Z,(e(li jl) @‘v 
i=l j=i i) 

- e(N + A - j>) - 25* 5 z;e(/v + A - i) 
i= I 

+ 25’ 5 5 Z;Zje(N + A - i) 
i=l ,=I 

V(z) = s2 + 4’ + T2 + T2 5 g z;zj - 272 -$ z, 
i=l ,=I i=l 

+ S* 2 zi’ + 5’ : $ z;z,(e(Ji - jl) - t(N + A - j)) 
i= I /=I ,j=i 

- 25* 2 Z,@‘v + A - i) 
i= I 

v(z) = 5 5 ZiZj(S2Si, + 2 + (‘l!T((i - jJ)) 
i=I ,=I 

- 2 5 Z;(T~ + <‘e(N + A - i)) + 6’ + 5’ + T* 
i= I 
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This is equation 11.2 in the main text, with S%l, + <‘tJ(li - j() = 
C(li - jl) the covariance between data for a given risk /i - jl years apart. 
It is left as an exercise to the reader to verify that the formula for the 
mean squared error compared to the underlying mean rather than the 
observed value would be exactly 6’ less. 

In order to minimize this squared error, one sets the partial derivatives 
with respect to Z; equal to zero. This yields the following set of N 
equations. 

2z;(6’ + T2 + (‘) + I: 2z,(T2 + [-?(li - jl), 
,#i 

- 2(T’ + &N + A - i,) 

=O, ;=I , ."> N 

5 z,(S'Si, + T2 + (‘e((i - jl)) = 7’ + (?(N + A - i), 
,‘I 

i= 1 , . . . . N 

This is equation Il.3 in the main text, again with 

S’S,, + c2t(li - jl) = Ctli - jl). 

It is worth noting that equation I I .3 is very similar to the usual 
general matrix equation for optimal least squares credibilities: 

2 = CW~,Yl 
COV[k,Z] 

where .% is the vector of observations, and Y is the quantity to be 
estimated.j Here in equation 11.3, there is an additional term of T', the 
between variance, added to the covariances. This is due to the application 
of the complement of credibility to the grand mean. 

In the absence of shifting parameters over time (5’ = 01, the squared 
error is given by: 

v(z) = 6’ (1 + ,g, z:> + T2 ( 1 - (+, z,)’ 

’ See, for example. Theorem 3.3 in Chapter 111 of De Vylder ] IS]. 
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The optimal credibilities are given by the solution to the equations: 

5 Zj(S2Si, + T2) = T2, i= 1, . . ..N 
j=l 

The solution has all the credibilities equal: 

z,= T2 NT2 + s2 , i = 1, . . . . N 

;g, z, = NT2 
N 

NT~ + 6’ = N + S’/T* 

This is the familiar expression for the least squares credibility in the 
absence of shifting parameters over time. 

If we set Zi = Z/N for i = 1, . . . , N then equation 11.2 becomes: 

V(z) = $ {NS’ + N2~2 + 5’ 5 5 ((Ii - ji)) 
i=l j=] 

- 2 $ NT* + t2 2 e(N + A - i) + s2 + 5’ + T* 
,= I 

Setting the derivative of V(z) equal to zero gives the least squares 
credibility: 

NT~ + 5” 5 t(N + A - i) 
i= I 

Z=N 
N2~2 + NS2 + 5’ 5 5 [(Ii - jl) i=t j=l 

This is equation 
5*e(li - jJ>. 

Il.4 in the main text, with C((i - jl> = 6%ii, + 

We can minimize V(Z) in equation 11.2, given the constraint 
x?= iZi = 1, by using Lagrange Multipliers. 

We set the partial derivatives with respect to Z; of 

V(Z) - A (i, Zi - 1) equal to zero. 
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This produces the following N equations: 

$ Zj(S2S,,j + (*e(ji - jj)) = &‘P(N + A - 1) + 1 i = I, . . . . N 
j= 1 

This is equation I I .7 in the main text. It is worth noting the absence 
from the above equation of TV, the between variance. This follows 
logically from the fact that the grand mean is given no weight and each 
risk is estimated solely from its own data. 
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APPENDIX D 

COVARIANCE STRUCTURE 

In this appendix, the covariance structure for the data sets in Tables 
1 and 2 will be analyzed. As discussed in Section 1 1, 1, the variance is 
the sum of three pieces, the between variance, the variance due to shifting 
parameters over time, and the process variance excluding the effect of 
shifting parameters over time. The analysis herein will define these three 
pieces. 

Let X(@,r) be the observation for risk 0 at time ?. 

Let ~(0,r) be the expected value for risk 6 at time t. 

p(O,f) = W@,f)l. 

Let ~(6) = E,[X(@,t)]. 

Let M be the grand mean. 

M = EM~AI = EtMWl. 

In our case, 0 and rare both discrete rather than continuous variables. 
We can observe X. M is known since we are dealing with relativities 
compared to the overall average. On the other hand b(f3,t) is unknown 
and can never be observed directly. 

We can observe the squared error that results from using different 
estimations. This squared error can be usefully expressed in another 
form. To do so, we split the variance of X into various pieces. Define 

S2 = ME,U%WBJ) - ~.(%~>~~)0,~111 

5’ = WS[M~J) - ~.(~))~~fNl 

(*W = En[E,[COVtX(B,r),X(B,r + .Ql/811 

= E,[E,[COvt~,(e,t),~.(8,r + ~>l~Wl 

T2 = VARdE,[p.(B,Oll = VAQJ-(~)~ 
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Then 6’ is the process variance excluding any impact of’ shifting risk 
parameters over time. t2 is the variance due to shifting parameters over 
time. U(S) is a correlation measuring how much the risk parameters shift 
over time. 4?(O) = 1. t(s) I I for s > 0. I 7’ is the parameter variance, 
the variance between the different risks. 

For later convenience of notation define 

6’(8,t) = E[(X(B.r) - /~(8.r))~j0.t] 

6’(O) = E,[6%I,r)] 

&I, = E,[(P(~J) - p(0))‘/01 

t(s,O) = E,[COV[k(B,f), p(0.r +m s,]] tm 1;?6) 

then 

s2 = E@(O)] = Eo,,(6?0,t)] 

5’ = Ed5’@)1 

1(& = E&(s,tI,l;‘(8,] 

It is useful to rearrange the definitions of the variances in the usual 
manner so as to express the expected value of a quantity squared as the 
sum of a squared mean and a variance. 

E(X’(r,t))(r.B] = &t,@) + 6’(W) 

E,[/.&,B)j = $(B) + <?H) 

E&.&I)] = M’ + T? 

A similar expression can be derived from the definition of the co- 
variance. 

For the formula for the expected value of the squared error of the 
estimate from the observation. one needs to express various expected 
values in terms of the variances and correlations defined above. 

I One should note that it is an assumption that this correlation depends only upon the separation of 
the two years in question. Whether or not this k a reasonable approximation to reality is an empirical 
question which depends un the particular applicatmn. 
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E,. ,[X’(t,@l = Ee[E,[E[X2(~,~)(~,~111 
= Et~lE~l~%,~) + I’ll 
= E&2(8) + &O, + 6’(O)] 

= M2 + T2 + 5’ + s* 

E,, ~[X(f,0Mt + s,@l = Ee[E,[E[X(f,fWCt + .U3)~f~~lll 

= EtJEtl~(f,Wp(t + s,Qll 

= Edp2W + Qd3,i2(Q)l 
= M2 + T2 + e(.s)(2 

E,.u[MX(f,B)] = ME[X(r,O)] = M’ 

Then it follows that: 

E,. o[(X(r,O) - X(r + s,8))‘] = E,,c,[X*(r,~)] + E,, dX2(t + s,fVl 
- 2E,.dX(t,t9X(r + s,Wl 

= M2 + T2 + 5’ + s* + &I* + 72 

+ 5’ + s2 - 2(M’ + T2 + e(s)(2) 
= 2s2 + 25*(l - t?(s)) 

E,.d(X(r,B) - X(t + s,O))(X(r + u,@ - Xft + s,@>l 
= E,.~[X(t,@x(r + u,t-Ol + Et. dX20 + s,@l 

- E,.@[X(t + s,@X(r + u,(j)] - E,. ,[X(r,O)X(f + s,@] 

= M2 + T2 + e(u)gZ + M2 + 7* + 5’ + s2 - (M2 + 72 

+ e(s - u)C2) - (M2 + T2 + e(s)(2) 

= s2 + <‘(I + e(u) - C(s - u) - e(s)) 

E,,H[(X(I,@ - X(t + s,O))(M - X(1 + s,@)l 
= M’ - M2 + (M2 + T2 + 5’ + S2) 

- (M2 + T2 + e(.s)<2) 
= s2 + (‘( 1 - e(s)) 



E,,A[(M - X(r,O))‘] = M’ - 2M’ + (M’ + 7’ + 1;’ + 6’) 

= 6’ + 5’ + $ 

These results are used in Appendix C. 

It is of interest to note that variance of X = E,, e[(M - X(t,O))‘] = 
6’ + 5’ + TV. Th’ IS is the split of the variance ot’X into three pieces that 
was discussed above. 

Let C(s) = Covariance for data for the same risk, ,I years apart. 
Then for s > 0 

C(s) = E[(X(r,B) - p(O))(Xct + s.8) - p-(0,)1 

C(s) = E[X(r,B)X(r + s,B)] - E[X(~,B)~(B)] - E[X(r - s)r~,(@] 

+ Eb2(W1 
= M’ + 2 + e(s)<’ - (M’ + 2) ~ (M’ + C) -t M2 + 2 

= t?(s)<’ 

C(0) = E[(X(r,B) -- p(O))‘] = E(X’(?.O)] - 2E[X(t,8&~(8)] 

+ El&N1 

It is worth noting that the covariance structure assumed herein differs 
from that in Gerber and Jones [ 161. The covariance structure which in 
Gerber and Jones is shown to give credibility formulas of the updating 
variety? can be written as: 

cowx,,xj1 = 
i I 

; + “- j 2 1; 
I 

That covariance structure would assume for example that the covar- 
iance of the 1Y40 data with the data for each of the years earlier than 

2 Credibilities of the updating varlcty are \uch that nt‘~\ t’\tlmatc = (pr~rr e&mate x complement 
of credibility) + (new data X credlbilit)). Thl\ i\ the form 01 the e\tlmate dlscursed in Section 
9. I. 
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1940 is the same. In fact we observe that the distance between the years 
has an extremely significant impact on the covariance between the years. 

The covariance structure assumed here can be written as: 

[ 

t(j - i)c’ i < j 
COV[Xi,Xjl = (2 + 6* i=j 

Thus the optimal least squares credibilities that result from the matrix 
equations that are given in Appendix C will generally not be of the 
updating variety.’ 

We can directly estimate only the following quantities from the data: 
T’, C(O), C(l), C(2), etc. Not coincidentally, these are the quantities 
that enter into the formula in Appendix C for the squared error. Thus, 
these are also the quantities that enter into the calculation of the optimal 
credibilities. 

Thus, it is not necessary to estimate 6* by itself. However, if one 
does so, the values for 5’ and e(i) follow. We will estimate 6* here 
solely in order to aid our understanding; it does not affect any of the 
calculated values of the credibilities.4 

For a binomial process, with a success rate of .4 or .6, the variance 
is .24n.5 This is approximately the variance for the average risk in this 
example, with n = 150.” The resulting variance of games lost is 
(I-50)( .24). The variance in losing percentage is (150)( .24)/( 150)* = 
.0016. 

Thus a reasonable approximate value for 6* is .0016. The values for 
the variances and correlations are shown in Table Dl . It should be noted 
that as the difference in years increases, the correlations get close to 
zero. 

For example, the observed value for the NL data for 6’ + 5’ = 
.007892. Thus since we assume 6* = .001600, we estimate 5’ = 
.006292. The observed value of <*-!‘(I) = .004919. Thus we estimate 
e(l) = .004919/.006292 = ,782. For this example, the observed value 
of 72 = .001230. 

i They will be of the updating variety when l(s) = I for all s. 
4 In general if something cannot be observed in the squared errors, then it is not needed to calculate 
the optimal least squares credibilities. 
5 The variance is p( I - p)n. 
h Teams played about 150 games per year over this period of time. 
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It is important to note that the total variance of the observations is 
equal to 6’ + 5’ + 72 = .009122. Thus, what has been done here is 
just an analysis of variance, breaking the variance into its various 
sources. For this example, about 13.5% of the variance of the observation 
is due to the differences between the risks, about 17.5%~ is due to the 
process variance, and about 69.0% is due to shifting parameters over 
time. 

One can verify that the observed pattern in the covariance structure 
in Table Dl is not due solely to random chance. One can rearrange the 
data in random fashion, and observe the covariances. 

TABLE DI 

COVARIANCE STRUCTURE 

NL AL 
- 

T2 .001230 .001619 

6% .001600 .001600 

<'** .006292 .006275 

e(o)*** 1 ,000 1.000 

e(l) ,782 ,721 

W) ,543 ,506 

1'(3) ,497 ,384 

f(4) ,404 ,283 

t(5) .288 .I24 

t(6) ,249 ,061 

e(7) .I58 -.016 

((8) ,062 -.089 

k(9) -.012 -.170 

F(10) -.063 -.140 

* 8’ estimated as .001600 based on an assumed binomial process. 
** 5’ is based on the assumed value of 6’ and the ohAerved value III’ 5’ + s2. 

*** e(O) is unity by definition. 
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First one can rearrange the entries in each row of Table 1; for each 
row separately, assign each entry in that row to a randomly selected 
column. Similarly one can rearrange the entries in each column of Table 
1; for each column separately, assign each entry in that column to a 
randomly selected row. The resulting covariances that are computed for 
these two “scrambled” data sets are shown in Table D2. All of the 
covariances e(i), i > 0 are close to zero. Therefore, one can conclude 
that there is a significant pattern being displayed in Table Dl. 

TABLE D2 

COVARIANCE STRUCTURE, SCRAMBLED DATA 

NL NL 
Entries in Entries in Each 

Each Row Rearranged Column Rearranged 

T2 
s2* 
5 2** 

e(o)*** 
e(l) 
W) 
e(3) 

e(4) 

e(5) 

e(6) 

em 

e(8) 

e(9) 

@lo) 

.000191 

.001600 

.007330 

I .ooo 

,010 
-.009 

.008 

- .084 

- .025 

- .020 

- ,030 

- .058 

.049 

.042 

.001230 

.001600 

.006292 

1.000 

-.I17 

.021 

- .070 

- .035 

- .039 

- .006 

- .053 

.082 

.091 

-.019 

* S2 estimated at .001600 based on an assumed binomial process. 
** 5’ is based on the assumed value of s2 and the observed value of 5’ + 6’. 

*** e(O) is unity by definition. 
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APPENDIX E 

PUTTING THE REDUCTION IN SQUARED ERROR IN CONTEXT 

The first criterion used to determine the optimal credibility is to 
minimize the squared error. Using the optimal credibility based on this 
criterion will reduce the squared error between the observed and predicted 
result. What should be considered a significant reduction in squared 
error? 

Let us examine an example. For the NL data set, using one year of 
data. the optimal credibility is 68% as shown in Table 9. As shown in 
Table 6 the mean squared errors are: 

Mean 
z Squared Error - 
0 ,009 I 

68% .0049 
100% .0059 

In this case, by the use of credibility, the squared error has been 
reduced from .0059 if the data were relied upon totally, or .0091 if the 
data were totally ignored, to .0049. In this case. the squared error has 
been reduced to 83% (.0049/.0059) of its previous value.’ 

All of these squared errors include the variation of the observed 
results around the expected value.? The use of credibility does not affect 
this source of variation. Thus credibility methods cannot reduce the 
squared error between the observed value and the estimated/predicted 
value to as great an extent as they reduce the squared error between the 
true mean and the estimated/predicted mean.’ 

It is shown in Mahler [9] that the best that can be done using 
credibility to combine two estimates is to halve the mean squared error 
between the estimated and theoretical true underlying mean. However, 

1 The “previous” value of the squared error is considered to be the minimum oi the squared error\ 
that vault from either ignoring the data entirely or relying on the data entirel) 
2 This random variation is usually referred to as process risk. 
’ It should be noted that the former squared error IS concrete and easily ohserved. whde the latter 
squared error ib theoretical and difficult if not impo\\ihle to ohserve. 
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in this paper the squared error being examined is between the estimated/ 
predicted and the observed result, rather than the true underlying mean. 
This squared error is inherently larger due to the random variation in the 
observed result. Also the result derived in Mahler [9] was derived in the 
absence of shifting parameters over time. 

It turns out that, in the current case, the best that can be done using 
credibility to combine two estimates is to reduce the mean squared error 
between the estimated and observed values to 75% of the minimum of 
the squared errors from either relying solely on the data or ignoring the 
data.j One can think of half5 of the squared error as being due to two 
sources: the inherent process variance associated with comparing to 
observed results, and the presence of shifting parameters over time. This 
portion of the squared error is independent of the value chosen for the 
credibility. The remainder of the squared error can be thought of as that 
which is affected by the choice of the value of credibility; as stated 
above this can be at most cut in half by the use of credibility methods. 
If half of the squared error is cut in half, this reduces the total squared 
error to 75% of what it was. 

Assume one is estimating the future by credibility weighting together 
a single year of data and the grand mean.h Let V(0) be the squared error 
between the predicted and observed results for Z = 0. Let V(1) be the 
squared error between the predicted and observed results for Z = 1. 
Then as is shown in Appendix F: 

Squared Error Between 
Z Predicted and Observed 

0 V(O) 
Optimal V(1) l-v0 

i 4V(O) ) 

100% V(1) 

with the optimal credibility given by: Z optimal = 1 - V(l)/2V(O). 

4 When using more than two or more years of data, the reduction in squared error depends on the 
impact of shifting parameters over time. However, in the absence of shifting parameters over time, 
for N years with the same weight applied to each year, the maximum possible reduction is 
1/(2(N + I)). 
5 This is only a half for the case when the squared erron for Z = 0 and Z = I are equal. However, 
this is the case when one gets the maximum reduction in squared error. 
h The formula given below does not hold when using several years of data. 
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In the example above, we had V(0) = .0091, V( 1) = .0059. Using 
these values in the above formula gives Z optimal = 68%, equal to the 
empirically determined 68%. The formula for the minimum squared error 
gives a value of .0049, which is equal to the empirical minimum squared 
error. The reduction of the squared error to 83% of its previous value 
appears significant in light of the maximum possible reduction to 75%.’ 

7 The maximum reduction is possible when the squared rrnm for Z = 0 and Z = I are equal 
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APPENDIX F 

SQUARED ERRORS 

In Appendix C, the fundamental formula for the squared error was 
derived: 

V(Z) = 5 5 ZiZj(6*6ij + 7’ + lT*e(li - j()) 
i=l j=I 

- 2 5 Zi(T2 + (‘e(N + A - i)) + 6* + 5’ + r*. 
i=l 

One can actually check this result against the observed squared 
errors. ’ For example, let N = 2 and A = 3. Then 

V(Z, ,Z*) = z:(s* + 7* + 5’) + 2Z,Z2(T2 + <‘e( 1)) 

+ zgs* + T2 + 5’) - 2Z*(T2 + [*e(4)) 

- 2Z*(T2 + 5*e(3)) + Is* + 5’ + T2 

Using the average of the NL and AL values in Table Dl for the 
covariance structure: 

72 = .001425 6* + 5’ = .007884 

<‘e( 1) = .004723 <*e(3) = .002770 5*[(4) = .002158 

V(Z,, Z2) = Z:( .009309) + Z,Z,(.Ol2296) + Z;(.009309) 

- Z,(.OO7166) - Z2(.008390) + .009309 

Table Fl contains the results of the test for various values of ZI and 
ZZ. (Z, is the credibility applied to the less recent year of the two.) The 
mean squared errors are a close match to those given by the equation.* 

’ The covariances were estimated from the same data as is being used to test the equation for the 
squared error. Thus, the magnitude of the covariances is not being tested. However, the validity of 
the assumed form of the covariance structure as well as the validity of the derivation of the equation 
for V(Z) are being tested. 
L The differences are largely due to the fact that at the two ends of the data period there are either 
no predictions or no actual observation to enter into the computation of an error. 
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When N = I, one gets the following parabola for V(Z): 

v(Z) = z2(6’ + $ + cz, - ~Z(T’ + c?(A)) + 6” + 5’ + 7’ 

V(0) = 6’ + 7’ + 5’ = squared error ignoring the data 

V(l) = 26’ + 25’( 1 - C(A)) = squared error relying solely on the 
data 

Z optimal = 
T? + <‘e(A) V(0) - V( I )/2 

2 + 6’ + 5’ = 
= ’ C’( 1) 

V(O) 21/(O) 

(7’ + <‘k’(A$ 
V(Z optimal) = - z 7 + 6? + (’ 

+ 6’ + 5’ + T7 

=- (V(O) - V(‘)2)’ + v(o) 
V(O) 

=-v(o)+v(l,-g + V(O) 

V( ’ > = 
v(‘) (I - 4V(O) i 

This is the result referred to in Appendix E. The reduction in mean 
squared error is greatest when V(l) = V(0); then the squared error is 
reduced to 7.5% of the minimum of the squared errors that result from 
relying solely on the data or ignoring the data. 

In the absence of shifting parameters over time.’ the estimate im- 
proves as one uses more and more years of data. For large N, relying 
solely on the data produces a very good estimate; this is reflected in the 
fact that the optima1 credibility approaches I as N gets large. Thus for 
large N, one cannot reduce the squared error significantly by using 
credibility. 

’ In the presence of shifting parameters over time the Gtuation i, much more complxated. 
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TABLE Fl 

MEAN SQUARED ERRORS (.OOOl) 

21 - 22 - Observed 

Estimated 
by 2nd Order 
Polynomial 

0 0 9,182 9,309 
0 .25 7,592 7,793 

.25 0 7,963 8,099 
0 .5 7,202 7,441 

.I5 .35 7,087 7,293 

.25 .25 7,172 7,352 
.5 0 7,949 8,053 
0 .7.5 8,011 8,253 

.25 .5 7,581 7,769 
.5 .25 7,957 8,057 

.75 0 9,140 9,171 
0 I 10,020 10,228 

.25 .75 9,189 9,349 
.5 .5 9,165 9,260 
.75 .25 9,947 9,961 
1 0 11,536 11,452 

.75 .75 15,162 15,031 
1 1 25,162 24,667 

Note: Mean Squared Errors in estimating NL and AL data. N = 2, A = 3. Estimate 
uses data from the fourth and third years prior to the estimation period with weights 
ZI and Z2, respectively, and the complement of credibility applied to the grand 
mean. ZI = 15% and Zr = 35% is the solution to equation 11.3 for the least 
squares credibility. 
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The exact behavior can be derived using the results of Appendix C. 
In the absence of shifting parameters over time (1’ = O), and applying 
equal weight ZIN to each of N years, based on the result in Appendix 
C, the squared error is given by: 

V(z) = z2 i; ! + T2 - 2z? + 6’ + 2 

V(0) = 6’ + T2 

2 

Z optimal = ,r/: 62 = 
(N + l)V(O) - NV(l) 

(N + I )V(O) - (N - l)V( 1) 
1 

V(Z optimal) = 6’ + 7’ - NTz p 62 

V’) = 
‘(I) (’ - (N + l)‘!‘(O) - (N2 - I)V(I) 

The maximum reduction in squared error compared to the minimum 
of V(0) and V(l) occurs when V(0) = V(1). For this case 

Z optimal = 112 

V(Z optimal) = V(l) 
1 

2(N +- I). 

As N gets large, there is no significant reduction in squared error due 
to using credibility (in the absence of shifting parameters over time). 
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APPENDIX G 

THE SECOND CRITERION AND LIMITED FLUCTUATION CREDIBILITY 

The second criterion in Section 7 deals with the probability that the 
observed result will be more than a certain percent different than the 
predicted result. The less this probability, the better the solution. 

This is related to the basic concept behind “classical” credibility 
which has also been called “limited fluctuation” credibility [7]. In clas- 
sical credibilty, the full credibility criterion is chosen so that there is a 
probability, P, of meeting the test, that the maximum departure from 
expected is no more than k percent. 

The reason the criterion is stated in this way rather than the way it 
is in classical credibility is that, unlike the actual observations, one 
cannot observe directly the inherent loss potential.’ 

However, the two concepts are closely related. If there is a small 
chance of the estimate differing by a large amount from the true value 
of the inherent loss potential, then, since the observed values are dis- 
tributed about the true value, the chance of the estimate differing by a 
large amount from the observed value will be smaller than it would 
otherwise be. 

For example, assume the inherent loss potential is .550 and that the 
observed values are distributed approximately normally with a standard 
deviation of .050. Then there is approximately a 95% probability that 
the observed value will be between .452 and .648.’ 

Assume the estimated values are also approximately normally dis- 
tributed about the inherent loss potential.” Assume a standard deviation 
of .028. Then there is a 95% chance that the estimate will be between 
,495 and .605, i.e., within 10% of the true inherent loss potential. 

I It has been shown that the loss potential varies for a risk over time. Thus, it cannot be estimated 
as the average of many observations over time. 
2 The mean plus or minus 1.96 standard deviations. 
’ An unbiased estimator has the same expected value as the inherent loss potential. 
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The difference between the estimated value and the observed value 
will also be approximately normally distributed about zero.” The standard 
deviation is .057.” Thus, there would be a 95% chance that the absolute 
difference between the estimated and observed value will be less than 
.112. This corresponds to about a 95% chance that the estimated value 
will be within 220% of the observed value.h 

In a particular example, the result would depend on the relative size 
of the variances of the observations and the estimates. However, the 
smaller the variance in the estimates, the smaller the variance in the 
difference between the estimates and the observations. Thus the smaller 
the probability that the estimate and the true mean differ by a large 
amount, the smaller the probability that the estimate and the observation 
differ by a large amount. 

I The sum or difference of two normal distributions is also a normal distribution The new mean is 
The difference of the two means. 
’ The new variance is the sum of the two variances 
’ .I I2 + .550 = .204. 
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ABSTRACT

Excess loss factors, which are ratios of expected losses ex-
cess of a limit to total expected losses, are used by the Na-
tional Council on Compensation Insurance (NCCI) in class
ratemaking (estimating the expected ratio of losses to pay-
roll for individual workers compensation classifications)
and are used by insurance carriers to determine premiums
for certain retrospectively rated policies (on policies for
which claims used in the premium determination are sub-
ject to a per-claim limitation). Collections of workers com-
pensation classifications that use the same expected excess
loss factors are called hazard groups. At the beginning of
2007, NCCI implemented a new seven-hazard-group sys-
tem, replacing the previous four-hazard-group system. This
paper describes the analysis that led to the assignment of
classes to the new seven hazard groups.
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1. Introduction

In the United States, most private employers
are required to provide workers compensation
coverage to pay employees injured on the job lost
wages and medical costs arising from the work
injury. Often employers provide this coverage by
purchasing workers compensation insurance. For
many insureds, premiums are based, in part, on
the payroll classification of the employer, which
is based on the type of business and operations
performed by employees. For example, there is
a classification for roofing businesses, and an-
other classification for professional employees of
hospitals. Currently there are about 800 different
classifications in use in states for which NCCI
provides ratemaking services (although the ex-
act number used in any given state varies).
For various individual risk-rating purposes, for

use in NCCI ratemaking, and for other reasons,
it is useful to have tables of excess loss factors.
An excess ratio or excess loss factor (ELF)1 is the
ratio of the expected amount of claims excess of
a given limit to total expected claims. Because
the probability that a loss is large, given that a
loss occurs, varies by class, it is useful to have
ELFs that vary by class.
A hazard group is a collection of workers com-

pensation classifications that have relatively sim-
ilar expected excess loss factors over a broad
range of limits. NCCI periodically publishes ta-
bles of ELFs for states where NCCI provides
ratemaking services. Generally these tables are
updated annually, and give ELFs (or closely re-
lated factors) by hazard group for selected limits.
At the beginning of 2007, NCCI implemented

a new seven-hazard-group system, replacing the

1In published tables, what we denote here as ELFs are often called
Excess Loss Pure Premium Factors, or ELPPFs. And in published
tables, ratios of excess loss to premium are often called Excess
Loss Factors, or ELFs. Some published tables give ratios of excess
loss plus allocated loss adjustment expense to either premium or
loss plus allocated loss adjustment expense. We are concerned only
with ratios of excess losses to total losses.

Table 1. Distribution of classes by prior hazard group

NCCI Hazard
Group

Number of
Classes

Premium
(billions)

Percent of Total
Premium

I 38 $1.3 0.9%
II 428 $67.2 45.6%
III 318 $75.3 51.1%
IV 86 $3.6 2.5%

previous four-hazard-group system. That is, un-
der the new system, each classification is as-
signed to one of seven hazard groups. The seven
new hazard groups are not simply a subdivision
of the previous four; they are a substantially dif-
ferent mapping of classes to hazard group. This
article describes the analysis that led to the as-
signment of classes to the new seven hazard
groups.
Under the previous NCCI four-hazard-group

system, the bulk of workers compensation (WC)
exposure in NCCI states was concentrated in two
hazard groups, as can be seen in Table 1.
In our analysis, we considered whether a finer

delineation would be possible, and what might
be the optimal number of hazard groups. Apart
from those considerations, hazard group assign-
ments should be reviewed periodically because
of changes over time in the insurance industry,
technology, workplaces, and the evolution of the
classification system and workers compensation
infrastructure. The previous review had been
done in 1993.
NCCI defines hazard groups on a country-wide

basis. That is, the grouping of classes into haz-
ard groups does not vary by state. Most workers
compensation classes apply in every state where
NCCI provides ratemaking services, although
there are a few classes known as “state specials”
that apply in only one state or a few states. NCCI
takes the view, as it does in class ratemaking, that
classes are homogeneous with respect to opera-
tions of the insureds, and therefore that the rel-
ative mix of injuries within a class should not
vary much from state to state.
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1.1. Prior work

The prior NCCI hazard groups were developed
by first identifying seven variables based on rela-
tive claim frequency, severity, and pure premium,
which were thought to be indicative of excess
loss potential (NCCI 1993). These variables were
the ratios of class average to statewide weighted
average:

1. serious2 to total claim frequency ratio

2. serious indemnity severity3

3. serious medical severity

4. serious severity, including medical

5. serious to total indemnity pure premium4 ratio

6. serious medical to total medical pure premium
ratio

7. serious pure premium to total pure premium
ratio

Because of the correlations among these seven
variables, the seven variables were grouped into
three subsets based on an examination of the par-
tial correlation matrix. A principal components5

analysis was then done to determine a single rep-
resentative variable from each of the three sub-
sets and the linear combination of these repre-
sentative variables that maximized the proportion
of the total variance explained. The representa-
tive variables selected were the first, second, and
last variables. The linear combination so identi-
fied is called the first principal component and is
the single variable that was used to sort classes
into hazard groups. Determination of the optimal
number of hazard groups was outside the scope

2A serious claim is one for which at least one of the following
benefits for lost wages is paid or is expected to be paid:
a. Fatal (death)
b. Permanent Total (injured worker not expected to ever be able

to work)
c. Permanent Partial (able to work after recovery period, but with

a permanent injury, such as loss of a limb) and benefits for lost
wages exceed certain thresholds that vary by state and year.
3Severity is the average claim cost. Indemnity is benefits for lost
wages. Medical is benefits for medical costs.
4Pure premium is the ratio of expected losses to payroll in $100s.
5See Johnson and Wichern (2002) for a discussion of principal
components.

of that study and so the number of hazard groups
remained unchanged at four.
A very different approach was employed by

the Workers Compensation Insurance Rating Bu-
reau of California (WCIRB 2001). TheWCIRB’s
objective was to group classes with similar loss
distributions. They used two statistics to sort
classes into hazard groups. The first statistic was
the percentage of claims excess of $150,000. This
statistic was thought of as a proxy for large loss
potential. The second statistic measured the dif-
ference between the class loss distribution and
the average loss distribution across all classes.
The different hazard groups corresponded to dif-
ferent ranges of these two statistics. The results
were checked by using cluster analysis on these
two variables.

1.2. Overview

Our approach owes much to the prior work
on the subject, yet it is quite distinct. We sorted
classes into hazard groups based on their excess
ratios rather than proxy variables. As shown in
Corro and Engl (2006), a distribution is char-
acterized by its excess ratios and so there is no
loss of information in working with excess ratios
rather than with the size of loss density or dis-
tribution function. Section 2 describes how we
computed class-specific excess ratios.
Section 3 describes how we used cluster anal-

ysis to group classes with similar excess ratios,
and how we determined that seven is the optimal
number of hazard groups. In Section 4 we com-
pare the new hazard group assignments with the
prior assignments.
Following the analytic determination of hazard

groups, the tentative assignments were reviewed
by several underwriters, and, based on this input,
NCCI changed some assignments; we describe
this in Section 5.
Finally, Section 6 recaps the key ideas of this

study and the key features of the new assign-
ments.
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2. Class excess ratios
Gillam (1991) describes in detail the NCCI

procedure for computing excess ratios by hazard
group for individual states. In the NCCI proce-
dure, each ELF for a state and hazard group is a
weighted average of ELFs by injury type specific
to the state and hazard group. The ELFs for an
injury type for a state and hazard group are de-
rived from ELFs for the injury type in the state,
adjusted to the estimated mean loss in the hazard
group in the state. Injury types used by NCCI are
Fatal, Permanent Total, Permanent Partial, Tem-
porary Total, and Medical Only.
To put this in mathematical terms, let Xi be the

random variable giving the amount of loss for in-
jury type i in the state, and let Xi have density
function fi(x) and mean ¹i. Let Si be the normal-
ized state excess ratio function for injury type i;
that is

Si(r) = E
·
max

μ
Xi
¹i
¡ r,0

¶¸
=
Z 1

r
(t¡ r)gi(t)dt,

where gi(x) = ¹ifi(¹ix) is the density function of
the normalized losses Xi=¹i and r ¸ 0 can be in-
terpreted as an entry ratio, i.e., the ratio of a
loss amount to the mean loss amount. For hazard
group j, the overall excess ratio Rj(L) at limit L
is

Rj(L) =
X
i

wi,jSi(L=¹i,j), (1)

where wi,j is the percentage of losses due to in-
jury type i in hazard group j (so

P
i wi,j = 1), and

¹i,j is the average cost per case for injury type i
in hazard group j.
In the same way we can compute countrywide

excess ratios for a given class by just knowing
the weights and average costs per case by injury
type for a class. These excess ratios were based
on the most recent five years of data, as of April
2005, and included claim counts and losses by
injury type for the states where NCCI collects
such data. Losses were developed, trended, and
brought on-level to reflect changes in workers

Figure 1. Class code credibility

compensation benefits. With some minor state
exceptions, the same classes apply in all states.
As such, we could estimate class excess ratios on
a countrywide basis. Thus for each class, c, we
had a vector

Rc = (Rc(L1),Rc(L2), : : : ,Rc(Ln))

of excess ratios at certain loss limits L1,L2, : : : ,Ln.
The credibility to assign to each class excess

ratio vector is considered in the next subsection,
and selection of the loss limits to use in the anal-
ysis is discussed in Section 3.

2.1. Credibility

In the prior review, the credibility given to a
class was

z =min
μ

n

n+ k
£ 1:5,1

¶
, (2)

where n is the number of claims in the class and
k is the average number of claims per class. This
gives a class with the average number of claims
75% credibility and a class with at least twice the
average number of claims full credibility. Figure
1 shows the credibility produced by this formula
by size of class. The fully credible classes have
over 70% of the total premium, as can be seen in
Table 2. A few classes have most of the claims,
as can be seen in Figure 2, where the classes with
the greatest number of claims are to the left. In-
deed, the distribution of claims per class is very
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Table 2. Distribution of classes by credibility

Claims per Number of Percent of
Credibility Range Year Classes Premium

0· z < 10% 0–237 355 1.2%
10· z < 20% 238–511 89 1.3%
20· z < 30% 512–831 61 1.6%
30· z < 40% 832–1209 56 2.7%
40· z < 50% 1210–1662 46 2.5%
50· z < 60% 1663–2216 34 2.5%
60· z < 70% 2217–2909 46 4.8%
70· z < 80% 2910–3799 35 4.3%
80· z < 90% 3800–4987 29 4.0%
90· z < 100% 4988–6649 18 3.2%
z = 100% ¸ 6650 101 71.8%

Total 870 100.0%

Figure 2. Distribution of classes by claim count

Figure 3. Histogram of number of claims by class

highly skewed, as can be seen in Figure 3. Figure
4 expands the first bar in Figure 3, and shows the
persistency of the skewness. And Figure 5 fur-
ther expands the first bar in Figure 4, revealing
the same general pattern. The average number of
claims per class is nearly ten times the median.
We thus considered using the median rather than

Figure 4. Detail of histogram of number of claims by
class

Figure 5. Detail of histogram of number of claims by
class

Figure 6. Comparison of credibility formulas

the mean for k in Formula 2. This would have
resulted in a very large increase in credibility, as
shown in Figure 6. We considered several other
variations on Formula 2 as well. Because Medical
Only claims have almost no impact on the ELFs
at the published limits, we considered exclud-
ing all Medical Only claims. Taking that idea a
step further, we looked at including only Serious
claims. We also considered taking k in Formula 2
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to be the mean number of claims over only those
classes with some minimal number of claims.
In addition, we considered basing credibility

on various square root rules. We considered a
simple square root rule of the form

z =
r

n

384
,

where n is the number of claims in a class, and
z is capped at 1. The full credibility standard of
384, given in Hossack, Pollard, and Zehnwirth
(1983, p. 159), corresponds to a 95% chance of
the actual number of claims being within 10% of
the expected number of claims. For the determi-
nation of ELFs, serious claims (Fatal, Permanent
Total, and major Permanent Partial) are more im-
portant than nonserious claims, so we looked at
the following variation on the square root rule

z =
NF

r
nF
384

+NM

r
nM
384

+Nm

r
nm
384

NF +NM +Nm
,

where

nF = the number of fatal claims in the class;
NF = the number of fatal claims in all classes;
nM = the number of permanent total and major
permanent partial claims in the class;
NM = the number of permanent total and major
permanent partial claims in all classes;
nm = the number of minor permanent partial and
temporary total claims in the class;
Nm = the number of minor permanent partial and
temporary total claims in all classes.

We also considered varying the full credibility
standard by injury type with the following cred-
ibility formula

z =
Ns

r
ns
175

+ (N ¡Ns)
r
n¡ ns
384

N

where

ns = the number of serious claims in the class;
Ns = the number of serious claims in all classes;
n= the total number of claims in the class;
N = the total number of claims in all classes.

In the end, none of the alternatives considered
seemed compelling enough to warrant a change
and the results did not seem to depend heavily on
the credibility formula; consequently we retained
Formula 2 for computing credibility.
For the complement of credibility we used the

excess ratios corresponding to the current hazard
group of the class. More precisely, for each class
c we have a vector of excess ratios

Rc = (Rc(L1),Rc(L2), : : : ,Rc(Ln))

and a credibility z. We also have a vector of ex-
cess ratios for the hazard group HG containing
the class c (which can be determined, as above,
as a loss weighted sum over vectors for classes
in HG)

RHG = (RHG(L1),RHG(L2), : : : ,RHG(Ln)):

We now associate to each class a credibility-
weighted vector of excess ratios

zRc+(1¡ z)RHG:
It is these credibility-weighted vectors of excess
ratios that we use in the cluster analysis described
in the next section.

3. Analytic determination of the
new hazard groups

The fundamental analytic method used to de-
termine the new hazard groups is Cluster Analy-
sis. It is a way to group classes with similar ELFs
and is described in this section.

3.1. Selection of loss limits

The class excess ratio is a function of the loss
limit, so it was necessary to select the limits to
use in the analysis. We used limits of 100, 250,
500, 1000, and 5000, in thousands of dollars. Be-
cause excess ratios at different limits were highly
correlated, five limits were thought to be suffi-
cient. We considered using fewer limits but de-
cided that it was better to use five limits to cover
the range commonly used for retrospective rat-
ing.
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Table 3. Correlations among excess ratios at selected limits

Limit 100,000 250,000 500,000 1,000,000 5,000,000

100,000 0.992 0.973 0.935 0.824
250,000 0.994 0.969 0.879
500,000 0.990 0.925

1,000,000 0.968
5,000,000

Table 4. Correlations of ELFs for pairs of limits

Limits not Selected Most Correlated Limit of
the Five Selected

Correlation
Coefficient

25,000 100,000 0.9882
30,000 100,000 0.9907
35,000 100,000 0.9926

40,000 100,000 0.9942
50,000 100,000 0.9965
75,000 100,000 0.9993

125,000 100,000 0.9996
150,000 100,000 0.9985
175,000 250,000 0.9987

200,000 250,000 0.9995
750,000 1,000,000 0.9982

2,000,000 1,000,000 0.9919

We began by considering the 17 limits for
which NCCI published excess loss factors before
2005. These limits, in thousands of dollars, were:
25, 30, 35, 40, 50, 75, 100, 125, 150, 175, 200,
250, 300, 500, 1000, 2000, and 5000. We mod-
ified this list by dropping $300,000 and adding
$750,000. We reduced this to the five selected
limits based primarily on two considerations:

² ELFs at any pair of excess limits are highly
correlated across classes, especially when the
ratio of the limits is close to 1.

² Limits below $100,000 are heavily represented
in the list of 17 limits.

The correlations were computed using only the
162 classes with at least 75% credibility. Classes
with small credibility have estimated ELFs close
to those for the prior overall hazard group. In-
cluding the low-credibility classes would skew
the correlations towards those of the overall haz-
ard groups.

Even among the five selected limits, correla-
tions between ELFs for pairs of limits are very
high, as can be seen in Table 3.
Each of the 12 limits not used has a correlation

coefficient of at least 0.9882 with a limit that was
used, as can be seen in Table 4.
Although we ultimately used five limits, we

experimented by clustering with different lim-
its. We found that the hazard group assignments
resulting from five limits were quite similar to
those resulting from 17. When mapping the
classes to seven hazard groups, only 68 out of
870 classes were assigned to different hazard
groups and these accounted for just 5.5% of the
total premium.
To see whether five limits were more than

needed for the analysis, we tried clustering the
classes using only a single limit. In one instance
we used $100,000 and in another we used
$1,000,000. Figures 7 and 8 compare those sin-
gle limit assignments with clustering using the
five-limit approach. In both cases, the results dif-
fered from the five-limit case, markedly so when
$1,000,000 was used. This indicates that too
much information is lost by dropping down to
one limit. Retrospectively rated policies are pur-
chased over a range of limits and no single limit
captures the full variability in excess ratios.
We used principal components analysis to en-

hance the clustering investigation. The first two
principal components of the five limits retained
over 99% of the variation in the data. While this
might suggest that fewer limits could have been
used, we decided to use five limits in order to
cover the range of limits commonly used in retro-
spective rating. The distance between two classes
in principal components space does not have the
same simple interpretation as it does in excess ra-
tio space. However principal components analy-
sis allows one to project a five-dimensional plot
onto two dimensions. Clustering using the five
limits and plotting the resulting hazard group as-
signments using the first two principal compo-
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Figure 7. Clustering using $100,000 limit compared
to five selected limits (the number of classes that
moved is shown above each bar)

Figure 8. Clustering using $1,000,000 limit compared
to five selected limits (the number of classes that
moved is shown above each bar)

nents showed that the clusters were well sepa-
rated and that outliers were easily identified. In
our view, this confirmed the success of the five-
dimensional clustering.

3.2. Metrics

The objective of assigning classes to hazard
groups is to group classes with similar vectors of
excess ratios. This raises the question of how to
determine how similar or “close” two vectors are.
The usual approach is to measure the distance
between the vectors. If

x= (x1,x2, : : : ,xn) and y = (y1,y2, : : : ,yn)

are two vectors in Rn, then the usual Euclid-
ean, or L2, distance between x and y is speci-

fied as

kx¡ yk2 =
vuut nX
i=1

(xi¡ yi)2:

This metric is used extensively in statistics and
is what we used. In linear regression this met-
ric penalizes large deviations. That is, one big
deviation is seen to be worse than many small
deviations.
There are many other metrics. Perhaps the sec-

ond most common distance function is the L1

metric which specifies

kx¡ yk1 =
nX
i=1

jxi¡ yij:

Here a large deviation in one component gets
no more weight than many small deviations. The
intuitive rationale for using this metric is that it
minimizes the relative error in estimating excess
premium. If Rc(L) is the hypothetically correct
excess ratio at a limit of L for a class c and the
premium on the policy is P then the excess pre-
mium is given by P ¢PLR ¢Rc(L), where PLR de-
notes the permissible loss ratio. But in practice
the class excess ratio is approximated by the haz-
ard group excess ratio RHG(L). The relative error
in estimating the excess premium is then

jP ¢PLR ¢RHG(L)¡P ¢PLR ¢Rc(L)j
P

= PLR ¢ jRHG(L)¡Rc(L)j:

If we assume that each loss limit is equally likely
to be chosen by the insured, then the expected
relative error in estimating the excess premium
is given by

nX
i=1

PLR

n
jRHG(Li)¡Rc(Li)j=

PLR

n
kRHG¡Rck1,

which is proportional to the L1 distance between
the two excess ratio vectors.
Our analysis was not very sensitive to whether

the L1 or L2 metric was used and we preferred
the more traditional L2 metric.
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3.3. Standardization

When clustering variables are measured in dif-
ferent units, standardization is typically applied
to prevent a variable with large values from ex-
erting undue influence on the results. Standard-
ization ensures that each variable has a similar
impact on the clusters. Duda and Hart (1973)
point out that standardization is appropriate when
the spread of values in the data is due to normal
random variation, however “it can be quite inap-
propriate if the spread is due to the presence of
subclasses. Thus, this routine normalization may
be less than helpful in the cases of greatest inter-
est.”
We considered two common approaches to

standardization. The usual approach is to subtract
the mean and divide by the standard deviation
of each variable. For example, if x1,x2, : : : ,xn are
the sample values of some random variable, with
sample mean x̄, and sample standard deviation s,
then the standardized values are given by

zi =
xi¡ x̄
s
:

An alternative standardization method depends
on the range of observations. Under this approach
we would take

zi =
xi¡minxi

maxxi¡minxi
:

We conducted two cluster analysis trials in
whichwe standardized according to the approach-
es described above. In each case we clustered
the classes into seven hazard groups. Both tri-
als resulted in hazard groups that were not very
different from those produced without standard-
ization.
Further, two issues were apparent with regard

to standardizing in our particular analysis. First,
excess ratios at different limits have a similar unit
of measure, which is dollars of excess loss per
dollar of total loss. That is, excess ratios share a
common denominator. Any attempt to standard-
ize would have resulted in new variables without
a common unit interpretation. Second, all excess

ratios are between zero and one. Some standard-
ization approaches would have resulted in stan-
dardized observations outside this range.
Another consideration is the greater range of

excess ratios at lower limits. Without standard-
ization, the excess ratios at lower loss limits have
more influence on the clusters than do those at
higher limits. This result is not undesirable be-
cause excess ratios at lower limits are based more
on observed loss experience than on fitted loss
distributions (see Corro and Engl 2006). Even
on a nationwide basis, there are few claims with
reported losses above $5,000,000, but there are
many more claims above $100,000. Greater con-
fidence can be placed in the relative accuracy
of excess ratios at lower limits because they are
based on a greater volume of data.
In summary, the determination was made not

to standardize because standardization would
have eliminated the common denominator and it
would have led to increased emphasis on higher
limits. Our clustering algorithm used the L2 met-
ric and unstandardized credibility-weighted class
excess ratios at the five selected loss limits:
$100,000, $250,000, $500,000, $1,000,000 and
$5,000,000. Premium weights were used to clus-
ter the classes, as will be discussed in the next
section.

3.4. Cluster analysis

Given a set of n objects, the objective of clus-
ter analysis is to group similar objects. In our
case, we wanted to group classes with similar
vectors of excess ratios, where similarity is deter-
mined by the L2 metric. At this stage the number
of clusters is taken as given. Typically partitions
of the objects into 1,2,3, : : : ,n clusters are con-
sidered. Non-hierarchical cluster analysis simply
seeks the best partition for any given number of
clusters. In hierarchical cluster analysis the parti-
tion with k+1 clusters is related to the partition
with k clusters in that one of the k clusters is
simply subdivided to get the k+1 element parti-
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tion. Thus if two objects are in different clusters
in the k cluster partition then they will be in dif-
ferent clusters in all partitions with more than k
elements. This places a restriction on the clus-
ters that can be sensible in some contexts. Our
approach was non-hierarchical.

3.5. Optimality of k-means

The clustering technique we used is called k-
means. For a given number, k, of clusters, k-
means groups the classes into k hazard groups
so as to minimize

kX
i=1

X
c2HGi

kRc¡ R̄ik22, (3)

where the centroid

R̄i =
1

jHGij
X
c2HGi

Rc

is the average excess ratio vector for the ith
hazard group and jHGij denotes the number of
classes in hazard group i. Theoretically there is a
difference between the hazard group excess ratio
vector, RHGi , computed using (1), and the hazard

group centroid, R̄i, but in practice this difference
is very small.
There is a commonly used algorithm to deter-

mine clusters, known as the k-means algorithm
(Johnson and Wichern 2002). To start, some as-
signment to clusters is made. The algorithm then
has two steps, performed iteratively until the
clustering stabilizes. The first step is to compute
the centroid of each cluster. The second step is
to find the centroid closest to each class, and as-
sign the class to that cluster. If any classes have
been reassigned from one cluster to another dur-
ing the second step, return to the first step. If no
classes have been reassigned, then the algorithm
terminates.
Commercial software for clustering is also

available. We computed clusters using the SAS
FASTCLUS routine.6

6We used SAS software, Version 8.2 of the SAS System for a
SunOS 5.8 platform.

Hazard groups determined by k-means have
several desirable optimality properties. First, they
maximize the following statistic

1¡
Pk
i=1
P
c2HGi kRc¡ R̄ik22P
c kRc¡ R̄k22

, (4)

where

R̄ =
1
C

X
c

Rc

is the overall average excess ratio vector, with
C =

P jHGij being the total number of classes.
Formula (4) is analogous to the R2 statistic in
linear regression. It gives the percentage of the
total variation explained by the hazard groups.
A second way to evaluate hazard groups is

based on the traditional concepts of within and
between variance. We would like the hazard
groups to be homogeneous and well separated.
Thus we would like to minimize the within vari-
ance and maximize the between variance; using
k-means accomplishes both.
Instead of considering a single excess ratio for

each class, we have a vector of excess ratios, one
excess ratio for each of several fixed loss limits.
Thus we do not have a single random variable
corresponding to an excess ratio at a single loss
limit, but rather a random vector, with one ran-
dom variable, the excess ratio, for each loss limit,
from which we get a variance-covariance matrix.
If Xi is the random variable for the excess ratio
function at the ith loss limit, Li, across classes
c, then the observed values are the Rc(Li). The
variance-covariance matrix of the random vector
X = (X1,X2, : : : ,Xn) is given by

§ =

2666664
¾11 ¾12 ¢ ¢ ¢ ¾1n

¾21 ¾22 ¢ ¢ ¢ ¾2n
...

...
. . .

...

¾n1 ¾n2 ¢ ¢ ¢ ¾nn

3777775 ,

where

¾ik = E[(Xi¡¹i)(Xk ¡¹k)]
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is the covariance of Xi and Xk and ¹i = E[Xi]. If
we regard X as a 1£ n matrix then

§ = E[(X ¡¹)T(X ¡¹)],
where ¹= (¹1,¹2, : : : ,¹n) and (X ¡¹)T is the
transpose of (X ¡¹).
In practice the variance-covariance matrix is

not known, but must be estimated from the data,
i.e., the vectors

Rc = (Rc(L1),Rc(L2), : : : ,Rc(Ln)):

Let
x̄j =

1
C

X
c

Rc(Lj),

where C is the total number of classes, and let

x̄= (x̄1, x̄2, : : : , x̄n):

Then the sample covariance of the ELFs at Li
and Lk is

sik =
1
C

X
c

(Rc(Li)¡ x̄i)(Rc(Lk)¡ x̄k),

and the sample variance-covariance matrix is
given by

S =

266666664

s11 s12 ¢ ¢ ¢ s1n

s21 s22 ¢ ¢ ¢ s2n

...
...

. . .
...

sn1 sn2 ¢ ¢ ¢ snn

377777775
=
1
C

X
c

(Rc¡ x̄)T(Rc¡ x̄):

One way to generalize the concept of variance to
the multivariate context is to consider the trace
of S, the sum of the main diagonal of S

trace(S) = s11 + s22 + ¢ ¢ ¢+ snn:
This is just the sum of the sample variances of
each variable and is called the total sample vari-
ance.
We let

T = CS =
X
c

(Rc¡ x̄)T(Rc¡ x̄):

The matrix T is proportional to the variance-
covariance matrix for the whole data set. It is

called the dispersion matrix, and is the matrix of
sums of squares and cross products. We can pro-
ceed similarly within each hazard group and de-
fine

Wi =
X
c2HGi

(Rc¡ x̄i)T(Rc¡ x̄i):

If we let

Bi = jHGij(x̄i¡ x̄)T(x̄i¡ x̄),
then it can be shown (see Späth 1985) thatX

c2HGi
(Rc¡ x̄)T(Rc¡ x̄) = Bi+Wi:

We then let

W =
kX
i=1

Wi:

This is the pooled within group dispersion ma-
trix. For the between variance we let

B =
kX
i=1

Bi:

This is the weighted between group dispersion
matrix. We then have

T = B+W:

This means, roughly that the total variance is the
sum of the between variance and the within vari-
ance. Taking the trace we get

trace(T) = trace(B) + trace(W):

Thus the total sample variance is the sum of the
between and within sample variance. Because
trace(T) is constant, maximizing trace(B) is
equivalent to minimizing trace(W), which is what
k-means cluster analysis accomplishes.

3.6. Weighted k-means

As observed in Section 2, some classes are
much larger than others. To avoid letting the
small classes have an undue influence on the
analysis, we weighted each class by its premium.
In simplest terms, this amounts to counting a
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class twice if it has twice as much premium as
the smallest class. So instead of minimizing the
expression in (3), we instead minimized

kX
i=1

X
c2HGi

wckRc¡ R̄ik22,

where wc is the percentage of the total premium
in class c. We used the premium-weighted cen-
troids as well, that is

R̄i =

P
c2HGi wcRcP
c2HGi wc

:

3.7. Optimal number of hazard groups

So far, we have discussed the task of deter-
mining clusters when the number of clusters is
given. We now address how to tell whether one
number of clusters performs better than another,
e.g., whether seven clusters works better than six
or eight.
Various test statistics can be used to help deter-

mine the optimal number of clusters. The proce-
dure is to compute the test statistic for each num-
ber of clusters under consideration and then iden-
tify the number of clusters at which the chosen
statistic reaches an optimal value (either a mini-
mum or a maximum, depending on the particular
test statistic being used). Milligan and Cooper
(1985) and Cooper and Milligan (1988) tested
such procedures to determine which statistics
were the most reliable.
Milligan and Cooper (1985) performed a sim-

ulation to test 30 procedures. The simulated clus-
ters were well separated from each other and they
did not overlap. For each simulated data set, the
true number of clusters was known, and they
computed the number of clusters indicated by
each method of determining the optimal number
of clusters. The methods were ranked according
to the number of times that they successfully in-
dicated the correct number of clusters.
They noted that their simulation was idealized

but that “It is hard to believe that a method that

fails on the present data would perform better on
less defined structures” (1985, p. 161). Hence,
although the hazard group data had both noise
and overlap, it was useful to refer to Milligan
and Cooper (1985) to determine which methods
to rule out.
In a later study, Cooper and Milligan (1988)

conducted tests that were more relevant to our
application because random errors were added
to the simulated data. That study found that the
two best performing methods in the error-free
scenario were also the best with errors (Cooper
and Milligan 1988, p. 319). The best performing
method is due to Calinski and Harabasz. Milligan
and Cooper (1985, p. 163) define the Calinski
and Harabasz statistic as

trace(B)=(k¡ 1)
trace(W)=(n¡ k)

where n is the number of classes and k is the
number of hazard groups, B is the between clus-
ter sum of squares and cross product matrix, and
W is the within cluster sum of squares and cross
product matrix. Higher values of this statistic in-
dicate better clusters because that corresponds to
higher between clusters distances (the numera-
tor) and lower within cluster distances (the
denominator). This test is also known as the
Pseudo-F test due to its resemblance to the F-test
of regression analysis, often used to determine
whether the explanatory variables as a group are
statistically significant.
Another test that ranked high in the Milligan

and Cooper testing was the Cubic Clustering
Criterion (CCC). This test compares the amount
of variance explained by a given set of clus-
ters to that expected when clusters are formed at
random based on data sampled from the multi-
dimensional uniform distribution. If the amount
of variance explained by the clusters is signifi-
cantly higher than expected then a high value of
the CCC statistic will result, indicating a high-
performing set of clusters. An optimum num-
ber of clusters is identified when the test statistic
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reaches a maximum (Milligan and Cooper 1985,
p. 164).
Milligan and Cooper (1985) found that the

Calinski and Harabasz test produced the correct
number of clusters for 390 data sets out of 432.
The CCC test produced the correct value 321
times. We could not use some of the other meth-
ods that ranked high because they were only ap-
plicable to hierarchical clustering, or for other
reasons.
In a SAS Institute technical report, Sarle (1983)

noted that the CCC is less reliable when the data
is elongated (i.e., variables are highly correlated).
Excess ratios are correlated across limits, so we
gave the CCC results less weight than the Calin-
ski and Harabasz results.
We performed cluster analyses for four to nine

hazard groups. There were four hazard groups in
the prior NCCI system, and we saw no reason to
consider any smaller number. Implementing ten
or more hazard groups would be substantially
more difficult than implementing nine or fewer,
because having 10 or more requires an additional
digit for coding hazard groups. Testing up to nine
was appropriate because the Workers Compensa-
tion Insurance Rating Bureau of California uses
nine hazard groups (WCIRBC 2001).
In the first phase of our cluster analysis, we as-

signed classes and calculated the two test statis-
tics for each number of groups under consid-
eration. Figure 9 shows that the Calinski and
Harabasz statistic indicated that the best number
of hazard groups was seven. Figure 10 shows that
the CCC statistic suggested nine hazard groups.
But nine hazard groups produced crossover,

meaning that at some high loss limit the haz-
ard group excess ratio for a higher hazard group
was lower than the hazard group excess ratio for
a lower hazard group. While crossover is pos-
sible in principle (from a purely mathematical
standpoint, it is easy to specify two loss distri-
butions so that one has higher ELFS at low lim-
its and the other has higher ELFs at high limits),

Figure 9. Indicated number of hazard groups

Figure 10. Indicated number of hazard groups, cubic
clustering criterion

we don’t think the data provided strong evidence
for crossover, and one of our guiding principles
was that there would be no crossover in the fi-
nal hazard groups. In our opinion, the crossover
that occurred with the clustering into nine hazard
groups suggested that nine is more clusters than
can accurately be distinguished.
As can be seen in Table 2, most of the premium

is concentrated in the largest classes with the
highest credibility. We were concerned that the
indicated number of hazard groups in the anal-
ysis could have been distorted by the presence
of hundreds of non-credible classes. In the sec-
ond phase of our cluster analysis, we applied the
tests to determine the optimal number of clusters
using large classes only.
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Figure 11. Statistics for various numbers of hazard groups, only classes with at least 50 percent credibility

In one scenario, we applied the Calinski and
Harabasz and CCC tests using only those classes
with credibility greater than or equal to
50 percent. In a second scenario, we applied
the tests using only fully credible classes.
As shown in Figure 11, the indicated number of
hazard groups was seven for both tests in both
scenarios.
In summary, we used two test statistics in three

scenarios for a total of six tests. Seven hazard
groups was the indicated optimal number in five
of these six tests. The exception was the sce-
nario in which all classes were included, where
the CCC test indicated that nine hazard groups
were optimal. There are four reasons why this
exception received little emphasis:

² Milligan and Cooper (1985) and Cooper and
Milligan (1988) found that the Calinski and
Harabasz procedure outperformed the CCC
procedure.

² The CCC procedure deserves less weight when
correlation is present, which was the case in all
of our scenarios.

² The selection of the optimal number of clusters
ought to be driven by the large classes where
most of the experience is concentrated. The
large classes have the highest credibility and
so the most confidence can be placed in their
excess ratios.

² There is crossover in the nine hazard groups,
and we had a guiding principle that there
would not be crossover.

We concluded that seven hazard groups were
optimal. These are denoted A to G, with Hazard
Group A having the smallest ELFs and Hazard
Group G having the largest.

3.8. Alternate mapping to four hazard
groups

We recognized that some insurers would not
be able to adopt the seven hazard group system
immediately because they needed additional time
to make the necessary systems changes. There-
fore we produced a four hazard group alternative
to supplement the seven hazard group system.
We chose to collapse the seven hazard groups
into four by combining Hazard Groups A and B
to form Hazard Group 1, combining C and D to
form 2, combining E and F to form 3, and let-
ting Hazard Group 4 be the same as G. Having
an alternate mapping to four hazard groups sim-
plifies comparisons between the prior and new
mappings as well.
Prior to choosing this simple scheme we con-

sidered other alternatives. We tried using k-means
cluster analysis to map the seven hazard group
centroids into four. This approach resulted in a
hazard group premium distribution that was not
homogeneous enough. Another approach we
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considered was using cluster analysis to group
the classes directly into four hazard groups. That
approach yielded reasonable results, but it re-
sulted in a non-hierarchical collapsing scheme,
i.e., the seven hazard groups were not a result of
subdividing the four hazard groups. The hierar-
chical collapsing scheme we chose has this fea-
ture, which allows users to know which of the
four hazard groups a class is in based on know-
ing that class’ assignment in the seven hazard
group system.
The new four hazard group system is intended

to be temporary. The four hazard group system
is in place only to ensure that all carriers have
sufficient time to make the transition to seven
hazard groups.

4. Comparison of new mapping
with old

4.1. Distribution of classes and premium

The bulk of the exposure was concentrated in
two of the hazard groups prior to our review.
Hazard Groups I and IV contained a small per-
centage of the total premium. Hazard Groups II
and III, on the other hand, contained 97 percent
of the total premium (see Table 1). We knew that
a more homogeneous distribution of premium
by hazard group would improve pricing accu-
racy. When discussing the new hazard groups
in this section we will focus on the mapping
that resulted directly from the statistical analysis.
Later on, as will be discussed in the underwrit-
ing review subsection, numerous classes were re-
assigned among the groups based on feedback
gathered in our survey of underwriting experts.
These changes are not reflected in Figures 12
to 20.
Figures 12 and 13 compare the prior mapping

to the collapsed new mapping based on the distri-
bution of classes and premium. Hazard Group 1
has a large number of classes and a substantial
portion of total premium in contrast to Hazard

Figure 12. Prior mapping vs. collapsed new mapping,
number of classes per hazard group

Figure 13. Prior mapping vs. collapsed new mapping,
percent of premium by hazard group

Group I. Hazard Groups 2 and 3 have become
slightly smaller than before although they are
still large. In the prior mapping Hazard Groups II
and III each had over 45 percent of the premium,
but in the new mapping, none of the four groups
has as much as 40 percent. This refinement al-
lows for improved homogeneity of classes within
each hazard group. Hazard Group 4 has retained
a similar number of classes but it has more pre-
mium than Group IV.
Figure 14 shows that most of the classes and

premium remained in the same hazard group
when assigned to the new four Hazard Groups.
Among those classes that did move, the great
majority (300 classes and 37 percent of the pre-
mium) moved down one hazard group. Most of
this movement was from Hazard Group II to
1. The movements of classes and premium are
detailed in Table 5. The table can be read ver-
tically. For instance, among the 428 classes in
Hazard Group II, 255 were mapped into Haz-
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Figure 14. Comparison of old with new assignment to
four hazard groups (the number of classes that moved
is shown above each bar)

ard Group 1, 164 into Hazard Group 2, nine into
Hazard Group 3, and none into Hazard Group 4.
The 255 classes that moved from Hazard Group
II into Hazard Group 1 comprised 25.4% of the
total premium. A significant number of classes
and amount of premium moved from Hazard
Group III to 2. Three classes moved from III
to 1. Just 15 classes moved up by one hazard
group, making up three percent of the premium.
Hazard Group 1 is so large primarily because
of classes that entered it from Hazard Group II.
Hazard Group 2 is quite different than Hazard
Group II because many of the classes in 2 origi-
nated in III and many of the classes that were in
II have moved into 1.
The new seven hazard group assignment has

a fairly homogenous distribution of classes and

Figure 15. Number of classes and percent of premium in each hazard group

Table 5. Comparison of distributions of classes between
prior and new hazard group assignments

Prior Mapping

Hazard Group I II III IV Total

Number of Classes 38 428 318 86 870
% Premium 0.9% 45.6% 51.1% 2.5% 100%

Hazard Group
1 38 255 3 0 296

0.9% 25.4% 0.5% 0.0% 26.7%

2 0 164 41 0 205
0.0% 19.6% 11.8% 0.0% 31.4%

3 0 9 268 4 281
0.0% 0.6% 36.3% 0.2% 37.1%

4 0 0 6 82 88
0.0% 0.0% 2.6% 2.2% 4.8%

premium, as shown in Figure 15. This distri-
bution is a marked improvement over the prior
mapping. In terms of premium, Hazard Group A
is 11 times larger than Hazard Group I was. Haz-
ard Group G is twice as large as Hazard Group IV
was.
Table 6 shows the distribution of classes to

hazard groups based on their level of credibil-
ity. Overall there were 162 classes with at least
75 percent credibility and 708 classes with lower
credibility. Generally, within each hazard group
most of the premium is due to highly credible
classes but most of the classes have lower cred-
ibility. Hazard Groups D and G are exceptions.
Hazard Group D has nearly equal numbers of
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Table 6. Number of classes with given credibility by hazard
group

162 Classes with 708 Classes with
Credibility ¸ 75% Credibility < 75%

Hazard Group Number of
Classes

% Premium Number of
Classes

% Premium

A 18 8.4% 37 0.9%
B 40 14.5% 201 2.8%
C 41 17.6% 119 3.6%
D 22 8.9% 23 1.3%
E 22 14.0% 202 4.4%
F 15 15.0% 42 3.7%
G 4 2.4% 84 2.4%

Total 162 80.9% 708 19.1%

high and low-credibility classes. In Hazard
Group G, high and low-credibility classes have
similar premium percentages.
Although Hazard Groups B and E have far

more classes than the other hazard groups, they
do not have far more premium. The reason that
they have the most classes with credibility less
than 75 percent is that the complement of credi-
bility is the prior hazard group excess ratio. For
instance, the excess ratio of Hazard Group III at
$100,000 was 0.451 which is close to the excess
ratio of Hazard Group E. Given a small class in
Hazard Group III, the credibility-weighted ex-
cess ratio was likely to be close to the excess
ratio of Hazard Group E.

4.2. Range of excess ratios

In Figure 16 each horizontal bar represents the
range of credibility-weighted excess ratios within
a particular hazard group. The vertical line within
each bar represents the overall excess ratio for
the hazard group. Among the classes in Hazard
Group I, the excess ratios at $100,000 ranged
from 0.254 to 0.315. In Hazard Group II, the
excess ratios at $100,000 ranged from 0.223 to
0.451. Thus the range of Hazard Group I ex-
cess ratios was contained within that of Hazard
Group II, indicating that Hazard Groups I and II
were not as well separated as might be desired.

Figure 16. Prior mapping excess ratio ranges at
$100K

Figure 17. New mapping excess ratio ranges at
$100K

Figure 18. New mapping excess ratio ranges at $1M

The same behavior was observed at $1,000,000
as well.
As shown in Figure 17, k-means clustering re-

sulted in well separated hazard groups. Because
five dimensions were used, we could not avoid
overlap in each dimension, but the excess ra-
tio distribution is a noticeable improvement over
the prior mapping. The new mapping also shows
a well-separated excess ratio distribution at
$1,000,000 as shown in the Figure 18.
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Figure 19. New mapping excess ratio ranges at
$100K, classes with at least 75% credibility

Figure 20. New mapping excess ratio ranges at $1M,
classes with at least 75% credibility

Most of the exposure is concentrated in the
largest classes, and so the hazard group excess
ratios are highly sensitive to the placement of
large classes. In Figures 16—18, the range of ex-
cess ratios for each hazard group is calculated
using all of the classes in that hazard group.
Figures 19 and 20 show that if ranges are com-

puted using only those classes with at least 75
percent credibility, then the separation of hazard
groups by excess ratios is quite strong at both
$100,000 and $1,000,000.

5. Underwriting review

After completing the cluster analysis, we con-
ducted a survey of underwriters to solicit their
comments on the proposed new mapping. The
survey was sent to all members of NCCI’s Un-
derwriting Advisory List (UAL), and included
the draft mapping that resulted from the ana-

lytic determination of the hazard groups. The
survey asked the underwriters to judge the haz-
ardousness of each class based on the likelihood
that a given claim would be a serious claim. We
also pointed out that if the mix of operations
in two classes was very similar then the two
classes should probably be in the same hazard
group.
Members of the UAL recommended changes

in the hazard group assignment for a third of
the classes. We also received feedback from two
underwriters on staff at NCCI. After the survey
comments were compiled, a team consisting of
NCCI actuaries and underwriters reviewed the
comments from UAL members and decided on
the final assignment for each class. When decid-
ing whether to reassign a class, we considered
whether the feedback on that class was consis-
tent. We considered the credibility of each class
and placed more weight on the cluster analy-
sis results for those classes with a large volume
of loss experience. For each class we compared
the excess ratios to the overall hazard group ex-
cess ratios and identified the nearest two hazard
groups.
Class 0030 illustrates the process used at NCCI

to decide on the hazard group for each class. This
class is for employees in the sugar cane planta-
tion industry and is only applicable in a small
number of states. This class

² had 12% credibility,
² was in Hazard Group III under the prior map-
ping, and

² was assigned to Hazard Group E under the
cluster analysis.

An underwriter pointed out that Class 0030
has operations similar to Class 2021, which is for
employees who work at sugar cane refining. In-
sureds in either class can have both farming and
refining operations, their class being determined
by which operation has the greater payroll. Also,
both farming and refining involve use of heavy
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Figure 21. Percent of premium that moved during
the underwriting review (the number of classes that
moved is shown above each bar)

machinery. Class 2021

² applies nationally,
² had 31% credibility,
² was in Hazard Group II under the prior map-
ping,

² was assigned to Hazard Group C under the
cluster analysis, and

² prior to credibility weighting had excess ratios
close to the overall excess ratios for Hazard
Group D.

Credibility weighting had reduced Class 2021’s
excess ratios so that they were between the over-
all excess ratios of Hazard Groups C and D, be-
cause the prior assignment of Class 2021 had
been to Hazard Group II.
We concluded that Hazard Group D was the

best choice for 2021 based on its excess ratios
prior to credibility weighting and its mix of op-
erations. We determined that 0030 should be as-
signed to the same hazard group as 2021, so we
also assigned Class 0030 to Hazard Group D.
Underwriters made several other types of com-

ments besides those comparing one class
to another. For instance, they commented on
the degree to which employees in a given class
are prone to risk from automobile accidents.
They commented on the extent to which heavy
machinery is used in various occupations and
how much exposure there is to dangerous sub-
stances.

Figure 21 displays the movements of premium
and classes during the underwriting review un-
der the collapsed new mapping. It shows that
the overall effect of the underwriting review was
to move a significant number of classes up to a
higher hazard group. The majority of the classes
that moved up one hazard group, 78 of them,
moved from Hazard Group 1 to 2, while 20 class-
es moved from Hazard Group 2 to 3, and 23
classes moved from Hazard Group 3 to 4.

6. Conclusion

Our approach to remapping the hazard groups
was founded on three key ideas.

1. Computing excess ratios by class
The data is too sparse to directly estimate ex-

cess ratios by both class and state. But coun-
trywide excess ratios can be computed by class
in the same way that hazard group excess ra-
tios are computed. This does not require sepa-
rate loss distributions for each class. The exist-
ing loss distributions by injury type can be used
along with the usual scale assumption. Thus all
that is needed is average costs per case by injury
type and injury type weights for each class.

2. Sorting classes based on excess ratios
Rather than using indirect variables to capture

the amorphous concept of “excess loss poten-
tial,” we used excess ratios directly because haz-
ard groups are indeed used to separate classes
based on excess ratios. Because a loss distribu-
tion is in fact characterized by its excess loss
function, this approach involves no loss of infor-
mation. By sorting classes based on excess ratios
we achieve the goal of sorting classes based on
their loss distributions as well.

3. Cluster analysis
Problems involving sorting objects into groups

are not unique to actuarial science. We were thus
able to make use of a large statistical literature
on cluster analysis. This provided an objective
criterion for determining the hazard groups as
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well as the optimal number of hazard groups.
Our approach to determining the seven hazard
groups was non-hierarchical because we wanted
the best seven group partition and because hypo-
thetical partitions into six hazard groups are not
relevant in this context.

As a result of our analysis the number of NCCI
hazard groups was increased from four to seven.
The distribution of both premium and classes is
much more even across the new hazard groups.
The highest hazard group is still relatively small.
The new seven hazard groups collapse naturally
and hierarchically into four hazard groups. Com-
paring the new four hazard groups with the old,
over two-thirds of the classes, with nearly 60%
of the premium, did not move at all. This stabil-
ity was largely a result of the fact that we used
the old hazard group as a complement of cred-
ibility and there were a large number of classes
with very little premium. Of the classes that did
move, the overwhelming majority moved down
one hazard group.
The new mapping was filed in mid-2006 to be

effective with the first rate or loss cost filing in
each state on or after January 1, 2007. The filing
(Item Filing B-1403) was approved prior to the
end of 2006 in all states in which NCCI files
rates or loss costs.
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