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Abstract 

Actnaries use development techniques to estimate fnture losses. Unfortunately, real data is 
subject to both random fluctuations and systematic distortions; only in textbooks can we expect 
smooth, stable development patterns. To correct for thii, developed losses are often weighted 
with a prior estimate to stabilize the results. 

This paper describes a method that applies credibiity directly to the loss development process. 
The approach appeals to our intuition, but it also has a sound theoretical base. While it requires 
little more data than the familiar Iirk ratio method and is almost as easy to use, it responds more 
gracefully to situations in which the data is thin and random fluctuations are severe. 

Introduction 

The method of least squares development is worth consider& whenever random year to year fluctu- 
ations in loss experience are sign&ant. Thii paper provides both a practical guide to its use and a 
discussion of its theoretical underpinnings. The goal is to provide actuaries with the familiarity and 
confidence they need to use the method in their work. Along the way we will uncover some related 
methods which may be used to evaluate losses for new or rapidly changing hues of business, and we 
will establish a conceptual framework that broadens our understanding of loss development. 

Least squares development was proposed by Sin, in his 1957 discussion1 of a paper by Tapley,2 
as a way to establish loss reserves for automobile bodily injury claims. More recently Clarke has used 
it to develop reinsurance losses3 Both Simon and Clarke justify the method on practical grounds-it 
works. DeVylder’ and Robbin apply credibility techniques to loss development, and though these 
authors approach the subject from a slightly &&rent direction, this paper owes much to their ideas. 

We will begin the paper with a simple example that shows how least squares development works. 
This will help the reader to get a feel for the method, and to compare it with more traditional 
approaches. We will then apply the method to several loss models; it often proves to be the right tool 
for the job, although a non-linear Bayesian development function is (in theory) preferable in some 
cases. The next part of the paper develops credibility formulas, similar to those of Biihlmann, which 
describe the best linear approximation to the Bayesian estimate in terms of the means and variauces of 
the loss and loss reporting distributions. In the final part we examine the implications of the method 
for practical work, warn of its limitations, and work out a complete example. 

* Sii L-J., PCAS 44 (1957). pp. 100410. 
2Tapky, D.A., YMonth of Loss Defkiency - for Automobile Bodily h@ry Loses Iatcluding Fksaws for 

Inamed Bat Not Ekpomd Claims,- PCAS 43 (1936), pp. 166-198, 
3 Clarke, HB., decent ikvebpments in braving for Losses in the Laadon kinsmaace Market,” PCAS 75 (1933). 

pp. 4-12.15-18. 
4 Devylder f., ‘%&nation of IBNR Claims by Credibility Theory,“‘~Inmrmace MatLnatics and Economics (hnuary 

lssa), pp. 3540. 
5 F&bbin, L, “A Bayesian Credibility Formub for IBNR Counts,” PCAS 73 (1986). pp. 129-161. 
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How the method works-an example 

The data in Table 1, while hypothetical, is typical of what one might face in developing k.ses for 
a small state. We will assume that the book of business is reasonably stable from year to year, 
and we will ignore inflation for the time being. Even so, the data is so thin that there are serious 
fluctuations-fluctuations that make it hard to apply the link ratio method. We are reluctant to give 

Incurred Loss 

AY 15 mo. 27 mo. 

1985 19,039 23,279 
1986 33,040 41,560 
1987 14,637 18,937 
1988 2,785 5,185 
1989 51,606 54,206 
1990 5,726 15,726 
i991 z = 40,490 y = ? 

Link Ratios 
15-27 

1.223 
1.258 
1.294 
1.862 
1.050 
2.746 

c 

Table 1: State AA, Line BB: Losses limited to $10,000 per occurrence. 

full credibility to the observed loss for 1991 (which is high already) by applying a large factor to it. 
On the other hand, we do not wish to ignore it altogether. 

Let’s take a step back. Focus for a moment upon the 1!5- and 27-month columns of the table. We 
wish to predict the 27-month value for the 1991 accident year. We may base our prediction (if we 
deem it appropriate) upon the E-month value, which is already known. 

Call the value in the G-month column z and the value in the 27-month column y. We wish to 
predict y based on 2. In this task we are guided by the (t, y) pairs from previous years. For any 
value of z-even if it had not been z = 40,490 as we see here-we would have determined in some 
way a corresponding y-value. Let t(z) be our estimate of y, given that we have already observqd 2. 

The link ratio method The traditional link ratio met+od estimates y as L(z) = CC, where c is a 
“selected link ratio”. The value of c is chosen after a review of the observed link ratios from previous 
years-as an average of several years, pexhaps, or as a weighted average. The choice is not easy in 
situations like this one, where the observed link ratios vary greatly from year to year. 

The budgeted loss method If the fluctuation is extreme, or if past data is not available, the value 
of z is sometimes ignored. That is, a value k is chosen, and y is estimated as L(z) = k no matter 
what z may happen to be. This method is known as the “budgeted loss” (or “pegged”) method 
because it fixes the forecast loss y without reference to the observed value 2. The estimate k may 
be chosen either as an average of y values from past years, or by multiplying earned premium for the 
year by an expected loss ratio, or by a number of other methods6 

The problem is depicted graphically in Figure 1. 7 The observed (2, y) values form a collection of 
points in the (2, y)-plane (Fiie la). The link ratio method fits a line through the origin to these 
points; as the observed value 2 increases, the estimate L(z) increases in direct proportion (Figure lb). 
The budgeted loss method, on the other hand, fits a horizontal line; as z increases, L(z) remains 
unchanged (Fire lc). 

‘F~instanrr,oneuurmultiplyearneduposraesbyantstimatedprae~~ Or,ifthedataisforaminor 
coverage which is sold in conjunction with a major covaage, one can multiply devehped lasss for the major coverage 
by a ratio deterhued from the expmkxe of preous yess. Diieralt techuiques may be appropliatc in diReralt 
situations. 

‘I See 3-C. Narvdl’s review of Clarke’s paper (PCAS 76 (lSSS), pp. 197-200.) Our approach here pa&l& Narvell’s. 
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Figure 1: Fitting a line to the loss data ftom Table l-a comparison of methods. 

The least squares method This method estimates L(z) by fitting a line to the points (a, y) using 
the method of least squares. The resulting line is not (except by coincidence) either a horizontal line 
or a line through the origin. Instead it is of the form L(z) = a + bz, where the constants a and b are 
determined by the least squares fit (Figure Id). 

Recall how the least squares coefficients a and b are determined. One 6rst computes the four 
average5 Z, Ii, 2, and Zy. One then sets 

b= 
ZjJ-‘Zg 
g-=2 

and a=J-bZ. 

For the 15-27 month devellpment under consideration, and for accident years 19854990, we have 
z = 21,139, 3 = 26,482, 22 = 7.287 x 108, and Zy = 8.326 x 108. This gives us b = 0.968 and 
a = 6,023, which implies that L(t) = 0.968 z + 6,023. For the 1991 accident year we estimate 
y = 0.968(40,490)+6,023 = 45,217. 

The least squares fit is flexible enough to include the link ratio and budgeted loss methods as 
special cases, as follows: 

l When z and y are totally uncorrelated, b will be zero, In this case the estimate is identical to a 
budgeted loss estimate. This makes sense; we should not make y dependent on 2 if we observe 
no relationship between the two. 

l It is also possible for a to be zerw-m ost obviously, when the observed link ratios y/z are all 
equal. In this case the estimate is identical to a link ratio estimate. 

This &xibility is an important advantage of the method. As we shall see below, the least squares 
method is at heart a credibiity weighting system in which the weights are determined by the properties 
of the loss and loss reporting distributions. It can thus adapt to the data at hand, giving more or less 
weight to the observed value of t as appropriate.s 

The Bornhuetter-Ferguson method A third special case is the Bornhuetter-Ferguson method,s 
which estimates ultimate loss as “expected unobserved loss plus actual observed loss”; that is, it sets 
L(t) = a + z for some. a. This method, like ours, seeks a compromise between the link ratio and 
budgeted loas methods. However, our approach allows 6, the coefficient of z, to vary as needed. 
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Bornhuetter and Ferguson always have b = l.=hich can be a real limitation; in particular, Salzmann 
warns against using the Bornhuetter-Ferguson method when losses develop downward. lo 

Potential problems in parameter estimation. Least squares development, like any method that 
uses observed values to estimate underlying parameters, is subject to parameter estimation errors. If 
there is a significant change in the nature of the loss experience, the use of unadjusted data can lead 
to serious errors. Furthermore, even when the book of business is stable, sampling error can iead to 
values for a and b which do not reflect its true character-l1 

In two cases the mismatch is obvious: if either a < 0 or b < 0. In the former case, our estimate 
of y will be negative for small values of z. In the latter case, our estimate of y gets smaller as z 
increases. The actuary should intervene when either of these situations arises: one might substitute 
the link ratio method if a < 0 and the budgeted loss method if b < 0. ’ c 

Hugh White’s question 

It is not hard to come up with a variety of loss development methods. The challenge is in deciding 
which method to use in a given situation. In his review of the Bornhuetter-Ferguson paper, Hugh 
White asks:12 

I offer the following problem. You are trying to establish the reserve for commerckl 
automobile bodily injury and the reported proportion of expected losses as of statement 
date for the current accident year period is 8% higher than it should be. Do you: 

1. Reduce the bulk reserve a corresponding amount (because you sense an acceleration 
in the rate of report); 

2. Leave the bulk reserve at the same percentage level of expected losses (because you 
sense a random fluctuation such as a large loss); or 

3. Increase the bulk reserve in proportion to the increase of actual reported over expected 
reported (because you don’t have 100% confidence in your “expected losses”)? 

Obviously, none of the three suggested “answers” is satisfactory without further extensive 
investigation, and yet, all are reasonable. While it is a gross over-simpliication of the 
question the reserve actuary will face, it still illustrates the limitations of the e&ctiveness 
of expected losses. 

We can identify the three “answer? described above as the budgeted loss method, the Bornhuetter- 
Ferguson method, and the link ratio method, respectively. These three options lie on a continuum-a 
continuum which also includes the many other options implied by the expression L(z) = a + bt. 

Let us try to answer Mr. White’s question-in which direction, and by how much, should we change 
our estimate of outstanding losses when reported losses are not what we expected? Each of the above 
options can be correct in the right circumstances. But how do we know which one to choose? The 
least squares fit makes sense intuitively, but is there any theoretical justification for its use? 

The credibility formulas which we shall develop in this paper are analytical tools that guide us 
in making these decisions. They lend credence to the least squares method, and they provide the 
understanding we need to make adjustments when probiems arise. Of course, no actuarial formula 
can serve as a substitute for the actuary him- or herself, or for a thorough knowledge of the book of 
business; these techniques should supplement, rather than replace, informed judgment. 

lo Sakmanu, FL& Esiimated &aWitics joot Losses and Loss Adjustment Erpensu (1964). p. 41. 
I* This pr&km is not unique b least squares development; the iink ratio method is subject to similar -IS. 
12Wkite, H-G., PCAS 60 (1973), p. 166. 
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Loss and loss reporting distributions- using models to test the method __ 

Although the above example is instructive, we need more than experimental evidence if we wish to 
evaluate the method’s theoretical soundness. The fit in Figure Id looks good. but we may have been 
lucky. We must know the form of the underlying distributions if we wish to prove that the method 
works. 

For this reason we will test the method using various theoretical models. Our first example 
is designed for simplicity and not realism. Later examples use the Poisson and negative binomial 
distributions to model claim counts. If the method handles these latter ‘aistributions successfully, we 
can apply it with some confidence to real-lie problems. 

A simple model Our ilrst model is designed to clarify the techniques we plan to use. Suppose 

l The number of claims incurred each year is a random variable .Y which is either 0 or 1 with 
equal probability. 

l If there is a claim, there is a 5OYo chance that it will be reported by year end. 

(Many of our examples involve claim counts. The techniques also apply to incurred losses or claim 
severity, but the exposition is simplest for claim counts. Note that z and y are integers in this case.) 

Question: If x claims have been reported by year end, what is the expected number outstanding? 
Let the random variable X represent the number of claims (either 0 or 1) reported by year end. 

If Q(z) represents the expected total number of claims, and R(z) the expected number of claims 
outstanding, both given that X = x, we have 

% - Q(x) = E(YIX = z), 

R(x) = E(Y - XIX = x) 
= Q(x) -x. 

We begin with the case x = 0. Bayes’ Theorem tells us13 that 

P(Y = 01x = 0) = 
P(Y = O)P(X = OIY = 0) 

P(Y = O)P(X = OIY = 0) + P(Y = l)P(X = O/Y = 1) 

= 
WW) 

(1/2)(1) + w2w2) 

= 2/3, and similarly 

P(Y = 11x =O) = l/3. 

This means 
Q(0) = E(YJX = 0) = (0)(2/3)-t- (1)(1/3) = l/3; 

that is, if no claims have been reported by year end, the expected total number of claims is l/3. When 
z=l,ourjobiseveneasier. Smceinthiicaseymustalsohavebeen1,wemusthaveQ(1)=1. 
Putting the two together, we have Q(z) = (2/3)x + l/3 where x = 0 or 1, and R(z) = -x/3+ l/3. 

Return now to the graphical viewpoint (Figure 2.) There are but three possibilities for the point 
(x, TJ): it will be (0,O) half the time, (0,l) one quarter of the time, and (1,l) one quarter of the time. 
The best (Bayesian) estimate of y, given x, is a line with slope b = 2/3 and y-intercept a = l/3. 

13The student may wish to r&r to Henog, TN.. An introduction to Bayesian credibiIi@ and related topics (CAS, 
198.5) for an excellent intr0ductiOn t0 aayesian probability. 
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Figure 2: The simple model . . . 

Since we have neither a = 0, b = 0, nor b = 1, this relationship is compatible with neither the 
link ratio method, the budgeted loss method, nor the Bomhuetter-Ferguson method. It is, however, 
compatible with the least squares method; with enough observations, the least squares estimator will 
approach Q(z) - l4 

A Poisson-Binomial example We now consider a more realistic example. Suppose claim counts 
for a small book of business have the following properties: 

l The number of claims incurred each year is a random variable Y which is Poisson distributed 
with mean and variance 4. 

l Any given ciaim has a 50% chance of being reported by year end. 

l The chance of any claim being reported by year end is independent of the reporting of any other 
claim, and is also independent of the number of claims incurred. 

A sample data set, generated at random, is shown in Table 2. Even though each year’s experience is 
taken from the same distribution, the observed values differ greatly- 

At year end At ultimate Link ratio 

1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

1 1.00 
- 9 4.50 

2 2.00 
2 - 
7 1.17 
5 2.50 
3 3.00 
Y ? 

Table 2: Poisson-Binomial example with p = 4 and d = l/2. 

Here X is a bmomiai random variable with parameters (y, l/2). This means X is produced by a 
Poisson-Bmomial mixed process-a Poisson process which produces y followed by a binomial process 
with y as the 8rst parameter. 

Again we ask for the expected number of outstanding claims, given that z claims have been 
reported by year end. We will solve this problem in two ways: the long way and the short way. We 

“l%isexaqAealsodanomtrates an often ova-looked fact: althougll the least 
afimdionofypassestluoughtheorigin,thelineupnsing 

z3qumslinex=y/2cxp~zas 
yzsafuactionofxdoesnot. 
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will also consider the link ratio method, but as we shall see, it does not offer an entirely satisfactory 
solution. 

The long way (Bayesian analysis) Bayes’ Theorem tells us that, for y > t, 

P(Y = y/x = 2) = P(Y = y)P(X = XlY = y) 
xi P(Y = i)P(X = ZiY = i) 

(4w4/y!)(2-y c) j . 
= zz(4ie-4/i!)(2-i Q) . 

2Y’Ze’2 

= (y-x)!’ . . 

It follows that 

1 
= x+2 

(where we use our knowledge of the Poisson distribution with mean 2 to evaluate the expressions in 
square brackets.) The expected number of outstanding claims is thus R(x) = Q(x) - z = 2. This 
may seem surprisii, but it is true in general: when the claim distribution is Poisson and the claim 
reporting distribution is binomial, the expected number of outstanding claims does uot depend on the 
number already reported. 

The short way Once we know that R(z) = 2, the special properties of the Poisson distribution 
lead us to a quicker derivation. Consider the Poisson process that generates Y to be composed of 
the sum of two independent Poisson processes with mean 2: one process generating claims that will 
be reported by year end, and the other generating claims that will not be reported by year end. 
Begardless of the result of the first process, the expected value of the result of the second process is 2 ; 
this is R(x). 

Unfortunately, this shortcut will not work for other distributions; in most cases we will have to 
return to the method that we used above. 

The link ratio method Let us now apply the fdar link ratio method to the above problem. To 
use the link ratio method, one selects a ratio c and uses it to obtain estimates 

E(YIX = x) a cx, 
E(Y - xjx = x) M (c - 1)z. 

Since there is no c for which cz z x + 2, this method cannot possibly produce the correct Bayesiau 
estimate Q(z) for every value of z. However, there are several options for c. 

option 1. If we wish to obtain an unbiased estimate, we must ask that E((c- 1)X) = 2. This imphes 
that c = 1+ 2/E(X) = 2. 

Option 2. Instead we can minimize the mean squared error (MSE) of our estimate. Thii is equivalent 
to the problem of miniiig E(((c - 1)X - 2)2) = (c - 1)2 V&(X) + ((c - l),??(X) - 2)’ = 
SC2 - 2Oc+ 18. The minimum is found at c = S/3. Unfortunately, as we can see by comparison 
with Option 1, this estimate is biased low. The biased estimate can have a lower MSE than the 
unbiased estimate because its variance is lower. 
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Option 3. One commonly used method uses E(Y/X) ( or au estimate thereof) for the iiik ratio-l5 
This presents problems when the data is thii, as iu Table 2, since Y/X is not defined where 
X = 0. If we throw these cases out and compute instead c = 

w/x ix # 0) = (l- P(X = o))-‘gP(x = x)y = =) 
X=1 

= (l-e -2)-l g y2 = z.2 -* 

= 

e 2.153, 
7. 

we obtain an estimate which is biased high, despite the exclusion of cases in which x = 0. 

Option 4. A better approach (described by Salzmann16 as the “iceberg technique”) selects 

d = E(X/Y jY # 0) = l/2, c= d-l = 2. 

This is the same value of c that produced the unbiased estimate of Option 1; iu this example, 
it is clearly superior to Option 3. 

While some values of c are better than others, no link ratio estimate is as good as the Bayesian 
estimate Q(x). For c = 5/3 the MSE is 10/3, for the unbiased estimate c = 2 it is 4, and for 
c = 2.153 it is approximately 4.752. In comparison, for Q(x) (which is also unbiased) the MSE is 2. 

The general Poisson-Binomial case If we generalize our example to the situation where Y is 
Poisson distributed with mean p, and where any given claim has probability d of being reported by 
year end, the methods described above yield 

Q(x) = x+/41 -4, 
R(z) = jf(l-qd). 

The expected number of outstanding claims is simply the total number of claims originally expected 
times the expected percentage outstanding; as noted above, it does not depend upon the number 
of claims already reported. We conclude that the Bornhuetter-Ferguson estimate-and hence Mr. 
White’s second answer-is optimal in the Poisson-Bion&l case. 

The Negative Biiornial-Binomial case Although the Poisson distribution is often used to model 
claim counts, the negative binomial distribution is a better choice in some situations.17 Let us 
therefore consider the situation where the distribution of Y is negative bmomial with parameters 
(r, p) , and where any given claim has probabiity d of being reported by year end. Using the techniques 
of Bayesian analysis described above, we compute 

P(Y = y/x = 2) = 
[r+:-‘)p’(l - PP] [of71 - Q-=] 

LL [ c+i-r)p’(l - p)i] [ c)d=(l - ,i-t] 

(x+f)+(Y-x)-- 
Y--z > 

[(I - d)(l - p)jy-*[l - (1 - d)(l - P)]=+~, 

-This method seamstobebasedontheheuristic -@ion that E(Y) can be appmxhatd 
The~~~isthBtthe~~MliaMesXandY/Xarroftcnnegativtly~ 

by E(X)E(Y/X) - 
hpracticc,sothat E(Y) < 

E(X)E(Y/X). This issue is dkassed by J.N. Stanard in “A Sii~n TM of pe Erro~ofLo6sResrrve 
%thationTecbniques,~ PCAS72 (1965),p.124. 

=op. c&p. 31. 
“S%fOr~&Dropldn,L-~ %~Considerations~ A~~bikRatiPgSyskmsU~I&i~i&&&i~ 

Records”,PCAS 46 (1959),pp.165-176. 
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which is a negative binomial distribution in y iVith parameters (T + P. 1 - ( 1 - d)( 1 - p)) , shifted by t . 
This implies that 

R(x) = (1-4(1-P) (x+r) 
l-(l-d)(l-p) * 

Except in the trivial case where d = 1, this is an increasing linear function in 1: _ Take for example 
P = 4 and d = p = l/Z, so that E(Y) = 4 and Var(Y) = 8. Here R(z) = +/3 + 4/3 and 
Q(t) = (4/3)2 + 4/3. Thii does not correspond exactly to any’of. Mr. White’s answers-while 
an increase in reported claims does lead to an increase in our estimate of outstanding claims, the 
relationship is not proportional. Since a = b = 4/3, neither the link ratio method, the budgeted loss 
method, nor the Bornhuetter-Ferguson method gives the correct estimate. 

How can we make intuitive sense of this result? The negative binomial distribution has .-ore 
variance than the Poisson distribution with the same mean; as a result, we have less confidence in 
our prior estimate of expected losses. Given a value of z that is larger than predicted, we are thus 
relatively more willing to increase our estimated ultimate claim count than we were when Y was 
Poisson; this implies a larger b. 

The tied prior case Suppose the random variable Y is not random at all; that is, there is some 
value k such that Y is sure to equal k (perhaps we are seliing single-premium whole Iife policies.) In 
this case, Q(z) = k for any value of x (regardless of the distribution of X.) The expected number of 
outstanding claims is then R(t) = k - x . 

This situation corresponds perfectly to White’s first answer-we decrease our estimate of outstand- 
ing claims by an amount equal to the increase in reported claims, leaving the total incurred count for 
the year unchanged. 

The fixed reporting case For the other extreme, suppose there is a number d # 0 such that the 
percentage of claims reported by year end is always d; that is, P(X = dyjY = y) is 1 for aI1 y. In 
this case Q(t) = d-l z and the expected number of outstanding cIaims is R(z) = (d-l - 1)~. 

Thii is our old friend the link ratio method, which corresponds perfectly to White’s third answer.18 

A non-linear example In each of the examples considered above, the Bayesian estimate Q(z) is 
linear in CC, and is thus of the form a + bx. This is not always true. The foIlowing example, which 
illustrates a pragmatic approach, leads to a non-liiear Q(t). 

Company management believes the number of claims Y for the year is uniformly distributed on 
(2,3,4,5, @-that is, P(Y = y) = l/5 for y = 2,3,4,5,6. (Here E(Y) = 4 and Vat(Y) = 2.) Any 
given claim has a 50% chance of being reported by year end. Armed with these assumptions, we 
proceed to compute Q(x). The calcuiations (Table 3) correspond exactly to those in our first model. 

In this example R(z) = Q(x) - t is not linear. It is also not monotonic; it is generaIIy decreasing, 
but it increases slightly between z = 1 and z = 2. It makes sense that R(x) should decrease; since 
Y has less variance than a Poisson distribution with the same mean, we have more confidence in our 
prior estimate of expected losses, and we are relatively less willing to revise our estimated ultimate 
claim count based on what has been reported so far. 

This example corresponds somewhat to White’s thiid answer, although not as much as the fixed 
prior example discussed above. It also models real-lie pressures in a convincing, if simplistic, way-as 
long as the losses remain within a “comfort range”, the analysis is permitted to take its course, but 
when the indication strays outside the bounds, there is a tendency to ignore it. The variance of Y here 
seems unreasonably low; it probably reflects management psychology better than it reflects reality. 

The method of Bayes&ndsvelopment Despite the difficulties involved, the technique used in 
this section has considerable practical applicability. If we are willing to estimate the distributions of 

18 Note, however, that this model is extra&y unrealistic: the behavior described couid hardfy occur in real life unless 
the claims department werexx&iIlgtheclaimsup! 
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Y 

2= 

2= 

- 
2 3 4 3 6 

pw =zandY=y) 

16/320 8/320 4/320 2/320 l/320 
321320 241320 X/320 lOj320 61320 
16/320 241320 24/320 20/320 S/320 

S/320 X/320 20/320 201320 
41320 lo/320 S/320 

2/320 61320 
l/320 

P(Y = ylX = 2) 

16/31 S/31 4131 2/31 l/31 
32/88 24/88 X/88 10/88 6/88 
16/99 24199 24199 20/99 15/99 

SF-4 16/64 2Of64 20164 
4129 10/29 15/29 

2/8 6/8 
l/l 

Total 

311320 
88/320 
991320 

. 641320 
29J320 
S/320 
l/320 

-Q(x) R(z) c 

83131 = 2.677 2.677 
266188 =2.909 1.909 
390199 = 3.939 1.939 
308/64=4.812 1.812 
X6/29 = 5.379 1.379 

46/8 = 5.750 0.770 
6/l= 6.000 0.000 

Table 3: Y uniform on {2,3,4,5,6} and d = l/2. 

Y and X]Y , we can produce Bayesian estimates of ultimate claim costs. Even if the equations cannot 
be solved exactly, it is not hard to app roximate the answer to any desired degree of accuracy. We can 
also test the sensitivity of the answer to changes in the distributions chosen. 

The l&ear approximation (Bayesian credibility) 

The tial example in the previous section brings us to a fork in the road. While it is certainly possible 
for the actuary to compute a pure Bayesian estimate Q based on assumed distributions for Y and for 
X]Y , such a procedure requires a good deal of knowledge ahout the loss and loss reporting processes- 
knowledge we may not be willing to assume. For this reason we shall now consider a linear estimate 
that is based on the concept of Bayesian credibiility. 

Bay&an credibiity as described by BiMmanr~~~ uses not the Bayesian estimate itself, but the 
best linear approximation to it. The approximation, though less accurate than the pure Bayesian 
estimate, is simpler to compute, easier to understand and explain, and less dependent upon the 
underlying distributions. As we study the application of Bay&an credibility to loss development, our 
approach will follow the path laid down by BUmann. 

Let Q(z) be the Bayesian estimate discussed in the previous section, and let L be the best 
zy approximation to Q; that is, L is the linear function that minim& Ex([Q(X) - L(X)12). If 

z =a+bz,wemustminimize 
Ex([QW - a - bX12). 

The foIlowing is a standard statistical resuIt:20 

Development Formula 1 Given random vatiables Y describing uttimafe losses and X destibing 
reported losses, let Q(x) = E(YIX = x). Then ihe best linear approzimaiion to Q (in the sense --- 

lsBiihlnann, H, “Exgmim RatingaadCrediity". The ASTINBdletin4 (1967),pp.l99-207. 
20 See for insbnce Meya~, G., ihport 01 t.h Cdihilitp Svbcommitteet Development and Testircg of Empi&al Baga 

Cd~biZitp Procedwes for Cla.ssijhttioa R&making, ISO (1960), p. 61. 
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described above) is the function 

L(z) = (z - E(X)) c~u~~~~’ + E(Y). 

This equation agrees with our expectations; if t = E(X), we have L(z) = E(Y), but if z differs 
from E(X), our estimate differs by a proportional amount. This formula provides us with an answer 
to Mr. White’s question, at least if we are willing to make do with thelinear approximation: 

c 
1. If Cov(X,Y) < Vat-(X), a large reported amount should lead to a decrease in the reserve. 

2. If Cov(X,Y) = Var(X), a change in the reported amount should noi eflect the reserve. - v 
3. If Coo(X, Y) > Var(X) , a large reported amount should lead to an increase in the reserve. 

We conclude that each of the three answers is correct in the right circumstances- 

Practical application of the first formula-least-squares development 

If we had hoped by using Bayesian credibility to avoid making assumptions about the distributions of 
Y and X, we may be disillusioned to see terms involving these random variables in our formula. This 
concern is not entirely justified; if we have a series of past years for which we are willing to assume a 
common Y and X, we can estimate the means, variance, and covariance from the data. Taking the 
simple-minded approach, we estimate Cuv(X, Y) by xr-yy, Var(X) by x2-r2, E(X) by I?, 
and E(Y) by P. This gives us - -- L(z) = (2 - px;- ;r + ‘L. 

Turning back to the data in Table 2, we have z = 13/7, ‘i7 = 29/7, m = Z/7, and x2 = 47/i’. 
Thus b = 0.969, Q = 2.344, and L(z) 5t: 0.969 z + 2.344. Of course, this is only an approximation to 
the true Bayesian estimate Q(z) = z + 2; sampling error makes it unlikely that we will reproduce Q 
exactly. Even so, the MSE of our estimate is app roximately S-081-better than the best link ratio 
estimate and not much worse than the true Bayesian estimate. 

As the reader has no doubt recognized, this is the least squares procedure that was introduced at 
the start of the paper. If it were not for sampling error, the least squares method would give us the 
best linear approximation to the Bayesian estimate. Thii is true regardless of the distributions of X 
and Y. 

Note, however, that even if the method is working perfectly, the least squares fit may not yield a 
high correlation. The points (z, y) can be expected to lie above and below the fitted line y = L(z) 
because VUQ$ IX) is not zero. 

A simulation test of least-squares development The fit that we obtained in the previous section 
using data from Table 2 is remarkably good; we will not always do so well. To test the effectiveness 
of this method, and to compare it to the traditional link ratio method, we will use a simnlation test. 

For each trial, seven y-values and corresponding z-values were generated at random using the 
distributions used for Table 2. Two estimates were then produced: one exactly as outlined above, and 
one using the link ratio method with c = y/x. The MSE was computed for each. 

The results are shown in Table 4. This comparison is “fair”: neither method uses prior assumptions 
about the underiying distributions, since both work solely with the observed data. As we see, when 
the data fluctuates as much as it does here, either method can go astray. Even so, the least squares 
method produces a superior estimate in the great majority of cases. In addition, some of its poorer 
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Trial 5 d MSE Link Ratio MSE 

1 0.167 4.095 3.573 2.214 5.133 
2 2.6'35 1.079 12.395 3.444 '3 II._ '96 
3 0.308 3.462 2.964 3.000 14.000 
4 1.362 1.447 2.291 1.895 3.645 
5 1.500 1.429 2.684 2.214 5.133 
6 -0.175 4.450 4.771 l&6 3.407 
7 0.750 1.643 2.860 1.571 3.388 
8 1.356 1.422 2.271 1.941 3.785 
9 0.750 2.750 2.188 1.882 3.612 - 

10 1.500 1.500 2.750 3.000 14.000 c 
11 0.130 3.815 3.521 2.800 11.040 
12 1.574 -0.704 5.079 1.385 3.811 
13 0.939. 0.970 3.333 1.462 3.586 
14 0.464 4.773 5.465 1.800 3.440 
15 0.957 1.787 2.092 2.000 4.000 
16 1.138 1.319 2.202 1.600 3.360 
17 0.667 1.476 3.639 2.143 4.694 
18 1.542 0.708 2.630 1.923 3.728 . 
19 1.958 0.500 4.010 2.250 5.375 
20 0.537 2.870 2.432 . 2.364 6.248 

Average 1.001 2.040 3.658 2.122 6.384 

Table 4: Comparison of the least squares method with the link ratio method. 

performances (trials 6 and 12) can be identified by the appearance of a negative coefficient and 
judgmentally weeded out as suggested previously. This correction would further increase the accuracy 
of this method. 

Note too that the link ratio method is biased. The average link ratio of 2.122 in Table 4 is higher 
than the unbiased value of 2.000. Thii is no accident; we can prove using a power series approximation 
that the expected link ratio produced by thii method is about 2.085. The least squares method may 
have some sampling bias as well in the determination of t and b , but the bias appears to be signi6cantly 
less than for the link ratio method. 

when is least-squares development appropriate? The careful reader will have noticed the 
caveat put forth above: the least squares fit makes sense “if we have a series of years for which we 
arewi&ngtoassumeacommonYandX.” For what real-life book of business can it truly be said 
that a single pair of distributions is appropriate for all years? And what good is a method that relies 
on such an unlikely assumption? 

Rom a practical point of view the issue is one of relativity: if year to year changes are due largely 
to systematic shifts in the book of business, other methods may be more appropriate.21 On the other 
hand, if random chance is the primary cause of fluctuations, then the present method commends 
it&f to our attention. And it is in this very case that the actuary is in most need of an objective 
approach; one can correct for systematic distortion, but the temptation when facing variabiity like 
that in Table 2 is to throw up one’s hands in despair and ignore the data entirely. 

Furthermore, one can adjust for known or suspected distortions before using least squares devel- 
opment. If we are studying incurred loss data, a correction for inflation is almost certainly advisable; 
we should fit our line only after putting the years on a constant-dollar basis. Similarly, if the book of 

=1~An~tdixussionofthetypesafappraachesone~tdrrinthaesitpationsappearsin&rguist,J.~,~d 
shaman, RE., Cos lherve Adecluacy Testiag A Co~vc. +tanatic Appmad~” PCAS 64 (1978). p. 10. 
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business expands, but does not change in character, we can divide each year’s losses by an exposure 
measure to eliminate the resulting distortion2” Other adjustments may be made using techniques 
such as those discussed in the Berquist-Sherman paper cited above. 

A credibility form of the development formula 

In this section we consider an alternative form of Development Formula 1 that provides us with 
additional insight. Following Biihlmann, we seek to express L in terms.of 

Ey( Vur(Xpq) = “Expected value of the process variance” (EVPV) and 
Vizry(E(X~Y)) = “Variance of the hypotheticaI mean” ( VaM) 

(basicaNy, EVPV represents variability resulting from the loss reporting process whiIe VlZtf repre- 
sents variability resulting from the ioss occurrence process.) Bayesian credibility as it is customarily 
presented uses one or more observations of a random variable to predict future values of that same 
variable.= Here our task is slightly different: we wish to estimate the value of the random variable 
Y by observing X, a differently distributed, though reiated, random variable. This leads to a for- 
mula that differs slightly in form from the usual formula for Bayesian credibility, and that requires an 
additional hypothesis. The proof is given in the Appendix. 

Development FormuIa 2 Stlppose there is a real number d # 0 such thuf E(X[Y = y) = dy for 
all y- Then the best linear approzimation fo Q (in the sense described previously) is the function 

z - E(X) 
U=) = d vl?Mvzv*v + E(Y) 

= 2; + (1 - Z)E(Y), 

where 
Z= 

VHM 
VEM + EVPV’ 

This formula views L as a credibiity weighting of the link ratio estimate z/d with the budgeted 
loss estimate E(Y). If EVPV = 0 we give f&I weight to the link ratio estimate, as in the fixed 
reporting example discussed above. If VBM = 0, as in the fixed prior example, we set L(z) = E(Y). 
But when there is uncertainty about both the reporting pattern and the prior estimate, we use a 
weighted average, with weights EVPV and V.M .24 

Let us apply Formula 2 to some of the other examples discussed above. 

l For our simple modei with at most one c&m per year, the process variance is 0 when Y = 0 
and l/4 when Y = 1. (FWaII that a binomial process with parameters (n, d) has mean nd and 
variance nd(1 - d) .) Thus EVPV = (l/2) 0 + (l/2)(1/4) = l/8. The hypothetiCa mean is 0 
when Y = 0 and l/2 when Y = 1, so VHM = l/16. Thus 2 = VBM/( VBM + EVPV) = l/3 
and L(t) = (1/3)(2/d) + (2/3)E(Y) = (2/3)z + l/3. Of course, this agrees with our previous 
estimate since L(z) must equaI Q(z) whenever Q is linear. 

l In the Poisson-Binomial case with parameters p and d, we have EVPV = E(yd(1 - d)) = 
pd(l-d) and VHM = V&d) = pd? This gives us 2 = p&/(/d + pd(l - cl)) = d and 
L(z)=z+~(l-d). 

22ITweassumetbatthenearbPsiaesis~~nith~old,bothE(X) and E(Y) willin a-ease in propoeion 
to expomre, while Vat(X) and Cov(X,Y) willin- inpropotiontothesquareoftbeexposum. This impI& we 
can divide by exposms to adjust data for use in Development FormuIa 1. 

33 To be pmise, we slmuld speak of a seqprence of ipdepepdant identicaSly distributed, random mriables. 
34~+~mightdaimthat ~ETMMSUIB our distnast of de underwriter while EVPV -0urdistwtof 

theciaimsdepartmmt! 
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l More generally, we have 2 3 d whenever the least, squares estimate coincides with the Born- 
huetter-Ferguson estimate. This makes sense in that 2 should increase from 0 to 1 over time, 
but there is no reason to expect that it will always do so in exact proportion to d. 25 

l fn the Negative Binomial-Binomial case with parameters (r,p) and d, we have p = E(Y) = 
~(1 - p)/p. Thus EVPV = pd(l - d) while VIfM = Var(Yd) = #/p. In this case, Z = 
d/(d+ ~(1 - d)) and L(z) = z/(d + p(1 - d)) + pp(l - d)/(d+p(l - d)). Since ViW is larger 
here than in the Poisson-Binomial case, while EVPV is the same,-2 is larger, and the link ratio 
estimate receives more weight. 4 

2= Q(Z) L(z) . . 0 2.677 2.667 
1 2.909 3.333 
2 3.939 4.000 
3 4.812 4.667 
4 5.379 5.333 
5 5.750 6.000 
6 6.000 6.667 

Table 5: Linear approximation: Y uniform on {2,3,4,5,6} and d = l/2. 

l Next consider the non-linear example worked out in Table 3. We have d = l/2 and EVPV = 
E(Y)d(l - d) = 1. With VHM = Vur(Yd) = l/2, we obtain 2 = (l/2)/(3/2) = l/3 and 
L(s) = (2/3)+ + 8/3. Since VBM is smaller than in the Poisson-Binomial case, while EVP V is 
the same, 2 is smaller, and the link ratio estimate receives less weight. Here L does not equal 
Q, but it is the best linear approximation to it. As Table 5 demonstrates, the fit is reasonably 
good considering the rather artii5.5a.l distribution of Y . 

l Finally, let us return to the example of Table 1, with b = 0.968, a = 6,023, Z = 21,139, and 
ji = 26,482. If we set d = Z/a = 0.798, then 2 = bd = 0.773. The least squares estimate 
which we obtained for this problem can thus be seen to assign a weight of 0.773 to the link ratio 
estimate (with link ratio d-l = 1.253) and a weight of 0.227 to the budgeted loss estimate. 

A differe.nt application of Bayesian credibility The underlying assumption of the least squares 
method-that year to year changes in loss and loss reporting distributions are small, or can be cor- 
rected for-will sometimes fail. When thii happens we can apply Bayesian credibility methods by 
estimating the terms EVPV and VBM in Development Formula 2. 

Consider an example. We wish to develop personal automobile losses for a state which has just 
instituted a strict verbal tort threshold. Suppose 

l Expected losses under the old system would have been $20 million, but industry studies estimate 
that the reform should save 40% in the first year. 

l In the past about 62% of incurred losses have been reported by year end, but under no fault 
this figure is expected to rise to 75%. 

We are thus expecting an ultimate loss of $12 million, with $9 million reported by year end. 

2sI would like to thank Dr. FLobbii for point.& out to me that the &mlnxetti-Fw estimate is a weighted 
average of the link ratio and budgeted loss estimates. 
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When the year-end data is available, howmer, the reported bs~ is only S6 million. This presents 
us with a dilemma. The savings resulting from the reform may be greater than expected; if so, we 
should reduce our estimate of ultimate loss. On the other hand, there may be temporary reporting 
delays as claim adjusters become familiar with the new coverages. In this case, it would be a mistake 
to reduce our estimate. What do we do while we await better information? 

Neither the least squares method nor the link ratio method makes sense here. Both methods 
assume that past experience is a reliable guide to the future. Thisassumption is not justified when 
there has been a major change in coverage. On the other hand, ou;,doubts about the estimated 
savings make the budgeted loss estimate uncertain. 

The Bay&an credibility method provides us with a reasonable solution to this problem. To use 
this method we must estimate the means and standard deviationsof twp random variables: the lo_ss Y 
and the reporting ratio X/Y .26 

We already have estimates of the means: E(Y) is $12 million and E(X/Y) is 75%. Suppose we 
estimate u(Y) to be $3 million and u(X/Y) to be 14%.27 

We can then compute 

VHM = Vizr(0.75 Y) = (0.75 x $3 milIion)2 = 5.06, 
EVPV = E((O.l4)2Y2) = (O.l4)2[Var(Y) + E(Y)7 = 3.00. 

Thus 2 = 5.06/(5.06 + 3.00) = 0.628 and L(z) = O-628(2/0.75) + (1 - O-628)($12 million) = 
$9.5 million. 

The estimate is larger than the link ratio estimate $6 million/(O.75) = $8 million and smaller than 
the budgeted loss estimate $12 million. This reflects our relative uncertainty concerning these two 
estimates. It is also slightly larger than the Bornhuetter-Ferguson estimate, which would be S9 million, 
&cause b = O-628/0.75 is less than 1. This implies that we have placed slightly less confidence in the 
low reported loss (or, equivalently, more confidence in the high prior estimate) than if we had used 
the Bornhuetter-Ferguson method. 

To use this method we must be willing to select the means and standard deviations. Fortunately, 
the answer is not extremely sensitive to changes in these selections. For instance, if we change a(XIY) 
to 10% in the example above, L(z) becomes $8.9 million. If instead we change a(Y) to $2 million, 
L(z) becomes $10.3 million. 

The caseload effect 

In Development Formula 2, we assumed that the expected number of claims reported is proportional 
to the number of claims incurred. Thii might be seen as a flaw in our analysis; since a claim is more 
likely to be reported in a timely fashion when the caseload is low, we expect the development ratio 
E(XIY = y)/y to be not a constant but a decreasing function of y. 

Fortunately, a constant development ratio is not essential for a credibility-based development 
formula. In this section we make the more general assumption that EfXlY = y) = dy i- 20, where 
d # 0 (one can presume that both d and zo are positive.) This gives a development ratio of d+ q/y, 
which does indeed decrease as y gets larger. On the other hand, it gives us E(XIY = 0) = 20 > 0. 
This may perhaps be undesirable, but no one who has had dealings with a real-iife claims department 
is likely to be shocked by this assumption. When x0 = 0 we obtain Development Formula 2 as a 
special case. The proof is given in the Appendix. 

26 We assume for the purpc~~ of this example &at the mean and standard deviation of X/Y do not depend on Y _ 
This may not be strictly true, butit& likely to work we3 enough in practice. 

2f It is wise to validate sax& assumpt~ns by d&cussing the situation witb underwriters, daims officers, and wy 
nranagmnnr. 
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Development Formula 3 Suppose there are?eai numbers d # 0 and xo such that E(X(Y = y) = 
dy + zo for all y- Then the function L defined above can be written as 

L(2) = 27 + (1 - Z)E(Y), 

where 
Z= 

VHM : 
VHM + EVPV’ . 

We conclude that the least squares method can make sense even in cases where the development 
ratio varies with the caseload. It may be impossible in practice to determine the values of z. and of 
d, but we do not need these values to apply the least squares method. - c 

A final example 

In this section we will look at a fully worked out example based on real data that has been disguised 
slightly. Suppose we are given earned premium and incurred losses for a small book of business. 

I?Eported Loss ($000) 
AY EP (SOOO) 12 mo. 24 mo. 36 mo. 48 mo. 60 mo. 

1985 4260 102 104 209 650 847 
1986 5563 0 543 1309 2443 3003 
1987 7777 412 2310 3083 3358 4099 
1988 8871 219 763 1637 1423 
1989 10465 969 4090 3801 
1990 11986 0 3467 
1991 12873 932 

Table 6: State CC, Line DD: Total limits losses. 

One could use link ratios to develop these losses, but the least squares method is the better choice 
if we believe that the changes in the book of business are accurately reflected in the earned premiums. 
Because of the significant grotih in volume, we will divide the losses by the premium to put the 
accident years on a more nearly equal basis. This gives us a triangle of reported loss ratios: 

Rmorted Loss Ratio 

AY 12 mo. 24 mo. 36 mo. 48 mo. 60 mo. 

1985 0.024 0.024 0.049 0.153 0.199 
1986 0.000 0.098 0.235 0.439 0.540 
1987 0.053 0.297 0.396 0.432 0.527 
1988 0.025 0.086 0.185 0.160 
1989 0.093 0.391 0.363 
1990 0.000 0.289 
1991 0.072 --- 

Table 7: &ported loss ratios. 
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Unlike the data in Table 1, this data includes accident years at many different maturities. Following .___ 
Clarke, we begin by developing the most mature years to ultimate. We then use the information 
obtained from those years to develop successively less mature years, ending with the 1991 year. 

Losses may continue to develop after sixty months; to assume development stops at. the end of 
the triangle is to assume the world ends at the horizon. For this line of business, we believe that 
losses will increase by an additional 10% from sixty months to ultimate. Based on this assumption, 
we estimate the ultimate loss ratios for accident years 1985, 1986, and. 1987 to be 0.219, 0.594, and 
0.580 respectively. . 

We next turn our attention to the 1988 year. We shall estimate the ultimate loss ratio for this 
year by looking at the relationship between the reported loss ratio at 48 months (our z value) ryld the 
ultimate loss ratio (our y value.) We base this relationship upon the observed 48month and prokcted 
ultimate values for accident yeas 1985-1987. For these three years we have I = 0.341, 3 = 0.464, 
p= O.l34,andzy= 0.181 (it will be convenient to display these values directly beneath the 48month 
column of the triangle.) This gives us b = 1.301, Q = 0.020, and y = 0.020 + (1.301)(0.160) = 0.229 
as the ultimate loss ratio for 1988. 

ReDorted Loss Ratio 
12 mo. 24 mo. 36 mo. 48 mo. 60 mo. Ultimate 

1985 0.024 0.024 0.049 0.153 0.199 0.219 
1986 0.000 0.098 0.235 0.439 0.540 0.594 
1987 0.053 0.297 0.396 0.432 0.527 0.580 
1988 0.025 0.086 0.185 0.160 0.229 
1989 0.093 0.391 0.363 
1990 0.000 0.289 
1991 0.072 

f 0.341 
B 0.464 
2 0.134 
zy 0.181 

b 1.301 
a 0.020 

; 
1.360 
0.957 

Table 8: Estimation of the ultimate loss ratio for 1988. 

We can also compute some supplemental values that, while not essential to our analysis, help us 
to understand the results. Our estimated ultimate loss ratio for 1988 is the weighted average of a link 
ratio estimate and a budgeted loss estimate. We have c = g/Z = 1.360, giving a link ratio estimate 
ofy=cz= (1.360)(0.160) = 0.218. For the budgeted loss estimate we have y = jj = 0.464. The 
credibility assigned to the link ratio estimate is Z = b/c = 0.957, giving a least squares estimate of 
y = (0.957)(0.218) + (0.043)(0.464) = 0.229. We expect a high credibility for the link ratio estimate 
here; at this stage of maturity, only a srnail portion of the variance in z arises from the reporting 
process- In fact, it is not uncommon for a to be negative in this part of the triangle; when thii 
happens we set Z = I and use a simple link ratio estimate, ignoring the budgeted loss estimate. 

We move next to the 1989 accident year, this time using the relationship between the reported 
loss ratio at 36 months and that at ultimate. We can now base the computation of a and b upon the 
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values for 1985-1988, building on the work done in the previous step. When the ultimate loss ratio 
for 1989 has been determined, we continue working backwards to determine those for 1990 and 1991. 

.-.. 

AY 

1985 
1986 
1987 
1988 
1989 
1990 
1991 

Reported Loss Ratio 
12 mo. 24 mo. 36 mo. 48 ma. 60 mo. Ultimate 

0.024 0.024 0.049 0.153 0.199 0.219 
0.000 0.098 0.235 0 -439 0.540 0.594 
0.053 0.297 0.396 0.432 0.527 0.580 
0.025 0.086 0.185 0.160 0.229 - 
0.093 0.391 0.363 0.576 - 
0.000 0.289 0.557 
0.072 0.197 

55 0.032 0.179 0.216 0.341 
Ii 0.456 0.439 0.405 0.464 

2 0.002 0.052 0.062 0.134 
zy 0.016 0.096 0.106 0.181 

b 1.027 0.884 1.162 1.301 
a 0.422 0.281 0.154 0.020 
i 14.078 0.073 . 0.361 2.452 0.620 1.873 0.957 1.360 

Table 9: Estimation of ultimate loss ratios. 

In this example 2 increases steadily as the accident years mature and reported losses become more 
credible. The value of c decreases, as-one would expect. SiiarIy, the value of a (which is what 
our estimate of ultimate losses would have been if no losses had been reported) decreases over time. 
These patterns provide a way to cross-check the work; data fluctuations can lead to unusual results, 
and one should not believe the analysis if it makes no sense. 

In the final step we apply the ultimate loss ratios to earned premium to obtain ultimate losses. 

Ultimate 
AY EP Loss Patio 

1985 4260 0.219 
1986 5563 0.594 
1987 7777 0.580 
1988 8871 0.229 
1989 10465 0.576 
1990 11986 0.537 
1991 12873 0.497 

Lass ($000) 

932 
3303 
4509 
2030 
6028 

Table 10: Computation of ultimate losses. 

The procedure used in this section is easy to use and requires only commonly available data. It 
is less fragile than the link ratio method, as this example demonstrates-a link ratio analysis of thii 
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data would require a great deal of judgment in selecting the factors. In addition, we can present the 
analysis in a convenient tabular form which allows us to examine the assumptions that lie beneath it. 

Conch&on 
-. 

Least squares development as presented by Simon and Clarke is not only practically useful, but also 
justifiable on theoretical grounds. When random year to year fluctuations in loss experience are 
severe, it tends to produce more reasonable estimates of ultimate loss. than the more familiar link 
ratio method, and it does so without requiring a great deal of additional data. 

Least squares development is by no means a panacea. Like any method, it works best when it is 
used with a clear understanding of its limitations, and in conjunction with other appropriate met_hods. 
When there are significant exposure changes or other shifts in the loss history, one can go astray unless 
one makes the necessary corrections. Even under favorable circumstances the method is subject to 
the type of sampling errors that are always present when one estimates parameters from observed 
data. 

Nevertheless, least squares development is a method that deserves a place in every actuary’s 
toolbox. At my own company we now use thii method in certain analysis situations; it can be most 
helpful in developing losses for small states, or for lines that are subject to serious fluctuations. This 
is especially true if one can use earned premium to adjust losses from past years to a level consistent 
with the current year. 

Finally, the ideas presented here provide us with a conceptual framework that also helps us to 
understand more traditional development methods, and to see the relationships between them. Such 
an understanding must be our goal as we seek to deal intelligently with reserving and ratemaking 
iSSUeS. 

Appendix-Proof of Development Formulas 2 and 3 

Proof of Development Fo77nul4 2: As usual, Vw(Xj = 5% + EVPV. Since E(XIY = y) = dy by 
hypothesis, it follows that VHM = Vary(E(XIY = y)) = Var(dY) = ds Var(Y). This means that 
Cov(X,Y) = Cov(Ey(X1Y),Y) = Cov(dY,Y) = dVar(Y) = VHM/d. 

The result now follows from Development Formula 1. We have 

L(z) = (z- E(X)f;($..) + E(Y) 

= (z - my)) vg;y;;pv + E(Y) 

= 25 + (1 - Z)E(Y), 

where 
Z= 

VHM 
VHM + EVPV’ 

Proof of Development Fomzul4 3: If we let W = X - 20, then W and X share a common EVPV 
and VBM _ We can thus apply Development Formula 2 to W and Y to prove the formula. 
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or 

How to Increase Reserve Variability with Less Data 

David R. Clark 
American Re-Insurance 

2003 Reserves Call Paper Program 

Abstract 

An application of Maximum Likelihood Estimation (MLE) theory is demonstrated for 

modeling the distribution of loss development based on data available in the common 

triangle format. This model is used to estimate future loss emerge nce, and the variability 

around that estimate. The value of using an exposure base to supplement the data in a 

development triangle is demonstrated as a means of reducing variability. Practical issues 

concerning estimation error and extrapolation are also discussed. 
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Introduction 

Many papers have been written on the topic of  statistical modeling of the loss reserving 

process. The present paper will focus on one such model, making use of the theory of 

maximum likelihood estimation (MLE) along with the common Loss Development 

Factor and Cape Cod techniques. After a review of the underlying theory, the bulk of this 

paper is devoted to a practical example showing how to make use of  the techniques and 

how to interpret the output. 

Before beginning a discussion of a formal model of loss reserving, it is worth re-stating 

the objectives in creating such a model. 

The primary objective is to provide a tool that describes the loss emergence (either 

reporting or payment) phenomenon in simple mathematical terms as a guide to selecting 

amounts for carried reserves. Given the complexity of  the insurance business, it should 

never be expected that a model will replace a knowledgeable analyst, but the model can 

become one key indication to assist them in selecting the reserve. 

A secondary objective is to provide a means of estimating the range of possible outcomes 

around the "expected" reserve. The range of reserves is due to both random "process" 

variance, and the uncertainty in the estimate of  the expected value. 

From these objectives, we see that a statistical loss reserving model has two key 

elements: 

• The expected amount of  loss to emerge in some time period 

• The distribution of actual emergence around the expected value 

These two elements of  our model will be described in detail in the first two sections of 

this paper. The full paper is outlined as follows: 
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Section 1 : 

Section 2: 

Section 3: 

Section 4: 

Section 5: 

Expected Loss Emergence 

The Distribution of Actual Loss Emergence and Maximum 

Likelihood 

Key Assumptions of the Model 

A Practical Example 

Comments and Conclusion 

The practical example includes a demonstration of the reduction in variability possible 

from the use of an exposure base in the Cape Cod reserving method. Extensions of the 

model for estimating variability of  the prospective loss projection or of  discounted 

reserves are discussed more briefly. 

Most of  the material presented in this paper makes use of maximum likelihood theory 

that has already been described more rigorously elsewhere. The mathematics presented 

here is sufficient for the reader to reproduce the calculations in the examples given, but 

the focus will be on practical issues rather than on the statistical theory itself. 
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Section 1: Expected Loss Emergence 

Our model will estimate the expected amount of loss to emerge based on a) an estimate of 

the ultimate loss by year, and b) an estimate of the pattern of loss emergence. 

For the expected emergence pattern, we need a pattern that moves from 0 to 100% as 

time moves from 0 to 8. For our model, we will assume that this pattern is described 

using the form of a cumulative distribution function I (CDF), since a library of such 

curves is readily available. 

G(x) = 1/LDF x = cumulative % reported (or paid) as of time x 

100.0% 

9o.o% 

5 80.0% 
,8 7o.o% 

ao.o% 
 o.o% 

a. 40.0% 

.~ 30.0% 

"~ 20.0% 
10.0% 

, . , ,  0.0% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

A Y  A g e  in Mon ths ,  x 

We will assume that the time index "x" represents the time from the "average" accident 

date to the evaluation date. The details for approximating different exposure periods 

(e.g., accident year versus policy year) are given in Appendix B. 

For convenience, the model will include two familiar curve forms: Weibull and 

Loglogistic. Each of these curve forms can be parameterized with a scale 0 and a shape 

co ("warp"). The Loglogistic curve is familiar to many actuaries under the name "inverse 

t We are using the formofthe distribution function, but do not mean to imply any probabilistic model. The 
paper by Weissner [9] makes the report lag itself the random variable. By contrast, the loss dollars will be 
the random variable in our application. 

45 



power" (see Sherman 2 [8]), and will  be considered the benchmark result. The Weibull  

will  generally provide a smaller "tail" factor than the Loglogistic. 

The Loglogistic curve has the form: 

O(xlo~,0) - x~ 
x ~ + 0  ~ 

L D F  x = l+O'° .x  ,~ 

The Weibull curve has the form: 

G(xlco ,O)  = 1 - e x p ( - ( x / O )  '°) 

In using these curve forms, we are assuming that the ~ loss emergence will  move 

from 0% to 100% in a strictly increasing pattern. The model will  still work i f  some 

actual points show decreasing losses, but i f  there is real expected negative development 

(e.g., lines of  business with significant salvage recoveries) then a different model should 

be used. 

There are several advantages to using parameterized curves to describe the expected 

emergence pattern. First, the estimation problem is simplified because we only need to 

estimate the two parameters. Second, we can use data that is not strictly from a triangle 

with evenly spaced evaluation dates - such as the frequent case in which the latest 

diagonal is only nine months from the second latest diagonal. Third, the final indicated 

pattern is a smooth curve and does not follow every random movement in the historical 

age-to-age factors. 

The next step in estimating the amount of  loss emergence by period is to apply the 

emergence pattern G(x), to an estimate of  the ultimate loss by accident year. 

Our model will  base the estimate of  the ultimate loss by year on one of  two methods: 

either the LDF or the Cape Cod method. The LDF method assumes that the ultimate loss 

2 Sherman actually applies the inverse power curve to the link ratios between ages. Our model will apply 
this curve to the age-to-ultimate pattern. 
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amonnt in each accident year is independent of the losses in other years. The Cape Cod 

method assumes that there is a known relationship between the amount of ultimate loss 

expected in each of the years in the historical period, and that this relationship is 

identified by an exposure base. The exposure base is usually onlevel premium, but can be 

any other index (such as sales or payroll), which is reasonably assumed to be proportional 

to expected loss. 

The expected loss for a given period will be denoted: 

/-/Ar;~,y = expected incremental loss dollars in accident year A Y 

between ages x and y 

Then the two methods for the expected loss emergence are: 

Method # 1: "Cape Cod" 

U ...... = Premium Ar .ELR .[G(y Ito,0 ) -  G(xl to,0)] 

Three parameters: ELR, to, 0 

Method #2: "LDF" 

PAr .... = UZTAr[a(ylto,o)-a(xlto, O)] 

n+2 Parameters: n Accident Years (one ULT for each AY) + to, 0 

While both of these methods are available for use in estimating reserves, Method # 1 will 

generally be preferred. Because we are working with data summarized into annual 

blocks as a development triangle, there will be relatively few data points included in the 
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model (one data point for each "cell" in the triangle). There is a real problem with 

overparameterization when the LDF method is used. 

For example, i f  we have a triangle for ten accident years then we have provided the 

model with 55 data points. Fhe Cape Cod method requires estimation of  3 parameters, 

but the LDF method requires estimation of 12 parameters. 

The Cape Cod method may have somewhat higher process variance estimated, but will 

usually produce a significantly smaller estimation error. This is the value of  the 

information in the exposure base provided by the user 3. In short: the more information 

that we can give to the model, the smaller the reserve variability due to estimation error. 

The fact that variance can be reduced by incorporating more information into a reserve 

analysis is, of  course, the point of our ironic subtitle: How to Increase Reserve Variability 

with Less Data. The point is obvious, but also easy to overlook. The reduction in 

variability is important even to those who do not explicitly calculate reserve ranges 

because it still guides us towards better estimation methods: lower variance implies a 

better reserve estimate. 

3 Halliwell [2] provides additional arguments for the use of an exposure index. See especially pages 441 - 
443. 
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Section 2: The Distribution of Actual Loss Emergence and Maximum Likelihood 

Having defined the model for the expected loss emergence, we need to estimate the 

"best" parameters for that model and, as a secondary goal, estimate the variance around 

the expected value. Both of these steps will be accomplished making use of maximum 

likelihood theory. 

The variance will be estimated in two pieces: process variance (the "random" amount) 

and parameter variance (the uncertainty in our estimator). 

2.1 Process Variance 

The curve G(x[ to,0) represents the exoected loss emergence pattern. The actual loss 

emergence will have a distribution around this expectation. 

We,assume that the loss in any period has a constant ratio of variance/mean4: 

Variance= t72 1 ~(CAr~--I.tar~) 2 
Mean n -  p ~,t" -I.t--~r j 

where p = # of parameters 

Car,t = actual incremental loss emergence 

#arj = expected incremental loss emergence 

(this is recognized as being equivalent to a chi-square error term) 

For estimating the parameters of our model, we will further assume that the actual 

incremental loss emergence "c" follows an over-dispersed Poisson distribution. That is, 

the loss dollars will be a Poisson random variable times a scaling factor equal to a 2 . 

4 This assumption will be tested by analysis of residuals in our example. 
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Standard Poisson: Pr(x) - E[x]  = Var (x )  = 2. 
x! 

.~ c ' °2  . e  2 
Actual Loss: c = x.cr2 Pr(c) E[c] = R.<r 2 = lz 

( c l e f 2 ) !  

Var(c)  = fl , .cr 4 = ~ . G  2 

The "over-dispersed Poisson" sounds strange when it is first encountered, but it quickly 

proves to have some key advantages. First, inclusion of  the scaling factor allows us to 

match the first and second moments of  any distribution, which gives the model a high 

degree of  flexibility. Second, maximum likelihood estimation exactly produces the LDF 

and Cape Cod estimates of  ultimate, so the results can be presented in a format familiar to 

reserving actuaries. 

The fact that the distribution of ultimate reserves is approximated by a discretized curve 

should not be cause for concern. The scale factor tr 2 is generally small compared to the 

mean, so little precision is lost. Also, the use of  a discrete distribution allows for a mass 

point at zero, representing the cases in which no change in loss is seen in a given 

development increment: 

Finally, we should remember that this maximum likelihood method is intended to 

produce the mean and variance of  the distribution of  reserves. Having estimated those 

two numbers, we are still free to switch to a different distribution form when the results 

are used in other applications. 

2.2  T h e L i k e l i h o o d F u n c t i o n - F i n d i n g t h e " B e s t " P a r a m e t e r s  

The likelihood function is: 

Likelihood= 1-I Pr(c~) 
J 

c J c F  2 - 2  

= 1"-[, (c~/c~2)! (c~/cy2)! 
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This can be maximized using the logarithm of the likelihood function: 

LogLikelihood = ~, (c  i/0"2) . ln(I.t,./o'2)-Iai/0 .2 -ln((c,/o"2)!) 
i 

Which is equivalent to maximizing: 

e = ~c , . l n (~ t , ) - /~ ,  if cr 2 is assumed to be known 

Maximum likelihood estimators of  the parameters are found by setting the first 

derivatives of  the loglikelihood function g equal to zero: 

be be Og 
~ELR FJO 7~o9 

For "Model # h  Cape Cod", the loglikelihood function becomes: 

Z(c , .  ~(ELR. ?,. [G(x,)-G(x,_, )D-ELR. ~. [G(x,)- G(x,_, )]) 
iS  

where c,.~ = actual loss in accident year i ,  development period t 

= Premium for accident year i 

xt_ ~ = beginning age for development period t 

x, = ending age for development period t 

io x, olxl)l I 
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ZC~,I 
For ~------Le = 0, E L R  = i., 

~eLR Z e,. [O(x,)- C(x,_,)] 
i¢ 

The MLE estimate for ELR is therefore equivalent to the "Cape Cod" Ultimate. It can be 

set based on 0 and to, and so reduce the problem to be solved to two parameters instead 

of three. 

For "Model #2: LDF", the loglikelihood function becomes: 

e -- Z(c,.,. h,(VLr,. [G(x, ) -  Gfx,_, )])- vLr,. [Gfx, ) -  G(x,_, )1) 
i¢ 

c, ) 
~uLr, ~--L-~ = ~(~-EG(x,)-G(x,_,)I 

3 t  ~ ' c i :  
t For ~ut---f, = o, utT, Z[o(x,)_c(x,_,)] 

t 

The MLE estimate for each ULT~ is therefore equivalent to the "LDF Ultimate ''5. It can 

also be set based on 0 and to, and to again reduce the problem to be solved to two 

parameters instead of n + 2. 

A final comment worth noting is that the maximum loglikelihood function never takes 

the logarithm of  the actual incremental development c~.  The model will  work even i f  

some of  these amounts are zero or negative. 

s See Mack [5], Appendix A, for a further discussion of this relationship. 
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2.3 Parameter  Variance 6 

The second step is to f'md the variance in the estimate of  the parameters. This is done 

based on the Rao-Cramer approximation, using the second derivative information matrix 

I ,  and is commonly called the "Delta Method" (c.f. Klugman, et al [3], page 67). 

The second derivative information matrix for the "Cape Cod Method" is 3x3 and assumes 

the same ELR for all accident years: 

1~ 3 2 ey., 

• _ 32 ty., 0 2 g.y, bzt~, 

y•b2 ty ,  ~ b2gy, 

~b2gy,, --b2ey, 

The covariance matrix is calculated using the inverse of  the Information matrix: 

Z = 
"Var(ELR) Cov(ELR, oJ) Cov(ELR, O)] 
Cov(oJ, ELR) Var(o~) Cov(¢o,O) [ 
Cov(O, ELR) Cov(0,o9) Var(O) J 

The scale factor a 2 is again estimated as above: 

n -  p 7~., #~r~ 

_> - 0  .2 . i  -a 

The second derivative matrix for "LDF Method" is (n+2)x(n+2) and assumes that there is 

a different ULT for each accident year. The information matrix, I ,  is given as: 

6 To be precise, we are calculating the variance in the ~ o f  the parameter; the parameter itself does 
not have any variance. Nonetheless, we will retain the term "parameter variance" as shorthand. 
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•0Zgl,, [ y~  02el+, __ O+e,,, ] 
o ... o i,+~L+,+++ + ~ '  

g- O+g2,, 1 O+G, ~ O+Q,, 
0 z.....-TW:'. ~2 "'" 0 ' , aL]Lr~ [Z,  awr~ao)  , auLr~a~ 

I 

I 

~2p ~2g 02p 
• .  + v ~ , i t  v - n . t  n A  : 

0++'.+ v '  0++++,' ... y_+ ++e,. ,  _a+++,, _a+.++., 
vt O0) ., 

I; a2e',' Y a2e2' ' E a~e"' E £ ~  - a 2 e "  
, a~autr,  , a~aUtT~ , a~OULT. .,, azaco ~ 

The covariance matrix Z is again calculated using the inverse of  the Information matrix, 

but for the LDF Method this matrix is larger. 

2.4 The Variance of the Reserves 

The final step is to estimate the variance in the reserves. The variance is broken into two 

pieces: the process variances and the estimation error (loosely "parameter variance"). For 

an estimate of loss reserves R for a given period I-Gr:+,y, or group of periods ~/zAr;x,y, 

the process variance is given by: 

2 Process Variance of  R : ~ • YdzAr:~,y 

The estimation error makes use of  the covariance matrix E calculated above: 
t 

Parameter Variance of  R: Var(E[R]) : (OR) • E. (OR) 

where 

i I n X 
~OR aR aR\ ,[ +n ] aR OR, 

OR = \577-~,5~-,5~+~/) or OR = ,\15~+7/~- f '5-0-'5~+.~/ 
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The future reserve R,  under the Cape Cod method is given by: 

Reserve: R = EPrerrf i tani .ELR.(G(yi)-G(x,))  

The derivatives needed are then easily calculated: 

OR 

O ELR 
l ~pl~l~unli.(a(yi)la(xi)) 

-R : 2 ~ . m  ELRf ?G<y') 0G(x,)] 
~0 ' t 0o 0o j 

oR : E r ~  .ELR.(.~°<y') ~G(x,)] 
5-d ' t o<~ ~ j 

For the LDF Method, let Premitma i = 1 and ELR = ULT~. 

All of  the mathematics needed for the estimate of  the process and parameter variance is 

provided in Appendix A. For the two curve forms used, all of the derivatives are 

calculated analytically, without the need for numerical approximations. 
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Section 3: Key Assumptions of this Model 

• Incremental losses are independent and identically distributed (iid) 

The assumption that all observed points are independent and identically distributed is 

the famous "iid" of classical statistics. In introductory textbooks this is often 

illustrated by the problem of estimating the proportion of red and black balls in an urn 

based on having "randomly" selected a sample from the urn. The "independence" 

assumption is that the balls are shaken up after each draw, so that we do not always 

pull out the same ball each time. The "identically distributed" assumption is that we 

are always taking the sample from the same urn. 

The "independence" assumption in the reserving context is that one period does not 

affect the surrounding periods. This is a tenuous assumption but will be tested using 

residual analysis. There may in fact be positive correlation if all periods are equally 

impacted by a change in loss inflation. There may also be negative correlation if a 

large settlement in one period replaces a stream of payments in later periods. 

The "identically distributed" assumption is also difficult to justify on first principles. 

We are assuming that the emergence pattern is the same for all accident years; which 

is clearly a gross simplification from even a rudimentary understanding of insurance 

phenomenon. Different risks and mix of business would have been written in each 

historical period, and subject to different claims handling and settlement strategies. 

Nonetheless, a parsimonious model requires this simplification. 

• The Variance/Mean Scale Parameter a 2 is fixed and known 

In rigorous maximum likelihood theory, the variance/mean scale parameter o" 2 

should be estimated simultaneously with the other model parameters, and the variance 

around its estimate included in our covariance matrix. 
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Unfortunately, including the scale parameter in the curve-fitting procedure leads to 

mathematics that quickly becomes intractable. Treating the scale parameter as fixed 

and known is an approximation made for convenience in the calculation, and the 

results are sometimes called "quasi-likelihood estimators". McCullough & Nelder [7] 

give support for the approximation that we are using. 

In effect, we are ignoring the variance on the variance. 

In classical statistics, we usually relax this assumption (e.g., in hypothesis testing) by 

using the Student-T distribution instead of the Normal distribution. Rodney Kreps' 

paper [4] provides additional discussion on how reserve ranges could increase when 

this additional source of variability is considered. 

"o Variance estimates are based on an approximation to the Rao-Cramer lower bound. 

The estimate of variance based on the information matrix is only exact when we are 

using linear functions. In the case of non-linear functions, including our model, the 

variance estimate is a Rao-Cramer lower bound. 

Technically, the Rao-Cramer lower bound is based on the true expected values of the 

second derivative matrix. Since we are using approximations that plug in the 

estimated values of the parameters, the resuk is sometimes called the "observed" 

information matrix rather than the "expected" information matrix. Again, this is a 

limitation common to many statistical models and is due to the fact that we do not 

know the true parameters. 
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All of the key assumptions listed above need to be kept in mind by the user of a 

stochastic reserving model. In general, they imply that there is potential for more 

variability in future loss emergence than the model itself produces. 

Such limitations should not lead the user, or any of the recipients of the output, to 

disregard the results. We simply want to be clear about what sources of variability we 

are able to measure and what sources cannot be measured. That is a distinction that 

should not be lost. 
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Section 4: A Practical Example 

4.1 The LDF Method 

For the first part of  this example, we will use the "LDF Method" (referred to above as 

"Method 2"). The improvements in the model by moving to the Cape Cod method will 

be apparent as the numbers are calculated. 

The triangle used in this example is taken from the 1993 Thomas Mack paper [6]. The 

accident years have been added to make the display appear more familiar. 

12 24 36 48 60 72 84 96 108 120 

1991 357,848 1,124,788 1,735,330 2,182,708 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463 
1992 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 
1993 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 
1994 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 
1995 443,160 1.136,350 2,128,333 2,897,821 3,402,672 3,873,311 
1996 396,132 1,333,217 2,180,715 2,985,752 3,691,712 
1997 440,832 1,288,463 2,419,861 3,483,130 
1998 359,480 1,421,128 2,864,498 
1999 376,686 1,363,294 
2000 344,014 

The incremental triangle, calculated by taking differences between cells in each accident 

year, is given by: 

12 24 36 48 60 72 84 

1991 357,848 766,940 610,542 447.378 562,888 574,398 146,342 
1992 352,118 884,021 933,894 1,183,289 445.745 320,996 527,804 
1993 290.507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 
1994 310,608 1,108,250 776,189 1,562,400 272,482 352.053 206,286 
1995 443,160 693,190 991,983 769,488 504,851 470,639 
1996 396,132 937,085 847,498 805,037 705,960 
1997 440,832 847,631 1,131,398 1,063,269 
1998 359.480 1,061,648 1,443,370 
1999 376,686 986,608 
2000 344,014 

96 108 120 

139,650 227,229 67,948 
266,172 425,046 
280,405 

This incremental triangle is actually better arranged as a table of  values, rather than in the 

familiar triangular format (see Table 1.1). In the tabular format, the column labeled 

"Increment" is the value that we will be approximating with the expression 
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...... = ULT,,,. [GO, I o~,O)-G(= I~o,O)]. 

The x and y values are the "From" and "To" dates. 

Before calculating the fitted values, it is worth showing the flexibility in this format. 

First, if  we have only the latest three evaluations of  the triangle, we can still use this 

method directly. 

The original triangle becomes: 

12 24 36 48 60 72 84 96 108 120 

1991 3,606,286 3,833,515 3,901,463 
1992 4,647,867 4,914,039 5,339,085 
1993 4,132,918 4,628,910 4,909,315 
1994 4,029,929 4,381,982 4,588,268 
1995 2,897,821 3,402,672 3,873,311 
1996 2,180,715 2,985,752 3,691,712 
1997 1,288,463 2,419,861 3,483,130 
1998 359,480 1,421,128 2,864,498 
1999 376,686 1,363,294 
2000 344,014 

and the incremental triangle is: 

1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 

12 24 36 48 60 72 84 

2,897,821 
2,180,715 805,037 

1,288,463 1,131,398 1,063,269 
359.480 1,061,648 1,443.370 
376.686 988.668 
344,014 

4,029,929 
504,851 
705,960 

4,647.867 
4,132,918 495,992 

352,053 206.286 
470,639 

96 108 120 

3,606,286 227,229 67.948 
266,172 425,046 
280,405 

The tabular format then collapses from 55 rows down to 27 rows, as shown in Table 1.2. 

Another common difficulty in working with development triangles is the use of  irregular 

evaluation periods. For example, we may have accident years evaluated at each year-end 
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- producing ages 12, 24, 36, etc - but the most recent diagonal is only available as of  the 

end of  the third quarter (ages 9, 21, 33, etc). This is put into the tabular format by simply 

changing the evaluation age fields ("Diag Age") as shown in Table 1.3. 

Returning to the original triangle, we calculate the fitted values for a set of  parameters 

ULTAr , 09, 0 and the MLE term to be maximized. 

Fitted Value: /1At .... = ULTAr. [G(y I co,O) - G(x l co, 0)] 

MLE Term: 

In Table 1.4, these numbers are shown as additional columns. These values also have the 

desired unbiased property that the sum of the actual incremental dollars cAr~x.y equals the 

sum of the fitted values /~Ar~x.y. 

The fitted parameters for the Loglogistic growth curve are: 

co 1.434294 

0 48.6249 

The fitted parameters are found by iteration, which can easily be accomplished in the 

statistics capabilities of  most software packages. Once the data has been arranged in the 

tabular format, the curve- fitting can even be done in a spreadsheet. 

The scale parameter (r 2 is also easily calculated. We recall that the form of this 

calculation is the same as a Chi-Square statistic, with 43 degrees of  freedom (55 data 

points minus 12 parameters). The resulting (r ~ is 65,029. This scale factor may be 

thought of  as the-size of  the discrete intervals for the over-dispersed Poisson, but is better 

thought of simply as the process variance-to-mean ratio. As such, we can calculate the 
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process variance of the total reserve, or any sub-segment of the reserve, by just 

multiplying by 65,029. 

The scale factor o" 2 is also useful for a review of the model residuals (error terms). 

Normalized Residual: rAr;~,y 
~ . ;t ...... 

The residuals can be plotted in various ways in order to test the assumptions in the model. 

The graph below shows the residuals plotted against the increment of loss emergence. 

We would hope that the residuals Would be randomly scattered around the zero line for 

all of the ages, and that the amount of variability would be roughly constant. The graph 

below tells us that the curve form is perhaps not perfect for the early 12 and 24 points, 

but the pattern is not enough to reject the model outright. 

-~ 4 

_13 
1 2  

._~ o 

i -2 
z . 3  

i • il i * 11 I I  ~ # 

• II II i I I 
v v ' ~  

i 

0 12 24 36 48 60 72 84 96 108 120 

Ineun'mnt Age 

A second residual plot of the residuals against the expected loss in each increment (the 

fitted values) is shown below. This graph is useful as a check on the assumption that the 

variance/mean ratio is constant. If the variance/mean ratio were not constant, then we 

would expect to see the residuals much closer to the zero line at one end of the graph. 
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The residuals can also be plotted against the accident year, the calendar year of  

emergence (to test diagonal effects), or any other variable of  interest. The desired 

outcome is always that the residuals appear to be randomly scattered around the zero line. 

Any noticeable pattern or autocorrela tion is an indication that the some of the model 

assumptions are incorrect. 

Having solved for the parameters o~ and 0, and the derived ultimates by year, we can 

estimate the needed reserves. 

Accident Reported Age at Average Growth Fitted U l t ima te  Estimated 
Year Losses 12/31/2000 Age (x) Function LDF Losses Resewes 

1991 3,901,463 120 114 77.24% 1.2946 5,050,867 1,149,404 
1992 5,339,085 108 102 74,32% 1.3456 7,184,079 1,844,994 
1 9 9 3  4,909,315 96 90 70,75% 1.4135 6,939,399 2,030,084 
1994 4,588,268 84 78 66,32% 1.5077 6,917,862 2,329,594 
1995 3,873,311 72 66 60,78% 1.6452 6,372,348 2,499,037 
1996 3,691,712 60 54 53.75% 1.8604 6,867,980 3,176,268 
1997 3,483,130 46 42 44.77% 2.2338 7,760,515 4,297,385 
1998 2,864,498 36 30 33.34% 2.9991 8,590,793 5,726,295 
1999 1,363,294 24 18 19,38% 5.1593 7,033,659 5,670,365 
2000 344,014 12 6 4.74% 21.1073 7,261,205 6,917,191 

Total 34,358,090 69,998,708 35,640,618 

From this initial calculation, we can quickly see the impact of  the extrapolated "tail" 

factor. Our loss development data only includes ten years of  development (out to age 120 

months), but the growth curve extrapolates the losses to full ultimate. From this data, the 

Loglogistic curve estimates that only 77.24% of ultimate loss has emerged as of ten 

years, 
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Extrapolation should always be used cautiously. For practical purposes, we  may want to 

rely on the extrapolation only out to some finite point - an additional ten years say. 

Accident Reported Age at Average Growth Fitted Truncated Losses Estimated 
Year Losses "i2/3112000 Age (x) Function LDF LDF at 240 mo Reserves 

240 234 90.50% 1.1050 10000 
1991 3,901,463 120 114 77.24% 1.2946 1.1716 4,570,810 669,347 
1 9 9 2  5,339,085 108 192 74.32% 1.3456 1.2177 6,501,273 1,162,188 
1 9 9 3  4,909,315 96 90 70.75% 1,4135 1.2792 6,279,848 1,370,533 
1 9 9 4  4,588,268 84 78 66.32% 15077 1 3644 6,260,356 1,672,090 
1995 3,873,311 72 66 6078% 1.6452 1.4888 5,766,692 1,893,381 
1 9 9 6  3,691,712 60 54 5375% 1.8604 1.6836 6,215,217 2,523,595 
1 9 9 7  3,483,130 48 42 44,77% 2.2338 2,0215 7,041,021 3,557,891 
1 9 9 8  2,864,498 36 30 3334% 29991 27140 7,774,286 4,909,788 
1999 1,363,294 24 18 19 38% 5.1593 4.6689 6,365,149 5,001,855 
2000 344,014 12 6 4.74% 21 .1073  191012 6,571,068 6.227,054 

T o t a l  34,358,090 83,345,723 28.987,633 

As noted above, the process variance for the estimated reserve o f  28,987,633 is found by 

multiplying by the variance-to-mean ratio o f  65,029. The process standard deviation 

around our reserve is therefore 1,372,966 for a coefficient o f  variation (C V = SD/mean) 

o f  about 4.7%. 

As an alternative to truncating the tail factor at a selected point, such as age 240, we  

could make use o f  a growth curve that typically has a lighter "tail". The mathematics for 

the WeibuIl curve is provided for this purpose. An example including a fit o f  the Weibull 

curve is shown below. 

Accident Reported Age at Average Growth W e i b u E I  Uitlmate Estimated 
Year Losses 12/31/2000 Age (x) Function LDF Losses Reserves 

1991 3,901,463 120 114 95.91% 1,0525 4,106,189 204,726 
1 9 9 2  5,339,085 108 102 9254% 1,0806 5,769,409 430,324 
1 9 9 3  4,909,315 96 90 89.00% 1.1237 5,516,376 807,061 
1 9 9 4  4,888,268 84 78 84.01% 1.1904 5,461,745 873,477 
1995 3,873,311 72 66 7714% 1.2963 5,020,847 1,147,536 
1996 3,691,712 60 54 6795% 1.4717 5,433,242 1,741,530 
1997 3,483,136 48 42 5601% 1.7853 6,218,284 2,735,154 
1 9 9 8  2,864,498 36 30 41.19% 2.4277 6,954,204 4,089,706 
1999 1,363,294 24 18 23.94% 41764 5,693,693 4,330,399 
2000 344,014 12 6 6.37% 15.6937 5,398,863 5,054,849 

T o t a l  34,358,090 55,572,851 21,214,761 
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The fitted Weibull parameters 0 and to are 48.88453 and 1.296906, respectively. The 

lower "tail" factor of  1.0525 (instead of 1.2946 for the Loglogistic) may be more in line 

with the actuary's expectation for casualty business. The difference between the two 

curve forms also highlights the danger in relying on a purely mechanical extrapolation 

formula. The selection of a truncation point is an effective way of reducing the reliance 

on the extrapolation when the thicker-tailed Loglogistic is used. 

The next step is our estimate of  the parameter variance. 

The parameter variance calculation is more involved than what was needed for process 

variance. As discussed in Section 2.3, we need to first evaluate the Information Matrix, 

which contains the second derivatives with respect to all of  the model parameters, and so 

is a 12x12 matrix. The mathematics for all of  these calculations is given in Appendix A, 

and is not difficult to program in most sottware. For purposes of  this example, we will 

simply show the resulting variances: 

Accident Repor ted  Estimated Process Parameter Total 
Year Losses Resen,~ Std Dev CV Std Dev CV Std Dev CV 

1991 3,901,463 669,347 208,631 31.2% 158,088 23.6% 261,761 39.1% 
1 9 9 2  5,339,085 1,162,188 274,911 23.7% 257,205 22.1% 376,471 32.4% 
1 9 9 3  4,909,315 1,370,533 298,537 21.8% 298,628 21.8% 422,260 30.8% 
1 9 9 4  4,588,268 1,672,090 329,749 19.7% 356.827 21.3% 485,860 29.1% 
1995 3,873,311 1,893,381 350,891 18.5% 401,416 21.2% 533,160 28.2% 
1 9 9 6  3 , 6 9 1 . 7 1 2  2,523,505 405,(F34 16.1% 518,226 20.5% 657,768 26.1% 
1 9 9 7  3 , 4 8 3 , 1 3 0  3,557,891 481,005 13.5% 704,523 19.8% 853,064 24.0% 
1 9 9 8  2 . 8 6 4 , 4 9 8  4,909,788 565,047 11.5% 968,806 1 9 . 7 %  1,121,545 22.8% 
1 9 9 9  1 , 3 6 3 . 2 9 4  5,001,855 570,321 1 1 . 4 %  1,227,880 24.5% 1.353.867 27.1% 
2000 344,014 6,227,054 636,348 1 0 . 2 %  2,838,890 45.6% 2,909,336 46.7% 

Total 34,358,090 28,987,633 1,372,966 4.7% 4,688,826 1 6 . 2 %  4,885,707 16.9% 

From this table, one conclusion should be readily apparent: the parameter variance 

component is much more significant than the process variance. The chief reason for this 

is that we have overparameterization of our model; that is, the available 55 data points are 

really not sufficient-to estimate the 12 parameters of the model. The 1994 Zehnwirth 

paper ([ 10], p. 512t) gives a helpful discussion of the dangers of  overparameterization. 
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The main problem is that we are estimating the ultimate loss for each accident year 

independently from the ultimate losses in the other accident years. In effect, we are 

saying that knowing the ultimate loss for accident year 1999 provides no information 

about the ultimate loss for accident year 2000. As such, our model is fitting to what may 

just be "noise" in the differences from one year to the next. 

This conclusion is unsettling, because it indicates a high level of uncertainty not just in 

our maximum likelihood model, but in the chain-ladder LDF method in general. 

4.2 The Cape Cod Method 

A natural alternative to the LDF Method is the Cape Cod method. In order to move on to 

this method, we need to supplement the loss development triangle with an exposure base 

that is believed to be proportional to ultimate expected losses by accident year. A natural 

candidate for the exposure base is onlevel premium - premium that has been adjusted to a 

common level of rate per exposure. 

Unadjusted historical premium could be used for this exposure base, but the impact of the 

market cycle on premium is likely to distort the results. We prefer onlevel premium so 

that the assumption of a constant expected loss ratio (ELR) across all accident years is 

reasonable. 

A further refinement would include an adjustment for loss trend net of exposure trend, so 

that all years are at the same cost level as well as rate level. 

There may be other candidates for the exposure index: sometimes the original loss 

projections by year are available; the use of estimated claim counts has also been 

suggested. In practice, even a judgmentally selected index may be used. 
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For the example in the Mack paper, no exposure base was supplied. For this exercise, we 

will use a simplifying assumption that premium was $10,000,000 in 1991 and increased 

by $400,000 each subsequent year. 

The tabular format of  our loss data is shown in Table 2. l. This is very similar to the 

format used for the LDF Method but instead of the "AY Total" column (latest diagonal), 

we display the onlevel premium for each accident year. The expected ultimate loss by 

year is calculated as the ELR multiplied by the onlevel premium. 

Accident Onlevel Age at Average Growth Premium x Repot ' ted  Ultimate 
Year Premium 12/31/2000 Age(x) Function Growth Func Losses Loss Ratio 

1991 10,000,000 120 114 7 7 , 7 6 %  7 ,775 ,733  3,901,463 50.17% 
1 9 9 2  10,400,000 108 102 7 4 . 8 5 %  7 ,784 ,278  5,339,085 68.59% 
1 9 9 3  10,800,000 96 90 7 1 . 2 9 %  7 ,899 ,022  4,909,315 63:/7% 
1 9 9 4  11,200,000 84 78 6 6 . 8 7 %  7 , 4 8 9 , 2 0 9  4,588,268 61.27% 
1 9 9 5  11,600,000 72 66 6 1 , 3 1 %  7 ,112 ,024  3,873,311 54.46% 
1 9 9 6  12,000,000 60 54 5 4 , 2 4 %  6 ,508 ,439  3,891,712 56,72% 
1 9 9 7  12,4(X),000 48 42 4 5 . 1 7 %  5 ,600 ,712  3,483,130 62.19% 
1 9 9 8  12.800,000 36 30 3 3 . 6 0 %  4 ,301 ,252  2,864,498 66.60% 
1 9 9 9  13,200,000 24 18 1 9 . 4 6 %  2 ,568 ,496  1,363,294 53.08% 
2000 13,600,000 12 6 4.69% 638,334 344,014 53.89% 

Total 116,000,000 57,477,500 34,358,090 ~ - ' ~  

The Loglogistic parameters are again solved for iteratively in order to maximize the 

value of  the log-likelihood function in Table 2.1. The resulting parameters are similar to 

those produced by the LDF method. 

1.447634 

0 48.0205 

One check that should be made on the data before we proceed with the reserve estimate is 

a quick test on the assumption that the ELR is constant over all accident years. This is 

best done with a graph of the estimated ultimate loss ratios: 
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From this graph, the ultimate loss ratios by year do not appear to be following a strong 

autocorrelatinn pattern, or other unexplained trends. If we had observed an increasing or 

decreasing pattern, then there could be a concern of bias introduced in our reserve 

estimate. 

The following calculation shows the method of  estimating reserves out to the 240 month 

evaluation point. As in the LDF method, this truncation point is used in order avoid 

undue reliance on a mechanical extrapolation formula. 

The Cape Cod method works much like the more familiar Bomhuetter-Ferguson formula. 

Estimated reserves are calculated as a percent of  the premxum and the calculated expected 

loss ratio (ELR). 

Accident Onlevel Age at Average Growth 96.83% minus premium Estimated 
Year Premium 12/31/2000 Age (x) Function Growth Fun¢ x ELR Reserves 

240 234 90.83% 
1991 10,000,000 120 114 77.76% 13.07% 5,977,659 781,218 
1992 10.400.000 108 102 74.85% 15,98% 6,216,765 993,281 
1993 10,800,000 96 90 71.29% 19.54% 6,455.872 1,261,416 
1994 11,200,000 84 78 66.87% 23.96% 6,694,978 1,fi04,008 
1995 11,600,000 72 B6 61.31% 29.62% 6,934,085 2,046,646 
1996 12,000,000 60 54 54.24% 36.59% 7,173,191 2,624,620 
1997 12.400,000 48 42 45.17% 45.66% 7,412,297 3,384,400 
1998 12,800,000 36 30 33.60% 57.22% 7,651,404 4,378,344 
1999 13.200,000 24 18 19.46% 71.37% 7,890,510 5,631,298 
2000 13,600,000 12 6 4.69% 86.13% 8.129.616 7,002.255 

T O t a l  118.000.000 70,536,377 29,707,484 

For the variance calculation, we again begin with the process varianCe/mean ratio, which 

follows the chi-square formula. The sum of  chi-square values is divided by 52 (55 data 

points minus 3 parameters), resulting in a 0 .2 of  61,577. This turns out to be less than 
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the 65,029 calculated for the LDF method because there we divided by 43 (55 data points 

minus 12 parameters). 

The covariance matrix is estimated from the second derivative Information Matrix, and 

results in the following: 

ELR 09 0 
ELR ~0.002421 -0.002997 0.242396"] 
co 0.002997 0.007853 -0.401000 | 
0 ~0.242396 -0.401000 33.021994 .]  

The standard deviation of our reserve estimate is calculated in the following table. 

Accident Reported Estimated Process Parameter Total 
Year Losses R e s e ~  Std Dev CV Std Dev CV Std Dev CV 

1991 3,901,463 781,218 219,329 28.1% 158,913 20.3% 270,848 34.7% 
1992 5,339,085 993,281 247,312 24.9% 192,103 19.3% 313,156 31.5% 
1993 4,909,315 1,261,416 278,701 22.1% 229,523 18.2% 361.047 28.6% 
1994 4,588,268 1,604,006 314,277 19.6% 270,790 16.9% 414,846 25.9% 
1995 3,873,311 2,046,646 355,002 17.3% 314.629 15.4% 474,360 23.2% 
1996 3,691,712 2,624,620 402,015 15.3% 358,200 13.6% 538.445 20.5% 
1997 3,483,130 3,384,400 456,510 13.5% 396,353 11.7% 604,563 17.9% 
1998 2,864,498 4,378,344 519,235 11,9% 421,934 9.6% 669,054 15.3% 
1999 1,363.294 5,631,298 588,862 10.5% 430,873 7.7% 729,664 13.0% 
2000 344.014 7,002.255 656,641 9.4% 439,441 6.3% 790,118 11.3% 

Total 34,358,090 29,707,484 1,352,515 4.6% 3,143,967 10.6% 3,422,547 11.5% 

In the earlier LDF example, the standard deviation on the overall reser,,e was 4,885,707 

and this reduces to 3,422,547 when we switch to the Cape Cod method. The reduction is 

primarily seen in the more recent years 1999 and 2000, but is generally true for the full 

loss history. The reduction in the variance (the standard deviations squared) is even more 

extreme - the overall variance in reserves is cut in half. 

This conclusion is at first surprising, since the two methods are very familiar to most 

actuaries. The difference is that we are making use of more information in the Cape Cod 

method, namely the onlevel premium by year, and this information allows us to make a 

significantly better estimate of  the reserve. 
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4.3 Other Calculations Possible with this Model 

Once the maximum likelihood calculations have been done, there are some other uses for 

the statistics besides the variance of the overall reserve. We will briefly look at three of 

these uses. 

4.3.1 Variance o f  the Prospective Losses 

Reserve reviews always focus on losses that have already occurred, but there is an 

intimate connection to the forecast of losses for the prospective period. The variability 

estimates from the Cape Cod method help us make this connection. 

If the prospective period is estimated to include 14,000,000 in premium, we have a ready 

estimate of  expected loss as 8,369,200 based on our 59.78% ELR. The process variance 

is calculated using the variance/mean multiplier 61,577, producing a CV of 8.6%. 

The parameter variance is also readily calculated using the covariance matrix from the 

earlier calculation. 

ELR ~ 0 
ELR f0.002421 -0.002997 0.242396~ 

~0.002997 0.007853 -0 .401000 |  
0 ~0.242396 -0.401000 33 .021994J  

The .002421 variance on the ELR translates to a standard deviation of 4.92% (by taking 

the square root) around our estimated ELR of 59.78%. Combined with the process 

variance, we have a total CV of 11.9%. 

The CV from this estimate can then be compared to numbers produced by other 

prospective pricing tools. 
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4.3.2 Calendar Year Development 

The stochastic reserving model can also be used to estimate development or payment for 

the next calendar year period beyond the latest diagonal. An example, using the LDF 

method is shown below. 

Accident Reported Age at Growth Age at Growth Estimated Est. 12 month 
Year Losses 12/31/2000 Function 12/31/2001 Function Ultimate Development 

1 9 9 1  3,901,463 120 77.24% 132 7 9 . 6 7 %  5,050,867 122,450 
1 9 9 2  5,339,085 108 74.32% 120 7 7 . 2 4 %  7,184,079 210,145 
1993 4,909,315 96 70.75% 108 7 4 . 3 2 %  6,939,399 247,928 
1 9 9 4  4,588,268 84 66.32% 96 7 0 . 7 5 %  6,917,862 305,811 
1995 3,873,311 72 60.78% 84 6 6 . 3 2 %  6,372,348 353,146 
1 9 9 6  3,691,712 60 53.75% 72 6 0 . 7 8 %  6,867,980 482,859 
1997 3,483,130 48 44.77% 60 5 3 . 7 5 %  7,780,515 699,093 
1 9 9 8  2,864,498 36 33.34% 48 4 4 . 7 7 %  8,590,793 981,372 
1 9 9 9  1,363,294 24 19.38% 36 3 3 . 3 4 %  7,033,659 981,996 
2000 344,014 12 4.74% 24 1 9 . 3 8 %  7,261,205 1,063,384 

Total 34,358,090 69,998,708 5,448,182 

The estimated development for the next 12-month calendar period is calculated by the 

difference in the growth functions at the two evaluation ages times the estimated ultimate 

losses. The standard deviation around this estimated development is: 

Accident Reported Est. 12 month Process Parameter Total 
Year Losses Development Std Dev CV Std Dev CV Std Dev CV 

1991 3,901,463 122,450 89,234 72.9% 24,632 20.1% 92,572 75.6% 
1 9 9 2  5,339,085 210,145 116,900 55.6% 37,767 18.0% 122,849 58.5% 
1 9 9 3  4,909,315 247,928 126,974 51.2% 42,716 17.2% 133,967 54.0% 
1 9 9 4  4,588,268 305,811 141,020 46.1% 50,260 16.4% 149,708 49.0% 
1995 3,873,311 353,146 151,541 42.9% 57,208 16.2% 161,980 45.9% 
1 9 9 6  3,691,712 482,859 177,200 36.7% 74,987 15.5% 192,413 39.8% 
1 9 9 7  3,483,130 699,093 213,217 30.5% 106,043 15.2% 238,131 34.1% 
1 9 9 8  2,864,498 961,372 252,621 25.7% 158,978 16.2% 298,482 30.4% 
1 9 9 9  1,363,294 981,696 252,702 25.7% 225,920 23.0% 338,966 34.5% 
2000 344,014 1,063,384 262,965 24.7% 480,861 45.2% 548,(TO8 51.5% 

Total 34,358,090 5,448,182 595,223 10.9% 635,609 11.7% 870,798 16.0% 

A major reason for calculating the 12-month development is that the estimate is testable 

within a relatively short timeframe. If we project 5,448,182 of development, along with a 

standard deviation of 870,798, then one year later we can compare the actual 

development and see if it was within the forecast range. 
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4.3.3 Variability in Discounted Reserves 

The mathematics for calculating the variability around discounted reserves follows 

directly from the payout pattern, model parameters and covariance matrix already 

calculated. The details are provided in Appendix C. This calculation is, of  course, only 

appropriate if the analysis is being performed on paid data. 

For the Cape Cod calculation of reserves, along with the 240 month truncation point, the 

discounted reserve using a 6.0% rate is provided below. 

Accident Estimated Discounted Process Parameter Total 
Year Reserves Reserves Std Dev CV. Std Oev C.V. Std Dev CV. 

1991 761,218 632,995 179,807 28.4% 125,961 19.9% 219,538 34,7% 
1992 993,281 796,674 201,069 25.2% 149,889 18.8% 250,670 31.5% 
1993 1,251,416 1,003.816 225,216 22.4% 175,599 17,5% 285,767 28.5% 
1994 t,604.006 1.269,446 252,987 19.9% 204,084 16.1% 325,043 25.6% 
1995 2,046,646 1,614.650 285,275 17.7% 232.952 14.4% 368.305 22.6% 
1996 2.624,620 2.068,611 323.114 15.6% 259,904 t2.6% 414,672 20.0% 
1997 3.384,400 2,669,559 367,518 13,6% 280.605 I0.5% 462,394 17,3% 
1998 4.378.344 3,459.057 418,912 121% 289,875 8.4% 509,427 14.7% 
1999 8,631.298 4.449.320 475,291 10.7% 286.857 6.4% 555.147 12,5% 
2000 7.002.255 5.490,513 526,186 9.6% 284,582 5.2% 598.213 10.9% 

Total 29,707,484 23,454,641 1,089,311 4.6% 2,195,224 9.4% 2,453,322 10.5% 

From Section 4.2 above, we saw that the full-value reserve of 29,707,486 had a CV of 

11.5%. The discounted reserve of 23,454,641 has a CV of 10.5%. The smaller CV for 

the discounted reserve is because the "tail" of  the payout curve has the greatest parameter 

variance and also receives the deepest discount. 
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Section 5: Comments and Conclusion 

5.1 Comments 

Having worked through an example of  stochastic reserving, a few practical comments are 

in order. 

1) Abandon your triangles! 

The maximum likelihood model works most logically from the tabular format of  data as 

shown in tables 1.1 and 2.1. It is possible to first create the more familiar triangular 

format and then build the table, but there is no need for that intermediate step. All that is 

really needed is a consistent aggregation of losses evaluated at more than one date; we 

can skip the step of  creating the triangle altogether. 

2) The CV Goes with the Mean 

The question of  the use of the standard deviation or CV from the MLE is common. I f  we 

select a carried reserve other than the maximum likelihood estimate, then can we still use 

the CV from the model? 

The short answer is "no". The estimate of the standard deviation in this model is very 

explicitly the standard deviation around the maximum likelihood estimate. I f  you do not 

trust the expected reserve from the MLE model, then there is even less reason to trust the 

standard deviation. 

The more practical answer is an equivocal "yes", The final carried reserve is a selection, 

based on many factors including the use of a statistical model. No purely mechanical 

model should be the basis for setting the reserve, because it cannot take into account all 

of the characteristics of the underlying loss phenomenon. The standard deviation or CV 
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around the selected reserve must therefore also be a selection, and a reasonable basis for 

that selection is the output of the MLE model. 

The selection of a reserve range also needs to include consideration about changes in mix 

of business and the process of settling claims. These types of considerations might better 

be labeled "model variance", since by definition they are factors outside of the 

assumptions of the model. 

3) Other Curve Forms 

This paper has applied the method of.maximum likelihood using growth curves that 

follow the Loglogistic and Weibull curve forms. These curves are useful in that they 

smoothly move from 0% to 100%, they often closely match the empirical data, and the 

first and second derivatives are calculable without the need for numerical 

approximations. However, the method in general is not limited to these forms and a 

larger library of curves can be investigated. 

In this paper the Loglogistic and Weibull curves were applied to the average evaluation 

age, rather than the age from inception of the historical policy period. This was done for 

practical purposes, and is one way of improving the fit at immature ages. When 

evaluation ages fall within the period being developed (that is the period is not yet fully 

earned), then a further annualizing adjustment is needed. The formulas for this 

adjustment are given in Appendix B. 

5.2 Conclusion 

The method of maximum likelihood is a very useful technique for estimating both the 

expected development pattern and the variance around the estimated reserve. The use of 

the over-dispersed Poisson distribution is a convenient link to the LDF and Cape Cod 

estimates already common among reserving actuaries. 
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The chief result that we observe in working on practical examples is that the "parameter 

variance" component is generally larger than the "process variance" - most of  the 

uncertainty in the estimated reserve is related to our inability to reliably estimate the 

expected reserve, not to random events. As such, our most pressing need is not for more 

sophisticated models, but for more complete data. Supplementing the standard loss 

development triangle with accident year exposure information is a good step in that 

direction. 
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Table 1.1 
Original Triangle in Tabular Format 

AY From To Increment DiaqA~e AY Total 
1991 0 12 357,848 120 3,901,463 
1991 12 24 766,940 120 3.901,463 
1991 24 36 610.542 120 3,901,463 
1991 36 48 447,378 120 3,901,463 
1991 48 60 562,888 120 3,901,463 
1991 60 72 574,398 120 3,901,463 
1991 72 84 146,342 120 3,901,463 
1991 84 96 139,950 120 3,901,463 
1991 96 108 227,229 120 3.901,463 
1991 108 120 67,948 120 3,901,463 
1992 0 12 352,118 108 5,339,085 
1992 12 24 884,021 108 5.339.085 
1992 24 36 933,894 108 5,339,085 
1992 36 48 1,183.289 108 5.339,085 
1992 48 60 445.745 108 5,339,085 
1992 60 72 320,996 108 5,339,085 
1992 72 84 527,804 108 5.339,085 
1992 84 96 266,172 108 5,339,085 
1992 96 108 425,046 108 5,339,085 
1993 0 12 290,507 96 4.909,315 
1993 12 24 1,001,799 96 4,909,315 
1993 24 36 926,219 96 4,909,315 
1993 36 48 1.016,654 96 4,909,315 
1993 48 60 750,816 96 4,909,315 
1993 60 72 146,923 96 4.909.315 
1993 72 84 495,992 96 4,909,315 
1993 84 96 280,405 96 4,909,315 
1994 0 12 310,608 84 4,588,268 
1994 12 24 1,108,250 84 4.588,268 
1994 24 36 776.189 84 4,588,268 
1994 36 48 1,862.400 84 4,588,288 
1994 48 50 272,482 84 4.588,268 
1994 60 72 352,953 84 4,588,268 
1994 72 84 206,286 84 4,588,268 
1995 O 12 443.160 72 3,873,311 
1995 12 24 693,190 72 3,873,311 
1995 24 36 991,983 72 3,873,311 
1995 36 48 769,488 72 3,873,311 
1995 48 60 504,851 72 3,873,311 
1995 60 72 470,639 72 3,873.311 
1996 0 12 396r132 60 3,691,712 
1996 12 24 937,085 60 3.691,712 
1996 24 36 847.498 60 3,691,712 
1996 36 48 805,037 60 3,691,712 
1996 48 60 705,960 60 3,691,712 
1997 102 12 440,832 48 3,483,130 
1997 24 847,631 48 3.483,130 
1997 24 36 1,131~398 48 3,483,130 
1997 36 48 1,063.269 48 3,483,130 
1998 9 12 359,480 36 2,864,498 
1998 12 24 1,061,648 36 2,864,498 
1998 24 36 1,443,370 36 2.864,498 
1999 0 12 376,586 24 1,363,294 
1999 12 24 986,608 24 1,363.294 
2000 0 12 344,014 12 344.014 
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Table 1.2 
Triangle Collapsed for Latest Three Diagonals 

AY From To Incr~nent Diag Age AY Total 
1991 O 96 3,606,286 120 3,901,463 
1991 66 108 227.229 120 3,901,463 
1991 108 120 67,948 120 3,901,463 
1992 O 84 4,647,867 108 5,339,085 
1992 94 96 266,172 106 5,339,085 
1992 96 108 425,046 108 5,339,085 
1993 0 72 4,132,918 96 4,909,315 
1993 72 84 495,992 96 4.909,315 
1993 84 96 280,405 96 4,909.315 
1994 O 60 4,029,929 84 4,588,268 
1994 60 72 352,C53 84 4,588,268 
1994 72 84 206,286 84 4,588,268 
1995 0 48 2,897,821 72 3,873.311 
1995 48 60 504,851 72 3,873,311 
1995 60 72 470,639 72 3,873,311 
1996 O 36 2,180,715 60 3,691,712 
1996 36 48 805,037 60 3,691,712 
1996 48 60 705,960 60 3,691,712 
1997 O 24 1,288,463 48 3,483,130 
1997 24 36 1,131,398 48 3,483,130 
1997 36 48 1,063,269 48 3.483,130 
1998 O 12 359,480 36 2,B64,498 
1998 12 24 1,061,648 36 2,864,498 
1998 24 36 1,443,370 36 2,864,498 
1999 0 12 376.686 24 1,363,294 
1999 12 24 986,6C8 24 1,363,294 
2000 0 12 344.014 12 344.014 
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Table 1.3 
Latest Diagonal Representing only 9 Months of Development 

a v  Emm Ysa t~r.mme.at ~ 
1991 6 12 357,848 
1991 12 24 766,940 
1991 24 36 610,542 
1991 36 48 447,378 
1991 48 60 562,888 
1991 60 72 574,398 
1991 72 84 146,342 
1991 84 96 139.950 
1991 96 108 227,229 
1991 106 117 67,948 
1992 0 12 352,118 
1992 12 24 884,021 
1992 24 36 933,894 
1992 36 48 1~183,299 
1992 48 60 445,745 
1992 60 72 320,996 
1992 72 84 527,804 
1992 84 "96 266.172 
1992 96 105 425,046 
1993 0 12 290.507 
1993 12 24 1,001.799 
1993 24 36 926,219 
1993 36 48 1,016,664 
1993 48 60 750,816 
1993 60 72 146,923 
1993 72 84 495,992 
1993 84 93 280,405 
1994 0 12 310,608 
1994 12 24 1,108,250 
1994 24 36 776,189 
1994 36 48 1,562,400 
1994 48 60 272,482 
1994 60 72 352,053 
1994 72 81 206,286 
1995 0 12 443,160 
1995 12 24 693,190 
1995 24 36 991,983 
1995 36 48 769,488 
1995 48 60 504,851 
1995 60 69 470,639 
1996 0 12 396,132 
1996 12 24 937,085 
1996 24 36 847,498 
1996 36 48 805.037 
1996 48 57 705,960 
1997 0 12 440,832 
1997 12 24 847,631 
1997 24 36 1,131,398 
1997 36 45 1.063,269 
1998 0 12 359,480 
1998 12 24 1,061,648 
1998 24 33 1,443,370 
1999 0 12 376,686 
1999 12 21 986,608 
2000 0 9 344,014 

117 3,901,463 
117 3,901,463 
117 3,901,463 
117 3,901,463 
117 3,901.463 
117 3,901,463 
117 3.901,463 
117 3,901,463 
117 3,901.463 
117 3,901,463 
105 6.339.085 
105 5,339,086 
105 5,339,085 
105 5,339,085 
106 5.339,085 
105 5,339,085 
105 5.339,085 
106 5,339,085 
105 5,339,085 
93 4,909,315 
93 4,909.316 
93 4,909,315 
93 4,909,315 
93 4,909,315 
93 4,909,315 
93 4.909,315 
93 4,909.315 
81 4,588,268 
81 4,588,268 
81 4,588,268 
81 4,588,268 
81 4,588.268 
81 4,588,268 
81 4,688.268 
69 3,873,311 
69 3,873,311 
69 3,873,311 
69 3,873,311 
69 3,873,311 
69 3,873,311 
57 3,691.712 
57 3,691,712 
57 3,691,712 
67 3,691.712 
57 3,691,712 
45 3,483.130 
45 3,483,130 
45 3,483,130 
45 3,483,130 
33 2,864,498 
33 2,864,498 
33 2,864,498 
21 1 ~363,294 
21 1,363,294 
9 344,014 
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Table 1.4 
Original Triangle along with Fitted Values - 

AY From To Irlcrement Dia~ Ago AY Total 
1991 0 12 357.848 120 3.901.463 
1991 12 24 766.940 120 3.901.463 
1991 24 36 610,542 120 3.901.463 
1991 36 48 447,378 120 3.901.463 
1991 48 60 562.888 120 3.901.463 
1991 60 72 574.398 120 3,901.463 
1991 72 84 146.342 120 3,901.463 
1991 84 96 139.950 120 3.901,463 
1991 96 108 227.229 120 3.901,463 
1991 108 120 67.948 120 3.901.463 
1992 0 12 352,118 108 5.339.085 
1992 12 24 884.021 108 5.339.085 
1992 24 36 933.894 108 5.339.085 
1992 36 48 1.183.289 108 5.339.085 
1992 48 60 445,745 108 5.339.085 
1992 60 72 320.996 108 5,339.085 
1992 72 84 527.604 108 5.339.085 
1992 84 96 266,172 108 5.339.085 
1992 96 108 425.046 108 5.339.085 
1993 0 12 290.507 96 4.909.315 
1993 12 24 1.001.799 96 4.909.315 
1993 24 36 926.219 96 4.909.315 
1993 36 48 1.016.654 96 4.9G9.315 
1993 48 60 750.816 96 4.909,315 
1993 60 72 146.923 96 4.909.316 
1993 72 84 495,992 96 4.909.315 
1993 84 96 280.405 96 4.909.315 
1994 0 12 310.608 84 4.588.268 
1994 12 24 1.108.250 84 4,588.268 
1994 24 36 776.189 84 4.588.268 
1994 36 48 1.562.400 84 4.588.268 
1994 48 60 272.482 84 4.588,268 
1994 60 72 352,053 84 4.588.268 
1994 72 84 206.286 84 4.588.268 
1995 0 12 443.160 72 3,873.311 
1995 12 24 693.190 72 3.673.311 
1995 24 36 991.983 72 3.873.311 
1995 36 48 769,488 72 3.873.311 
1995 48 60 504.551 72 3,873.311 
1995 60 72 470.639 72 3.873.311 
1996 6 12 396.132 60 3,691.712 
1996 12 24 937,085 60 3,691.712 
1996 24 36 847.498 60 3.691,712 
1996 36 48 805.037 60 3.691,712 
1996 48 60 705.960 60 3.691.712 
1997 0 12 440.832 48 3.483.130 
1997 12 24 847.631 48 3.483.130 
1997 24 36 1.131.398 48 3,483,130 
1997 36 48 1.063,269 48 3.483.130 
1998 0 12 359,480 36 2,864.498 
1998 12 24 1,061,648 36 2~864.498 
1998 24 36 1.443,370 36 2,864,498 
1999 O 12 376,686 24 1,363,294 
1999 12 24 986,606 24 1,363,294 
2000 0 12 344.014 12 344,014 

34.358.090 

LDF Method 

EsL ULT Fitted MLETerm Chi-Square 
5,050.868 239.295 4.192.814 58,734 
6.050.868 739,686 9,624,727 1.004 
5,050.868 705,171 7,516.507 12,698 
5,050.868 576.987 5.357,739 29,114 
5.050.868 453.829 6.878.055 26.206 
5.050.868 355.106 6.985.799 135.422 
5.050.868 279 .911  1.555.543 63.737 
5,050.868 223,278 1.500.370 31.098 
5,050.868 180.455 2.569,751 12.124 
5.050,866 147.745 661.056 43,099 
7.184,081 340.360 4.144.834 496 
7.184,081 1.052,089 11.206.001 26.848 
7,184.081 1.002.997 11,902.020 4,761 
7.184.081 820,675 15.293.216 160.220 
7,184.081 645.502 5,317.578 61,817 
7,184.081 505,083 3,710,390 67,094 
7.184.081 398 .131  6.407,657 42.235 
7.184.081 317.579 3.054.416 8,321 
7.184.061 256,670 5,037.510 110.456 
6,939.401 328,768 3,361.574 4.453 
6.939.401 1.016,256 12.840.263 206 
6.939,401 968.836 1t.798.028 1,875 
6.939.401 792,724 13.016.722 63,266 
6,939.401 623,517 9,394.719 25,990 
6.939.401 487.881 1,436.491 238.280 
6,939.401 384 .571  5,993,828 32,282 
6.939,401 306,763 3,235.826 2.265 
6,917,864 327,748 3,616.974 896 
6.917.864 1.013.102 14,312.364 8.936 
6.917.864 965.829 9.730,631 37.236 
6.917.864 790.264 20.427,319 754.424 
6,917.864 621.582 3.013.334 196.065 
6,917,864 486,366 4,123.668 37,092 
6.917.664 383,377 2.268,795 81,803 
6.372,350 301.903 5.289,828 66.093 
6.372,350 933,213 8.595.646 61.734 
6,372.350 889.668 12,699.114 11.767 
6,372.350 727,947 9,658.589 2,371 
6,372.350 572,566 6,120,690 8.008 
6,372.350 448,014 5,676,214 1.143 
6.867.982 325.384 4.792,625 15,382 
6.867.962 1,005,797 11,945,927 4.694 
6.867.982 956.865 10,714,153 12.935 
6,867,982 784,566 10,142.109 534 
6.867.982 617,100 8,795.314 12.796 
7.780,518 368.618 5,281,753 14.147 
7.780,518 1.139.436 10.681.663 74.730 
7,780.518 1.086.268 14,638,194 1.875 
7.780.518 888,809 13,675.465 34.244 
8.590.795 407.006 4~236.247 5,550 
8,590,795 1.258.098 13.652.867 30.675 
8,590,795 1.199.393 19,003.928 49,629 
7.033.660 333.234 4.456.931 5.666 
7,033.660 1,030.060 12,629,654 1,833 
7.261.202 344.014 4,1341.627 0 

34,358.090 2,796.260 
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Table 2.1 
Original Triangle along with Fitted Values - Cape Cod Method 

AY From To Increment Oiaq Aqe Premium 
1991 0 12 357,848 120 10,000,090 
1991 12 24 766,940 120 10,000,000 
1991 24 36 610,542 120 10,000,600 
1991 36 48 447,376 120 10,000,000 
1991 48 60 562,888 120 10,900,000 
1991 60 72 574,398 120 10,000,000 
1991 72 84 146,342 120 10,600,000 
1991 84 96 139,950 120 10,000,000 
1991 96 108 227,229 120 10,000,000 
1991 106 120 67,948 120 10,000,000 
1992 O 12 352,118 108 10,400,000 
1992 12 24 684,021 106 10,400,000 
1992 24 36 933,894 108 10,400,000 
1992 36 48 1,183,289 108 10,400,000 
1992 48 60 445,745 108 10,400,000 
1992 60 72 320,996 108 10,400,000 
1992 72 84 527,804 108 10,400,000 
1992 84 96 266,172 109 10,4OO,O00 
1992 £6 106 425.046 108 10,400,000 
1993 0 12 290,507 £6 10,800,000 
1993 12 24 1,001,799 £6 10.800,000 
1993 24 36 926,219 £6 10,800,000 
1993 36 48 1,016,654 96 10,800,000 
1993 48 60 750,816 £6 10,500,000 
1993 60 72 146,923 96 10,800,000 
1993 72 84 495,992 £6 10,900,000 
1993 84 £6 280,405 £6 I0,800,000 
1994 O 12 310,606 84 11,200,000 
1994 12 24 1,108,250 84 11,200,000 
1994 24 36 776,189 84 11,200,000 
1994 36 48 1,662,400 84 11,200,000 
1994 48 60 272,482 84 11,200,000 
1994 60 72 352,053 84 11,200,000 
1994 72 84 206,286 84 11,200,000 
1995 0 12 443,160 72 11.606,000 
1995 12 24 693,190 72 11.600,000 
1995 24 36 991,983 72 !1,600,000 
1995 36 48 769,488 72 11,600,000 
1995 48 60 504,851 72 11,600,000 
1995 60 72 470,639 72 11,600,000 
1996 0 12 396,132 60 12,000,000 
1996 12 24 937,085 60 12,000,000 
1996 24 36 847,498 60 12,000,000 
1996 36 48 805,037 60 12,000,000 
1996 48 60 705,960 60 12,000,000 
1997 0 12 440,832 48 12,400,000 
1997 12 24 847,831 48 12,400,000 
1997 24 36 1,131,398 48 12,400,000 
1997 36 48 1,063,269 48 12,400,000 
1998 0 12 359,480 36 12,800,000 
1998 12 24 1,061r646 36 12,500,000 
1998 24 36 !,443,370 36 12,800,600 
1999 O 12 376,686 24 13,200000 
1999 12 24 986,606 24 13,200,000 
2000 0 12 344,014 12 13600,000 

34,369,090 

Est. ULT Fitted MLE Term Chi-Square 
5,977,659 28&569 4,208,482 21,285 
5,977,659 862,582 9,817,292 15,152 
5,977,659 845,554 7,486,969 65,319 
5,977,659 691,227 5,324,318 86,024 
5,977,659 542,171 6,689,629 792 
5,977,659 422,833 7,018,339 54,329 
6,977,659 332,202 1,528,317 103,965 
5,977,659 264,171 1,463,014 58,412 
5,977,659 212,900 2,574,877 964 
5,977,859 173,860 646,001 64,519 
6,216,765 291,792 4,139,169 12.472 
6,216,765 917,885 11,219,571 1,249 
6,216,765 879,376 11,902,601 3,380 
6,216,765 718,876 15,238,302 300,023 
6,216,765 563,856 5,338,946 24,742 
6,216,765 439,746 3,731,261 32,066 
5216,765 345,490 6,365,446 96,207 
6,216,765 274,738 3,058,687 267 
6,216,765 221,416 5,009,964 167,273 
6,455,872 303,015 3,363,630 516 
6,455,872 953,188 12,839,147 2,479 
6,455,872 913.198 11,798,887 195 
6,455,872 746,525 13,001,675 97,746 
6,455,872 585,545 9,385,515 46,646 
6,455,872 456,660 1,457,996 210,084 
6,455,872 358,778 5,985,187 52,477 
6465,872 265,305 3,236,950 84 
6,694,979 314,238 3,617,409 42 
6,694,976 988,491 14,309,720 14,509 
6,694,979 947,020 9,734,175 30,816 
6,694,976 774,174 20,411,270 802,533 
6,694,978 607,232 3,021,320 184,538 
6,594,978 473,573 4,127,077 31,182 
6,694,976 372,066 2,273,929 73,866 
6,934,085 325,460 5,299,566 42,565 
6,934,065 1,023,795 8,569,280 106,759 
6,934,085 980,842 12,704,721 127 
6,934,085 801,823 9,659,092 1,304 
6,934,085 628,919 6,111,729 24,475 
6,934,085 490,486 5,676,368 803 
7,173191 336,683 4,704,848 10,497 
7,!73,191 1,059,098 11,941,015 14,056 
7,173,191 1,014,664 10,706,291 27,541 
7,173,191 829,472 10,142,011 720 
7,173.191 650,606 8,799,134 4710 
7,412,297 347,906 5,276,973 24,821 
7,412,297 1,094,401 10,092,516 55,643 
7,412,297 1,048,487 14,635,924 6,556 
7,412,297 657,121 13,668,552 49,581 
7,651,404 359,129 4,239,137 O 
7,651,404 1,129,704 13,666,979 4.100 
7,651.404 1,082,309 18,972,750 120,451 
7,890,510 370.351 4,459,595 108 
7890,510 1165,008 12,616,168 27,319 
8.129,616 381,574 4,039715 3697 

34,358,090 3,202,001 
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Appendix A: Derivatives of the Loglikelihood Function 

The loglikelihood function for the over-dispersed Poisson is proportional to 

~, = Z c , . h - . @ , ) - U ,  
i 

where /.l,., = ELR.P~.[G(x, IoJ,O)-G(x,_, I~o,0)] 
as described in section 2.2 of this paper. The derivatives below are then used to complete 

the Information Matrix needed in the parameter variance calculation. 

The derivatives of the exact loglikelihood function would require dividing all of these 

numbers by the constant scale factor ~ ~ , but it is easier to omit that here and apply it to 

the final covariance matrix at the end. 

OELR 2 = 

o2e Z p  ' [~GI,<,) ~GO<,_,!] 
bELROO ,., "[" ' ~  20 J 

, .  c, 
{)-"~ -- a(x, ) -  G(x,_ 1 ) ELR. P~ "L' - ~  {)to J] 

a~o ~ (c(x, ) -  C(x,_,))~ j / ~,o ~o j 

~<°2 Jl 
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~2e 
3co 30 

_- y_I[ -~,, , IP  ~(x,) ~u,-,/.1p~tx,) 
,.,tL(~(x,)-~(x,_l))JL~ a,,, J L ~  a~'-'!]+ 

[G(~,)-G(~,_,) z e 1 ra*G(~,) a~(x,_,).] 1 
c,, -E R-,J. [  ~ at.oao j j  

a0 C(x,)-G(x,_,) L ,30 

~,e _rr -c, ,  ]r~c(x,)~_~,_,)]' 
~o~ -- ~lL/~/x, /~/x,_, / /"Jt-  ~ + 

cu ELR 
'J [ ao' ~ JJ 

For the LDF Method, these same formulas apply but replacing: 

ELR .-.e ULT~ and P~ --e 1. 
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Weibull Distribution 

G(x) = F(x) = 1 -  exp[-(x/O) '°] 

~ = ~-lol~e~P~-~°~x 
E[xq  = O ~ . r ( l + k / c o )  

0 is approximately the 63.2%-tile = 1 -exp [ -1 ] ,  LDF o ~. 1.582 

aa(~) 
3to 

3G(x) 
- exp [-a~lL,o,j • 

~0 

a~ a(~) 

32G(x)  

3oJ30 

302 _ exp~_~j./o;./~/.{ l+~.E'-/o;l} 
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Loglogistic Distribution (for "inverse power" LDFs) 

x~ ( 1  / 
G ( x )  = F ( x )  x°' +O °~ - 1 - - l + ( x / O ) ~  o 

~,(xo)(oo~ 
:(x) = x.tx--~+o~j.tx~--7-~- J 

E[x*] = O k. r(l+ k/~).r(1-k/~) 

0 is the median of the distribution L D F  e = 2.000 

OG(x)  

~w 
{ x ° " { 0 "  

aG(.) 
oo 

_ ( x °  )( o° ~(-,o~ 
t :--7-~-j t ~-~+o~ j t T  ) 

a ~ G(~) 

0¢o 2 

X° O°  x 2 X¢° 

~2°/x>/~o2 xo xo+o° l/ : oo+oo )C-~/{,+° [, 2 ( o ~  ~ x° 1} 
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Appendix B: Adjustments for Different Exposure Periods 

The percent of ultimate curve is assumed to be a function of the average accident date of  

the period being developed to ultimate. 

G" (x [ co, 0) = cumulative percent of  ultimate as of  average date x 

Further, we will assume that this is the percent of ultimate for the portion of the period 

that has already been earned. For example, if we are 9 months into an accident year, then 

the quantity G°(4.5 1 o9,0) represents the cumulative percent of  ultimate of  the 9-month 

period only. The loss development factor LDF 9 = l /G ' (4 .5  1~o,0) is the adjustment 

needed to calculate the ultimate loss dollars for the 9-month period (before annualizing). 

In order to estimate the cumulative percent of  ultimate for the full accident year, we also 

need to multiply by a scaling factor representing the portion of the accident year that has 

been eamed. 

The AY cumulative percent of  ultimate as of  9 months is 

GAv(9[09,0) = /1-~/ 'G'(4.51¢o,0) 

We find therefore that we need to make two calculations: 

1) Calculate the percent of the period that is exposed; Expos(t) 

2) Calculate the average accident date given the age from inception t; AvgAge(t) 

These functions can be easily calculated for accident year or policy year periods. 
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1) Calculate the percent of the period that is exposed: Expos(t) 

For accident years (AY): 

= Jt/12 t-<12 
Expos(t) 

tl t>12 
o r  

For policy years (PY): 

J{. (t/12) 2 t <_ 12 
Expos(t) ] 

[ l - ~ . m a x (  2 - t / 1 2 , o )  2 t >12 
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Cumulative Percent of Exposure Expos(t) 

j 

I 2 3 4 5 6 7 8 9 10 11 12 13 ~4 15 16 17 18 19 20 21 22 23 24 25 26 27 

E v a ~  Age in Months = t 
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2) Calculate the average accident date of the period that is earned: AvgAge(t) 

For accident years (AY): 

It / 2 t <_ 12 
A vgAge(t) 

[ t - 6  t > 1 2  

or AvgAge(t) = rnax(t-6,t/2) 

For policy years (PY): 

A vgAge(t) I t~3 

( t - 1 2 ) + ~ .  ( 2 4 -  t).  (1 - Expos(t)) 
Expos(t) 

t_<12 

t > 1 2  

The final cumulative percent of ultimate curve, including annualization, is given by: 

[ GAvo, ey(t ]co, O) = Expos(t).G*(AvgAg4t)[co, O)] 
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Appendix C: Variance in Discounted Reserves 

The maximum likelihood estimation model allows for the estimation o f  variance o f  

discounted reserves as well as the variance o f  the full-value reserves. These calculat ions 

are a bit more tedious, and  so are given just  in this appendix. 

Calculation of Discounted Reserve 

We begin by  recall ing that the reserve is estimated as a sum o f  portions o f  all the 

historical accident  years,  and is calculated as: 

Reserve: R = yd . t~  . . . .  = ~ U L T A r ( G ( y ) - G ( x ) )  
AY AY 

This expression can be expanded as the sum o f  individual increments.  

y - x  

R = ] ~ U L r ~ . ( ~ ( x + ~ ) - G ( ~ + k - I ) )  
,IY k=l 

To be even more  precise, we could write this as a continuous function. 

Y 0 G(t) 
R = 2 ~ U L J ~ r . J g ( t ) d t  where g ( t ) -  

3 t  AY 

The value o f  the discounted reserve R a would then he writ ten as follows. 

Y t 1 
R a = Z U L T A r . ~ v - X .  g( t )dt  where v = -  

At x 1 + i  

For  purposes o f  this paper,  we will assume that the discount rate i is constant. There is 

also some debate as to what  this rate should be (cost o f  capital?, market  yield?), but we 

will avoid that discussion here. 

An  interesting note on this expression is seen in the case o f  x = 0  and y = o o ,  in which  the 

form o f  the discounted loss at time zero is directly related to the moment  generat ing 

function o f  the g rowth  cur~e. 

i v ' . g ( y ) d t  = Se-""°+°.g( t )d t  = M G F ( - I n ( I + i ) )  
0 0 
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Unfortunately, for the Logtogistic and Weibull growth curves, the moment generating 

function is intractable and so does not simplify our calculation. For practical purposes 

we will use the incremental approximation instead. 

y - x  

R~ ~ ~,YyLTA,.v ..... (G(~ + k ) - G ( ~  + k -  1)) 
A Y  k - [  

The variance can then be calculated for the discounted reserve in two pieces: the process 

variance and the parameter variance. 

Process Variance 

The process variance component is actually trivial to calculate. We already know that the 

variance of the full value reserve is estimated by multiplying by the scale factor a 2. We 

then need to recall that the variance for some random variable times a constant is given 

by Var(v ~ .R) = v 2k .Var(R). 

The process variance of the discounted reserve is therefore: 

y x  

Var(Rd) = crZ. y~yULTA,..v2k-l.(G(x +k)-G(x +k - l ) )  
A Y  k~l  

Parameter Variance 

The parameter variance again makes use of the covariance matrix of the model 

parameters Z. The formula is then given below. 

Var(E[Ra] ) = (ORa)'.Z.(c3R,) 

where 

= L ORa ORa 0 - ~ )  for theCapeCodmethod ~Ra \~ELR' ~ '  - 

o r  

l aR~ for the LDF method 

9 0  



In order to calculate the derivatives of the discounted reserves, we make use of the same 

mathematical expressions as for the full value reserves. That is, 

O=ff_R = ~)-~.O/.tAy,~ becomes ORa = ~vAr.x "o#Ar'~ 

The calculation is similar to the variance calculation for the full value reserve, but now it 

is expanded for each increment so that the time dimension is included. The complexity 

of the calculations does not change, but the number of times they are performed greatly 

increases. 

The combination of the process and parameter variances is simple addition, the same as 

for the full value reserves, since we make the assumption that the two sources of variance 

are independent. 
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Preface 

As the author of the Casualty Actuarial Society’s (CAS’s) text on reserving, I am honored to prepare this 
new text on reserving for reinsurance. In many ways, I view this text as a supplement to my earlier work, 
Estimating Unpaid Claims Using Basic Techniques, and I strongly encourage readers to be familiar with 
that text prior to this one.  

With the goal of having this text used by actuaries and actuarial candidates around the world, I strive to 
present concepts in a simple and straightforward manner, particularly for those for whom English may 
not be their first spoken language. With this global mindset, I also chose not to use any currency in the 
examples. 

I wish to express sincere thanks to all the members of the CAS educational committee who helped guide 
this text in its initial development and through countless reviews: Arthur Zaremba, Eric Blancke, Jill 
Labbadia, Jonathan Schreck, and Fran Sarrel. Additional thanks to these CAS members for reviewing this 
document:  Jackie Ruan, Zora Law, Eric Lam, Meg Glenn, Kenneth Hsu and Joseph Lindner. 

I also express sincere thanks to Wesley Griffiths, who worked with me as a Staff Actuary at the CAS. 

Readers should be aware that figures in the supporting tables and exhibits are often carried to a greater 
number of decimals than shown. Thus, totals and calculations may not agree exactly due to rounding 
differences. 

Please notify the CAS of any errors so that this text can be corrected in subsequent editions. 

—Jacqueline Frank Friedland, FCAS, FCIA, FSA 
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Chapter 1 – Introduction 

The objective of this text is to address the estimation of unpaid losses1 from the perspective of 
reinsurance. Reinsurance, which is insurance for insurers, is critical for the operation of the insurance 
industry as a whole. Through reinsurance, the cost of risk is spread across the marketplace, often 
globally, and the financial effect of an insured event is lessened for a single insurer2 or economy. This 
text is intended for actuaries working with reinsurers as well as for actuaries working with primary 
insurers who estimate losses that are ceded to reinsurers. The text is also intended for actuaries working 
with self-insurers and captive insurers3 who utilize reinsurance. 

It is assumed that the reader of this text is knowledgeable about basic reserving, including typical data 
requirements, key assumptions, and traditional methodologies (such as the chain ladder, expected loss, 
and Bornhuetter-Ferguson techniques). Thus, this text focuses on the differences in reserving for 
reinsurance versus primary insurance and not on the detailed mechanics of the traditional unpaid losses 
projection techniques.4 

Like insurers, reinsurers do not know the true cost of goods sold during a financial reporting period until 
years, possibly decades, later – after all claims are settled. Thus, it is critical that insurers and reinsurers 
maintain robust processes for the estimation of unpaid losses. Most frequently, the actuary estimates 
unpaid losses by subtracting paid losses from projections of ultimate losses. This text explores numerous 
considerations for such projections and issues related to data, understanding the environment (internal 
and external to the reinsurer), and the selection of methodology and assumptions. In this text, the term 
reserves refers to an amount booked in a financial statement, which may differ from the actuary’s 
estimate of unpaid losses.5 

Appropriate estimates of unpaid losses and reserves are essential for the internal management of a 
reinsurer as well as for its key stakeholders. 

 
1 The estimation of unpaid losses is also referred to as reserving. 
2 In actuarial and accounting literature and standards, the term insurer is often used to refer to primary insurers, reinsurers, captive insurers, 

and self-insurers. Given that this text focuses specifically on reinsurance, the term reinsurer is generally used to differentiate reinsurers from 
other insurers.  

3 The International Risk Management Institute (IRMI) Glossary defines a captive insurer as “an insurance company that has as its primary 
purpose the financing of the risks of its owners or participants. Typically licensed under special purpose insurer laws and operated under a 
different regulatory system than commercial insurers. The intention of such special purpose licensing laws and regulations is that the captive 
provides insurance to sophisticated insureds that require less policyholder protection than the general public” (See 
https://www.irmi.com/term/insurance-definitions/captive.) 

4 For further information, see Jacqueline Friedland, Estimating Unpaid Claims Using Basic Techniques (Arlington, VA: Casualty Actuarial Society, 
2010). 

5 This use of the term reserves is consistent with the U.S. Actuarial Standards Board’s Actuarial Standard of Practice (ASOP) 43–
Property/Casualty Unpaid Claim Estimates. 

https://www.irmi.com/term/insurance-definitions/captive
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• Internal management requires sound reserves because they affect virtually every area of a 
reinsurer’s operations, including but not limited to pricing, underwriting, strategic planning, and 
financial decision making.  

• Investors require appropriate reserves because they are essential to the evaluation of a 
company’s financial health. Reserves that are either inadequate or excessive can lead to 
misstated balance sheets and income statements for the reinsurer, and key financial metrics 
used by investors could be misleading. A reinsurer with insufficient reserves could present itself 
in a stronger position than it truly is. Conversely, a reinsurer with excessive reserves may appear 
to be in a weaker position than its true state. Both situations could affect investors’ decisions 
related to the reinsurer.  

• Insurance regulators rely on the financial statements of reinsurers to carry out their supervisory 
role. Inappropriate reserves could result in a misstatement of the true financial position of a 
reinsurer. If a financially struggling reinsurer is masking its true state with inadequate reserves, a 
regulator may not become involved until it is too late to help the reinsurer regain its strength 
and protect the public’s interests.  

• Rating agencies evaluate movement over time in reinsurers’ reserves. A reinsurer who reports 
significant adverse reserve development that results in reduced capital and a weakened 
financial position could face a downgrade from rating agencies. A rating downgrade, or even the 
threat of a downgrade, threatens a reinsurer’s ability to attract and retain business because 
primary insurers typically have requirements for minimum ratings of their reinsurers.  

Further requirements for appropriate reserves emanate from jurisdictional law (i.e., state, provincial, or 
national), the National Association of Insurance Commissioners for U.S. reinsurers, accounting standards 
such as the U.S. Generally Accepted Accounting Principles (GAAP) and International Financial Reporting 
Standards (IFRS), and actuarial standards of practice. 

This chapter is organized in the following sections: 

• Basic reinsurance terminology 
• Functions of reinsurance 
• Major types of reinsurance 
• Reinsurance concepts and contract provisions influencing the estimation of unpaid losses 

Basic Reinsurance Terminology 

Reinsurance has its own vocabulary, so it is important to start with basic reinsurance terms before a 
discussion of the functions and types of reinsurance. New terms are shown in bold when defined, which 
may not be at the term’s first use.  

Reinsurance is a form of insurance in which the reinsurer, in consideration of a premium, agrees to 
indemnify the reinsured for part or all of the loss that the reinsured may sustain under the policy or 
policies that it has issued. The reinsured, which is the insurer that cedes its business (i.e., reinsures its 
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liability) with another, is also referred to as the ceding company, or the cedent. Reinsurance is used by 
primary insurers, captive insurers, self-insurers, and even by reinsurers. Given the range of organizations 
that purchase reinsurance, the term ceding company is typically used in this text to refer to those who 
purchase reinsurance. The reinsurer is the insurer that accepts all or part of the insurance liabilities of 
the ceding company for a stated premium. 

In the context of reinsurance, insurers and reinsurers refer to business that is ceded and assumed. For 
business ceded, the risk is transferred from the ceding company to the reinsurer. Ceded insurance 
policies are referred to as the subject policies or the underlying policies. In the context of IFRS 17–
Insurance Contracts, ceded reinsurance contracts are referred to as reinsurance contracts held. A 
reinsurer assumes the business transferred through reinsurance from the insurer.  

A reinsurer can transfer risks it has reinsured to another reinsurer through a retrocession, which is the 
reinsuring of reinsurance. In a retrocession, the ceding reinsurer is known as the retrocedent, and a 
retrocessionaire is the assuming reinsurer. 

When working with data and reporting on financial results, the terms gross, net, and ceded (losses and 
premiums) have slightly different meanings when used with primary insurers and reinsurers. When used 
for a primary insurer, 

• Gross experience refers to the sum of direct and assumed business, 
• Ceded experience refers to business transferred through reinsurance, and  
• Net experience is equal to gross less ceded experience. 

In a reinsurance context, 

• Gross experience refers to assumed business, 
• Ceded experience refers to business transferred through retrocessions, and  
• Net experience is equal to gross less ceded experience. 

In a reinsurance context, the retention is the amount of insurance liability or loss that the ceding 
company retains for its own account after consideration for reinsurance. Depending on the type of 
reinsurance, the retention can be expressed as a percentage or a dollar amount. The ceding company’s 
retention may also be referred to as the attachment point, which is the point at which reinsurance 
begins to apply. 

The working layer is a dollar range in which the insurer (or reinsurer) expects relatively predictable loss 
experience with a fairly high level of loss frequency. The determination of the boundary of a working 
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layer is subjective and depends on an organization’s unique risk appetite.6 A layer that the ceding 
company determines to be a working layer would typically be different from a layer that a reinsurer 
determines to be a working layer. Frequently, a ceding company retains losses within its working layer 
and cedes losses (or a portion of losses) in excess of such a working layer.  

Reinsurers often receive data by bordereau (plural bordereaux) from ceding companies or the brokers 
of their ceding companies. Bordereau is defined by the International Risk Management Institute (IRMI) 
as follows: 

Furnished periodically by the reinsured, a detailed report of insurance premiums or losses 
affected by reinsurance. A premium bordereau contains a detailed list of policies (or bonds) 
reinsured under a reinsurance treaty during the reporting period, reflecting such information as 
the name and address of the primary insured, the amount and location of the risk, the effective 
and termination dates of the primary insurance, the amount reinsured and the reinsurance 
premium applicable thereto. A loss bordereau contains a detailed list of claims and claims 
expenses outstanding and paid by the reinsured during the reporting period, reflecting the 
amount of reinsurance indemnity applicable thereto. Bordereau reporting is primarily applicable 
to pro rata reinsurance arrangements and to a large extent has been supplanted by summary 
reporting.7 

Chapter 2 expands on issues related to reinsurance bordereaux. 

The final term to be defined in this section is counterparty default risk, or simply default risk. In a 
reinsurance context, counterparty default risk is the risk that the reinsurer is unable to meet its 
contractual obligations. In all situations, to the extent that a reinsurer is unable to meet its obligations, 
the assumed liability falls back to the ceding company who has the contractual relationships with the 
underlying insured or policyholder. 

Functions of Reinsurance 

Reinsurance is used to spread risk by transferring some of the risk from the ceding company to the 
reinsurer or reinsurers. In Foundations of Casualty Actuarial Science, Gary Patrik states: 

The nature and purpose of reinsurance is to reduce the financial cost to insurance companies 
arising from the potential occurrence of specified insurance claims, thus further enhancing 
innovation, competition, and efficiency in the marketplace. The cession of shares of liability 

 
6 The IRMI Glossary defines risk appetite as “the degree to which an organization’s management is willing to accept the uncertainty of loss for a 

given risk when it has the option to pay a fixed sum to transfer that risk to an insurer” (see https://www.irmi.com/term/insurance-
definitions/risk-appetite.) 

7 Robert Strain, “Reinsurance Terminology Explained: Bordereau and Other Terms of Art,” IRMI Expert Commentary, 
https://www.irmi.com/articles/expert-commentary/reinsurance-terminology-explained-bordereau. 

https://www.irmi.com/term/insurance-definitions/risk-appetite
https://www.irmi.com/term/insurance-definitions/risk-appetite
https://www.irmi.com/articles/expert-commentary/reinsurance-terminology-explained-bordereau
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spreads risk further throughout the insurance system. Just as an individual or company 
purchases an insurance policy from an insurer, an insurance company may purchase fairly 
comprehensive reinsurance from one or more reinsurers.8 

Ceding companies purchase reinsurance for five primary reasons: 

• Promote stability. 
• Increase capacity. 
• Protect against catastrophe. 
• Manage capital and solvency margin. 
• Access technical expertise. 

Promote Stability  
Reinsurance is used to help ceding companies stabilize their loss experience within a year and from year 
to year. Ceding companies typically retain smaller, more predictable claims and cede those claims that 
are more unusual and infrequent. In this manner, reinsurance can protect the ceding company from 
shocks associated with large unforeseeable losses. Some ceding companies use reinsurance with 
relatively low attachment points to provide stability even for losses that are not considered large or 
unforeseeable. With reinsurance, results can be stabilized by limiting a ceding company’s losses 
following a single event or the accumulation of losses arising from multiple events. By promoting 
stability, reinsurance can decrease the probability of ruin for a ceding company. 

Increase Capacity 
Reinsurance expands a ceding company’s ability to assume risk by ceding a portion of all its policies or 
simply its larger policies. Ceding companies often purchase reinsurance to increase their capacity for 
accepting more business, particularly higher limit policies. For example, assume a large primary insurer 
was approached to write commercial property insurance for a sports stadium with policy limits of 500 
million. Further assume that the primary insurer’s risk appetite framework established a net retention of 
5 million. Thus, to be able to offer an insurance solution for the stadium, the primary insurer could seek 
reinsurance from one or more reinsurers to provide the additional 495 million limits of coverage.  

The ability for a cedent to offer more capacity on an individual account can be very important, especially 
for quality accounts that the ceding company might otherwise not be able to write. Furthermore, by 
providing capacity, reinsurers help facilitate the competition of small insurers with large insurers who, 
by their nature, can and do generally accept more risk.  

 
8 Patrik, “Reinsurance,” in Foundations of Casualty Actuarial Science, 4th ed. (Arlington, VA: CAS, 2001), 344. 
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Protect Against Catastrophes  
Protection from catastrophes, both natural and man-made, is a major purpose of reinsurance. 
Reinsurance is used to protect ceding companies from a single catastrophic loss event (such as a 
hurricane or typhoon, earthquake, or wildfire) as well as multiple large loss events (such as multiple 
hurricanes or typhoons within a single year or a season of multiple wildfires in a single state, province, 
or country). Reinsurance is also used to protect against casualty losses in which multiple insureds are 
involved in one occurrence (such as terrorism attacks or vehicle accidents in which many people are 
injured). 

Manage Capital and Solvency Margin 
A ceding company can avoid large losses by passing risk to a reinsurer and thus freeing up additional 
capital. Insurers (including reinsurers) are required by law and regulation to have sufficient capital for 
potential future claims on all policies written. According to the Insurance Information Institute, “If the 
insurer can reduce its responsibility, or liability, for these claims by transferring a part of the liability to 
another insurer, it can lower the amount of capital it must maintain to satisfy regulators that it is in good 
financial health and will be able to pay the claims of its policyholders.”9  

Through the purchase of some types of reinsurance, a ceding company can accept new risks and avoid 
the need to raise additional capital. Patrik describes the reinsurance function of managing financial 
results as follows: 

Reinsurance can alter the timing of income, enhance statutory and/or GAAP surplus, and 
improve various financial ratios by which insurers are judged. An insurance company with a 
growing book of business whose growth is stressing their surplus can cede part of their liability 
to a reinsurer to make use of the reinsurer’s surplus. This is essentially a loan of surplus from the 
reinsurer to the cedant until the cedant’s surplus is large enough to support the new business.10 

Financial results of the ceding company are managed because the ceded commission on the unearned 
premium reserve transfers statutory surplus from the reinsurer to the cedent. The premium ceded also 
reduces the ceding company’s net premium-to-surplus ratio, referred to as the solvency margin. With a 
lower premium-to-surplus ratio, the ceding company can write more business.  

Access Technical Expertise 
An important function of reinsurance is access to the technical expertise of reinsurers, particularly in 
areas of underwriting, marketing, claims, loss prevention, and pricing. In an IRMI Expert Commentary 
article on reinsurance, Larry Schiffer states, “Quality reinsurers provide special expertise to their direct 

 
9 Quoted in Bethan Moorcraft, “Facultative and Treaty Reinsurance: The Differences Explained,” Insurance Business Canada, June 3, 2019, 

https://www.insurancebusinessmag.com/ca/guides/facultative-and-treaty-reinsurance-the-differences-explained-168931.aspx. 
10 Patrik, “Reinsurance,” 345–46. 

https://www.insurancebusinessmag.com/ca/guides/facultative-and-treaty-reinsurance-the-differences-explained-168931.aspx
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insurer clients and assist the direct insurer in providing the best possible protection and risk 
management for the direct insurer’s own clients.”11 

This can be particularly important for small insurers, for whom reinsurers often provide engineering, 
actuarial, and claims expertise and training. Insurers seeking to enter new lines of business or regions 
where they do not have experience often turn to reinsurers with market leadership for insight and 
knowledge. The expertise of reinsurers can be used to help ceding companies explore their underwriting 
opportunities and ultimately their book of business. 

Other Functions of Reinsurance 
Reinsurance can be used to facilitate a ceding company’s withdrawal from a line of business, geographic 
area, or a production source. Finally, there are certain market conditions where reinsurance is used for 
arbitrage when a ceding company believes that additional profits can be garnered by purchasing 
reinsurance for a value less than the premium the cedent collects from its policyholders.  

Different types of reinsurance serve these varied purposes to different degrees.  

 
11 Schiffer, “Reinsurance Matters,” IRMI Expert Commentary, March 2000, https://www.irmi.com/articles/expert-commentary/reinsurance-

matters. 

https://www.irmi.com/articles/expert-commentary/reinsurance-matters
https://www.irmi.com/articles/expert-commentary/reinsurance-matters
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Types of Reinsurance 

Insurers frequently purchase a variety of reinsurance contracts to serve the functions of stability, 
capacity, catastrophe protection, financing, and expertise. It is critical for the actuary to understand 
details of the types of reinsurance used to cede and assume business as there are likely implications on 
actuarial work, particularly on the data required, the selection of methodology, and the development of 
assumptions.  

An important characteristic of reinsurance contracts is their manuscript nature, whereby reinsurance 
contracts are developed to meet the specific needs of the ceding company and the reinsurer(s). This is 
quite different from many primary insurance contracts, particularly personal auto12 and personal 
property13 policies, where the contract is the same for all insureds, with the exception minors such as 
deductible and policy limits and the use of standard endorsements. Given the tailored nature of 
reinsurance contracts, it can be challenging to generalize about the types of reinsurance. Thus, it should 
be understood that exceptions to the material presented in this section are common. 

Reinsurance is typically categorized as treaty or facultative and as proportional or non-proportional. 

Treaty and Facultative Reinsurance 
Treaty Reinsurance 

Treaty reinsurance is a type of reinsurance in which the ceding company enters into a contractual 
agreement with one or more reinsurers to cede all business arising from certain lines of business as 
specified in the contract. The treaty may span one year or multiple years. In treaty reinsurance, the 
ceding company agrees to cede and the reinsurers agree to assume all the business written by the 
ceding company that falls within the terms of the treaty, subject to the limits specified in the treaty. 
With treaty reinsurance, the reinsurer agrees to accept policies that the ceding company has not yet 
written to the extent that the risks fall within the treaty’s terms. 

The most important characteristic of treaty reinsurance is the absence of individual underwriting by the 
reinsurer. In essence, treaty reinsurance transfers underwriting risk from the ceding company to the 
reinsurer, leaving the reinsurer exposed to the possibility that the initial underwriting process did not 
adequately evaluate the risks insured.  

Facultative Reinsurance  

Facultative reinsurance differs from treaty reinsurance in that a facultative cession is not automatic. The 
word facultative connotes that both the ceding company and the reinsurer usually have the faculty (i.e., 
option) of accepting or rejecting the individual submission. Facultative reinsurance is distinguished from 

 
12 Auto insurance is also referred to as motor and car insurance. 
13 Personal property insurance is also referred to as homeowners, home, and household insurance. 
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treaty reinsurance where there is an obligation for the cedant to cede a risk or for the reinsurer to 
accept the ceding risk. In facultative reinsurance, a submission, acceptance, and resulting agreement are 
required for each individual risk or a defined group of risks that the ceding company wants to reinsure, 
and the ceding company negotiates an individual reinsurance agreement for each policy it reinsures.  

For facultative coverage, a certificate of reinsurance is frequently used. The certificate is a record of 
reinsurance coverage pending replacement by a formal reinsurance contract. With facultative 
reinsurance, the ceding company can acknowledge acceptance of terms, with the reinsurer’s obligation 
contingent on validity of key information that is stated in the certificate.14  

The primary purpose of facultative reinsurance is capacity. Facultative contracts can be tailored to the 
specific circumstances, and thus are typically used for high-value and hazardous commercial risks. 
Facultative reinsurance has the potential for adverse selection. However, unlike treaty reinsurance, a 
reinsurer may conduct its own underwriting with facultative reinsurance and thus mitigate the risk of 
adverse selection.  

Examples of Treaty and Facultative Reinsurance 

Generalizing about reinsurance is challenging given the tailored nature of most reinsurance contracts. 
Nevertheless, the following examples help demonstrate common uses of facultative and treaty 
reinsurance:  

• A ceding company maintains property treaty reinsurance for all policyholders with total insured 
values (TIV) less than 25 million. Reinsurance coverage for all policyholders with TIV of 25 million 
or more is placed through the facultative market. 

• A ceding company maintains casualty treaty reinsurance for automobile risks and uses 
facultative reinsurance for environmental liability risks. 

• A ceding company maintains workers’ compensation treaty reinsurance for employers with less 
than 1,000 employees. Workers’ compensation policies for employers with more than 1,000 
employees are protected with facultative reinsurance. 

For the treaty reinsurance mentioned above, all ceded risks would be subject to the terms and limits of 
each treaty (i.e., property, casualty, and workers’ compensation). For the facultative reinsurance, terms 
and conditions would be tailored to meet the unique situations of the ceded risks. 

Hybrid of Treaty and Facultative Reinsurance 

Hybrid contracts, which blend characteristics of treaty and facultative reinsurance, can be used to 
provide capacity and some degree of stabilization as they can cover many underlying policies. Patrik 

 
14 “Certificate of Reinsurance,” IRMI Glossary, https://www.irmi.com/term/insurance-definitions/certificate-of-reinsurance. 

https://www.irmi.com/term/insurance-definitions/certificate-of-reinsurance
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notes that “because of the many special cases and exceptions, it is difficult to make correct 
generalizations about reinsurance.”15 This is particularly true of hybrid agreements.  

The IRMI Glossary contains the following two definitions of hybrid reinsurance arrangements: 

Facultative Automatic – a form of property and casualty (P&C) reinsurance that is a hybrid 
between facultative and treaty. A bordereau of risks ceded is submitted to the reinsurer, which 
has limited rights to decline individual risks. 

Facultative Obligatory Treaty – the hybrid between the facultative versus treaty approach. It is 
a treaty under which the primary insurer has the option to cede or not cede individual risks. 
However, the reinsurer must accept any risks that are ceded.16 

Guy Carpenter defines facultative semi-obligatory treaty as “a reinsurance contract under which the 
ceding company may or may not cede exposures or risks of a defined class to the reinsurer, which is 
obligated to accept if ceded.”17 Finally, Patrik describes non-obligatory agreements where “either the 
cedant may not be required to cede or the reinsurer may not be required to assume every single policy 
of the specified type.”18 

Given the manuscript nature of most reinsurance contracts, it is incumbent on the actuary working with 
reinsurance to understand the details of these specialized agreements.  

Proportional and Non-Proportional Reinsurance 
Both treaty reinsurance and facultative reinsurance can be written on either a proportional or non-
proportional basis. Proportional reinsurance is intended to provide capacity and surplus relief to ceding 
companies, while non-proportional reinsurance is intended to provide stability by protecting the risks 
insured by the ceding company’s losses above a limit. 

Proportional reinsurance, which is also known as pro rata reinsurance and participating reinsurance, is 
given its name because both premiums and losses (payments and liabilities) are shared between the 
ceding company and the reinsurers based on the cession percentage. With proportional reinsurance, the 
reinsurer typically pays a ceding commission to the ceding company to reimburse for expenses 
associated with issuing the underlying policy (e.g., acquisition and underwriting expenses). This 
commission can be reduced if there is uncertainty about the expected profitability of the business.  

 
15 Patrik, “Reinsurance,” 344. 
16 See IRMI Glossary, https://www.irmi.com/term/insurance-definitions/facultative-automatic and https://www.irmi.com/term/insurance-

definitions/facultative-obligatory-treaty.  
17 “Facultative Semi-Obligatory Treaty,” Guy Carpenter Glossary,  

https://www.guycarp.com/content/guycarp/en/home/the-company/media-resources/glossary/f.html. 
18 Patrik, “Reinsurance,” 347.  

https://www.irmi.com/term/insurance-definitions/facultative-automatic
https://www.irmi.com/term/insurance-definitions/facultative-obligatory-treaty
https://www.irmi.com/term/insurance-definitions/facultative-obligatory-treaty
https://www.guycarp.com/content/guycarp/en/home/the-company/media-resources/glossary/f.html
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Proportional reinsurance is generally quite easy to administer and offers protection to the ceding 
company against both the frequency and severity of losses. The two types of proportional reinsurance 
are quota share and surplus share. 

Quota Share Reinsurance 

With quota share reinsurance, the ceding company cedes to the reinsurer an agreed percentage of each 
risk it insures (i.e., each subject or underlying policy) that falls within the line(s) of business subject to 
the reinsurance contract. In return, the reinsurer receives a fixed percentage of premium and losses for 
all risks ceded to the quota share arrangement.  

A simplistic example of quota share reinsurance follows. Assume a quota share reinsurance treaty 
applicable to a single line of business with a cession percentage of 60% (i.e., the ceding company retains 
40% and the reinsurer assumes 60%). Table 1. 1 presents the retained and ceded premium and losses 
for two underlying policies that are subject to the quota share reinsurance. 
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Table 1. 1. Quota Share Reinsurance Example 

Insured Gross of Reinsurance Retained 
(Net of Reinsurance) 

Ceded 

Earned 
Premium 

Ultimate 
Loss 

Earned 
Premium 

Ultimate 
Loss 

Earned 
Premium 

Ultimate 
Loss 

#1 1,000 600 400 240 600 360 

#2 1,000 3,000 400 1,200 600 1,800 

Total 2,000 3,600 800 1,440 1,200 2,160 

The gross, net of reinsurance, and ceded loss ratios are summarized in Table 1. 2. 

Table 1. 2. Quota Share Reinsurance Example (Continued) 

Insured Ultimate Loss Ratio 

Gross Net of Reinsurance Ceded 

#1 60% 60% 60% 

#2 300% 300% 300% 

Total 180% 180% 180% 

Observe that with quota share reinsurance, the loss ratios (i.e., the losses divided by the premium) are 
the same for both the ceding company and the reinsurer.  

Variable quota share reinsurance is a special form of quota share reinsurance in which the cession 
percentage varies based on explicit risk characteristics, such as limit, geography, or type of risk. 

Typically, but not always, quota share reinsurance is on a treaty basis. Quota share reinsurance usually 
applies to the ceding company’s net retained account (i.e., after deducting all other reinsurance except 
perhaps excess of loss catastrophe reinsurance), but practices vary.  
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Surplus Share Reinsurance 

With surplus share reinsurance, the ceding reinsurer only reinsures losses that exceed the “surplus” 
amount after the cedant’s retention. The ceding company cedes the surplus amount of risk above its 
retained line subject to a maximum ceded percentage and limit. In surplus share reinsurance, the line 
describes the amount of the ceding company’s retained risk; the reinsurer’s share is typically expressed 
as a multiple of the ceding company’s retained line. For example, a three-line surplus share treaty 
provides reinsurance for three times the ceding company’s retained liability, enabling the ceding 
company to write four times as much insurance as was possible before reinsurance. Continuing with a 
three-line surplus share reinsurance example, assume the following: 

• A ceding company wants to write commercial automobile insurance policies to a maximum limit 
of 10 million per policy, but its risk appetite framework sets a net retention of 2.5 million per 
policy. 

• A three-line surplus share treaty meets the ceding company’s objective by providing 7.5 million 
surplus share reinsurance. 

• Losses arising from policy limits of 2.5 million and lower are retained fully by the ceding 
company. 

• For losses arising from policies with limits greater than 2.5 million, the proportion of each loss 
covered by the surplus share reinsurance is determined by the formula  

Proportion Ceded = [Policy Limit – Retained Line] / [Policy Limit]. 

Table 1. 3 demonstrates the different proportions ceded based on three different insureds with 
different policy limits assuming each insured incurs a 2.5 million loss. 

Table 1. 3. Surplus Share Reinsurance Example 

Insured 
Policy 

Limits(M) 
Ultimate 
Loss (M) 

Proportion Ceded 
Ultimate Loss (M) 

Retained Ceded 

#1 2.5 2.5 0% 2.5 0 

#2 5 2.5 50% = (5 M – 2.5 M) /5 M 1.25 1.25 

#3 10 2.5 75% = (10 M – 2.5 M) /10 M 0.625 1.875 
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Given the different proportions ceded, surplus share reinsurance can be described as variable quota 
share reinsurance. In her definition of surplus treaty, Ana J. Mata explains the difference between quota 
share and surplus share reinsurance: 

The main difference between a surplus treaty and quota share reinsurance (or standard 
proportional reinsurance) is that in a quota share the insurer and the reinsurer share in a fixed 
proportion each and every risk of the portfolio (losses and premiums), for example, 80% of 
every risk may be ceded to the reinsurer. In a surplus treaty, the ceding company retains a fixed 
maximum amount for each risk and this amount defines the retained proportion depending on 
the total size of the underlying policy. For example, if the retained line is $100 000 per risk, for a 
$500 000 policy limit the ceding company retains 20%, while for a $200 000 policy limit it retains 
50%.19 

With surplus share reinsurance, the ceding company limits its net exposure to one line regardless of the 
amount of insurance written. In practice, there are many variations in how surplus share reinsurance 
operates, with different numbers of lines that may be in separate reinsurance contracts with different 
reinsurers. 

Functions of Proportional Reinsurance 

Of the five primary functions of reinsurance described previously, proportional reinsurance is frequently 
used to manage capital and solvency margins and to increase capacity. In their 2012 CAS Study Note on 
reinsurance accounting, Ralph Blanchard and Jim Klann present a detailed example of how a quota share 
reinsurance contract provides surplus relief, and they comment, “Net leverage ratios [written premium-
to-surplus] are significantly improved, although ceded reinsurance leverage ratios are significantly 
increased. Hence, the insurer’s solvency becomes more reliant on its reinsurers’ solvency.”20 

Ceding companies often use proportional reinsurance to support their need to write larger risks than 
they are comfortable with (i.e., increase capacity), and surplus share reinsurance does this most 
effectively. Depending on the cession percentage and the exposure to event or catastrophic risk, 
proportional reinsurance can also protect against catastrophes.  

Non-Proportional Reinsurance 
In non-proportional reinsurance, which is also referred to as excess of loss reinsurance, the reinsurer’s 
response to a loss is determined by the size of the loss. This type of reinsurance is called non-
proportional because the premium is not proportional to the limits of coverage. Like proportional 
reinsurance, non-proportional reinsurance may be written on a treaty or facultative basis.  

 
19 Ana J. Mata, “Surplus Treaty,” in Encyclopedia of Actuarial Science (Wiley Online Library, 2006), 

https://doi.org/10.1002/9780470012505.tas047. 
20 Ralph S. Blanchard III and Jim Klann, “Basic Reinsurance Accounting – Selected Topics” (CAS Study Note, Arlington, VA, 2012), 

https://www.casact.org/library/studynotes/Blanchard-Klann-Basic-Rein-Accounting.pdf. 

https://onlinelibrary.wiley.com/doi/10.1002/9780470012505.tas047
https://www.casact.org/library/studynotes/Blanchard-Klann-Basic-Rein-Accounting.pdf
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Excess of loss reinsurance describes a form of reinsurance that, subject to a specified limit, indemnifies 
the ceding company against all or a portion of the amount of loss in excess of the ceding company’s 
retention. The main types of excess of loss reinsurance include the following: 

• excess per risk 
• excess per occurrence and catastrophe 
• annual aggregate excess of loss 
• clash.  

To understand the differences between these types of reinsurance, it is helpful to focus on the subject 
loss, which are the losses that are relevant to the reinsurance cover. 

Excess Per Risk Reinsurance 

Excess per risk reinsurance, which is also referred to as excess per policy reinsurance, is a form of 
excess of loss reinsurance that, subject to a specified limit, indemnifies the ceding company against the 
amount of loss in excess of a specified retention with respect to each risk involved in each loss. A “risk” 
in this form of reinsurance could be the coverage on one building or a group of buildings for fire or flood 
or the insurance coverage under a single policy that the ceding company treats as a single risk. Excess 
per risk insurance is typically less exposed than excess per occurrence and catastrophe reinsurance to 
accumulations of exposures and losses but can still be impacted by natural catastrophes including 
earthquakes, wildfires, floods, etc. 

An example of excess per risk reinsurance is a ceding company that sells property policies with a 10 
million limit and maintains excess per risk reinsurance with a 3 million attachment point and reinsurance 
limit of 7 million. For a loss of 3 million, the ceding company retains the full loss (i.e., there is no 
coverage from the excess per risk reinsurance). For a 6.5 million loss, the ceding company retains losses 
of 3 million, and the reinsurer assumes losses of 3.5 million. 

Excess per risk reinsurance is primarily used to protect property exposures, although it can be used for 
casualty lines of business. Like proportional reinsurance, excess per risk reinsurance enables ceding 
companies to write larger risks (i.e., increase capacity). While some excess per risk treaties have ceding 
commissions, the expense and surplus relief tend to be less than proportional reinsurance because the 
premiums tend to be significantly less.  

Excess Per Occurrence Reinsurance and Catastrophe Reinsurance 

Excess per risk and excess per occurrence are similar in that the ceding company retains the first portion 
of loss and the reinsurer assumes the excess of the retention, subject to the reinsurance limit.  

Excess per occurrence reinsurance differs from excess per risk as it protects a ceding company from an 
accumulation of losses due to a single occurrence or event. The subject loss in excess per occurrence 
reinsurance is the sum of all losses arising from an insured event for all subject policies.  
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Catastrophe reinsurance, which is also referred to as catastrophe excess of loss and catastrophe cover, 
is a form of excess of loss reinsurance that, subject to a specified limit, indemnifies the ceding company 
for the accumulation of losses in excess of a specified retention arising from a single catastrophic event 
or a series of events. Catastrophe reinsurance protects against property as well as casualty losses that 
arise due to natural events (e.g., hurricanes and earthquakes) and man-made events (e.g., terrorist 
attacks and airplane accidents). Catastrophe reinsurance is offered on a worldwide basis as well as in 
limited regions. 

In the event of a loss, which may be a full limit loss or other amount (e.g., 50% of limit) that is specified 
in the reinsurance contract, most catastrophe reinsurance contracts provide for a reinstatement of the 
policy limit. A reinstatement is the restoration of the policy limit following payment of a full limit loss. 
One or more reinstatements may be automatic as part of the reinsurance terms or may be available on 
request. Depending on the terms, the reinstatement may be included with or without additional 
premium. Premium paid for a reinstatement is referred to as reinstatement premium. 

It is important for the actuary to track reinstatement premiums separately, as the accounting treatment 
of reinstatement premiums may differ from other reinsurance premium in that reinstatement premium 
may be considered earned immediately. Furthermore, reinstatement premium can distort historical 
relationships between premium and losses and should be recognized in the determination of expected 
loss ratios, which are critical assumptions for some loss projection techniques. 

An example of catastrophe reinsurance is a ceding company that maintains catastrophe reinsurance of 
35 million. Assume a flood results in total personal property and commercial property losses of 42 
million. The ceding company would retain losses of 35 million, and the reinsurer would assume losses of 
7 million. 

Example of Excess Per Risk and Catastrophe Reinsurance 

It is critically important to understand how multiple reinsurance contracts, both treaty and facultative, 
interact. In reinsurance, one refers to how a contract inures to the benefit of another. Guy Carpenter’s 
Glossary of Reinsurance Terms defines inure to the benefit of as follows: 

To take effect for the benefit of either the reinsurer or the reinsured. With respect to a given 
reinsurance contract (usually treaty), other reinsurances which are first applied to reduce the 
loss subject to the given contract are said to inure to the benefit of the reinsurer of that given 
contract. If the other reinsurances are to be disregarded as respects loss to the given contract, 
they are said to inure to the benefit of the reinsured.21 

 
21 “Inure to the Benefit of,” Guy Carpenter Glossary,  

https://www.guycarp.com/content/guycarp/en/home/the-company/media-resources/glossary/i.html. 

https://www.guycarp.com/content/guycarp/en/home/the-company/media-resources/glossary/i.html
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An example helps clarify the application of excess per risk reinsurance and catastrophe reinsurance as 
well as how one contract inures to the benefit of another contract. Assume a ceding company writes 
200 personal property policies each with a 2 million limit. Further, assume that the ceding company 
purchases excess per risk reinsurance with a retention of 1 million and reinsurance policy limit of 1 
million. The ceding company also purchases catastrophe reinsurance with a retention of 20 million and 
reinsurance policy limit of 150 million. The per risk excess reinsurance inures to the benefit of the 
catastrophe reinsurance. After a major wildfire, the ceding company’s total insured losses (prior to any 
reinsurance) and the losses ceded to the per risk reinsurance are summarized in Table 1. 4 

Table 1. 4. Excess Per Risk Reinsurance Example 

Individual Losses 
Expressed as 
Proportion of 

2 Million 
Policy Limits 

Individual 
Losses  

Per Policy 

# Insureds Suffering 
Losses 

Total  
Insured 
Losses 

Losses Ceded 
Excess Per Risk 

Reinsurance 

10% 200,000 35 7 million 0 

50% 1 million 10 10 million 0 

100% 2 million 5 10 million 5 million 

The ceding company’s retained losses after the excess per risk reinsurance are 22 million, and the 
catastrophe reinsurance then applies with a cession of 2 million (22 million minus retention of 20 
million). Recall that the ceding company’s net retention is 20 million. 

The situation would be quite different if all 200 homes were totally destroyed by the wildfire, which is a 
highly unlikely situation. Nevertheless, the losses for such an event would be as follows: 

• Total insured losses of 400 million (200 insureds x 2 million policy limits). 
• Total losses ceded to excess per risk of 200 million (200 insureds x 1 million excess per risk policy 

limits). 
• Total losses ceded to catastrophe reinsurance of 150 million. 
• Total losses retained by ceding company of 50 million, which are equal to 

o 20 million retention of catastrophe reinsurance, and 
o 30 million of losses above the 150 million policy limit of the catastrophe reinsurance. 

If the ceding company were to incur a full limit loss under the catastrophe reinsurance, reinstatement of 
the policy limit could be very important, especially if the losses were to occur when there is significant 
time remaining in the contract period. 
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Annual Aggregate Excess of Loss Reinsurance 

Aggregate excess of loss reinsurance, which is also referred to as aggregate stop-loss reinsurance, is a 
form of excess of loss reinsurance that provides the ceding company with a guarantee that their losses 
will not exceed a predetermined threshold, which can be specified as a percentage of premiums (i.e., 
loss ratio) or a fixed dollar amount. The reinsurer indemnifies the ceding company for the amount of 
losses that are greater than a specified aggregate value.  

For example, assume a captive insurer writing medical malpractice coverage seeks aggregate excess of 
loss reinsurance. Alternatives for the aggregate excess of loss reinsurance coverage could include: 

• 20% loss ratio excess of the captive’s retention of a 90% loss ratio, and 
• 10 million limits excess of the captive’s retention of 50 million. 

Continuing this example, assume the aggregate excess of loss reinsurance is stated in terms of loss ratio 
and that the captive has subject premium of 10 million. Thus, the aggregate excess of loss reinsurance 
would provide coverage of 2 million (10 million premium x 20%) excess of 9 million losses (10 million 
premium x 90%). 

Aggregate excess of loss reinsurance generally applies to all or part of the ceding company’s net 
retention and protects net results (i.e., other reinsurance inures to the benefit of the aggregate excess 
of loss reinsurance), although claims occurring from natural catastrophes may be excluded or have per 
occurrence limits. For a ceding company seeking to protect its capital, aggregate excess of loss 
reinsurance best achieves this objective. However, this type of reinsurance is often unavailable and, 
when available, can be very expensive.  

Clash 

Clash reinsurance is a casualty reinsurance contract that attaches above all other policy limits. IRMI 
describes clash coverage as a type of reinsurance that protects a ceding company “from the loss of its 
normal reinsurance recoveries when it is faced with multiple claims from multiple insureds arising out of 
the same catastrophe and where its reinsurance does not fully reimburse the insurer for these related 
losses.”22 The objective of clash coverage is to protect the ceding company burdened by multiple claims 
arising from exceptional events that are beyond the types of claims contemplated by traditional primary 
insurance and excess of loss reinsurance policies. 

The definition of clash event is a critical aspect of a clash reinsurance contract and varies according to 
the intentions of the insurer and reinsurer. IRMI notes that the core definition of clash event generally 
has three components: 

 
22 Larry Schiffer, “Clash Cover Reinsurance and Economic Catastrophe Losses,” IRMI Expert Commentary, March 2009, 

https://www.irmi.com/articles/expert-commentary/clash-cover-reinsurance-and-economic-cat-losses. 

https://www.irmi.com/articles/expert-commentary/clash-cover-reinsurance-and-economic-cat-losses
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• The loss must arise out of multiple policies held by one insured or similar policies held by 
multiple insureds. 

• All damages are traceable to and the direct consequence of a specific event. 
• The event must take place in its entirety within a specific timeframe.23 

Finite Risk Reinsurance 
The Insurance Information Institute describes finite risk reinsurance as “a form of reinsurance that 
specifically incorporates the time value of money. Unlike most reinsurance contracts, finite risk 
contracts are usually multi-year. In other words, they spread risk over time and generally take into 
account the investment income generated over the period.”24 

Finite reinsurance products typically have the following features: 

• Risk transfer and risk financing combined in a multi-year contract. 
• Emphasis on the time value of money, with investment income explicitly included in the 

contract. 
• Limited assumption of risk by the reinsurer. 
• Sharing of the results with the ceding company.25 

The Insurance Information Institute uses the term run-off to refer to a special segment of solutions and 
products focused on the full-scale transfer of reserve development risks. They state: 

Run-off solutions are tools that address a firm’s earnings volatility arising from past activities. 
There are a number of special situations that motivate a company to choose a run-off option, 
like corporate restructuring, mergers & acquisitions, discontinuation of lines of business, erratic 
changes in the valuation or cost of a liability, or regulatory, accounting or tax changes. The 
biggest run-off transactions to date in the United States have involved either asbestos & 
environmental (A&E) or workers’ compensation liabilities. Most transactions have involved 
insurers, but the economics also work for corporations and captives.26 

Loss Portfolio Transfers 

While most primary P&C insurance contracts are written for a one-year policy term, losses frequently 
pay out over many years. As a result, insurers hold large loss reserves that are associated with payments 
in future years for policies written in prior years. At times, insurers want to be relieved of the 
uncertainty associated with such loss reserves and relief in the capital that must be held for these 

 
23 Schiffer, “Clash Cover Reinsurance.” 
24 “Finite Risk Reinsurance,” Insurance Information Institute, https://www.iii.org/article/finite-risk-reinsurance. 
25 “Finite Risk Reinsurance,” https://www.iii.org/article/finite-risk-reinsurance. 
26 “Finite Risk Reinsurance,” https://www.iii.org/article/finite-risk-reinsurance. 

https://www.iii.org/article/finite-risk-reinsurance
https://www.iii.org/article/finite-risk-reinsurance
https://www.iii.org/article/finite-risk-reinsurance
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reserves. A loss portfolio transfer (LPT) is a form of reinsurance that transfers, at a specified accounting 
date, from the ceding company to the reinsurer all or a portion of the liability for future loss payments. 
The IRMI Glossary provides the following definition of an LPT: 

A financial reinsurance transaction in which loss obligations that are already incurred and will 
ultimately be paid are ceded to a reinsurer. In determining the premium paid to the reinsurer, 
the time value of money is considered, and the premium is therefore less than the ultimate 
amount expected to be paid. The cedent’s statutory surplus increases by the difference between 
the premium and the amount that had been reserved. An insurer seeking to withdraw from 
writing workers’ compensation coverage in a given state could, for example, use a loss portfolio 
transfer to meet its obligations under policies it has written, without the need to continue the 
day-to-day management of the claims resolution function.27 

Typically, LPTs are used with long-tail lines of business (such as medical malpractice, asbestos, and 
pollution liability) where there are significant delays in the reporting of claims and the losses may not be 
settled for years. Timing is the main element of risk. If claims are settled earlier than expected, then 
investment income could be lower than anticipated, and the reinsurer could lose money on the 
contract. In an LPT, the ultimate total nominal losses are usually limited by the finite reinsurance 
contract. 

Adverse Development Cover 

An alternative to an LPT is adverse loss development cover (or simply adverse development cover), 
where the ceding company receives reimbursement from the reinsurer for losses in excess of a pre-
agreed retention level. Unlike an LPT, there is no transfer of loss reserves from the ceding company to 
the reinsurer providing the adverse loss development cover. Instead, reinsurance is set at the level of 
the reserves held or at some higher level (often expressed as a multiple) of the held reserves. A key use 
of adverse development cover is mergers and acquisitions where the ceding company can transfer risks 
associated with both timing and adverse reserve development. 

Reinsurance Concepts and Contract Provisions Influencing the 
Estimation of Unpaid Losses 

Losses-Occurring-During and Risks-Attaching 
Given the tailor-made nature of reinsurance contracts, it is critically important that the contract wording 
appropriately reflects the intent of the parties and that the ceding company and reinsurer fully 
understand what risks are being reinsured. The business-covered clause28 describes “whether the 
reinsurance contract is covering risks or policies written by the reinsured that attach to the reinsurance 

 
27 “Loss Portfolio Transfer (LPT),” IRMI Glossary, https://www.irmi.com/term/insurance-definitions/loss-portfolio-transfer. 
28 This clause is also known as the reinsuring clause, cover clause, business reinsured clause, or the application of agreement clause. 

https://www.irmi.com/term/insurance-definitions/loss-portfolio-transfer
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contract or whether losses on policies issued by the reinsured occurring during the life of the 
reinsurance contract are being reinsured.”29 

There are two primary approaches of reinsurance coverage: losses-occurring-during and risks-attaching 
(also known as policies-attaching). Losses-occurring-during contracts provide reinsurance coverage for 
all losses that occur between the contract inception and expiration dates regardless of when the ceding 
company issued the underlying policy that resulted in the loss. Risks-attaching contracts provide 
reinsurance coverage only for those policies that incepted during the reinsurance contract effective 
period; the underlying policies that are covered by risks-attaching reinsurance can have a policy 
expiration that is later than the expiration date of the reinsurance contract. 

For example, assume a ceding company has a property per risk excess of loss reinsurance contract with 
an attachment point of 2 million and policy limits of 10 million. Further assume that the reinsurance 
contract is losses-occurring-during with an inception date of January 1, 2020 and expiration date of 
December 31, 2020. 

• A 3 million fire loss that occurred on February 15, 2020 arising from an underlying policy with 
effective dates of July 1, 2019 to June 30, 2020 would have reinsurance coverage of 1 million 
(i.e., 3 million total loss less 2 million retention of the ceding company) because the occurrence 
date of the loss is within the effective period of the reinsurance contract. 

• Similarly, a 3 million fire loss that occurred on February 15, 2020 arising from an underlying 
policy with effective dates of February 1, 2020 to January 31, 2021 would have reinsurance 
coverage of 1 million. 

• A 3 million fire loss that occurred on February 15, 2021 arising from an underlying policy with 
effective dates of July 1, 2020 to June 30, 2021 would not have reinsurance coverage, because 
the date of loss (i.e., February 15, 2021) is after the reinsurance contract expiry date of 
December 31, 2020. This assumes that the reinsurance contract was not renewed or replaced 
with other applicable coverage. 

Next, assume a ceding company has a liability quota share risks-attaching contract with a 60% ceding 
percentage (i.e., the reinsurer assumes 60% of premium and losses). Further assume that the inception 
date of the contract is July 1, 2020 and the expiration date is June 30, 2021. 

• A 2 million liability loss that occurred on February 15, 2021 arising from an underlying policy 
with effective dates of June 1, 2020 to May 31, 2021 would not have reinsurance coverage 
because the underlying policy began before the inception date of the reinsurance contract (i.e., 
July 1, 2020). 

 
29 Larry Schiffer, “Understanding the Business-Covered Clause in a Reinsurance Contract,” IRMI Expert Commentary, November 2003, 

https://www.irmi.com/articles/expert-commentary/understanding-the-business-covered-clause. 

https://www.irmi.com/articles/expert-commentary/understanding-the-business-covered-clause
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• A 2 million liability loss that occurred on February 15, 2021 arising from an underlying policy 
with effective dates of July 15, 2020 to July 14, 2021 would have reinsurance coverage because 
the inception date of the underlying policy is within the reinsurance contract effective dates. 

• A 2 million liability loss that occurred on August 15, 2021 arising from an underlying policy with 
effective dates of September 1, 2020 to August 31, 2021 would have reinsurance coverage 
because the underlying policy incepted during the reinsurance contract period even though the 
loss occurred after the expiry of the reinsurance contract period. 

While losses-occurring-during and risks-attaching are the two most common types of reinsurance 
contracts, coverage can be tailored to meet unique circumstances of the parties to the contract. Thus, it 
is incumbent on the actuary to understand details of the contract provisions. 

Subscription Percentage 
Some reinsurance placements are shared by multiple reinsurers through subscription policies. In the 
context of reinsurance, a subscription policy is a reinsurance policy in which multiple reinsurers share 
the risk associated with providing the reinsurance coverage. Subscriptions can be used when the 
amount of coverage is more than any one reinsurer is willing to assume and when the primary insurer is 
seeking to diversify its risk, particularly credit risk. For losses subject to reinsurance placed with multiple 
reinsurers, it is important that the actuary be aware of the percentage subscribed, as there can be 
situations in which the full coverage is not placed, and thus the primary insurer would bear 
responsibility for losses that had been intended for reinsurance. 

Commutation Clause 
Commutation refers to the cancellation or dissolution of a reinsurance contract. With a commutation, 
the reinsurer pays funds (at present value) that are not yet due to the ceding company in exchange for 
full termination of all future obligations related to the reinsurance contract. 

Some reinsurance contracts contain a commutation clause, also known as a commutation agreement, 
that sets out the terms and conditions for the estimation, payment, and complete discharge of all 
obligations of the parties to a reinsurance contract. This clause is common in reinsurance contracts 
covering U.S. workers’ compensation and can be optional or mandatory.  

Ceding companies use commutations for many reasons. For example, a ceding company may commute 
a reinsurance contract because it wants to: 

• Exit a line of business or geographic region. 
• Manage reserves for transfer or sale. 
• Avoid the credit risk associated with its reinsurer, particularly if the reinsurer has suffered a 

ratings downgrade. 
• Better manage claims and claims-related expenses and believes that its own staff has the 

expertise required. 
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Similarly, reinsurers use commutations for a variety of reasons. For example, a reinsurer may commute 
a reinsurance contract because it wants to 

• Terminate a relationship with a ceding company that is in run-off or one with which it no longer 
conducts business. 

• Protect itself from the potential insolvency of a ceding company. 
• Avoid disputes when there are significant differences of opinion with respect to future loss 

development of subject losses. 

Understanding commutations is important for the actuary estimating unpaid losses for several reasons. 
First, actuaries are frequently involved in the analysis of reinsurance contracts that are subject to 
commutation. Second, an actuary at a ceding company must be aware of contracts that are commuted, 
as such affects the estimation of unpaid ceded losses. Similarly, an actuary at a reinsurer must be aware 
of contracts that are commuted as there is no longer liability associated with such contracts. Finally, 
actuaries working for both primary insurers and reinsurers should track commuted reinsurance 
contracts, as the loss development patterns for such contracts could be different from other contracts 
that remain in force. Thus, actuaries frequently choose to exclude commuted contracts from historical 
data. 

Conclusion 

This text is meant to serve as an introduction to reinsurance with a focus on basic reserving 
methodologies. Reinsurance, which is foundational to a sound global insurance market, can be 
exceptionally complex. This text is not intended to address these complexities – neither those seen in 
the commercial market between insurers and reinsurers nor those used within an insurance group 
through the use of internal reinsurance agreements. Similarly, it is not intended to describe the 
sophisticated reinsurance arrangements that are frequently created by combining different types of 
reinsurance with manuscript terms and conditions. Examples and descriptions of complex reinsurance 
towers can be found readily through internet searches. Instead, the objective is to provide a foundation 
for the actuary that aids in further study as well as experience working with reinsurance.   
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Chapter 2 – Data Requirements  

This chapter is organized as follows: 

• Introduction 
• Sufficient and Reliable Data 
• Homogeneity and Credibility of Data 
• Organization of Data by Experience Period 
• Knowledge of Reinsurance Terms and Conditions 
• Types of Data 
• Sources of Data 

Introduction 

In Actuarial Standards of Practice (ASOP) 23–Data Quality, the U.S. Actuarial Standards Board (ASB-US) 
defines data as: “numerical, census, or classification information, or information derived mathematically 
from such items, but not general or qualitative information. Assumptions are not data, but data are 
commonly used in the development of actuarial assumptions.” 30 The International Actuarial Standard of 
Practice (ISAP) Glossary has a slightly different definition of data and states that data “are usually 
quantitative but may be qualitative.”31 

Many considerations related to data (quantitative and qualitative) are similar for actuaries working with 
insurers and those working with reinsurers. Actuaries seek data that are sufficient and reliable. They 
strive to aggregate data in segments that are homogeneous and credible. They organize data by 
experience periods that best meet their needs from operational as well as user perspectives. There are 
important differences, however, in each of these areas as well as in the types and sources of data used 
by actuaries working in primary insurance versus reinsurance. Many of these issues are explored in this 
chapter. 

Sufficient and Reliable Data 

The requirements for sufficient and reliable data for actuarial work are typically set out in actuarial 
standards of practice. The Canadian actuarial standards of practice describe sufficient and reliable data 

 
30 ASB-US, ASOP 23 (revised edition, December 2016), section 2.3, http://www.actuarialstandardsboard.org/wp-

content/uploads/2017/01/asop023_185.pdf. 
31 International Actuarial Association, ISAP Glossary (November 2019), 2, 

https://www.actuaries.org/iaa/IAA/Publications/ISAPs/IAA/Publications/05ISAPs.aspx. 

http://www.actuarialstandardsboard.org/wp-content/uploads/2017/01/asop023_185.pdf
http://www.actuarialstandardsboard.org/wp-content/uploads/2017/01/asop023_185.pdf
https://www.actuaries.org/iaa/IAA/Publications/ISAPs/IAA/Publications/05ISAPs.aspx
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as follows: “Data are sufficient if they include the needed information for the work ... Data are reliable if 
they are sufficiently complete, consistent, and accurate for the purposes of the work.”32 

The International Actuarial Association’s ISAP 1 – General Actuarial Practice has similar descriptions. 
ASOP 23 uses the term appropriate data and defines the term as: “Data suitable for the intended 
purpose of an analysis and relevant to the system or process being analyzed.”33 

Sufficiency 
To determine if data are sufficient for the estimation of unpaid losses, it is helpful to review the key 
assumptions of the development method, which is one of the most common methods used to project 
ultimate values. Key assumptions of the development method include the following: 

• Losses recorded to date (reported or paid) will continue to develop in a similar manner in the 
future. 

• The relative change in a given year’s losses from one evaluation point to the next is similar to 
the relative change in prior years’ losses at similar evaluation points. 

• For an immature year, the losses observed to date are valuable for projecting the losses yet to 
be observed. 

• Throughout the experience period, there has been consistency in the mix of business, 
attachment points and policy limits, and claim processing (which includes the reporting, 
establishment of case estimates, and settlement of claims). 

Ensuring the sufficiency of data can be particularly challenging for actuaries working with reinsurers due 
in large part to the manuscript nature of many reinsurance contracts, where terms can differ from one 
ceding company to the next and can change from year to year. Furthermore, operational and strategic 
changes that were implemented at the ceding companies, the reinsurer, or both can lead to violation of 
the assumption of consistency in the mix of business, attachment points and limits, and claims 
processing. 

Reliability 
With respect to the accuracy of data, the actuary has an obligation to validate the data. ISAP 1 sets out 
the following requirements for data validation: 

Data Validation – The actuary should take reasonable steps to review the consistency, 
completeness, and accuracy of the data used. These might include: 

 
32 Canadian Institute of Actuaries, Standards of Practice (January 2020), Section 1440.04 and .05, https://www.cia-

ica.ca/publications/standards-of-practice. 
33 ASOP 23, section 2.1. 

https://www.cia-ica.ca/publications/standards-of-practice
https://www.cia-ica.ca/publications/standards-of-practice
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a. Undertaking reconciliations against audited financial statements, trial balances, or other 
relevant records, if these are available; 

b. Testing the data for reasonableness against external or independent data; 
c. Testing the data for internal consistency and consistency with other relevant 

information; and 
d. Comparing the data to those for a prior period or periods. 

The actuary should describe this review in any report.34 

ASOP 23 sets out the following requirements for the review of data: 

A review of data may not always reveal defects. Nevertheless, the actuary should perform a 
review, unless, in the actuary’s professional judgment, such review is not necessary or not 
practical. In exercising such professional judgment, the actuary should take into account the 
purpose and nature of the assignment, any relevant constraints, and the extent of any known 
checking, verification, or audit of the data that has already been performed.35  

ASOP 23 describes the requirements for the actuary to make a reasonable effort to determine the 
definition of each data element used in the analysis, to identify questionable data values, and to review 
prior data. 

Actuaries working for reinsurers can face more challenges than those working with primary insurers in 
the validation of data due to the following: 

• For each ceding company and broker reporting on behalf of a ceding company, different it 
systems that capture different types of data and use different terminology for similar types of 
data. 

• Use of bordereau reporting that can differ (by ceding company and broker) in the types of data 
reported, the labeling of such data, and the frequency of submission to the reinsurer. 

• Lags in reporting related to: 
o The inherent delay in claims that must first be reported to the ceding company before 

they are reported to the reinsurer; 
o The long-tailed nature of certain types of reinsurance such as excess per risk (where it 

takes time to know that a specific claim has breached the ceding company’s retention) 
and catastrophe reinsurance (where it can take time before aggregated losses exceed 
the ceding company’s retention); and 

 
34 International Actuarial Association, ISAP 1 (December 2018), section 2.5.2, 

https://www.actuaries.org/iaa/IAA/Publications/ISAPs/IAA/Publications/05ISAPs.aspx. 
35 ASOP 23, section 3.3. 

https://www.actuaries.org/iaa/IAA/Publications/ISAPs/IAA/Publications/05ISAPs.aspx
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o Bordereau reporting, where losses are only reported on a quarterly or more infrequent 
basis. 

• Gaps in reporting critical information from the ceding companies about claims (including loss 
payments and case reserves) and claims-management expenses (e.g., investigation, legal, and 
expert witness expenses). 

• Manuscript nature of reinsurance policies that can lead to different coverage for similar loss 
events with different ceding companies. 

• Issues related to data coding for the reinsurer itself. 

Nevertheless, the obligations related to using reliable data and validating data that stem from 
professionalism requirements as well as insurance law and regulation are equally applicable to actuaries 
working with reinsurers as primary insurers. 

Homogeneity and Credibility of Data 

Considerations related to the homogeneity and credibility of data are important for all actuaries 
estimating unpaid losses.  

Homogeneity 
The term homogeneous risk group (HRG) used in the European Union’s Solvency II Directive is helpful in 
explaining the key characteristics that underlie the actuary’s segmentation of data. HRG is described as:  

Set of (re)insurance obligations which are managed together and which have similar risk 
characteristics in terms of, for example, underwriting policy, claims settlement patterns, risk 
profile of policyholders, likely policyholder behaviour, product features (including guarantees), 
future management actions and expense structure. The risks in each group should be sufficiently 
similar to allow for a reliable valuation of technical provisions36 (including a meaningful 
statistical analysis). The classification is undertaking-specific.37 

The goal in segmenting data is to improve the robustness of the estimates of unpaid losses by 
subdividing experience into groups that exhibit similar characteristics. As a result, when separating data 
into groups for an analysis of unpaid losses, actuaries working for primary insurers and reinsurers focus 
on similar considerations, such as 

 
36 The term technical provisions is used widely outside of the U.S. and Canada. Technical provisions is defined in the International Association 

of Insurance Supervisors’ Glossary as: “The amount that an insurer sets aside to fulfil its insurance obligations and settle all commitments to 
policyholders and other beneficiaries arising over the lifetime of the portfolio, including the expenses of administering the policies, 
reinsurance and of the capital required to cover the remaining risks.” (see https://www.iaisweb.org/page/supervisory-material/glossary). 

37 Committee of European Insurance and Occupational Pensions Supervisors (CEIOPS), CEIOPS’ Advice for Level 2 Implementing Measures on 
Solvency II: Technical Provisions – Lines of Business on the Basis of which (Re)Insurance Obligations Are to Be Segmented (October 2009), 
section 3.6, https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Final-Advice-Technical-Provisions-
Segmentation.pdf. 

https://www.iaisweb.org/page/supervisory-material/glossary
https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Final-Advice-Technical-Provisions-Segmentation.pdf
https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Final-Advice-Technical-Provisions-Segmentation.pdf
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• Consistency of the coverage triggered by the losses in the group. 
• Length of time to report the claim once an insured event has occurred (i.e., reporting patterns). 
• Ability to develop an appropriate case outstanding estimate from earliest report through the life 

of the claim. 
• Length of time to settle the claim once it is reported (i.e., settlement, or payment, patterns). 
• Likelihood of claim to reopen once it is settled. 
• Average settlement value (i.e., severity). 
• Volume of losses in the group. 

Actuaries strive to determine HRGs in which the claims display similar traits with respect to these 
characteristics.  

Credibility 
The goal for the actuary is to divide the data into sufficiently homogeneous risk groups without 
compromising credibility. The ASB-US’s ASOP 25–Credibility Procedures defines credibility as: “A 
measure of the predictive value in a given application that the actuary attaches to a particular set of 
data (predictive is used here in the statistical sense and not in the sense of predicting the future).”38 
Increasing the homogeneity of the group of data and increasing the volume of data in the group tend to 
increase credibility. If, however, the actuary divides the data into too many homogeneous groupings, 
there is a risk that the volume of data in the individual groups becomes insufficient to perform a reliable 
analysis.  

Differences in Considerations Related to Homogeneity and Credibility for 
Reinsurance versus Insurance 
While many of the considerations are similar for actuaries working with primary insurance and 
reinsurance, there are some important differences. In particular, there are notable differences in how 
actuaries working with primary insurance and reinsurance segment data. For example, actuaries 
working with primary insurance frequently aggregate data by line or sub-line of business, as claims 
within such lines are typically subject to the same or similar laws, policy terms, claims-management 
expense, etc. For reinsurance, however, there can be important differences within a line of business 
based on the type of reinsurance contract (e.g., treaty versus facultative and proportional versus non-
proportional) that require further segmentation. 

Using auto insurance as an example to differentiate reinsurance from primary insurance, an actuary 
working with a large insurer may have a sufficient volume of credible experience to segment data by the 
following: 

 
38 ASB-US, ASOP 25 (revised edition, December 2013), section 2.1, http://www.actuarialstandardsboard.org/wp-

content/uploads/2014/02/asop025_174.pdf. 

http://www.actuarialstandardsboard.org/wp-content/uploads/2014/02/asop025_174.pdf
http://www.actuarialstandardsboard.org/wp-content/uploads/2014/02/asop025_174.pdf
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• Personal lines auto separate from commercial lines auto; 
• Jurisdiction (e.g., state, province, or region); and 
• Sub-coverage, including: 

o Third-party liability, which may be further separated for bodily injury (BI) and property 
damage (PD); 

o No-fault benefits (known as personal injury protection, or PIP, in the United States and 
accident benefits, or AB, in Canada), which may be further separated for various types 
of benefits including medical and rehabilitation, disability income, funeral, etc.; and 

o Physical damage, which may be further separated for type of coverage, such as collision 
and comprehensive. 

In contrast, an actuary working with a large reinsurer may segment auto reinsurance data by: 

• Personal lines auto separate from commercial lines auto.  
• Treaty separate from facultative. 
• Pro rata separate from excess. 
• Aggregate stop-loss and finite risk covers separate from all other segments. 

One notable difference with the segmentation for reinsurers when compared to primary insurers is that 
losses are generally not segmented at a sub-coverage level or jurisdiction level, although a global 
reinsurer would likely segment data by country or region. Furthermore, a reinsurer may segment excess 
of loss per risk and excess of loss per occurrence at various attachment points, where a primary insurer 
may segment losses at alternative limits (e.g., losses limited to 1 million, losses limited to 2.5 million, 
etc.). 

In his chapter on reinsurance, Patrik discusses partitioning the reinsurance portfolio into reasonably 
homogeneous exposure groups that are relatively consistent over time with respect to the mix of 
business. For partitioning a reinsurance portfolio, he provides a list of the important variables that affect 
the pattern of claim report lags to the reinsurer and the development of individual case amounts. 
Patrik’s priority-ordered list includes: 

• Line of business (property, casualty, bonding, ocean marine, etc.); 
• Type of contract (facultative, treaty, finite or financial); 
• Type of reinsurance cover (quota share, surplus share, excess per risk, excess per occurrence, 

aggregate excess, catastrophe, loss portfolio transfer, etc.); 
• Primary line of business for casualty; 
• Attachment point for casualty; 
• Contract terms (flat-rated, retro-rated, sunset clause, share of loss adjustment expense, claims-

made or occurrence coverage, etc.); 
• Type of ceding company (small, large, or excess and surplus; and 
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• Intermediary (i.e., broker).39 

Patrik notes that it is likely not possible to separate data by all of the above criteria, as the resulting 
segments would lack sufficient volume to produce credible results. A critical factor in determining how 
to segment data is related to the credibility of the data. Noting that there is no “typical reinsurer,” he 
nevertheless provides the following example of segmentation for a reinsurer: 

• Treaty casualty excess 
• Treaty casualty proportional 
• Treaty property excess 
• Treaty property proportional 
• Treaty property catastrophe 
• Facultative casualty 
• Facultative property 
• Surety 
• Fidelity 
• Ocean marine 
• Inland marine 
• Construction risks 
• Aviation 
• Finite or nontraditional reinsurance 
• Miscellaneous special contracts, pools, and associations 
• Asbestos, pollution, and other health hazard or mass tort claims40 

A large global reinsurer may further segregate some of the above groups by major region such as 
Americas, Europe, Asia, and rest of world. 

Another consideration regarding the homogeneity and the grouping of data relates to changes in the 
portfolio. In some circumstances, it may be appropriate to combine data from treaty and facultative 
reinsurance even if these types of reinsurance typically exhibit different underlying loss patterns. 
However, if the relative volume of business is changing between these two types of reinsurance and 
underlying development patterns differ, then the grouping may not be appropriate. Estimating Unpaid 
Claims Using Basic Techniques contains a detailed example of the effect on various projection 
techniques of analyzing a portfolio where the growth of personal automobile and commercial 
automobile differ, and the consequence of the changing proportions on the various estimation 
techniques is significant. 

 
39 Patrik, “Reinsurance,” 443. 
40 Patrik, “Reinsurance,” 444. 



Reserving for Reinsurance 

CAS Study Note — Exam 7 35 

Organization of Data by Experience Period 

For estimating unpaid losses, reinsurers typically rely on aggregation by accident year or underwriting 
year. Underwriting year is also referred to as treaty year and contract year. In this text, the terms 
underwriting year and treaty year are used interchangeably.  

The requirements for financial reporting as well as internal management reporting and planning are 
important considerations for selecting an approach to aggregating data. For example, reinsurers 
operating in the United States and Canada require accident year results for statutory financial reporting. 
That said, reinsurers may analyze data by treaty year and then use allocation approaches to derive 
accident year results for statutory financial reporting purposes.  

Accident Year Aggregation 
Accident year data refer to losses grouped according to the date of occurrence (i.e., the accident date or 
the coverage triggering event). For example, accident year 2020 consists of all losses with an occurrence 
date in 2020. Aggregation by accident year is the most common grouping of loss data for the actuarial 
analysis of unpaid losses for primary insurers. Accident year aggregation is also used extensively by 
many reinsurers in the United States and Canada because of financial and statistical reporting 
requirements.  

Calendar year earned premiums are used to provide an approximate matching of the losses that occur 
during the year with the insurance premiums earned by an insurer during the year in which the 
insurance coverage is effective.  

Accident year aggregation has become the accepted norm for P&C insurers (including reinsurers) in the 
United States and Canada. Accident year grouping is easy to achieve and easy to understand. It 
represents losses occurring over a shorter time frame than for underwriting year aggregation, implying 
that ultimate accident year losses should become reliably estimable sooner than those for an 
underwriting year. Industry benchmarks, including data from the Reinsurance Association of America 
(RAA) and AM Best, are based on accident year experience. Finally, tracking losses by accident year is 
valuable when there are changes due to economic or regulatory forces (such as inflation or law 
amendments) or major loss events (such as atypical weather or a major catastrophe) that can influence 
loss experience. 

A significant disadvantage of accident year aggregation is the potential mismatch between losses and 
premiums. Accident year aggregation includes losses from policies underwritten and priced at more 
varied times than underwriting year aggregation.  

Underwriting (Treaty) Year Aggregation 
Underwriting year data, which is frequently used by European reinsurers and Lloyds of London, refer to 
losses grouped by the year in which the reinsurance policy became effective (i.e., the year in which the 
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contract was incepted). Underwriting year for reinsurance is similar conceptually to policy year for 
primary insurance. 

Losses arising from an underwriting year can extend over many calendar years. For example, if the 
reinsurance contract is for a 12-month duration and on a risks-attaching basis, the losses arising from 
such an underwriting year can extend over three calendar years. Continuing this example, underwriting 
treaty year 2020 for a reinsurer writing proportional risks-attaching reinsurance contracts refers to all 
reinsurance policies with beginning effective dates between January 1, 2020 and December 31, 2020. 
For annual reinsurance policies with a January 1, 2020 effective date, covered policies will have effective 
dates between January 1, 2020 and December 31, 2020 and thus accident dates between January 1, 
2020 and December 30, 2021. For annual reinsurance policies with a December 31, 2020 effective date, 
covered policies will have effective dates between December 31, 2020 and December 30, 2021 and thus 
accident dates between December 31, 2020 and December 29, 2022. Thus, for this example, treaty year 
2020 includes losses arising from three calendar years.  

The primary advantage of underwriting year aggregation is a true match between losses and premiums. 
Underwriting year experience can be important when underwriting or pricing changes occur, such as 

• A shift in attachment points or limits. 
• A new emphasis on certain classes of business or regions. 
• A change in the types of ceding company. 
• An increase or decrease in the price. 

All of the above can lead to a significant change in expected loss ratios, and many of the above can lead 
to changes in loss development patterns.  

The primary disadvantage of underwriting year aggregation is the extended time frame. As seen in our 
previous example, an underwriting year can extend over a 36-month period, generally resulting in a 
longer time until all the losses are reported and a longer time until the ultimate losses can be reliably 
estimated. This disadvantage can present challenges in the projection of ultimate losses for the most 
immature underwriting years where cumulative development factors are highly leveraged and the 
written premium is not fully earned. (Chapter 3 includes examples of possible solutions to these 
challenges.) Underwriting year data can also make it difficult to understand and isolate the effect of a 
single large event such as a major court ruling that changes how insurance contracts are interpreted. 

Allocation to Accident Year from Underwriting Year  
Reinsurers often use underwriting year aggregation for the development of best estimates of ultimate 
losses and unpaid losses and rely on accident year aggregation for financial reporting and to track how 
ultimate losses (i.e., reported losses plus incurred but not reported, IBNR, losses) develop over time. 
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Actuaries who conduct their analysis of unpaid losses using data aggregated by treaty year may need to 
allocate results to accident year for financial reporting or other purposes. Allocation processes are 
typically based on how premium is earned over the contract period.  

When the reinsurer receives from the ceding company (or broker) detailed loss data including key dates 
(such as date of loss and policy effective date), then accurate assignment to accident year or 
underwriting year can occur. However, there are times, particularly for treaty proportional reinsurance, 
when such details are not available to the reinsurer. In such situations, the reinsurer would typically use 
earnings profiles to allocate estimates of unpaid losses to accident year. (See Chapter 3 for a detailed 
example of earning premium.) 

Knowledge of Reinsurance Terms and Conditions  

It is critically important that actuaries understand the key terms and conditions of reinsurance 
programs. This is true for actuaries working with reinsurers and those working with primary insurers 
with responsibility for estimating the ultimate losses and unpaid losses ceded to reinsurers. For 
example, actuaries need to know the following: 

• Business covered, exclusions, and limitations. 
• Ceding percentage for quota share reinsurance. 
• Retention (i.e., first line) and number of lines for surplus share reinsurance. 
• Retention and limits for excess of loss reinsurance and whether excess insurance is per risk or 

per occurrence. 
• Attachment point and limits for stop-loss reinsurance. 
• Treatment of loss adjustment expenses and recoveries (such as salvage and subrogation). 

It is common for reinsurance terms and conditions, including ceding percentages and retentions, to 
change from time to time. Thus, it is the actuary’s responsibility to maintain documentation of historical 
terms as well as be familiar with current terms. Actuaries work closely with underwriters and claims 
professionals to ensure knowledge of qualitative information that can influence the estimation of 
unpaid losses. 

Types of Data 

Actuaries working with reinsurers typically rely on paid losses, case reserves, and reported losses (i.e., 
the sum of paid losses and case reserves) as well as written and earned premiums. Case reserves often 
include the case reserves set by the primary insurer as well as additional case reserves (ACR) that are 
set by the reinsurer. Unlike actuaries working with primary insurers, actuaries working with reinsurers 
usually do not have access to detailed claim count data nor earned exposure information, such as the 
number of insured vehicles for auto insurance or number of insured properties for homeowners 
insurance.  
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The absence of claim count and exposure data leads to far fewer options for triangle-based diagnostics, 
as the actuary is not able to calculate triangles of average claim values (e.g., average paid, average case 
outstanding, and average reported) nor count-based ratio triangles (e.g., ratios of closed-to-reported 
counts and closed with pay-to-closed counts). Thus, the actuary should turn to other types of 
investigation, particularly interviews with management of the reinsurer and ceding companies to 
understand the environment and any changes therein. Chapter 4 of Estimating Unpaid Claims Using 
Basic Techniques includes significant detail about meetings with management to understand the 
environment and includes sample questions for interviews with senior leaders and the underwriting, 
claims, data processing, and pricing departments.  

Bordereau Reporting 

Reinsurers often receive data from ceding companies by bordereaux, which Robert W. Strain defined as: 

Furnished periodically by the reinsured, a detailed report of insurance premiums or losses 
affected by reinsurance. A premium bordereau contains a detailed list of policies (or bonds) 
reinsured under a reinsurance treaty during the reporting period, reflecting such information as 
the name and address of the primary insured, the amount and location of the risk, the effective 
and termination dates of the primary insurance, the amount reinsured and the reinsurance 
premium applicable thereto. A loss bordereau contains a detailed list of claims and outstanding 
expenses and paid by the reinsured during the reporting period, reflecting the amount of 
reinsurance indemnity applicable thereto. Bordereau reporting is primarily applicable to pro rata 
reinsurance arrangements and to a large extent has been supplanted by summary reporting.41 

There are numerous challenges associated with bordereau reporting, including how data are cumulated 
by the ceding company or the broker and absorbed by the reinsurer. There are also issues related to the 
frequency with which reinsurers receive bordereaux. Bordereaux can be submitted by ceding companies 
or brokers on a monthly, quarterly, semi-annual, or annual basis. The more infrequent the reporting, the 
greater the lag in reporting and settlement loss development patterns of the reinsurer.  

Ceding companies typically have relationships with multiple reinsurers; similarly, reinsurers work with 
multiple ceding companies as well as multiple brokers. Each of these companies and brokers will have 
different IT systems that generate different types of reports. Ceding companies and brokers often 
struggle to access data from existing systems and extract data in the formats suitable for reinsurers. 
Similarly, reinsurers have difficulty efficiently and accurately absorbing the data to transform into the 
format required for actuarial purposes. The creation, distribution, and absorption of data via bordereaux 
files remains a manually intensive process. Another challenge with bordereau reporting is that the loss 
detail on a bordereau does not contain near as complete details as are available on the claim files of the 
ceding company. 

 
41 Quoted in Larry Schiffer, “Reinsurance Terminology Explained: Bordereau and Other Terms of Art,” IRMI Expert Commentary, March 2021, 

https://www.irmi.com/articles/expert-commentary/reinsurance-terminology-explained-bordereau. 

https://www.irmi.com/articles/expert-commentary/reinsurance-terminology-explained-bordereau
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While the insurance industry has made great strides in defining standardized data sets to be used by 
ceding companies and their reinsurers, the adoption of these data sets has been slow. Even when 
standardized formats for reporting are used, the issue of data disparity still exists. Many stakeholders 
have not fully implemented standardized data standards in their IT systems due to the high cost and 
effort required to update existing systems and the higher priority of other IT transformation initiatives. 

Loss Adjustment Expenses 
One area that requires the actuary’s close attention is the treatment of loss adjustment expenses (LAE), 
which are expenses associated with the investigation, management, and settlement of claims. This text 
uses similar terminology to Estimating Unpaid Claims Using Basic Techniques. Allocated loss adjustment 
expenses (ALAE) correspond to those costs the insurer (or reinsurer) can assign to a particular claim, 
such as legal and expert witness expenses. Unallocated loss adjustment expenses (ULAE) are expenses 
that cannot be easily allocated to a specific claim. Examples of ULAE include the payroll, rent, and 
computer expenses for the claims department of an insurer (or reinsurer). 

It is important that the actuary working with reinsurance (ceded and assumed) understand the 
treatment of LAE in reinsurance contracts. Frequently, although not always, ULAE are excluded from 
reinsurance coverage. For ALAE, there are generally three possible treatments: 

1. Included with the claim amount in determining excess of loss coverage, which is a common 
treatment; 

2. Included on a pro rata basis (i.e., the ratio of the excess portion of the loss to the total loss 
amount determines coverage for ALAE); and 

3. Not included in the coverage. 

For example, assume a ceding company issues liability policies with limits of 5 million and maintains 
liability excess per occurrence reinsurance with a retention of 2 million and limits of 3 million. Table 2. 1 
presents the primary insurer’s loss and ALAE on a gross of reinsurance and ceded basis for three 
occurrences assuming the three different options for the treatment of ALAE. 
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Table 2. 1. Examples of ALAE Treatment Under Reinsurance 

Occurrence 

Gross of Reinsurance 
Ceded Loss and ALAE based on  
Reinsurance Treatment of ALAE 

Loss ALAE 
ALAE Included 

with Loss 
ALAE Included 
Pro Rata Basis 

ALAE Not 
Included 

#1 2 2 2 0 0 

#2 3 2 3 1.67 1 

#3 0 3 1 0 0 

In this example, the loss and ALAE are each 2 million for occurrence #1. If ALAE are included with the 
loss amount covered by the reinsurance contract, then the total subject loss is 4 million, of which 2 
million is retained by the ceding company and 2 million is assumed by the reinsurer. If ALAE are included 
on a pro rata basis for occurrence #1, there is no assumption of losses by the reinsurer, as the subject 
loss (i.e., 2 million) does not exceed the ceding company’s retention and there are no losses to enter 
into a pro rata calculation. Finally, for occurrence #1, if ALAE are not included in the reinsurance 
contract, then there is no assumption by the reinsurer as the subject loss (i.e., 2 million) does not exceed 
the ceding company’s retention. 

For occurrence #2, the loss of 3 million exceeds the ceding company’s retention even before 
consideration of ALAE. If ALAE are included with the loss amount covered by the reinsurance contract, 
then the total subject loss is 5 million, of which 2 million is retained by the ceding company and 3 million 
is assumed by the reinsurer. If ALAE are included on a pro rata basis for occurrence #2, there is an 
assumption of ALAE by the reinsurer as well as losses. The calculation for assumed ALAE (i.e., ALAE 
ceded to the reinsurer) is equal to:  

(1 million loss assumed / 3 million total loss) x 2 million ALAE = 0.67 million ALAE assumed. 

If, for occurrence #2, ALAE are not included in the reinsurance contract, then assumed losses by the 
reinsurer are 1 million, and the ceding company retains 2 million losses and 2 million ALAE. 

Finally, for occurrence #3, the sum of the loss of 0 and ALAE of 3 million exceeds the ceding company’s 
retention when ALAE are included. Thus, there is a recovery from the reinsurance of 1 million if ALAE are 
included with the loss amount covered by the reinsurance contract. Given that there are no losses that 
exceed the retention, there is no recovery from the reinsurer for ALAE for occurrence #3 if ALAE are 
covered on a pro rata basis. Finally, if for occurrence #3, ALAE are not included in the reinsurance 
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contract, then assumed losses by the reinsurer are nil, and the ceding company retains the full ALAE of 3 
million. 

Given the large amounts that can be paid for ALAE, particularly for legal and expert witness fees on 
liability classes of business such as medical malpractice, asbestos and environmental, and directors and 
officers, the treatment of ALAE and changes in such treatment over time can influence development 
patterns and relationships in the data and thus have implications for projections of future losses. 

Multiple Currencies 
Loss data for some ceding companies may exist in the IT systems in different currencies. For example, 
global reinsurers aggregate data across U.S. dollars, Canadian dollars, Euros, Japanese yen, Chinese 
Yuan, etc. Depending on the volume of losses in differing currencies, the actuary may need to adjust the 
data prior to the analysis. One approach is to separate the data by currency and then combine the data 
after translating data to a common currency using the appropriate exchange rates at a single point in 
time; such an approach avoids the influence of fluctuations in exchange rates over time. Another 
approach can be used when writing catastrophe reinsurance in a region with numerous countries and 
currencies (e.g., South and Central America) where losses are aggregated based on the ceding 
company’s currency of origin. 

Large Losses  
It is important for the actuary to be aware of how large losses influence the different projection 
techniques. The presence of unusually large losses, such as those arising from a natural catastrophe 
event or a class action suit, can distort some of the methods used for estimating unpaid losses. In these 
situations, the actuary may choose to exclude the large losses from the initial projection and, at the end 
of the unpaid loss analysis, add a case-specific projection for the reported portion of large losses and a 
smoothed provision for the IBNR portion of large losses. Given the nature of reinsurance and in 
particular coverage on an excess of loss basis, both for individual occurrences and catastrophe events, 
adjusting data, methodology, and assumptions for large losses can be particularly important for the 
actuary working with reinsurance. When faced with unusually large losses, reinsurers frequently rely on 
the expertise of claims adjusters as well as input from catastrophe models to supplement traditional loss 
development and other basic projection methodologies.  

Recoveries 
Given that reinsurance is insurance for insurers, recoveries (such as deductibles, salvage, and 
subrogation) that are applicable to the subject loss generally apply before the cession for both 
proportional and excess of loss reinsurance. It is important for the actuary working with reinsurance to 
understand the processes related to the recording of payment and case outstanding for recoverables. 
Some primary insurers establish a case outstanding net of the deductible, while others do not consider 
the deductible in the establishment of the case outstanding. Even within the same insurer, practices 
may vary between lines of business. Similar differences in procedures can exist with respect to the 
establishment of case outstanding for salvage and subrogation recoveries. 
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Actuaries working with primary insurers and reinsurers should take care to understand how recoveries 
are applied, particularly for large property losses that can take time to settle all aspects of the claim, 
especially business interruption losses than can extend over multiple years. For example, assume the 
following: 

• For calendar year 2019, a primary insurer wrote 10 million limit commercial property policies 
and maintained commercial property excess per risk reinsurance with a retention of 2 million 
and limits of 8 million.  

• An insured incurred a major fire due to an explosion of the boiler on January 2, 2019, which 
resulted in property losses as well as substantial business interruption losses for a total loss of 7 
million gross of salvage and subrogation recoveries.42  

• The primary insurer paid losses of 2 million in 2019, 3 million in 2020, and the final 2 million in 
2021.  

• During 2019, expected salvage recoveries of 0.25 million were received. 
• During 2022, the ceding company received an unexpected subrogation recovery from the boiler 

manufacturer of 1.5 million. At year-end 2019, carried reserves reflected the losses net of 
salvage but without the subrogation that was received in 2022. 

For year-end 2019, the ceding company would report losses net of reinsurance and salvage of 2 million 
and ceded losses of 4.75 million to the reinsurer (total gross loss of 7 million minus salvage of 0.25 
million minus the retention of 2 million). In 2022, the primary company receives the subrogation 
payment of 1.5 million and would transfer this entirely to the reinsurer. Thus, there is no benefit to the 
ceding company (or change in financial results on a net of reinsurance basis) of the unexpected 
subrogation, and the benefit is solely for the reinsurer. 

If the total losses net of salvage were only 2.75 million instead of 6.75 million, then a subrogation 
recovery of 1.5 million would reduce the total value of the claim below the reinsurance retention. Any 
payments by the reinsurer would be returned, and then the remaining subrogation recovery would 
accrue to the benefit of the ceding company. In this revised example, the ceding company would report 
losses net of reinsurance and salvage of 2 million for year-end 2019 and cede losses of 0.75 million to 
the reinsurer. In 2022, the reinsurer would receive reimbursement of 0.75 million from the unexpected 
subrogation, and the ceding company would also report favorable development of 0.75 million, the 
balance of the 1.5 million subrogation recovery. 

Challenges with Data for Reinsurer 
Influence of Change in Operations and the Environment 

The actuary working for a reinsurer can face greater challenges than the actuary working for a primary 
insurer in understanding the effects of operational changes on the estimation of unpaid losses. This is in 
part because operational changes can take place at the reinsurer as well as at the ceding companies, 

 
42 For purpose of this example, assume the loss values are accurate and there is no further development on the claim. 
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and both can influence the projection of ultimate losses and resulting estimates of unpaid losses. Over 
the past 20 years, many insurers have instituted significant transformational projects to modernize 
systems including the implementation of new policy administration and claims administration systems. 
Many insurers have increased the use of analytics and big data to influence pricing, marketing, and 
underwriting. These transformational initiatives can affect the operations of the ceding companies, their 
target markets, how risks are underwritten and how claims are reported and settled, as well as the types 
of data available. All of these changes can influence the reporting and payment patterns of ceded losses. 
Similarly, reinsurers have undertaken major transformational initiatives that influence loss reporting and 
settlement practices. 

Further changes arise when ceding companies acquire and divest business (companies and large 
portfolios), and the actuary needs to understand how such activities affect losses historically and in the 
future. Finally, actuaries need to understand the legal and economic environments of the ceding 
companies. For example, major reforms in a large jurisdiction (such as tort reform or product reform in 
coverages such as automobile or workers’ compensation insurance) can have major implications on the 
loss experience of ceding companies that is passed on to reinsurers.  

Other Experience Typically Excluded from Development Analyses 

Changes in the operations and environment may lead the actuary to choose to exclude discontinued 
business (i.e., business in run-off) from the analysis because such data could distort historical patterns 
and relationships, particularly for more recent years. Discontinued business may not be representative 
of the portfolio of ongoing business, and thus development patterns and loss ratios, which are key 
assumptions of basic actuarial techniques, should be selected that reflect the characteristics of the 
ongoing business. This is true when selecting assumptions for reporting and settlement of losses as well 
as with frequency and severity of losses (albeit reinsurers often do not have sufficient data to project 
frequencies and severities). Furthermore, some types of discontinued business (such as asbestos, 
environmental impairment liability, and abuse) may not be suited to development triangle analyses.  

Reporting Lags 

As described in Chapter 1, reinsurance is insurance for insurers. Thus, claims must first be reported and 
investigated by the ceding company before loss data can be reported to the reinsurer. As a result, loss 
data for reinsurers lag those of the ceding companies, and, at times, the lag can be significant. Delayed 
reporting is particularly true for excess of loss reinsurance, where there is not only a lag because of the 
need to report to the primary insurer first but also because these claims often take time for the insurer 
to realize that the claim may exceed its retention, especially for liability claims. 

Reinsurers recognize the challenges associated with lags in reporting and often incorporate reporting 
requirements in the reinsurance contract. For example, the ceding company may be required to report a 
claim once it reaches a certain threshold, which may be expressed as a dollar value or a percentage of 
the ceding company’s retention (i.e., the reinsurer’s attachment point). Alternatively, a ceding company 
may be required to report certain types of claims that are known to have a higher likelihood of resulting 
in large losses (such as an abuse claim or a class action suit) regardless of amount.  
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Heterogeneity of Contract Wordings 

The manuscript nature of reinsurance contracts is mentioned repeatedly in this chapter. Patrik states 
that the “heterogeneity of contract wordings also means that whenever you are accumulating, 
analyzing, and comparing various reinsurance data, you must be careful that the reinsurance coverages 
producing the data are reasonably similar.”43 This concern is true when using internal and external data. 

Sources of Data 

With respect to sources of data for actuarial work, ISAP 1 states: 

To the extent possible and appropriate when setting assumptions, the actuary should consider 
using data specific to the organization or the subject of the actuarial services. Where such data 
are not available, relevant, or sufficiently credible, the actuary should consider industry data, 
data from other comparable sources, population data, or other published data, adjusted as 
appropriate. The data used, and the adjustments made, should be described in any report.44 

Actuaries working for large reinsurers are typically able to rely on detailed loss and premium data from 
their own IT systems. Internal data may be based on the experience of an individual reinsurer or 
aggregated experience from affiliated reinsurers within a group.  

Smaller reinsurers, however, can face more challenges with data due to IT limitations as well as 
limitations in the volume and homogeneity of losses. Thus, actuaries working with small reinsurers often 
need to seek external data sources. External data can be valuable when analyzing development factors 
(particularly tail factors), trend rates, and expected loss ratios, as well as when the actuary evaluates 
and attempts to reconcile the results of various projection methods.  

There are not nearly as many external data sources for reinsurance as there are for primary insurance. 
For reinsurance, actuaries can turn to the following: 

• Reinsurance Association of America (RAA)  
• Best’s Aggregates & Averages 
• Reports from global brokers, such as Guy Carpenter, Aon, and Willis Towers Watson 
• Reports from global reinsurers, such as Swiss Re, Munich Re, and SCOR S.E. 
• Other internet searches 

 
43 Patrick, “Reinsurance,” 344. 
44 ISAP 1, section 2.5.3. 
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Reinsurance Association of America (RAA) 
The RAA is the leading trade association of P&C reinsurers doing business in the United States. Members 
of the RAA include reinsurance underwriters and intermediaries licensed in the United States and those 
that conduct business on a cross-border basis. Since 1969, the RAA has published a biannual study of 
loss development triangles. The RAA study includes historical loss development patterns by accident 
year for reinsurers writing casualty excess reinsurance for automobile liability, general liability, and 
medical malpractice. In addition, the RAA study does the following: 

• Organizes patterns separately by treaty and facultative business and five ranges of attachment 
points. 

• Presents data of broad historical loss development composites by a cross-section of reinsurers. 
• Discusses how loss development patterns have changed over the last few years and suggests 

possible reasons for those changes. 
• Discusses how loss development has varied depending on the circumstances and the nature of 

the business being considered.45 

Best’s Aggregates & Averages 
The data available in Best’s Aggregates & Averages46 exemplify the differences in segmentation of 
insurance and reinsurance data. Schedule P, which contains data for U.S. insurers, separately presents 
the loss and premium data for major lines of business including three non-proportional reinsurance 
segments: 

• Reinsurance – non-proportional assumed property; 
• Reinsurance – non-proportional assumed liability; and 
• Reinsurance – non-proportional assumed financial lines. 

Schedule P–Part 1 contains 10 years of data sorted by the year in which premiums were earned and 
losses incurred. The types of data include earned premiums, loss and expense payments and reserves, 
and salvage and subrogation received and anticipated. Unlike primary insurance, Schedule P–Part 1 for 
the three reinsurance segments does not include data for the number of reported claims and the 
number of claims outstanding.  

Schedule P–Part 2 contains incurred (which includes sum of paid, case outstanding, and IBNR) net losses 
and defense and cost containment expenses, and Schedule P–Part 3 contains cumulative paid losses and 
defense and cost containment expenses. Bulk and IBNR reserves on net losses and defense and cost 

 
45 “Historical Loss Development Study,” RAA, https://www.reinsurance.org/ProductDetail.aspx?id=147. 
46 Best’s Aggregates & Averages is an annual publication that benchmarks the performance of individual insurance companies and insurance 

groups against industry totals, segments, and composites. The publication includes balance sheet, summary of operations, and annual 
statement. For further information, see http://www.ambest.com/sales/AggAvg/default.asp. 

https://www.reinsurance.org/ProductDetail.aspx?id=147
http://www.ambest.com/sales/AggAvg/default.asp
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containment expenses are included in Schedule P–Part 4. The reinsurance triangles include data for 10 
accident years and evaluations from 12 to 120 months.  

While actuaries working with reinsurers may find some value in the aggregated industry data contained 
in Schedule P, there are important limitations including but not limited to: 

• An experience period of only 10 years, which is typically not long enough for excess of loss 
reinsurance. 

• Segmentation that is not sufficiently refined by major line of business and type of reinsurance. 
• The combination of experience that may not reflect targets markets, terms and conditions, and 

operations of any individual reinsurer.  

Reinsurance data that are aggregated by accident year for Schedule P tend to look and behave more like 
primary insurance data, which is generally not an accurate portrayal of the volatility and long-tail nature 
of many reinsurance losses. Reinsurance actuaries who rely on data aggregated by treaty year will view 
data much differently than the lines of business included in Schedule P of the U.S. annual statement.  

Internet Searches 
Another potential source for external data can be found through online searches of publicly available 
reinsurer data. Generally, these triangles are presented on a worldwide basis and are highly aggregated 
by major line of business. 

It is important to note that many of the reinsurers who publish triangles based on worldwide 
consolidated experience state that, in practice, their actuaries review between 50 to 500 separate 
segments for reserving purposes. One global reinsurer describes the governance process around 
segmentation and the objective to form segments that are “based on a variety of criteria (proportional 
basis or not, underlying risks typology, geography, pricing environments, legislative environments).”47 It 
is important to recognize that data aggregated across many countries, lines of business, and types of 
reinsurance would likely not be deemed sufficient without some modification (that should be 
documented in accordance with professionalism requirements) for actuarial work related to a single 
reinsurer in a particular jurisdiction.  

Shortcomings of External Data 
Actuaries need to be aware of the potential shortcomings in the use of external data. While similar 
considerations apply to actuaries working with primary insurance, the issues are heightened for 
actuaries working with reinsurance. There is a risk that external data may be misleading or irrelevant 
due to differences in the following: 

 
47 SCOR’s Loss Development Triangles and Reserves (SCOR, December 2010), 9, 

https://www.scor.com/sites/default/files/2011_trianglesdisclosure.pdf. 

https://www.scor.com/sites/default/files/2011_trianglesdisclosure.pdf
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• Manuscript wording and terms and conditions, where contracts can vary significantly. 
• Mix of assumed business, particularly differences by major industry, region, attachment points, 

and policy limits. 
• Types of reinsurance (e.g., treaty, facultative, proportional, and non-proportional). 
• Underwriting processes, including engineering and risk control services. 
• Claims management philosophies and processes. 
• Coding and IT systems. 

Thus, the actuary must carefully evaluate the relevance and value of external data. 

Conclusion – Importance of Understanding the Data 

In conclusion, it is critically important for actuaries to fully appreciate their obligations with respect to 
data. Actuaries should understand the different types of data that are inputs to and outputs from the 
insurer’s and reinsurer’s information systems. Ceding companies and brokers who report on behalf of 
ceding companies may use the same term to mean different things. The actuary is responsible for 
knowing the true meaning of the types of loss data contained in the loss reports and information 
systems that are used as inputs for the estimation of unpaid losses. The importance of understanding 
the data is equally applicable to actuaries working with primary insurance and reinsurance. 
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Chapter 3 – Methods Frequently Used to Estimate 
Unpaid Losses for Reinsurance 

This chapter addresses three of the most frequently used methods for estimating unpaid losses: 
development, expected, and Bornhuetter-Ferguson methods. The chapter is organized in the following 
major sections: 

• Introductory Comments 
• Review of the Development, Expected, and Bornhuetter-Ferguson Methods 
• Background About Examples 
• Comparison of Age-to-Age Factors and Development Patterns 
• Implications of the Volatility in Loss Development Experience 
• Quota Share and Stop-Loss Reinsurance Examples 

As noted in Chapter 1, it is assumed that readers of this text are knowledgeable about basic reserving 
including typical data requirements, key assumptions, and the traditional methodologies (such as the 
development, expected loss, and Bornhuetter-Ferguson techniques). Thus, the focus of this chapter is 
on differences in reserving for reinsurance versus primary insurance and not on detailed mechanics of 
the traditional projection techniques.48 

Introductory Comments 

For financial reporting, planning, and risk management purposes, actuaries estimate unpaid losses on a 
gross, ceded, and net of reinsurance basis. For primary insurers, ceded losses reflect business 
transferred to reinsurers. For reinsurers, gross losses represent the business they assume, and ceded 
losses reflect the business that they retrocede. The two basic approaches for determining these three 
estimates of unpaid losses include the following: 

• Projecting ultimate losses and the resulting unpaid losses (i.e., ultimate losses minus paid losses) 
on a gross of reinsurance basis and net of reinsurance basis, then estimating ceded unpaid 
losses as the difference; and 

• Projecting ultimate losses and the resulting unpaid losses on a gross of reinsurance basis and 
ceded basis, then estimating net unpaid losses as the difference. 

Ceded data often have limited credibility due to a lower volume of losses, higher volatility associated 
with large claims and catastrophe events, and frequent changes in terms and conditions (such as 
attachment points, limits, participation percentages, and treatment of ALAE) that result in data that are 

 
48 For further information, see Friedland, Estimating Unpaid Claims Using Basic Techniques. 
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not homogeneous. Thus, actuaries typically use the first approach and select development patterns and 
expected loss ratios, which are key assumptions of the projection methods, gross and net of reinsurance 
rather than gross and ceded. 

To project ultimate values and estimate unpaid losses, actuaries frequently use the development, 
expected, and Bornhuetter-Ferguson methods.  

Review of the Development, Expected, and Bornhuetter-Ferguson 
Methods 

The following descriptions of key assumptions and the major steps of the three projection methods are 
based on those in Estimating Unpaid Claims Using Basic Techniques. 

Development Method 
Key Assumptions 

The distinguishing characteristic of the development method is that ultimate values for each year49 in 
the experience period are produced from recorded values assuming that future development is similar 
to prior years’ development. For reinsurers, the development method is used most frequently with 
reported and paid losses as well as with premiums. The underlying assumption in the development 
method is that values recorded to date will continue to develop in a similar manner in the future (i.e., 
the past is indicative of the future).  

An implicit assumption in the development technique is that, for an immature year, the losses (or 
premiums) observed thus far tell the actuary something about the losses (or premiums) yet to be 
observed. This contrasts with the primary assumption underlying the expected method and the 
Bornhuetter-Ferguson method, where the unrecorded (unreported or unpaid) losses are based on an a 
priori (or initial) estimate of losses. 

Other important assumptions of the development method include consistency throughout the 
experience period in claim processing, the mix of business (and resulting losses), policy limits, and 
reinsurance coverage (e.g., retention, participation percentage, and policy limits). 

Mechanics  

The development method consists of seven basic steps: 

1. Compile development data in a development triangle. 
2. Calculate age-to-age factors. 

 
49 For insurers, the “years” are typically accident years. For reinsurers, the years are often treaty (or underwriting) years, although accident 

years are used by reinsurance actuaries in the United States and Canada due to regulatory financial reporting requirements.  
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3. Calculate average age-to-age factors. 
4. Select development factors for each age-to-age interval. 
5. Select tail factor. 
6. Calculate cumulative development factors. 
7. Project ultimate values. 

One of the major differences in projecting ultimate losses for primary insurance and reinsurance is the 
credibility of the reinsurance data that, as noted previously, tends to be lower for reinsurance due to 
volume, volatility, and heterogeneity of the data. By their nature, losses associated with excess of loss 
reinsurance can be substantially more volatile than ground-up losses. This is true for catastrophe 
coverage as well as reinsurance at high attachment points, where significant frequency of claims is not 
expected. 

Considerations in Selecting Age-to-Age Factors  

In Estimating Unpaid Claims Using Basic Techniques, there is an important discussion about the 
characteristics the actuary looks for in the selection of age-to-age factors: 

• Smooth progression of individual age-to-age factors and average factors across development 
periods. Ideally, the pattern should demonstrate steadily decreasing incremental development 
from valuation to valuation, especially in the later valuations. Such decreases are seen in many, 
although not all, of the examples presented later in this chapter. 

• Stability of age-to-age factors for the same development period. Ideally, there should be a 
relatively small range of factors (small variance) within each development interval (i.e., down 
the columns). The actuary looks for stability within the age-to-age factors themselves as well as 
within the various averages for the same development period. For both reported and paid 
losses, the greatest variability in age-to-age factors is typically seen at early age-to-age intervals, 
where losses are at their most immature state (i.e., when the claims professionals have the least 
amount of information about the circumstances of the insured event and the potential damages 
and injuries of claimants). There tends to be much greater volatility in the age-to-age factors for 
reinsurance when compared with primary insurance and for non-proportional reinsurance when 
compared with proportional reinsurance, and such differences are seen repeatedly in the 
examples included in this chapter. 

• Credibility of the experience. Actuaries generally determine credibility based on the volume and 
the homogeneity of the experience for a given year and maturity age. If the loss development 
experience has low credibility because of the limited volume of losses, organizational changes, 
or other factors, it may be necessary to use benchmark development factors. (See the discussion 
in Chapter 2 about the use of external data.) 

• Changes in patterns and applicability of the historical experience. Actuaries determine the 
appropriateness of historical age-to-age factors for projecting future development based on 
quantitative and qualitative information regarding changes in the book of business and 
operations over time. There are numerous reasons why historical development experience may 
not be appropriate, such as 
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o Dramatic changes in volume of premiums and claims. 
o Presence of large claims that distort the development experience.  
o Significant changes in the portfolio that are not captured by trend rates. 
o Changes in claims processing that affect the manner in which claims are reserved and 

paid. 

Actuaries also consider the effect of changes in external factors that have not yet manifested 
themselves in the recorded experience (i.e., reported losses, paid losses, or premiums). 

All of these considerations are equally applicable to actuaries working with primary insurance and 
reinsurance.  

Expected Method 
The expected method is frequently used when: 

• Entering a new line of business or new region. 
• Changes in strategy, operations, or the environment that make recent historical loss data 

irrelevant for projecting future loss activity for a particular cohort of losses. 
• The development method is not appropriate for less mature periods because the development 

factors to ultimate are too highly leveraged. 
• Data are unavailable for other methods. 

Each of these situations is equally applicable to actuaries working with primary insurance and 
reinsurance. 

Key Assumptions 

The key assumption of the expected method is that the actuary can better estimate total unpaid losses 
based on an a priori estimate than from loss experience observed to date. In certain circumstances, the 
losses reported to date may provide little information about ultimate losses, especially when compared 
with the a priori estimate. 

Mechanics  

The most common approach for estimating expected losses associated with reinsurance is an expected 
loss ratio multiplied by earned premium. The expected loss ratio is often based on pricing information, 
industry data, and historical experience adjusted to the conditions of the year under review. In selecting 
the expected loss ratio, the actuary seeks input from management and considers changes in market 
conditions, pricing, terms and conditions, underwriting, claims emergence, and other factors that could 
influence expected ultimate losses. 
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In addition to the expected loss ratio, actuaries working with primary insurance also use frequency-
severity and exposure-loss cost approaches to estimate expected losses. In contrast, actuaries working 
with reinsurers typically do not have access to detailed claim count and exposure information. For a 
reinsured, estimating ceded losses can be complicated by reinsurance coverage that spans across 
multiple lines of business or years, which can complicate the assignment of claim counts and exposure 
units with losses. Actuaries can also use complex stochastic models to estimate expected losses; such 
models are outside the scope of this text. 

Bornhuetter-Ferguson Method 
Actuaries rely on the Bornhuetter-Ferguson method almost as often as they rely on the development 
method. The Bornhuetter-Ferguson method is essentially a blend of the development and expected 
methods. In the development method, the actuary multiplies actual losses by a cumulative development 
factor. This method can lead to erratic, unreliable projections when the cumulative development factor 
is large because a relatively small swing in reported losses or the reporting of an unusually large loss 
could result in a very large swing in projected ultimate losses. In the expected method, the unpaid loss 
estimate is equal to the difference between a predetermined estimate of expected losses and the actual 
payments. This has the advantage of stability but completely ignores actual results as reported. The 
Bornhuetter-Ferguson method combines the two methods by splitting ultimate losses into two 
components: actual reported (or paid) losses and expected unreported (or unpaid) losses. As experience 
matures, more weight is given to the actual losses and the expected losses become gradually less 
important. 

Key Assumptions 

The key assumption of the Bornhuetter-Ferguson method is that unreported (or unpaid) losses will 
develop based on expected losses. In other words, the losses reported to date contain no information 
about the amount of losses yet to be reported. This is different from the development method where 
the primary assumption is that unreported (or unpaid) losses will develop based on reported (or paid) 
losses to date. 

Mechanics 

As noted, the Bornhuetter-Ferguson method is a blend of the development and expected methods. The 
following two formulae represent the reported and paid Bornhuetter-Ferguson methods, respectively: 

Ultimate Losses = Actual Reported Losses + Expected Unreported Losses 
= Actual Reported Losses + (Expected Losses) x (% Unreported) 
Ultimate Losses = Actual Paid Losses + Expected Unpaid Losses 

= Actual Paid Losses + (Expected Losses) x (% Unpaid) 

Given that the actual reported and paid losses are both known quantities, the challenge of the 
Bornhuetter-Ferguson method is to calculate the expected unreported and expected unpaid losses. To 
complete the Bornhuetter-Ferguson method, the actuary must select loss development patterns and 
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develop an expected loss estimate. The development factors are typically based on the selection of age-
to-age factors from the development method applied to the insurer’s historical data, but they can also 
be based on external data. 

Further Comments about the Development, Expected, and Bornhuetter-
Ferguson Methods 
Detailed Calculations  

Detailed step-by-step explanations and calculations for the development, expected, and Bornhuetter-
Ferguson methods are included in Estimating Unpaid Claims Using Basic Techniques and are not 
repeated in this text. The three methods can be used with reported losses, paid losses, and claim counts, 
although claim counts are used far less with reinsurance than with primary insurance. In carrying out 
each of these methods, issues related to the types of data required, considerations regarding the 
selection of assumptions, and the mathematical steps to project ultimate values are similar for primary 
insurance and reinsurance.  

Differences in Assumptions for Reinsurance and Primary Insurance  

While the mechanics for each of the methods are the same for actuaries working with primary insurance 
and reinsurance, there are important differences in assumptions. For example, for reinsurance:  

• For a similar line of business, loss development factors in the earlier maturity age intervals are 
often higher for reinsurance than for primary insurance due to reporting lags. (See Chapter 2 for 
further discussion about the drivers of reporting lags in reinsurance). Tail factors can also be 
higher, particularly for non-proportional reinsurance when compared with primary insurance 
and for non-proportional when compared with proportional reinsurance for a similar line of 
business. 

• Loss trend factors tend to be higher for excess of loss reinsurance than primary insurance. 
• There is often less precision in premium on-level factors that adjust for rate changes. Actuaries 

working with primary insurance regularly maintain detailed information about historical rate 
changes by major jurisdiction and line of business, especially where rates are highly regulated. 
These actuaries use premium on-level factors to adjust historical premiums to current rate 
levels. The rate change information available for reinsurers can be far more challenging to 
quantify given the manuscript nature of reinsurance arrangements and the changes in coverage 
that can occur from year to year. Nevertheless, reflecting rate changes is important when 
determining expected loss ratios for the expected and Bornhuetter-Ferguson methods for 
reinsurance.50 

• In reinsurance, there is more limited use of adjustment factors for changes such as tort and 
product reform than that seen with primary insurance. 

 
50 For examples of the calculation of premium on-level factors, see chapter 5 of Geoff Werner and Claudine Modlin, Basic Ratemaking (CAS, 

2016), 64–89, https://www.casact.org/library/studynotes/Werner_Modlin_Ratemaking.pdf. 

https://www.casact.org/library/studynotes/Werner_Modlin_Ratemaking.pdf
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The use of professional judgment is particularly important for actuaries working in reinsurance. In 
selecting assumptions, actuaries should consider professionalism requirements as set forth in applicable 
actuarial standards of practice, which should be reviewed on a regular basis. 

Effect of Changes in Currency Exchange Rates  

Changes in currency exchange rates often influence how an actuary working with reinsurance 
aggregates losses in development triangles. Many global reinsurers who aggregate experience on a 
global basis review triangles at the prevailing exchange rates to prevent distortions in the age-to-age 
factors arising from fluctuations in currency exchange. This leads to differences in the values within the 
triangles from analysis to analysis. 

An example helps demonstrate the effect of changes in currency exchange on age-to-age factors. Two 
reported loss development triangles are constructed based on the following assumptions: 

• Cumulative reporting loss pattern of 20%, 60%, 90%, and 100% at 12, 24, 36, and 48 months, 
respectively. 

• Ultimate losses of 1 million Euros for accident year 2014 with 20% each for the United States, 
Canada, Japan, U.K., and the rest of Europe. 

• Annual growth in losses for each country of 5%. 

The exchange rates at December 31 of each year are used to create the two triangles. In the first 
triangle, presented in Table 3. 1, reported loss are based on each country’s reported losses restated at 
each maturity age at the currency exchange rate of December 31, 2019. 

Table 3. 1. Global Reported Losses Based on Currency Exchange Rates at December 31, 2019 

 

In the second triangle, reported losses are based on the aggregation of reported losses from each 
country using the exchange rate at December 31 of each year. For example, the reported losses of the 
United States are adjusted by the triangle of US$-Euro exchange rates seen in Table 3. 2. 

  

Accident
Year 12 24 36 48 60 72
2014 206 618 927 1,030 1,030 1,030
2015 216 649 973 1,082 1,082
2016 227 681 1,022 1,136
2017 238 715 1,073
2018 250 751
2019 263
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Table 3. 2. US$-Euro Exchange Rates 

 

Reported losses for each of the other countries are similarly adjusted to produce the global reported 
loss triangle seen in Table 3. 3. 

Table 3. 3. Global Reported Losses Based on Currency Exchange Rates at Each Year-End 

 

Not surprisingly, the age-to-age factors are noticeably different dependent on how losses are adjusted 
for currency exchange. Table 3. 4 compares the age-to-age factors of the first reported loss triangle with 
those of the second reported loss triangle. 

  

Accident
Year 12 24 36 48 60 72
2014 1.21100 1.08660 1.05225 1.19990 1.14550 1.12270
2015 1.08660 1.05225 1.19990 1.14550 1.12270
2016 1.05225 1.19990 1.14550 1.12270
2017 1.19990 1.14550 1.12270
2018 1.14550 1.12270
2019 1.12270

Accident
Year 12 24 36 48 60 72
2014 200 626 942 977 995 1,030
2015 219 659 924 1,045 1,082
2016 231 647 987 1,136
2017 226 691 1,073
2018 242 751
2019 263
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Table 3. 4. Age-to-Age Factors for Global Reported Losses 

 

Adjusting losses by a common currency exchange rate allows for the true reporting pattern to be seen 
without distortions from currency exchange. While the example is simplistic, in practice, the process can 
be complicated. Thus, adjustments to assumed losses for the effect of changes in currency can be 
extremely difficult and require approximations by the actuary. 

Background About Examples 

The examples included in this chapter are based primarily on the worldwide aggregated data of the 
largest reinsurers obtained from internet searches. The data are disguised through additive and 
multiplicative adjustments applied to reported and paid losses as well as earned premiums. The actual 
years in the experience period are not identified, in part so that the examples do not become dated with 
the passage of time. Similarly, the currency and units (i.e., thousands or millions) are not identified. It is 
not the purpose of this text to evaluate any specific reinsurer’s experience but instead to explore 
common relationships between primary insurance and reinsurance and between different types of 
reinsurance. 

Given that the examples in this chapter are constructed from the aggregated global experience of the 
world’s largest reinsurers, the experience in these examples tends to have far greater stability than what 
an actuary actually sees when analyzing reinsurance experience by HRG. For financial reporting, 
reinsurers aggregate their experience into roughly 10 to 20 segments. In the commentary supporting 
the publicly available financial reports, one reinsurer notes that a single segment in their financial report 
includes the experience of 40 HRGs. One reinsurer reported that they maintain more than 500 HRGs, 
and another uses more than 1,000 HRGs for actuarial reserving analyses. Thus, the loss development 
triangle for a particular HRG for a reinsurer would be expected to have significantly less data with 

Accident
Year 12-24 24-36 36-48 48-60 60-72

Reported Losses Adjusted by Dec 31, 2019 Exchange Rates
2014 3.00 1.50 1.11 1.00 1.00
2015 3.00 1.50 1.11 1.00
2016 3.00 1.50 1.11
2017 3.00 1.50
2018 3.00

Reported Losses by Exchange Rates at Each Year-end
2014 3.13 1.51 1.04 1.02 1.04
2015 3.01 1.40 1.13 1.04
2016 2.80 1.53 1.15
2017 3.05 1.55
2018 3.11
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substantially more volatility than the examples of this chapter. It is not unusual for the loss development 
triangles for some HRGs to have values of nil. 

Numeric examples are presented to examine the relationships in development experience for the 
following: 

• Primary insurance and reinsurance for a similar type of business (professional lines, Exhibit I).  
• Proportional and non-proportional reinsurance for the same line of business (liability, Exhibit II).  
• Reinsurance excluding catastrophe and reinsurance catastrophe (property, Exhibit III). 

For each of these examples, detailed exhibits are included at the end of the chapter and organized as 
follows: 

• Sheets 1–4: Reported and paid loss development triangles including data and age-to-age factors, 
and cumulative development factors. 

• Sheet 5: Reporting and payment patterns. 
• Sheet 6: Development of expected loss ratios.  
• Sheet 7: Projection of ultimate losses using expected method and Bornhuetter-Ferguson 

method.  
• Sheet 8: Estimation of IBNR and total unpaid losses. 

Data for the professional lines example are aggregated by accident year, and the data for the liability 
and property examples are aggregated by treaty year. For these latter two examples, the treaty year 
premium must be adjusted to reflect earnings at the end of the year when estimating unpaid losses, and 
details of these calculations are presented later in this chapter and in Sheet 8 of Exhibits II and III. An 
example of the development of written premium to ultimate is included for liability non-proportional 
and facultative reinsurance in Exhibit II, Sheet 9. 

The development examples in this chapter incorporate several simplifying approaches that are 
described below. 

Average Age-to-Age Factors 
Three average age-to-age factors are calculated: simple three years, medial seven years (i.e., average of 
seven years excluding high and low values), and volume weighted five years. The intent is to present 
averages from different time periods to demonstrate potential volatility in these averages. In practice, 
the actuary would select the types of average and the experience periods for averages that reflect the 
specific circumstances of the insurer or reinsurer, its internal and external environments, and the 
credibility of the data.  
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Tail Factors 
Tail factors for reported losses are selected based on the maximum of 1.00 and the latest observed 
factor (e.g., the reported tail factor from 120 months-to-ultimate is based on the maximum of 1.00 and 
the observed factor from 108-to-120 months). Tail factors for paid losses are derived from a review of 
the projected ultimate losses using the development method with reported losses for the most mature 
years. In practice, the actuary would use several approaches to select the tail factor. One approach is to 
rely on industry benchmark development factors. Another common approach is to fit a curve to the 
selected or observed development factors to extrapolate the tail factors. Many commercial reserving 
software programs as well as open-source code have routines for such extrapolation. A more in-depth 
discussion of tail factors is beyond the scope of this text. Actuaries seeking additional information are 
referred to actuarial literature available on the CAS web site and the CAS Tail Factors Working Party. 

Expected Loss Ratios 
The projected ultimate losses using the development method applied to paid and reported losses are 
shown on the exhibit for the development of expected loss ratios. For these examples, the initial 
estimates of ultimate losses are based solely on the projections using reported losses. In practice, the 
actuary would likely consider reported loss and paid loss development projections as well as expected 
loss ratios from pricing or financial planning and possibly also industry information.  

In deriving expected loss ratios, there are no adjustments for loss or premium trend, changes in rate 
level, the effect of tort reform, or other changes in the claims environment, all of which could be 
significant. Four averages are calculated (latest three, five, and seven years and latest five years 
excluding high and low), and the selected expected loss ratio is based on the latest five years. The 
selected expected loss ratios are then used for the expected and Bornhuetter-Ferguson projections.  

For the examples that rely on data aggregated by treaty year, an adjustment is required for premium to 
reflect earnings through the valuation date. 

GL Captive Insurer 
Data for the two final examples of this chapter use GL Captive Insurer, which is based on GL Self-Insurer 
from Estimating Unpaid Claims Using Basic Techniques. These examples present the perspective of a 
ceding company as opposed to the reinsurer. 

Comparison of Age-to-Age Factors and Development Patterns 

As noted previously, examples are presented to examine the relationships in development experience 
for the following: 

• Primary insurance and reinsurance for a similar type of business.  
• Proportional and non-proportional reinsurance for the same line of business. 
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• Property reinsurance excluding catastrophe and property reinsurance catastrophe. 

Primary Insurance and Reinsurance for a Similar Type of Business 
The first example, presented in Exhibit I at the end of this chapter, relies on the development data for 
professional lines of a global insurer that writes primary insurance and reinsurance. The focus is on the 
volatility of age-to-age factors and the differences in reporting and payment patterns. Greater volatility 
in age-to-age factors can lead to greater volatility in the indications of expected loss ratios for 
reinsurance when compared with primary insurance. 

For professional lines of business, claim payment and reporting patterns are considered to be medium 
to long tail in nature for both primary insurance and reinsurance. For the primary insurance, the 
professional lines HRG includes the following: 

• Directors & Officers (D&O) Liability. 
• Employment Practices Liability (EPL). 
• Fiduciary Liability. 
• Crime. 
• Errors & Omissions (E&O). 
• Cyber Liability. 
• Professional Indemnity. 
• Other financial insurance related coverages for public and private commercial enterprises, 

financial institutions, non-profit organizations, and professional service providers.  

Professional lines primary business is written predominantly on a claims-made basis.  

For the reinsurance, the professional lines HRG includes: 

• D&O liability 
• EPL 
• Medical malpractice 
• Professional indemnity 
• Environmental liability 
• Miscellaneous E&O 

D&O liability is a much greater proportion of the reinsurance business than the primary insurance 
business. For this example, the professional lines liability reinsurance HRG includes both non-
proportional and proportional treaties, although the majority of exposures are excess policies. D&O 
exposures typically attach at higher levels than the rest of the portfolio. Like the primary insurance, the 
reinsurance is predominantly written on a claims-made basis, and most treaties are written on a risks-
attaching basis. 
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Exhibit I, Sheets 1–4 present reported and paid loss development triangles, age-to-age and average age-
to-age factors, and cumulative development factors. Reporting and payment patterns are summarized in 
Exhibit I, Sheet 5.  

Comparison of Volatility in Age-to-Age Factors 

The standard deviation and absolute differences of the age-to-age factors are calculated for each age-to-
age interval from 12–24 months through 72–84 months as measures of the volatility in the reported and 
paid loss development. The standard deviation is a measure of the amount of variability (i.e., dispersion) 
in the age-to-age factors around the average. The absolute difference is equal to the highest age-to-age 
factor minus the lowest age-to-age factor. Table 3. 5 summarizes these results. 

Table 3. 5. Professional Lines 
Measures of Variability in the Age-to-Age Factors 

 

As expected, there is more volatility seen at the earlier maturity ages with paid losses than with 
reported losses for both primary insurance and reinsurance due to the longer time frame for claims 
settlement and thus lower volume of paid loss data. One also readily observes much greater volatility in 
the age-to-age factors for the professional lines reinsurance when compared with the professional lines 
primary insurance. In this example, the differences are evident in both the reported loss and paid loss 
age-to-age factors and extend from 12–24 months through 72–84 months. Greater volatility in age-to-
age factors can lead to greater uncertainty in the selection of age-to-age factors and resulting 
projections of ultimate losses.  

Age-to-Age Interval
12-24 24-36 36-48 48-60 60-72 72-84

Standard Deviation - Reported Age-to-Age Factors
Insurance 0.50 0.06 0.05 0.07 0.04 0.03
Reinsurance 0.84 0.16 0.14 0.10 0.08 0.12

Standard Deviation - Paid Age-to-Age Factors
Insurance 0.73 0.17 0.18 0.10 0.07 0.03
Reinsurance 2.91 0.46 0.19 0.12 0.07 0.04

Absolute Difference - Reported Age-to-Age Factors
Insurance 1.763 0.177 0.163 0.189 0.093 0.081
Reinsurance 2.181 0.528 0.379 0.257 0.214 0.263

Absolute Difference - Paid Age-to-Age Factors
Insurance 2.167 0.516 0.539 0.274 0.180 0.062
Reinsurance 7.643 1.179 0.568 0.331 0.179 0.080
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Longer Reported and Payment Patterns for Reinsurance versus Primary Insurance 

In Exhibit I, Sheet 5, reporting and payment patterns based on the three averages (i.e., simple three, 
medial seven, and volume weighted five) are shown for professional lines primary insurance and 
reinsurance. One readily observes longer (i.e., slower) reporting and payment patterns for the 
reinsurance than the primary insurance. The reasons for longer patterns are related to the lags in 
reporting that were previously discussed in Chapter 2 and include the need for the claims to first be 
recognized by the ceding company before they can be reported to the reinsurer, the time required for 
claims to develop beyond the ceding company’s attachment point, and delays associated with 
bordereau reporting. 

It is important to remember that these examples use a very simplistic approach for the selection of tail 
factors. In practice, the actuary would conduct a much more comprehensive analysis of the potential for 
losses beyond the experience period, and tail factors for reported and paid losses could be significantly 
different from the selections in this chapter’s examples. 

Proportional and Non-proportional Reinsurance for the Same Line of Business 
While the previous example compared the volatility in losses for a similar type of business for primary 
insurance and reinsurance, this next example compares the loss experience for the same line of 
business. The development triangles included in this section are based on the experience of a global 
reinsurer for liability proportional treaty reinsurance and liability non-proportional treaty and facultative 
reinsurance. The focus of this example is on the volatility of age-to-age factors and the ratios of paid-to-
reported losses as well as the length of the development patterns. Exhibit II, Sheets 1–4 present the 
reported and paid loss triangles. Exhibit II, Sheet 5 contains the reporting and payment patterns for 
liability proportional treaty reinsurance and liability non-proportional treaty and facultative reinsurance.  

There are two notable differences in the loss development patterns of this example: 

• There is significantly more volatility in the age-to-age factors for the non-proportional treaty and 
facultative reinsurance than for the proportional treaty reinsurance. 

• The cumulative development factors are greater (i.e., longer development patterns) for the non-
proportional treaty and facultative reinsurance than for the proportional treaty reinsurance.  

Further details about these two observations follow. 

Comparison of Volatility in the Age-to-Age Factors of Proportional versus Non-proportional 
Reinsurance  

Table 3. 6 summarizes the standard deviations and absolute differences of the age-to-age factors from 
12–24 months through 72–84 months. The greater volatility of the reported and paid losses is readily 
apparent when comparing the experience of proportional treaty and non-proportional treaty and 
facultative experience for the liability line of business. 
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Table 3. 6. Liability Reinsurance 
Measures of Variability in the Age-to-Age Factors 

 

Longer Reporting and Payment Patterns for Non-proportional versus Proportional 
Reinsurance 

For this reinsurer, longer reporting and payment patterns are readily seen in Exhibit II, Sheet 5 when 
comparing proportional treaty to non-proportional treaty and facultative reinsurance for liability. This is 
not unexpected given the delays associated with non-proportional reinsurance and the long-tail nature 
of liability coverage. The reader is again cautioned about the simplistic process used for selecting tail 
factors in the examples of this chapter. 

Variability in Ratios of Paid-to-Reported Losses 

Many actuaries use development triangles for diagnostic purposes so that they can better understand 
how changes in operations and the external environment influence the loss data. Given the absence of 
data for claim counts and units of exposure for reinsurance, the ratio of paid-to-reported losses is one of 
the few triangle diagnostics that an actuary can review.  

Examining the consistency of paid losses relative to reported losses is important for testing whether 
there might have been changes in case outstanding adequacy or in settlement patterns. Because this 
diagnostic is a ratio, further investigation is required if any changes are observed to determine if the 
change is occurring in paid losses (i.e., the numerator) or in the case outstanding, which are a critical 
component of the reported losses (i.e., the denominator). It is important to recognize that the absence 
of observed change in these ratios does not necessarily mean that changes are not occurring. There 

Age-to-Age Interval
12-24 24-36 36-48 48-60 60-72 72-84

Standard Deviation - Reported Age-to-Age Factors
Proportional 0.16 0.12 0.08 0.06 0.05 0.02
Non-Proportional and Facultative 1.53 0.30 0.15 0.40 0.05 0.07

Standard Deviation - Paid Age-to-Age Factors
Proportional 0.83 0.39 0.20 0.10 0.04 0.01
Non-Proportional and Facultative 37.77 0.35 0.39 0.15 0.20 0.11

Absolute Difference - Reported Age-to-Age Factors
Proportional 0.499 0.348 0.239 0.176 0.127 0.056
Non-Proportional and Facultative 4.837 0.953 0.420 1.117 0.140 0.163

Absolute Difference - Paid Age-to-Age Factors
Proportional 2.627 0.904 0.503 0.283 0.092 0.028
Non-Proportional and Facultative 116.571 1.179 1.110 0.380 0.502 0.250
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could be offsetting changes in both claim settlement practices and the adequacy of case outstanding 
that result in no change to the ratios of paid-to-reported losses. 

Table 3. 7 presents the ratios of paid-to-reported losses for the liability reinsurance example. The two 
measures of variability are shown for these ratios below each triangle. There is significantly more 
variability seen at all maturity ages from 12 months through 72 months in the ratios for non-
proportional and facultative reinsurance than for proportional reinsurance. 

Table 3. 7. Liability Reinsurance 
Ratios of Paid-to Reported Losses 

 

The same drivers of greater volatility in age-to-age factors for non-proportional and facultative 
reinsurance versus proportional reinsurance can drive the greater volatility in ratios of paid-to-reported 
losses. It is important to recognize that the volatility in the age-to-age factors and the diagnostics can 
contribute to overall greater uncertainty in the selection of age-to-age factors. This can then lead to 
uncertainty in the projected ultimate losses derived from the development method. In turn, this can 

Treaty Ratios Paid-to-Reported Losses as of (months)
Year 12 24 36 48 60 72 84 96 108 120

Liability - Proportional
1 0.22 0.28 0.50 0.54 0.61 0.71 0.78 0.84 0.86 0.85
2 0.20 0.34 0.46 0.51 0.65 0.72 0.77 0.83 0.87
3 0.18 0.31 0.44 0.52 0.66 0.73 0.81 0.87
4 0.20 0.34 0.45 0.55 0.66 0.74 0.81
5 0.20 0.39 0.47 0.62 0.67 0.75
6 0.20 0.30 0.48 0.60 0.68
7 0.19 0.29 0.45 0.58
8 0.20 0.28 0.44
9 0.18 0.30

10 0.20

Std Dev 0.01 0.03 0.02 0.04 0.02 0.02
Abs Diff 0.044 0.108 0.058 0.108 0.072 0.040

Liability - Non-Proportional and Facultative
1 0.19 0.18 0.36 0.38 0.29 0.34 0.35 0.78 0.81 0.81
2 0.22 0.15 0.32 0.50 0.60 0.61 0.64 0.66 0.74
3 0.14 0.23 0.36 0.52 0.53 0.54 0.60 0.66
4 0.04 0.15 0.30 0.44 0.53 0.66 0.68
5 0.13 0.19 0.32 0.44 0.51 0.71
6 0.13 0.15 0.31 0.36 0.49
7 0.18 0.19 0.33 0.49
8 0.13 0.31 0.34
9 0.02 0.30

10 0.26

Std Dev 0.07 0.06 0.02 0.06 0.11 0.15
Abs Diff 0.245 0.160 0.061 0.156 0.315 0.371
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lead to greater uncertainty in projections of ultimate losses from other methods, as they are often 
dependent on input from the development method. 

Premium Development 

A written premium development triangle was constructed to demonstrate how reinsurance premiums 
aggregated by treaty year can develop over time. Premium development is more pronounced for risks 
attaching reinsurance but also varies from one reinsurer to another depending on the distribution of 
renewal dates during the year. (See description of underwriting year in Chapter 1.) The ultimate losses 
for treaty years in which the premium is not fully earned require an adjustment to reflect only the 
portion of ultimate losses that are associated with occurrences prior to the valuation date. Exhibit II, 
Sheet 9 presents the premium development triangle, age-to-age factors, cumulative development 
factors, and projection of ultimate written premium by treaty year.  

Concluding Remarks 

The greater volatility and longer loss development patterns should not be surprising given that 
proportional reinsurance attaches on a ground-up basis, whereas non-proportional reinsurance is excess 
of loss coverage. Furthermore, there are many different types of non-proportional reinsurance, 
including excess per risk, excess per occurrence, catastrophe cover, and aggregate stop-loss. Each of 
these types of reinsurance could produce very different development patterns, none of which would be 
expected to be similar to or as stable as ground-up losses. While this example presents non-proportional 
treaty and facultative on a combined basis, the actuary would consider whether analysis with more 
segmented data would be appropriate.  

Property Reinsurance excluding Catastrophe and Property Reinsurance 
Catastrophe  
The next example compares the volatility in the age-to-age factors for property reinsurance excluding 
catastrophe and property reinsurance catastrophe. The property triangles include both treaty and 
facultative reinsurance, proportional and non-proportional, as well as personal and commercial lines of 
business. While in practice, these different types of risks would not be combined for detailed actuarial 
analyses of unpaid losses, the observed relationships are still important for understanding the volatility 
in this major line of business.  

Catastrophe and Large Loss Events  

Many actuaries exclude unusually large losses arising from catastrophe and other large loss events from 
development triangles, as such losses can significantly distort development factors and resulting 
estimates of unpaid losses. For reinsurers, carried reserves for these types of events tend not to be 
based on aggregated development analyses but instead on ground-up exposure-based assessments that 
reflect information provided by ceding companies on a contract-by-contract basis. Actuaries may 
supplement information from claims professionals with results from catastrophe models, particularly in 
the time period immediately following a catastrophe event when claims teams may not have access to 
the affected area.  
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In this example, losses associated with catastrophe events are included in the development triangle for 
property catastrophe reinsurance. Observe the tremendous volatility in losses down each column of the 
reported loss triangle, which is presented in Exhibit III, Sheet 2 and in Table 3. 8. The label “net reported 
losses” in this example refers to losses that are net of retrocessions.  

Table 3. 8. Property Reinsurance Catastrophe – Reported Losses 

 

The reported losses at 12 months range from a low of 920 to a high of 15,554; at 24 months, the 
reported losses range from a low of 4,172 to a high of 44,749. Great variability is seen down each 
column of the triangle. 

The loss development seen in triangles can be distorted by the timing of catastrophe events as well as 
the wide swings in losses associated with such events. For example, one year may have a catastrophic 
ice storm in January that is almost fully developed by year-end (i.e., December 31), and the following 
year may have a late season hurricane that occurs the first week of December. The extent of claims 
reporting and settlement will be completely different for these two events as of December 31 (i.e., as of 
12 months in a development triangle), and thus the loss development seen from 12-to-24 months will 
be completely different. The situation could be further exacerbated with treaties that are risks-
attaching, where catastrophe events associated with a treaty year could occur within a time frame of up 
to three years. (See discussion of underwriting year in Chapter 2.) This could be a driver of the significant 
differences from 12-to-24 months for treaty years 6 and 7 (i.e., catastrophe events at significantly 
different times of the treaty year). 

The fundamental assumption of the development method is that the relative change in a given year’s 
losses from one evaluation point to the next is similar to the relative change in prior years’ losses at 
similar evaluation points. This assumption may not always be appropriate for property reinsurance 
catastrophe. 

Comparison of Volatility in Age-to-Age Factors 

The reported and paid loss triangles (including age-to-age factors, average age-to-age factors, and 
cumulative development factors) are seen in Exhibit III, Sheets 1–4. Reporting and payment patterns are 
seen in Exhibit III, Sheet 5. 

Treaty Net Reported Losses as of (months)
Year 12 24 36 48 60 72 84 96 108 120

1 13,440 30,393 31,135 31,714 32,019 32,358 32,523 32,577 32,482 32,467
2 2,905 4,172 4,024 3,966 3,944 3,910 3,890 3,905 3,914
3 4,240 6,040 6,416 6,282 6,343 6,715 6,645 6,600
4 13,080 14,350 16,228 16,786 16,807 16,806 16,742
5 4,892 9,050 9,448 9,066 8,963 8,912
6 5,531 44,749 55,431 57,542 59,903
7 10,150 13,806 14,332 16,540
8 1,546 4,184 4,211
9 15,554 18,677

10 920
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As with the prior examples, the standard deviations and absolute differences of age-to-age factors are 
calculated for each age interval from 12-to-24 months through 72-to-84 months. The measures of 
variability are shown in Table 3. 9. 

Table 3. 9. Property Reinsurance 
Measures of Variability in the Age-to-Age Factors 

 

The volatility is substantially higher for catastrophe reinsurance than for property excluding catastrophe 
reinsurance for both reported and paid losses. This is not surprising given the nature of catastrophes, 
both natural and man-made. Greater variability is also seen in the ratios of paid-to-reported losses that 
are presented in Table 3. 10. 

  

Age-to-Age Interval
12-24 24-36 36-48 48-60 60-72 72-84

Standard Deviation - Reported Age-to-Age Factors
Property Reinsurance excluding Catastrophe 0.66 0.05 0.03 0.01 0.00 0.00
Property Reinsurance Catastrophe 2.20 0.09 0.06 0.02 0.03 0.01

Standard Deviation - Paid Age-to-Age Factors
Property Reinsurance excluding Catastrophe 2.23 0.09 0.04 0.01 0.02 0.00
Property Reinsurance Catastrophe 6.24 0.12 0.13 0.02 0.04 0.03

Absolute Difference - Reported Age-to-Age Factors
Property Reinsurance excluding Catastrophe 1.804 0.162 0.083 0.024 0.011 0.006
Property Reinsurance Catastrophe 6.993 0.274 0.194 0.052 0.067 0.016

Absolute Difference - Paid Age-to-Age Factors
Property Reinsurance excluding Catastrophe 7.476 0.233 0.111 0.020 0.040 0.008
Property Reinsurance Catastrophe 19.671 0.355 0.357 0.059 0.082 0.065
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Table 3. 10. Property Reinsurance 
Ratios of Paid-to Reported Losses 

 

Given the significant volatility evident in the property reinsurance catastrophe loss development 
triangle, methods that rely on selected age-to-age factors are often not appropriate. Instead, actuaries 
can turn to catastrophe models and discussions with claims professionals. Catastrophe models can be 
particularly valuable for catastrophe events that occur close to a financial reporting date in 
circumstances where an insurer (or reinsurer) has not had time to process many claims. This assumes 
that the catastrophe event lends itself to reliable catastrophe modeling (such as hurricanes and 
earthquakes). As time progresses and the insurer (or reinsurer) has time to deploy claims adjusters on 
site and begin to process claims, the insight from the claims team will be invaluable to the actuary 
estimating unpaid losses. 

Table 3. 11 presents an alternative for the projection of ultimate losses using the development method 
for property catastrophe reinsurance. In this approach, the losses associated with specific catastrophes 

Treaty Ratios Paid-to-Reported Losses as of (months)
Year 12 24 36 48 60 72 84 96 108 120

Property Reinsurance excluding Catastrophe
1 0.28 0.61 0.84 0.91 0.94 0.98 0.99 0.99 0.99 1.00
2 0.30 0.60 0.82 0.90 0.95 0.97 0.97 0.98 0.98
3 0.26 0.61 0.79 0.90 0.96 0.98 0.99 0.99
4 0.21 0.65 0.83 0.93 0.96 0.97 0.99
5 0.26 0.57 0.82 0.92 0.96 0.98
6 0.33 0.54 0.78 0.91 0.95
7 0.30 0.64 0.77 0.91
8 0.28 0.57 0.77
9 0.32 0.67

10 0.39

Std Dev 0.05 0.04 0.03 0.01 0.01 0.01
Abs Diff 0.188 0.126 0.069 0.037 0.019 0.016

Property Reinsurance Catastrophe
1 0.16 0.68 0.92 0.97 0.97 1.04 0.99 0.99 1.00 1.00
2 0.13 0.65 0.87 0.92 0.95 0.97 0.98 0.98 0.98
3 0.51 0.74 0.88 0.94 0.95 0.94 0.97 0.98
4 0.31 0.72 0.80 0.91 0.98 0.98 0.99
5 0.16 0.65 0.81 0.92 0.96 0.97
6 0.24 0.62 0.79 0.89 0.91
7 0.22 0.45 0.63 0.76
8 0.55 0.61 0.75
9 0.73 0.83

10 0.19

Std Dev 0.21 0.11 0.09 0.07 0.02 0.04
Abs Diff 0.599 0.388 0.295 0.209 0.065 0.104
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are excluded from the calculation and replaced with estimates derived from interaction with the claims 
team and review of indications from catastrophe models. 

Table 3. 11. Alternative Projection with Adjustments for Large Catastrophes 

 

The mathematics of the projected ultimate losses with catastrophe adjustment are as follows: 

• [(Reported losses – catastrophe reported losses) x reported cumulative development factor + 
estimated ultimate catastrophe losses]. 

• [(Paid losses – catastrophe paid losses) x paid cumulative development factor + estimated 
ultimate catastrophe losses]. 

The projected ultimate losses from the standard application of the development method are seen in the 
last two columns of Table 3. 11. There are notable differences in the indicated IBNR for treaty year 9 
between the projections with and without adjustment for catastrophe. Another option that the actuary 
could consider is deriving separate development patterns from data inclusive and exclusive of years with 
unusually large catastrophe events. 

Implications of Volatility in Loss Development Experience 

Greater volatility in age-to-age factors can lead to greater uncertainty in the projections of ultimate 
losses and the resulting estimates of unpaid losses, not only for projections based on the development 
method but also projections based on other frequently used methods. Actuaries often use estimates of 
ultimate losses from the development method for mature years to determine the expected loss ratios 
used in the expected method. Thus, volatility in the age-to-age factors can result in uncertainty in the 
projections of the development method, which can lead to uncertainty in the selection of the expected 
loss ratio. The Bornhuetter-Ferguson method relies on the selected development patterns and the 
expected loss estimates. Thus, volatility and uncertainty in these can lead to uncertainty in the 
Bornhuetter-Ferguson projections of ultimate losses. Professional judgment is critically important for 
actuaries estimating unpaid losses for reinsurance. 

Projected Ultimate Projected Ultimate
Losses at Catastrophe Losses at 12/31/10  Cum Dev Factor Losses with Cat Adj Losses without Cat Adj

Treaty 12/31/10 Estimated at 12/31/10 Based on Based on
Year Reported Paid Reported Paid Ultimate Reported Paid Reported Paid Reported Paid

1 32,467   32,438   28,500      28,500      28,500      1.000 1.010 32,465   32,477   32,452        32,762      
2 3,914      3,817      -            -            -            0.999 1.010 3,910      3,856      3,910           3,856        
3 6,600      6,443      -            -            -            0.997 1.012 6,578      6,520      6,578           6,520        
4 16,742   16,563   -            -            -            0.997 1.016 16,696   16,835   16,696        16,835      
5 8,912      8,647      -            -            -            0.997 0.994 8,889      8,596      8,889           8,596        
6 59,903   54,576   50,000      49,000      50,500      1.007 1.042 60,469   56,309   60,299        56,853      
7 16,540   12,558   -            -            -            1.032 1.100 17,062   13,811   17,062        13,811      
8 4,211      3,167      -            -            -            1.076 1.297 4,530      4,108      4,530           4,108        
9 18,677   15,577   13,000      8,900        20,000      1.244 1.898 27,065   32,670   23,242        29,558      

10 920         179         -            -            -            2.988 6.626 2,749      1,186      2,749           1,186        

Total 168,886 153,965 91,500      86,400      99,000      180,413 176,368 176,409      174,086    
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The examples continue in Sheets 6–8 of the exhibits at the end of the chapter for: 

• Professional lines – primary insurance and reinsurance. 
• Liability – proportional treaty reinsurance and non-proportional treaty and facultative 

reinsurance. 
• Property – reinsurance excluding catastrophe and reinsurance catastrophe. 

Sheet 6 shows the development of the expected loss ratios. Sheet 7 presents the results of the expected 
method and the Bornhuetter-Ferguson method with reported and paid losses. Finally, Sheet 8 shows 
indicated IBNR and total unpaid losses. 

Details of the calculations are assumed to be known and thus are not included. (For more information, 
see Estimating Unpaid Claims Using Basic Techniques.) One important difference with primary insurance 
and reinsurance is the need to earn the premium when analyses are conducted using treaty year data. 
For the liability and property examples, where data are aggregated by treaty year, the expected loss 
ratios are developed for the complete treaty year; similarly, ultimate losses are developed for the full 
treaty year for all years in the experience period. On Sheet 8 of Exhibits II and III, an adjustment is made 
for the most recent treaty years to reduce ultimate losses for the portion of premium unearned as of the 
valuation date (i.e., December 31, 10). 

Observations 

In Sheet 6, where expected loss ratios are selected, the standard deviation and absolute difference of 
the indicated ultimate loss ratios are calculated for each category of business. Similar to the greater 
volatility observed in age-to-age factors, greater volatility is also seen in the indicated ultimate loss 
ratios. Table 3. 12 summarizes the standard deviations and absolute differences for the above examples. 
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Range of Indicated IBNR and Total Unpaid 
Calculations are extended to project ultimate losses with the development method (with reported and 
paid losses), the expected method, and the Bornhuetter-Ferguson method (also with reported and paid 
losses). The indicated IBNR and total unpaid losses are then calculated. Indicated IBNR is equal to the 
projected ultimate losses less total reported losses, and total unpaid losses are equal to the projected 
ultimate losses less total paid losses. 

Sheet 8 presents the projected ultimate losses from each method by year (with adjustment for earning 
of the premium where losses are aggregated by treaty year) and the indicated IBNR and total unpaid 
losses resulting from each method on a total all years combined basis. 

Not surprisingly, there is a greater range of indicated IBNR as measured by the maximum value minus 
the minimum value for reinsurance than for primary insurance in the professional lines example, for 
non-proportional treaty than proportional and facultative reinsurance than for proportional treaty 
reinsurance in the liability example, and for catastrophe than excluding catastrophe for the property 
reinsurance example. 

Quota Share and Stop-Loss Reinsurance Examples 

The final two examples in this chapter are from the perspective of the ceding company (i.e., the 
reinsured). They expand on the example of GL Self-Insurer found in Estimating Unpaid Claims Using 

Standard Absolute 
Deviation Difference 

Professional Lines - Primary Insurance 0.04 13% 
Professional Lines - Reinsurance 0.14 41% 

Liability Proportional Treaty Reinsurance 0.08 23% 
Liability Nonproportional Treaty and Facultative Reinsurance 0.14 44% 

Property excluding Catastrophe Reinsurance 0.17 51% 
Property Catastrophe Reinsurance 0.64 157% 

Table 3. 12. Measures of Variability in the Indicated Ultimate Loss Ratios 
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Basic Techniques.51 For purposes of this reinsurance text, GL Self-Insurer is presented as GL Captive 
Insurer since captive insurers routinely purchase reinsurance. 

Quota Share Reinsurance 
Recall that with proportional reinsurance, the reinsurer shares the experience of the ceding company 
from the ground-up. For quota share, where premiums and losses are shared based on a specified 
percentage, the age-to-age factors are identical for losses gross of reinsurance, ceded losses, and losses 
net of reinsurance.52  

With quota share reinsurance, the ceded losses are equal to gross losses multiplied by the percentage 
ceded. It is very important to understand the meaning of the percentage cited for quota share 
reinsurance, as the percentage can be used to refer to the percentage ceded or the percentage 
retained. The actuary should always seek clarification to ensure proper application of the percentage. 

For a ceding company, the estimation of ultimate losses and unpaid losses for a line of business with a 
quota share reinsurance treaty is often a straightforward calculation. The percentage ceded is applied to 
the ultimate losses, case reserves, paid losses, and IBNR to determine the losses ceded to the reinsurer. 
If the percentage ceded remains constant for all years in the experience period, the calculation can be 
performed on a total basis for all years combined. Frequently, the percentage ceded changes over time, 
and the calculations are performed by year. 

Table 3. 13 presents an example where the quota share reinsurance percentages are assumed to vary by 
year. (Note “QS” is used in a column heading as an abbreviation for quota share.) For GL Captive Insurer, 
accident year is equivalent to policy year as there is a single policy with a January 1 effective date. In this 
example, the quota share percentages are presented as the percentage ceded by GL Captive Insurer.  

  

 
51 The reported and paid losses are from Chapter 8 of Estimating Unpaid Claims Using Basic Techniques, and the selected ultimate losses are 

assumed equal to the reported development projection. 
52 Surplus share reinsurance differs from quota share, and thus differences in age-to-age factors would exist due to the variable nature of the 

percentage of losses shared in surplus share reinsurance. However, the differences are likely not nearly as pronounced as they are between 
proportional and non-proportional reinsurance.  
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Table 3. 13. GL Captive Insurer – Example of the Application of Quota Share Reinsurance from the 
Ceding Company’s Perspective Development of Losses ($000s) Ceded to Quota Share Reinsurance at 

December 31, 11 

 

The calculations above would likely not be the same for an actuary working with a primary insurer or a 
reinsurer. For a primary insurer, the calculations can become complicated if the quota share coverage is 
from a risks-attaching reinsurance treaty with a ceded percentage that changes over time and the 
reserving analysis of gross results is prepared on an accident year basis. In this situation, the change in 
the ceded percentage applies based on the policy year of the underlying risks not on the accident year 
of the insured event. For a reinsurer, there would be numerous quota share treaties in a single HRG with 
different ceding percentages and different terms and conditions, and thus the previous simple 
calculation would not be applicable.  

Stop-Loss Reinsurance 
The example with GL Captive Insurer continues with stop-loss coverage where the quota share 
arrangement inures to the benefit of the stop-loss coverage. Table 3. 14 presents the results, which are 
described after the table. 

  

Gross of Quota Share Reinsurance Ceded to Quota Share Reinsurance Retained
Selected At December 31, 11 At December 31, 11 Ultimate

Accident Ultimate Paid Case Indicated QS % Case Total Losses
Year Losses Losses Oustanding IBNR Ceded Paid Oustanding IBNR Unpaid Ultimate After QS

1 914         890         10           14           50% 445         5             7             12           457         457         
2 1,224      1,170      30           24           50% 585         15           12           27           612         612         
3 1,339      1,265      35           39           50% 633         18           20           37           670         670         
4 1,892      1,600      200         92           50% 800         100         46           146         946         946         
5 1,562      1,200      250         112         40% 480         100         45           145         625         937         
6 1,583      1,050      350         183         35% 368         123         64           187         554         1,029      
7 2,986      900         1,500      586         30% 270         450         176         626         896         2,090      
8 2,509      860         940         709         25% 215         235         177         412         627         1,882      
9 2,424      525         975         924         20% 105         195         185         380         485         1,939      

10 2,328      750         450         1,128      20% 150         90           226         316         466         1,862      
11 1,862      170         430         1,262      15% 26           65           189         254         279         1,583      

Total 20,623   10,380   5,170      5,073      4,076      1,395      1,146      2,541      6,616      14,007   
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Table 3. 14. GL Captive Insurer – Example of the Application of Stop-Loss Limits from the Ceding 
Company’s Perspective 

 

The retained ultimate losses after quota share are derived from Table 3. 13 and are equal to ultimate 
losses gross of quota share minus ultimate losses ceded to quota share. Ultimate losses after quota 
share can also be calculated as ultimate losses gross of quota share multiplied by 1.0 minus the quota 
share ceded percentage. Stop-loss limits are assumed for the purpose of this example.  

Retained ultimate losses after quota share and stop-loss are calculated as: 

Minimum [retained ultimate losses after quota share, stop-loss limit]. 

Reported and paid losses after quota share and stop-loss are calculated in a similar way. Observe that 
reported and paid losses for accident year 4 are both capped by the stop-loss limit of 750, and there is 
nil case outstanding and nil IBNR after quota share and stop-loss. For accident year 5, the reported 
losses are capped but the paid losses are not, and thus there is case outstanding of 30 net of quota 
share and stop-loss; however, there is no net IBNR for accident year 5. Similar observations are made for 
accident year 7, where reported losses are capped by the stop-loss of 1500 but the paid losses are not, 
and case outstanding are 870 with no IBNR. 

In practice, once a ceding company breaches stop-loss coverage, it is not uncommon for the reinsurer to 
increase the price or the attachment point of stop-loss reinsurance (or both). Depending on market 
conditions, stop-loss reinsurance can be extremely challenging to secure after the ceding company 
exceeds its retention on more than one occasion.  

Retained
Retained Ult Losses Losses at December 31, 11

Accident Ult Losses Stop-Loss After QS and Net of Quota Share and Stop Loss
Year After QS Limit Stop Loss Reported Paid Case O/S IBNR

1 457          750 457               450           445           5               7               
2 612          750 612               600           585           15             12             
3 670          750 670               650           633           18             20             
4 946          750 750               750           750           -            -            
5 937          750 750               750           720           30             -            
6 1,029       1,500 1,029            910           683           228           119           
7 2,090       1,500 1,500            1,500        630           870           -            
8 1,882       3,000 1,882            1,350        645           705           532           
9 1,939       3,000 1,939            1,200        420           780           739           

10 1,862       3,000 1,862            960           600           360           902           
11 1,583       3,000 1,583            510           145           366           1,073        

Total 14,007    13,034          9,630        6,255        3,376        3,404        
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In this example, the reported losses for accident year 7 of 2,400 (sum of paid losses of 900 and case 
outstanding of 1,500) are significantly greater than all other accident years. (See Table 3.13 for details by 
accident year.) Assume that there is an individual large loss for this accident year with an estimated 
ultimate value of 500. Further assume that GL Captive Insurer has excess per occurrence reinsurance 
with an attachment point of 100 that inures to the benefit of the quota share and stop-loss coverages. 
The ultimate loss gross and net of all reinsurance coverage is calculated as shown in Table 3. 15. 

 

In this example, the loss ceded to the excess per occurrence reinsurance is first removed from the 
results before the application of the quota share ceded percentage. The ultimate losses net of quota 
share are then determined with the application of the stop-loss limit as the final step. Stop-loss limits 
typically apply after all other reinsurance. This form of reinsurance is used to protect the net result of 
the ceding company. 

It is very important for the actuary to have complete details about the types of reinsurance (including 
attachment points, limits, participation percentages, and treatment of LAE) as well as the order in which 
different reinsurance contracts are applied. The determination of ceded losses can be a very complex 
process, and it is critical for the actuary to understand and clearly document the calculations and 
assumptions. 

(1) Selected ultimate loss gross of all reinsurance 2,986          

(2) Single large loss 500             

(3) Excess per occurrence reinsurance - attachment point 100             

(4) Ceded losses to excess per occurrence reinsurer (4) = [(2) - (3)] 400             

(5) Ultimate losses net of excess per occurrence reinsurance (5) = [(1) - (4)] 2,586          

(6) Quota share ceded percentage 30% 

(7) Ultimate losses net of excess per occurrend and quota share reinsurance 1,810          
       (7) = [(5) x (1.0 - (6))] 

(8) Stop loss limit 1,500          

(9) Ultimate losses net of all reinsurance (9) = minimum [(7), (8)] 1,500          

Table 3. 15. GL Self-Insurer – Accident Year Losses Net of Excess Per Occurrence, Quota 
Share, and Stop-Loss Reinsurance 
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Conclusion 

The estimation of ultimate losses and unpaid losses is a critical task of actuaries working with insurance 
and reinsurance. While the methods described in this chapter are used extensively, they should not be 
used mechanically without supplementing with professional judgment. Actuaries should meet regularly 
with underwriting teams and claims personnel to ensure that as much information as possible is 
considered before final decisions are made about the reserves to book in financial statements. Without 
incorporating critical insight from others, results derived from mechanical application of the 
development, expected, and Bornhuetter-Ferguson methods could produce inappropriate results. 
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Abstract 

This study note was prepared for use on the CAS Exam Syllabus.  Its purpose is to describe various 
valuation approaches presented in introductory finance textbooks and to discuss practical 
implementation issues that arise when using these methods to value a Property & Casualty insurance 
company.   

The methods described focus on those used by practitioners, including the dividend discount model, 
the discounted cash flow model using free cash flow, the abnormal earnings model and relative 
valuation using multiples.  Applications of option pricing methods in equity valuation are briefly 
discussed, including the real options framework. 
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1. Introduction 
This study note was prepared for use on the CAS Exam Syllabus.  Its purpose is to describe various 
valuation approaches presented in introductory finance textbooks and to discuss practical 
implementation issues that arise when using these methods to value a Property & Casualty insurance 
company.   

 

2. Summary of Valuation Methods 
This section provides a brief overview of several methods used to value the common shareholders’ 
equity of financial and non-financial companies.  Discussion of the various practical implementation 
issues for P&C insurance company valuation will be covered in subsequent sections.   

2.1 Dividend Discount Model (DDM) 

The DDM is the basic model presented in introductory finance textbooks.  The method is based on the 
premise that the equity value of any firm is simply the present value of all future dividends.  To apply 
this methodology, dividend payments are forecasted for all future periods and then discounted to 
present value using an appropriate (risk-adjusted) discount rate.  Alternatively, dividends can be 
forecasted over a finite horizon and a terminal value can be used to reflect the value of all remaining 
dividends to be received beyond the explicit forecast horizon. 

2.2 Discounted Cash Flow (DCF) 

The DCF method is closely related to the DDM approach discussed above.  However, rather than 
forecast and discount the actual dividends, the DCF method focuses on free cash flow.   

The free cash flow is defined as all cash that could be paid as a dividend, regardless of whether or not 
it actually will be paid in the period it is generated.  Free cash flow is measured net of any amounts 
required to be reinvested in the firm to maintain its operations and generate growth at the rate 
assumed in the forecasts.   

The implicit assumption in this method is that the free cash flow not paid as a dividend is invested to 
earn an appropriate (risk-adjusted) return.  When an investment earns a fair risk-adjusted rate of 
return, there is no positive or negative effect on the value of the firm from retaining rather than paying 
out the free cash flow. 

There are two variations of this approach.  These variations are referred to as the Free Cash Flow to 
the Firm (FCFF) approach and the Free Cash Flow to Equity (FCFE) approach. 

• FCFF – In this variation, the focus is on the free cash flow to the entire firm, prior to taking 
into account any debt payments or tax consequences associated with the debt payments1.  
FCFF thus represents the cash that could be paid to all sources of capital, including both the 
debtholders and the equity holders.  Discounting the FCFF produces a value for the entire 
firm.  The value of the equity portion of the firm is then determined by subtracting the market 
value of the debt from the total firm value.  The ease with which most debt instruments can be 
valued makes it relatively easy to value the equity portion of the firm using this indirect 
approach. 

• FCFE – In this variation, the focus is on the free cash flows to the equity holders only, as 
opposed to the free cash flows to the entire firm.  The free cash flow to equity, FCFE, 
therefore represents the cash generated by the firm, over and above its reinvestment and debt 
financing costs, which could be paid to the shareholders of the firm.  This is estimated using 
the same approach used to estimate the FCFF, with the additional step of subtracting the debt 
payments, net of their associated tax consequences, from the free cash flow to the firm to 

                                                      
1 Debt payments are deductible for corporate tax purposes. 
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derive the free cash flow to equity.  The resulting valuation thus represents the equity 
valuation directly by determining the present value of these free cash flows. 

An important distinction between the FCFF and FCFE methods is that they each use a 
different discount rate.  The FCFF approach uses a discount rate that reflects the overall risk 
to both debtholders and equity holders (a so-called weighted average cost of capital); the 
FCFE approach uses a discount rate that reflects the risk to the equity holders only. 

2.3 Abnormal Earnings (AE) 

The AE method separates the book value of the firm from the value of the future earnings.  The book 
value of a firm represents the value of the firm’s equity assuming that the firm earns only the 
investors’ required return on book value in all future periods.  Valuations in excess of book value 
must therefore be the result of earnings in excess of the investors’ required earnings.  These earnings 
in excess of the investors’ required earnings are referred to as the “abnormal earnings”2.  The 
abnormal earnings in all future periods can be discounted and then added to the current book value to 
obtain the equity value of the firm. 

An important distinction between this method and the DDM and DCF methods discussed earlier is 
that these latter methods both adjust the accounting-based net income measure into a cash flow 
measure, such as dividends paid or free cash flow.  This translation is done to remove any potential 
distortions introduced by accounting rules designed to defer the recognition of revenues and expenses.   

While it makes sense to unwind accounting distortions, some analysts point out that these distortions 
eventually unwind themselves.  In some cases, using unadjusted accounting values may actually 
provide a more accurate valuation than would result using “cash flow” figures derived from 
unwinding certain accounting distortions, especially when applied over finite horizons3. 

Another important distinction between the abnormal earnings approach and the DCF or DDM 
approaches is that this method focuses on the source of value creation – the firm’s ability to earn a 
return on equity in excess of investors’ required returns.  The DCF and DDM focus only on the effect 
of this value creation – the firm’s ability to pay cash flows to its owners. 

2.4 Relative Valuation Using Multiples 

One common characteristic of the previously discussed methods is that they all require detailed 
assumptions regarding revenues, expenses, growth rates, etc. in perpetuity.  These assumptions, when 
taken together, result in forecasts of key valuation variables such as dividends, free cash flows or 
earnings.   

The net effect of all of these assumptions can often be summarized as a “multiple” to be applied to a 
selected financial measure, such as next-period’s earnings, cash flow or book value, which will be 
demonstrated in more detail later in this study note.  When these assumptions regarding revenues, 
expenses, growth rates, etc. are the same for comparable firms, then a shortcut valuation can be 
estimated using the multiples calculated from the valuation of these comparable firms.  In other 
words, the firm’s equity can be valued relative to other firms. 

Valuation multiples of comparable firms play an important role in all valuations.  Even when the 
multiples are not being used to perform the primary valuation, the valuation multiples of comparable 
firms often serve as a critical reasonableness check, indicating whether or not the assumptions driving 
the DDM, DCF or Abnormal Earnings approaches make sense in the aggregate and whether they 
differ materially from the assumptions inherent in the valuations of other comparable firms. 

                                                      
2 This method of valuation often appears under a variety of other names, including the “residual income” method or the 
“economic value added” method.  The latter terminology was popularized by consulting firm Stern Stewart in the 1990s as 
"EVA™" and is a registered trademark of that firm.  The more generic term "abnormal earnings" is used in this study note. 
3 See Sougiannis, Theodore and Penman, Stephen H., "A Comparison of Dividend, Cash Flow, and Earnings Approaches to 
Equity Valuation".  
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2.5 Option Pricing Theory 

In a 1974 paper4, Robert Merton showed that the equity of a firm could be viewed as a call option on 
the assets of the firm with a strike price equal to the (undiscounted) value of the liabilities.  The equity 
owners can be thought of as having sold the assets of the firm to the debtholders but have the right to 
buy back the assets by repaying the face value of the debt on the maturity date. 

Using this perspective of equity as a call option, some analysts have attempted to use option pricing 
formulas such as the Black-Scholes formula, or more typically variations of this formula, to value the 
equity of a firm.   

Although theoretically sound, this approach is difficult to implement.  There are numerous practical 
limitations associated with determining the necessary inputs, accurately reflecting the real-world 
complexity of many firms’ capital structure (e.g. there are often multiple classes of debt with multiple 
maturity dates), and other issues.   

Nonetheless, the theoretical foundation of option pricing has recently proven to be useful in thinking 
about specific sources of value from so-called real options.  Some examples of real options include 
options to expand current operations, options to make follow-on investments, options to abandon 
projects and other forms of managerial flexibility.   

 

Given this overview of the various valuation approaches, the next section of this study note will 
discuss their specific application to the valuation of P&C insurance companies. 

                                                      
4 See Merton, Robert C. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates". 
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3. Dividend Discount Model (DDM) 
3.1 Overview of the DDM 

The DDM in many ways serves as the foundation of the other methods that will be covered in this 
study note.  As a result, a relatively detailed explanation is warranted.  But given the coverage of this 
approach in introductory finance textbooks5, it should be sufficient to simply summarize the key 
points here.   

To begin, one can think of the value of a share of stock as the discounted (present) value of the 
expected future dividends.  Since this definition includes all dividends paid, there is no need to adjust 
this definition in the case of firms that do not currently pay dividends – eventually some dividends 
will have to be paid, even if they merely represent a liquidating dividend at some distant date. 

In symbols,  
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where, E(Divi) reflects the expected dividends to be paid at the end of period i and k is the appropriate 
discount rate (see below). 

In the case where dividends are expected to grow (in perpetuity) at a constant rate, g, this can be 
simplified as: 
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In the more general case, dividends may be projected over a finite horizon and then assumed to grow 
at a constant rate in perpetuity beyond that horizon.  For example, if a three-year horizon is used, the 
formula can be written as the present value of each of the next three dividends plus the present value 
of the remaining future dividends beginning in year four.  Since the dividends are assumed to grow at 
a constant rate in perpetuity beginning in year four, the previous formula can be used to represent this 
value at the end of the third year, which is referred to as the terminal value.   

The resulting formula in the case of a three year horizon is therefore, 
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Before getting into the details of how to estimate the dividends, the growth rates and the appropriate 
discount rate, consider the following example. 

Example 1 – Application of DDM 

Assume that as of the end of 2004, the expected dividends for an insurance company are estimated as follows: 

Table 1: Estimated Dividends 

Year Expected Dividend

2005 100

2006 120

2007 135

2008 150

2009 165
 

                                                      
5 See Bodie, Kane and Marcus (6th Edition), Chapter 18. 
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From 2009 on, the dividends are expected to grow at a constant rate of 5% per year and the appropriate risk 
adjusted discount rate is 15%. 

The DDM can be used to value of the equity of this firm as of the end of 2004. 

The first step is to calculate the PV of each of the first five dividends using the discount rate of 15%.  This gives 
a value of the dividends to be earned during the next five years (excluding the dividends beyond that point) as 
follows: 

434
15.1

165
15.1

150
15.1

135
15.1

120
15.1

100
543220092005 =++++=−V  

To value the remaining dividends beyond 2009, note that the dividends are expected to grow at a rate of 5% 
from year 2010 on.  This suggests that the 2010 dividend is 165*1.05 = 173.25 and the value as of the end of 
2009 is:  

5.732,1
05.15.

25.173)( 2010
2009 =

−
=
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=
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This value of 1,732.5 represents the terminal value as of the end of the explicit dividend forecast horizon.  The 
present value of this amount as of the end of 2004 is 1,732.5/1.155 = 861.   

Adding the present value of this terminal value to the present value of the dividends for years 2005 through 
2009, the total value of all future dividends is V2004 = 434 + 861 = $1,295. 

 

3.2 Terminal Value 

In the previous example, the dividends from year 2010 on were worth a total of $1,732.5 as of the end 
of 2009 and had a present value of $861 as of the end of 2004.  This terminal value beyond the 
explicit dividend forecast horizon is driven largely by the assumption of 5% perpetual dividend 
growth beyond 2009.  Given the fact that the terminal value represents 66.5% of the total value of the 
firm’s equity, it is important to consider these terminal value assumptions carefully.   

For convenience, the terminal value as of the end of 2009 can be expressed as: 

5.732,15.10*5.10*165
05.15.

05.1*165
05.15.

25.173Value Terminal 2009 ===
−

=
−

= Div  

In other words, the terminal value at the end of 2009 is worth “10.5 times the 2009 dividend”.  This 
suggests treating 10.5 as a multiple to be applied to the current dividend amount as of the terminal 
date.  This multiple effectively summarizes in one number the net effect of the following assumptions: 

i) Dividends will grow at a constant rate forever;  

ii) The growth rate is 5%;  

iii) The appropriate discount rate is 15%.   

3.3 Application of the DDM 

The following three key assumptions are required to implement the DDM: 

• Expected Dividends During Forecast Horizon 

• Dividend Growth Rates Beyond Forecast Horizon 

• Appropriate Risk-Adjusted Discount Rate 

Each of these assumptions will be discussed in more detail in this section. 

3.3.1 Expected Dividends During Forecast Horizon 

Forecasting expected future dividends is a complex exercise with a substantial degree of uncertainty.  
Fundamentally, this will involve forecasts of revenues, expenses, investment needs, cash flow needs 
and other values for several future periods.  These forecasts will require careful consideration of prior 
business written, expected renewals and new business written. 



Revised: October 2010 8 

For the sake of brevity, this study note will assume that such forecasts have already been performed.  
The models used for these forecasts will not be discussed here.  For a detailed discussion of the 
process one might follow to prepare these forecasts for a generic firm, see Business Analysis & 
Valuation, by Palepu, Bernard and Healey.  For a more focused discussion of how this could be done 
for a P&C insurance company, see The Application of Fundamental Valuation Principles to 
Property/Casualty Insurance Companies, by Blackburn, Jones, Schwartzman and Siegman or Using 
the Public Access DFA Model: A Case Study by D’Arcy, Gorvett, Hettinger and Walling. 

3.3.2 Dividend Growth Rates Beyond Forecast Horizon 

Estimates of growth rates for revenues, expenses and other variables are inherently part of the process 
of estimating dividends during the forecast horizon.   

Beyond the explicit forecast horizon though, growth rates used in the terminal value calculation are 
more difficult to determine.  One simple approach is to use the growth rates during the explicit 
forecast horizon to extrapolate the future growth rates.   

Another approach is to base the growth rate on the dividend payout ratio, representing the portion of 
earnings paid as dividends6, and the return on equity, which represents the profit per dollar of 
reinvested earnings.  This reflects the fact that growth in earnings, and hence dividends, is driven by 
the retention of some portion of the current period’s earnings so that they can be reinvested to 
generate additional future period income.   

Typically, the term plowback ratio is used to refer to that portion of earnings retained and reinvested 
in the firm and the firm’s return on equity (ROE) is often used to indicate the income generated from 
such reinvestment.  Combining these, the growth rate, g, is estimated as: 

ROEplowbackg *=  

The assumed growth rate plays a significant role in the ultimate valuation, particularly due to its 
impact on the terminal value estimate.  When estimating the terminal value, the growth rate should 
reflect the steady-state perpetual growth rate and should not reflect any bias resulting from higher than 
normal short-term growth estimates.  For instance, a growth rate in excess of the growth rate for the 
entire economy should be assessed carefully, as this implies the firm’s share of the total economy will 
eventually rise to unreasonable levels. 

It is important to recognize that high growth rates do not necessarily increase the value of the firm.  If 
all other assumptions were held constant, then mathematically this would be the case.  However, 
assumptions about growth rates, dividend payout rates and the risk-adjusted discount rate cannot be 
made independently of each other.  For instance, simultaneously high growth rates and high dividend 
payout rates are unlikely to be sustainable and so the effects of high growth rates are likely to be 
offset by lower dividend amounts.   

Additionally, the dividend payments for firms with high growth rates are likely to be riskier (in a 
systematic risk sense) than those of firms with low growth rates.  The high growth firms often depend 
upon a favorable economic climate for their growth, which introduces more systematic risk.  As a 
result, the effects of high growth rates are likely to be offset by discounting the dividends to present 
value using higher risk-adjusted discount rates.   

3.3.3 Appropriate Risk-Adjusted Discount Rate 

A key element of the previous example is the appropriate discount rate to use in the calculation of the 
present value of the expected cash flows.  An entire study note could be devoted to this topic alone.  
Some of the most important issues associated with the choice of discount rates will be discussed here; 
additional details are available from various sources contained in the References section of the paper7. 

                                                      
6 Since stock buybacks are economically equivalent to large cash dividends, these should be included in any reference to 
"dividends" in the text. 
7 See, in particular, Bodie, Kane and Marcus and Cornell, Bradford, 1993, Corporate Valuation: Tools for Effective 
Appraisal and Decision Making, Business One Irwin, New York, NY. 
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3.3.3.1 Risk-Adjusted Discount Rates vs. Risk-Adjusted Cash Flows 

When valuing uncertain or risky cash flows, it is important to reflect this risk in the value that is 
calculated.  The most common approach to making this risk adjustment is to discount the cash flows 
at a risk-adjusted discount rate that is higher than the risk free rate, thereby producing a value that is 
lower than it otherwise would be in the absence of this risk. 

However, reflecting this risk in the discount rate is not the only way to accomplish this objective.  
Alternative approaches that incorporate the risk adjustment directly in the cash flows may even be 
preferred.  Halliwell8, for instance, presents compelling arguments for reflecting risk adjustments in 
the cash flows, using utility theory to produce certainty equivalent cash flows that can be discounted 
at risk free discount rates.  This approach is closely related to the risk neutral valuation approach 
widely used to value derivative securities, as well as other probability transform methods advocated 
for pricing insurance risks, such as the Proportional Hazard Transform or the Wang Transform9,10. 

While the certainty equivalent, risk-neutral and probability transform approaches are appealing on 
theoretical grounds, the use of risk-adjusted discount rates is currently more common in practice.  No 
clear consensus yet exists on how to apply these alternative approaches consistently in many real-
world applications.  Therefore, this study note will follow the more common approach using risk-
adjusted discount rates and will focus on some of the principal issues involved in this process.   

3.3.3.2 Private vs. Equilibrium Market Valuation 

Before addressing specific methods of determining discount rates, it is important to make a distinction 
between a private valuation and an equilibrium market valuation.   

In a private valuation, individual investors are assumed to have their own view of "risk" and to hold 
different existing portfolios.  Any potential investment is assessed relative to the investor’s existing 
portfolio.  As a result, the value of any stream of risky or uncertain cash flows may have a different 
value to different investors. 

In an equilibrium market valuation, it is often assumed that all investors hold the same portfolio, 
assess the risk associated with a new investment in an identical fashion and also have the same 
estimates of future cash flows.  Alternatively, it can be recognized that investors will not have 
identical risk and cash flows assessments, but only the marginal investor’s risk and cash flow 
assumptions will determine the “market” price of the investment.  In this case, it is not necessary to 
assume that every investor will place the same value on a given investment, but if an investor’s 
private valuation differs from others’ valuations they simply will not trade at the market price. 

Theoretical rate of return models often used to determine risk-adjusted discount rates tend to focus on 
market equilibrium rates of return.  As a result, they serve as a useful starting point for determining 
any one investor’s appropriate discount rate for a given opportunity, but may not reflect all factors 
that need to be considered by any specific investor.   

3.3.3.3 Determining the Discount Rate 

The most popular model used to estimate (equilibrium) shareholder return expectations is the Capital 
Asset Pricing Model (CAPM)11.  The CAPM attempts to describe the relationship between the “risk” 
of an equity investment and the return investors expect to earn on that investment.  In this model, risk 
is defined in terms of the investment’s beta, a measure of systematic risk (risk that cannot be 
diversified away in a large portfolio).  The beta reflects the degree to which the percentage changes in 
market value (the rates of return) co-vary with the rates of return on a hypothetical portfolio 
                                                      
8 See Halliwell, Leigh J., "A Critique of Risk-Adjusted Discounting". 
9 See Wang, Shaun, "Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards Transforms". 
10 See Appendix C of Halliwell. 
11 The discussion of only the CAPM as the source of discount rates in this study note is not intended to suggest a particular 
preference for this model.  Other models, including Arbitrage Pricing Theory (APT), a Multi-factor CAPM or the Fama-
French 3-Factor Model could certainly be used in place of the CAPM throughout. 
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consisting of all risky assets that an investor may choose to invest in.  This portfolio of all risky assets 
is referred to as the market portfolio. 

Mathematically, the CAPM can be expressed as follows: 

)][( fmf rrErk −+= β  

where, 

k = expected or required equity return 

rf = risk free rate 

E[rm] = expected market return 

E[rm] - rf = expected equity market risk premium 

β = Beta, a measure of the systematic market risk 

 

This model is mechanically trivial to implement.  However, there are important considerations to note 
when estimating beta, the risk-free rate and the expected equity market risk premium. 

3.3.3.3(a) Estimating Beta 

There are two common methods used to determine the beta for the purposes of valuation – measuring 
the target firm’s beta directly or using an industry-wide beta. 

• Firm Beta - Historical stock price data of the firm can be used to directly measure the 
CAPM Beta.  The estimation is performed using a linear regression of the company’s 
returns against the market returns.  The company’s historical beta can then be assumed to 
remain constant for the prospective period.  Betas measured in this way are commonly 
reported by Bloomberg and other sources, sometimes inclusive of various statistical 
adjustments to improve the estimates, as discussed in Bodie, Kane and Marcus12. 

• Industry Beta - Beta estimates for individual firms are often unreliable due to statistical 
issues affecting individual firm data and changes in firm risk over time.  Somewhat more 
reliable and stable are industrywide mean or median values.  For example, Cummins and 
Phillips13 estimate an industry-wide CPM beta for P&C insurers of approximately 0.843.  
This estimate reflects an average across all P&C insurers, each with different mixes of 
business and different degrees of financial leverage (debt).  Therefore, the industry 
average should be interpreted carefully and adjustments may be required to reflect factors 
such as: 

a. Mix of Business – With respect to adjustments for different mixes of 
business, ideally only those firms with a comparable mix to the firm being 
valued should be used.  However, as the definition of “comparable firms” 
gets more precise, the number of eligible firms drops significantly and the 
result becomes less reliable.  Ultimately, judgment is needed. 

b. Financial Leverage – When firms raise capital by issuing debt, the leverage 
that is introduced impacts the degree of risk to the equity holders, making 
cash flows to equity holders riskier and the betas higher.  This effect will 
show up in any estimates of the betas of firms with debt outstanding and 
therefore may make the betas of different firms difficult to compare. 

To make the various betas easier to compare and to allow for the use of an 
industrywide mean or median beta, the beta is often defined to reflect solely 

                                                      
12 See Bodie, Kane and Marcus, Chapter 10. 
13 See Cummins and Phillips, "Estimating the Cost of Equity Capital for a Property-Liability Insurer", March 2004 
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the business risk of the firm and not the effect of debt leverage.  This is the 
beta that would exist had the firm been capitalized entirely with equity and is 
often referred to as the all-equity beta.   

Introductory finance texts provide a full description of how one could de-
lever the equity betas to estimate the beta for an all-equity firm, so that 
material will not be reviewed here14.  However, once the average all-equity 
beta for the industry is obtained, the equity beta for any particular firm would 
be found by readjusting the beta to reflect the amount of debt leverage for 
that particular firm15. 

While this approach to de-levering and then re-levering industry betas is 
often covered in the introductory finance textbooks, its application to 
insurance company valuation is somewhat limited, and perhaps unnecessary.  
This is because policyholder liabilities also result in leverage effects that are 
not fully accounted for when the beta is adjusted solely for debt leverage.  
Therefore, it may be reasonable to assume that the total leverage of all firms 
in the insurance industry is similar and that the appropriate leveraged equity 
return for any particular firm is based on the industry average equity beta, 
without any further adjustments. 

In the above discussion, the focus was on the beta for the equity of the firm 
so that the expected returns to the equity holders can be measured.  The 
equity holders’ returns expectations are relevant because the intent of the 
DDM is to value the dividends to the equity holders.  These expected returns 
to the equity holders will differ from the firm’s weighted average cost of 
capital (WACC), which reflects the returns to both debt16 and equity 
providers.  The WACC is a commonly referenced estimate of the “cost of 
capital” but is not directly used in the DDM.  An alternative valuation model 
that does use the WACC will be discussed in a subsequent section. 

Below are some representative estimates of equity betas for various publicly traded 
insurers and reinsurers as of October 200417: 

Table 2: P&C Insurer and Reinsurer Equity Betas (Oct. 2004) 

Company Beta 

American International Group, Inc 0.89 

The Allstate Corporation 0.38 

The Progressive Corp. 0.83 

Chubb Corporation 0.72 

ACE Limited 0.72 

XL Capital Ltd. 0.59 

CNA Financial Corporation 0.64 

  

Market Value Weighted Average 0.79 

                                                      
14 See Brealey & Meyers, Principles of Corporate Finance. 
15 The so-called Miles-Ezzel formula reflects the relationship between the levered equity return and the all-equity return.  
The levered return, re, is related to the unlevered equity return (r), the pre-tax debt return (rd), the effective corporate tax rate 
(T) and the market values of the debt (D) and equity (E) according to the formula:  

re = r + (1-T)(D/E)(r-rd). 
16 The debt return used in the WACC formula is usually the after-tax yield on the debt. 
17 Source: Yahoo! Finance 
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3.3.3.3(b) Estimating the Risk Free Rate 

The risk-free rate plays an important role in the standard CAPM.  It should be based on current yields 
on risk free securities, which are often represented using zero-coupon U.S. Treasury yields. 

To properly reflect the shape of the term structure, it is also appropriate to discount each cash flow at 
a rate that reflects the time to payment.  Therefore, one would want to use a different required return 
for each time period, kt, to discount each cash flow at time period t, rather than a single discount rate k 
for all time periods.  This will also involve estimating a different equity risk premium (see below) for 
each time period.   

In practice, it is common to avoid this complexity and instead use a single risk free rate and a single 
equity risk premium for all maturities.  One still has a choice of which maturity to use for the risk free 
rate.  The options include: 

• 90-Day T-Bills – These are the purest “risk free” instruments as they are free of both 
credit and reinvestment risk.  In textbook applications these are the securities most often 
used. 

• Maturity Matched T-Notes – Some practitioners prefer to use a Treasury security with a 
term that matches the average maturity of the cash flows being valued.   

• T-Bonds – Yields on 20-year Treasury bonds likely represent the most reasonable current 
estimate of the long run average short-term yields.  These are also the most stable and the 
most logical choice for corporate decision-making because they come closest to matching 
the duration of the market portfolio and of the cash flows being valued. 

However, long-term yields also reflect a liquidity or term premium.  As a result, the 
historical term premium between long-term and short-term yields should be netted out of 
the long-term yields.  Bradford Cornell estimates that this term premium has historically 
been approximately 1.2%18. 

For the remainder of this study note, the risk free rate will be based on the 20-year T-bond yield, 
adjusted to reflect a 1.2% term premium, as a proxy for the long term average short-term yield. 

3.3.3.3(c) Estimating the Equity Market Risk Premium 

The actual spread between the market return and the short-term risk free rate has historically averaged 
approximately 6% to 8%.  As a result, some authors recommend using this as a forecast of the future 
equity risk premium.   

However, many authors have noted a so-called equity premium puzzle in that the historical premiums 
seem too high relative to any commonly proposed theories of investor behavior.  Many attribute the 
historical return premium over risk free investments to be the result of good luck on the part of equity 
investors and/or bad luck on the part of bond investors.  A 2004 CAS paper by Derrig and Orr19 
surveys the literature on the equity risk premium and documents estimates of the expected equity risk 
premium ranging from 4% to 8%, somewhat lower than the historical average.   

The key considerations in determining the appropriate equity risk premium include the following: 

• Short-term vs. Long-term Risk Free Rates as Benchmark – The market risk premium 
reflects the spread between the expected market return and the risk free rate.  Since the 
risk free rate appears twice in the CAPM formula, it is important to use a consistent 
definition of the risk free rate in both the CAPM formula and in the measurement of the 
market risk premium.  If a short-term yield is used in the CAPM, the market risk premium 
should be measured relative to short-term yields.  Alternatively, if long-terms yields are 

                                                      
18 See Cornell, Corporate Valuation, Chapter 7. 
19 Derrig, Richard A. and Elisha D. Orr, "Equity Risk Premium: Expectations Great and Small". 
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used as the risk free rate, the market risk premium should reflect the spread between the 
market returns and the long-term risk free yields. 

• Arithmetic vs. Geometric Averages – When calculating average risk premiums, a choice 
must be made between arithmetic and geometric averages.  Generally, arithmetic 
averages are preferred for single period forecasts.  However for multiple period forecasts 
or long-term averages, geometric averages are preferred20. 

• Historical vs. Implied Risk Premiums – As noted in the Derrig and Orr study, risk 
premiums can be estimated based on either historical averages or by estimating the risk 
premium that is implied by current market prices. 

For the historical risk premiums, a choice has to be made with respect to the time period 
over which to measure the average returns, as the equity risk premium has fluctuated 
significantly over the past 75 or so years.   

The table below demonstrates the effect of using different time periods (as well as 
different choices for the risk free asset and arithmetic vs. geometric averages): 

Table 3: Historical U.S. Risk Premiums21 

 Stocks vs. T-Bills Stocks vs. T-Bonds 

Period Arithmetic Geometric Arithmetic Geometric 

1928-2000 8.41% 7.17% 6.53% 5.51% 

1962-2000 6.41% 5.25% 5.30% 4.52% 

1990-2000 11.42% 7.64% 12.67% 7.09% 

 

Note that the use of historical data, as shown in the above table, is not the only approach 
used to estimate risk premiums.  An alternative method is to infer the equity risk 
premium from current market prices.  For instance, one could use the DDM on an 
aggregate market index and solve for the risk premium given assumptions about the risk 
free rate, aggregate dividends and aggregate growth rates. 

Taking these considerations into account, it is difficult to recommend any single value to be used for 
the equity risk premium.  Any analysis should consider a range of possible values and the impact of 
different assumptions should be reviewed.  A baseline risk premium of 5.5% will be used throughout 
the remainder of this study note and sensitivity analysis will be performed. 

3.4 P&C Insurance Company Example 

In this section, a simplified example of the DDM will be used to demonstrate the valuation of a P&C 
insurance company.  To keep the discussion focused on the valuation methodology and not the 
detailed accounting issues, the example will rely upon simplified extracts from forecasted financial 
statements prepared in accordance with U.S. GAAP accounting rules. 

                                                      
20 See Damodaran, Investment Valuation 
21 Source: Damodaran, Investment Valuation 
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Example 2 – DDM for Sample Insurance Company 

Consider the following 5-year forecasts of the financial results for Sample Insurance Company.  The data below 
shows actual (2004) and 5 years of forecasted (2005 – 2009) income statement and balance sheet items, each 
according to U.S. GAAP. 

Table 4: U.S. GAAP Income Statement ($000’s) 

 2004 2005 2006 2007 2008 2009 

Selected US GAAP Income Statement Items       

Net Income Before Tax 14,598 15,366 16,134 16,941 17,788 18,678 

Corporate Income Tax 5,109 5,378 5,647 5,929 6,226 6,537 

Net Income After Tax 9,489 9,988 10,487 11,012 11,562 12,141 

       

Selected US GAAP Balance Sheet Items       

Total Assets 471,550 493,359 523,125 558,165 598,112 642,413 

       

Total Liabilities 371,550 388,365 412,887 442,421 476,588 514,818 

US GAAP Equity 100,000 104,994 110,238 115,744 121,525 127,595 

Total Liabilities and Equity 471,550 493,359 523,125 558,165 598,112 642,413 

       

Dividends Paid (50% of NI) 4,744 4,994 5,244 5,506 5,781 6,070 

 
The following additional information is available for Sample Insurance Company: 

• Dividend Payout Ratio – The firm has a current dividend payout ratio equal to 50% of its after-tax 
net income and intends to maintain this payout ratio indefinitely. 

• Risk Free Rate – The current yield22 of the 20-year U.S. Treasury Bond is approximately 4.33% 
with annual compounding.  This rate will be used as the risk free rate. 

• Company’s Equity Beta – The company’s actual equity beta cannot be estimated directly because 
it is a relatively new company with limited historical equity price data. 

• Equity Betas for Peer Companies – The industry beta for this company’s closest peers is estimated 
to be 0.84.  The companies in the peer group have comparable levels of financial leverage (debt 
outstanding as a percentage of the firm value) and operating leverage (premiums as a percentage of 
GAAP equity). 

The following steps are used to implement the DDM to value this company: 

Step 1: Determine Dividend During Forecast Period 

These amounts were provided in the table above and are summarized here for convenience: 

Table 5: U.S. GAAP Income Statement ($000’s) 

 2005 2006 2007 2008 2009 

Dividends Paid 4,994 5,244 5,506 5,781 6,070 

 

                                                      
22 As of June 2, 2004, the 20-year CMT yield with semi-annual compounding is 5.47%.  Subtracting the 1.2% term premium 
and converting to an annually compounding basis results in the 4.33% risk free rate. 
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Step 2: Estimate Dividend Growth Rate Beyond Year 2009 

Refer to the selected financial data shown below: 

Table 6: Selected Financial Data 

 2005 2006 2007 2008 2009 

GAAP Equity Beginning of Period) 100,000 104,994 110,238 115,744 121,525 

GAAP Equity (End of Period) 104,994 110,238 115,744 121,525 127,595 

Net Income 9,988 10,487 11,012 11,562 12,141 

Dividend 4,994 5,244 5,506 5,781 6,070 

 

Based on these values, the following values needed to estimate the growth rate in dividends beyond the 
2009 forecast horizon are obtained: 

Table 7: Growth Rate Data 

 2005 2006 2007 2008 2009 

Dividend Payout Ratio 50.0% 50.0% 50.0% 50.0% 50.0% 

Plowback Ratio 50.0% 50.0% 50.0% 50.0% 50.0% 

ROE = NI / Beginning GAAP Equity 10.0% 10.0% 10.0% 10.0% 10.0% 

      

Dividend Growth Rate      

Expected Plowback Ratio 50.0%     

Expected Average ROE 10.0%     

Growth Rate 5.0%     

 

As shown in the table, the formula expressing the growth rate as the plowback ratio multiplied by the 
ROE is used to obtain a growth rate of 5.0% beyond the forecast horizon.  This is consistent with the 
dividend growth rate during the forecast horizon.  This may not always be the case, for instance, if the 
long-term average ROE or dividend payout ratios are expected to differ from the short-term values 
during the forecast horizon. 

Step 3: Estimate Required Equity Return  

The CAPM equity beta, based on the equity betas of peer companies, was stated earlier and assumed to 
equal 0.84.  Using CAPM with the following parameters, the appropriate discount rate is estimated to 
be 8.95%, as shown below. 

Table 8: Discount Rate 

Risk Free Rate 4.33% 

Equity Risk Premium 5.50% 

Equity Beta 0.84 

Discount Rate 8.95% 
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Step 4: Determine Value  

The dividends and terminal value amounts can now be combined to estimate the total equity value by 
discounting each amount at the 8.95% discount rate: 

Table 9: Valuation Using DDM 

 2005 2006 2007 2008 2009 Terminal Value 

Dividend 4,994 5,244 5,506 5,781 6,070 161,354 

PV Factor 0.918 0.842 0.773 0.710 0.651 0.651 

PV 4,584 4,418 4,257 4,103 3,954 105,110 

       

Value 126,426      

 
The terminal value was determined based on an assumption of constant growth beyond 2009 of 5.0%, 
the discount rate of 8.95% and the year 2009 dividends of 6,070.   

354,161
05.0895.

)05.1( *070,6Value Terminal =
−

=  

The present value of this terminal value estimate is then 161,354/1.08955 = 105,110.  

The total estimated value of the equity is then the sum of the present values of the five dividend 
payments and the terminal value, which totals $126.4 million.   

Step 4: Sensitivity Analysis 

Notice that the present value of the terminal value component is approximately $105 million.  This 
means that 83% of the total value of the firm is reflected in the terminal value, which assumes 
perpetual growth in dividends of 5%.  The magnitude of the terminal value relative to the total value of 
the firm suggests the need to be very careful about the sensitivity of the result to this growth 
assumption. 

Below is a table that shows the sensitivity of the terminal value and the total equity value to estimates 
of the growth rates.  The different rates shown represent the results of alternative assumptions 
regarding the ROE beyond the forecast horizon, with the dividend payout rate remaining constant.  For 
example, if the ROE were to decline to the level of the investor’s required return (8.95%) the growth 
rate would decline to 4.475%.  The resulting total valuation would decrease from $126.4 million to 
$114.2 million.  This represents a reduction of 9.7%. 

Table 10: Sensitivity to Alternative Growth Rate Assumptions 

Growth Rate Nominal Terminal Value PV Terminal Value Equity Value 

4.000% 127,531 83,077 104,393 

4.475% 142,543 92,856 114,172 

5.000% 161,354 105,110 126,426 

6.000% 218,108 142,081 163,397 
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The sensitivity of the firm value to the estimated discount rate can also be tested.  For instance, using 
alternative assumptions about the equity risk premium would result in the following alternative 
estimates of the CAPM discount rate and equity value: 

Table 11: Sensitivity to Alternative Equity Risk Premium 

Equity Risk Premium CAPM Discount Rate Equity Value

4.0% 7.69% 185,644

5.5% 8.95% 126,426

6.0% 9.37% 114,276

8.0% 11.06% 82,407

 

Combining these ranges of discount rates and ranges of growth rates beyond the forecast horizon, the 
following estimates of total equity value would be obtained: 

Table 12: Sensitivity to Growth and Discount Assumptions 

 Growth Rate Beyond Forecast Horizon 

Discount Rate 4.000% 4.475% 5.000% 6.000% 

7.69% 140,176 159,347 185,644 284,921 

8.95% 104,393 114,172 126,426 163,397 

9.37% 96,198 104,309 114,276 143,082 

11.06% 73,081 77,389 82,407 95,419 

 
Notice that the valuation in this table ranges from a low of $73 million to a high of $285 million.  This 
is a rather large range.  But recall that the growth rates and discount rates are not independent of each 
other.  Rapid growth is unlikely to be possible without assuming more risk; stable, low growth 
businesses are unlikely to exhibit high systematic risk.  In the case of the previous table, the equity risk 
premium was varied but the estimated CAPM betas were not altered to ensure consistency with the 
assumed growth rates.  This suggests that the more extreme values in the table are less realistic than 
many of the other entries in the table. 
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4. Discounted Cash Flow 
The valuation approach based on the present value of future dividends is easy to understand.  A fair 
amount of detail for that model was presented because many of the elements of the application to a 
real valuation exercise apply equally well to other methods.  However, the dividend discount model 
(DDM) has some important limitations.  Actual dividend payments are highly discretionary and can 
be difficult to forecast.  In addition, the increased use of stock buybacks as an efficient vehicle for 
returning funds to shareholders requires that, at a minimum, a fairly liberal definition of “dividend” be 
adopted.   

An alternative, though very closely related, approach is to focus on free cash flows rather than 
dividends.  The free cash flows represent all of the cash that could be paid out as dividends or other 
payments to the capital providers, after making appropriate adjustments to reflect amounts needed to 
support current operations and the expected growth.  The key difference between this approach, 
referred to here as the discounted cash flow (DCF) method, and the DDM is simply the recognition 
that free cash flow not paid as a dividend immediately would be invested to earn a fair risk adjusted 
return (i.e. it would not be stuffed in a drawer).  As long as this can be assumed to be the case, there is 
no impact on value, positive or negative, from not paying the funds out immediately.  For the purpose 
of valuation, it is acceptable to assume that the entire free cash flow is in fact paid as a dividend.   

The DCF approach abstracts away from actual dividend policy and focuses on the cash that could be 
paid in each future period.  This is not meant to suggest that "cash flow" is measured exactly as it 
might be defined under Generally Accepted Accounting Principles (GAAP).  This is because free cash 
flow also reflects the capital expenditures needed to maintain the firm’s operations and generate the 
earnings growth inherent in the forecasts.   

When applying the free cash flow approach, there are two alternative methods used.  One approach is 
to focus on the free cash flows to the entire firm and the other approach is to focus on the free cash 
flow to the equity holders only. 

4.1 Free Cash Flow to the Firm  

The Free Cash Flow to the Firm (FCFF) approach values the entire firm and then subtracts off the 
market value of the debt to value the equity indirectly.  This valuation methodology is discussed in 
some detail in Chapter 18 of Bodie, Kane and Marcus as well as other introductory finance texts.  
While this approach has many advantages when applied to most industries, it is problematic when 
applied to financial services firms such as insurance companies.   

Damodaran discusses the difficulties applying the FCFF method to banks and insurance companies.  
His key points can be summarized as follows: 

• Policyholder Liabilities vs. Debt - The FCFF method values the entire firm and then 
subtracts off the value of the debt to value the equity.  This approach treats the debt as a 
source of capital that is more like the equity of the firm rather than a part of the firm’s 
normal business activities.  As noted earlier with respect to the levered equity beta, the 
distinction between debt and policyholders liabilities for a P&C insurance company is 
rather arbitrary and there is no economic rationale for different treatment of these two 
sources of liability.   

• WACC and APV – The FCFF approach is applied by first using the firm’s weighted 
average cost of capital (WACC) as the discount rate for the free cash flows to determine 
the value of the entire firm.  The market value of the debt is then subtracted from this 
amount to determine the value of the equity.   

Alternatively, the free cash flows could be discounted using the unlevered, all-equity 
discount rate (assuming that there is no debt) to derive the value of the firm without 
consideration of the debtholders’ claims, the tax consequences of the debt or the impact 
of debt on the riskiness of the equity holders’ claims.  The equity value is determined by 
subtracting the market value of the debt from the firm value and then making two 
adjustments.  The first adjustment reflects the debt’s tax consequences by adding the 
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value of the debt’s tax shields.  The second adjustment reflects the debt’s effect on equity 
risk by incorporating an estimate of the potential cost of financial distress.  This 
alternative approach is often referred to as an Adjusted Present Value (APV) approach.   

In either case, the existence of policyholder liabilities makes it difficult to precisely define 
either the WACC or the unlevered, all-equity discount rate needed for the APV approach. 

Since this study note focuses on valuation for P&C insurance companies, the FCFF approach will not 
be presented in any detail here23.   

4.2 Free Cash Flow to Equity 

When valuing insurance companies, it is preferable to focus on the Free Cash Flow to Equity (FCFE) 
method.  FCFE is very similar to FCFF but it reflects free cash flows after deductions for interest 
payments, net of any tax consequences of these interest payments, and any net change in borrowings 
(i.e. repayment of debt and new debt issued).  This focus on the cash flows to the equity holders also 
means that the discount rate reflects only the risk to the equity holders rather than the WACC 
mentioned above.  This allows the use of the levered equity return as the discount rate, which is useful 
given the difficulties identified earlier with the estimation of the unlevered equity return for P&C 
insurance companies. 

The typical textbook definition of FCFE is summarized as shown in the following table: 

Table 13: Definition of Free Cash Flow to Equity 

 Net Income 

plus Non-Cash Charges (Expenses) 

less Net Working Capital Investment 

less Capital Expenditures 

plus Net Borrowing 

 Free Cash Flow to Equity (FCFE) 

 

Typically, expenses that are deducted under U.S. GAAP accounting but do not represent actual cash 
expenditures are added back to the reported net income to determine the cash flow available to be paid 
to equity holders.  These amounts are referred to in the table above as Non-Cash Charges.  For a P&C 
insurer, the most significant of these “non-cash” expense items on the income statement are the 
increases in the loss and expense reserves.  These increases in reserves have a large impact on the 
reported income but not on the actual cash flow.  This would seem to suggest that changes in reserves 
could be added back to net income, but this is not the case, as will be explained below. 

Notice that two other components of the free cash flow to equity calculation include changes in net 
working capital and capital expenditures.  Both of these amounts represent uses of cash flow needed 
to maintain the firm’s operations and support the growth that is planned.  Working Capital Investment 
shown in the above table reflects net short term (non-cash) assets held to facilitate company 
operations, such as inventory or accounts receivable.  Capital Expenditures typically refer to 
investment in property, plant, equipment and other physical items.  For P&C insurance companies, net 
working capital is not typically significant and will not be discussed in detail here24.   

The definition of capital expenditures for P&C insurance companies is more complicated because it 
must be adjusted to include changes in loss and expense reserve balances as well as increases in 
capital held (“invested”) to meet regulatory and/or rating agency capital requirements consistent with 
the company’s business plan. 
                                                      
23 The interested reader should refer to Damodaran's Investment Valuation for a thorough treatment of this valuation 
approach. 
24 Refer to Damadoran and Stowe, et. al. for extensive discussion of the other components of Non-Cash Charges and Net 
Working  
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• Treatment of Increase in Loss and Expense Reserves – Recall that the FCFE represents the 
cash flow that could be paid to shareholders in any particular period.  In the simple case of a 
two year insurance policy where the firm collects the premium net of expenses up front and 
then pays claims at the end of the second period, it would not be sufficient to treat the net 
premiums as the (positive) free cash flow in the first period and the claim payments as the 
(negative) free cash flow in the second period.  This is because some of the premium 
collected in the first period is not free to be paid to shareholders.  Instead, some portion of the 
premium must be held in claim reserves, usually on an undiscounted basis.   

The implication of this is that when calculating FCFE, changes in loss and expense reserves 
can be included in the definition of capital expenditures.  Since these changes in reserves 
reflect the most significant Non-Cash Charges, which according to the usual definition of 
FCFE would be added back to Net Income, and also reflect a significant portion of Capital 
Expenditures, which would be subtracted from Net Income, these two adjustments will cancel 
each other out.  The result is that the increases in loss and expense reserves, which have 
already been reflected in the net income figures, can be ignored in the steps used to estimate 
FCFE through adjustments to net income. 

• Treatment of Increase in Required Capital – In addition to reserve requirements, insurers are 
subject to regulatory and/or rating agency capital requirements.  Just as a widget manufacturer 
must invest capital in machinery to make widgets, an insurance company must invest capital 
before it can sell an insurance policy.  Such regulatory minimum capital requirements should 
be treated as "capital expenditures" for the purposes of determining free cash flow.  
Furthermore, the ability of an insurer to meet its growth targets and profitability targets is tied 
closely to public perception of its financial strength and credit standing.  Therefore, capital 
required to maintain the firm’s target credit rating implied by the business plan should also be 
treated as equivalent to a capital expenditure.  In both of these cases, the regulatory and rating 
agency capital requirements serve to reduce the free cash flow relative to U.S. GAAP 
definitions of net income.  

To focus attention on the valuation methodology as opposed to accounting and regulatory 
issues in this study note, specific regulatory or rating agency capital requirements will not be 
addressed here.  In the numerical examples shown, the minimum capital requirements are 
approximated using simplified capital standards that are meant to mirror Standard & Poor’s 
guidelines applicable to AA-rated insurers.  The interested reader should refer to Standard & 
Poor’s "Property/Casualty Insurance Ratings Criteria" for more information on this important 
aspect of valuation. 

In a real-world application, there are likely to be multiple constraints on free cash flow 
resulting from the need to hold capital in the firm.  The most binding constraint could be the 
result of regulatory restrictions, rating agency restrictions or perhaps management’s own 
assessment of the capital needed to support the risk-taking activities of the firm without 
negatively impacting the firm’s ability to achieve its growth plans.  In this case it would be 
necessary to determine the most binding constraint on capital and assess how it impacts free 
cash flow.   

The resulting definition of FCFE that can be used for P&C insurers is therefore adjusted as follows: 

Table 14: Simplified Definition of Free Cash Flow to Equity for P&C Insurer 

 Net Income 

Plus Non-Cash Charges – Excluding Changes in Reserves 

Less Net Working Capital Investment 

Less Increase in Required Capital 

Plus Net Borrowing 

 Free Cash Flow to Equity (FCFE) 
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Example 3 – Free Cash Flow to Equity Calculation for ABC Insurance Company 

Consider a hypothetical P&C insurer, ABC Insurance Company.  In the current period the company had 
beginning U.S. GAAP Equity equal to $103.500 million and U.S. GAAP Net Income equal to $17.193 million.  
Based on their internal financial model that reflects their growth plans for the coming year, they have 
determined that the capital needed (at the start of their next accounting period) to maintain their AA-rating is 
$108.624 million.   

For simplicity, assume that there are no non-cash charges included in the net income figure other than changes 
in reserves, there are no net working capital investments and there are no increases in borrowings. 

The Free Cash Flow to Equity for this firm in the current period can be calculated as follows: 

Table 15: Calculation of Free Cash Flow to Equity for ABC Insurance Company ($ Millions) 

Beginning US GAAP Equity 103.500 

Net Income 17.193 

Ending US GAAP Equity - Before Dividends 120.693 

  

Minimum Capital - Based on Target S&P AA Rating 108.624 

Beginning US GAAP Equity 103.500 

Increase in Required Capital 5.124 

  

Net Income 17.193 

Non Cash Charges (Excluding Change in Reserves) 0 

Net Working Capital Investment 0 

Capital Expenditures = Increase in Required Capital 5.124 

Net Borrowing 0 

Free Cash Flow to Equity 12.069 

 

Notice that the FCFE could also be calculated as the difference between the ending GAAP equity and the 
minimum required capital, as shown here: 

Table 16: Alternative Calculation of Free Cash Flow to Equity for ABC Insurance Company 

Ending US GAAP Equity - Before Dividends 120.693 

Minimum Capital - Based on Target S&P AA Rating 108.624 

Free Cash Flow to Equity 12.069 

 

4.3 Applying the FCFE Method 

Once the FCFE values are determined, much of the remainder of the valuation exercise is similar to 
what was done using the DDM.  The free cash flows during the forecast horizon are valued using an 
appropriate risk-adjusted discount rate and the terminal value is estimated by assuming a constant 
growth rate in free cash flow and an appropriate discount rate. 

Below, several details regarding this methodology will be addressed.  The financial model for ABC 
Insurance Company used in Example 3 above will be used as a reference.  The Net Income, Equity 
and Free Cash Flow to Equity amounts for the years 2005 – 2009 were calculated using the same 
methodology and the key elements are summarized as follows: 
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Table 17: Free Cash Flow to Equity for ABC Insurance Company 2005 – 2009 ($000’s) 

 2005 2006 2007 2008 2009 

Beginning US GAAP Equity 103,500 108,624 113,274 117,648 122,422 

Net Income 17,193 17,236 17,446 18,376 18,967 

Ending US GAAP Equity - Before Dividends 120,693 125,860 130,720 136,024 141,388 

      

Minimum Capital - Based on Target S&P AA Rating 108,624 113,274 117,648 122,422 127,250 

Beginning US GAAP Equity 103,500 108,624 113,274 117,648 122,422 

Increase in Required Capital 5,124 4,650 4,374 4,774 4,828 

      

Free Cash Flow to Equity 12,069 12,586 13,072 13,602 14,139 

 

4.3.1 Growth Rates 

Earlier in the discussion of the DDM approach, growth rates were estimated using historical averages 
or by relying on the fundamental principle that growth is the result of income that is reinvested in the 
firm and that subsequently earns a positive return (ROE).  

When using the FCFE method, it is important to note the implicit assumption that all free cash flow to 
equity is paid to shareholders.  Therefore, the definition of reinvestment for purposes of determining 
growth rates is slightly different than it was in the DDM.  In that case it was sufficient to simply 
compare the dividends paid to the firm’s net income.   

For a P&C insurance company, the best determinant of growth is the portion of net income that is 
used to increase the capital base of the firm, since the capital base of the firm determines the 
maximum growth that can be achieved given the regulatory and rating agency constraints25.   

Combining this with the return on equity provides an estimate of the growth rate beyond the forecast 
horizon, as shown below using the ABC Insurance Company example data. 

Table 18: Estimated Growth Rate Beyond Forecast Horizon ($000’s) 

 2005 2006 2007 2008 2009 

Net Income 17,193 17,236 17,446 18,376 18,967 

Free Cash Flow to Equity 12,069 12,586 13,072 13,602 14,139 

Reinvested Capital 5,124 4,650 4,374 4,774 4,828 

      

Reinvestment Rate 29.8% 27.0% 25.1% 26.0% 25.5% 

      

Beginning Capital 103,500 108,624 113,274 117,648 122,422 

ROE 16.6% 15.9% 15.4% 15.6% 15.5% 

      

Free Cash Flow Growth Rate      

During Forecast Horizon  4.3% 3.9% 4.1% 3.9% 

Beyond Forecast Horizon - Estimated     3.9% 

 

                                                      
25 It can be argued that growth is also constrained by the firm's investment in quality personnel.  See Damodaran, Investment 
Valuation, for a more detailed discussion of this issue. 
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In the above table, the following calculations are shown: 

• Reinvested Capital = Net Income – Free Cash Flow 

• Reinvestment Rate = Reinvested Capital / Net Income 

• ROE = Net Income / Beginning Capital 

• Forecast Horizon Growth Rate = FCFEt / FCFEt-1  

• Horizon Growth Rate = Reinvestment Rate2009 * ROE2009 = 3.9% 

 

4.3.2 Discount Rate  

The appropriate discount rate for this method is determined in essentially the same manner as in the 
DDM.  It is, however, important to ensure that the assumption regarding the riskiness of the cash 
flows is consistent with the assumption regarding the distribution of the free cash flow to 
shareholders. 

Compared to the DDM, the FCFE model assumes that more cash is distributed to shareholders in each 
period because all cash that could be paid as a dividend is assumed to be paid.  The values used in the 
calculation are not impacted by the firm’s actual dividend policy.  This does not affect the overall 
valuation because of the implicit assumption that any cash that was not distributed in the form of 
dividends and was not needed to support growth in the insurance operations would be invested in 
marketable securities and would earn an appropriate risk-adjusted return.  Investments in marketable 
securities should generally be a zero net present value activity and so value is neither created nor 
destroyed from this activity. 

The riskiness of the dividend cash flows can be thought of as representing an average of the riskiness 
of the insurance operations and the investment operations.  As a result, it is likely to be the case that 
the appropriate discount rate in the FCFE model is different than the discount rate in the DDM model.  
The two models assume different proportions of investment income and underwriting income because 
the FCFE method pays out all free cash flow while the DDM model pays out only the assumed 
dividends and reinvests the balance in marketable securities.  The DDM model’s measure of risk is 
therefore impacted by a larger proportion of the risk coming from marketable securities than from 
underwriting risk.   

Specifically quantifying this difference in risk is a challenge.  When the CAPM is used as the basis for 
the risk-adjusted discount rate, what matters is systematic risk and not total risk.  For most practical 
purposes the precision of the discount rate calculation is low enough that this distinction is often 
ignored.  Therefore, for simplicity the example below will assume the same discount rates can be used 
in the DDM and FCFE models. 

4.3.3 Example of FCFE Method Using ABC Insurance Company Data 

The following example uses the data referenced above in Table 17 for the ABC Insurance Company 
to demonstrate the FCFE method and to perform sensitivity analysis of the results. 
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Example 4 – Valuation of ABC Insurance Company using FCFE Method 

Using the estimated FCFE for ABC Insurance Company, the 3.9% growth rate assumption discussed in the text 
and the same 8.95% discount rate assumption used earlier, the calculations using the FCFE method are as shown 
below. 

Table 19: Valuation Using Free Cash Flow to Equity Method ($000’s) 

 2005 2006 2007 2008 2009 Terminal Value 

FCFE 12,069 12,586 13,072 13,602 14,139 290,899 

PV Factor 0.918 0.842 0.773 0.710 0.651 0.651 

PV 11,078 10,603 10,108 9,654 9,210 189,499 

       

Value 240,152      

 
The terminal value shown above was determined based on an assumption of constant growth beyond 2009 of 
3.9%, the discount rate of 8.95% and the year 2009 FCFE of 14,139.   

899,290
039.0895.

)039.1( *139,14Value Terminal =
−

=  

The total estimated value of the equity is the sum of the present values of the five FCFE amounts and the present 
value of the terminal value.  The total equity value is $240.2 million.   

Sensitivity Analysis 

Notice that the discounted terminal value is 290,899/(1.08955) = 189,499.  This means that 79% of the total 
value of the firm is reflected in the terminal value, which assumes perpetual growth in FCFE of 3.9%.  This 
suggests the need to be very careful about the sensitivity of the results to this growth assumption. 

Below is a table that shows the sensitivity of the terminal value and the total equity value to estimates of the 
growth rates.  The different rates shown represent the results of alternative assumptions regarding the ROE 
beyond the forecast horizon.  For example, if the ROE were to decline to the level of the investor’s required 
return (8.95%) then the growth rate would decline to 2.3%.  The resulting equity valuation would decrease from 
$240.2 million to $192.3 million, a reduction of 20%. 

Table 20: Sensitivity to Alternative Growth Rate Assumptions 

Growth Rate Terminal Value PV of Terminal Value Total Equity Value 

2.3% 217,507 141,689 192,342 

3.1% 249,185 162,325 212,978 

3.9% 290,899 189,499 240,152 

4.8% 357,052 232,593 283,246 

 
The sensitivity of the firm value to the estimated discount rate can also be tested.  For instance, using alternative 
assumptions about the equity risk premium would result in the following alternative estimates of the CAPM 
discount rate and equity value: 

Table 21: Sensitivity to Alternative Equity Risk Premium 

ERP Discount Rate Equity Value 

4.0% 7.69% 320,023 

5.5% 8.95% 240,152 

6.0% 9.37% 221,706 

8.0% 11.06% 169,355 

 



Revised: October 2010 25 

Combining these ranges of discount rates and ranges of growth rates beyond the forecast horizon, the following 
estimates of total equity value would be obtained: 

Table 22: Sensitivity to Growth and Discount Assumptions 

 Growth Rate Beyond Forecast Horizon 

Discount Rate 2.3% 3.1% 3.9% 4.8% 

7.69% 237,683 266,794 320,023 419,443 

8.95% 185,829 212,978 240,152 283,246 

9.37% 180,823 201,211 221,706 252,652 

11.06% 146,872 160,882 169,355 181,227 

 
Notice that the valuation in this table ranges from a low of approximately $147 million to a high of $419 
million.  It may be unrealistic to assume that the highest growth rates and the lowest discount rates would apply 
simultaneously, making the most extreme values potential less reliable.  Nonetheless, this highlights the wide 
range of results that can be obtained and the need to carefully consider all of the assumptions made. 

 

4.3.4 Observations Regarding Example 4 

Before proceeding further, some important observations with respect to the application of the FCFE 
method are noted. 

• Terminal Value – The terminal value calculated in the previous example ($290,899) was 
based on assumptions of the Year 2009 FCFE, the growth rate beyond that point and the 
discount rate.  This terminal value is 290,899/14,139 = 20.6 times the Year 2009 FCFE.  
In other words, the impact of the growth rate and discount rate assumptions could have 
been combined into a single multiple of the FCFE and expressed the terminal value as 
"20.6 times" FCFE. 

• Average Discount Rates – Most firms’ overall earnings and cash flows represent the total 
amounts across a variety of businesses, each with their own risk profile.  The discount 
rate therefore represents an average discount rate reflecting the average risk from all of 
these separate businesses and activities.  To the extent that the mix of business or degree 
of financial leverage is changing, these changes should be reflected in different discount 
rates for different time periods or cash flows. 

• Market Value of Net Cash Flows – The use of a single discount rate for the net free cash 
flow to equity implicitly discounts each of its components at the same rate.  Therefore, 
cash flows from investment returns and cash flows from liability payments, as well as 
other cash flows, are discounted at the same weighted average rate, even though the risk 
characteristics of the component cash flows likely vary considerably.  It is worth 
considering whether this is appropriate. 

Most textbook presentations of the FCFE approach focus on the valuation of industrial 
firms in which investments in cash and marketable securities are usually minimal.  In 
these cases, the definition of FCFE does not include investment income on currently held 
marketable securities.  These non-operating assets are excluded from the valuation and 
added back in at their current market values at the end.  For insurance companies, this 
distinction between operating and non-operating assets is considerably more difficult to 
make.  As a result, it is typical to include investment income cash flows in the definition 
of FCFE. 

Including investment returns in the definition of free cash flow and then calculating their 
present value at an average rate for all cash flows is unlikely to reproduce a present value 
equal to the market value of the investment at inception.  When investments are restricted 
to marketable securities, especially those most often found in P&C insurance investment 
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portfolios, $1,000 invested in stocks is worth the same on the date of the investment as 
$1,000 invested in corporate bonds or $1,000 invested in risk-free bonds.  It is true that 
their income and cash flow profiles differ and so their future value will differ.  However, 
their present values at the date the investment is made should be identical.  This result 
will only occur though if the discount rates used to determine the present values differ 
and reflect the riskiness of the respective investments.  The use of an average rate for all 
cash flows will not produce the correct value for any particular investment. 

When future investment cash flows are included in the aggregate cash flows, it can appear 
to be the case that value is either created or destroyed based on different assumptions 
about the asset portfolio composition.  This misleading result occurs because the discount 
rate used reflects the average risk for the entire firm’s net cash flows rather than the 
appropriate risk-adjusted rate for the investment asset cash flows themselves. 

Similarly, using an average discount rate to calculate the present value of liability cash 
flows is unlikely to produce an accurate risk-adjusted value for this liability, as the 
appropriate risk-adjusted discount rate for liability cash flows is a rate below the risk free 
rate26.  This would reflect the positive risk premium that would have to be paid in order to 
transfer this uncertain liability to a third party. 

For this reason, some analysts argue that the assets and liabilities should be valued 
separately to ensure market consistent valuation of each.  But separately valuing each 
component of the free cash flow may not be practical.  This is because the cash flow 
specific risk-adjusted discount rates may be extremely difficult to quantify.  This is 
particularly true for assets and liabilities that are not currently reflected on the firm’s 
balance sheet.   

As a result, this study note will follow the common practice of discounting net cash flows 
at an average rate.  Sensitivity testing can be used to ensure that assumptions regarding 
investment policy have reasonable and appropriate impacts on the value of the firm.  
Further discussion of this issue in the context of the valuation of life insurance companies 
can be found in Girard. 

                                                      
26 See Butsic, "Determining the Proper Interest Rate for Loss Reserve Discounting: An Economic Approach". 
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5. Abnormal Earnings Valuation Method 
The DCF approach to valuation just described is relatively simple to understand and focuses attention 
directly on the net cash flow generating capacity of the firm.  Furthermore, the process of thinking 
through the cash flow generating activities of the firm, quantifying the firm’s capital needs and 
contemplating the risk factors is an important and worthwhile part of any valuation exercise. 

However, the DCF method suffers from some practical weaknesses.  To estimate free cash flows, the 
analyst must first forecast financial statements (income statements and balance sheets) according to a 
specific set of accounting standards (U.S. GAAP, U.S. Statutory or International Accounting 
Standards).  Then, a variety of adjustments are made to the forecasts of net income to estimate the free 
cash flow.  The resulting values for free cash flow (to equity) may then bear little resemblance to the 
forecasts that management is familiar with, such as the values used within the firm’s internal planning 
process, the financial results of peer companies or the forecasts of external analysts.  This might make 
it difficult to assess the reasonableness of the forecasted free cash flows or estimate their future 
growth rates. 

An alternative method that relies more directly on accounting measures of net income rather than cash 
flows is referred to here as the Abnormal Earnings (AE) approach.  Using this method, the accounting 
net income is not adjusted to reflect cash flows.  Instead, reported book value and forecasted net 
income under the applicable accounting framework are used directly. 

Before presenting this approach, it is useful to note that finance textbooks have long advocated a 
preference for cash flow models as opposed to accounting-based earnings models in order to 
accurately reflect the timing of the cash flows and to avoid problems associated with arbitrary 
methodology choices that may not represent real effects on firm value.  More recently, several 
academics and practitioners have demonstrated that a discounted accounting-based earnings approach 
often produces more accurate valuation estimates and may offer additional benefits by framing the 
problem differently than the traditional cash flow models27. 

5.1 Background on Abnormal Earnings Method 

Recall from the pricing of bonds that the value of a default free bond merely represents the present 
value of its coupon and principal payments, discounted at the appropriate (maturity matched) zero-
coupon yields.  In the event that the coupon rate and the yields are equal, the bond’s market value will 
equal its face value (principal amount).  This is because the periodic interest paid on the bond, based 
on its coupon rate, is exactly equal to the periodic interest that investors demand.  Similarly, if the 
coupon rate exceeds the yields, the bond will be have a higher value than the face value; if the coupon 
rate is below the yields then its market value will be below the face value. 

This same concept can be extended to the valuation of a firm based on its accounting values.  The 
book value of the firm reflects the value of the firm’s equity capital, at least according to a specific 
accounting standard (e.g. U.S. GAAP).  If the firm can earn a return on this capital exactly equal to a 
"normal" return demanded by its shareholders, then the market value of the firm’s equity should 
exactly equal its book value28.  This is similar to the notion that the market value and face value of a 
bond are equal if the coupon rate and yield are equal. 

This suggests that positive (negative) deviations from book value must be due to the firm’s ability to 
earn more (less) than this "normal" rate demanded by shareholders.  By focusing attention solely on 
these "abnormal" earnings, the present value of all future abnormal earnings can be calculated and 
added to the book value to determine the total value of the firm’s equity. 

                                                      
27 See Sougiannis and Penham. 
28 For simplicity, I will assume that the assets and liabilities are both fairly stated on the balance sheet according to the 
appropriate accounting methods and that there is no systematic bias in the reported book value. 
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In mathematical terms, the abnormal earnings (AE) in any given period, t, are equal to: 

AEt = Net Incomet – [Required Equity Returnt * Book Value of Equityt-1] 

 = NIt – k * BVt-1 

 = (ROEt – k) BVt-1 

where, NIt is the net income for period t, BVt-1 is the beginning book value for period t, ROEt is the 
return on equity in period t and k is the required return. 

Of course, the actual abnormal earnings for future periods at the time of the valuation are not known.  
The expected values of these abnormal earnings, denoted E[AEt], are used. 

Then the value of the equity of the firm is simply: 
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Just as with the DDM and DCF approaches, the abnormal earnings approach is typically implemented 
by forecasting abnormal earnings for several periods (the forecast horizon).  Then, a terminal value 
must be calculated that reflects abnormal earnings beyond this forecast horizon.   

In the DDM and DCF valuation approaches, the terminal value calculation usually assumes that the 
dividends or free cash flows will continue in perpetuity and often the amounts are assumed to grow at 
a constant rate.  In the case of the AE method, these terminal valuation assumptions are often 
different.  Abnormal earnings are less likely to continue in perpetuity and are more likely to decline to 
zero as new competition is attracted to businesses with positive abnormal earnings. 

The difficulty of achieving sustained growth in abnormal earnings is one reason why practitioners 
often favor the AE approach.  This method forces the analyst to explicitly consider the limits of 
growth from a value perspective.  Growth in earnings may be easy to achieve by simply increasing the 
book value of the firm, but this growth adds value only if the earnings exceed the shareholders’ 
expected returns.  Normal earnings growth does not add value; only abnormal earnings add value. 

5.2 Accounting Distortions 

It may be surprising that the arbitrary nature of certain accounting rules does not necessarily limit the 
usefulness of unadjusted earnings for valuation purposes.  How, for instance, can one ignore the 
reality that P&C insurance reserves must be carried at their nominal value rather than their discounted 
value?   

To reconcile this apparent weakness, note that the abnormal earnings approach includes both the 
current book value and the discounted value of future abnormal earnings in the value of the equity.  
As a result, accounting rules that distort estimates of earnings will also distort the estimates of book 
value29 and will eventually reverse themselves.  This is an important point and is worth 
demonstrating.  An example used by Palepu, Bernard and Healy, in their textbook, Business Analysis 
and Valuation, will be used here. 

Assume a manufacturing firm could have capitalized $100 of expenditures and included them in the 
value of its inventory, but instead decided to treat these costs as a current period expense.  Both their 
income and end-of-period book value will be reduced by $100 in the current period.  For instance, 
assume that their book value would have been $1,000 had they capitalized these costs but is only $900 

                                                      
29 Technically, for this to be true the forecasts must satisfy what is referred to as the "clean surplus condition".  The clean 
surplus condition assumes that changes in book value solely reflect earnings, dividends and capital contributions.  It 
precludes accounting entries that impact book value without flowing through earnings, such as in the case of foreign 
currency translations under U.S. GAAP accounting.  U.S. and international accounting standards do not always adhere to the 
clean surplus condition, so adjustments may be required.  See Ohlson, Earnings, Book Values and Dividends in Equity 
Valuation for more details. 
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as the result of expensing these costs.  Further assume that they will sell the inventory for $200 in two 
years and that the required rate of return is 13%. 

As shown in the table below, the two approaches will begin with different book values.  In the first 
period, there are no earnings.  In the second period, the goods are sold for $200, causing one method 
to report income of $100 and one method to report income of $200.  But the use of different starting 
book values causes the resulting equity values, found by adding the present value of the Period 1 and 
Period 2 abnormal earnings to the book value, to be identical. 

Table 23: Demonstration of Self-Correcting Accounting 

 Method 1 Method 2 

 Capitalize Cost Expense Cost 

Beginning Book Value 1,000.00 900.00 

  

Period 1  

Sales 0.00 0.00 

less Inventory Cost 0.00 0.00 

Earnings 0.00 0.00 

less Required Return * Book Value 130.00 117.00 

Abnormal Earnings -130.00 -117.00 

PV(Abnormal Earnings) = AE/1.13 -115.04 -103.54 

  

Period 2  

Sales 200.00 200.00 

less Inventory Cost 100.00 0.00 

Earnings 100.00 200.00 

less Required Return * Book Value 130.00 117.00 

Abnormal Earnings -30.00 83.00 

PV(Abnormal Earnings) = AE/1.132 -23.49 65.00 

  

Value 861.46 861.46 
 

It is important to not take too much comfort from the self-correcting nature of the accounting entries.  
The example above seems to suggest that the choice of accounting methods is irrelevant.  However, 
there are many reasons to prefer an accounting system that reflects the economic reality as accurately 
as possible.  The accounting values will influence the perception of the business’ performance by 
those performing the valuation and could affect the choice of assumptions.  So while the DCF and AE 
approaches will produce the same value, they may produce an incorrect value if the accounting 
system severely distorts the perception of value creation. 

More importantly, as will be shown in the detailed discussion below, the DCF and AE approaches 
result in a significantly different split between the value within the forecast horizon and the value 
attributed to the terminal value.  A more accurate accounting system will result in more of the value 
being accurately reflected in the book value (or within the forecast horizon) and less of it attributed to 
the terminal value.  Given the healthy skepticism needed to assess terminal value estimates, this could 
be an important consideration in some valuations. 

5.3 Application to P&C Insurance Companies 

5.3.1 Example 

To see how the abnormal earnings approach could be used to value a P&C insurance company, the 
example used earlier will be continued.  The following components of the AE method are highlighted 
for clarity: 
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• Book Value – The beginning book value is perhaps the easiest component to estimate, 
since it will in most cases be the reported book value of the equity of the firm.  
Nonetheless, two adjustments may need to be made.  First, any systematic bias in the 
reported asset and liability values should be eliminated.  For P&C insurers, this may 
involve restating the reported loss reserves.  Second, it is common to make an adjustment 
to reflect the tangible book value rather than the reported book value.  The tangible book 
value of the firm is simply the reported book value adjusted to remove the impact of 
intangible assets such as goodwill.  In subsequent periods, the (tangible) book value is 
adjusted to reflect the net income less dividends and share repurchases plus any capital 
contributions30. 

• Net Income During Forecast Horizon – The net income estimates for the forecast horizon 
are determined using the same forecasting models used earlier.  Here, no adjustments are 
made to reflect free cash flows.  In this process it is acceptable, though not necessary, to 
adjust the accounting basis to remove any biases that may exist in the accounting system 
and develop net income estimates that more closely reflect economic reality.   

For example, under U.S. GAAP accounting P&C loss reserves generally are not 
discounted31.  Some analysts would therefore argue that the book value should be 
adjusted to reflect the discounted loss reserves as this might more closely reflect the 
economic value of these liabilities.  If this is done, then there should be a corresponding 
adjustment to the assumed ROE, since the same earnings will be generated from a larger 
capital base. 

If reserves are discounted, it is also important to consider what rate is appropriate to 
discount the loss reserves.  Some would use a risk-free rate.  However, this would not 
truly reflect the economic value of the liabilities unless the liabilities were adjusted to also 
include a risk margin32. 

• Required Rate of Return33 – As in the DDM and DCF approaches, the required return 
used in an AE valuation should reflect the equity investors’ appropriate discount rate.  
The CAPM can be used for this purpose. 

• Abnormal Earnings – Abnormal earnings equal the amount by which net income exceeds 
the required income.  Required income is the product of the required rate of return and the 
beginning of period book value. 

• Growth Rate Beyond Forecast Horizon – In this model growth in abnormal earnings 
reflects both the growth rate in the book value of the firm as well as the amount by which 
the ROE exceeds the required return.  Even in cases where the book value is growing 
significantly, as in the case where dividends are not paid and the invested asset portfolio 
grows, abnormal earnings could be declining and could even be zero.  For this reason, 
terminal value growth rates under this method will quite often be very low (or negative). 

Recalling the clean surplus condition discussed in Footnote 29, it is also important to 
ensure that the growth in book value that is assumed does not require additional capital 
contributions.  Otherwise, the valuation will not accurately reflect the value to the current 
equity holders. 

 

                                                      
30 This follows the "clean surplus condition" discussed in Footnote 29. 
31 One notable exception is certain tabular workers' compensation reserves. 
32 See Butsic or the CAS Fair Value White Paper. 
33 The terms "cost of capital" or "hurdle rate" are quite commonly used to refer to this required return in this context. 
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Example 5 – Abnormal Earnings Valuation for ABC Insurance Company 

Using the same financial model results for ABC Insurance Company as in the previous example, key financial 
statement variables are summarized below and used to estimate the Abnormal Earnings in each period of the 
forecast. 

Table 24: Calculation of Abnormal Earnings 

 2005 2006 2007 2008 2009 

GAAP Equity - Beginning of Year 103,500 108,624 113,274 117,648 122,422 

Required Return 8.95% 8.95% 8.95% 8.95% 8.95% 

Normal Earnings 9,263 9,722 10,138 10,529 10,957 

      

Net Income 17,193 17,236 17,446 18,376 18,967 

      

Abnormal Earnings 7,930 7,514 7,308 7,847 8,010 

 

To estimate the equity value, it is important to estimate the growth rate of the abnormal earnings.  One fairly 
optimistic approach would be to estimate the rate of growth in the book value of the firm and assume that the 
difference between the ROE and the required return is constant in perpetuity.   

Table 25: Calculation of Abnormal Earnings Growth Rates 

 2005 2006 2007 2008 2009 

GAAP Equity - Beginning of Year 103,500 108,624 113,274 117,648 122,422 

GAAP Equity - End of Year 108,624 113,274 117,648 122,422 127,250 

Growth in Book Value 5,124 4,650 4,374 4,774 4,828 

      

Book Value Growth Rate 5.0% 4.3% 3.9% 4.1% 3.9% 

 

These book value growth rates and constant abnormal earnings as a percentage of book value would result in an 
abnormal earnings growth rate of roughly 4.0%.  Using that assumption in perpetuity would be very optimistic.  
It is more likely that the difference between ROE and the required return will decline to zero over a finite time 
horizon.  For simplicity here, abnormal earnings will be assumed to be constant (growth rate equal to zero) and 
the valuation will be done using different assumptions with regard to the time horizon over which the abnormal 
earnings will persist. 

The simplest case to show first is the case where abnormal earnings continue in perpetuity. 

Table 26: Valuation Using Abnormal Earnings Method – Constant AE in Perpetuity 

 2005 2006 2007 2008 2009 Terminal Value 

Abnormal Earnings 7,930 7,514 7,308 7,847 8,010 89,494 

PV Factor 0.918 0.842 0.773 0.710 0.651 0.651 

PV 7,279 6,330 5,651 5,569 5,218 58,299 

       

Sum of PV(AE) 88,345      

Beginning Book Value 103,500      

Total Equity Value 191,845      

 

To calculate the Terminal Value in the table above, the 2009 abnormal earnings of $8,010 are assumed to be 
constant and continue in perpetuity.  When discounted to the valuation date, the terminal value represents 30% 
of the total equity value.   
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Sensitivity Analysis 

In any valuation exercise, it is important to test the sensitivity of the results to many of the key assumptions.  
For example, the terminal value assumed abnormal earnings in perpetuity.  As noted, abnormal earnings should 
often be assumed to decline to zero over some finite horizon.  In the long run, abnormal earnings require that the 
firm earn an ROE in excess of the shareholders’ required return.  These will be sustainable only if there is a 
competitive advantage that will not ultimately be competed away. 

In the numerical example above, the abnormal earnings were assumed to continue in perpetuity.  A more 
realistic assumption is that the firm is able to earn abnormal returns (i.e. achieve an ROE in excess of the 
shareholders’ required return) for only n-years after the forecast horizon.  The following table shows what 
would happen if the abnormal earnings declined linearly over a 5-, 10- or 15-year period34.  In this case, the 
terminal value estimates and the resulting total equity values would be as shown below: 

Table 27: Sensitivity of Equity Value to Abnormal Earnings Horizon 

 Version A – 5 Years Version B – 10 Years  Version C – 15 Years 

Year AE PV of AE  AE PV of AE  AE PV of AE 

2010 6,675 6,126  7,282 6,683  7,509 6,892 

2011 5,340 4,499  6,553 5,521  7,009 5,904 

2012 4,005 3,097  5,825 4,504  6,508 5,032 

2013 2,670 1,895  5,097 3,618  6,007 4,264 

2014 1,335 870  4,369 2,846  5,507 3,587 

2015 0 0  3,641 2,177  5,006 2,993 

2016 0 0  2,913 1,598  4,505 2,473 

2017 0 0  2,184 1,100  4,005 2,017 

2018 0 0  1,456 673  3,504 1,620 

2019 0 0  728 309  3,004 1,275 

2020 0 0  0 0  2,503 975 

2021 0 0  0 0  2,002 716 

2022 0 0  0 0  1,502 493 

2023 0 0  0 0  1,001 302 

2024 0 0  0 0  501 138 

Terminal Value  16,486   29,030   38,681 

         

PV of Terminal Value  10,740   18,911   25,198 

PV of AE 2005-2009  30,047   30,047   30,047 

Beginning Book Value  103,500   103,500   103,500 

Total Equity Value  144,287   152,458   158,745 

 
The assumption of constant abnormal earnings in perpetuity resulted in $58,299 of terminal value.  This value 
declines substantially (to $10,740; $18,911; or $25,198), if the abnormal earnings eventually decline to zero 
over a 5-, 10- or 15-year horizon.  This emphasis on the ability of the firm to generate abnormal earnings, which 
is the real source of value creation, is one of the key advantages of this method as compared to the DDM and 
DCF methods.   

 

                                                      
34 For this analysis, the assumption is that there are n more years of potential abnormal earnings and that the amount 
decreases by 1/(n+1) times the 2009 estimated abnormal earnings each year.  This ensures n additional years of positive 
abnormal earnings. 
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5.3.2 Observations Regarding Example 5 

As demonstrated in the previous example, the AE approach takes a different perspective than the 
DDM and DCF methods.  Neither dividends nor free cash flows are really sources of value creation.  
Instead, these measures are more accurately the consequences of value creation.  By emphasizing the 
firm’s ability to earn abnormal profits, the abnormal earnings approach makes use of assumptions that 
are more directly tied to value creation. 

An additional benefit of the approach is that it de-emphasizes the importance of the terminal value 
estimates and the assumptions that drive those.  In the examples demonstrating the DDM and DCF 
methods, the terminal values represented 83% and 79% of the total equity value.  In the AE estimate, 
the terminal value represented only 30% of the total equity value even when the abnormal earnings 
were expected to continue in perpetuity. 

These points are emphasized here to remind the reader that the AE method is not simply an algebraic 
recharacterization of the free cash flow method.  Blackburn, et. al. demonstrate that under consistent 
assumptions these approaches are, in fact, mathematically equivalent.  However, the two methods 
may not necessarily produce the same answers in practice.  The use of one method or the other may 
cause the analyst to focus on different aspects of the business and could result in different 
assumptions being made.   
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6. Relative Valuation Using Multiples 
The DDM, DCF and AE methods discussed so far share as a critical starting point the availability of 
long-term forecasts of key financial statement variables.  Given the popularity of dynamic financial 
models in recent years and the simplistic nature of the presentation here, this may not have seemed 
like a daunting exercise.  This is misleading.  In reality, reliable forecasts of publicly traded insurers 
are extremely difficult for outsiders to build. 

First, an outsider or minority investor may not have access to data in sufficient detail to properly 
parameterize the model.  Second, without the kind of market knowledge and specific planning data 
used by company executives, growth and rate adequacy estimates may be difficult to obtain.  And 
third, even a relatively short horizon such as 5 years may stretch the limits of one’s forecasting ability. 

In this section, a methodology for valuation that appears to avoid the need to deal with these forecasts 
is presented.  In reality, this approach requires the same assumptions needed to prepare the detailed 
forecasts in the DDM, DCF and AE models are used, though not as explicitly.  As a result, this 
approach tends to appear to be easier to implement. 

6.1 Price-Earnings Ratio 

6.1.1 P-E Ratio Based on Fundamentals 

In various earlier discussions of the terminal value it was noted that one could collapse all of the 
assumptions underlying a DDM, DCF or Abnormal Earnings into a single multiple. 

For instance, in the DDM model a constant dividend payout rate and constant growth rate in 
perpetuity result in the following formula for the price (per share) of the equity: 
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Dividing both sides by the expected earnings per share (EPS) and dropping, for convenience, the 
expected value operator, this can be written as: 
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This indicates that the "Price-Earnings Ratio" (P-E ratio) is tied directly to the DDM and can be used 
to summarize, in a single number, the combined effect of the constant dividend payout rate, the 
constant growth rate and the appropriate discount rate.  The price is then simply this P-E ratio times 
the expected earnings per share next period. 

To see what "typical" P-E ratios might be, assume that the ROE is fixed at 15% but that the dividend 
payout ratios and discount rates are allowed to vary.  The ROE, dividend payout rates and growth rate 
are linked through the formula,  

g = (1 – Dividend Payout Rate) * ROE 

As a result, the following range of P-E ratios could be obtained using different discount rates and 
dividend payout rates: 

Table 28: Illustrative P-E Ratios (ROE = 15%) 

 Dividend Payout Ratio 

Discount Rate 40% 50% 60%

10.0% 40.0 20.0 15.0

12.5% 11.4 10.0 9.2

15.0% 6.7 6.7 6.7

 

Notice that when the discount rate and the ROE are both 15%, the P-E ratio is constant across 
different dividend payout rates.  This demonstrates a point made previously that the dividend payout 
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ratio, and hence the growth rate, does not affect the value of the firm if the firm’s ROE is equal to the 
discount rate.   

6.1.2 Representative P&C Industry P-E Ratios 

In the basic formula for the P-E ratio shown above, the estimated future period’s earnings were used 
as the basis for determining the ratio of price to "earnings".  The P-E ratio could also be presented in 
terms of the prior period’s earnings; often both approaches are used in practice.  To avoid confusion, 
the former approach using expected future earnings is referred to as the forward or leading P-E ratio; 
the latter approach using prior period’s earnings is referred to as the trailing P-E ratio. 

The following table indicates the trailing and forward P-E ratios of several P&C insurers as of June 6, 
2005: 

Table 29: P&C Insurance Trailing and Forward P-E Ratios35 

Company Market Capitalization ($ B) Trailing P-E Ratio Forward P-E 

American International Group 142.17 14.85 9.89 

Hartford Financial Services 22.13 10.07 9.12 

Chubb Corporation 16.47 9.92 10.07 

ACE Limited 12.55 11.57 7.14 

XL Capital Ltd. 10.44 9.24 7.33 

    

Sample Average 203.76 13.44 9.52 

P&C Insurance Industry36 517.18 13.07 NA 

 

In this table, the trailing P-E ratios are based upon current market prices and 2004 GAAP earnings.  It 
is important to recognize that these trailing P-E ratios for any individual company can be distorted by 
unusually positive or negative earnings surprises in the past year.  For this reason, analysts will often 
favor the use of core earnings that smooth the effects of unusual, non-recurring events or the use of 
forward P-E ratios that reflect analyst estimates of prospective earnings.  The forward P-E ratios 
shown reflect consensus analyst estimates of prospective earnings. 

6.1.3 Alternative Uses for P-E Ratios 

The P-E ratio can be used for several purposes: 

• Validation of Assumptions – The number of assumptions required to forecast financial 
results and estimate terminal values can be daunting.  In many cases, it may be difficult to 
verify each assumption against objective benchmarks.  However, once the valuation is 
performed it may be possible to recharacterize the value as a ratio to forward or trailing 
earnings and compare the resulting P-E ratio to the P-E ratios implied by the market 
values of peer companies. 

This is instructive because if two firms are expected to have comparable growth rates, 
dividend payout rates, discount rates, etc. then they should have comparable P-E ratios.  If 
differences in P-E ratios cannot be explained as a result of differences in one or more of 
these key variables, this might indicate that one or more of the assumptions are 
inappropriate. 

                                                      
35 Source: Yahoo! Finance, June 6, 2005. 
36 The industry average trailing P-E is weighted by market value.  The universe includes all firms included in the Yahoo! 
Finance P&C Insurance Industry sector but excludes Berkshire Hathaway (an outlier with significant non-insurance 
operations) as well as Renaissance Re (due to an apparent data error) and any firm with negative earnings in the most recent 
period.  Industry-wide forward P-E ratios were not available and are not shown. 
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• Shortcut to Valuation – Aside from the validation of an otherwise full-fledged forecast 
and valuation, the P-E ratio of peer companies might serve as a useful shortcut to 
valuation in cases where industry average performance is expected.  In this case, a group 
of peer companies would be selected and their mean or median P-E ratios could be used.  
Of course, given the skewed nature of such ratios, the median industry P-E may be 
preferred. 

• Terminal Value – Even in instances where a full valuation based on separate forecasts is 
performed, it may be useful to rely on peer P-E ratios to help guide the terminal value 
calculation.   

In this case, the one additional point to note is that a reasonable terminal value should be 
based on assumptions appropriate as of the end of the forecast horizon.  If, for instance, 
the industry is expected to experience excessive short-term growth and then slow down to 
a low-growth steady state, the current valuations of peer companies will reflect this short-
term high growth rate to some extent.  The current P-E ratios may therefore overstate the 
appropriate P-E ratio at the forecast horizon. 

6.2 Price to Book Value Ratio 

The P-E ratio described above is just one of numerous "multiples" that can be used in this way.  As 
another example, consider the Price-Book Value multiple (or equivalently the Price to Tangible Book 
Value).  The P-BV ratio is commonly preferred over the P-E ratio when valuing banks, insurance 
companies and other financial services firms with substantial holdings in marketable securities. 

6.2.1 P-BV Ratio Based on Fundamentals 

As before, the P-BV ratio is tied directly to the other methods discussed. 

For instance, consider the abnormal earnings approach, which can be written as: 
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If the book value is assumed to grow at a constant rate, g, and the ROE is assumed to be constant, 
then this can be written as: 
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Finally, dividing both sides by the beginning book value, the P-BV ratio is given as: 
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Note that this derivation assumed that the growth rate in book value and the excess return per period 
(ROE – k) would persist in perpetuity.  This will rarely be the case.  The excess returns would 
eventually invite competition that will put pressure on the ROE, the growth rate or both.  Alternate 
formulas that reflect a period after which the excess returns decline to zero can be easily derived37.  
Nonetheless, the previous formula demonstrates the important link between the P-BV multiple and 
fundamental firm characteristics such as the ROE, the growth rate and the discount rate. 

                                                      
37 For example, if after 5 years the ROE is assumed to decline to the level of the cost of capital, the P-BV ratio would be: 
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If a constant ROE of 15% is assumed, the growth rate and the discount rate can be varied to derive the 
following range of P-BV ratios: 

Table 30: Illustrative P-BV Ratios (ROE = 15%) 

 Growth Rates 

Discount Rate 0% 2% 4%

10.0% 1.50 1.63 1.83

12.5% 1.20 1.24 1.29

15.0% 1.00 1.00 1.00

 

6.2.3 Representative P&C Industry P-BV Ratios 

The P-BV ratios for several P&C insurers are shown below: 

Table 31: P&C Insurance Trailing P-BV Ratios38 

Company Market Capitalization ($ B) Trailing P-BV 

American International Group 142.17 1.77 

Hartford Financial Services 22.13 1.54 

Chubb Corporation 16.47 1.57 

ACE Limited 12.55 1.25 

XL Capital Ltd. 10.44 1.34 

   

Sample Average 203.76 1.67 

P&C Insurance Industry 517.18 1.54 

 

6.2.3 Alternative Uses for P-BV Ratios 

Just as in the case of the P-E ratios, the P-BV ratio can be used to validate other forecasts, serve as a 
shortcut or be used as a terminal value estimate in other approaches.  Because it is linked directly to 
these other methods, industry peer P-BV multiples can serve as a useful benchmark.   

6.3 Firm vs. Equity Multiples 

Recall the two alternative methods of applying the DCF approach.  The FCFF method values the 
entire firm and subtracts the value of debt to obtain the equity value; the FCFE method values the 
equity directly.  The two examples shown above, the P-E and the P-BV, both focus on per share 
equity measures in the denominator.  These multiples could just as readily have used a firmwide 
measure, such as firmwide revenue or total asset value as the basis for a multiple.  However, for the 
same reasons that valuing the equity directly using free cash flows to equity (FCFE) is preferred when 
valuing P&C insurers, it is preferable to avoid firmwide valuation multiples and limit the use of 
multiples to equity measures. 

6.4 Market vs. Transaction Multiples 

The P-E and P-BV ratios shown above were based on the market price of the companies’ shares on a 
particular day, their most recent financial statement values and current analyst estimates for next 
year’s earnings and book value.  Of course the market value and forecasted financial statement values 
fluctuate, sometimes significantly, from day to day and so it may often be useful to observe these 
ratios over a number of time periods. 

                                                      
38 Source: Yahoo! Finance, June 6, 2005. 
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Some practitioners prefer to avoid these fluctuations of market multiples and focus instead on 
transaction multiples based on actual merger or acquisition prices or initial public offerings (IPOs).  
For example, below is a table of recent transaction multiples for several P&C insurance companies: 

Table 32: Transaction Multiples39 

Company P-E P-BV Transaction Year 

Aspen Insurance Holdings Ltd.  13.10 1.10 IPO 2003 

AXIS Capital Holdings Ltd.  28.60 1.40 IPO 2003 

Endurance Specialty Holdings Ltd.  13.20 1.00 IPO 2003 

Infinity Property and Casualty Corp. 13.90 0.90 IPO 2003 

Mercer Insurance Group, Inc.  20.00 0.70 IPO 2003 

United National Group, Ltd.  18.50 1.30 IPO 2003 

Safety Insurance Group, Inc.  24.50 1.30 IPO 2002 

Montpelier Re Holdings, Ltd.  20.20 1.00 IPO 2002 

Travelers Property Casualty  17.50 1.00 IPO 2002 
 

One advantage of transaction multiples is that typically the price in these transactions is based on a 
complex negotiation with sophisticated parties on both sides.  As a result, some practitioners consider 
these prices to be more meaningful than multiples based solely on current market prices.  However, 
there are several reasons to be cautious: 

• Control Premiums – M&A transaction prices typically contain what might be considered 
"control premiums" that reflect the buyer’s willingness to pay more for a company in 
order to gain control of its operations and make different strategic and managerial 
decisions than the current management.  In these cases, the multiples based on current 
operations and/or current analyst forecasts might be misleading. 

• Overpricing in M&A Transactions – Academic studies of M&A transactions40 show that 
when mergers and acquisitions increase total shareholder value, most of these gains 
accrue to the target firm’s shareholders and not the acquiring firm.  This suggests that 
acquiring firms have a tendency to overpay.  There are multiple causes for this, including 
managerial hubris, the difficulties of integrating management structures and the failure of 
planned synergies to fully materialize.  But regardless of the reason, it would be prudent 
to consider this when using M&A transaction multiples. 

• Underpricing in IPO Transactions – When firms undertake an initial public offering (IPO) 
there is a great deal of disclosure and thorough analyses conducted by the firm’s bankers 
as well as investors.  This analysis conducted during the IPO process ought to suggest a 
greater degree of reliability for IPO prices than general market prices.  However, the 
underpricing of IPOs, reflected in the downward bias in initial offering prices, has been 
widely recognized and documented in numerous academic studies41.  In recent years, 
particularly during the technology bubble of the late 1990s, a misalignment of the 
investment bankers’ and managers’ interest with those of the shareholders greatly 
exacerbated this problem42.  IPO pricing multiples should therefore be interpreted 
carefully.  

• Reported Financial Variables – Even in cases where the prices in M&A and IPO 
transactions are more reliable, it may not be the case that the reported multiples are as 
accurate.  This is because the reported multiples will be based on either the prior period’s 

                                                      
39 Source: Conning & Company 
40 See Damodaran, Investment Fables 
41 See Ritter, "Initial Public Offerings" 
42 See Partnoy, Infectious Greed 
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financial statements or some published analysts’ estimates of next period’s financial 
statements.  The prices themselves may have been based on different forecasts.  As a 
result, the multiples may not accurately reflect the buyer’s underlying assumptions about 
growth rates, ROE assumptions and discount rates. 

• Underlying Economic Assumptions – By definition, transaction multiples will typically 
come from past transactions that may have been carried out in a different economic 
environment.  Key valuation variables that are imbedded in these multiples, such as 
interest rates, industry growth rates and industry profitability outlooks, may no longer be 
appropriate.   

To understand the potential variation in valuation multiples over time, consider the 
following table of P&C insurance multiples over a 10-year period: 

Table 33: P&C Insurance Industry Mean Market Multiples43 

 

 

Even during this short time period, P&C valuation multiples exhibit variation that would 
be significant in practice, with high and low multiples as much as 50% above and 36% 
below the mean multiples. 

 

                                                      
43 Source: Conning & Company 

Year Price to Earnings Price to Book Value

1985 21.0 1.5

1986 10.0 1.6

1987 19.0 1.2

1988 12.0 1.5

1989 10.0 1.3

1990 11.0 1.5

1991 15.0 1.3

1992 15.0 1.1

1993 18.0 1.4

1994 9.0 1.3

Average 14.0 1.4
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Example 6 – Relative Valuation 

Consider a P&C insurer with projected 2005 Earnings of $1.5 billion and a beginning book value of $10 billion.  
Using the average forward P-E ratio for the five firms shown in Table 29 and the average trailing P-BV ratio for 
the five firms shown in Table 31, the following three estimates of the value of this firm can be produced: 

Table 34: Valuation Based on Earnings and Book Value Multiples 

Method 1: Forward P-E Ratio  

Forward Earnings $1.50 B 

P-E 9.52 

Equity Value $14.28 B 

  

Method 2: Trailing P-BV Ratio  

Trailing Book Value $10.00 B 

Trailing P-BV 1.67 

Equity Value $16.70 B 

  

Average $15.49 B 

 
It is important to recognize that this example utilized the average forward P-E and trailing P-BV ratios for five 
selected companies that did not necessarily have identical operations.  In an actual application, it would be 
important to assess the appropriateness of each of the peer companies used in this average.  Companies with 
different underlying fundamentals (growth rates, risk profiles, leverage ratios, etc.) would not be expected to 
have identical P-E or P-BV ratios and therefore the peer group has to be carefully constructed.   

 

 

6.5 Application of Relative Valuation for Multi-Line Firms 

Among the key issues to assess in the selection of peer companies is the comparability of the 
underlying businesses.  This becomes particularly difficult in a realistic application because most 
insurers operate in a variety of markets, each with their own growth rates and risk profiles.   The 
universe of closely comparable firms is actually quite small. 

This issue is best illustrated by deviating for a moment from the focus on P&C insurers only and 
considering how relative valuation might be applied to a multi-line insurer with P&C, Life, and 
Financial Services businesses.  In each case, relative valuation can be used with the segment-specific 
financial measures and multiples based on firms that operate in only the specific segment of interest.    
Alternatively, peer companies with comparably diverse operations can be used along with the 
firmwide financial measures.  In either case, the peer groups are likely to be quite limited and 
considerable effort will be required to assess the results. 

6.5.1 Use of Pure Play Peers 

Consider the case of a hypothetical diversified insurer, referred to here as Study Note Insurer (SNI).  
SNI is assumed to represent a diversified financial services firm with operations that include P&C 
insurance, life insurance and other financial services businesses such as trading, premium financing, 
etc.   

The valuation of SNI would proceed in the following fashion: 

• Collect Financial Data by Segment 

Separate the firm into its distinct business segments, each with its own growth rate, 
profitability and risk level.  The three business segments used include: 
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 P&C Insurance 

 Life Insurance 

 Financial Services  

Use either published financial reports (for trailing values) or independent forecasts (for 
forward looking values) to obtain key financial variables for each of SNI’s segments.  In 
practice, this could prove to be more of a challenge than it appears, depending on the 
degree of segment detail provided in the firm’s financial statements.   

In the table below, segment-specific trailing earnings for the most recent fiscal year and 
an allocation of the total book value of the firm to each business segment are shown.  The 
book values might reflect adjustments for reserve adequacy, the removal of goodwill or 
similar adjustments to ensure comparability with other firms.   

Table 35: SNI P&C Segment Financial Data ($ Millions) – Actual Amounts from Latest Fiscal Year 

Current Year P&C Life Fin Services 

Earnings 561 839 478 

Book Value 3,058 6,160 2,137 

 

Also of interest might be a smoothed estimate of earnings that reflects a forward-looking 
best-estimate of next period’s earnings.  These smoothed earnings will remove any 
unusual results from the most recent period and reflect amounts that might reflect a more 
useful base from which to project future earnings.  In practice, it is common to use current 
actual book value and an average ROE to derive the smoothed earnings.  For simplicity, 
the analysis is limited to the use of trailing earnings in this example. 

• Peer Company Selections (Pure Play Companies) 

The next step is to identify peer companies in each of the business segments.  Ideally, one 
would want to identify publicly traded firms whose operations consist solely of either 
P&C insurance, life insurance or financial services businesses.  The reliance on single-
business entities, known as “pure play” firms, is intended to ensure that the underlying 
financial characteristics of each business are reflected. 

To ensure that the selected companies are appropriate peers for each of SNI’s segments, it 
would be necessary to compare the firms’ respective businesses (products offered, 
markets served, etc.).  The ROE, financial leverage and growth rates of the firms would 
be reviewed to ensure that the firms were comparable on all of these bases. 

To highlight the limitations one might encounter, only two peers are identified for the 
P&C segment and one of them is assumed to have negative trailing earnings that make its 
trailing P-E ratio meaningless.  Four life insurance and two financial services two peers 
are also identified. 

• Choice of Multiples 

To avoid relying on a single multiple, several valuation multiples would be used, such as 
Price/Earnings (trailing) and Price/Book Value (trailing).   

The following table shows the peer multiples for the P&C segment: 

Table 36: P&C Insurance Segment Peer Multiples 

Multiple P&C Peer 1 P&C Peer 2 Simple Average

P-E 17.07 N/A 17.07

P-BV 1.75 2.27 2.01
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The Life Insurance segment multiples are as follows: 

Table 37: Life Insurance Segment Peer Multiples 

Multiple Life Peer 1 Life Peer 2 Life Peer 3 Life Peer 4 Simple Average 

P-E 20.10 19.06 13.77 25.78 19.68 

P-BV 2.41 2.33 3.00 4.25 3.00 

 

And the Financial Services segment multiples are as follows: 

Table 38: Financial Services Segment Peer Multiples 

Multiple Asset Mgt Peer 1 Asset Mgt Peer 2 Simple Average

P-E 29.75 19.89 24.82

P-BV 6.10 2.78 4.44

 

• Application of Multiples for Segment Valuation 

The P&C segment financial data is then combined with the P&C peer multiples to obtain 
the following estimates of the value of the P&C segment. 

Table 39: P&C Segment Valuation ($ Millions) 

Valuation Basis SNI Amount Peer Multiple Segment Value 

Earnings 561 17.07 9,576 

Book Value 3,058 2.01 6,147 

Average   7,862 

 

Similar analyses are done for the other two segments, as shown in the following two 
tables. 

Table 40: Life Segment Valuation ($ Millions) 

Valuation Basis SNI Amount Peer Multiple Segment Value 

Earnings 839 19.68 16,512 

Book Value 6,160 3.00 18,480 

Average     17,496 

 

Table 41: Financial Services Segment Valuation ($ Millions) 

Valuation Basis SNI Amount Peer Multiple Segment Value 

Earnings 478 24.82 11,864 

Book Value 2,137 4.44 9,488 

Average     10,676 
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• Total Firm Value 

The total value of SNI’s equity would reflect the sum of the segment values, as shown in 
the table below: 

Table 42: SNI Valuation Summary ($ Millions) 

Segment Value 

P&C Insurance 7,862 

Life Insurance 17,496 

Financial Services 10,676 

Total 36,034 

 

• Validation Against Other Diversified Insurers 

Since the universe of possible peer companies by segment is very limited, it may be 
difficult to select more than a few firms in each segment.  If these selected peer 
companies are not truly comparable, the results could be biased.   

As an alternative to the segment valuation, other diversified insurance/financial services 
firms could also be used as the source of peer multiples.  These diversified firms would 
be selected so that they are similar to SNI in many respects – similar businesses, similar 
ROE, similar S&P claims paying rating, similar CAPM betas, etc. 

Peer multiples for three diversified insurers are summarized as follows: 

Table 43: Peer Multiples – Diversified Insurance/Financial Services 

Multiple Diversified Peer 1 Diversified Peer 2 Diversified Peer 3 Average 

P-E 17.53 16.89 11.48 15.30 

P-BV 2.34 2.25 1.35 1.98 

 

When the average multiples are applied to SNI’s total earnings and book value across all 
segments, the following results are obtained: 

Table 44: SNI Valuation – Diversified Insurance/Financial Services Peers ($ Millions) 

Valuation Basis SNI Amount Peer Multiple Equity Value 

Earnings 1,878 15.30 28,733 

Book Value 11,355 1.98 22,483 

Average 25,608 

 

Additional Considerations 

The following additional observations are made with respect to the above example: 

• Choice of Peer Companies – The valuation relied heavily on the assumption that the average 
multiples for the selected peer companies are appropriate for SNI.  The validity of the chosen 
peer companies depends on whether the ROE, growth rate and discount rate assumptions are 
comparable for these firms (or at least the net effect is comparable).  This is ultimately a 
matter of informed judgment. 
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Consider, for instance, the peer companies selected for the Life Insurance segment: 

Table 45: Comparison of Life Segment Peer P-E Multiples 

Life Peer 1 20.10

Life Peer 2 19.06

Life Peer 3 13.77

Life Peer 4 25.78

Simple Average 19.68

 

The first two firms’ multiples are approximately equal to the average multiple.  However, one 
firm’s P-E is approximately 30% lower than this average and another firm’s P-E is 
approximately 30% higher than this average.  As a result, which of these four firms are 
included in the average multiple calculation can have a material impact.  Determining which 
of the firms has operations most like SNI’s operations is important.   

Notice also that the valuation used trailing P-E ratios in the analysis.  The large differences in 
P-E ratios could merely reflect special circumstances in the latest reporting year for one or 
more of these firms that caused their earnings to be artificially lower or higher than expected.  
This may not truly reflect differences in expected ROEs, growth rates or discount rates and 
therefore should not be used to proxy for the appropriate ROE, growth and discount rate 
assumptions that would be used in an explicit DCF valuation. 

Growth rates and discount rates for SNI and their peers could very well differ substantially 
due to underlying fundamental differences in their operations. 

• Simple Average vs. Weighted Average Multiples – Notice that when valuing the various 
segments, the peer companies’ respective multiples were averaged using a simple average.  If 
the peer firms are not roughly the same size, a weighted average might be more appropriate. 
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7. Option Pricing Methods 
Many recently published valuation textbooks now include extensive discussion of the use of option 
pricing theory in the valuation of the equity of a firm.  This section briefly discusses the rationale 
behind this approach and its potential applicability to insurance company valuation.   

Two related approaches are presented: (a) valuing the equity as a call option rather than as a 
discounted stream of future dividends, cash flow or abnormal earnings and (b) the valuation of real 
options as an additional source of value to be added to the DCF, AE or relative valuation results. 

7.1 Valuing Equity as a Call Option 

7.1.1 Background 

This method is based on Merton’s characterization of equity as a call option on the company’s assets, 
with a strike price equal to the face value of the debt. 

When a firm is owned entirely by equity holders, they own all of the assets of the firm – the physical 
assets plus the income that those assets produce over the life of the company.  If the equity holders 
issue debt (i.e. borrow money), then the equity holders no longer own all of the value of the firm, V.  
Instead, they own the excess of the value of the firm over the debt that they have to repay at time T, 
denoted D.  In other words ET = max(VT  - D, 0), which looks like a call on the value of VT with a 
strike price of D. 

When the equity holders borrowed the present value of D, they gave all of the assets of the firm to the 
bondholders, who will keep them if the debt is not repaid.  However, by repaying the debt at time T, 
the equity holders have the right to buy back the assets of the firm by paying D.  If VT < D on that 
date, they will not buy the assets back and will let the bondholders keep the assets.  In other words, 
they will default. 

To value the equity of a firm as a call option on the assets, the Black-Scholes option pricing formula 
can be used, with some modifications.  For instance, instead of using the value of the stock and its 
volatility as inputs, the value and volatility of all of the firm’s assets are the critical inputs.  In 
addition, the strike price is set equal to the face value of the debt and the expiration date for the option 
is set equal to the (single) expiration date of the debt. 

7.1.2 Application to P&C Insurers 

For many years after Merton’s original presentation, this approach remained a purely theoretical 
discussion and was not commonly used as a valuation framework because of its many practical 
limitations.  In recent years, as option pricing methods have become more widely understood, the use 
of this approach has grown.  For instance, a variation of this approach is now used to estimate 
probabilities of default for publicly traded firms44. 

However, when it comes to the valuation of P&C insurance companies, this is still largely a 
theoretical model.  The reason for this is similar to why equity valuation methods rather than firm 
valuation methods are generally preferred for insurance company valuations – the notion of "debt" for 
an insurance company is not well defined.  An insurer’s policyholder liabilities are essentially 
indistinguishable from other debt from the perspective of the equity holder.  Due to the complexity of 
the policyholder liabilities, a single expiration date for all of an insurer’s "debt" cannot be readily 
approximated.   

Given the limitations of this approach in a practical valuation analysis, this approach will not be 
explored further in this study note.   

                                                      
44 The most widely known application is the Moody's/KMV Credit Default Model. 
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7.2 Real Options Valuation 

7.2.1 Background on Real Options 

Another use of option pricing theory of relevance to valuation is the real options framework.  The real 
options approach attempts to value various sources of managerial flexibility that can often be thought 
of as put and call options.  Some of the most common real options include the following45: 

• Abandonment Option – Many projects can be terminated early and the investment sold 
for its liquidation value less closing-down costs.  This option is valued as an American 
put on the value of the project with a strike equal to the net liquidation proceeds. 

• Expansion Option – Projects that are successful often contain an option to expand the 
scope of the project and capture more profits.  This is valued as an American call option 
on the (gross) value of the additional capacity with a strike price equal to the cost of 
creating the capacity. 

• Contraction Option – This is the opposite of the expansion option.  It is valued as an 
American put on the (gross) value of the lost capacity with a strike equal to the cost 
savings. 

• Option to Defer – Otherwise known as the option to wait, this is an American call on the 
value of a project.  It essentially measures the value of being able to hold off on a project 
until more information is known – hence, preventing the bad outcomes at the expense of 
maybe giving up some interim revenue in the good outcomes. 

• Option to Extend – This is an option to extend the life of a project by paying a fixed 
amount.  It is valued as a European call option on the asset’s future value. 

The argument that managerial flexibility has value that should be included within the equity valuation 
is appealing.  However, care must be taken to distinguish between managerial choices that have value 
and managerial choices that do not.  For instance, all firms have the "flexibility" to buy assets at their 
market prices, but this does not in itself create value.  Value is created only when assets can be 
purchased at less than their fair value or when the firm has exclusive access to opportunities.   

7.2.2 Example of Real Option Analysis 

The valuation of real options is considerably more complex than the valuation of options on financial 
instruments.  Practices vary widely with respect to implementation of standard option pricing models 
for these sorts of options.  For the sake of clarity, this section will provide a brief demonstration of 
just one particular method used by some insurance company equity analysts.  The example will be 
intentionally simplified to highlight the rationale behind this methodology.  The specific formulas 
used here have certain limitations and may not be applicable in all situations.   

Assume an insurer has a new business opportunity that it has not yet exploited due to uncertainty with 
regard to its value.  Based on current assumptions, the opportunity will require an initial investment of 
$500 million and will generate an expected ROE (in perpetuity) of 8.95%, exactly equal to its cost of 
capital.  There is uncertainty with respect to the ROE that will be achieved, but this uncertainty will 
diminish over a three year period. 

Using the Abnormal Earnings valuation methodology, it is easy to see that the gross value of the 
opportunity equals the initial book value of $500 million because the expected abnormal earnings are 
equal to zero in every future period.  Given the required investment of $500 million, the net value of 
this opportunity is zero and there would be no incentive for the firm to enter into this business. 

Nonetheless, there may be a real option value to consider here.  Assume that the firm’s flexibility 
allows it to essentially lock in the required investment for a set period, say 3 years for the sake of the 
example.  During this time the uncertainty with respect to the ROE that can be achieved will be 
                                                      
45 This list is taken from Hull.  Other sources for more information on real options valuation include Damodaran and 
Trigeorgis. 
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resolved.  If it turns out that the ROE on this business exceeds the current expected value of 8.95% in 
perpetuity and the firm can still invest only $500 million in book value to enter the business, then 
there may be a real option value associated with this flexibility.   

The value of their flexibility to delay making the investment may be estimated using the Black-
Scholes option pricing formula and an assumption regarding the volatility of the value of the business’ 
cash flows.  The volatility assumption would be based upon the volatility of the ROE and would be 
impacted by other valuation factors such as whether the abnormal earnings continue in perpetuity.  
For the sake of simplicity, the volatility is arbitrarily set at 20% for this example.   

The specific formula is summarized as follows: 

)()(ValueOption  Real 21 dNIedNA rT−−=  

where A = Current Value of Cash Flows ($500), I = Required Investment ($500), r = continuously 
compounded risk-free interest rate (4.55%), T = Time to Expiration (3), and σ = Volatility of Current 
Value (20%).  As in the standard Black-Scholes model, N( ) is the standard normal CDF, and d1 and 
d2 are defined as follows: 

d1 = 
T

TrIA
σ

σ )2/()/ln( 2++  

d2 = 
T

TrIA
σ

σ )2/()/ln( 2−+  = d1 - σ T  

 

Table 46: Real Option Value of New P&C Insurance Opportunities 

Asset Value (A) 500

Strike Price (I) 500

Volatility (σ) 20.0%

Time to Expiration in years (T) 3.00

Risk Free Rate (r) 4.55%

 

d1 0.567

d2 0.221

N(d1) 0.715

N(d2) 0.587

 

Option Value ($ Millions) 101.1

 

As a result of these calculations, it would be appropriate to include an additional $101.1 million to the 
valuation of the firm.  The underlying new business opportunity does not have any value to the firm 
now, even if the investment were made to enter the business.  However, the firm’s ability to wait for 
three years before committing to the investment provides it with a real option.  The value of this 
option, as opposed to the value of the underlying business, should be added to the estimates produced 
by valuing all of the firm’s existing businesses. 

7.2.3 Practical Considerations 

The calculations described in the previous example were intended to demonstrate the concepts 
underlying attempts to include the value of managerial flexibility in the value of a firm.  In practice, it 
may be substantially more difficult to a) identify the new businesses for which some real option value 
may exist, b) assess the current value of these businesses and c) determine whether the firm actually 
has the ability to enter these businesses at a fixed price or at a price that otherwise differs from the 
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businesses’ market value.  It is appropriate to contemplate the potential for firms to have exclusive 
rights or exclusive abilities to capitalize on new business opportunities, but placing a dollar value on 
these opportunities requires considerably more judgment and insight than the simplified example here 
might suggest. 

7.2.4 Key Valuation Considerations 

In addition to the practical considerations raised in the previous section, there are also a variety of 
technical issues that must be considered in the actual valuation formula.  The following is a sample of 
some of these considerations: 

• Valuing the Underlying Business Cash Flows – In this example the gross value of the 
business was valued using the AE method but the abnormal earnings were assumed to 
continue in perpetuity.  This assumption made the value of the underlying cash flows change 
each period primarily as the result of the volatility of the ROE.   

In practice, abnormal earnings periods usually have a finite life.  As a result, after each period 
passes with the option not exercised, the gross value of the cash flows will decline.  This 
effect is comparable to the effect on the stock price after cash dividends are paid and 
adjustments to the option valuation formula similar to those made when valuing options on 
stocks that pay dividends may be appropriate. 

• Time to Option Maturity – In this example the time to maturity was assumed to be known and 
had a finite value.  In practice, real options are likely to have uncertain maturities – or 
possibly no maturity date at all. 

• Exercise Type – The example was simplified by assuming that the option could be exercised 
only at maturity.  In practice, real options are more likely to be American-style options that 
can be exercised any time until maturity.  Appropriate adjustments to the option pricing 
formula would therefore be made in these cases46. 

• Appropriate Valuation Formula – This example used the Black-Scholes formula to value the 
option.  For certain real options, the implicit assumption of a lognormal underlying asset price 
distribution may be inappropriate and other valuation formulas may be appropriate. 

7.2.5 Assessing the Reasonableness of Real Option Values 

To assess the reasonableness of the real option valuation results, it is helpful to consider the following 
characteristics that make real options more valuable: 

• Options are more valuable when new information will be discovered prior to their 
expiration date that will allow for a more informed decision.  If no new information 
exists, then waiting to make a decision might be convenient but it won’t necessarily add 
significant value to the firm. 

• Expansion options are valuable only if there is some exclusive right or ability to exercise 
them.  It is not sufficient to say that new business opportunities might come along in the 
future.  If there is competition, other firms might also attempt to capitalize on these 
opportunities, driving up the exercise cost and eroding any net value impact to the firm 
upon exercise.   

• The exercise price must be fixed in order for the option to have value.  As an extreme 
example, an "option" to purchase an asset at some future date at the then current market 
price does not have any value. 

                                                      
46 See Hull. 
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8. Additional Considerations 
Given the limited scope of this study note, a variety of complicating factors have been ignored.  This 
section will include a partial list of these factors, but readers are encouraged to review the sources 
included in the References section for more complete details.    

Topics of particular interest may include the following: 

• Complex Capital Structures – The valuation methods discussed here reflect the value to all of 
the stakeholders who have a claim on the equity value of the firm.  These stakeholders may 
include a broader group than just the current shareholders of the firm.  Determining that value 
of the common shareholders’ interests therefore might require more than just dividing the 
total equity value by the number of outstanding common shares.   

One adjustment may include special consideration for preferred shareholders.  Another more 
complicated adjustment is to reflect the value of any outstanding warrants or employee stock 
options.  These are call options issued by the firm to investors, management or other 
employees.  The value of the publicly traded shares must take into account the effect on firm 
value and the number of shares outstanding if and when these options are exercised. 

• Valuation of Non-Operating Assets – The methods discussed here assumed that the assets of 
the firm were used to generate the earnings and cash flows depicted in the valuation formulas.  
Other assets may require special considerations. 

• International Considerations – A variety of issues associated with international operations 
have been ignored, including methods needed to assess the consolidated financial statements 
for globally diversified firms and methods used to reflect currency risk in the valuation 
methods. 

The text by Damodaran and the text by Stowe, Robinson, Pinto and McLeavey each provide complete 
discussions of these and other related valuation topics. 



Revised: October 2010 50 

9. References 
Blackburn, Jones, Schwartzman and Siegman, 2003, "The Application of Fundamental Valuation Principles to 
Property/Casualty Insurance Companies".  (Available on the CAS Website at: http://casact.org/research/Valpap2.pdf) 

Bodie, Kane and Marcus, 2004, Investments, 6th Edition, McGraw Hill. 

Butsic, Robert P., 1988, "Determining the Proper Interest Rate for Loss Reserve Discounting: An Economic Approach", 
Casualty Actuarial Society Discussion Paper Program, Vol: May  Page(s): 147.  (Available on the CAS Website at: 
http://www.casact.org/pubs/dpp/dpp88/88dpp147.pdf) 

CAS Task Force on Fair Value Liabilities, 2000, White Paper on Fair Valuing Property/Casualty Insurance Liabilities, 
Casualty Actuarial Society.  (Available on the CAS Website at: http://www.casact.org/research/tffvl/index.htm) 

Cornell, Bradford, 1993, Corporate Valuation: Tools for Effective Appraisal and Decision Making, New York: Business 
One Irwin. 

Cornell, Bradford, 1999, The Equity Risk Premium, New York: John Wiley & Sons, Inc. 

Cummins, J. David and Richard D. Phillips, 2004 (Revised), "Estimating the Cost of Equity Capital for Property-Liability 
Insurers", Presented at 2003 CAS Enterprise Risk Management Seminar. 

Damodaran, Aswath, 2002, Investment Valuation, 2nd Edition, John Wiley & Sons. 

Damodaran, Aswath, 2004, Investment Fables, Financial Times Prentice Hall. 

Derrig, Richard A and Elisha D. Orr, 2004, "Equity Risk Premium: Expectations Great and Small", Casualty Actuarial 
Society Forum, Vol: Winter  Page(s): 1-44.  (Available on the CAS Website at: 
http://www.casact.org/pubs/forum/04wforum/04wf001.pdf) 

D’Arcy, Stephen P., Gorvett, Richard W.; Hettinger, Thomas E.; Walling III, Robert J., 1998, "Using the Public Access 
DFA Model: A Case Study", Casualty Actuarial Society Forum, Vol: Summer  Page(s): 53-118.  (Available on the CAS 
Website at: http://www.casact.org/pubs/forum/98sforum/98sf053.pdf) 

Girard, Luke, 2000, “Market Value of Insurance Liabilities: Reconciling the Actuarial Appraisal and Option Pricing 
Methods,” North American Actuarial Journal, Volume 4, Number 1. 

Girard, Luke, 2002, “An Approach to Fair Valuation of Insurance Liabilities Using the Firm’s Cost of Capital,” North 
American Actuarial Journal, Volume 6, Number 2. 

Halliwell, Leigh J., 2001, "A Critique of Risk-Adjusted Discounting", ASTIN Colloquium, (Available on the CAS Website 
at:http://www.casact.org/coneduc/reinsure/astin/2000/halliwell1.doc) 

Hull, John C. 2006, Options, Futures and Other Derivative Securities, 6th Edition, Prentice Hall. 

Merton, Robert C. 1974, "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates", Journal of Finance, Vol. 
29, pp. 449-470. 

Ohlson, 1995, "Earnings, Book Values and Dividends in Equity Valuation", Contemporary Accounting Research, Volume 
11, No. 2 (Spring 1995). 

Palepu, Bernard & Healey, 1996, Business Analysis & Valuation, Southwestern Publishing. 

Partnoy, Frank, 2003, Infectious Greed: How Deceit and Risk Corrupted the Financial Markets, Times Books. 

Ritter, J.R., 1998, "Initial Public Offerings", Contemporary Finance Digest, v2, 5-31. 

Sougiannis, Theodore and Penman, Stephen H., "A Comparison of Dividend, Cash Flow, and Earnings Approaches to 
Equity Valuation". (Internet address: http://ssrn.com/abstract=15043) 

Standard & Poor’s, "Property/Casualty Insurance Ratings Criteria".  Available on the S&P website at 
www.standardandpoors.com/ratings. 

Stowe, Robinson, Pinto and McLeavey, 2002, Analysis of Equity Investments: Valuation. AIMR. 

Stewart, G.B., 1991, The Quest for Value, New York: Harper Business. 

Trigeorgis, Lenos, 1996, Real Options, MIT Press. 

Wang, Shaun, 1995, "Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards Transforms", Insurance 
Mathematics and Economics, 17, pp. 43–54. 

 



“Credible Loss Ratio Claims Reserves: The Benktander, Neuhaus and Mack Methods Revisited” 

Due to copyright restrictions, the text is not included in this complete PDF. 

 

To access the Werner Hurlimann text, please use the following link. 

Please note, candidates are not responsible for mathematical proofs. 

http://www.actuaries.org/LIBRARY/ASTIN/vol39no1/81.pdf 

 

http://www.actuaries.org/LIBRARY/ASTIN/vol39no1/81.pdf


© 2020, Casualty Actuarial Society, All Rights Reserved   
	

Errata to 
Credible Loss Ratio Claims Reserves: The Benktander, Neuhaus 

and Mack Methods Revisited  
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This note presents errata to various tables and formulas in Hürlimann’s paper on “Credible Loss 
Ratio Claims Reserves.” Items printed in red indicate an update, clarification, or change. 

1. Errata 
 

• Table 7.4 of Hürlimann (page 95) should be amended from: 
 

Origin 
Period 

Method 
collective individual Neuhaus Benktander optimal 

all periods 86,752 87,810 86,751 86,837 86,486 
1 14,307 14,307 14,307 14,307 14,307 
2 9,964 9,882 9,906 9,891 9,966 
3 12,772 12,660 12,706 12,686 12,779 
4 11,443 11,112 11,313 11,266 11,484 
5 20,826 22,947 21,022 21,219 20,364 
6 17,440 16,902 17,498 17,469 17,586 

 
to: 
 

Origin 
Period 

Method 
collective individual Neuhaus Benktander optimal 

all periods 85,992 87,810 86,751 86,837 86,752 
1 14,307 14,307 14,307 14,307 14,307 
2 10,043 9,882 9,906 9,891 9,964 
3 12,878 12,660 12,706 12,686 12,772 
4 11,731 11,112 11,313 11,266 11,443 
5 19,284 22,947 21,022 21,219 20,826 
6 17,749 16,902 17,498 17,469 17,440 

 

	
1 This note was prepared by the Exam 7 Syllabus Committee. 
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• Table 7.5 of Hürlimann (page 95) should be amended from: 
 

Origin 
Period 

Method 
collective individual Neuhaus Benktander optimal 

2 1.027133 1.028713 1.014146 1.022818 1 
3 1.058036 1.065943 1.003002 1.038856 1 
4 1.115378 1.153525 1.002692 1.044128 1 
5 1.198612 1.376096 1.120972 1.012892 1 
6 1.244417 1.740080 1.409648 1.002206 1 

 
to: 
 

Origin 
Period 

Method 
collective individual Neuhaus Benktander optimal 

2 1.027133 1.028713 1.014146 1.022818 1 
3 1.058037 1.065943 1.023277 1.038856 1 
4 1.115379 1.153525 1.023764 1.044128 1 
5 1.198610 1.376096 1.003211 1.012892 1 
6 1.244422 1.740080 1.008555 1.002208 1 

 
•  Table 7.10 of Hürlimann (page 97) should be amended from: 

 
Origin 
Period 

Method 
collective individual Neuhaus Benktander optimal 

2 1.001629 1.001634 1.001405 1.001615 1 
3 1.029900 1.031834 1.021187 1.024673 1 
4 1.046368 1.051243 1.029035 1.033985 1 
5 1.111731 1.146991 1.036943 1.044625 1 
6 1.228790 1.548854 1.000149 1.000894 1 

 
to: 
 

Origin 
Period 

Method 
collective individual Neuhaus Benktander optimal 

2 1.001566 1.001571 1.001342 1.001551 1 
3 1.029900 1.031833 1.021187 1.024673 1 
4 1.046373 1.051248 1.029039 1.033989 1 
5 1.111729 1.146989 1.036940 1.044623 1 
6 1.228789 1.548852 1.000148 1.000893 1 

 



© 2020, Casualty Actuarial Society, All Rights Reserved   
	

• The following formula from Hürlimann (page 88, formula 4.14) should be amended 
from: 
 

mse$R&&'() = E,(R&&'( − R&)01 = Var,R&&'( − R&1 = Var,R&56771 − 2Cov,R&&'(, R&1 + Var[R&] 

 
to: 

 
mse$R&&'() = E,(R&&'( − R&)01 = Var,R&&'( − R&1 = Var,R&&'(1 − 2Cov,R&&'(, R&1 + Var[R&] 

 
 

• The following formula from Hürlimann (page 92) should be amended from: 
 

Var@ [R&5] = AZCi0 ∙ (1 + f&) ∙ H1 +	
1 −	p&
p&

t̂i
1 − t̂i

	M − 2ZCi + 1N ∙ Var,R&56771 

 
to:  
 

Var@ [R&5] = AZCi0 ∙ (1 + f&) ∙ H1 +	
1 −	p&
p&

t̂i
1 + t̂i	

	M − 2ZCi + 1N ∙ Var,R&56771 
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called standard error which is an estimate for the standard 
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1. Introduction and Overview 

The chain ladder method is probably the most popular method for 

estimating outstanding claims reserves. The main reason for this 

is its simplicity and the fact that it is distribution-free, 

i.e. that it seems to be based on almost no assumptions. In this 

paper, it will be seen that this impression is wrong and that 

the chain ladder algorithm rather has far-reaching implications. 

These implications also allow it to measure the variability of 

chain ladder reserve estimates. With the help of this measure it 

is possible to construct a confidence interval for the estimated 

ultimate claims amount and for the estimated reserves. 

Such a confidence interval is of great interest for the 

practitioner because the estimated ultimate claims amount can 

never be an exact forecast of the true ultimate claims amount 

and therefore a confidence interval is of much greater 

information value. A confidence interval also automatically 

allows the inclusion of business policy into the claims 

reserving process by using a specific confidence probability. 

Moreover, there are many other claims reserving procedures and 

the results of all these procedures can vary widely. But with 

the help of a confidence interval it can be seen whether the 

difference between the results of the chain ladder method and 

any other method is significant or not. 

The paper is organized as follows: In Chapter 2 a first basic 
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assumption underlying the chain ladder method is derived from 

the formula used to estimate the ultimate claims amount. In 

Chapter 3, the comparison of the age-to-age factor formula used 

by the chain ladder method with other possibilities leads to a 

second underlying assumption regarding the variance of the 

claims amounts. Using both of these derived assumptions and a 

third assumption on the independence of the accident years, it 

is possible to calculate the so-called standard error of the 

estimated ultimate claims amount. This is done in Chapter 4 

where it is also shown that this standard error is the 

appropriate measure of variability for the construction of a 

confidence interval. Chapter 5 illustrates how any given run-off 

triangle can be checked using some plots to ascertain whether 

the assumptions mentioned can be considered to be met. If these 

plots show that the assumptions do not seem to be met, the chain 

ladder method should not be applied. In Chapter 6 all formulae 

and instruments established including two statistical tests set 

out in Appendices G and H are applied to a numerical example. 

For the sake of comparison, the reserves and standard errors 

according to a well-known claims reserving software package are 

also quoted. Complete and detailed proofs of all results and 

formulae are given in the Appendices A - F. 

The proofs are not very short and take up about one fifth of the 

paper. But the resulting formula (7) for the standard error is 

very simple and can be applied directly after reading the basic 

notations (1) and (2) in the first two paragraphs of the next 
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chapter. In the numerical example, too, we could have applied 

formula (7) for the standard error immediately after the 

completion of the run-off triangle. But we prefer to first carry 

through the analysis of whether the chain ladder assumptions are 

met in this particular case as this analysis generally should be 

made first. Because this analysis comprises many tables and 

plots, the example takes up another two fifths of~the paper 

(including the tests in Appendices G and Ii). 

2. Notations and First Analvsis of the Chain Ladder Method 

Let Cik denote the accumulated total claims amount of accident 

year i, ISiSI, either paid or incurred up to development 

year k, 1 5 k 6 I. The values of Cik for i+k I I+1 are known to 

US (run-off triangle) and we want to estimate the values of Cik 

for i+k > I+l, in particular the ultimate claims amount CiI of 

each accident year i = 2, . . . . I. Then, 

Ri = ci1 - =i,I+l-i 

is the outstanding claims reserve of accident year i as Ci I+l-i , 
has already been paid or incurred up to now. 

The chain ladder method consists of estimating the ultimate 

claims amounts CiI by 

(1) CiI = Ci,I+l-i'fr+l-i'...'fy-l I ZlilI, 

where 
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I-k 
(2) fk = c 'j,k+l 1 :f: 'jk r 1 2 k 6 I-l, 

j=l 

are the so-called age-to-age factors. 

This manner of projecting the known claims amount Ci,I+1-i to 

the ultimate claims amount CII uses for all accident years i 2 

1+1-k the same factor fk for the increase of the claims amount 

from development year k to development year k+l although the 

observed individual development factors Ci,k+l/Cik of the 

accident years i I I-k are usually different from one another 

and from fk. This means that each increase from Cik to Ci,k+l is 

considered a random disturbance of an expected increase from Cik 

to Cikfk where fk is an unknown 'true' factor of increase which 

is the same for all accident years and which is estimated from 

the available data by fk. 

Consequently, if we imagine to be at the end of development year 

k we have to consider Ci k+l, . . . . CiI as random variables , 
whereas the realizations of Gil, . . . . Cik are known to us and 

are therefore no longer random variables but scalars. This means 

that for the purposes of analysis every Cik can be a random 

variable or a scalar, depending on the development year at the 

end of which we imagine to be but independently of whether Cik 

belongs to the known part i+k 5 I+1 of the run-off triangle or 

not. When taking expected values or variances we therefore must 

always also state the development year at the end of which we 

imagine to be. This will be done by explicitly indicating those 

106 



variables Cik whose values are assumed to be known. If nothing 

iS indicated all Cik are assumed to be unknown. 

What we said above regarding the increase from Cik to Ci k+l can I 
now be formulated in stochastic terms as follows: The chain 

ladder method assumes the existence of accident-year-independent 

factors fl, . . . . fIel such that, given the development Gil' . . . . 

Cikt the realization of Ci k+l is 'close' to Cikfk, the latter I 
being the expected value of Ci k+l in its mathematical meaning, , 
i.e. 

(3) E(Ci,k+llCil,-.-rCik) = Cikfk t ISiSI, 1 I k 2 I-l. 

Here to the right of the '1 t those Cik are listed which are 

assumed to be known. Mathematically speaking, (3) is a 

conditional expected value which is just the exact mathematical 

formulation of the fact that we already know Gil, . . . . Cik, but 

do not know Ci,k+l* The same notation is also used for variances 

since they are specific expectations. The reader who is not 

familiar with conditional expectations should not refrain from 

further reading because this terminology is easily under- 

standable and the usual rules for the calculation with expected 

values also apply to conditional expected values. Any special 

rule will be indicated wherever it is used. 

We want to point out again that the equations (3) constitute an 

assumption which is not imposed by us but rather implicitly 

underlyies the chain ladder method. This is based on two aspects 

of the basic chain ladder equation (1): One is the fact that (1) 
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uses the same age-to-age factor fk for different accident years 

i = 1+1-k, . . . , I. Therefore equations (3) also postulate age- 

to-age parameters fk which are the same for all accident years. 

The other is the fact that (1) uses only the most recent 

observed value Ci,I+l-i as basis for the projection to ultimate 

ignoring on the one hand all amounts Gil, . . . . Ci,I-i observed 

earlier and on the other hand the fact that Ci,I+1-i could 

substantially deviate from its expected value. Note that it 

would easily be possible to also project to ultimate the amounts 

tilt **.I ci,I-i of the earlier development years with the help 

of the age-to-age factors fl, . . . . fImZ and to combine all these 

projected amounts together with Ci,I+l-ify+l-i'..-'fI-1 into a 

common estimator for CiI. Moreover, it would also easily be 

possible to use the values Cj,I+1-i of the earlier accident 

years j < i as additional estimators for E(Ci,I+I-i) by 

translating them into accident year i with the help of a measure 

of volume for each accident year. These possibilities are all 

ignored by the chain ladder method which uses Ci I+1-i as the , 
only basis for the projection to ultimate. This means that the 

chain ladder method implicitly must use an assumption which 

states that the information contained in Ci I+1-i cannot be I 
augmented by additionally using Gil, . . . . Ci,I-i or CI I+l-i, I 
. . . , Ci-l,I+l-i. This is very well reflected by the equations 

(3). 

Having now formulated this first assumption underlying the chain 

ladder method we want to emphasize that this is a rather strong 
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assumption which has important consequences 'and which cannot be 

taken as met for every run-off triangle. Thus the widespread 

impression the chain ladder method would work with almost no 

assumptions is not justified. In Chapter 5 we will elaborate on 

the linearity constraint contained in assumption (3). But here 

we want to point out another consequence of formula (3). We can 

rewrite (3) into the form 

E(Ci,k+l/CikICil,".,Cik) = fk 

because Cik is a scalar under the condition that we know CiI, 

. . . . Cik. This form of (3) shows that the expected value of the 

individual development factor Ci k+l/Cik equals fk irrespective I 
of the prior development Gil, . . . . Cik and especially of the 

foregoing development factor Cik/Ci,k-l. As is shown in Appendix 

G, this implies that subsequent development factors Cik/Ci,k-l 

and Ci,k+l/Cik are uncorrelated. This means that after a rather 

high value of Cik/Ci,k-l the expected size of the next 

development factor Ci,k+l/Cik is the same as after a rather low 

value Of Cik/Ci,k-1. We therefore should not apply the chain 

ladder method to a business where we usually observe a rather 

Small increase Ci,k+l/Cik if Cik/Ci,k-1 is higher than in most 

other accident years, and vice versa. Appendix G also contains a 

test procedure to check this for a given run-off triangle. 
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3. Analysis of the Ase-to-Aoe Factor Formula: the Key to 

Measurina the Variability 

Because of the randomness of all realizations Cik we can not 

infer the true values of the increase factors fI, . . . . fI-I from 

the data. They only can be estimated and the chain ladder method 

calculates estimators fl, . . . . fIml according to formula (2). 

Among the properties which a good estimator should have, one 

prominent property is that the estimator should be unbiased, 

i.e. that its expected value E(fK) (under the assumption that 

the whole run-off triangle is not yet known) is equal to the 

true value fk, i.e. that E(fk) = fk. Indeed, this is the case 

here as is shown in Appendix A under the additional assumption 

that 

(4) the variables {Gil, . . . . CiI} and {Cj,, ..*I CjI} of 

different accident years i # j are independent. 

Because the chain ladder method neither in (1) nor in (2) takes 

into account any dependency between the accident years we can 

conclude that the independence of the accident years is also an 

implicit assumption of the chain ladder method. We will 

therefore assume (4) for all further calculations. Assumption 

(4), too, cannot be taken as being met for every run-off 

triangle because certain calendar year effects (such as a major 

change in claims handling or in case reserving or greater 

changes in the inflation rate) can affect several accident years 
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in the same way and can thus distort the independence. How such 

a situation can be recognized is shown in Appendix H. 

A closer look at formula (2) reveals that 

I-k 
' 'j,k+l 

j=l 
f k- 

= 
I-k 

jzl % 

';" 'jk 'j,k+I -. 
j=l I-k 

jzlcjk 'jk 

is a weighted average of the observed individual development 

factors Cj,k+l/Cjkr 1 5 j 5 I-k, where the weights are 

proportional to Cjk. Like fk every individual development factor 

'j,k+l/'jk/ 1 I j 5 I-k, is also an unbiased estimator of fk 

because 

E(Cj,k+l/Cjk) = E(E(Cj,k+l/CjklCjlt * - * rcjk)) (a) 

= E(E(Cj,k+llCjl,.-*ICjk)/Cjk) (b) 

= E(Cjkfk/Cjk) 

= E(fk) 

= fk . 

(cl 

(d) 

Here equality (a) holds due to the iterative rule E(X) = 

E(E(XIY)) for expectations, (b) holds because, given Cjl to cjk, 

Cjk is,a scalar, (c) holds due to assumption (3) and (d) holds 

because fk is a scalar. (When applying expectations iteratively, 

e.g. E(E(XIY)), one first takes the conditional expectation 

E(X(Y) assuming Y being known and then averages over all 

possible realizations of Y.) 
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Therefore the question arises as to why the chain ladder method 

uses just fk as estimator for fk and not the simple average 

1 I-k ._ 
~ ' 'j,k+l/'jk 
I-k j=l 

of the observed development factors which also would be an 

unbiased estimator as is the case with any weighted average 

I-k I-k 
gk = jz, wjk 'j,k+l/'jk with C Wjk=l 

j=l 

of the observed development factors. (Here, wjk must be a scalar 

if Cjl, . . . . Cjk are known.) 

Here we recall one of the principles of the theory of point 

estimation which states that among several unbiased estimators 

preference should be given to the one with the smallest 

variance, a principle which is easy to understand. We therefore 

should choose the weights w. lk in such a way that the variance of 

gk is minimal. In Appendix B it is shown that this is the case 

if and only if (for fixed k and all j) 

Wjk is inversely proportional t0 Var(Cj k+l/CjklCjl,...,Cjk). 
I 

The fact that the chain ladder estimator fk uses weights which 

are proportional to Cjk therefore means that Cjk is assumed to 

be inversely proportional to Var(Cj,k+I/CjklCjI,...,Cjk), or 

stated the other way around, that 

var(Cj,k+l/CjklCjl,.~.,cjk) = ak2/Cjk 

with a proportionality constant ak2 which may depend on k but 

, 
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not on j and which must be non-negative because variances are 

always non-negative. Since here cjk is a scalar and because 

generally Var(X/c) = Var(X)/c2 for any scalar c, we can state 

the above proportionality condition also in the form 

(5) var(cj,k+llcjl# . ..'Cjk) = CjkQk', 15 j 5 I, 1 < k 5 I-l, 

with unknown proportionality constants ek2, 1 ~2 k I I-l. 

As it was the case with assumptions (3) and (Q), assumption (5) 

also has to be considered a basic condition implicitly 

underlying the chain ladder method. Again, condition (5) cannot 

a priori be assumed to be met for every run-off triangle. In 

Chapter 5 we will show how to check a given triangle to see 

whether (5) can be considered met or not. But before we turn to 

the most important consequence of (5): Together with (3) and (4) 

it namely enables us to quantify the uncertainty in the 

estimation of CiI by CiI. 

4. Quantifying the Variabilitv of the Ultimate Claims Amount 

The aim of the chain ladder method and of every claims reserving 

method is the estimation of the ultimate claims amount CiI for 

the accident years i = 2, . . . . I. The chain ladder method does 

this by formula (l), i.e. by 

Cif = ci I+l-i'fI+l-i'""fI-l f I 
This formula yields only a point estimate for CiI which will 

normally turn out to be more or less wrong, i.e. there is only a 
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very small probability for CiI being equal to CiI. This 

probability is even zero if CiI is considered to be a continuous 

variable. We therefore want to know in addition if the estimator 

CiI is at least on average equal to the mean of CiI and how 

large on average the error is. Precisely speaking we first would 

like to have the expected values E(CiI) and E(CiI), 2 I i 5 I, 

being equal. In Appendix C it is shown that this is indeed the 

case as a consequence of assumptions (3) and (4). 

The second thing we want to know is the average distance between 

the forecast CiI and the future realization CiI. In Mathematical 

Statistics it is common to measure such distances by the square 

of the ordinary Euclidean distance ('quadratic loss function'). 

This means that one is interested in the size of the so-called 

mean squared error 

mse(CiI) = EC (CiI - Ci1) 2 ID) 

where D = { Cik I i+k % I+1 } is the set of all data observed so 

far. It is important to realize that we have to calculate the 

mean squared error on the condition of knowing all data observed 

so far because we want to know the error due to future random- 

ness only. If we calculated the unconditional error E(CiI-Cir)2, 

which due to the iterative rule for expectations is equal to the 

mean value E(E((CiI - CII)~/D)) of the conditional mse over all 

possible data sets D, we also would include all deviations from 

the data observed so far which obviously makes no sense if we 

want to establish a confidence interval for CiI on the basis of 

the given particular run-off triangle D. 
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The mean squared error is exactly the same concept which also 

underlyies the notion of the variance 

Var(X) = E(X - E(X))2 

of any random variable X. Var(X) measures the average distance 

of X from its mean value E(X). 

Due to the general rule E(X-c) 3 = Var(X) + (E(X)-c)~ for any 

scalar c we have 

mse(CiI) = Var(CiIID) + ( E(CiIlD) - CiI )' 

because CiT is a scalar under the condition that all data D are 

known. This equation shows that the mse is the sum of the pure 

future random error Var(CiT[ ) D and of the estimation error which 

is measured by the squared deviation of the estimate CiI from 

its target E(CiIID). On the other hand, the mse does not take 

into account any future changes in the underlying model, i.e. 

future deviations from the assumptions (3), (4) and (5), an 

extreme example of which was the emergence of asbestos. 

Modelling such deviations is beyond the scope of this paper. 

As is to be expected and can be seen in Appendix D, mse(Cir) 

depends on the unknown model parameters fk and ~~2. We therefore 

must develop an estimator for mse(CiT) which can be calculated 

from the known data D only. The square root of such an estimator 

is usually called *standard error' because it is an estimate of 

the standard deviation of CiI in cases in which we have to 

estimate the mean value, too. The standard error s.e.(CiX) of 
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CiI is at the same time the standard error s.e.(Ri) of the 

reserve estimate 

% = ciI - ci,I+l-i 

of the outstanding claims reserve 

Ri = CiI - Ci 1+1-i I 

because 

mse Pi) = E((Ri - Ri)21D) = E((CiI - CiI)21D) = 

= mse(Cir) 

and because the equality of the mean squared errors also implies 

the equality of the standard errors. This means that 

(6) s.e.(Ri) = S.e.(Cir) - 

The derivation of a 

CiI turns out to be 

done in Appendix D. 

simple: 

(7) (s-e. (Cir) 1 2 

where 

formula for the standard error s.e.(CiI) of 

the most difficult part of this paper; it is 

Fortunately, the resulting formula is 

I-l 
= c;, c 

2 
!%(L+ 

1 

k=I+l-i fk2 
-1 

Cik I-k 

jzlcjk 

1 I-k 
(8) ok2 = - c cjk ( 

'j k+l 
I_--fk)2, 1 I k 5 I-2. 

I-k-l j=l 'jk 

is an unbiased estimator of ok2 (the unbiasedness being shown in 

Appendix E) and 

cik = Ci,I+l-i'fy+l-i'".'fk-~ e k > 1+1-i, 

are the amounts which are automatically obtained if the run-off 
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triangle is completed step by step according to the chain ladder 

method. In (7), for notational convenience we have also set 

%,1+1-i = 'i,I+l-i. 

Formula (8) does not yield an estimator for aIel because it is 

not possible to estimate the two parameters fI-I and aIel from 

the single observation C1,I/CI,I-l between development years I-l 

and I. If Q-1 = 1 and if the claims development is believed to 

be finished after I-l years we can put aIm1 = 0. If not, we 

extrapolate the usually decreasing series al, OR, . . . . aIm3, 

aI-2 by one additional member, for instance by means of 

loglinear regression (cf. the example in Chapter 6) or more 

simply by requiring that 

aIm3 1 arw2 = afB2 ! aIwl 

holds at least as long as aIw3 > aIs2. This last possibility 

leads to 

(9) 
2 

= min ( a~-2/a~-3, 
2 

ax-1 min(aIm3, aim21 1 . 

We now want to establish a confidence interval for our target 

variables CiI and Ri. Because of the equation 

(31 = ci,I+l-i + Ri 

the ultimate claims amount CiI consists of a known part Ci I+l-i I 
and an unknown part Ri. This means that the probability 

distribution function of CiI !given the observations D which 

include Ci I+l-i) I is completely determined by that of Ri. We 

therefore need to establish a confidence interval for Ri only 

and can then simply shift it to a confidence interval for CiI. 
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For this purpose we need to know the distribution function of 

Ri. Up to now we only have estimates Ri and s.e.(Ri) for the 

mean and the standard deviation of this distribution. If the 

volume of the outstanding claims is large enough we can, due to 

the central limit theorem, assume that this distribution 

function is a Normal distribution with an expected value equal 

to the point estimate given by Ri and a standard deviation equal 

to the standard error s.e.(Ri). A symmetric 95%-confidence 

interval for Ri is then g+ven by 

( Ri - a*s.e.(Ri) , Ri + 2.s.e.(Ri) ). 

But the symmetric Normal distribution may not be a good 

approximation to the true distribution of Ri if this latter 

distribution is rather skewed. This will especially be the case 

if s.e.(Ri) is greater than 50 % of Ri. This can also be seen at 

the above Normal distribution confidence interval whose lower 

limit then becomes negative even if a negative reserve is not 

possible. 

In this case it is recommended to use an approach based on the 

Lognormal distribution. For this purpose we approximate the 

unknown distribution of Ri by a Lognormal distribution with 

parameters pi and Oi2 such that mean values as well as variances 

of both distributions are equal, i.e. such that 

exP(fii + Ui2/2) = Ri , 

exP(2fii + oi2)(exp(ai2)-1) = (s.e.(Ri))2 . 
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This leads to 

Ui2 = ln(1 + (S.e.(Ri))2/Ri2) , 
(10) 

Hi = ln(Ri) - Oi2/2 . 

Now, if we want to estimate the 90th percentile of Ri, for 

example, we proceed as follows. First we take the 90th 

percentile of the Standard Normal distribution which is 1.28. 

Then eXp(piil.28Ui) with cci and Ui2 according to (10) is the 

90th percentile of the Lognormal distribution and therefore also 

approximately of the distribution of Ri. For instance, if 

s.e.(Ri)/Ri = 1, then oi 2 = ln(2) and the 90th percentile is 

exP(Cci + 1.28oi) = Riexp(1.28Ui - Ui2/2) = RieXp(.719) = 

2.05.Ri. If we had assumed that Ri has approximately a Normal 

distribution, we would have obtained in this case Ri + 

1.28*s.e.(Ri) = 2.28.Ri as 90th percentile. 

This may come as a surprise since we might have expected that 

the 90th percentile of a Lognormal distribution always must be 

higher #an that of a Normal distribution with same mean and 

variance. But there is no general rule, it depends on the 

percentile chosen and on the size of the ratio s.e.(Ri)/Ri. The 

Lognormal approximation only prevents a negative lower 

confidence limit. In order to set a specific lower confidence 

limit we choose a suitable percentile, for instance lo%, and 

proceed analogously as with the 90% before. The question of 

which confidence probability to choose has to be decided from a 

business policy point of view. The value of 80% = 90% - 10% 

taken here must be regarded merely as an example. 



We have now shown how to establish confidence limits for every 

Ri and therefore also for every CiI = Ci,I+1-i + Ri. We may also 

be interested in having confidence limits for the overall 

reserve 

R = R2 + . . . + RI , 

and the question is whether, in order to estimate the variance 

of R, we can simply add the squares (s.e.(Ri))2 of the 

individual standard errors as would be the case with standard 

deviations of independent variables. But unfortunately, whereas 

the Ri'S itself are independent, the estimators Ri are not 

because they are all influenced by the same age-to-age factors 

fk, i.e. the Ri's are 

shown that the square 

reserve estimator 

positively correlated. In Appendix F it is 

of the standard error of the overall 

R = R2 + . . . + 

is given by 

(11) (s.e. (R))2 = 

I I 
= c 

i-2 I 
(s-e. Will2 + Cir( Ii1 2ak2'fk2 

k=I+l-i I-k 
' 'nk 

n=l 

Formula (11) can be used to establish a confidence interval for 

the overall reserve amount R in quite the same way as it was 

done before for Ri. Before giving a full example of the 

calculation of the standard error, we will deal in the next 

chapter with the problem of how to decide for a given run-off 
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triangle whether the chain ladder assumptions (3) and (5) are 

met or not. 

5. Checkina the Chm Assumations Aaainst the Data 

As has been pointed out before, the three basic implicit chain 

ladder assumptions 

(3) E(Ci,k+llCilr ***#cik) = Cikfk I 

(4) Independence of accident years , 

(5) Var(Ci,k+llCil,...,Cik) e Cikak2 I 

are not met in every case. In this chapter we will indicate how 

these assumptions can be checked for a given run-off triangle. 

We have already mentioned in Chapter 3 that Appendix H develops 

a test for calendar year influences which may violate (4). We 

therefore can concentrate in the following on assumptions (3) 

and (5). 

First, we look at the equations (3) for an arbitrary but fixed k 

and for i = 1, . . . . I. There, the ValUeS of Cik, 1 S i I I, are 

to be considered as given non-random values and equations (3) 

can be interpreted as an ordinary regression model of the type 

Yi = c + xib + "i , lSi<I, 

where c and b are the regression coefficients and 'i the error 

term with E(Ei) = 0, i.e. E(Yi) = c + Xib. In our special case, 

we have c = 0, b = fk and we have observations of the 

independent variable Yi = Ci,k+l at the points Xi = Cik for i = 
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1, . . . . I-k. Therefore, we can estimate the regression 

coefficient b = fk by the usual least squares method 

If the 

set to 

(12) 

I-k 
' (Ci,k+l - Cikfk)2 ~ minimum . 

i=l 

derivative of the left hand side with respect to fk is 

0 we obtain for the minimizing parameter fk the solution 

I-k I-k 

fkO = ' 'ikCi,k+l / C Cik 2 . 
i=l i=l 

This is not the same estimator for fk as according to the chain 

ladder formula (2). We therefore have used an additional index 

'0' at this new estimator for fk. We can rewrite fko as 

1-k Cik2 
fkO = c 

'i,k+l -. 
i=l I-k 

' 'ik 
2 'ik 

i=l 

which shows that fko is the Cik2-weighted average of the 

individual development factors Ci k+l/Cik, whereas the chain I 
ladder estimator fk is the Cik-weighted average. In Chapter 3 we 

saw that these weights are inversely proportional to the 

underlying variances Var(Ci,k+l/CiklCil,...RCik). 

Correspondingly, the estimator fkO assumes 

Var(Ci,k+l/CiklCilr.'.rCik ) being proportional to l/Cik2, 

or equivalently 

Var(Ci,k+l Icilteee ,Cik) being proportional to 1 

which means that Var(Ci k+llCil,'.. I ,Cik) is the same for all 

observations i = 1, . . . , I-k. This is not in agreement with the 

chain ladder assumption (5). 
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Here we remember that indeed the least squares method implicit 

assumes equal variances Var(Yi) = Var(ei) = u2 for all i. If 

this assumption is not met, i.e. if the variances Var(Yi) = 

Var(ti) depend on i, one should use a weighted least squares 

approach which consists of minimizing the weighted sum of 

squares 

C Wi(Yi 
i=l 

- C - Xib)’ 

where the weights Wi are in inverse proportion to Var(Yi). 

Therefore, in order to be in agreement with the chain ladder 

variance assumption (5), we should use regression weights Wi 

which are proportional to l/Cik (more precisely to 1/(CikUk2), 

but ok2 can be amalgamated with the proportionality constant 

because k is fixed). Then minimizing 

I-k 
' ('i,k+l 

i=l 
- Cikfk)2 / Cik 

with respect to fk yields indeed 

I-k I-k 
f kl = ' 'i,k+l 1 

i=l LI, Cik 

which is identical to the usual chain ladder age-to-age factor 

‘k- 

lY 

It is tempting to try another set of weights, namely l/cik2 

because then the weighted sum of squares becomes 
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I-k I-k 
' (Ci,k+l 

i=l 
- Cikfk)2 / Cik2 = C ( 

'i k+l 

i=l 
A- fk)2 . 

'ik 

Here the minimizing procedure yields 

1 1-k Ci k+l 
(13) fk2 = - c A , 

I-k i=l 'ik 

which is the ordinary unweighted average of the development 

factors. The variance assumption corresponding to the weights 

used is 

Var(Ci,k+llCil,...,Cik ) being proportional to Cik' 

or equivalently 

Var(Ci,k+l/CiklCilr...,Cik) being proportional to 1. 

The benefit of transforming the estimation of the age-to-age 

factors into the regression framework is the fact that the usual 

regression analysis instruments are now available to check the 

underlying assumptions, especially the linearity and the 

variance assumption. This check is usually done by carefully 

inspecting plots of the data and of the residuals: 

First, we plot ci,k+l against Cik, i = 1, . . . . I-k, in order to 

see if we really have an approximately linear relationship 

around a straight line through the origin with slope fk = fkl. 

Second, if linearity seems acceptable, we plot the weighted 

residuals 

cc. i,k+l - Cikfk) / 4cik t 1 6 i I I-k, 

(whose squares have been minimized) against Cik in order to see 

if the employed variance assumption really leads to a plot in 

which the residuals do not show any specific trend but appear 
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purely random. It is recommended to compare all three residual 

plots (for i = 1, . . . . I-k) 

Plot 0: ci,k+l - CikfkO against 'ik ' 

Plot 1: (ci,k+l - Cikfkl)r/Cik against 'ik 1 

Plot 2: (ci,k+l - Cikfk2)/Cik against Cik , 

and to find out which one shows the most random behaviour. All 

this should be done for every development year k for which we 

have sufficient data points, say at least 6, i.e. for k S I-6. 

Some experience with least squares residual plots is useful, 

especially because in our case we have only very few data 

points. Consequently, it is not always easy to decide whether a 

pattern in the residuals is systematic or random. However, if 

Plot 1 exhibits a nonrandom pattern, and either Plot 0 or Plot 2 

does not, and if this holds true for several values of k, we 

should seriously consider replacing the chain ladder age-to-age 

factors fkl = fk with fko or fk2 respectively. The following 

numerical example will clarify the situation a bit more. 

6. 

The data for the following example are taken from the 

'Historical Loss Development Study', 1991 Edition, published by 

the Reinsurance Association of America (RAA). There, we find on 

page 96 the following run-off triangle of Automatic Facultative 

12s 



business in General Liability (excluding Asbestos & 

Environmental): 

I 

i=l 

i=2 1 

i=3 1 

id 1 

i-5 1 

i-6 1 

i-7 1 

i=a 

i=9 1 

i=lO 1 

5012 

106 

3410 

5655 

1092 

1513 

557 

1351 

3133 

2063 

a269 

6285 

a992 

11555 

9565 

6.445 

4020 

6947 

5395 

10907 11805 13539 16181 18009 la&u 18442 18834 

5396 lo646 13782 15599 15196 16169 16704 

13873 16141 18735 22214 22863 23466 

15764 21266 23425 26083 27067 

1563.6 22169 25955 26180 

11702 12935 15852 

10946 12314 

13112 

The above figures are cumulative incurred case losses in $ 1000. 

We have taken the accident years from 1981 (i=l) to 1990 (i=lO) 

which is enough for the sake of example but does not mean that 

we believe to have reached the ultimate claims amount after 10 

years of development. 

We first calculate the age-to-age factors fk = fk,l according to 

formula (2). The result is shown in the following table together 

with the alternative factors fko according to (12) and fk2 

according to (13): 

1 k=l k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 

----I 

fkO 1 2.217 1.569 1.261 1.162 1.100 1.041 1.032 1.016 1.009 

fkl 1 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009 

fk2 ; 8.206 1.696 1.315 1.185 1.127 1.043 1.034 1.011 1.009 
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If one has the run-off triangle on a personal computer it is' 

very easy to produce the plots recommended in Chapter 5 because 

most spreadsheet programs have the facility of plotting X-Y 

graphs. For every k = 1, . . . . 8 we make a plot of the amounts 

Ci,k+l (y-axis) of development year k+l against the amOUntS Cik 

(x-axis) of development year k for i = 1, . . . . 10-k, and draw a 

straight line through the origin with slope fkl. The plots for k 

= 1 to 8 are shown in the upper graphs of Figures 1 to 8, 

respectively. (All figures are to be found at the end of the 

paper after the appendices.) The number above each point mark 

indicates the corresponding accident year. (Note that the point 

mark at the upper or right hand border line of each graph does 

not belong to the plotted points (Cik, Ci,k+l), it has only been 

used to draw the regression line.) In the lower graph of each of 

the Figures 1 to 8 the corresponding weighted residuals 

(C* i,k+l - Cik)Hcik are plotted against Cik for i = l,..., 10-k. 

The two plots for k = 1 (Figure 1) clearly show that the 

regression line does not capture the direction of the datd 

points very well. The line should preferably have a positive 

intercept on the y-axis and a flatter slope. However, even then 

we would have a high dispersion. Using the line through the 

origin we will probably underestimate any future Ci2 if Gil is 

less than 2000 and will overestimate it if Gil is more than 

4000. Fortunately, in the one relevant case i = 10 we have Cl0 1 I 
= 2063 which means that the resulting forecast C10,2 = C10,1f2 = 
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2063.2.999 = 6187 is within the bulk of the data points plotted. 

In any case, Figure 1 shows that any forecast of Cl0 2 is , 

associated with a high uncertainty of about k3000 or almost 

*50% of an average-sized Ci,2 which subsequently is even 

enlarged when extrapolating to ultimate. If in a future accident 

year we have a value Gil outside the interval (2000, 4000) it is 

reasonable to introduce an additional parameter by fitting a 

regression line with positive intercept to the data and using it 

for the projection to Ci2. Such a procedure of employing an 

additional parameter is acceptable between the first two 

development years in which we have the highest number of data 

points of all years. 

The two plots for k = 2 (Figure 2) are more satisfactory. The 

data show a clear trend along the regression line and quite 

random residuals. The same holds for the two plots for k = 4 

(Figure 4). In addition, for both k = 2 and k = 4 a weighted 

linear regression including a parameter for intercept would 

yield a value of the intercept which is not significantly 

different from zero. The plots for k = 3 (Figure 3) seem to show 

a curvature to the left but because of the few data points we 

can hope that this is incidental. Moreover, the plots for k = 5 

have a certain curvature to the right such that we can hope that 

the two curvatures offset each other. The plots for k = 6, 7 and 

8 are quite satisfactory. The trends in the residuals for k = 7 

and 8 have no significance in view of the very few data points. 
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We need not to look at the regression lines with slopes fko or 

fk2 as these slopes are very close to fk (except for k=l). But 

we should look at the corresponding plots of weighted residuals 

in order to see whether they appear more satisfactory than the 

previous ones. (Note that due to the different weights the 

residuals will be different even if the slopes are equal.) The 

residual plots for fkO and k = 1 to 4 are shown in Figures 9 and 

10. Those for fk2 and k = 1 to 4 are shown in Figures 11 and 12. 

In the residual plot for fl,O (Figure 9, upper graph) the point 

furthest to the left is not an outlier as it is in the plots for 

fl,l = ft (Figur 1, lower graph) and f1,2 (Figure 11, upper 

graph) . But with all three residual plots for k=l the main 

problem is the missing intercept of the regression line which 

leads to a decreasing trend in the residuals. Therefore the 

improvement of the outlier is of secondary importance. For k = 2 

the three residuals plots do not show any major differences 

between each other. The same holds for k = 3 and 4. The residual 

plots for k = 5 to 8 are not important because of the small 

number of data points. Altogether, we decide to keep the usual 

chain ladder method, i.e. the age-to-age factors fk = fk 1, , 
because the alternatives fk,O or fk,2 do not lead to a clear 

improvement. 

Next, we can carry through the tests for calendar year 

influences (see Appendix H) and for correlations between 

aubsequent development factors (see Appendix G). For our example 
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neither test leads to a rejection of the underlying assumption 

as is shown in the appendices mentioned. 

Having now finished all preliminary analyses we calculate the 

estimated ultimate claims amounts CiI according to formula (l), 

the reserves Ri = CiI - Ci,I+l-i and its standard errors (7). 

For the standard errors we need the estimated values of uk2 

which according to formula (8) are given by 

k 1 2 3 4 5 6 7 8 9 

Ok2 27883 1109 691 61.2 119 40.8 1.34 7.88 

A plot of ln(ak2) against k is given in Figure 13 and shows that 

there indeed seems to be a linear relationship which can be used 

to extrapolate ln(a92). This yields a92 = exp(-.44) = .64. But 

we use formula (9) which is more easily programmable and in the 

present case is a bit more on the safe side: it leads to a92 = 

1.34. Using formula (11) for s.e.(R) as well we finally obtain 

Ci,lO Ri s-e(ci,lO) = s.e.(Ri) s-e. (Ri) /Ri 

i=2 16858 154 206 134 % 
i=3 24083 617 623 101 % 
i=4 28703 1636 747 46 % 
i=5 28927 2747 1469 53 % 
i=6 19501 3649 2002 55 % 
i=7 17749 5435 2209 41 % 
i=8 24019 10907 5358 49 % 
i=9 16045 10650 6333 59 % 
i=10 18402 16339 24566 150 % 

Overall 52135 26909 52 % 
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(The numbers in the 'Overall'-row are R, s-e.(R) and s.e.(R)/R.) 

For i = 2, 3 and 10 the percentage standard error (last column) 

is more than 100% of the estimated reserve Ri. For i = 2 and 3 

this is due to the small amount of the corresponding reserve and 

is not important because the absolute amounts of the standard 

errors are rather small. But the standard error of 150 % for the 

most recent accident year i = 10 might lead to some concern in 

practice. The main reason for this high standard error is the 

high uncertainty of forecasting next year's value C10,2 as was 

seen when examining the plot of Ci2 against Gil. Thus, one year 

later we will very likely be able to give a much more precise 

forecast of C1o,lo. 

Because all standard errors are close to or above 50 % we use 

the Lognormal distribution in all years for the calculation of 

confidence intervals. We first calculate the upper 90%- 

confidence limit (or with any other chosen percentage) for the 

overall outstanding claims reserve R. Denoting by /.b and u2 the 

parameters of the Lognormal distribution approximating the 

distribution of R and using s.e.(R)/R = .52 we have 02 = .236 

(cf. (10)) and, in the same way as in Chapter 4, the 90th 

percentile is exp(p + 1.28~) = R*exp(1.28u-u2/2) = 1.655-R = 

86298. Now we allocate this overall amount to the accident years 

i=2 ,...I 10 in such a way that we reach the same level of 

confidence for every accident year. Each level of confidence 

corresponds to a certain percentile t of the Standard Normal 



distribution and - according to Chapter 4 - the corresponding 

percentile of the distribution of Ri is RieXp(tUi - Ui2/2) with 

Ui2 = ln(1 + (s.e.(Ri))2/Ri2). We therefore only have to choose 

t in such a way that 

I 
~7 Ri*exp(tai - Ui2/2) = 86298 . 

i=2 

This can easily be solved with the help of spreadsheet software 

(e.g. by trial and error) and yields t = 1.13208 which 

corresponds to the 87th percentile per accident year and leads 

to the following distribution of the overall amount 66298: 

upper confidence limit 

Ri s.e.(Ri) /Ri 'i 
2 RieXp(toi-Ui2/2) 

i-2 154 
i=3 617 
i=4 1636 
i=5 2747 
i=6 3649 
i=7 5435 
i=8 10907 
i=9 10650 
i=lO 16339 

1.34 
1.01 

.46 

.53 

. 55 
-41 
.49 
. 59 

1.50 

1.028 290 

-703 1122 
. 189 2436 
. 252 4274 
. 263 5718 
. 153 7839 
. 216 16571 
. 303 17066 

1.182 30981 

Total 52135 86298 

In order to arrive at the lower confidence limits we proceed 

completely analogously. The 10th percentile, for instance, of 

the total outstanding claims amount is R*exp(-1.28u-u2/2) = 

,477-R = 24871. The distribution of this amount over the 

individual accident years is made as before and leads to a value 
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of t = -.8211 which corresponds to the 21st percentile. This 

means that a 87% - 21% = 66% confidence interval for each 

accident year leads to a 90% - 10% = 80% confidence interval for 

the overall reserve amount. In the following table, the 

confidence intervals thus obtained for Ri are already shifted 

(by adding Ci,I+l-i) to confidence intervals for the ultimate 

claims amounts CiI (for instance, the upper limit 16994 for i=2 

has been obtained by adding C2,g = 16704 and 290 from the 

preceding table): 

=i, 10 

confidence intervals 
for 80% prob. overall empirical limits 

i=2 16858 
i=3 24083 

i=4 28703 

i=5 28927 

i=6 19501 
i=7 17749 
i=8 24019 
i-9 16045 
i=lO 18402 

( 16744 , 16994 ) 
( 23684 , 24588 ) 

( 28108 ‘ 29503 ) 

( 27784 , 30454 ) 

( 17952 , 21570 ) 
( 15966 , 20153 ) 
( 19795 , 29683 ) 
( 11221 , 22461 ) 
( 5769 , 33044 ) 

( 16858 , 
( 23751 , 
( 28118 , 
( 27017 , 
( 16501 , 
( 14119 , 
( 16272 , 
( 8431 , 
( 5319 , 

16858 ) 

24466 ) 

29446 ) 

31699 ) 
22939 ) 
23025 ) 

48462 ) 

54294 ) 

839271 ) 

The column "empirical limitsH contains the minimum and maximum 

size of the ultimate claims amount resulting if in formula (1) 

each age-to-age factor fk is replaced with the minimum (or 

maximum) individual development factor observed so far. These 

factors are defined by 

'k,min = min { ci,k+l/cik 1 1 < i 5 1-k 1 

'k,max = max { Ci,k+l/Cik I 1 < i I I-k 1 

and can be taken from the table of all development factors which 
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can be found in Appendices G and Ii. They are 

1 k=l k=Z k=3 k=4 k=5 k=6 k=7 kd k=9 

-I 

fk,nin 1 1.650 1.259 1.082 1.102 1.009 .W3 1.026 1.003 1.009 

fk,max i 40.425 2.723 1.977 1.292 1.195 1.113 1.043 1.033 1.009 

In comparison with the confidence intervals, these empirical 

limits are narrower in the earlier accident years i 2 4 and 

wider in the more recent accident years i t 5. This was to be 

expected because the small number of development factors 

observed between the late development years only leads to a 

rather small variation between the minimum and maximum factors. 

Therefore these empirical limits correspond to a confidence 

probability which is rather small in the early accident years 

and becomes larger and larger towards the recent accident years. 

Thus, this empirical approach to establishing confidence limits 

does not seem to be reasonable. 

If we used the Normal distribution instead of the Lognormal we 

had obtained a 90th percentile of R + l.ZI*R*(s.e.(R)/R) = 

1.661-R (which is almost the same as the 1.655-R with the 

Lognormal) and a 10th percentile of R - 1.28.R*(s.e.(R)/R) = 

.34-R (which is lower than the . 477-R with the Lognormal). Also, 

the allocation to the accident years would be different. 

Finally, we compare the standard errors obtained to the output 

of the claims reserving software package ICRFS by Ben Zehnwirth. 
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This package is a modelling framework in which the user can 

specify his own model within a large class of models. But it 

also contains some predefined models, inter alia also a 'chain 

ladder model'. But this is not the usual chain ladder method, 

instead, it is a loglinearized approximation of it. Therefore, 

the estimates of the oustanding claims amounts differ from those 

obtained here with the usual chain ladder method. Moreover, it 

works with the logarithms of the incremental amounts Ci k+l-Cik I 
and one must therefore eliminate the negative increment C2 7- , 

'2,6* In addition, C2 I was identified as an outlier and was I 
eliminated. Then the ICRFS results were quite similar to the 

chain ladder results as can be seen in the following table: 

est. outst. claims amount Ri standard error 
chain ladder ICRFS chain ladder ICRFS 

i=2 154 394 206 572 
i=3 617 825 623 786 
i=4 1636 2211 747 1523 
i=5 2747 2743 1469 1724 
i=6 3649 4092 2002 2383 
i=7 543s 5071 2209 2972 
i=8 10907 11899 5358 6892 
i=9 10650 14569 6333 9689 
i=lO 16339 25424 24566 23160 

Overall 52135 67228 26909 28414 

Even though the reserves Ri for i=9 and i=lO as well as the 

overall reserve R differ considerably they are all within one 

standard error and therefore not significantly different. But it 

should be remarked that this manner of using ICRFS is not 
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intended by Zehnwirth because any initial model should be 

further adjusted according to the indications and plots given by 

the program. In this particular case there were strong 

indications for developing the model further but then one would 

have to give up the 'chain ladder model'. 

7. Final Remark 

This paper develops a rather complete methodology of how to 

attack the claims reserving task in a statistically sound manner 

on the basis of the well-known and simple chain ladder method. 

However, the well-known weak points of the chain ladder method 

should not be concealed: These are the fact that the estimators 

of the last two or three factors fI, fIml, fIW2 rely on very few 

observations and the fact that the known claims amount CI1 of 

the last accident year (sometimes Cl.-I,2, too) forms a very 

uncertain basis for the projection to ultimate. This is most 

clearly seen if CI1 happens to be 0: Then we have CiI = 0, RI = 

0 and s.e.(RI) = 0 which obiously makes no sense. (Note that 

this weakness often can be overcome by translating and mixing 

the amounts Gil of earlier accident years i < I into accident 

year I with the help of a measure of volume for each accident 

year.) 

Thus, even if the statistical instruments developed do not 

reject the applicability of the chain ladder method, the result 
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must be judged by an actuary and/or underwriter who knows the 

business under consideration. Even then, unexpected future 

changes can make all estimations obsolete. But for the many 

normal cases it is good to have a sound and simple method. 

Simple methods have the disadvantage of not capturing all 

aspects of reality but have the advantage that the user is in a 

position to know exactly how the method works and where its 

weaknesses are. Moreover, a simple method can be explained to 

non-actuaries in more detail. These are invaluable advantages of 

simple models over more sophisticated ones. 
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Apoendix A: Unbiasedness of Acre-to-Acre Factors 

Provosition: Under the assumptions 

(3) There are unknown constants fl, . . . . fI-1 with 

E(ci,k+l[cil,--.,cik) = Cikfkr l<iSI, 1 s k 2 I-l. 

(4) The variables {Gil, . . . . CiI} and {Cjl, . . . . CjI) of 

different accident years i # j are independent. 

the age-to-age factors fl, . . . . fI-1 defined by 

I-k I-k 
(2) fk = x cj,k+l / c cjk I 1 s k < I-l, 

j=l j=l 

are unbiased, i.e. we have E(fk) = fk, 1 5 k S I-l. 

Proof: Because of the iterative rule for expectations we have 

(Al) E(fk) = E(E(fklBk)) 

for any set Bk of variables Cij assumed to be known. We take 

Bk = ( Cij / i+j 5 I+l, j < k ) , 1 5 k s I-l. 

According to the definition (2) of fk and because cjkr 1 5 j I 

I-k, is contained in Bk and therefore has to be treated as 

scalar, we have 

I-k I-k 
(AZ) E(fklBk) = x E(Cj,k+llBk) / c Cjk * 

j=l j=l 

Because of the independence assumption (4) conditions relating 

to accident years other than that of cj,k+l can be omitted, i.e. 

we get 

(A3) E(Cj,k+llBk) = E(Cj,k+llCjl,..*,Cjk) = Cjkfk 

using assumption (3) as well. Inserting (A3) into (A2) yields 
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I-k I-k 
(A4) E(fklBk) = c cjkfk / c cjk = fk . 

j=l j=l 

Finally, (Al) and (A4) yield 

E(fk) = E(fk) = fk 

because fk is a scalar. 
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Avvendix B: Minimizina the Variance of Indevendent Estimators 

provosition: Let Tl, . . . . TI be independent unbiased estimators 

of a parameter t, i.e. with 

E(Ti) = t , l<i<I, 

then the variance of a linear combination 

I 
T= CWiTi 

i=l 

under the constraint 

(Bl) iWi= 1 
i-l 

(which guarantees E(T) = t) is minimal iff the coefficients Wi 

are inversely proportional to Var(Ti), i.e. iff 

wi = c/Var(Ti) , lSi.51. 

Proof: We have to minimize 

I 
Var(T) = E wi2Var(Ti) 

i=l 

(due to the independence of Tl, . . . . TI) with respect to Wi 

under the constraint (Bl). A necessary condition for an extremum 

is that the derivatives of the Lagrangian are zero, i.e. that 

I 
(82) $ ( ", wi'Var(Ti) + A(1 - HWi)) '0, lSi< I, 

i i=l i-l 

with a constant multiplier A whose value can be determined by 

additionally using (Bl). (B2) yields 

ZwiVar(Ti) - x = 0 

or 
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wi = X / (2*Var(Ti)) . 

These weights Wi indeed lead to a minimum as can be seen by 

calculating the extremal value of Var(T) and applying Schwarz's 

inequality. 

Corro11BTy: In the chain ladder case we have estimators Ti = 

ci,k+lfcikr 1 5 i I I-k, for fk where the variables of the set 

I-k 
Ak= u { tilt .--I Cik ) 

i-l 

of the corresponding accident years i = 1, . . . . I-k up to 

development year k are considered to be given. We therefore want 

to minimize the conditional variance 

I-k 
Var( X WiTilAk) . 

i=l 

From the above proof it is clear that the minimizing weights 

should be inversely proportional to Var(TilAk). Because of the 

independence (4) of the accident years, conditions relating to 

accident years other than that of Ti = Ci,k+I/Cik can be 

omitted. We therefore have 

Var(TilAk) = Var(Ci,k+I/CikjCiIt...,Cik) 

and arrive at the result that 

the minimizing weights should be 

inversely proportional t0 Var(Ci,k+I/CiklCiI,...,Cik). 
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Avvendix C: Unbiasedness of the Estimated Ultimate Claims Amount 

prooositioq: Under the assumptions 

(3) There are unknown constants fl, . . . . fI-1 with 

E(Ci,k+llCilr..-rCik) = Cikfkr 1 s i 5 I, 1 s k 5 I-l. 

(4) The variables {Gil, ,.., CiI) and (Cjl, . . . . CjI) of 

different accident years i # j are independent. 

the expected values of the estimator 

(1) CiI = Ci,I+l-ifi+l-i'...'fI-1 

for the ultimate claims amount and of the true ultimate claims 

amount CiI are equal, i.e. we have E(CiI) = E(CiI), 2 I i 5 I. 

Proof: We first show that the age-to-age factors fk are 

uncorrelated. With the same set 

Bk = { Cij ( i+j 5 I+l, j S k } , 1 2 k I I-l, 

of variables assumed to be known as in Appendix A we have for j 

<k 

E(fjfk) = B(B(fjfklBk)) (a) 

= E(fjE(fklBk)) (b) 

= E(fjfk) (cl 

= E(fj)fk (d) 

= fjfk + (e) 

Here (a) holds because of the iterative rule for expectations, 

(b) holds because fj is a scalar for Bk given and for j < k, (c) 

holds due to (A4), (d) holds because fk is a scalar and (e) was 

shown in Appendix A. 
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This result can easily be extended to arbitrary products of 

different fk’S, i.e. we have 

(Cl) E(fI+l-ia... ‘ff-1) = fi+l-i'*ss'fI-l a 

This yields 

E(CII) = E(E(CiIlCil,...rCi,I+l-i)) (4 

= E(E(Ci,I+l-ifI+l-i..-..fI-1ICilt...~Ci,I+l-i)) (b) 

= E(Ci,I+1-iElfI+l-i'...'fI-lICil~..-,Ci,I+l-i)) (C) 

= E(Ci,I+l-iE(fI+l-i'...'fI-l)) Cd) 

= E(Ci,I+r-i)*E(fI+l,i..-..fI-l) (e) 

= E(Ci,I+1-i)'fI+1-i'...*fI-l - (f) 

Here (a) holds because of the iterative rule for expectations, 

(b) holds because of the definition (1) of CiT, (c) holds 

because Ci,I+l-i is a scalar under the stated condition, (d) 

holds because conditions which are independent from the 

conditioned variable fI+l-i*e..*fI-l can be omitted (observe 

assumption (4) and the fact that fI+l-i, . . . . fT-1 only depend 

on variables of accident years < i), (e) holds because E( fI+l- 

i’... *fI-1) is a scalar and (f) holds because of (Cl). 

Finally, repeated application of the iterative rule for 

expectations and of assumption (3) yields for the expected value 

of the true reserve CiI 

E(Cir) = E(E(CiIlCil,...,Ci,I-1)) 

p E(Ci, I-1fI-l) 

= E(Ci,I-1) Q-1 
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= E(CilI-2fI-2)fI-1 

= E(Ci,I-2) fI-2fI-1 

= etc. 

= E(Ci,I+l-i)fI+1-i'....fI-l 

= E(CiI) * 



. culation of the Standard Error of Ci1 

. * 
ProDosltloll : Under the assumptions 

(3) 

(4) 

(5) 

the 

There are unknown constants fl, . . . . fIml with 

B(Ci,k+llCillB..rCik) E Cikfkr 15 i 5 I, 1 s k 5 I-l. 

The variables {Gil, . . . . CiI) and {Cjl, .,., CjI} of 

different accident years i # j are independent. 

There are unknown constants 01, . . . . ax-1 

Var(Ci,k+llCil,...,Cik) it Cil@Jc2r 1Si 

standard error s.e.(Ci~) of the estimated 

amount Ci1 = Ci,I+l-ifI+l,i’...‘fI*l is given 

(S.e.(CiI))2 = $1 
I-1 4k2 1 

C - ( - + 
k=I+l-i fk2 Cik 

with 

5 I, 1 5 k 5 I-l. 

ultimate claims 

by the formula 

1 
-1 
I-k 

c cjk 
j=l 

where Cik = Ci,I+l-ifI+l-i"'fk-1 , k > 1+1-i, are the estimated 

values of the future Cik and Ci,~+l-i = Ci,I+l-is 

prooc: As stated in Chapter 4, the standard error is the square 

root of an estimator of mse(CiI) and we have also seen that 

(Dl) mse(CiI) = Var(CiI/D) + (E(CiI(D) - Cix)' . 

In the following, we use the abbreviations 

Ei 0) = E(XICilr *--I Ci,I+l-i) r 

VariW = Var(XlCil, . . ., Ci,I+l-i) - 

Because of the independence of the accident years we can omit in 

(Dl) that part of the condition D = { Cik I i+k ~5 I+1 ) which is 

independent from CiI, i.e. we can write 

(D2) mse(Ci~) = Vari(CiI) + (Ei(CiI) - Ci1)' . 
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We first consider Vari(CiI). Because of the general rule Var(X) 

= E(X2) - (E(X))2 we have 

(D3) Vari(CiI) = Ei(Ci12) - (Ei(CiI))2 . 

For the calculation of Ei(CiI) we use the fact that 

for k 2 1+1-i 

(D4) Ei(Ci,k+l) = Ei(E(Ci,k+llCj.lr -*-r Cik)) 

= Ei (Cikfk) 

= Ei(Cik)fk s 

Here, we have used the iterative rule for expectations in its 

general form E(XIZ) = E(E(XIY)IZ) for {Y} > {Z} (mostly we have 

(2) = 0). By successively applying (D4) we obtain for k 2 1+1-i 

(D5) Ei(Ci,k+l) = Ei(Ci,I+l-i)fI+l-i'****fk 

= Ci,I+l-ifI+l-i'...'fk 

because Ci,I+l-i is a scalar under the condition 'i's 

For the calculation of the first term Ei(Ci12) of (D3) we use 

the fact that for k 1 1+1-i 

(DC) Ei(Ci,k+12) = Ei(E(Ci,k+121Cil, ***I Cik) (4 

= Ei( Var(Ci,k+ilCil, ..., Cik) + (b) 

+ (E(Ci,k+llCilr --*I cik))2 ) 

= Ei( CikQk2 + (cikfk)2 ) (cl 

= Ei(Cik)Uk2 + Ei(Cik2)fk2 . 

Here, (a) holds due to the iterative rule for expectations, (b) 

due to the rule E(X2) = Var(X) + (E(X))2 and (c) holds due to 

(3) and (5). 
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Now, we apply (D6) and (D5) successively to get 

(D7) Ei(Ci12) = Ei(Ci,I-l)QI-l2 + Ei(Ci,I-12)fI,12 

= Ci,I+l-lfI+l-l"'fI-2QI-1 2, 

+ Ei(Ci,I-2)QI-22fI-12 + 

+ Ei(Ci,I-22)fI-22fI-12 

= Ci,I+l-lfr+l-l***fI-201-l 2+ 

+ Ci,I+l-lfI+l-l"'fI-301~22fI-12 + 

+ Ei(Ci,r-3f~I-32fr-z2fI-12 + 

+ Ei(Ci,I-32)fI-32fI-22fI-12 

= etc. 

I-l 
= Ci,I+l-i D fI+l-i"'fk-lek2fk+12"'fI-l2 

k=I+l-i 

+ Ci,I+l-i 2f I+l-i2'*..*fI-12 

where in the last step we have used Ei(Ci,I+l-if = Ci,I+l-i and 

Ei(Ci,I+l-i2) = Ci,I+1-i2 because under the condition 'i' 

Ci,I+l-i is a scalar. 

Due to (D5) we have 

(Da) (Ei(CiI))2'x Ci,I+l-i2fI+l-i2'..**fI-12 * 

Inserting (D7) and (Da) into (D3) yields 

I-l 
(D9) Vari(Cir) = Ci,I+l-i C fI+l-i "~fk,l~k2fk+12~~*fI-12 

k=I+l-i 

We estimate this first summand of mse(CiI) by replacing the 

unknown parameters fk, Ok2 with their unbiased estimators fk and 

Ok', i.e. by 

I-l 
(DlOl Ci,I+l-i D f1+1-i"' fk-l'=,f~f,f+l-*fI2,1 = 

k=I+l-i 
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2 I-l 
z Ci,*+l-ifl+l-l"'f~-l C 

ak2/fk2 

k=I+l-i Ci,I+l-ifI+l-i"'fk-1 

I-l 
= c"i, c 

ak2/fk2 

k=I+l-i Cik 

where we have used the notation Cik introduced in the 

proposition for the estimated amounts of the future Cik, k > 

1+1-i, including Ci,I+l-i = Ci,I+l-is 

We now turn to the second summand of the expression (D2) for 

mse (CiI) . Because of (D5) we have 

Ei (CiI) = Ci,I+l-ifI+I-i'.*.'fI-I 

and therefore 

(D11) (Ei(CiI) - CiI12 = 

= Ci,I+l-i2(fI+l-i'*..'fI-I - f*+l-i'-.s' fI-1)2 * 

This expression cannot simply be estimated by replacing fk with 

fk because this would yield 0 which is not a good estimator 

because fI+l-is... .fI,1 generally will be different from 

fI+I-i'... *fI-I and therefore the squared difference will be 

positive. We therefore must take a different approach. We use 

the algebraic identity 

F = fI+l-i*...*fI-I - fI+l-i*,..*fI-l 

= S*+l-j, + S-S + S*-1 

with 

Sk = fI+l-i'...'fk-ffkfk+l.....fI-1 - 

- fI+l-i'...'fk-lfkfk+I*...*fI-I 

= f*+1-is... 'fk-l(fk-fk)fk+l'...'fI-1 . 

This yields 
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F2 = (SI+l-i + ea. + ~S1-1)~ 

I-l 
x c Sk2 

k=I+l-i 
+ 2 c sjsk s 

-f<k 

where in the last summation j and k run from 1+1-i to I-l. Now 

we replace Sk2 with E(Sk2/Bk) and sjsk, j < k, with S(SjSklBk). 

This means that we approximate Sk2 and sjsk by varying and 

averaging as little data as possible so that as many ValUSS Cik 

as possible from data observed are kept fixed. Due to (A4) we 

have E(fk-fklBk) = 0 and therefore E(sjsklBk) = 0 for j < k 

because all frr r < k, are scalars under Dk. Because of 

(D12) E((fk-fk)‘jBk) = --(fk/Bk) 

I-k 
= C Var 

j=l 

I-k I-k 
= ' var(Cj,k+l/cjl#~..PCjk)/( c cjk)2 

j=l j-1 

I-k 
a c cjkak' / (1xkcjk)2 

j=l j=l 

= ek2 / fs:cjk 

we obtain 

E(sk2 1%) = fi+1-i ...f:,l":f:+l".f;-l / 
I-k 

c cjk e 
j=l 

Taken together, we have replaced F2 * ( I: Sk)2 with SkE(Sk21Bk) 

and because all terms of this sum are positive we can replace 

all unknown parameters fk, Ok2 with their unbiased estimators 
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fkr ak2. Altogether, we estimate F2 = (fI+l-i'...*fI-1 - 

fI+l-~-...*f~-~)2 by 

I-l 2 2 2 
c ( f1+1-i". &‘ak’fk+l 

k=I+l-i 
’ " fi-1 / >=Ibjk ) = 

2 2 I-l Ok2 /fk2 = fI+l-i'...'fI-1 c 
k=I+l-i I-k * 

x cjk 
j=l 

Using (Dll), this means that we estimate (Ei(CiI) - C~I)~ by 

2 2 2 I-l ak2/fk2 
(D13) Ci,I+l-ifI+l-i'.**'fI-1 c = 

k=I+l-i I-k 
c cjk 

j=l 

I-l 
= c:, c 

ak2/ fk2 

k=I+l-i I-k ' 
c cjk 

j=l 

From (D2), (DlO) and (D13) we finally obtain the estimator 

(s-e. (Cir) I2 for mse(CiI) as stated in the proposition. 
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5 ak2 

pronositioq: Under the assumptions 

(3) 

(4) 

(5) 

There are unknown constants fl, . ..! fI-1 with 

E(Ci,k+llCilr - * * rcik) = Cikfkr l<isI, 1 s k s I-l. 

The variables {till . . . . CiI} and {Cjl, . . . . CjI) of 

different accident years i # j are independent. 

There are unknown constants al, . . . . aIwl with 

Var(Ci,k+llCilr..-,Cik) = Cikak2, lSil1, 1 5 k s I-l. 

estimators 

1 
ak2 = - 

I-k cj,k+l 
z cjk ( - - fk j2 t 1 I k I I-2, 

I-k-l j=l cjk 

Of ak2 are unbiased, i.e. we have 

E((rk2) = &k2 , 15 k 5 I-2. 

Proof: In this proof all summations are over the index j from 

j=l to j=I-k. The definition of Ok2 can be rewritten as 

(El) (I-k-l)ek2 = I ( Cj,k+12/Cjk - 2'Cj,k+lfk + Cjkfk2 ) 

= I ( Cj,k+12/Cjk ) - I ( Cjkfk2 ) 

using zcj,k+l = fkxcjk according t0 the definition Of fk. USi.rK$ 

again the set 

Dk = ( Cij 1 i+j 5 I+l, j 5 k } 

of variables Cij assumed to be known, (El) yields 

fE2) E((I-k-l)ak2)Bk) = E E(cj,k+121Bk)/cjk - c CjkE(fk2/Bk) 

because cjk is a scalar under the condition of Bk being known. 

Due to the independence (4) of the accident years, conditions 

which are independent from the conditioned variable can be 
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omitted in E(Cj,k+l'IBk), i.e. 

(E3) E(Cj,k+l'lBk) = E(cj,k+121cjl,...,cjk) 

= var(cj,k+l)cjl,...,cjk) + (E(cj,k+llcjl,.-.,Cjk))2 

= cjkak2 + (cjkfk12 

where the rule E(X2) = Var(X) + (E(X))2 and the assumptions (5) 

and (3) have also been used. 

From (D12) and (A4) we gather 

(E4) E(fk'IBk) = Var(fklBk) + (E(fklBk))2 

= ak2 / Ccjk + fk2 . 

Inserting (E3) and (E4) into (E2) we obtain 

E((I-k-1)ek2[Bk) = 

I-k 
2 ( ok2 + cjkfk2 ) - 

I-k I-k 
= 

j=l 
c ( cjkak2/ c cjk + cjkfk2 ) 

j=l j=l 

= (I-k)ak2 - ok2 

= (I-k-l)ok2 . 

From this we immediately obtain E(ak21Bk) = Ok2 . 

Finally, the iterative rule for expectations yields 

E(ak2) = E(E(ak'lBk)) = E(ak2) = Ok2 . 
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Awwendix F: The Standard Error of the Overall Reserve Estimate 

PrODositiqD: Under the assumptions 

(3) There are unknown constants fl, . . . . fI-1 with 

E(Ci,k+lfCilr...rCik) p Cikfkr l<i<I, 1 5 k 5 I-l. 

(4) The variables {Gil, . . . . CiI) and (Cjl, . . . . CjI) of 

different accident years i # j are independent. 

(5) There are unknown constants al, . . . . aI- with 

Var(Ci,k+ilCii, sssrcik) = Cikak', lsi51, 1 5 k 5 I-l. 

the standard error s.e.(R) of the overall reserve estimate 

R = Rp + . . . + Rx 

is given by 

I 
(s.e.(R))2 = C 

I-l 2ak2/fk2 

i=2 i 
(s.e.(Ri)2 + CiI( I CjI) 

j=i+l k=Itl-i I-k 
= cnk 

n=l 

proop: This proof is analogous to that in Appendix D. The 

comments will therefore be brief. 

We first must determine the mean squared error mse(R) of R. 

Using again D = { Cik 1 i+k I I+1 } we have 

I I I 
(Fl) mS9( C Ri) - E(( I: Ri - C Ri)2 

i-2 1==2 i=2 
1") 

I I 
- E(( C QI - 2 Ci1 

i.02 ia2 
)'lD) 

= Var(ii2CiIlD) + ( E( E CiIID) 
I 

i=2 

The independence of the accident years yields 
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I 
(=I Var( i CiIlD) 

i=2 
= z Var(CiIICil, ---, Ci,I+l-i) , 

i=2 

whose summands have been calculated in Appendix D, see (D9). 

Furthermore 

I 
(F3) ( E( g CiIID) - cciI)2= ( i ( E(CiIlD) -Ci1) )2= 

i=2 i=2 i=2 

= c (E(CiIID) 
Zli,jSI 

- CiI)‘(E(CjI(D) - Cj1) 

= c 
Zli,jSI 

Ci,I+I-iCj,I+I-jFiFj 

I 
= C (Ci,I+1-iFi12 + 2 C Ci,I+l-i.Cj,I+l-jFiFj 

i=2 icj 

with (like in (Dll)) 

Fi = fI+I-i"'fI-1 - fI+l-i"'fI-1 

which is identical to F of Appendix D but here we have to carry 

the index i, too. In Appendix D we have shown (cf. (D2) and 

(Dll)) that 

mse(Ri) = Var(CiIlCiI,...,Ci,I+I-i) + (Ci,I+I-iFi)' . 

Comparing this with (Fl), (F2) and (F3) we see that 

I I 
(F4) mse( C Ri) = D mse(Ri) + C 

i-2 i=2 2Si<j51 
2'Ci,I+l-iCj,I+I-jFiFj. 

We therefore need only develop an estimator for FiFj. A 

procedure completely analogous to that for F2 in the proof of 

Appendix D yields for FiFj, i-zj, the estimator 

I-l 
c f1+1-j 

k=I+l-i 

2 I-k 
...f~-la:f~+l...fr-l, E C* , 

n=l 

which immediately leads to the result stated in the proposition. 
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ADDendiX G: Testins for Correlations between Subsequent 

DeveloDment Factors 

In this appendix we first prove that the basic assumption (3) of 

the chain ladder method implies that subsequent development 

factors Cik/Ci,k-I and Ci,k+I/Cik are not correlated. Then We 

show how we can test if this uncorrelatedness is met for a given 

run-off triangle. Finally, we apply this test procedure to the 

numerical example of Chapter 6. 

prooosition: Under the assumption 

(3) There are unknown constants fl, . . . . fI-I with 

E(Ci,k+l/Cilr . - - rcik) = Cikfkr 16i61, 1 5 k 6 I-l. 

subsequent development factors Cik/Ci,k-1 and Ci,k+l/Cik are 

uncorrelated, i.e. we have (for 1 S i I I, 2 I k .S I-l) 

Cik ci,k+l Cik 
E(-.----- 1 = E( 

ci,k+l 
- )*E( - ) ' 

Ci,k-l Cik Ci,k-1 =ik 

Proof: For j S k we have 

(Gl) E(Ci,k+l/Cij) = E(E(Ci,k+l/CijlCil,...,cik)) 

= E(E(Ci,k+llCil,...,Cik)/Cij) 

(4 

(,b) 

= E(Cikfk/Cij) (cl 

* E(Cik/Cij)fk . (d) 

Here equation (a) holds due to the iterative rule E(X) = 

E(E(X/Y)) for expectations, (b) holds because, given Gil, . . . . 

Cik, Cij is a Scalar for j S k, (c) holds due to (3) and (d) 

holds because fk is a scalar. 
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From (Gl) we obtain through the specialization j = k 

(=I E(Gi,k+I/Cik) = E(Cik/Gik)fk = fk 

and through j = k-l 

Cik Ci,k+l (Gl) cik 
(G3) E( -*- 1 

Ci,k+l =E(- = 1 EC - )fk . 
Ci,k-1 cik Ci,k-l Ci,k-1 

Inserting (G2) into (G3) completes the proof. 

pesisnins the test Drocedure: 

The usual test for uncorrelatedness requires that we have 

identically distributed pairs of observations which come from a 

Normal distribution. Both conditions are usually not fulfilled 

for adjacent columns of development factors. (Note that due to 

(G2) the development factors Ci,k+l/Gikr 1 5 i I I-k, have the 

same expectation but assumption (5) implies that they have 

different variances.) We therefore use the test with Spearman's 

rank correlation coefficient because this test is distribution- 

free and because by using ranks the differences in the variances 

of Ci,k+l/Cikr 1 I i 5 I-k, become less important. Even if these 

differences are negligeable the test will only be of an 

approximate nature because, strictly speaking, it is a test for 

independence rather than for uncorrelatedness. But we will take 

this into account when fixing the critical value of the test 

statistic. 

For the application of Spearman's test we consider a fixed 

development year k and rank the development factors Ci,k+I/Gik 

observed so far according to their size starting with the 
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smallest one on rank one and so on. Let rik, 1 I i < I-k, denote 

the rank of ci,k+l/cik obtained in this way, 1 I rik 5 I-k. Then 

we do the same with the preceding development factors 

CikiCi,k-lr 1 I i 2 I-k, leaving out CI+I-k,k/CI+l-k,k-1 for 

which the subsequent development factor has not yet been 

observed. Let sikt 1 5 i < I-k, be the ranks obtained in this 

way, 1 5 sik 5 I-k. Now, SpeaIIIIan’S rank correlation COeffiCient 

Tk is defined to be 

(G4) Tk = 1 - 6 fzr (rik - Sik)l / ((I-k)3-I+k) . 

From a textbook of Mathematical Statistics it can be seen that 

-1 S Tk S +l , 

and, under the null-hypothesis, 

E(Q) = 0 , 

Var(Tk) = 1/(1-k-l) . 

A value Of Tk close to 0 indicates that the development factors 

between development years k-l and k and those between years k 

and k+l are not correlated. Any other value of Tk indicates that 

the factors are (positively or negatively) correlated. 

For a formal test we do not want to consider every pair of 

columns of adjacent development years separately in order to 

avoid an accumulation of the error probabilities. We therefore 

consider the triangle as a whole. This also is preferable from a 

practical point of view because it is more important to know 

whether correlations globally prevail than to find a small part 

of the triangle with correlations. We therefore combine all 
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values T2, T3, . . . . TI-2 obtained in the same way like Tk. 

(There is no Tl because there are no development factors before 

development year k=l and similarly there is also no TI; even 

TX-1 is not included because there is only one rank and 

therefore no randomness.) According to Appendix B we should not 

form an unweighted average of T2, .,., TI-2 but rather use 

weights which are inversely proportional to Var(Tk) = 1/(1-k-l). 

This leads to weights which are just equal to one less than the 

number of pairs (rik, sik) taken into account by Tk which seems 

very reasonable. 

We thus calculate 

I-2 
(G5) T = 'X2 (I-k-l)Tk / C (I-k-l) 

k=2 k=2 

I-2 I-k-l 
= c Tk I 

k=2 (I-2)(1-3)/2 

I-2 
E(T) = C E(Tk) = o , 

k=2 

I-2 
c-1 Var(T) = '.X2 (I-k-l)2 Var(Tk) / ( C (I-k-l) )2 

k=2 k=2 

I-2 
= c (I-k-l) / ( 'X2 (I-k-l) )2 

k=2 k=2 

A. 

= 

(I-2)(1-3)/2 

where for the calculation of Var(T) we used the fact that under 

the null-hypothesis subsequent development factors and therefore 

also different Tk's are uncorrelated. 
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Because the distribution of a single Tk with I-k 2 10 is Normal 

in good approximation and because T is the aggregation of 

several uncorrelated Tk's (which all are symmetrically 

distributed around their mean 0) we can assume that T has 

approximately a Normal distribution and use this to design a 

significance test. Usually, when applying a significance test 

one rejects the null-hypothesis if it is very unlikely to hold, 

e.g. if the value of the test statistic is outside its 95% 

confidence interval. But in our case we propose to use only a 

50% confidence interval because the test is only of an 

approximate nature and because we want to detect correlations 

already in a substantial part of the run-off triangle. 

Therefore, as the probability for a Standard Normal variate 

lying in the interval (-.67, . 67) is 50% we do not reject the 

null-hypothesis of having uncorrelated development factors if 

.67 .67 

d((~-2) (I-3)/2) 
S T I + 

d((I-2)(1-3)/2) ' 

If T is outside this interval we should be reluctant with the 

application of the chain ladder method and analyze the 

correlations in more detail. 

c anter 6: 

We start with the table of all development factors: 
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FI F2 F3 F4 F5 F6 F7 F8 F9 

i=l 1.6 
i=2 40.4 
i=3 2.6 
i=4 2.0 
i-5 8.8 
i=6 4.3 
i=7 7.2 
i=8 5.1 
i=9 1.7 

1.32 1.08 1.15 1.20 1.11 1.033 1.00 1.01 
1.26 1.98 1.29 1.13 0.99 1.043 1.03 
1.54 1.16 1.16 1.19 1.03 1.026 
1.36 1.35 1.10 1.11 1.04 
1.66 1.40 1.17 1.01 
1.82 1.11 1.23 
2.72 1.12 
1.89 

As described above we first rank column Fl according to the size 

of the factors, then leave out the last element and rank the 

column again. Then we do the same with columns F2 to F8. This 

yields the following table: 

ril si2 ri2 si3 ri3 si4 ri4 si.5 ri5 si6 ri6 si7 ri7 si8 ri8 

112 2 112 2 5 4 4 3 2 11 
9 8 117 6 6 5 3 2 113 2 2 
4 3 4 4 4 3 3 3 4 3 2 2 1 
3 2 3 3 5 4 112 13 
8 7 5 5 6 5 4 41 
5 4 6 6 2 2 5 
7 6 8 7 3 
6 5 7 
2 

We now add the squared differences between adjacent rank columns 

of equal length, i.e. we add (Sik - rik)2 over i for every k, 2 

<k68. This yields 68, 74, 20, 24, 6, 6 and 0. (Remember that 

we have to leave out k = 1 because there is no sil, and k = 9 

because there is only one pair of ranks and therefore no 
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randomness.) From these figures we obtain Spearman's rank 

correlation coefficients Tk according to formula (G4): 

k 2 3 4 5 6 7 8 

Tk 4121 -9/28 3/7 -l/5 215 -l/2 1 
I-k-l 7 6 5 4 3 2 1 

The (I-k-1)-weighted average of the Tk's is T = .070 (see 

formula (GS)). Because of Var(T) = l/28 (see (G6)) the 50% 

confidence limits for T are f.67H28 = f.127. Thus, T is within 

its 50%-interval and the hypothesis of having uncorrelated 

development factors is not rejected. 
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ADDendiX H: Testina for Calendar Year Effects 

One of the three basic assumptions underlying the chain ladder 

method was seen to be assumption (4) of the independence of the 

accident years. The main reason why this independence can be 

violated in practice is the fact that we can have certain 

calendar year effects such as major changes in claims handling 

or in case reserving or external influences such as substantial 

changes in court decisions or inflation. Note that a constant 

rate of inflation which has not been removed from the data is 

extrapolated into the future by the chain ladder method. In the 

following, we first generally describe a procedure to test for 

such calendar year influences and then apply it to our example. 

Desianina the test DrOCedUre: 

A calendar year influence affects one of the diagonals 

D-j = { Cjlt Cj-l,2, -*-r Cz,j-lt Clj 1 t 1 .s j 5 I, 

and therefore also influences the adjacent development factors 

A-j = 1 Cj2lCjlr Cj-1,3/Cj-l,2r -*-I Cl,j+l/Clj 1 

and 

Aj-1 = { Cj-l,Z/Cj-l,lr Cj-2,3/Cj-2,2# ---I Clj/Cl,j-1 ) 

where the elements of Dj form either the denominator or the 

numerator. Thus, if due to a calendar year influence the 

elements of Dj are larger (smaller) than usual, then the 

elements of Aj-1 are also larger (smaller) than usual and the 

elements of Aj are smaller (larger) than usual. 
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Therefore, in order to check for such calendar year influences 

we only have to subdivide all development factors into 'smaller' 

and *larger* ones and then to examine whether there are 

diagonals where the small development factors or the large ones 

clearly prevail. For this purpose, we order for every k, 1 5 k 5 

I-l, the elements of the set 

Fk = f ci,k+l/cik 1 1 S i 5 1-k ) I 

i.e. of the column of all development factors observed between 

development years k and k+l, according to their size and 

subdivide them into one part LFk of larger factors being greater 

than the median of Fk and into a second part SFk of smaller 

factors below the median of Fk. (The median of a set of real 

numbers is defined to be a number which divides the set into two 

parts with the same number of elements.) If the number I-k of 

elements of Fk is odd there is one element of Fk which is equal 

to the median and therefore assigned to neither of the sets LFk 

and SFk; this element is eliminated from all further 

considerations. 

Having done this procedure for each set Fk, 1 I k I I-l, every 

development factor observed is 

- either eliminated (like e.g. the only element of FI-1) 

- or assigned to the set L = LFI + . . . + LFI-2 of larger factors 

- or assigned to the set S = SF1 + . . . + SFI-2 of smaller 

factors. In this way, every development factor which is not 

eliminated has a 50% chance of belonging to either L or S. 
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Now we count for every diagonal Aj, 1 I j 5 I-l, of development 

factors the number Lj of large factors, i.e. elements of L, and 

the number Sj of small factors, i.e. elements of S. Intuitively, 

if there is no specific change from calendar year j to calendar 

year j+l, Aj should have about the same number of small factors 

as of large factors, i.e. Lj and Sj should be of approximately 

the same size apart from pure random fluctuations. But if Lj is 

significantly larger or smaller than Sj or, equivalently, if 

zj = min(Lj, Sj) , 

i.e. the smaller of the two figures, is significantly smaller 

than (Lj+Sj)/Z, then there is some reason for a specific 

calendar year influence. 

In order to design a formal test we need the first two moments 

of the probability distribution of Zj under the hypothesis that 

each development factor has a 50 % probability of belonging to 

either L or S. This distribution can easily be established. We 

give an example for the case where Lj+Sj = 5, i.e. where the set 

Aj contains 5 development factors without counting any 

eliminated factor. Then the number Lj has a Binomial 

distribution with n = 5 and p = ,5, i.e. 

prob(Lj = m) = (t) 
1 

F 
= (1) f I m = 0, 1, . . . . 5. 

Therefore 

prob(Sj = 5) = prob(Lj = 0) = l/32 , 

prob(Sj = 4) = prob(Lj = 1) = 5/32 , 



prob(Sj = 3) = prob(Lj = 2) = lo/32 , 

prob(Sj = 2) = prob(Lj = 3) = lo/32 , 

prob(Sj = 1) f prob(Lj = 4) = 5/32 , 

prob(Sj = 0) = prob(Lj = 5) = l/32 . 

This yields 

prob(Zj = 0) = prob(Lj = 0) + prob(Sj = 0) = 2/32 , 

prob(Zj = 1) = prob(Lj = 1) + prob(Sj = 1) = lo/32 , 

prob (z j = 2) = prob(Lj = 2) + prob(Sj = 2) = 20/32 , 

E(Zj) = (0.2 + 1.10 + 2*20)/32 = 50132 , 

E(Zj') = (0.2 + 1.10 + 4*20)/32 = 90/32 , 

Var(Zj) = E(Zj2) - (E(Zj))2 = 95/256 , 

The derivation of the general formula is straightforward but 

tedious. We therefore give only its result. If n = Lj+Sj and m = 

[(n-1)/2] denotes the largest integer $ (n-l)/2 then 

n(n-1) n-l n(n-1) 
(HZ) Var(Zj) = - - 

4 (m) - + E(Zj) 
2" 

- (E(Zj)12 * 

It is not advisable to test each Zj separately in order to avoid 

an accumulation of the error probabilities. Instead, we consider 

z = z2 + . . . + ZI-1 

where we have left out Z1 because Al contains at most one 

element which is not eliminated and therefore Z1 is not a random 

variable but always = 0. Similarly, we have to leave out any 

other Zj if Lj+Sj 5 1. Because under the null-hypothesis 

different Zj's are (almost) uncorrelated we have 
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E(Z) = E(Z2) + . . . + E(ZT-1) , 

Var(Z) = Var(Z2) + . . . + Var(ZT-1) 

and we can assume that Z approximately has a Normal 

distribution. This means that we reject (with an error 

probability of 5 %) the hypothesis of having no significant 

calendar year effects only if not 

E(Z) - 2*+ar(Z) 5 Z 5 E(Z) + 2&ar(Z) . 

ADDliCatiOn to the examnle of Chaoter 6: 

We start with the triangle of all development factors observed: 

i=l 1.6 1.32 1.08 1.15 1.20 1.11 1.033 1.00 1.01 
i=2 40.4 1.26 1.98 1.29 1.13 0.99 1.043 1.03 
i=3 2.6 1.54 1.16 1.16 1.19 1.03 1.026 
i=4 2.0 1.36 1.35 1.10 1.11 1.04 
i=5 8.8 1.66 1.40 1.17 1.01 
i=6 4.3 1.82 1.11 1.23 
i=7 7.2 2.72 1.12 
i=8 5.1 1.89 
i=9 1.7 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

We have to subdivide each column Fk into the subset SFk of 

'smaller' factors below the median of Fk and into the subset LFk 

of 'larger' factors above the median. This can be done very 

easily with the help of the rank columns rik established in 

Appendix G: The half of factors with small ranks belongs to SFk, 

those with large ranks to LFk and if the total number is odd we 

have to eliminate the mean rank. Replacing a small rank with 
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‘S’, a large rank with 'L' and a mean rank with *** we obtain 

the following picture: 

I- - - - 
j-1 j-2 j-3 j-4 je5 j=6 j-7 j=8 jag 

j=l s s s s L L * s * 
j=2 L s L L * s L L 
j=3 s s l s L s s 
j ~‘4 s s L s s L 
j==5 L L L L s 
j=6 * L s L 
j=7 L L s 
j=8 L L 
j=9 S 

We now count for every diagonal Aj, 2 I j 5 9, the number Lj of 

L's and the number Sj of S's. With the notations Zj = min(Lj, 

Sj) I n = S- 3 + Ljt m = [(n-1)/2] as above and using the formulae 

(Hl), (H2) for E(Zj) and Var(Zj) we obtain the following table: 

j S* 3 L* 3 Zj n m E(Zj) Var(Zj) 

1 1 2 0 .5 .25 
0 0 3 1 .75 .1875 
1 1 4 1 1.25 .4375 
3 1 4 1 1.25 .4375 
3 1 4 1 1.25 .4375 
4 2 6 2 2.0625 .6211 
4 4 8 3 2.90625 .8037 
4 4 8 3 2.90625 .8037 

Total 14 12.875 3.9785 = (1.9946)2 

The test statistic Z = CZj = 14 is not outside its 95%-range 

(12.875 - 2B1.9946, 12.875 + 2e1.9946) = (8.886, 16.864) and 
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therefore the null-hypothesis of not having significant calendar 

year influences is not rejected so that we can continue to apply 

the chain ladder method. 
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Figure 6: Regression and Residuals 
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Figure 12: Residual Plots for fk2 
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Figure 13: Plot of In(wk2) against k 
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CREDIBLE CLAIMS RESERVES: THE B E N K T A N D E R  M E T H O D  

BY 

THOMAS M A C K  

Munich Re, Munich 

ABSTRACT 

A claims reserving method is reviewed which was introduced by Gunnar  
Benktander in 1976. It is a very intuitive credibility mixture of Bornhuetter/ 
Ferguson and Chain Ladder. In this paper, the mean squared errors of all 
3 methods are calculated and compared on the basis of a very simple stochastic 
model. The Benktander method is found to have almost always a smaller mean 
squared error than the other two methods and to be almost as precise as an exact 
Bayesian procedure. 

KEYWORDS 

Claims Reserves, Chain Ladder, Bornhuetter/Ferguson, Credibility, Standard 
Error 

1. INTRODUCTION 

This note on the occasion of the 80st anniversary o f G u n n a r  Benktander focusses 
on a claims reserving method which was published by him in 1976 in 
"The Actuarial Review" of the Casualty Actuarial Society (CAS) under the 
title "An Approach to Credibility in Calculating IBNR for Casualty Excess 
Reinsurance". The Actuarial Review is the quarterly newsletter of the CAS and is 
normally not subscribed outside of North America. This might be the reason why 
Gunnar 's  article did not become known in Europe. Therefore, the method has 
been proposed a second time by tile Finnish actuary Esa Hovinen in his paper 
"'Additive and Continuous IBNR",  submilted to the ASTIN Colloquium 1981 in 
Loen/Norway. During that colloquium, Gunnar  Benktander referred to his 
former article and Hovinen's paper was not published further. Therefore it was 
not unlikely that the method was invented a third time. Indeed, Walter Neuhaus 
published it in 1992 in the Scandinavian Actuarial Journal under the title "Another  
Pragmatic Loss Reserving Method or Bornhuetter/Ferguson Revisited". He 
mentioned neither Benktander nor Horvinen because he did not know about 

ASTIN BULLETIN. Vol. 30. No. 2. 2000, pp. 333-347 
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their articles. In recent years, the method has been used occasionally in actuarial 
reports under the name "Iterated Bornhuetter/Ferguson Method".  The present 
article gives a short review of  the method and connects it with the name of its first 
publisher. Furthermore,  evidence is given that the method is very useful which 
should already be clear from the fact that it has been invented so many times. 
Using a simple stochastic model it is shown that the Benktander method 
outperformes the Bornhuetter/Ferguson method and the chain ladder method in 
many situations. Moreover,  simple formulae for the mean squared error of  all 
three methods are derived. Finally, a numerical example is given and a 
comparison with a credibility model and a Bayesian model is made. 

2. REVIEW OF THE METHOD 

To keep notation simple we concentrate on one single accident year and on paid 
claims. Furthermore,  we assume the payout  pattern to be given, i.e. we denote 
with Pi, 0 < Pt < P2 < . . .  < Pn = | ,  the proport ion of  the ultimate claims 
amount  which is expected to be paid after j years of  development. After 
n years of  development, all claims are assumed to be paid. Let U0 be the 
estimated ultimate claims anaount, as it is expected prior to taking the own 
claims experience into account. For instance, U0 can be taken from premium 
calculation. Then, being at the end of a fixed development year k < n, 

R s F = q x U o  with q~-= l - p k  

is the well-known Bornhuetter/Ferguson (BF) reserve (Bornhuetter/Ferguson 
1972). The claims amount  Ca- paid up to now does not enter the formula for R B F  , 

i.e. this reserving method ignores completely the current claims experience of  the 
portfolio under consideration. Note that the axiomatic relationship between any 
reserve estinaate /~ and the corresponding ultimate claims estinaate t) is always 

O =  Ck + R and R = O -  Ca. 

because the same relationship also holds for the true reserve R = C,, - Ca- and 
the corresponding ultimate claims U = C,, i.e. we have 

U = C~. + R and R = U -  Ck. 

For the Bornhuetter/Ferguson method this implies that the final estimate of  the 
ultimate claims is the posterior estimate 

UBF = Cl¢ -[- RBF 

whereas the prior estimate U0 is only used to arrive at an estimate of  the reserve. 
Note further that the payout pattern {pj} is defined by pj = E(C~)/E(U).  

Another well-known claims reserving method is the chain ladder (CL)  
method. This method grosses up the current claims amount  Ck, i.e. uses 

UCI_ = Ck/pk  
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as estimated ultimate claims amount  and 

RCL : UCL -- Ck 

as claims reserve. Note that there 

RCL = qkUcL 

holds. This reserving method considers the current claims amount  Ck to be fully 
credibly predictive for the future claims and ignores the prior expectation U0 
completely. One advantage of CL over BF is the fact that with CL different 
actuaries come always to similar results which is not the case with B F  because 
there may be some dissent regarding U0. 

B F  and CL represent extreme positions. Therefore Benktander (1976) 
proposed to replace the prior U0 with a credibility mixture 

Uc = cUcL + (I - c)U0. 

As the credibility factor c should increase similarly as the claims Ck develop, he 
proposed to take c = Pk and to estimate the claims reserve by 

Rc, R = R S F  Up~ 
Uo" 

This is the method as proposed by Gunnar  Benktander (GB). Observe that we 
have 

and 

i.e. 

RGB = qk Upk 

Upk = Pk UCL + qk Uo = Ck + RBF = UBF, 

RCs = qk Uet:. 

This last equation means that the Benktander reserve ROB is obtained by 
applying the BF procedure in an additional step to the posterior ultimate claims 
amount  USF which was arrived at by the normal BF procedure. This way has 
been taken in some recent actuarial rcports and has there been called "iterated 
Bornhuetter/Ferguson method".  

Note again that the resulting posterior estimate 

9 
Uc,8 = Ck + R6~ = (I - q~)UcL + q~Uo = Ul_q~ 

for the ultimate claims is different from Ups. which was used as prior. 
Esa Hovinen (1981) applied the credibility mixture directly to the reserves 

instead of the ultimates, i.e. proposed the reserve estimate 

REH = CRcL -k- (] -- C)RBF, 
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again with c = Pk. But the Hovinen reserve 

REH = Pkqk UCL + ( I -- Pk)qk Uo = qk Up, = RaB 

is identical to the Benktander  reserve. 
We have already seen that the functions R( U) = qkU and U(R) = Ck + R are 

not inverse to each other  except for U = UCL. In addition, Table I shows that 
the further iteration o f  the methods  o f  BF and GB for an arbi t rary starting 
point  U0 finally leads to the chain ladder method.  

We want  to state this as a theorem: 

Theorem 1. For  an arbi t rary start ing point  U (°1 = U0, the iteration rule 

R ( m ) = q k U  (m) and U ( ' ' ' + l ) = C k + R  (''), m = 0 ,  1, 2, ..., 

gives credibility mixtures 

d " ' )  = ( l  - d / ) U c L  + ¢; 'Uo, 

R ("0 = (1 - q; ')RcL + q'~'RB,~- 

between B F a n d  CL which start at B F a n d  lead via GB finally to CL for m = oe. 

T A B L E  I 

ITERATION OF BORN|IUETTER/FERGUSON 

Ultimate U( R) = Ck + R Connection Reserve R( I~  = q,  U 

S 
U (I) = UBF : Ck -}- RBF 

= ( I - qk)  U c z  + qk Uo 

U (2) = Uc~ = Ck + Rat1 

(1 ' q~) UcL =-  - + q~- U o  

u¢'") = ( I - q~'.')UcL + ¢ ; ' U o  

U ('''+=) = Ck + R ( ' ' )  

= (I - C ÷~ ) GeL + C +~ Go 

U (~) = UCL 

RBF = qk UO 

R ( t )  = RGB = qkUBF 

= ( I  - -  qk)RcL + qkReF 

R(, ,O = q~. U (''') 

= ( I  - q~')Rct. +q'[.'RB,. 

R (oo) = Rct " 
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Walter Neuhaus (1992) analyzed the situation in a full Biihlmann/Straub 
credibility framework (see section 6 for details) and compared the size of the 
mean squared error mse( Rc) = E( R~ - R) 2 of 

Rc ---- CRcL -t- (l - C)RBF 

and the true reserve R = U -  Ck = C,, - Ck especially for 

c = 0 (BE)  

c = Pt,- (GB, called PC-predictor by Neuhaus) 
c = c* (optimal credibility reserve), 

where c* C [0; I] can be defined to be that c which minimizes rose(Re). Neuhaus 
did not include c --- I ( eL )  explicitely into his analysis, 

Neuhaus showed that the mean squared error of  the Benktander r e s e r v e  RGB 
is almost as small as of the optimal credibility reserve Rc. except if Pk is small 
and c* is large at the same time (cf. Figures I and 2 in Neuhaus (1992)). 
Moreover, he showed that the Benktander reserve RGB has a smaller mean 
squared error than RBF whenever c* > pk/2 holds. This result is very plausible 
because then c* is closer to c = Pk than to c = 0. 

In the following we include the CL into the analysis and consider the case 
where U0 is not necessarily equal to E(U), i.e. consider the estimation error, too. 
This seems to be more realistic as in Neuhaus (1992) where U0 = E(U) was 
assumed. Instead of the credibility model used by Neuhaus, we introduce a less 
demanding stochastic model in order to compare the precision of Rm:, RcL and 
RGB. We derive a formula for the standard error of RBF and RGB (and RCL) 
and show how the parameters required can be estimated. A numerical example 
is given in section 4. Moreover, there is a close connection to a paper by 
Gogol (1993) which will be dealt with in section 5. Finally, the connection to the 
credibility model is analyzed in section 6. 

3. CALCULATION OF THE OPTIMAL CREDIBILITY FACTOR c* AND 

O F T H E  MEAN SQUARED ERROR OF R e 

In order to compare RBF, RCL and RGI~, we use the mean squared error 

mse( Rc) = E( Rc - R) 2 

as criterion for the precision of the reserve estinaate R~ (for a discussion see 
section 5). Because 

Rc = CRcL -k- (1 -- C)RBF "= c( RcL -- RBF) -'[- RBF 

is linear in c, the mean squared error rose(Re) is a quadratic function of c and 
will therefore have a minimum. 

In the following, we consider U0 to be an estimation function which is 
independent from Ck, R, U and has expectation E(Uo) = E(U) and variance 
Var(Uo). Then we have 
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Theorem 2. The optimal credibility factor c* which minimizes the mean squared 
error mse(R~.) = E(R~ - R) 2 is given by 

c* = P__~k . Cov( Ck, R) + Pkqk Var( Uo) 
qk Var( Ck ) + p~. Var( Uo ) (1) 

Proof 

E(R~ - R) 2 = E[c(RcL - RBF) + R B F -  R] 2 

= c2E(RcL - RBF) 2 -- 2cE[(RcL - RsF) (R  - RBF)] + E ( R t n , -  R) 2. 

0 
0 = m E ( R e  - 

Oc " 
R) 2 : 2cE( RcL - R B F )  2 - -  2E[( RcL - RSF)( R - R B F ) ]  

yields 

c* E[(RcL - RsF) (R  - RBF)] Pk 

E( RcL - RBF) 2 q~" 

= p___~. Cov(Ck - pkUo, R - qkUo) 

q~- Var(Ck - pkUo) 

, E[(C~. - p k U o ) ( R  - qk Uo)] 

E(Ck - Pk Uo) 2 

Pk Cov(Ck,R)  + pkqkVar(Uo) 

va,.( ck ) + V,,(  Uo ) 

Here, we have used that E(Ck) =pkE(Uo)  according to the definition of  the 
payout pattern (and therefore E(R)  = qkE(Uo)). Q.E.D. 

In order to estimate c*, we need a model for Var(Ck) and Cov(C , ,R ) .  The 
following model is not more than a slightly refined definition of  the payout 
pattern: 

E ( C k / U  I U) = Pk, (2) 

Var(Ck/UJ U) = pkq~.~2(U). (3) 

The factor qk in (3) is necessary in order to secure that Var(Ck[U) ~ 0 as k 
approaches n. A similar argument holds for Pc in case of very small values. 
A parametric example is obtained if the ratio Ck/U,  given U, has a 
Beta(apk,aqk)-distribution with a > 0; in this case ~2(U) = (a + 1) - t .  Thus, in 
the simple cases,/32(U) depends neither on U nor on k. If the variability of C k / U  
for high values of U is higher, then ~ 2 ( U ) =  (U/Uo) . ,62  is a reasonable 
assumption. 

From assumptions (2) and (3) and with aZ(U) := U2~2(U) we gather 

E(CkJ U) = pk U, 

Var( gk[ U) = P k  qko ~2 (V), 

E(Ck) = pkE(V), 

Var(Cg) --- pkqkE(~v2(V)) + p~ Var(U) 

= pkE(o~2(U)) +p~(Var (U)  - E(c~Z(u))), (4) 
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CO,'(Ck, U) = CO~(E(Ckl U), U) = Pk Va,'(U), 

Col,( Ck, R) : Cov( Ck, U) - Var( Ck ) = Pkqk( Var( U) -- E(a2(U))) ,  

E(R) = E(U) - E(c~) = qkE(U), 

Var(R) = Var(U) - 2Cov(Ck, U) + Var(Ck) 

= Var(U)(I  - 2pk +p~)  +pt , .qkE(~z(u))  

= q2 Vat(U) + pkqkE(cf l (U))  

= qkE(Ct2(U)) + q2k(Var(U ) - E(ct2(V))). 

By inserting (4) and (5) into (1), we immediately obtain 

(5) 

Theorem 3. Under the assumptions of  model (2)-(3), the optimal credibility 
factor c* which minimizes rose(Re) is given by 

~'(o,2(u)) 
c * -  Pk with t =  (6) 

p~. + ~ va,.(tJ0) + v , , . (u )  - E(~2(u)) • 

Some further straightforward calculations lead to 

Theorem 4. Under the assumptions of model (2)-(3), we have the following 
formulae for the mean squared error: 

mse(RBF) = E(a2(U) )qk ( l  + qk/t) ,  

mse( e~,.) = e ( ~ (  u))  qk/Pk, 

rose(Re) = e(~2(U))  ~ + - - +  q~. qk )- 

Proof 

mse(  R~F) = 

ms4Rc , . )  = 

E ( R ~ , : -  R) ~ = w , . ( e ~ -  R) = V , , ( R ~ )  + Va,.(R) 

q~V.r(Vo) + q~(V~,.(v) - E(o:~(v))) + q ~ e ( ~ ( g ) )  
E(ct2( U) ) (qk -I- q~/t) ,  

E ( R c L  - R)  2 = V a r ( R c L  - t?) 

Wa,'( Rcc) - 2Cov( RcL, R) + liar(R) 

= Elk Var(Ck) /p  2 - 2qkCov(Ck, R)/pk n t- Vat(R)  

= E ( ~ ( V ) ) q ~ l p k ,  

. ,~(R,:) = E(cRc~ + (I - c ) R ~ F -  R) 2 

= E[c(Rcz. - R) + (I - c)(RuF -- R)] 2 

= c2ms4RcL)  + 2c(l - c)E[(RcL - R ) ( R B F -  R)] + (1 - c)2ms4R~F), 
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E[(Rcc - R ) ( R B F -  R)] = Cov(Rcl. - R, RSF -- R) 

= --Cov(RcL, R) + Var(R) 

= Var(R) - qkCov(Ck, R)/p~- 

= qkE(ct2(U)). 

and putt ing all pieces together leads to the formula  stated. Q.E.D. 

An actuary  who is able to assess Pk = E(Ck/U]U) and U0 (i.e. E(Uo)) should 
also be able to estinaate Var(Uo) and Var(G/UlU) or E(Var(Ck[U)) as well as 
Var(U). Therefrom,  he can deduce E ( a . 2 ( g ) ) = E ( V a r ( C k [ U ) ) / ( p k q k ) -  or  
E(c~2(U)) = Var(Ck/UlU)E(U2)/(p~.qk)if  Va,'(Ck/U[U) does not depend on U 

- and finally the parameter  t. Then he has now a formula for the mean squared 
error  o f  the BF method and a very simple formula for the CL method (where t is 
not  needed) and can calculate the best estimate Rc including its mean squared 
error  as well as the one o f  RGB. 

Regarding the very simple formula for mse(RcL) we should note that this 
formula  deviates from the cor responding  one (i.e. for the uncondit ional  mean 
squared error  with known payou t  pattern) o f  the distribution-free chain ladder 
model o f  Mack (1993). The reason is that  the models underlying are slightly 
different: Here we have 

and the model o f  Mack  (1993) can be written as 

' 
E Ck p~. 

Using theorem 4, we now compare  the mean squared errors o f  the different 
methods  in terms of  p~. and t. First, we have 

mse(RBF) < mse(RcL) ~ Pk < I, 

i.e. we should use BF for the green years Ok < t) and CL for the rather mature  
years (]J~-> 0. This is very plausible and the au thor  is aware that some 
companies  use this rule with t = 0.5. But the volatility measure t varies from one 
business to the other  and therefore the actuary should try to estimate t in every 
single case as is shown in the next section. 

Fur thermore,  we have 

mse(Rae) < mse(RBF) <===¢ t < 2 - p#, 
mse(RGB) < mse(Rcg) ~ t > pkqk/(l +p/,-), 

i.e. GB is better than BF except t is very large and is better than CL except t is 
very small, see Figure 1 where for each o f  the three areas it is indicated which of  
BF, GB, CL is best. In the numerical example below, it will become clear that t is 
almost  always in the GB area. 
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FIGURE 1: A r e a s  o f  s m a l l e s t  m e a n  squared e r r o r .  

4. NUMERICAl.  EXAMPLE 

Assume that the a priori expected ultimate claims ratio is 90% of  the premium, 
i.e. U0 = 90%. Assuming further Pk = 0.50 for k = 3, we have RBF = 4 5 %  (all 
% ages relate to the premium).  Let the paid c l a i m s r a t i o  be C# = 55%, then 
Ucc = 110% and RcL = 55%. Taken together, we have Rcz~ --- 50%. 

In order  to calculate the s tandard  errors, we have to assess Var(U), Var(Uo) 
and E(~2(U)) .  For  Var(U), we can use a considerat ion o f  the following type: 
We assume that the ultimate claims ratio will never be below 60% and only once 
every 20 years above 150%. Then, assuming a shifted Iognormal  distr ibution 
with expectation 90%, we get Var(U)= (35%) 2. This rather high variance is 
typical lbr a reinsurance business or  a small direct portfolio.  

Regarding E(cfl(U)), we consider here the special case where 
/32(U) =/32 does not depend on U (e.g. using a Beta distribution), i.e. 
E(cfl(U))=E(U2)32=E(U2)Var(Ck/UIU)/(p~.qk). Therefore,  we have to 
assess Var(Ck/U[U), i.e. the variability o f  the payment  ratio C~./U around  its 
inean pk. If  we assume - e.g. by looking at the ratios Ck/U of  past accident 
years - that  Ck/U will be almost  always between 0.30 and 0.70, then - 
using the two-sigma rule from the normal  distr ibution - we have a 
s tandard deviation o f  0.10, i.e. Var(fk/UlU)=O. lO 2, which leads to 
32 = Var(Ck/U[ U)/(pkqk) = 0.202 and E(c~2(U)) = E(U2)32 = 0.1932. 

Finally, the most  difficult task is to assess Var(Uo) but this has much less 
influence on t than Var(U) (which is always larger) and E(c~2(U)). Moreover ,  an 
ac tuary  who is able to establish a point  estinaate U0 should also be able to 
estinaate the uncertainty Var(Uo) of  his point  estimate. Thus,  there will be a 
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certain interval or  range o f  values where the ac tuary  takes his choice o f  U0 from. 
Then he can take this interval and use the two-sigma rule to produce the 
s tandard  deviation ~ .  Let us assume that in our  example 
V~,,'(Uo) = (15%) 2. 

N o w  we can calculate t = 0.346 and all s tandard errors ( =  square root  o f  the 
estimated mean squared error) as well as the optimal credibility reserve R~.: 

R~F = 45% 4- 21.3% 

RCL = 55% 4- 19.3% 

Rcm = 50% 4- 17.3% 

Re = 5 0 . 9 % 4 - 1 7 . 2 %  with c * = 0 . 5 9 1 .  

Note  that these s tandard  errors are based on the uncondit ional  mean squared 
error  (cf. discussion in the next section) and on a known pattern {pj}. Including 
the uncer ta inty o f  the P/wil l  increase the s tandard error. 

For  the purpose  o f  compar ison,  we look at a more  stable business, too: 
Assume that Va,'(U) = (10%) z, Va,'(Uo) = (5%) 2 and Var(C~./UIU ) = (0.03) 2. 
Then,  everything else being equal, we obtain /32= 0.062, E(c~2(U)) = 0.0542, 
t = 0.309 and 

RgF = 45% 4- 6.2% 

RCL = 55% 4- 5.4% 

RaB = 50% 4- 4.9% 

R~. = 51.2% 4- 4.9% with c* = 0.618. 

In both cases, GB has a smaller mean squared error  than BFand CL, and the 
size o f  t has not changed much,  because the relative sizes o f  the three variances 
Vat(U), Var(Uo), Var(Ck/UIU ) are similar. A closer look at formula (6) shows 
that  the size o f t  is changed more  if E(oe2(U)) (i.e. Var(Ck/U[U)) is changed than 
if Var(U) or Var(Uo) are changed.  In the first example, for instance, we had 
Var(Ca./UIU) = 0.102 and GB was better than CL and BF. If  we change the 
variability o f  the paid ratio to Var(Ca./U]U) >_ 0.1532 , then t _> 1.51 and BF is 
better than GB and CL. If  we change it to Var(C~./U]U)<_ 0.074 z, then 
t _< 0.164 and CL is better than GB and BF, see Figure 1. But in the large range 
o f  normal  values o f  Var(Ck/U]U), GB is better than CL and BF. Because 
Var(Uo) is always smaller than Vat(U), the size o f t  is essentially determined by 
the ratio Var( Ck / U] U) / Vat'( U). 
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5. APPLICATION OF AN EXACT BAYESIAN MODEL TO THE NUMERICAL EXAMPLE 

I f  we make  dis t r ibut ional  a ssumpt ions  for U and CkIU, we can de termine  the 
exact  dis t r ibut ion of  UICk according to Bayes'  theorem. This  was done  by 
Gogo l  (1993) who assumed that  U and CklU have Iognormal  dis t r ibut ions 
because then UICk has a Iognormal  distr ibution,  too. 

Applied to our  first numerical  example ,  this model  is: 

U N Lognorma l  (# ,o  -2) with E(U) = 90%, Vat(U) = (35%) 2, 

C k l U ~  L o g n o r m a l  ( u , r  2) with E(CklU) ---- pkU, Var(CklU) = pkqk/32U 2 

where/32 = 0.202 is as before,  i.e. such that  Var( Ca. / U[ U) = 0.102. 
This  yields 

02 = ln(I + Var(U)/(E(U)) 2) = 0.3752, 

tt = ln(E(U))  - 02/2 = -0 .176 ,  

7 -2 = ln( l  + fl2qk/pk ) = 0.1982. 

Then (see Gogol  (1993)), 

UIC~. "~ L o g n o r m a l  (t.tl, a~) 

with 

ttl = z(7- 2 + ln(C~-/pk)) + (I - z)Ft = 0.067, 

= z7- 2 = 0.1752 , 

z = 02/(0 -2 + 7-2) = 0.782. 

This yields (at CA- = 55%) 

E(U[Ck) = exp(# ,  + a~/2) = 108.6%, 

E(RIC~) = E(e lck)  - Ck = 53.6%, 

Var(RlCk) = Va,'(UlC~) = (E(UlG. ) )Z (exp (~ ) -  I) = (19.2%) 2. 

If  we c o m p a r e  this last result with the mean squared errors  obta ined  in section 4, 
we should recall that  E(RICk) minimizes  the conditional mean squared error  

e((R- e)21c,) = v ,.(elck) + ( k -  e(RIC,.)) 2 

a m o n g  all estinaators R which are a square  integrable function o f  Ck as well as it 
minimizes the uncondit ional  mean squared error  

E(R - R)2= E(Var(RICk)) + E(R - E(RICk)) 2 

because the first term o f  the r.h.s, does not depend on /~. But the resulting 
m i n imum values Var(RICk) and E(Var(RICk)) are different. 
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Basically, in claims reserving we should minimize the conditional mean 
squared error, given Ck, because we are only interested in the future 
variability and because Ck remains a fixed part of  the ultimate claims U. 
But if E(RICk) is a linear function of Ct- (like Re), this function can be 
found by minimizing the unconditional (average) mean squared error. More- 
over, the latter can often be calculated easier than the conditional mean 
squared error as it is the case in model (2)-(3). The unconditional mean 
squared error is the appropriate  measure to compare the precision of different 
reserving methods. 

Altogether, it is clear that the mean squared errors calculated in section 4 
are average (unconditional) mean squared errors, averaged over all possible 
values of  Ck. Therefore, in order to make a fair comparison of  the various 
methods in our numerical example, we must calculate the unconditional mean 
squared error E(Var(R]Ck)) in the Bayesian model, too. 

For this purpose, we have to integrate Var(R]Ck) over Ck and therefore 
need the distribution of Ck which we obtain by mixing the distributions of  
CkIU and U: 

Ck/pk  ~ Lognormal (IL - T 2 / 2 ,  O .2 + 7"2), 

exp(2z l n ( C k / p k ) )  "~ Lognormal (2z11 - z ' r  2, 4z2(O. 2 + T2)). 

This yields 

E(Var(RICk)) = E(exp(2#, + a~)(exp(~)- I)) 

-- E(exp(2z In(Ck/p~))) exp(3ZT 2 + 2(I -- Z)I.L)(exp(ZT 2) -- I) 

---- exp(2tz + 2a 2) (@X['(ZT 2) - -  ]) 

= ( 1 7 . 0 % )  2. 

This shows finally, that the exact Bayesian model on average has only a slightly 
smaller mean squared error than the optimal credibility reserve Re. and the 
Benktander reserve RoB. But if we recall that, with the exact Bayesian 
procedure, we assume to exactly know the distributional laws without any 
estimation error, then the slight improvement  in the mean squared error does 
not pay for the strong assumptions made. 

6. CONNECTION TO THE CREDIBILITY MODEL 

Finally, we establish an interesting connection between the model (2)-(3) and the 
credibility model used in Neuhaus (1992). There, the Bfihlmann/Straub 
credibility model was applied to the incremental losses and payouts: For 
j =  1, ..., n (where n is such that p, = I) let 

m] = p j  - p j - i  
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be the incremental payout pattern and 

Sj = C j -  Cj-i 

be the incremental claims (with the convention P0 = 0 and Co = 0). Then the 
Biihlmann/Straub credibility model makes the following assumptions: 

SILO, ..., S,,IO are independent, (7) 

E(Si/mtlO ) = I~(0), I < j < n, (8) 

Va, ' (S /mj le )  = a2 (e ) /m j  1 <_j <_ n, (9) 

where O is the unknown distr ibut ion qual i ty of  the accident year. Assumption (7) 
can be crucial in practise. Model  (7)-(9) can be set up wi thout  refering to pj by 
just requiring n b > 0 and ml + ... +m,,  = 1. Then the fol lowing formulae still 
hold using pa. := ml + ... + ink .  

From (7)-(9) we obtain 

E(Ck le )  = pk t4e ) ,  

Va,-(ckle) = pk~, 2(e).  

The latter formula shows, that the credibi l i ty model is clifl'erent from 
model (2)-(3) where we have Var(C~IU ) =p~,ql~.c~Z(u), i.e. we do not have 
O = U .  

In the credibility model (7)-(9) we obtain further 

E ( G )  = p , f ( ~ , ( e ) )  = p~.E(C,,) = pkE(U) ,  

w,,.(ck) = p~.e(~2(e)) + p~ v, , .o4e)),  (1 o) 

Co,,(c~, u) = E(Co,,(C~, Ckle)) + Co,,(p~#(e), #(e)) 

= p~.(e(o~(e))  + vc, r (~ (e ) ) ) ,  

Cov( Ck, n) = pkq~. v<,.O,,(e) ), 
E(R) = q k E ( # ( O ) )  = qx.E(U), 

"~V Ya,'(R) : qkE(~r2(e)) + q~ . , ( # ( e ) )  

If we compare these formulae with the corresponding formulae of model (2)-(3) 
and take into account that here 

v , , . 0 , ( e ) )  = v,, , . (u) - e (o~ (e ) )  

holds (from (10) with k = n), then we see that these formulae are completely 
identical if E(,~2(U)) = E(a2(O)). This leads immediately to 

Theorem 5. The formulae of  theorems 3 and 4 hold for model (7)-(9), too, after 
having replaced E(c~2(U)) with E(cr2((~)). 
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In the credibility model, a natural estimate of  E(o~(O)) can be established: 
From 

and 

it follows that 

S/m le ) = G2( O ) /mj 

Z mi Sj mj = Ck/pk = UCL 
j=l 

S. )2 
1 Z , , , j ( ~ , _ U c L  o2 -- k - 1 j=~ \n!i 

is an unbiased estimator of E(oZ(O)). We can write 

cr 2 = p k S 2 / ( ] <  - -  l) 

where 

$2 = Z mJ -- UCL mj 
j = l  \ J / j=l 

can be calculated easily as the mj-weighted average of the squared deviations of  
the observed ratios Sj/mj from their weighted mean Ucl.. Note that each Sj/m: is 
an unbiased estimate of  the expected ultimate claims E(U). 

If in our numerical example in addition to P3 = 0.50 and C3 = 55% we have 
Pl =0 .10 ,  P 2 = 0 . 3 0 ,  Ct = 1 5 % ,  C 2 = 2 7 % ,  then ml =0 .10 ,  m 2 = 0 . 2 0 ,  
m 3 = 0 . 2 0 ,  Si = 1 5 % ,  $ 2 =  12%, S 3 = 2 8 % ,  and the ratios S i /ml  = 1.5, 
$2/m2 = 0.6, $3/m3 = 1.4 have a variance s 2 =  0.412 . Then the estimate for 
E(o-2(@)) is ~ =0.2052. With C, = 10% and C2 = 3 0 %  we would get 
O "2 = 0.0612 indicating a more stable case. 

Note that for the estimation of E(o'2(U)) the observation of several accident 
years is necessary. Anyhow, model (2)-(3) is less demanding than model (7)-(9). 

7. C O N C L U S I O N  

In claims reserving, the actuary has usually two independent estimators RBF and 
Rcc, at his disposal: One is based on prior knowledge (U0), the other is based on 
the claims already paid (Ck). It is a well-known lemma of  Statistics that from 
several independent and unbiased estimators one can form a better est imator 
(i.e. with smaller variance) by putting them together via a linear combination.  
From this general perspective, too, it is clear that the GB reserve should be 
superior to BF or CL. 

More precisely, the foregoing analysis has shown that GB has a smaller mean 
squared error than BFand  CL if the payout pattern is neither extremely volatile 
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nor extremely stable. This conclusion is derived within a model whose 
assumpt ions  are nothing more than a precise definition o f  the term ' payou t  
pattern ' .  Therefore,  actuaries should include the Benktander  method in their 
s tandard reserving methods.  

Finally, we want to emphasize that all formulae derived rely on the 
assumpt ion that the prior estimate U0 and the observed claims Ck are 
independent.  This means that these formulae probably  will not hold any more 
for a 'pr ior '  U0 which has been adjusted during the development  period as it is 
often done  in practise. Such an adjustment  is like choos ing  an Uc with an 
unknown c and gives a procedure  which is much less objective than the 
Benktander  method.  
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Correction Note 
to the paper  

„Credible Claims Reserves: The Benktander Method“ 

by Thomas Mack 

 

 

In Chapter 5 („Application …“), there is a mistake. 

The equation for µ1 should be as follows: 

 

 µ1 = z ( τ
2
/2 + ln(Ck/pk) ) + (1 – z) µ = 0.05155 , 

 

i. e. τ
2
/2 instead of τ

2
 and a slightly different numerical result. This mistake entails the 

following further alterations later on in the same chapter: 

 

 E(U|Ck) = … = 106.9%  (instead of 108.6%), 

 

 E(R|Ck) = … = 51.9%  (instead of 53.6%), 

 

 Var(R|Ck) = … = … = (18.9%)
2
 (instead of 19.2%). 

 

Finally, the last equations of Chapter 5 change as follows: 

 

 E(Var(R|Ck)) = E( exp(2µ1 + σ1
2
) (exp(σ1

2
) – 1) ) 

 

            = E(exp(2z ln(Ck/pk))) exp(2zτ
2
 + 2(1 – z)µ) (exp(zτ

2
) – 1) 

 

            = exp(2µ + (1+z)σ
2
) (exp(zτ

2
) – 1) 

 

            = (16.8%)
2
 . 

 

(i. e. 2zτ
2
 instead of 3zτ

2
 in the second line, (1+z)σ

2
 instead of 2σ

2
 in the third line and 16.8% 

instead of 17.0% in the forth line.) This concludes the list of corrections. 
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Abstract 

 
 

The main purpose of this paper is to propose a comprehensive framework for assessing 

insurance liability risk margins and to provide practical advice on how to implement it.  The 

key sources of uncertainty are examined and the main quantitative approaches to analysing 

uncertainty discussed, including commentary on the advantages and disadvantages of each 

approach.  The framework recognises, however, that quantitative analysis of historical data 

cannot alone capture adequately all aspects of future uncertainty.  There will always be a need 

for judgement to be applied and in many situations such considerations will dominate the risk 

margin assessment.  The application of judgement, however, is arguably the most difficult 

aspect of any attempt to estimate future uncertainty and assess appropriate risk margins.  Our 

paper examines the key judgmental aspects and introduces a structured approach to 

combining these qualitative considerations with the results of any available quantitative 

analysis.   

 

 

 

Keywords:  framework, risk margins, uncertainty, APRA, independent risk, systemic risk. 
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1. Introduction 

1.1. Preamble 

 

General Insurance actuaries in Australia have, for many years, been analysing the 

uncertainty involved in the claim process with a view to assessing appropriate risk 

margins for inclusion in insurance liabilities.  The approaches adopted to date range 

from those that involve little analysis of the underlying claim portfolio to those that 

involve significant analysis of the uncertainty using a wide range of information and 

techniques, including stochastic modelling.   

 

The Risk Margins Taskforce was created to provide GI actuaries in Australia with 

support and guidance in the assessment of risk margins.  In particular, it was felt that 

actuaries would benefit greatly from a stronger awareness of the key considerations 

when analysing uncertainty and the tools at their disposal when undertaking such 

analysis.  A better equipped actuarial profession could feel more confident that key 

stakeholders, including APRA, insurance company boards, senior management and 

auditors, better understand the nature of and feel more comfortable with the quality 

and consistency of actuarial advice in this area.   

 

The main purpose of this paper is to propose a comprehensive framework for 

assessing insurance liability risk margins and to provide practical advice on how to 

implement it.  The key sources of uncertainty are examined and a combination of 

quantitative and qualitative approaches to their measurement explored.   

  

1.2. Current approaches to assessing risk margins 

 

In preparation for a presentation to the 2006 Reserving Seminar of the Institute of 

Actuaries of Australia (IAAust), the Taskforce canvassed a number of actuaries and 

APRA to gain a better understanding of the range of approaches used in Australia to 

assess risk margins.  This information was supplemented with feedback from the 

2006 General Insurance Claims Reserving and Risk Margins Survey, the results of 

which were presented at the same seminar. 

 

Although there appear to be a wide range of approaches used by Australian actuaries 

in the assessment of risk margins it is fair to say that most of the differences relate to 

the analysis and investigations conducted to parameterise a generally adopted risk 

margin calculation methodology, rather than the calculation methodology itself.  The 

calculation methodology can be generalised as follows: 

 

 Coefficients of variation (CoVs) are determined for individual valuation 

portfolios or groupings of portfolios, where these groupings include insurance 

classes made up of relatively homogeneous risks. 

 A correlation matrix is populated with assumed correlation coefficients reflecting 

the expected correlations between valuation portfolios or groupings of portfolios. 

 CoVs and correlation matrices are determined separately for outstanding claim 

liabilities and premium liabilities and further assumptions made about the 

correlation between these two components of the insurance liabilities. 

 A statistical distribution is selected and combined with the adopted CoVs and 

correlation coefficients to determine the aggregate risk margin at a particular 

probability of adequacy. 
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The approaches used to determine CoVs vary significantly.  The least sophisticated 

approaches involve deriving CoVs using either or both of two papers, Research and 

Data Analysis Relevant to the Development of Standards and Guidelines on Liability 

Valuation for General Insurance by Bateup and Reed (the Tillinghast paper) and 

APRA Risk Margin Analysis by Collings and White (the Trowbridge paper), both 

prepared at the end of 2001 (collectively these papers are referred to as the 2001 

papers).  These approaches often ignore the individual characteristics of the valuation 

portfolio for which risk margins are being assessed, deferring instead to the 

characteristics of the portfolios analysed by the authors of the two papers. 

 

More sophisticated approaches include some form of quantitative analysis (stochastic 

or otherwise) supplemented by a qualitative assessment of the sources of uncertainty 

not captured by quantitative techniques.  One such approach is discussed in the paper, 

A Framework for Estimating Uncertainty in Insurance Claims Cost by O’Dowd, 

Smith and Hardy, prepared for the IAAust’s XVth General Insurance Seminar which 

was held in October 2005 (the PwC paper).   

 

Anyone who has read the PwC paper will appreciate the similarities between the 

framework proposed in that paper to the framework discussed in this paper.  The 

Taskforce is collectively of the view that the PwC paper has significant merit and 

the concepts advocated by the authors of that paper have played a prominent 

role in the development of the framework discussed in this paper.  We would 

encourage readers of this paper to read the PwC paper to ensure a more 

complete understanding of some of the concepts discussed. 
 

The most common approach to populating the correlation matrix with correlation 

coefficients is via the deployment of actuarial judgement.  Usually the key risks that 

are considered to cause valuation portfolios to be correlated are considered in turn 

and the correlation between classes categorised as high, medium or low with each 

category having associated correlation coefficient values.  The techniques deployed in 

the assessment of correlations range from those that are quite basic and heavily 

influenced by the benchmark correlation matrices discussed in the 2001 papers to 

those that take a more methodical approach to analysing the contribution to 

correlation from each key risk. 

 

It is more the exception than the norm to include a quantitative analysis of past 

experience in the assessment of correlation effects.  The main reason for this is that 

most quantitative techniques require a significant amount of data, time and cost to 

produce results that are sufficiently credible and intuitively justifiable.  It is more 

common to see such techniques deployed when assessing more extreme probabilities 

of adequacy, i.e. well in excess of 90%, rather than probabilities of adequacy around 

the 75% level.       

 

Generally, the most common distribution adopted to determine the aggregate risk 

margin at a particular probability of adequacy is the LogNormal distribution.  The 

Normal distribution is also used by some actuaries, particularly at lower probabilities 

of adequacy where it can generate a risk margin that is higher than a heavier tailed 

distribution, such as the LogNormal distribution.  It is uncommon for actuaries to test 

the adopted distribution against past experience or, taking a step further, derive a 

distributional form that explains the shape of the distribution of future claim cost 

outcomes based on past experience and/or future expectations. 

 

The general risk margins approach adopted by most actuaries is often referred to as a 

bolt-on approach in that separate analyses are conducted to estimate the central 
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estimate of insurance liabilities and the risk margins.  The term bolt-on is also 

generally used to refer to any approach that does not involve the development of a 

single unified distribution of the entire distribution of possible future claim cost 

outcomes.   

 

Judgement pervades both the central estimate assessment process and the risk margin 

assessment process.  Also, well fitting models are those that adequately reflect past 

sources of uncertainty only.  For these reasons, it is impossible to develop a purely 

quantitative model, fitted to the past data, that accurately represents the range of 

possible future claim cost outcomes.  Rather, an approach that advocates internal 

consistency between the assessment of the central estimate and the sources of future 

uncertainty around that central estimate is important.  The framework discussed in 

this paper is one such approach.  This transparent framework combines quantitative 

and qualitative analysis, both of which are conducted giving full consideration to the 

central estimate assessment.  

 

1.3. Practical framework for assessing risk margins 

 

A number of key stakeholders, including Appointed Actuaries, APRA and auditors, 

have expressed some concern that the wide range of approaches adopted in practice to 

assess risk margins might lead to significant inconsistencies in the final outcomes, 

whether those be for regulatory or financial reporting purposes.  Actuaries working in 

this area have also asked for guidance to help them when they are faced with 

analysing uncertainty.  Finally, APRA have indicated that they would like to see more 

documentary justification of the risk margins adopted by some insurance companies. 

 

With all of this in mind, we have prepared this paper to provide a comprehensive 

framework for assessing insurance liability risk margins and to provide practical 

advice on how to use this framework.  There are a number of parts to our framework 

including the provision of guidance and further information on the tools, both 

quantitative and qualitative, that an actuary may deploy when analysing the 

uncertainty associated with insurance liabilities.  We have included or referred to 

practical examples of how to deploy parts of the framework. 

 

The proposed framework recognises that quantitative analysis of historical data 

cannot alone capture adequately all possible sources of future uncertainty.  There will 

always be a need for judgement to be applied and in many situations such 

considerations will dominate the risk margin assessment.  The application of 

judgement, however, is arguably the most difficult aspect of any attempt to estimate 

future uncertainty and assess appropriate risk margins.  Our paper examines the key 

judgmental aspects and introduces a structured approach to combining these 

qualitative considerations with the results of any available quantitative analysis.   

 

In preparing this paper the Taskforce has mainly considered, as a surrounding 

context, the current risk margin environment in Australia, in particular the percentile, 

or quantile, approach to determining margins for uncertainty.  Having said this, we 

are aware that international developments, including proposed changes to 

International Financial Reporting Standards, are likely to overtake us in the not too 

distant future.  We are of the view that the main aspects of our proposed framework 

can be readily adopted, altered or enhanced to complement analysis of uncertainty in 

the evolving wider international context. 
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The framework discussed in this paper can also be considered in the broader context 

of quantifying the uncertainty associated with reserve risk and underwriting risk for 

stochastic capital modelling (often referred to as Dynamic Financial Analysis or 

Internal Capital Modelling) purposes.  In fact, when parameterising these 

components of a DFA model, one should draw on any analysis conducted for risk 

margin purposes and expand the framework to encapsulate those aspects of the 

parameterisation not captured by an analysis conducted specifically for risk margin 

purposes. 

 

It is not proposed that this risk margin framework will have the prescriptive nature of 

a professional standard.  Nevertheless, it is hoped that the structure and educational 

benefits it provides will encourage all actuaries to critically examine their current risk 

margin methodologies and to take from the framework those insights that are helpful 

to them in their particular situation.  Inevitably, each actuary estimating risk margins 

will need to make their own judgements and this will be driven by their own 

knowledge and experience. The proposed framework does not attempt to usurp that 

process.  Ultimately this framework is about enabling the profession and stakeholders 

to feel more confident in the quality and overall consistency of risk margins advice in 

future. 

 

This is not a paper on stochastic reserving.  Nor is it intended to provide all of the 

answers.  Rather, its aim is to equip actuaries to ask the right questions and then 

proceed to answer these in a methodical and rigorous manner. 

 

1.4. Structure of this paper 

 

In Section 2, we present a framework which takes a methodical and rigorous 

approach to examining each of the key sources of uncertainty and provides a practical 

and user-friendly platform to help actuaries determine appropriate and justifiable risk 

margins for their insurance liability valuation portfolios. 

 

Sections 3 and 4 discuss the assessment of independent risk and systemic risk, 

respectively, providing more practical guidance and considerations for the assessment 

of these sources of risk with a view to determining risk margins. 
 

The framework is summarised in Table 1.  The sections of the paper that address each 

step are also shown. 
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Table 1: Summary of risk margin analysis framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step Framework component Description Section of paper

1 Portfolio preparation
Determine valuation portfolios, claim groups and techniques to deploy 

for each claim group
Section 2.3

2 Independent risk analysis
Conduct quantitative analysis, conduct benchmarking where 

appropriate, conduct retrospective analysis for stable periods
Sections 2.4 and 3

3 Internal systemic risk analysis

Apply balanced scorecard approach to objectively score central 

estimate valuation methodologies.  Conduct analysis to determine 

appropriate CoVs to map to scores.

Sections 2.5 and 4

4 External systemic risk analysis
Identify, categorise and quantify potential future external sources of 

systemic risk
Sections 2.5 and 4

5 Analysis of correlation effects

Select correlation coefficients beween valuation classes and between 

outstanding claim and premium liabilities for internal systemic risk and 

for each external systemic risk category.

Sections 2.5

6 Consolidation of analysis
Consolidate CoVs and correlation coefficients.  Independence assumed 

between three sources of uncertainty.
Section 2.6

7 Additional analysis
Conduct sensitivity testing, scenario testing, internal and external 

benchmarking and hindsight analysis.
Section 2.7

8 Documentation
Document the analysis and judgement relating to each step of the 

framework
Section 2.8

9 Review

Conduct annual reviews of key assumptions in the context of emerging 

experience.  Full deployment of the framework at least every three 

years, including active interactions with business unit management.

Section 2.8



A Framework for Assessing Risk Margins 

 

 

 

9 

2.     The proposed framework 

2.1. Introduction to framework 

 

The proposed framework provides a practical and robust platform that requires a 

combination of quantitative and qualitative techniques to be deployed to examine the 

uncertainty associated with assessing insurance liabilities with a view to determining 

risk margins. 

 

Quantitative techniques alone are insufficient to enable a complete assessment of the 

various sources of uncertainty.  These techniques must be supplemented by 

qualitative analysis to ensure that all sources of uncertainty are captured.  It is 

common practice for Australian actuaries to adjust the results obtained using 

quantitative techniques to allow for their known weaknesses.  However, this is not 

always done in a rigorous manner, nor is there much consistency across the 

profession.   

 

The framework is designed to introduce more rigour and consistency to the risk 

margin assessment process by encouraging actuaries to examine their own portfolios 

using a step-by-step process that requires them to ask a number of questions in the 

context of these portfolios.  This will enable judgemental aspects of the process to be 

better reasoned, justified and documented and ultimately provide more structure in 

the application and combination of both quantitative and qualitative processes. 

 

It is not expected that all of the techniques discussed in this paper will be used in 

practice for all valuation portfolios.  Rather, if an actuary proceeds through the step-

by-step process using techniques suited to their own portfolios, understanding the 

strengths and weaknesses of these techniques and asking the right questions along the 

way, they can only be more comfortable that the risk margins adopted are 

appropriate. 

 

The framework revolves around quantifying the contribution to uncertainty from each 

of the main sources of uncertainty and is graphically represented in Figure 1 below. 
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Figure 1: Framework for determining insurance liability risk margins 
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2.2. Sources of uncertainty 

 

The sources of uncertainty are the cornerstones of the framework.  The framework 

itself has been designed to ensure alignment between the analysis and the techniques 

deployed with the key sources of uncertainty, ensuring a complete measurement of 

uncertainty. 

 

At the highest level, the sources of uncertainty can be categorised as belonging to 

either the systemic risk source or the independent risk source.   

 

Systemic risk represents those risks that are potentially common across valuation 

classes or claim groups.  Systemic risks arise from two sources: 

 

 Risks internal to the insurance liability valuation process, collectively referred to 

in this paper as internal systemic risk.  This source of uncertainty encapsulates the 

extent to which the adopted actuarial valuation approach is an imperfect 

representation of a complex real life process.  Model structure and adequacy, 

model parameterisation and data accuracy are all aspects of internal systemic risk.  

This source of uncertainty is alternatively referred to as model specification risk. 

 Risks external to the actuarial modelling process, collectively referred to in this 

paper as external systemic risk.  Even if the valuation model is an appropriate 

representation of reality, as it exists today, future systemic trends in claim cost 

outcomes that are external to the modelling process may result in actual 

experience differing from that expected based on the current environment and 

trends. 

 

Independent risk represents those risks arising due to the randomness inherent in the 

insurance process.  Independent risk also arises from two sources: 

 

 The random component of parameter risk, representing the extent to which the 

randomness associated with the insurance process compromises the ability to 

select appropriate parameters in the valuation models. 

 The random component of process risk being the pure effect of the randomness 

associated with the insurance process.  Even if the valuation model was perfectly 

calibrated to reflect expected future outcomes, the volatility associated with the 

insurance process is likely to result in differences from the perfect expected 

outcomes. 

 

In the detailed discussion of the framework below, quantitative and/or qualitative 

techniques are considered and aligned to the assessment and measurement of the  

internal and external sources of systemic risk and independent risk, the latter 

incorporating both parameter and process risk.   

 

The nature of traditional quantitative modelling techniques, e.g. bootstrapping and 

stochastic chain ladder, are such that they are best suited to analysing sources of 

independent risk and past episodes of external systemic risk.  However, they are 

inadequate alone to capture internal systemic risk or external systemic risk, to the 

extent that this latter differs from the past.  For both systemic risk sources, traditional 

quantitative modelling techniques must be supplemented by other analysis, both 

quantitative and qualitative. 
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2.3. Preparing the claims portfolio for analysis 

 

Before commencing any analysis one must prepare the claims portfolio for analysis.  

The claims portfolio would normally represent the aggregate insurance entity or 

aggregation of insurance entities for which the risk margin analysis is being 

conducted. 

 

The claims portfolio should be split into appropriate valuation classes.  A number of 

factors will impact how the valuation classes are selected. 

 

An important consideration is whether the valuation portfolio split adopted to 

determine central estimates of insurance liabilities, or outstanding claim liabilities and 

premium liabilities where the split is different, should be adopted for risk margin 

analysis purposes.  This would be preferable as it allows the risk margin analysis to 

be conducted in the context of the central estimate analysis and quantitative and 

qualitative analysis to be aligned with the key valuation drivers observed as part of 

the central estimate valuation.  One of the attractions of the framework is that each of 

the sources of uncertainty being analysed can be aligned with the central estimate 

analysis and appropriate decisions around volatility made in the context of that 

analysis. 

 

It may not be possible or particularly insightful, however, to conduct quantitative 

analysis at the same granular level as used for central estimate valuation purposes.  

The central estimate valuation portfolios may be too small for credible analysis or the 

valuation portfolio allocation may be at a more granular level than makes practical 

sense.  For example, a large insurer may split its motor and home portfolios by state, 

product and claim type, resulting in a large number of individual central estimate 

valuation portfolios.  The task of conducting quantitative analysis at the same 

granular level may be significant, costly and, considering the level of qualitative 

analysis that will be deployed as part of the assessment, unlikely to materially 

improve the final outcome.  In such cases, quantitative analysis may be conducted on 

aggregated valuation classes and the results then allocated down, in an appropriate 

manner, to the valuation classes that are considered appropriate for the deployment of 

the framework. 

 

In the end, the choice of valuation classes for risk margins analysis purposes will 

come down to a balance between the practical benefits gained from a higher level 

portfolio allocation and the potential additional benefit and insights gained from a 

more granular allocation.  When making this decision consideration should be given 

to the need to retain as much consistency as possible between the central estimate 

methodology and basis and the risk margin analysis. 

 

Once the claims portfolio has been allocated into risk margin valuation classes, 

consideration should be given to whether any valuation classes would benefit from a 

further allocation.  For certain portfolios, it will be apparent that different groups of 

claims are materially more or less uncertain than others and should be treated 

separately for risk margin analysis purposes.  Within each of these claim groups there 

is an element of homogeneity but between claim groups behaviour is expected to be 

different.   

 

A good example of a valuation class that would normally require further segregation 

is a home portfolio.  These portfolios are normally materially exposed to claims 

arising from natural peril events.  The patterns of development for event claims often 

differ materially from those for non-event claims.  Separate analysis of event and 
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non-event claims will usually provide valuable insights into the past contribution to 

uncertainty from each of these claim sources with a view to making appropriate 

assumptions regarding future uncertainty.  Also, home liability claims typically 

behave quite differently from other home claims and should be considered for 

separate analysis.  

 

Again, a pragmatic view should be taken when considering whether groups of claims 

are homogeneous, a view that balances the benefits against the practicalities and cost. 

 

For certain valuation portfolios, e.g. those with little historical data, it may not be 

possible to deploy all components of the framework.  However, we do consider it 

important to consider each component in the context of each valuation portfolio as 

this will ensure that appropriate questions are asked as part of the analysis. 

 

2.4. Analysing independent risk sources 

 

Many approaches used in practice by actuaries to analyse uncertainty and assess risk 

margins have an element of quantitative analysis conducted using stochastic (or 

other) modelling techniques.  Often, but not always, adjustments are made to the 

results from this modelling, reflecting an appreciation that it has not fully 

encapsulated all sources of uncertainty. 

 

There are a number of reasons why stochastic modelling techniques do not enable a 

complete analysis of all sources of uncertainty: 

 

 A good stochastic model will fit the past data well and, in doing so, fit away most 

past systemic episodes of risk external to the valuation process, leaving behind 

largely random sources of uncertainty.  Some techniques, e.g Generalised Linear 

Modelling (GLM), offer more flexibility in fitting to the past experience than 

others, e.g. Mack method. 

 Where it has not been possible to fit away all past systemic episodes of risk or 

where no attempt has been made to do so, the outcome of the analysis may be 

substantially affected by these episodes.  Consideration then needs to be given to 

whether past episodes of systemic risk are reasonably representative of what one 

can expect in the future.  For some portfolios this will be a very significant 

assumption, based solely on judgemental considerations. 

 Even where one is comfortable that a model adequately reflects the volatility 

expected in the future from both independent and systemic sources external to the 

actuarial valuation process, the model is highly unlikely to incorporate 

uncertainty arising from sources internal to the actuarial valuation process, i.e. 

internal systemic risk. 

 

The framework proposes the use of one or more stochastic modelling techniques to 

analyse independent sources of risk and to inform on past episodes of systemic risk 

external to the actuarial valuation process.  There are a number of approaches that 

may be used to analyse independent sources of risk, including: 

 

 Mack method; 

 Bootstrapping; 

 Stochastic Chain Ladder; 

 Generalised Linear Modelling (GLM) techniques; and 

 Bayesian techniques. 
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Although these techniques can be used for both outstanding claim liabilities and 

premium liabilities, it is possible and practically helpful to analyse independent risk 

as it pertains to premium liabilities using techniques specifically designed for this 

purpose.   

 

The analysis of independent risk is an art in itself and actuaries will only become 

comfortable in this area with practical experience of working through the main issues 

on their own valuation portfolios.  A range of stochastic techniques may be used and 

decisions made on the strengths and weaknesses of each approach in the context of 

the past experience.  It may be possible to refine the modelling to focus on certain 

past periods with limited past episodes of systemic risk, thus largely isolating past 

independent risk and examining the extent to which it has impacted past volatility. 

 

Finally, we do consider it useful to supplement any analysis of independent risk for a 

particular valuation portfolio with internal and external benchmarking.  

Benchmarking is discussed in section 2.7.  The main source of external benchmarking 

in this regard would be the 2001 Tillinghast paper which identified the independent 

risk component in its overall uncertainty benchmarks.  For some portfolios, 

benchmarking may be the only way to obtain some view of the contribution from 

independent risk once all other avenues have been exhausted. 

 

2.5. Analysing systemic risk sources 

 

The framework proposes separate analysis of internal systemic risk and external 

systemic risk.  Qualitative approaches are proposed for this purpose.  Two approaches 

are discussed in Section 4 of the paper, one designed to analyse internal systemic risk 

and the other designed to analyse external systemic risk.  Introductions to these 

approaches are given in this sub-section.  Both techniques have been designed to 

allow judgement to be deployed in a robust, transparent and consistent manner, 

giving due consideration to each of the key contributors to the two sources of 

systemic risk. 

 

Internal systemic risk 

 

Internal systemic risk refers to the uncertainty arising from the actuarial valuation 

models used being an imperfect representation of the insurance process as it pertains 

to insurance liabilities.  Valuation models are designed to predict future claim cost 

outcomes based largely on an examination of the key predictors of claim cost, and 

trends in these predictors, as these have been observed in the past claim experience.   

 

When assessing the uncertainty associated with the insurance liabilities it is important 

to subject the valuation methodology to objective scrutiny to assess the extent to 

which the quality of the insurance liability estimate may be compromised by 

inadequacies in the valuation process.  The need to be objective as part of this process 

is important.  Human nature is such that it is easy to become overly defensive of the 

modelling approach adopted for central estimate purposes.  Objective comparisons 

and scoring of the adopted valuation methodology against best practice, irrespective 

of whether such best practice is possible in the context of the portfolio being 

analysed, is crucial to forming an appropriate view of the contribution of internal 

systemic risk to uncertainty. 

 

We consider there to be three main sources of internal systemic risk.  These are: 

 



A Framework for Assessing Risk Margins 

 

 

 

15 

 Specification error - the error that can arise from an inability to build a model 

that is fully representative of the underlying insurance process.  The process is 

likely to be too complicated to be replicated in any actuarial valuation model.  

Also, the information available may be such that the underlying process cannot 

be fully understood and the model structure is simplified as a consequence. 

 Parameter selection error - the error that can arise because the model is unable to 

adequately measure all predictors of claim cost outcomes or trends in these 

predictors.  Again the insurance process is such that there can be a large number 

of claim cost drivers that would be difficult to fully capture in an actuarial 

valuation model. 

 Data error - the error that can arise due to poor data or unavailability of data 

required to conduct a credible valuation.  Data error also relates to inadequate 

knowledge of the portfolio being analysed, including pricing, underwriting and 

claims management processes and strategies. 

 

One approach to analysing internal systemic risk is discussed in detail in section 4 of 

the paper.  This involves developing a balanced scorecard to objectively assess the 

model specification against a set of criteria designed to rank aspects of the modelling 

from worst to best practice.  For each of the sources of internal systemic risk, risk 

indicators are developed and then scored against the adopted criteria.  The scores are 

then aggregated for each valuation class and mapped to a quantitative measure (CoV) 

of the variation arising from internal systemic risk. 

 

There are a number of subjective decisions that are required to be made as part of this 

process.  These include the risk indicators, the measurement and scoring criteria, the 

importance (or weight) afforded to each risk indicator and the CoVs that map to each 

score from the balanced scorecard.  Quantitative techniques may be used to inform 

aspects of these decisions.   

 

Development and deployment of a balanced scorecard approach to measuring internal 

systemic risk is a blend of art and science.  Actuaries unfamiliar with the approach 

will need time to develop the skills required: 

 

 to draw out all of the risk indicators; 

 objectively score them against best practice; and 

 map them to a CoV in the context of their own valuation classes.   

 

Section 4 of the paper provides some thoughts and tools that may be used as part of 

such an exercise.  However, it is fully expected that new techniques will emerge as 

experience develops and the writers of this paper welcome and encourage future 

contributions to the development of actuarial thinking in this area. 

 

The analysis of internal systemic risk is summarised in Figure 2 below.
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Figure 2: Internal systemic risk – systemic risk internal to the actuarial valuation process 
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External Systemic Risk 

 

All of the standard quantitative modelling techniques analyse the volatility inherent in 

the past claim experience.  As such, they can only be used to inform on the 

uncertainty arising from past episodes of external systemic risk.  To use these 

techniques in isolation would require an assumption that the contribution to volatility 

from future external systemic risk is expected to be similar to that experienced in the 

past.  It is quite possible, and for some valuation classes likely, that future external 

systemic risk will exhibit significantly different characteristics from actual past 

episodes. 

 

It is, therefore, important to identify each of the main potential sources of external 

systemic risk and, for each of these sources, quantify their impact on the overall 

volatility of the insurance liabilities.  The main external systemic risks for any 

valuation class can be categorised as belonging to a number of risk categories.  These 

include: 

 

 Economic and social risks – normal inflation and other social and environmental 

trends 

 Legislative, political risks and claim inflation risks – relates to known or 

unknown changes to legislative or political environment within which each 

valuation portfolio currently operates and shifts or trends in the level of claim 

settlements (this risk category encapsulates most systemic trends normally 

referred to as superimposed inflation) 

 Claim management process change risk – changes to the processes relating to 

claim reporting, payment, finalisation or estimation 

 Expense risk – the uncertainty associated with the cost of managing the run off of 

the insurance liabilities or the cost of maintaining the unexpired risk until the date 

of loss 

 Event risk – the uncertainty associated with claim costs arising from events, 

either natural peril events or man-made events 

 Latent claim risk – the uncertainty associated with claims that may arise from a 

particular source, a source that is currently not considered to be covered 

 Recovery risk – the uncertainty associated with recoveries, either reinsurance or 

non-reinsurance 

 

Each of these risk categories will normally have been considered as part of the central 

estimate valuation of outstanding claim or premium liabilities.  There is, therefore, a 

strong case for conducting the analysis of external systemic risk in conjunction with 

the central estimate valuation, thereby ensuring that both parts of the valuation take a 

consistent and complete view of all systemic risk categories.    

 

A critical step in any valuation process is the interaction between the valuation 

actuary and business unit management.  This is required to ensure that the valuation 

actuary has an appropriate level of understanding of all aspects of the insurance 

process, particularly as this relates to the valuation of insurance liabilities.  These 

interactions will normally incorporate discussions about all aspects of the portfolio 

management process, including underwriting and risk selection, pricing, claims 

management, expense management, emerging portfolio trends and the environment 

within which the portfolio operates.  It would be of great benefit to the valuation 

process, and not particularly onerous, to extend discussions to consider the main 

potential external systemic risks that may impact the portfolio.  This information can 
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then be used to inform both the central estimate valuation and in the identification 

and quantification of risks associated with each external systemic risk category. 

 

For most valuation classes, the risk identification and categorisation process will 

identify a small number of systemic risks and categories that account for the majority 

of the uncertainty.  For property classes, for example, event risk is likely to dominate 

the volatility of the premium liabilities whereas for long-tail portfolios legislative, 

political and claims inflation risks are likely to be the key contributors to the 

volatility for both outstanding claim and premium liabilities. 

 

When analysing external systemic risk it is useful to rank each of the risk categories 

in descending order in terms of expected impact on insurance liability uncertainty.  

This ranking can then be used to guide the effort to be expended on quantifying the 

risks associated with each risk category.  More time and effort would be spent on 

quantifying the uncertainty associated with material risk categories. 

 

Section 4 of the paper discusses the assessment of external systemic risk in more 

detail and includes some examples of potential sources of systemic risk within each 

risk category. 

 

Correlation effects  

 

At this point in the deployment of the framework, an actuary will have derived CoVs 

for independent risk, internal systemic risk and for each source of external systemic 

risk in each systemic risk category.  The next step requires making allowance for the 

fact that each of these sources of risk is not fully correlated either within valuation 

classes or between valuation classes.   

 

At this stage, it is worth commenting that we do not consider or discuss any 

quantitative methods to assessing correlation effects as part of this paper.  The main 

reasons for this are as follows: 

 

 Available techniques tend to be technically complex and often require a 

substantial amount of data.  The time and effort required to learn, implement and 

appropriately adjust these techniques may outweigh the benefits gained.  

 These techniques will yield correlations that are heavily influenced by the 

correlations, if any, experienced in past data.  Correlations associated with 

external systemic risk sources may differ materially from correlations associated 

with past episodes of systemic risk.   

 Also, it is difficult, if not impossible, to separate the past correlation effects 

between independent risk and systemic risk or to identify the pure effect of each 

past systemic risk. 

 Internal systemic risk cannot be modelled using standard correlation modelling 

techniques. 

 Even if modelling of correlation effects were practical, they are unlikely to yield 

results that could be aligned to the outcomes of the framework discussed above in 

relation to independent risk, internal systemic risk and external systemic risk.    

 

Having said this, it is not our intention to entirely rule out quantitative analysis of past 

correlation effects.  Such analysis may provide useful insights that can help in the 

assessment of potential future correlation effects.   
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The framework can be readily extended to incorporate an appropriate allowance for 

correlation effects.  This extension follows the spirit of the framework discussed so 

far and requires that correlation effects be considered in the context of each source of 

uncertainty and/or risk category.  Again, reliance is placed on an actuary’s own 

judgement but the actuary is encouraged to deploy their judgement in a robust and 

transparent manner in the context of each of the risks affecting their valuation classes.   

 

Correlation effects can be considered in the context of each source of uncertainty.  

The key considerations are discussed below. 

 

 Independent risk – as suggested by the name, this source of uncertainty can be 

assumed to be uncorrelated with any other source of uncertainty, either within a 

particular valuation class or between valuation classes.     

 Internal systemic risk – this source of uncertainty can be assumed to be 

uncorrelated with independent risk, as discussed above, and with each potential 

external systemic source of risk, either within a particular valuation class or 

between valuation classes.  Internal systemic risk contributes to correlation 

effects through correlation of this source of uncertainty between valuation classes 

or between outstanding claim and premium liabilities.   

o The same actuary effect and the use of template or valuation models across 

different valuation classes are key considerations for correlation effects 

between valuation classes.   

o Linkages between the premium liability methodology and outcomes from the 

outstanding claim valuation are key considerations for correlation effects 

between outstanding claim and premium liabilities. 

 External systemic risk – it is reasonable to assume that the contribution to 

uncertainty from each risk category is uncorrelated with independent risk, 

internal systemic risk and with the contribution to uncertainty from each other 

risk category, either within a particular valuation class or between valuation 

classes.  Correlation effects will arise from correlations between classes or 

between outstanding claim and premium liabilities from risks categorised as 

belonging to similar risk categories, e.g. claims inflation risk across long-tail 

portfolios or event risk across property and motor portfolios. 

 

It is possible that external systemic risk categories may be partially correlated either 

within or between valuation classes.  If this is the case, the correlated risk categories 

may be aggregated into broader categories that are not correlated with other risk 

categories. 

 

For practical purpose, the correlation relationship between any two sources of 

uncertainty or risk categories can be considered to belong to one of a finite number of 

assumed correlation bands.  For example, five correlation bands may be defined as 

nil, low, medium, high and full correlation.  For quantification purposes one might 

allocate correlation coefficients of 25%, 50% and 75%, respectively, to the low, 

medium and high correlation bands.  Having any more than five categories is likely to 

result in spurious accuracy attaching to what is already a largely subjective process.   

 

The PwC paper describes a useful way of considering and assessing correlation 

effects.  A root dummy variable, which can be considered to be the root source of 

correlations within a risk category, is created.  Dummy variables may also be set up 

for groupings of valuation classes that belong to the same class of business, e.g. 

separate valuations may be conducted by state within a worker’s compensation class 
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of business.  A hierarchical structure can then be constructed for each systemic risk 

category containing correlations between the following components: 

 

 premium liabilities and outstanding claim liabilities for a particular valuation 

class; 

 outstanding claim liabilities for individual valuation classes and the relevant class 

of business dummy variables; and 

 class of business dummy variables and root dummy variables. 

 

The implied correlations, both within valuation classes or classes of business and 

between valuation classes, can then be assessed. 

 

2.6. Consolidation of analysis into risk margin calculation 

Once an actuary has progressed through the analysis discussed above they will have 

the following assumptions that need to be consolidated and converted into a risk 

margin for the whole claims portfolio: 

 

 CoVs in respect of independent risk for each valuation portfolio, separately for 

outstanding claim and premium liabilities 

 CoVs in respect of internal systemic risk for each valuation portfolio, separately 

for outstanding claim and premium liabilities 

 CoVs in respect of each potential external systemic risk category, separately for 

outstanding claim and premium liabilities 

 Correlation coefficients between each source of uncertainty, risk category, 

valuation portfolio and outstanding claim/premium liability combination. 

 

For practical purposes, we propose that a simple linear correlation dependency 

structure be adopted to allow for the various correlation effects.  Correlation matrices 

are created for each of the three sources of uncertainty described in section 2.2 above.  

As discussed above, independent risk, internal systemic risk and external systemic 

risk are all assumed to be uncorrelated.  As such, the contribution from each source of 

uncertainty to the total CoV, after correlation effects, can be calculated individually 

and then combined. 

 

We consider a simple linear correlation dependency structure to be reasonable for the 

assessment of risk margins associated with probabilities of adequacy of up to at least 

90%.  Where one is faced with requirements for extreme probabilities of adequacy, 

e.g. for portfolios in run off or when parameterising reserve risk for DFA modelling 

purposes, it is recommended that other dependency structures be considered. 

 

An example of the consolidation and risk margin calculation for an example insurer, 

Insurer ABC, which underwrites three classes of business, Motor, Home and CTP is 

shown in Figure 3 below. 
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Figure 3: Claims portfolio CoV and risk margin calculation for Insurer ABC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

A: Proportion of insurance liabilities

Proportion of insurance liabilities 

(weights)

Class

Outstanding 

claims Premium liabilities

Motor 5% 25%

Home 5% 25%

CTP 30% 10%

Total 40% 60%

B: Independent risk

Independent risk

Class

Outstanding 

claims CoV Premium liabilities CoV

Insurance 

liabilities CoV

Motor 7.0% 5.0% 1.3%

Home 6.0% 5.0% 4.3%

CTP 6.0% 15.0% 5.9%

Total 4.6% 3.9% 3.0%

C: Internal systemic risk

Internal systemic risk Internal systemic risk correlation matrix

Class

Outstanding 

claims CoV Premium liabilities CoV

Insurance 

liabilities CoV
Motor OSC Motor PL Home OSC Home PL CTP OSC CTP PL

Motor OSC 100% 75% 50% 50% 25% 25%

Motor 5.5% 5.0% 4.9% Motor PL 75% 100% 50% 50% 25% 25%

Home 5.5% 5.0% 4.9% Home OSC 50% 50% 100% 75% 25% 25%

CTP 9.5% 8.0% 8.7% Home PL 50% 50% 75% 100% 25% 25%

Total 7.6% 4.2% 4.9% CTP OSC 25% 25% 25% 25% 100% 75%

CTP PL 25% 25% 25% 25% 75% 100%

D: External systemic risk

External systemic risk - coefficients of variation by risk categoryEconomic, 

social, etc, 

risk

Legislative, political 

and claims inflation risk

Claim process 

risk Expense risk Event risk

Latent claim 

risk Recovery risk

All risk 

categories

Motor OSC 1.0% 0.5% 2.0% 1.0% 1.0% 0.0% 3.0% 4.0%

Motor PL 2.0% 0.5% 2.0% 2.0% 3.0% 0.0% 5.0% 6.8%

Home OSC 1.0% 1.0% 2.0% 1.0% 2.0% 0.5% 0.5% 3.4%

Home PL 2.0% 1.0% 2.0% 2.0% 15.0% 0.5% 1.0% 15.5%

CTP OSC 3.0% 10.0% 4.0% 2.0% 0.0% 0.5% 1.0% 11.4%

CTP PL 4.0% 12.0% 4.0% 3.0% 1.0% 0.5% 2.0% 13.8%

External systemic risk - risk category correlations

Risk category Correlations adopted

Economic, social and environmental risk Nil between CTP and other, 25% PL/25% OSC between motor and home, 50% between OSC and PL within classes

Legislative, political and claims inflation risk Nil between CTP and other, 25% PL/25% OSC between motor and home, 50% between OSC and PL within classes

Claim management process risk 25% between classes, 50% between OSC and PL within classes

Expense risk 25% between classes, 50% between OSC and PL within classes

Event risk Nil between CTP and other, 50% PL/25% OSC between motor and home, 50% between OSC and PL within classes

Latent claim risk Nil between classes, 50% between OSC and PL within classes

Recovery risk Nil between classes, 50% between OSC and PL within classes

External systemic risk

Class

Outstanding 

claims CoV Premium liabilities CoV

Insurance 

liabilities CoV

Motor 4.0% 6.8% 6.0%

Home 3.4% 15.5% 13.1%

CTP 11.4% 13.8% 10.7%

Total 8.6% 8.0% 6.5%

E: Consolidated CoVs

All sources of uncertainty

Class

Outstanding 

claims CoV Premium liabilities CoV

Insurance 

liabilities CoV

Motor 9.8% 9.8% 7.9%

Home 8.8% 17.0% 14.6%

CTP 16.0% 21.9% 15.0%

Total 12.4% 9.9% 8.7%

F: Risk margins

Required probability of adequacy 75%

Risk margins - Normal distribution Risk margins - LogNormal distribution

Class

Outstanding 

claims Premium liabilities

Insurance 

liabilities 

Outstanding 

claims CoV

Premium 

liabilities CoV

Insurance 

liabilities CoV

Motor 6.6% 6.6% 5.3% 6.3% 6.3% 5.1%

Home 5.9% 11.5% 9.9% 5.7% 10.5% 9.2%

CTP 10.8% 14.8% 10.1% 9.9% 13.0% 9.4%

Total 8.4% 6.7% 5.8% 7.9% 6.3% 5.6%
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The following comments are made to help in the interpretation of the example in 

Figure 3. 

 

 The CoVs and correlation coefficients used and risk margins derived are 

indicative only.  The emphasis is on demonstrating how consolidation could work 

in practice, rather than proposing appropriate risk margins or underlying 

assumptions. 

 Part A gives the percentage breakdown of the total net central estimate of 

insurance liabilities by valuation portfolio and between outstanding claim and 

premium liabilities.  There is no need to use actual dollar amounts in the 

calculation.  The percentage breakdown (or weights) will suffice.  For simplicity, 

for this example all homogeneous claim groups have been combined within the 

valuation classes. 

 Part B shows the CoVs adopted in respect of independent risk for outstanding 

claim and premium liabilities following a combination of quantitative modelling 

and benchmarking.  The insurance liability CoVs by valuation portfolio and the 

insurance liability, outstanding claim liability and premium liability CoVs for all 

valuation portfolios combined have been derived assuming independence (or nil 

correlation) between valuation portfolios and between outstanding claims and 

premium liabilities. 

 Part C shows the CoVs and correlation coefficients (in correlation matrix form) 

adopted for outstanding claim and premium liabilities in respect of internal 

systemic risk.  These CoVs and correlation coefficients have been derived 

following a qualitative analysis of internal systemic risk using a balanced 

scorecard approach.  The insurance liability CoVs by valuation portfolio and the 

insurance liability, outstanding claim liability and premium liability CoVs for all 

valuation portfolios combined have been derived using the assumed correlations 

between valuation portfolios and between outstanding claim and premium 

liabilities.  When creating any correlation matrix it is important to include a check 

that the matrix is positive definite. 

 The first table in Part D shows the CoVs adopted in respect of each external 

systemic risk category.  The second table summarises the adopted correlation 

coefficients in respect of external systemic risk.  The implementation of these 

correlations is conducted using seven correlation matrices, one for each external 

systemic risk category.  Each of these matrices is 6x6, similar to the correlation 

matrix shown in Part C for internal systemic risk.  With an assumption of 

independence between risk categories there is no need to create a larger 42x42 

matrix with a row and column representing each risk category, valuation portfolio 

and outstanding claim/premium liability combination.  The CoVs and correlation 

coefficients shown in these two tables have been derived following a qualitative 

analysis of potential external systemic sources of risk.  The third table in Part D 

shows the aggregate CoVs in respect of external systemic risk, derived for each 

valuation portfolio and for all valuation portfolios combined in respect of 

outstanding claim liabilities, premium liabilities and insurance liabilities. 

 Part E consolidates the CoVs from each of the three sources of uncertainty, 

derived in Parts B to D.  The key assumption underlying the derivation of 

consolidated CoVs is that there is independence between each of the sources of 

uncertainty. 

 Part F converts the consolidated CoVs into risk margins assuming a required 

probability of adequacy of 75%.  Two statistical distributions have been adopted 

as representative of the underlying distribution of insurance liabilities: the 

Normal distribution and the LogNormal distribution.  At lower probabilities of 

adequacy, including 75%, the Normal distribution delivers a higher risk margin, 
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irrespective of the consolidated CoV.  At higher probabilities of adequacy, 

including 90%, the LogNormal distribution can give a higher result, where the 

consolidated CoV is not too high.  For particularly high CoVs, the LogNormal 

distribution can generate risk margins that appear unreasonable.  For example, for 

a 75% probability of adequacy the risk margin percentage does not increase much 

above 25% and actually reduces as the CoV increases above 75%.  Another way 

of looking at this is that LogNormal risk margins can reduce quite significantly as 

a percentage of the CoV as the latter increases whereas Normal risk margins 

remain unchanged as a percentage of the CoV.   

 Both distributions are used in practice by actuaries with the LogNormal 

distribution more common for higher probabilities of adequacy and the Normal 

distribution, for the reasons discussed above, often given consideration at the 

75% probability of adequacy.  The right-tailed nature of the distribution of 

insurance liabilities perhaps lends itself more to a right-skewed distribution such 

as LogNormal.  However, it does have its practical issues at lower probabilities of 

adequacy as discussed above.  Considering the level of judgement required in the 

application of the framework, spending a substantial amount of time deliberating 

over the form of the distribution is unlikely to be of much value.  An actuary 

should adopt a distribution that is appropriate in the context of their own claims 

portfolio, including the consolidated CoV assessed and probability of adequacy 

required.  One might not be so comfortable to adopt a LogNormal or Normal 

distribution without further justification if the purpose of the analysis is to derive 

risk margins with very high probabilities of adequacy (i.e. 99.5% for portfolios in 

run off) or when parameterising reserve risk in a DFA modelling context. 

 A spreadsheet tool has been created to do the calculation required for the 

consolidation shown in Figure 3.  This tool has been provided as an attachment to 

this paper to help readers understand the key formulae underpinning the 

consolidation.  Obviously, this tool may also be adapted for use in the 

deployment of the framework discussed in this paper. 

 

2.7. Additional analysis 

 
There are a number of areas of additional analysis that may be conducted to give an 

actuary further comfort regarding the outcomes from the deployment of the 

framework described above.  These include sensitivity analysis, scenario testing, 

benchmarking and hindsight analysis, each of which is discussed below. 

 

Sensitivity testing 

  

The framework requires a substantial amount of actuarial judgement in its 

application.  Judgement is required in all aspects of the analysis, irrespective of 

whether quantitative or qualitative methods have been used to assess the volatility 

associated with a particular source of uncertainty. 

 

Valuable insights into the sensitivity of the final outcomes to key assumptions can be 

gained by varying each of the key assumptions.  It is recommended that, as part of the 

analysis, the CoVs and correlation coefficients adopted for independent risk, internal 

systemic risk and each external systemic risk category be flexed and the impact on 

the valuation class and claims portfolio risk margins examined. 
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Following such an analysis, one might review certain key assumptions, particularly 

those that have a substantial impact on the final outcome, with a view to gaining 

additional comfort that the adopted assumptions are reasonable and justifiable. 

 

As a demonstration of sensitivity testing in practice changes have been made to 

certain key assumptions adopted for the example in Figure 3. 

 

 If the independent risk CoVs by valuation portfolio for outstanding claim and 

premium liabilities are reduced by 50%, the risk margin for the whole claims 

portfolio (based on the LogNormal distribution) reduces from 5.6% to 5.4%.  

Alternatively, doubling these CoVs increases the risk margin to 6.5%. 

 If the internal systemic risk CoVs by valuation portfolio for outstanding claim 

and premium liabilities are increased by 50%, the risk margin for the whole 

claims portfolio increases from 5.6% to 6.6%.  Alternatively, increasing the 

correlation coefficients to give full correlation across all combinations increases 

the risk margin to 6.3%. 

 If the CoVs for the legislative, political and claims inflation systemic risk 

category for CTP (outstanding claims and premium liabilities) are reduced by 

50%, the risk margin for the whole claims portfolio reduces from 5.6% to 5.2%.  

Doubling the CoV for the event systemic risk category for Home premium 

liabilities increases the risk margin to 7.0%.  Finally, assuming full correlation, 

within all valuation classes and systemic risk categories, between outstanding 

claim and premium liabilities increases the risk margin to 5.8%. 

Scenario testing 

  

It is often insightful to tie the risk margin outcomes back to a set of valuation 

outcomes by strengthening some of the key assumptions adopted for central estimate 

purposes to align the outstanding claim liabilities and premium liabilities with the 

provisions assessed including risk margins.  Various different assumption scenarios 

may be tested and valuation outcomes, including projected ultimate claim 

frequencies, average claim sizes, loss ratios, etc, compared for each scenario against 

the central estimate basis.   

 

These (risk margin inclusive) valuation outcomes can be considered in the context of 

the emerging experience and what is known about the portfolio.  Also, the basis 

changes required to deliver these outcomes can be considered in the context of the 

emerging experience. 

Internal benchmarking 

 

As part of the CoV selection process, the proposed CoVs should be subjected to a 

range of internal checks.  For each source of uncertainty individually the adopted 

CoVs should be compared between valuation classes, particularly similar valuation 

classes, for outstanding claim liabilities, premium liabilities and insurance liabilities.  

Comparisons should also be made between outstanding claim and premium liability 

CoVs within classes. 

 

For independent risk, there are two main dimensions that should be considered in the 

context of internal benchmarking: portfolio size and length of claim run off.  The law 

of large numbers implies that the larger the portfolio, the lower the volatility arising 

from random effects.  Also, the longer a portfolio takes to run off, the more time there 
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is for random effects to have an impact.  These considerations have a number of 

implications for independent risk CoV selection, including: 

 

 Outstanding claim liability CoVs for short-tail portfolios are likely to be lower 

than for similar sized long-tail portfolio and substantially lower than much 

smaller long-tailed portfolios.   

 Premium liability CoVs for long-tail portfolios would normally be higher than 

outstanding claim liability CoVs for the same portfolios.  This is due more to the 

law of large numbers than any material differences in the length of the run off.  

The extent of the difference will depend on the size of the premium liability and 

outstanding claim liability with the difference being more for small portfolios 

which will have higher independent risk components than for large portfolios 

which will have smaller independent risk components. 

 Premium liability CoVs for short-tail portfolios would normally be lower than 

outstanding claim liability CoVs for the same portfolios, assuming the same 

independent risk profile between outstanding claim and premium liabilities.  This 

is due mainly to the law of large numbers.  The independent risk profiles may 

not, however, be similar.  Event risk, where material, is likely to mean that the 

independent risk profile of premium liabilities and outstanding claim liabilities 

are different.  This is likely to offset the benefit that premium liabilities gain from 

their greater size and in any event make benchmarking problematic. 

 

For internal systemic risk, the CoVs can be compared in the context of each valuation 

class.  If template models are used for similar portfolios, particularly classes with 

homogeneous claim groups, then one would expect CoVs to be similar between 

classes.  Also, the underlying process and the key drivers of this process are likely to 

be more complicated in long-tail portfolios than most short-tail portfolios.  If similar 

valuation methodologies are applied for both short- and long-tail classes then one 

would expect higher internal systemic risk CoVs for the long-tail portfolios. 

 

The main sources of external systemic risk are likely to be much more significant for 

long-tail portfolios with the exception of event risk for property and, to a lesser 

extent, motor classes and liability risk for home classes. 

 

External benchmarking 

 

External benchmarking refers to the use of the Tillinghast and Trowbridge 2001 

papers or APRA’s November 2008 General Insurance Risk Margins Industry Report 

to benchmark CoVs and/or risk margins derived as part of a risk margins analysis. 

 

APRA have indicated that a large number of actuaries rely, to varying extents, on the 

analysis presented in the 2001 papers in the selection of their own risk margin 

assumptions.  This reliance ranges from those actuaries who conduct thorough 

analyses on their own portfolios and then benchmark the adopted risk margins with 

those derived from the 2001 papers to those actuaries that derive risk margins solely 

from the 2001 papers with little or no consideration of the reasonableness of this 

approach in the context of their own portfolios.  The latter approach was certainly not 

one of the original intentions of the authors of the 2001 papers.  The former approach 

is more consistent with the expectations of the authors. 

 

It is not our intention to dismiss external benchmarking out of hand.  Rather, we 

consider that this form of benchmarking has some merit when combined with a 

thorough analysis of a particular claims portfolio.  Benchmarking will be of some 
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benefit where there is little information available for analysis purposes, particularly 

for the analysis of independent risk.  More generally, the use of benchmarking should 

be as a sanity check rather than as the entire basis of the risk margin assessment.  In 

any deployment of benchmarking, the differences between the benchmark portfolio(s) 

and the claims portfolio being analysed must be considered and factored into the 

analysis.   

 

The use of the Tillinghast paper in the assessment of independent risk is discussed in 

section 2.4 above.  Before using the Tillinghast paper, however, an actuary needs to 

be aware of the following issues: 

 

 The assumptions required to derive the independent component of the CoV were 

derived based on an analysis conducted during 2001.  The independent CoVs 

depend on the size of the outstanding claim or premium liabilities.  Inflation 

between 2001 and the effective date of the current valuation should be backed out 

of the outstanding claim and premium liabilities before calculating the 

independent CoV.  If this is not done then the independent CoV will be 

understated. 

 The premium liability risk margin should be calculated by applying a multiple to 

the outstanding claim risk margin for an outstanding claim liability that is the 

same size as the premium liability, not for the actual outstanding claim liability, 

irrespective of whether this is lower or higher than the premium liability.  

Hindsight analysis 

 

Hindsight analysis involves comparing past estimates of outstanding claim liabilities 

and premium liabilities against the latest view of the equivalent liabilities.  

Movements can be analysed and converted to a coefficient of variation reflective of 

the actual volatility observed in the past.  This volatility contains a combination of 

past instances of independent risk, internal systemic risk and external systemic risk.  

Care needs to be taken in the interpretation of any hindsight analysis as the models 

may have changed (improved) since previous valuations were conducted.  Also, 

future external sources of systemic risk may differ materially from past such episodes 

of systemic risk. 

 

Hindsight analysis is particularly useful for short-tail valuations where there is little 

serial correlation between consecutive valuations.  Hindsight analysis is somewhat 

less valuable for long-tail portfolios where there is usually significant serial 

correlation between consecutive valuations. 

 

The reader is referred to the 2005 paper An Empirical Approach to Insurance 

Liability Prediction Error With Application to APRA Risk Margin Determination by 

Andrew Houltram for a thorough discussion of the benefits and practicalities 

associated with hindsight estimation. 

 

Another form of hindsight analysis, which we will refer to as mechanical hindsight 

analysis, is one that takes a mechanical approach to estimating the outstanding claims 

and premium liabilities, systematically removing the most recent claims experience.  

An example of such an approach is as follows: 

 

 Apply a chain ladder method on a triangulation of cumulative claim payments 

based on a triangulation of data at the valuation date.   
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 The adopted payment development factors should be calculated using an 

objective approach, e.g. the average of the actual experience over the last three 

years.  

 The outstanding claim payments derived using all data to the valuation date is 

referred to as the ‘current’ estimate. 

 Remove a diagonal of payment data one at a time and apply the same method 

objectively to derive outstanding claim payments at past valuation dates. 

 Compare each of the past estimates of outstanding claim payments with the 

current estimate, for the equivalent accident periods and ensuring that relevant 

payments made between valuation dates are added to the current estimate of 

outstanding claim payments. 

 The method can be extended to incorporate a mechanical projection of premium 

liabilities at each valuation date.  Premium liability volatility and past levels of 

correlation between outstanding claim and premium liabilities can be examined. 

 

Mechanical hindsight analysis may be used to analyse: 

 

 independent risk, by focusing the analysis on periods where there was a degree of 

stability in the experience with few or no systemic trends; 

 internal systemic risk, by applying this technique using a range of actuarial 

methods (preferably those used for central estimate valuation purpose) and 

observing the differences in volatility outcomes; and  

 all past sources of uncertainty, by applying the approach across all past periods. 

 

The latter is a mechanical variant of the hindsight analysis described in the first three 

paragraphs of this sub-section. 

 

2.8. Documentation and regularity 

 
Documentation 

 

APRA have indicated that a wide range of approaches have been taken by actuaries in 

the documentation of risk margins analysis.  Documentation ranges from that which 

provides a thorough discussion of approach and justification for the assumptions 

underpinning the adopted risk margins to that which provides very little commentary 

or justification. 

 

Documentation of actuarial judgement is not necessarily an easy task.  However, we 

believe that the framework offers actuaries an opportunity to document their analysis 

and key judgemental decisions in a complete and robust manner, aligned to the key 

steps in the framework.   

 

Regularity and review  

 

A full application of each step of the framework is a substantial and comprehensive 

undertaking.  We do not consider that the framework need be applied in its entirety 

each time an actuary conducts a central estimate valuation of insurance liabilities.   

 

We consider a full application of the framework at less regular intervals to be 

reasonable and appropriate.  At the very least, however, a full application should be 

applied every three years.  These extensive reviews should incorporate all of the steps 
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of the framework discussed above and summarised in Table 1.  They will also involve 

significant interaction with business unit management. 

 

At more regular intervals, aligned to the times when central estimate valuations of 

insurance liabilities are conducted, a less comprehensive review of the key 

assumptions adopted as part of the previous full application will suffice.  The key 

assumptions should be examined in the context of: 

 

 any emerging trends; 

 emerging systemic risks; and  

 changes to valuation methodologies.   

 

Changes to key assumptions would only be considered where there is reasonable 

justification for doing so, i.e. where the previous assumptions are no longer deemed 

appropriate.  Another way of thinking of these regular reviews are as monitoring 

exercises where key assumptions derived from the previous full framework  

application are monitored against emerging experience and developing knowledge 

and adjusted where justified.   

 

If new portfolios emerge in the period between full applications of the framework, 

one should consider applying the key steps within the framework to those portfolios.   

 

The successful deployment of this framework will require significant interaction with 

business unit management.  The process may benefit from a feedback and 

communication loop, enabling the business to provide their views on the outcomes of 

the analysis.   This will reduce the possibility that lots of assumptions, which all make 

sense individually, contribute to an overall outcome that does not make sense.  This 

communication loop may incorporate the demonstration of scenarios that would give 

rise to the outcome assessed at the selected probability of adequacy.   
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3.     Independent risk assessment 

 

Independent risk reflects the contribution to the uncertainty associated with the actual 

claim cost outcome from random effects.  This source of risk has two components: 

the random component of parameter risk and the random component of process risk.  

It is not normally particularly enlightening or beneficial to split independent risk 

between these two components.  Having said this, some quantitative modelling 

techniques do allow the split to be assessed as part of their normal application. 

 

There are a number of approaches that may be used to analyse independent sources of 

risk, including:: 

 

 Mack method; 

 Bootstrapping; 

 Stochastic Chain Ladder; 

 Generalised Linear Modelling (GLM) techniques; and 

 Bayesian techniques 

 

The bibliography includes references to a number of papers that describe these 

techniques.  

 

The techniques vary in their capacity to enable actuaries to identify past levels of 

independent risk.  In the application of most of these techniques, one is attempting to 

fit a model to past systemic episodes and trends and to analyse the residual volatility 

once these episodes and trends have been fitted away.  The better the model fit is the 

more likely that the residual volatility observed reflects random effects alone.   

 

An actuary faced with the task of assessing independent risk will need to decide upon 

which techniques to use for each of their valuation classes.  This decision should 

consider the extent to which the independent risk for a particular valuation class is 

material to the overall claim portfolio risk margin, the contribution to uncertainty 

from internal systemic risk and external systemic risk and the cost and effort 

associated with applying the techniques.  Where the cost and effort outweighs the 

potential benefit then a simpler approach, perhaps incorporating benchmarking, may 

be considered. 

 

For some valuation portfolios, the data available may be too limited or volatile to 

enable a credible split between past episodes of systemic risk and past independent 

risk.  In these cases, actuaries may consider using a model that does not attempt to fit 

away the past systemic risk and supplement this analysis with additional allowances 

for external systemic risk, to the extent that this is considered to differ from past 

systemic risk, and internal systemic risk, which cannot be modelled using standard 

quantitative modelling techniques.   

 

Independent risk assessment for outstanding claim liabilities 

 

Any of the techniques mentioned above can be used in the assessment of past 

independent risk for outstanding claim purposes.  Some of the techniques offer more 

flexibility in terms of fitting to past systemic episodes and trends.   

 

Consideration should be given to aligning the methodology adopted to analyse 

uncertainty with that used for central estimate purposes.  For example, if the PPCI 

method plays an important role in the central estimate assessment and bootstrapping 
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is the preferred approach to analysing uncertainty then the PPCI method should be 

bootstrapped.  This will ensure that past volatility is examined and conclusions drawn 

in an environment that is internally consistent. 

 

GLM techniques can be used to model individual claims or aggregate claims.  These 

techniques are used for reserving purposes to identify the key factors that have 

contributed to past claim cost outcomes.  Combined with a range of useful statistical 

diagnostics, these techniques are well placed to support the analysis of independent 

risk. 

 

Bootstrapping techniques offer less flexibility than GLM techniques but can be 

adapted to help in the assessment of random effects.  For example, if past periods that 

have been largely unaffected by systemic episodes can be identified then the 

bootstrap residuals can be calculated for these stable periods and used as part of the 

bootstrapping process.  Plots of residuals by accident period, development period and 

experience period can be used to identify periods that have been affected by past 

systemic episodes. 

 

Independent risk assessment for premium liabilities 

 

The bootstrapping, GLM and Bayesian approaches may also be used for the purpose 

of analysing the volatility in past claim experience for the purpose of assessing the 

independent risk component for premium liabilities. 

 

However, it is possible to use simpler techniques to analyse the past volatility of key 

components of the premium liabilities.  Consider a valuation class where the central 

estimate of the claim cost component of the premium liabilities is assessed by 

combining a projected claim frequency and average claim size.  The adopted claim 

frequency and average claim size has been selected following an analysis of output 

from the outstanding claim valuation supplemented by portfolio level pricing 

analysis. 

 

For some valuation classes, it can be a relatively straightforward exercise to remove 

the impact of past systemic episodes (including seasonality) from observed claim 

frequencies and determine the claim frequency CoV in respect of past residual 

volatility.  Similarly, past average claim sizes can be adjusted to remove past 

inflation, including both standard and superimposed, and other past systemic episodes 

(again including seasonality) and a CoV in respect of past residual volatility derived. 

 

Where a loss ratio approach to projecting premium liabilities is used, allowance 

should be made for systemic shifts in past premium levels as well as claim costs. 

 

Often large claims are extracted for separate analysis.  Again, observations can be 

made as to the aspects of past experience that represent systemic episodes and those 

that are purely random. 

 

The process of identifying and isolating past systemic episodes can only be enhanced 

if an actuary has a strong understanding of the possible systemic sources of risk for a 

particular portfolio.  The role that product and claim management can play in 

improving this understanding should not be underestimated.  This is discussed further 

in section 4. 
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4.     Systemic risk assessment 

4.1. Internal systemic risk 

 
Internal systemic risk refers to the uncertainty arising from the actuarial valuation 

models used being an imperfect representation of the insurance process as it pertains 

to insurance liabilities.   

 

As discussed in section 2.5, we consider there to be three main sources of internal 

systemic risk.  These are: 

 

 Specification error - the error that can arise from an inability to build a model 

that is fully representative of the underlying insurance process.   

 Parameter selection error - the error that can arise because the model is unable to 

measure all predictors of claim cost outcomes or trends in these predictors.   

 Data error - the error that can arise due to poor data, unavailability of data and/or 

inadequate knowledge of the portfolio being analysed. 

 

When an actuary conducts an assessment of outstanding claim or premium liabilities, 

there are a wide range and variety of approaches and methodologies that are 

available.  The merits of each approach will be considered in the context of the 

valuation classes being assessed.  The characteristics of each class and the level of 

information available, including granularity of data, will all play a role in the decision 

around which approach to use. 

 

Although care will normally be taken to ensure that the approach adopted is 

appropriate for the valuation class being assessed, models are likely to represent a 

simplified view of the insurance process.  Models also range in their capacity to 

identify underlying trends in the claims experience.  Standard triangulations methods 

will normally analyse predictors (e.g. claim payments, reports, finalisations, case 

estimates) that have been aggregated to a reasonably high level or lag rather than lead 

the underlying drivers of the insurance process. 

 

In light of this, any analysis of uncertainty would be incomplete without an objective 

assessment of the adequacy of the modelling infrastructure and its ability to reflect 

and predict the underlying insurance process.  In this section of our paper, we propose 

one approach, involving the development of a balanced scorecard, which may be used 

as part of such an assessment.  

 

One other point worth making before we walk through the balanced scorecard 

approach in detail is that the assessment of internal systemic risk must be conducted 

in the context of the actual approach used to assess the central estimate of outstanding 

claim and premium liabilities.  The strengths and weakness associated with that 

approach will be considered and scored with a view to determining an appropriate 

allowance in risk margins for internal systemic risk.  Consistency between the central 

estimate and risk margin assessments are one outcome of a robust assessment of 

internal systemic risk. 

 

The balanced scorecard was discussed in section 2.5 and presented diagrammatically 

in Figure 2.  In summary the approach involves: 

 

 For each of the specification, parameter and data risk components, conduct a 

qualitative assessment of the modelling infrastructure, considering a range of risk 
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indicators and scoring these indicators on a scale of 1 to 5 (where 5 represents 

best practice). 

 Apply weights to each risk indicator, reflecting its relative importance to the 

overall modelling infrastructure, and calculate a weighted average score 

representing an objective view of the quality of the modelling infrastructure for 

each valuation class. 

 Calibrate the weighted average score derived to a CoV in respect of internal 

systemic risk.  The development of appropriate CoVs will likely involve a 

substantial amount of judgement, perhaps supplemented by quantitative analysis. 

 

In a paper entitled Asbestos Liabilities & the New Risk Margins Framework, prepared 

by Brett Riley and Bruce Watson, the authors describe an alternative approach to 

assessing the level of internal systemic risk.  This approach specifies High and Low 

scenarios that ‘represent the end points of what might be considered a reasonable 

range of central estimates based on alternative interpretations of all available 

information’.  The approach advocated by Messrs Riley and Watson certainly has 

merit and represents a reasonable alternative to the balanced scorecard approach 

described in this paper.  It also has the appeal of being simpler and, therefore, more 

practical to apply. 
 

Scoring the modelling infrastructure 

 

We would encourage actuaries to develop a balanced scorecard approach that is 

suited to the characteristics of the valuation classes within their own claims portfolio 

including risk indicators that are most relevant in the context of these classes.  Having 

said this, we feel that it is useful if we outline potential risk indicators that actuaries 

may wish to consider and develop for the purpose of their own analysis.  Table 2 

includes potential risk indicators and some suggested minimum requirements for a 

high score for each of these indicators.  The characteristics that represent a poor score 

should be readily apparent. 
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Table 2: Internal systemic risk - Potential risk indicators 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk component Potential risk indicators Requirements for high score

Number of independent models used
Many different modelling approaches considered - each approach should add value by considering different dimensions of 

claims experience

Extent to which models separately analyse different claim/payment types Relevant homogeneous claim or payment types modelled separately

Range of results produced by models
Low variations between different models in terms of past performance - take care that comparisons are appropriate (e.g. PCE 

vs PPCI for old accident periods for short-tail classes may not be appropriate)

Checks made on reasonableness of results
Significant reasonableness checks conducted, including reconciliation of movement in liabilities, diagnostic checks on 

valuation outcomes, acceptance of results by business, expert peer review, benchmarking against industry

Confidence in assessment of model 'goodness of fit' Actual vs Extected close, few difficulties in selecting parameters, relevant sensitivities yield small variances in results

Number and importance of subjective adjustments to factors
Few subjective adjustments, relevant subjective factor sensitivites yield low variances and adjustments regularly monitored 

and reviewed

Extent of monitoring and review of model and assumption performance Model and assumption performance monitored continuously and reviewed regularly

Ability to detect trends in key claim cost indicators Models have performed well in detecting trends in the past

Sophistication and performance of superimposed inflation analysis Detailed analysis of past sources of superimposed inflation and robust quantification of each past source

Level of expense analysis to support CHE assumptions Detailed expense analysis, including how expenses are incurred over the lifetime of claims relating to each claim type

Ability to model using more granular data, e.g. unit record data Unit record data is available and used to further analyse and better understand key predictors and trends in these predictors

Best predictors have been identified, whether or not they are used
Best predictors have been analysed and identified, including internal and external variables that show strong correlaton with 

claims experience

Best predictors are stable over time or change due to process changes Predictors stable over time, stabilise quickly and respond well to process changes 

Value of predictors used
Predictors are close to best predictors, lead (rather than lag) claim cost outcomes, modelled rather than subjectively allowed 

for and unimpaired by past systemic events

Knowledge of past processes affecting predictors Good and credible knowledge of past processes, including changes to processes

Extent, timeliness, consistency and reliability of information from business
Regular, complete and pro-active two-way communication between valuation actuary and claims staff/portfolio managers who 

understand key valuation predictors and how changes may impact or invalidate these 

Data subject of appropriate reconciliations and quality control
Reconciliations against other sources are conducted for all data sources and types, checks are conducted throughout data 

processing steps, reconciliations against previous valuation conducted, data and differences well understood

Processes for obtaining and processing data are robust and replicable No past instances of poor data understanding, no or low potential for miscoding of claim type

Frequency and severity of past mis-estimation due to revision of data No past instances of data revision

Extent of current data issues and possible impact on predictors No known current data issues

Specification error

Parameter 

selection error

Data error
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Each of the risk indicators should be considered in the context of both the outstanding 

claim and premium liabilities.  Additional indicators may be considered for premium 

liabilities, for example whether the outstanding claim liabilities are used as an input 

to the premium liability assessment or whether credible portfolio level pricing 

analysis is used as an input to the premium liability assessment. 

 

For certain short-tail portfolios, some risk indicators may not be as relevant for 

premium liability purposes.  A large variance in the outstanding claim liabilities, 

which might only affect the most recent accident periods and have a relatively small 

impact on the projected ultimate claim frequency or average claim size, may not be 

material in the context of a premium liability assessment. 

 

Table 3 shows the risk indicator scores which underpin the internal systemic risk 

CoVs adopted for Insurer ABC in the example in Figure 3 in section 2.6, with a 

particular focus on outstanding claim liabilities. 
 

Table 3: Internal systemic risk – example balanced scorecard 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The scores and weights shown in Table 3 are for illustration only and should be taken 

as a demonstration of concept than as a set of benchmarks that actuaries can use for 

such portfolios in practice.    

 

The weights allocated to each of the risk indicators are a measure of the importance 

of that risk indicator, relative to the other risk indicators, in terms of its contribution 

to overall internal systemic risk.  The weights and hence relativities between risk 

indicators should reflect the particular valuation infrastructure adopted for each 

valuation class including the relative importance of each risk indicator in the context 

of that valuation class.   

 

Premium liabilities scored better than outstanding claims in this example due to the 

extensive use in their assessment of outcomes from the valuation of outstanding 

claims and independent and credible portfolio level pricing analyses conducted 

recently. 

Risk component Potential risk indicators

Motor 

score OSC

Motor 

weight

Home 

score OSC

Home 

weight

CTP score 

OSC

CTP 

weight

Number of independent models used 4 7 4 7 3 2

Extent to which models separately analyse different claim/payment types 3 3 4.5 5 2 7

Range of results produced by models 4 5 4 4 2 2

Checks made on reasonableness of results 5 5 5 5 4 5

Confidence in assessment of model 'goodness of fit' 4 5 4 5 2 7

Number and importance of subjective adjustments to factors 5 3 4 3 3 5

Extent of monitoring and review of model and assumption performance 4 5 4 5 5 8

Ability to detect trends in key claim cost indicators 4 4 3 4 3 6

Sophistication and performance of superimposed inflation analysis 0 0 4 10

Level of expense analysis to support CHE assumptions 4 4 4 4 2 2

Ability to model using more granular data, e.g. unit record data 2 2 2 2 5 2

Best predictors have been identified, whether or not they are used 4 3 4 5 3 7

Best predictors are stable over time or change due to process changes 5 5 4 5 2 6

Value of predictors used 4 5 4 5 3 5

Knowledge of past processes affecting predictors 4 8 4 8 4 8

Extent, timeliness, consistency and reliability of information from business 4 5 4 5 4 5

Data subject of appropriate reconciliations and quality control 4 7 4 7 4 8

Processes for obtaining and processing data are robust and replicable 5 3 5 3 5 3

Frequency and severity of past mis-estimation due to revision of data 5 3 3 3 5 5

Extent of current data issues and possible impact on predictors 4 3 5 3 5 3

Total weighted average score - outstanding claims (OSC) 4.1 4.0 3.5

Total weighted average score - premium liabilities 4.5 4.5 4.0

Specification error

Parameter 

selection error

Data error
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Calibrating scores to CoVs 

 

Once a score representing an objective and qualitative view of the efficacy of the 

modelling infrastructure has been derived, one needs to determine a CoV that is an 

appropriate representation of the contribution to outstanding claim and premium 

liability uncertainty from internal systemic risk.  This step is likely to require a 

significant amount of subjective judgement, supplemented by quantitative analysis. 

 

We suggest that individual actuaries develop a CoV scale which represents their view 

of the uncertainty associated with internal systemic risk for the full range of possible 

balanced scorecard outcomes, ranging from worst practice to best practice (or 

‘perfect’) modelling approaches.  A large degree of judgement will be required to 

derive a reasonable range in the context of a particular claims portfolio.  The analysis 

conducted to score the modelling infrastructure together with past model performance 

should provide invaluable insights into the potential variability associated with a 

particular modelling approach.   

 

If more than one methodology has been deployed in the past then a hindsight analysis 

of the actual past performance of each method can be used to assess the relative 

performance of each method and the extent to which multiple models can improve the 

performance of the whole modelling infrastructure. 

 

Mechanical hindsight analysis (see section 2.7) may also be used to help in the 

assessment of internal systemic risk.  For example, a mechanical hindsight analysis 

can be conducted using one method with all claim or payment types aggregated.  A 

further retrospective analysis can be conducted using multiple methods with claim or 

payment types separated into individual homogeneous groups. The relative difference 

in performance of the two modelling infrastructures over time may give some insights 

into the additional uncertainty associated with poor modelling approaches compared 

to fair or good modelling approaches.   

 

Based on our experience, we would suggest that the minimum CoV associated with a 

‘perfect’ model is unlikely to be much less than 5%.  Even a ‘perfect’ model will not 

be able to completely replicate the true underlying insurance process or identify every 

possible predictor of claim cost outcomes. 

 

If you consider a single, aggregated model with limited data or information available 

to populate the model, significant subjective assumptions required and few identified 

predictors, CoVs of 20% or above in respect of internal systemic risk are readily 

justifiable.  For such models, it is not infeasible that internal systemic risk could be 

the main contributor to overall uncertainty.    

 

Table 4 gives CoV scales used in the assessment of risk margins for Insurer ABC as 

part of the example in Figure 3. 
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Table 4: Internal systemic risk – example CoV scale 

 

 

 

 

 

 

 

 

 

 

 

 
The CoV scale shown in Table 4 is an example only.  Actuaries should select CoV 

scales that are appropriate in the context of their own valuation classes and the 

modelling infrastructure adopted for each of those valuation classes.  Any hindsight 

analysis deployed to support the selection of appropriate CoVs should be designed to 

align with the actual valuation methods adopted for the valuation classes being 

analysed. 

 

Further comments on the CoV scale as presented in Table 4 are: 

 

 The scale is not linear reflecting our view that the marginal improvement in 

outcomes between fair and good modelling infrastructures is less than the 

marginal improvement between poor and fair modelling infrastructures. 

 The CoVs for CTP, a long-tail portfolio, are higher than those for Motor and 

Home, both short-tail portfolios.  For long-tail portfolios, it is generally more 

difficult to develop a modelling approach that is representative of the underlying 

insurance process.  Also, key predictors are often less stable for long-tail 

portfolios and past episodes of systemic risk more likely to impair the ability to 

fit a good model. 

 The scale has been used for both outstanding claim and premium liability 

purposes.  A reasonable ‘a priori’ assumption is that similar scales can be used 

for both.  Arguments can be made for premium liabilities to have higher or lower 

CoVs than those applying to outstanding claim liabilities, particularly for poor 

modelling approaches.  For example, the assessment of premium liabilities may 

include additional uncertainty associated with the estimation of exposure or 

premium relating to unclosed or contractually bound future business.  If this is the 

case then a loading on top of the outstanding claim liability CoVs may be 

justifiable.  On the other hand, for certain stable short-tail classes, the difference 

between a simple loss ratio approach and a more thorough frequency/severity 

approach may not be material in terms of performance in the assessment of 

premium liabilities but the difference between a single aggregate model and 

multiple disaggregated models could be material in terms of performance in the 

assessment of outstanding claim liabilities. 

 

4.2. External systemic risk 

 

External systemic risk refers to the uncertainty arising from non-random risks 

external to the actuarial modelling process.  This uncertainty encapsulates systemic 

episodes that have not yet occurred but may emerge in the future and those that are 

emerging in the recent experience but where there is some uncertainty as to how they 

will develop in future.  The risk associated with the actuarial modelling infrastructure 

Score from 

balanced scorecard 

assessment Motor CoV Home CoV CTP CoV

1.0 to 1.5 17.5% 17.5% 25.0%

1.5 to 2.0 13.0% 13.0% 20.5%

2.0 to 2.5 10.5% 10.5% 17.0%

2.5 to 3.0 8.5% 8.5% 14.0%

3.0 to 3.5 7.0% 7.0% 11.5%

3.5 to 4.0 6.0% 6.0% 9.5%

4.0 to 4.5 5.5% 5.5% 8.0%

4.5 to 5.0 5.0% 5.0% 7.0%



A Framework for Assessing Risk Margins 

 

 

 

37 

potentially being unable to identify emerging risks will be picked up as part of a 

robust internal systemic risk assessment. 

 

Certain stochastic quantitative approaches may be used to gain insights into past and 

emerging sources of external systemic risk.  These insights, together with those 

gained from the central estimate analysis, will provide useful intelligence on the type 

of risks that can emerge in each valuation portfolio, at least the ones that have 

emerged in the past.  However, one cannot readily assume that past experience is a 

reasonable reflection of the future.  A more rigorous approach should consider each 

of the possible future sources of external systemic risk, using a number of sources of 

information.   

 

Communication with business experts 
 

Typically actuaries will hold discussions with portfolio and claim management as part 

of the valuation process.  These discussions normally provide valuable insights into 

emerging trends and possible future sources of external systemic risk.  However, the 

focus is normally on gaining an appropriate level of portfolio understanding to enable 

an informed assessment of the central estimate of outstanding claim and premium 

liabilities.  Although the information gathered will play a role in the assessment of 

risk margins, this tends to be more an afterthought than a key focus of discussions. 

 

Discussions can be readily tailored to topics of relevance for both central estimate and 

risk margin purposes and ensure an appropriate level of focus on both aspects of the 

valuation process.  Business management should be given time to prepare for these 

meetings to ensure that the valuation actuary gains the maximum possible benefit 

from them.   

 

From a risk margins perspective, the focus of these meetings should be on the 

identification of key potential sources of systemic risk, including those that have 

begun to emerge and those that may emerge in future.  Discussions should consider 

all aspects of the portfolio management process, including underwriting and risk 

selection, pricing, claims management, expense management, emerging portfolio 

trends and the environment within which the portfolio operates.  Once the key 

sources of external systemic risk have been identified, they can be categorised for 

analysis purposes.  As well as identifying key risks, the quantification of risk should 

be another key consideration for business management interactions. 

 

Selection of assumptions 

 

The selection of CoVs for each risk category will involve a combination of 

quantitative analysis and qualitative judgement.  Some risk categories will be more 

open to quantitative analysis than others.  For those categories where such analysis is 

more difficult, sensitivity analysis, perhaps in conjunction with business 

management, may shed some light on the range of possible outcomes. 

 

In assessing CoVs in respect of each risk category, it is also important to consider the 

shape of the entire distribution, to the extent possible.  Some risks will demonstrate 

characteristics that are reflective of a highly skewed distribution and, as such, may 

not have a material bearing on a 75
th
 percentile risk margin but may be more relevant 

for higher probabilities of adequacy.  An example of such a risk is latent risk where 

the probability of such risk emerging is very low and certainly lower than 25%.  

Certain sources of superimposed inflation may also be considered to belong to this 

category. 
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In focusing efforts, consideration may be given to ranking individual risks for each 

valuation class in order of importance, separately for outstanding claim and premium 

liabilities.  For a number of valuation classes it is quite likely that such an exercise 

will identify a small number of key risks and allow efforts to be focused accordingly.  

This might also provide justification for excluding certain risk categories that are 

deemed to be immaterial in terms of their contribution to the overall CoV.  A scoring 

system, developed in conjunction with business experts, may be introduced as a 

convenient mechanism for ranking individual risks and checking that the 

contributions from individual risks to the overall CoV for external systemic risk are 

reasonable. 

 

Each risk category will represent the amalgamation of a number of identified 

potential sources of risk.  In some cases, these individual risks will be correlated and 

allowance will need to be made for this when combining the risks to determine a CoV 

for the risk category as a whole.  A simple approach, similar to that discussed in 

section 2.5, may be used to allow for these intra-risk category correlation effects. 

 

A key consideration when determining risk categories for a particular valuation class 

is whether there is any correlation between categories.  The consolidation of the 

analysis of external systemic risk is substantially simplified if one can assume that 

each of the risk categories is independent.  Certain risk categories may have to be 

combined to ensure that this assumption is valid. 

 

In the balance of this section, we explore each of the risk categories discussed in 

section 2.5 with a view to providing some insights into the types of risk that may be 

included in each risk category and the analysis that may be conducted to estimate 

appropriate CoVs for each category. 

 

Economic and social risks  

 

This risk category incorporates a number of potential sources of external systemic 

risk.  These sources include, but are not limited to, levels of standard inflation (AWE 

and CPI), general economic conditions (unemployment rates, GDP growth, interest 

rates, asset returns), fuel prices, driving patterns, etc. 

 

Some of these risks can have a material impact on both outstanding claim and 

premium liabilities.  Others are material only for premium liabilities.  For example, 

economic conditions can have a material impact on outstanding claim and premium 

liabilities for professional lines and builder’s warranty valuation classes.  Uncertainty 

around driving conditions, on the other hand is less relevant for motor outstanding 

claims than it is for motor premium liabilities. 

 

Uncertainty around AWE and/or CPI will impact all valuation classes.  Due to the 

longer term settlement for long tail classes, AWE uncertainty is somewhat more 

material for these classes than for short tail valuation classes.  Analysis of past levels 

of AWE and CPI can shed some light on past systemic sources of volatility.  

Economic commentators often provide insights into the potential sources of volatility.   

 

Any analysis of past levels of inflation should consider the extent to which past 

volatility is random and the extent to which it has been impacted by systemic events.  

For the purpose of analysis of systemic sources of risk, we are only interested in the 

latter.  This applies to the analysis of past experience in respect of any systemic event 

in any risk category.   

 

Potential systemic shifts in claim frequency for short tail valuation portfolios should 

be included in this risk category. 
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Legislative, political and claims inflation risk 

 

These risks have been combined, for convenience, into one risk category since they 

are often correlated.  For example, the risks associated with the legislative and 

political environment are often correlated to the drivers of non-standard claims 

inflation for long tail valuation classes. 

 

This risk category is likely to be much more material for long tail valuation classes 

than for short tail classes.  For long tail classes, in particular, a number of potentially 

material risks may be identified and allocated to this risk category.  Some of these 

risks will be correlated and, as such, quantification should make allowance for this 

correlation.   

 

The analysis conducted to quantify CoVs for this risk category can also be used to 

justify superimposed inflation assumptions for central estimate valuation purposes.  

After all, for long tail valuation classes, the risks in this category are normally 

aggregated and referred to as superimposed inflation for insurance liability valuation 

purposes.  For each risk, one is aiming to form a view of the range of possible 

impacts on claim cost outcomes.  The average of this range, combined across all 

risks, provides an estimate of superimposed inflation. 

 

Individual actuaries will identify the key risks in this category in the context of their 

own claims portfolio.  As a general guide, for long tail classes, this category would be 

expected to include some of the following sub-groups of risk: 

 

 Impact of recent legislative amendments, including possibility of erosion of intent 

of amendments through assessment and threshold erosion, changes in court 

interpretation, etc.  

 Potential for future legislative amendments with retrospective impacts. 

 Precedent setting in courts, including impact of judicial decisions perhaps leading 

to new heads of damage. 

 Changes to medical technology costs 

 Changes to legal costs 

 Systemic shifts in large claim frequency or severity 

 

Typically, actuaries will have access to various forms of analysis relating to the 

potential impact of a specific series of legislative amendments.  This information may 

include both external and internal analyses, the latter possibly tailored to the specifics 

of a particular portfolio.  When supplemented by discussions with product and claim 

management, a sound understanding of the range of possible outcomes can be 

obtained, including the likelihood and potential severity of a particular outcome 

occurring. 

 

For short tail classes, this risk category includes the risk that claim inflation will 

increase at a level different from that adopted for central estimate purposes, in 

addition to that arising from standard inflation (see above) or claim management 

process risk (see below).  Claim cost reduction initiatives would normally be 

allocated to this category and information is sometimes available as to the range of 

possible outcomes from such initiatives.   

 

Claim management process change risk 

 

Changes to the claim management process can impact all valuation classes.  

Typically, however, such changes will have a more material impact on some 

valuation classes than others.  The key here is to work closely with claim managers to 
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gain a sound understanding of the claim management philosophy and the process that 

underpins that philosophy.  Current or future potential changes to process should be 

identified as part of such discussions. 

 

Analysis of past experience will help identify past systemic episodes that may have 

been impacted by the claim management process.  Discussions with management 

may help isolate the process changes that contributed to those systemic episodes.  

Reporting patterns, payment patterns, finalisation and reopening rates and case 

estimation processes should all be considered as part of these discussions. 

 

Sensitivity testing of key valuation assumptions, which can be useful in the 

assessment of CoVs for this risk category, is relatively straightforward using 

traditional triangulation techniques.  If such analysis is conducted, sensitivities 

considered should be aligned with the potential sources of uncertainty identified 

following discussions with claim management. 

 

Claim management process risk is likely to be more relevant for outstanding claim 

liabilities than for premium liabilities.  For outstanding claim liabilities, particularly 

for short tail valuation classes, this risk can be material since it impacts the pattern of 

emergence of credible claim estimates.  For premium liabilities, we are more 

interested in the extent to which changes to claim management processes can impact 

the magnitude of the claim cost.  The impact on claim emergence is normally of 

secondary importance.  

 

Expense risk  

 

One would generally expect this to be a small contributor to total external systemic 

risk. 

 

Ideally, one would spend time with product and claim management to understand the 

key drivers of policy maintenance and claim handling expenses.  Armed with a good 

understanding of these drivers, a valuation actuary can identify the key sources of 

possible variation relative to the central estimate assumptions.  Sensitivity testing 

around the key drivers, preferably conducted in association with informed business 

and process experts, and analysis of past expense levels with a view to identifying 

past systemic effects can be combined to help form a reasonable view as to the range 

of possible claim cost outcomes.  Such an analysis could be conducted in conjunction 

with any expense analysis conducted for central estimate expense assumptions. 

 

Event claims can have a material impact on the level of claim handling expenses.  

The larger an event, the smaller the fixed component of the event management cost 

will be as a percentage of the claim cost.  In light of this, the analysis may benefit 

from including claim handling expenses in respect of event claims with the analysis 

of event risk itself. 

 

Event risk 

 

Event risk relates to single events which give rise to a large number of claims.  This 

risk is likely to be material for property and, to a lesser extent, motor valuation 

classes but will be insignificant for most other valuation classes.  Event risk also 

arises in medical malpractice and builders’ warranty portfolios where a large number 

and/or cost of claims can arise from one source, i.e. a single doctor or a single 

builder. 

 

The approach to assessing event risk will differ materially between outstanding claim 

and premium liabilities.  For outstanding claim liabilities, the approach will be 
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defined by the extent to which there are material outstanding events.  If there are, then 

these should be analysed separately.  Discussions with event claim management 

should be held to understand their expectations as to claim cost outcomes and to 

identify any specific issues that may influence outcomes.  The range of development 

patterns for previous events may also influence the view on uncertainty. 

 

There is often a wealth of information available to help in the quantification of event 

risk for premium liabilities, including: 

 

 Past experience in respect of event claims.  When analysing past experience, it is 

important to allow for changes in portfolio size, geographical spread, inflation, 

policy terms and conditions, reinsurance arrangements, etc. where these are 

considered to be material.  It is not particularly difficult, where sufficient credible 

past experience is available, to build a relatively simple statistical model with key 

frequency and severity assumptions based on appropriately adjusted past 

experience.  In fact, modelling of this nature may have been conducted by pricing 

actuaries or as part of a reinsurance placement and can be adapted for event risk 

analysis. 

 Output from proprietary catastrophe modelling.  A number of such models are 

used in practice, including those developed by RMS, EQE, AIR and Risk 

Frontiers.  Insurers will normally have access to these models through their 

reinsurance intermediaries who are well placed to provide advice on the range of 

possible outcomes based on modelled events. 

 Reinsurance intermediaries typically also have available models in respect of 

natural perils, and some man-made perils, that can be used to model perils not 

covered by proprietary catastrophe models.  These, together with the proprietary 

models, will normally be used by intermediaries in support of an insurer’s 

catastrophe reinsurance program renewal and can be readily extended to provide 

advice on the uncertainty associated with event risk.   

 

Latent claim risk  

 

Latent claim risk is negligible for most valuation classes.  For some, primarily 

workers compensation and liability classes, the risk can be considered to be material.  

However, this is one of the most difficult risks to quantify.  The probability of these 

events is low but the impact should they occur could be substantial 

 

Purely in the context of setting risk margins it is unlikely that analysis of latent claims 

risk warrants a substantial commitment of resources given that it is such a low 

probability event.  However if such risk exposure is significant enough to be a formal 

component of the central estimate or if the object of the exercise is modelling extreme 

risks for capital adequacy purposes (using a DFA approach) then a thorough 

examination of this risk driver is certainly warranted. 

.   

This risk is the one most likely to be quantified using a large degree of judgement.  

Discussions with underwriters may help shed some light on some potential sources 

and give a feel for their likelihood and potential impact.  Also, casualty reinsurance 

underwriters often have a more informed understanding of the potential sources of 

latent risk claims from their dealings with a number of direct insurers globally.  Using 

all of the information collected, scenarios may be developed to reflect a possible 

range of scenarios from which reasonable CoVs can be derived. 

 

Recovery risk 

 

This risk category encapsulates systemic uncertainty in relation to reinsurance and 

non-reinsurance recoveries.  This category is likely to be relatively insignificant for 
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most portfolios.  One possible exception is motor valuation classes where third party 

recoveries are often a material consideration.   

 

The focus here should be on systemic events that may lead to different recovery 

outcomes from those adopted for central estimate purposes.   

 

An analysis of past non-reinsurance recovery rates and patterns will inform on past 

systemic events.  Combined with discussions with claim management around current 

trends in recovery management and any current or planned future initiatives that may 

impact recovery levels, one can readily form a view as to the range of possible 

systemic outcomes.    

 

Reinsurance recoverability is another potential source of external systemic risk that 

should be considered within this category.  The extent to which this is material will 

depend on the reinsurance arrangements themselves.  A material shift in reinsurance 

market conditions may significantly alter the ability to recover from reinsurers.  For 

example, one or more catastrophic events (on a global scale) or a downturn in asset 

returns, or a combination of both, may substantially reduce the ability to recover from 

reinsurers.  The probability of such events occurring and materially impacting 

recoveries is low but the severity, should they happen, could be high.  Discussions 

with reinsurance management are often enlightening and can help in the identification 

of possible scenarios, the likelihood of them occurring and the quantitative impact 

should they occur. 
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The emergence of Bayesian Markov Chain Monte-Carlo (MCMC) models has provided 
actuaries with an unprecedented flexibility in stochastic model development. Another 
recent development has been the posting of a database on the CAS website that consists 
of hundreds of loss development triangles with outcomes. This monograph begins by 
first testing the performance of the Mack model on incurred data, and the Bootstrap 
Overdispersed Poisson model on paid data. It then will identify features of some Bayesian 
MCMC models that improve the performance over the above models. The features 
examined include (1) recognizing correlation between accident years; (2) introducing a 
skewed distribution defined over the entire real line to deal with negative incremental paid 
data; (3) allowing for a payment year trend on paid data; and (4) allowing for a change in 
the claim settlement rate. While the specific conclusions of this monograph pertain only 
to the data in the CAS Loss Reserve Database, the breadth of this study suggests that the 
currently popular models might similarly understate the range of outcomes for other loss 
triangles. This monograph then suggests features of models that actuaries might consider 
implementing in their stochastic loss reserve models to improve their estimates of the 
expected range of outcomes.

Glenn Meyers, FCAS, MAAA, CERA, and Ph.D., retired from ISO in 2011 after a  
37-year career as an actuary. He holds a B.S. in Mathematics and Physics from Alma  
College, an M.A. in Mathematics from Oakland University, and a Ph.D. in Mathematics 
from SUNY at Albany. A frequent speaker at Casualty Actuarial Society (CAS) meetings, 
he has served, and continues to serve, the CAS and the International Actuarial Association 
on various research and education committees. He has also served on the CAS Board of 
Directors. Over the years, he has published articles in the Proceedings of the Casualty 
Actuarial Society, Variance, and the Actuarial Review. His research and other service 
contributions have been recognized by the CAS on numerous occasions. He has received 
the Woodward-Fondiller Prize on three separate occasions, the Dorweiller Prize twice, 
the DFA Prize, the Reserves Prize, the Matthew Rodermund Service Award, and the 
Michelbacher Significant Achievement Award. In retirement he still devotes a good 
portion of his time in pursuit of his passion for actuarial research.
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This is the inaugural volume of the new CAS Monograph Series. A CAS monograph is 
an authoritative, peer reviewed, in-depth work on an important topic broadly within 
property and casualty actuarial practice.

In this monograph Glenn Meyers introduces a novel way of testing the predictive power  
of two loss reserving methodologies. He first demonstrates that the method commonly 
used for incurred losses tends to understate the range of possible outcomes. For paid losses, 
both methods tend to overstate the range of expected outcomes. Then he proceeds to  
apply Bayesian Markov Chain Monte-Carlo models (Bayesian MCMC) to improve the 
predictive power by recognizing three different elements implicit in the data histories. He is 
careful to note that the results are based on the histories contained in the CAS Database (of 
loss development triangles), which prevents one from making broad unqualified statements 
about the conclusions drawn in this work.

This monograph lays a solid foundation for future development and research in the 
area of testing the predictive power of loss reserving methods generally and in the use 
of Bayesian MCMC models to improve confidence in the selection of appropriate loss 
reserving methods. Glenn Meyers manages to show the way for raising the performance 
standard of what constitutes a reliable loss reserving methodology in any given situation.

C. K. “Stan” Khury
Chairperson

Monograph Editorial Board

Foreword





Casualty Actuarial Society	 1

The recent attempts to apply enterprise risk management principles to insurance has 
placed a high degree of importance on quantifying the uncertainty in the various 
necessary estimates with stochastic models. For general insurers, the most important 
liability is the reserve for unpaid losses. Over the years a number of stochastic models have 
been developed to address this problem. Two of the more prominent nonproprietary 
models are those of Mack (1993, 1994) and England and Verrall (2002).

While these, and other, models provide predictive distributions1 of the outcomes, 
very little work has been done to retrospectively test, or validate,2 the performance of 
these models in an organized fashion on a large number of insurers. Recently with the 
permission of the National Association of Insurance Commissioners (NAIC), Peng 
Shi and I, in Meyers and Shi (2011), were able to assemble a database consisting of a 
large number of Schedule P triangles for six lines of insurance. These triangles came 
from insurer NAIC Annual Statements reported in 1997. Using subsequent annual 
statements we “completed the triangle” so that we could examine the outcomes and 
validate, the predictive distribution for any proposed model.

Sections 3 and 4 attempt to validate the models of Mack (1993, 1994) and 
England and Verrall (2002). As it turns out, these models do not accurately predict the 
distribution of outcomes for the data included in the subject database. Explanation for 
these results include the following.

•	 The insurance loss environment is too dynamic to be captured in a single stochastic 
loss reserve model. I.e., there could be different “black swan” events that invalidate 
any attempt to model loss reserves.3

•	 There could be other models that better fit the existing data.
•	 The data used to calibrate the model is missing crucial information needed to make 

a reliable prediction. Examples of such changes could include changes in the way the 
underlying business is conducted, such as changes in claim processes or changes in 
the direct/ceded/assumed reinsurance composition of the claim values in triangles.

1	 In this monograph, the term “predictive distribution” will mean the distribution of a random variable, X, given 
observed data x. By this definition the range of outcomes, X, could be quite wide. This, in contrast to the common 
usage of the term “predict,” connotes an ability to foresee the future and, in the context of the subject matter of 
this monograph, implies a fairly narrow range of expected outcomes.

2	An explanation of “validate” will be given in Section 3.
3	The term “black swan,” as popularized by Taleb [2007], has come to be an oft-used term representing a rare high-

impact event.

1. Introduction
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Possible ways to rule out the first item above are to (1) find a better model; and/or 
(2) find better data. This monograph examines a number of different models and data 
sources that are available in Schedule P. The data in Schedule P includes net paid losses, 
net incurred losses, and net premiums.

A characteristic of loss reserve models is that they are complex in the sense that 
they have a relatively large number of parameters. A major difficulty in quantifying the 
uncertainty in the parameters of a complex model has been that it takes a fair amount 
of effort to derive a formula for the predictive distribution of outcomes. See Mack’s 
(1993, 1994) papers and Bardis, Majidi and Murphy’s (2012) paper for examples of 
analytic solutions. Taking advantage of the ever-increasing computer speed, England 
and Verrall (2002) pass the work on to computers using a bootstrapping methodology 
with the overdispersed Poisson distribution (ODP). Not too long ago, the Bayesian 
models4 were not practical for models of any complexity. But with the relatively recent 
introduction of Bayesian Markov Chain Monte Carlo (MCMC) models, complex 
Bayesian stochastic loss reserve models are now practical in the current computing 
environment.

Although Markov chains have long been studied by probability theorists, it took a 
while for their application to Bayesian statistics to be recognized. Starting in the 1930s, 
physicists began using statistical sampling from Markov chains to solve some of the 
more complex problems in nuclear physics. The names associated with these efforts 
include Enrico Fermi, John von Neumann, Stanislaw Ulam and Nicolas Metropolis. 
This led to the Metropolis algorithm for generating Markov chains. Later on, W. Keith 
Hastings (1970) recognized the importance of Markov chains for mainstream statistics 
and published a generalization of the Metropolis algorithm. That paper was largely 
ignored by statisticians at the time as they were not accustomed to using simulations for 
statistical inference. Gelfand and Smith (1990) provided the “aha” moment for Bayesian 
statisticians. They pulled together a relevant set of existing ideas at a time when access 
to fast computing was becoming widely available. In the words of McGrayne (2011, 
Part V): “Almost instantaneously MCMC and Gibbs sampling changed statisticians’ 
entire method of attacking problems. In the words of Thomas Kuhn, it was a paradigm 
shift. MCMC solved real problems, used computer algorithms instead of theorems, 
and led statisticians and scientists into a world where ‘exact’ meant ‘simulated’ and 
repetitive computer simulations replaced mathematical equations. It was a quantum 
shift in statistics” (p. 225).

As was the case for the other social sciences, Bayesian MCMC should eventually 
have a profound effect on actuarial science. And in fact, its effect has already begun. 
Scollnik (2001) introduced actuaries to Bayesian MCMC models. De Alba (2002) 
along with Ntzoufras and Dellaportas (2002) quickly followed by applying these 
models to the loss reserving problem. Verrall (2007) applied them to the chain ladder 
model. In the time since these papers were written, the algorithms implementing 

4	By a “Bayesian model” I mean a model with its parameters having a prior distribution specified by the user. 
By “Bayesian estimation” I mean the process of predicting the distribution of a “statistic of interest” from the 
posterior distribution of a Bayesian model.
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Bayesian MCMC models have gotten more efficient, and the associated software has 
gotten more user friendly.

Here is the situation we now face. First, we are able to construct a wide variety of 
proposed models and predict their distribution of outcomes with the Bayesian MCMC 
methodology. Second, we are able to validate a proposed stochastic loss reserve model 
using a large number of insurers on the CAS Loss Reserve Database. If the insurance 
loss environment is not dominated by a series of unique “black swan” events, it should 
be possible to systematically search for models and data that successfully validate. This 
monograph describes the results I have obtained to date in my pursuit of this goal.

While I believe I have made significant progress in identifying models that do 
successfully validate on the data I selected from the CAS Loss Reserve Database, it 
should be stressed that more work needs to be done to confirm or reject these results 
for different data taken from different time periods.

The intended audience for this monograph consists of general insurance actuaries who 
are familiar with the Mack (1993, 1994) and the England and Verrall (2002) models. 
While I hope that most sections will be readable by a “generalist” actuary, those desiring a 
deeper understanding should work with the companion scripts to this monograph.5

The computer scripts used to implement these models is written in the R programming 
language. To implement the MCMC calculations the R script contains another script 
that is written in JAGS. Like R, JAGS is an open source programming language one can 
download for free. For readers who are not familiar with R and JAGS, here are some links 
to help the reader get started.

• http://opensourcesoftware.casact.org/start This link goes to the home page of the
CAS Open Source Software Committee. This page gives several other links that help
one start using R and JAGS.

• http://r-project.org The home page of the R-Project.
• http://mcmc-jags.sourceforge.net/ A link to download JAGS.
• http://www.rstudio.com/ A currently popular editor for R and JAGS script.

5 Scripts are available at www.casact.org/pubs/monographs/meyers/Monograph_Tables_and_Scripts.xlsx

http://www.casact.org/pubs/monographs/meyers/Monograph_Tables_and_Scripts.xlsx
http://opensourcesoftware.casact.org/start
http://r-project.org
http://mcmc-jags.sourceforge.net/
http://www.rstudio.com/
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2. The CAS Loss Reserve Database

In order to validate a model, one need not only the data used to build the model, but 
also the data with outcomes that the model was built to predict. Schedule P of the 
NAIC Annual Statement contains insurer-level run-off triangles of aggregated losses 
by line of insurance. Triangles for both paid and incurred losses (net of reinsurance) 
are reported in Schedule P.6 To get the outcomes, one must look at subsequent Annual 
Statements.

To illustrate the calculations in this monograph, I selected incurred and paid loss 
triangles from a single insurer in the database, whose data are in Tables 1, 2 and 3. 
The data in the loss triangles above the diagonal lines are available in the 1997 Annual 
Statement. These data are used to build the models discussed below. The outcome data 
below the diagonal lines were extracted, by row, from the Annual Statements listed in 
the “Source” column. These data are used to validate the models.

The database, along with a complete description of how it was constructed and 
how the insurers were selected, is available on the CAS website at http://www.casact.
org/research/index.cfm?fa=loss{us}reserves{us}data.

This monograph will fit various loss reserve models, and test the predictive 
distributions, to a set of 200 insurer loss triangles taken from four Schedule P (50 from 
each of Commercial Auto, Personal Auto, Workers Compensation and Other Liability) 
lines of insurance. An underlying assumption of these models is that there have not 
been any substantial changes in the insurer’s operation. In our real world, insurers 
are always tinkering with their operations. Schedule P provides two hints of possible 
insurer operational changes:

• Changes in the net premium from year-to-year
• Changes in the ratio of net to direct premium from year to year

The criteria for selecting the 200 insurer loss triangles rests mainly on controlling
for changes in the above two items. Appendix A gives the group codes for the selected 
insurers by line of insurance and gives a detailed description of the selection algorithm.

6	Paid losses are reported in Part 3 of Schedule P. Incurred losses are the losses reported in Part 2 minus those 
reported in Part 4 of Schedule P.

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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Table 1.    Illustrative Insurer Net Written Premium

AY 1 2 3 4 5 6 7 8 9 10

Premium 5812 4908 5454 5165 5214 5230 4992 5466 5226 4962

Table 2.    Illustrative Insurer Incurred Losses Net of Reinsurance

AY/Lag 1 2 3 4 5 6 7 8 9 10 Source

1988 1722 3830 3603 3835 3873 3895 3918 3918 3917 3917 1997

1989 1581 2192 2528 2533 2528 2530 2534 2541 2538 2532 1998

1990 1834 3009 3488 4000 4105 4087 4112 4170 4271 4279 1999

1991 2305 3473 3713 4018 4295 4334 4343 4340 4342 4341 2000

1992 1832 2625 3086 3493 3521 3563 3542 3541 3541 3587 2001

1993 2289 3160 3154 3204 3190 3206 3351 3289 3267 3268 2002

1994 2881 4254 4841 5176 5551 5689 5683 5688 5684 5684 2003

1995 2489 2956 3382 3755 4148 4123 4126 4127 4128 4128 2004

1996 2541 3307 3789 3973 4031 4157 4143 4142 4144 4144 2005

1997 2203 2934 3608 3977 4040 4121 4147 4155 4183 4181 2006

Table 3.    Illustrative Insurer Paid Losses Net of Reinsurance

AY/Lag 1 2 3 4 5 6 7 8 9 10 Source

1988 952 1529 2813 3647 3724 3832 3899 3907 3911 3912 1997

1989 849 1564 2202 2432 2468 2487 2513 2526 2531 2527 1998

1990 983 2211 2830 3832 4039 4065 4102 4155 4268 4274 1999

1991 1657 2685 3169 3600 3900 4320 4332 4338 4341 4341 2000

1992 932 1940 2626 3332 3368 3491 3531 3540 3540 3583 2001

1993 1162 2402 2799 2996 3034 3042 3230 3238 3241 3268 2002

1994 1478 2980 3945 4714 5462 5680 5682 5683 5684 5684 2003

1995 1240 2080 2607 3080 3678 2004 4117 4125 4128 4128 1997

1996 1326 2412 3367 3843 3965 4127 4133 4141 4142 4144 2005

1997 1413 2683 3173 3674 3805 4005 4020 4095 4132 4139 2006
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3. Validating the Mack Model

Probably the two most popular nonproprietary stochastic loss reserve models are the 
Mack (1993, 1994) chain-ladder model and the England and Verrall (2002) bootstrap 
ODP model. This section describes an attempt to validate the Mack model on the 
incurred loss data from several insurers that are included in the CAS database. Validating 
the bootstrap ODP model will be addressed in the following section.

Let’s begin with the classic chain-ladder model. Let Cw, d denote the accumulated loss 
amount, either incurred or paid, for accident year, w, and development lag, d, for 1 ≤ w ≤ K  
and 1 ≤ d ≤ K. Cw, d is known for the “triangle” of data specified by w + d ≤ K + 1. The 
goal of this model is to estimate the loss amounts in the last column of data, Cw, K for  
w = 2, . . . , K. To use the chain-ladder model, one first calculates the age to age factors 
given by

∑

∑
= -

+
=

-

=

- for = 1, . . . , 1.
, 1

1

,
1

f
C

C
d Kd

w d
w

K d

w d
w

K d

The chain-ladder estimate of Cw,K is the product of the latest reported loss, Cw, K + 1 - w, 
and the subsequent age-to-age factors fK + 1 - w • . . . • fK - 1. Putting this together, we have

i i i= + - + - -
. . . ., , 1 1 1C C f fw K w K w K w K

Taylor (1986, p. 40) discusses the origin of the chain-ladder model and concludes that 
“It appears that it probably originated in the accounting literature, and was subsequently 
absorbed in to, or rediscovered in, the actuarial.” He goes on to say that “Of course, 
one must bear in mind that both the chain-ladder model and estimation method are 
fairly obvious and might have been derived several times in past literature.” Taylor 
believes that the rather whimsical name of the model was first used by Professor R. E. 
Beard as he championed the method in the early 1970s while working as a consultant 
to the U.K. Department of Trade.

Mack (1993, 1994) turns the deterministic chain ladder model into a stochastic 
model by first treating � ,Cw d as a random variable that represents the accumulated loss 
amount in the (w, d ) cell. He then makes three assumptions.7

7	Depending on the context, various quantities, such as Cw,d , will represent observations, estimates or random 
variables. In situations where it might not be clear, let’s adopt the convention that for a quantity X, 

~
X will indicate 

that X is being treated as a random, or simulated, variable, X̂ will denote an estimate of X, and a bare X will be 
treated as a fixed observation or parameter.
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1.	 � i[ ] =+E , . . . ,, 1 ,1 , ,C C C C fw d w w d w d d

2.	 For any given d, the random variables � ,Cv d and � ,Cw d are independent for v ≠ w.
3.	 Var � i[ ] = α+ , . . . ,, 1 ,1 , ,

2C C C Cw d w w d w d d

The Mack estimate for �[ ] =E for 2, . . . ,,C w Kw K  is given by

i i i= + - + - -
ˆ ˆ . . . ˆ

, , 1 1 1C C f fw K w K w K w K

where

∑

∑
=

+
=

-

=

-
ˆ

, 1
1

,
1

f
C

C
d

w d
w

K d

w d
w

K d

Given his assumptions above, Mack then derives expressions for the standard deviations 
C Cw K w Kw

KSD and SD, ,2∑   =
� � . Table 4 applies Mack’s expressions to the illustrative 

insured data in Table 2 using the R “ChainLadder” package.
In addition to the loss statistics calculated by the Mack expressions, Table 4 

contains the outcomes { },10Cw  from Table 2. Following Mack’s suggestion, I calculated 
the percentile of ∑ = ,101

10 Cww  assuming a lognormal distribution with matching the mean 
and the standard deviation.

Taken by itself, an outcome falling in the 86th percentile gives us little information, 
as that percentile is not unusually high. If the percentile was, say, above the 99.5th per
centile, suspicion might be warranted. My intent here is to test the general applicability 
of the Mack model on incurred loss triangles. To do this, I selected 200 incurred loss 

Table 4.  Mack Model Output for the Illustrative Insurer Incurred Losses

w Ĉw,10 SD CV Cw,10 Percentile

1 3917 0 0.000 3917

2 2538 0 0.000 2532

3 4167 3 0.001 4279

4 4367 37 0.009 4341

5 3597 34 0.010 3587

6 3236 40 0.012 3268

7 5358 146 0.027 5684

8 3765 225 0.060 4128

9 4013 412 0.103 4144

10 3955 878 0.222 4181

Total 38914 1057 0.027 40061 86.03
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triangles, 50 each from four different lines of insurance, and calculated the percentile 
of the ∑ = ,101

10 Cww  outcome for each triangle. My criteria for “general applicability of the 
model” is that these percentiles should be uniformly distributed. And for a sufficiently 
large sample, uniformity is testable! Klugman, Panjer, and Willmot (2012, Section 16.3) 
describe a variety of tests that can be applied in this case.

Probably the most visual test for uniformity is a plot of a histogram. If the percentiles 
are uniformly distributed, we should expect the height of the bars to be equal. Unless 
the sample size is very large, this will rarely be the case because of random fluctuations. 
A visual test of uniformity that allows one to test for statistical significance is the  
p–p plot combined with the Kolmogorov–Smirnov (K–S) test. Here is how it works. 
Suppose one has a sample of n predicted percentiles ranging from 0 to 100 and sort  
them into increasing order. The expected value of these percentiles is given by 

i { }{ } ) ) )( ( (= + + +100 1 1 ,2 1 , . . . , 1e n n n ni . One then plots the expected per
centiles on the horizontal axis against the sorted predicted percentiles on the vertical 
axis. If the predicted percentiles are uniformly distributed, we expect this plot to lie 
along a 45° line. According to the K–S test as described by Klugman, Panjer, and 
Willmot (2012, p. 331), one can reject the hypothesis that a set of percentiles { }pi  is 
uniform at the 5% level if ≡ -maxD p fi i  is greater than its critical value, 136 n

i { }{ } =where 100 1 ,2 , . . . ,f n n n ni . This is represented visually on a p–p plot by 
drawing lines at a distance 136 n  above and below the 45° line.8 We reject the 
hypothesis of uniformity if the p–p plot lies outside the band defined by those lines. 
For the purposes of this monograph, a model will be deemed “validated” if it passes the 
K–S test at the 5% level.

Klugman, Panjer, and Willmot (2012, p. 332) also discusses a second test of uniformity 
that is applicable in this situation. The Anderson–Darling (A–D) test is similar to the 
Kolmogorov–Smirnov test, but it is more sensitive to the fit in the extreme values (near 
the 0th and the 100th percentile) of the distribution. I applied the A–D test along with the 
K–S test on the models described in this monograph with the result that almost all A–D 
tests failed. If in the future someone develops a more refined model, we can raise the bar 
to the more stringent A–D test. Until that happens, I think the K–S test is the best tool to 
differentiate between models.

Figure 1 shows both histograms and p–p plots for simulated data with n =100. The 
plots labeled “Uniform” illustrate the expected result. The K–S D statistic accompanies 
each p–p plot. The “*” indicates that the D statistic is above its critical value.

Figure 1 also shows p–p plots for various departures from uniformity. For example, 
if the predicted distribution is too light in the tails, there are more than expected high 
and low percentiles in the predicted outcomes and we see a p–p plot that looks like a 
slanted “S” curve. If the predicted distribution is too heavy in the tails, there are more 
than expected middle percentiles in the predicted outcomes and we see a p–p plot that 
looks like a slanted backward “S” curve. If the model predicts results that are in general 
too high, predicted outcomes in the low percentiles will be more frequent.

8	This is an approximation as fi ≈ ei.
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To validate the Mack model, I repeated the calculations for the 200 selected 
incurred loss reserve triangles.

Figure 2 shows the p–p plots for the Mack model. The plots were first done 
separately for the outcome percentiles in each line of insurance. Although the plots 
fall inside the K–S band for three of the four lines, the plots for all four of the 
lines resemble the slanted “S” curve that is characteristic of a light tailed predicted 
distribution. When we combine the outcome percentiles of all four lines, the p–p plot 
lies outside the K–S band and we conclude that the distribution predicted by the 
Mack model is too light in the tails for these data. In all the validation plots below 
the K–S critical values are 19.2 and 9.6 for the individual lines and all lines combined 
respectively.

Uniform

F
re

qu
en

cy

0 20 40 60 80 100

0
4

8
12

0 20 40 60 80 100

0
40

80

Uniform

Expected

P
re

di
ct

ed

KS D = 5.2 

Crit. Val.= 13.6

Model is Light Tailed

F
re

qu
en

cy

0 20 40 60 80 100

0
10

20
30

0 20 40 60 80 100

0
40

80

Model is Light Tailed

Expected

P
re

di
ct

ed

KS D = 22.3 *

Crit. Val.= 13.6

Model is Heavy Tailed

F
re

qu
en

cy

0 20 40 60 80 100

0
5

15

0 20 40 60 80 100
0

40
80

Model is Heavy Tailed

Expected

P
re

di
ct

ed

KS D = 17.2 *

Crit. Val.= 13.6

Model is Biased High

F
re

qu
en

cy

0 20 40 60 80 100

0
20

40

0 20 40 60 80 100

0
40

80

Model is Biased High

Expected

P
re

di
ct

ed

KS D = 39.2 *

Crit. Val.= 13.6

Figure 1.  p–p Plots Test for Uniformity



10	 Casualty Actuarial Society

Stochastic Loss Reserving Using Bayesian MCMC Models

Figure 2.  p–p Plots for the Mack Model  
on Incurred Loss Triangles
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4. Validating the Bootstrap ODP Model

This section does an analysis similar to that done in the last section for the bootstrap 
ODP model as described by England and Verrall (2002) and implemented by the 
R “ChainLadder” package. This model was designed to work with incremental losses, Iw,d, 
rather than the cumulative losses Cw,d, where Iw,1 = Cw,1 and Iw,d = Cw,d - Cw,d - 1 for d > 1.

A key assumption made by this model is that the incremental losses are described 
by the overdispersed Poisson distribution with

� �i i i[ ] [ ]= α β = φ α βand, ,E I Var Iw d w d w d w d

The parameters of the model can be estimated by a standard generalized linear model 
(GLM) package.9 They then use a bootstrap resampling procedure to quantify the volatility 
of the estimate.

England and Verrall point out that the using the ODP model on incremental losses 
almost all but requires one to use paid, rather than incurred, losses since the overdispersed 
Poisson model is defined only for nonnegative losses. Incurred losses include estimates 
by claims adjusters that can (and frequently do) get adjusted downward. Negative  
incremental paid losses occasionally occur because of salvage and subrogation, but a 
feature of the GLM estimation procedure allows for negative incremental losses as long 
as all column sums of the loss triangle remain positive.

Table 5 gives the estimates of the mean, the standard deviation for both the ODP 
(with 10,000 bootstrap simulations) and Mack models on the data in Table 3. The 
predicted percentiles of the 10,000 outcomes are also given for each model.

The validation p–p plots, similar to those done in the previous section, for both the 
ODP and the Mack models on paid data, are in Figures 2 and 3. The results for both 
models are quite similar. Neither model validates on the paid triangles. A comparison 
of the p–p plots in Figures 3 and 4 with the illustrative plots in Figure 1 suggests that 
the expected loss estimates of both models tend to be too high for these data.

Let’s now consider the results of this and the prior section. These sections show that 
two popular models do not validate on outcomes of the 200 Schedule P triangles drawn 
from the CAS Loss Reserve Database. These models do not validate in different ways 
when we examine paid and incurred triangles. For incurred triangles, the distribution 

9	England and Verrall (2002) use a log link function in their GLM. They also note that the GLM for the ODP 
maximizes the quasi-likelihood, allowing the model to work with continuous (non-integer) losses.
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Table 5.  ODP and Mack Model Output for the Illustrative Insurer Paid Losses

w

ODP Mack Outcome

Ĉw,10 SD CV Ĉw,10 SD CV Cw,10

1 3912 0 0 3912 0 0.0000 3912

2 2532 21 0.0083 2532 0 0.0000 2527

3 4163 51 0.0123 4162 3 0.0007 4274

4 4369 85 0.0195 4370 28 0.0064 4341

5 3554 96 0.027 3555 35 0.0098 3583

6 3211 148 0.0461 3213 157 0.0489 3268

7 5161 240 0.0465 5167 251 0.0486 5684

8 3437 332 0.0966 3442 385 0.1119 4128

9 4220 572 0.1355 4210 750 0.1781 4144

10 4635 1048 0.2261 4616 957 0.2073 4139

Total 39193 1389 0.0354 39177 1442 0.0368 40000

Percentile 73.91 72.02
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Figure 3.  p–p Plots for the Bootstrap  
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predicted by the Mack model has a light tail. For paid triangles, the distributions 
predicted by both the Mack and the bootstrap ODP models tend to produce expected loss 
estimates that are too high. There are two plausible explanations for these observations:

1.	 The insurance loss environment has experienced changes that are not observable at the 
current time.

2.	 There are other models that can be validated.

To disprove the first explanation, one can develop models that do validate. Failing to 
develop a model that validates may give credence to, but does not necessarily confirm, 
that the first explanation is true. This monograph now turns to describing some efforts 
to find models that do validate.

Figure 4.  p–p Plots for the Mack Model  
on Paid Loss Triangles

0 20 40 60 80 100

0
20

40
60

80

CA − Mack Paid

Expected
P

re
di

ct
ed

KS D = 20.3 *

Crit. Val.= 19.2

0 20 40 60 80 100

0
20

40
60

80

PA − Mack Paid

Expected

P
re

di
ct

ed

KS D = 48.3 *

Crit. Val.= 19.2

0 20 40 60 80 100

0
20

40
60

80

WC − Mack Paid

Expected

P
re

di
ct

ed

KS D = 32.4 *

Crit. Val.= 19.2

0 20 40 60 80 100

0
20

40
60

80

OL − Mack Paid

Expected
P

re
di

ct
ed

KS D = 10.6 

Crit. Val.= 19.2

CA+PA+WC+OL

F
re

qu
en

cy

0 20 40 60 80 100

0
10

30
50

0 20 40 60 80 100

0
20

40
60

80

CA+PA+WC+OL

Expected

P
re

di
ct

ed

KS D = 24.9 *

Crit. Val.= 9.6



14	 Casualty Actuarial Society

I will begin this section on Bayesian MCMC models by quoting the advice of Verrall 
(2007). “For the readers for whom this is the first time they have encountered MCMC 
methods, it is suggested that they simply accept that they are a neat way to get the 
posterior distributions for Bayesian models and continue reading the paper. If they 
like the ideas and would like to find out more . . .” they should read the introduction 
in Appendix B. Keep in mind that the state of the art (e.g., faster multi-core personal 
computers, more efficient algorithms and more user-friendly software) is still rapidly 
advancing. Appendix C explains what I did with the current state of the art, as I perceived 
it, at the time I was writing this monograph.

Now let’s get to the loss reserve models. As pointed out in Section 3, the Mack 
model did not validate on the insurers listed in Appendix A using the loss data that are 
in the CAS Loss Reserve Database. This section presents two Bayesian MCMC models 
that were proposed in an attempt to find a model that does validate on these data.

The way the Mack model did not validate, i.e., it underestimated the variability of 
the ultimate loss estimates, suggested a direction to go in order to fix it. Here are two 
ways to improve the recognition of the inherent variability of the predictive distribution.

1.	 The Mack model multiplies the age-to-age factors by the last observed loss, -,11Cw w. 
One can think of the - s,11Cw w  as fixed level parameters. A model that treats the level 
of the accident year as random will predict more risk.

2.	 The Mack model assumes that the loss amounts for different accident years are 
independent. A model that allows for correlation between accident years could 
increase the standard deviation of �∑ = ,101

10 Cww .

I propose two different models to address the underestimation of the variability of 
the ultimate loss. The first model replaces the fixed level parameters, given by the last 
observed accident year, in the Mack model with random level parameters. As we shall 
see, this model improves the estimation of the variability, but does not go far enough. The 
second, and more complicated model, considers correlation between the accident years.

The Leveled Chain Ladder (LCL) Model
Let:

1.	 µ = α + β,w d w d .
2.	 � ,Cw d  has a lognormal distribution with log mean µw,d and log standard deviation σd 

subject to the constraint that σ1 > σ2 > . . . > σ10.

5.  Bayesian Models for Incurred Loss Data
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To prevent overdetermining the model, set β10 = 0. The parameters { } { }α σ,w d  and 
the remaining { }βd  are assigned relatively wide prior distributions as follows:

1.	 Each αw ∼ normal( )( ) +log , 10Premium logelrw  where the parameter logelr ∼ 
uniform(-1, 0.5).10

2.	 Each βd ∼ uniform(-5, 5) for d < 10.
3.	 Each 10∑σ =

=
ad ii d

 where ai ∼ uniform(0, 1).

The hierarchical structure of the priors in (3) above assures that σ1 > σ2 > . . . > σ10. 
The rationale behind this structure is that as d increases, there are fewer claims that are 
open and subject to random outcomes.

The next model adds a between-year correlation feature.11

The Correlated Chain-Ladder (CCL) Model
Let:

1.	 Each αw ∼ normal ( )( ) +log , 10Premium logelrw  where the parameter logelr ∼ 
uniform(-1, 0.5).

2.	 µ = α + β1, 1d d .
3.	 ( )( )µ = α + β + ρ - µ >• - -log for 1., 1, 1,C ww d w d w d w d

4.	 � ,Cw d  has a lognormal distribution with log mean µw,d and log standard deviation σd 
subject to the constraint that σ1 > σ2 > . . . > σ10.

Note that the CCL model reduces to the LCL model when ρ = 0.
If the parameters { }{ }α β,w d , and ρ are given, the parameter ρ is equal to the 

coefficient of correlation between �( )-log 1,Cw d  and �( )log ,Cw d . To see this we first note 
that unconditionally:

�

�

( )
( )

( )
( )

= µ

= α + β + ρ - µ

= α + β

• - -

log

log

, ,

1, 1,

E C

C

w d w d

w d w d w d

w d

Given Cw-1,d we have that:

� i

i

i

( )( )( ) ( )
( )

( )

( )
( )

( )
( )

( )
( )

- α + β - µ

= µ - α + β - µ

= ρ - µ

- -

- -

- -

log log

log

log

, 1, 1,

, 1, 1,

1, 1,

2

E C C

C

C

w d w d w d w d

w d w d w d w d

w d w d

10	� The JAGS expression for a normal distribution uses what it calls a “precision” parameter equal to the reciprocal 

of the variance. The standard deviation, 10 , corresponds to the rather low precision of 0.1.
11	 Some of the models I tried before getting to this one are described in my working paper Meyers (2012). Note 

that what I call the LCL model in that paper is different from the LCL model above.
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Then the coefficient of correlation between � ,Cw d  and � -1,Cw d  is given by:

�

� �

i

i

( )

( )( )

( ) ( )- α + β
σ

- µ
σ













=
ρ - µ

σ








 = ρ

- -
-

- -

-

-

log log

log

, 1, 1,
1,

1, 1,

2

2

1, ,

1,

E E
C C

C

E
C

C C
w d w d

d

w d w d

d
w d

C
w d w d

d

w d w d

w d

To prevent overdetermining the model, set β10 = 0. The parameters { } { }α σ ρ, ,w d  
and the remaining { }βd  are assigned relatively wide prior distributions as follows:

1.	 Each αw ∼ normal( )( ) +log , 10Premium logelrw  where the parameter logelr ∼ 
uniform(-1, 0.5).12

2.	 Each βd ∼ uniform(-5, 5) for d < 10.
3.	 ρ ∼ uniform(-1, 1)—The full permissible range for ρ.
4.	 Each ∑σ =

=
ad ii d

K  where ai ∼ uniform(0,1).

I deliberately chose rather diffuse13 prior distributions since I had no direct 
knowledge of the claims environment other than the data that are reported in Schedule P.  
While preparing annual statements, actuaries with more direct knowledge of the claims 
environment normally attempt to reflect this knowledge in their unpaid loss estimates. 
Bornhuetter and Ferguson (1972) describe a very popular method where one can reflect 
knowledge of an insurer’s expected loss ratio in their estimates. With minor modifications 
of the JAGS script, one can reflect this knowledge by specifying more restrictive priors for 
{ }αw  parameters and the logelr parameter.

The predictive distribution of outcomes is a mixed distribution where the mixing is 
specified by the posterior distribution of parameters. Here is what the script for the CCL 
model does.

The predictive distribution for ∑ = ,101

10 Cww  is generated by a simulation. For each 
parameter set { }{ }{ } { }α β σ ρ, , and ,w d d  start with the given C1,10 and calculate the 
mean, µ2,10. Then simulate �2,10C  from a lognormal distribution with log mean, µ2,10, and 
log standard deviation, σ10. Similarly, use the result of this simulation to simulate 
� �, . . . ,2,10 10,10C C . Then form the sum �∑+ =1,10 ,102

10C Cww . The script generates 10,000 
simulations that make up a sample from the predictive distribution from which one 
can calculate various statistics such as the mean, standard deviation and the percentile 
of the outcome. Here is a more detailed explanation of this process.

Given the group code for an insurer in the CAS Loss Reserve Database, the R script 
for the CCL Model performs the following steps:

1.	 Reads in the data triangle { },Cw d  for the insurer identified by the group code.
2.	 Runs the JAGS script and gets a sample of 10,000 parameter sets, { }{ } { }α β σ, ,w d d  

and ρ from the posterior distribution of the CCL model.

12	 The JAGS expression for a normal distribution uses what it calls a “precision” parameter equal to the reciprocal 
of the variance. The standard deviation, corresponds to the rather low precision of 0.1.

13	 One might also use a “noninformative” prior distribution. Noninformative prior distributions are usually 
attached to a specific mathematical objective. See, for example, Section 3.3 of Berger (1985).
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3.	 Simulates 10,000 copies, one for each parameter set in (2) above, of �{ } =,10 2

10
Cw d

. The 
simulation proceeds as follows.
•	 Set µ = α + β1,10 1 10. Recall that C1,10 is given in the original data.
•	 Set � i ( )( )µ = α + β + ρ - µlog .2,10 2 10 1,10 1,10C . Simulate �2,10C  from a lognormal distri-

bution with log mean µ2,10 and log standard deviation σ10.
•	 Set � �( )( )µ = α + β + ρ - µ• log .3,10 3 10 2,10 2,10C  Simulate �3,10C  from a lognormal 

distribution with log mean µ2,10 and log standard deviation σ10.
•	 . . .
•	 Set � � �i ( )( )µ = α + β + ρ - µlog .10,10 10 10 9,10 9,10C  Simulate �10,10C  from a lognormal dis-

tribution with log mean µ10,10 and log standard deviation σ10.
4.	 For each w, calculate summary statistics �( )=ˆ mean,10 ,10C Cw w  and SD = standard 

deviation �( ),10Cw . Calculate similar statistics for the total �∑+ = .1,10 ,102

10C Cww

5.	 Calculate the percentile of the outcome by counting how many of the 10,000 instances 
of �∑ = ,102

10 Cww  are ≤ the actual outcomes ∑ = ,102

10 Cww .

Table 6 gives the results from the first five MCMC samples produced by the script 
for the CCL model applied to the losses for the illustrative insurer in Table 2. The top 
31 rows of that table were generated in Step 2 of the simulation above. The remaining 
rows were generated in Step 3.

Table 6.    Illustrative MCMC Simulations

MCMC Sample Number

1 2 3 4 5

α1 8.2763 8.2452 8.2390 8.2591 8.2295

α2 7.8226 7.7812 7.8008 7.8048 7.7810

α3 8.2625 8.3200 8.2929 8.2883 8.2642

α4 8.3409 8.3286 8.3539 8.3622 8.3159

α5 8.2326 8.1166 8.1093 8.1855 8.1523

α6 8.1673 8.0307 8.0491 8.1727 8.0470

α7 8.6403 8.4776 8.4113 8.5815 8.4871

α8 8.2177 8.2488 8.2708 8.0752 8.1763

α9 8.3174 8.2007 8.2589 8.3744 8.2653

α10 7.4101 8.0036 8.7584 8.4241 8.8420

β1 -0.5125 -0.5180 -0.6504 -0.4947 -0.7384

β2 -0.2756 -0.1014 -0.1231 -0.2138 -0.0844

β3 -0.1271 -0.0313 -0.0622 -0.0758 -0.0498

β4 -0.1013 -0.0090 0.0165 0.0439 0.0479

β5 0.0518 -0.0109 0.0060 0.0034 0.0610

β6 0.0180 0.0885 0.0139 0.0175 0.0709

β7 0.0105 0.0583 0.0205 0.0427 0.0362
(continued on next page)
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Table 6.    Illustrative MCMC Simulations

MCMC Sample Number

1 2 3 4 5

β8 0.0400 -0.0090 0.0612 0.0444 0.0338

β9 0.0005 0.0287 0.0419 0.0116 0.0333

β10 0.0000 0.0000 0.0000 0.0000 0.0000

σ1 0.3152 0.2954 0.3164 0.1895 0.2791

σ2 0.2428 0.1982 0.2440 0.1858 0.1711

σ3 0.1607 0.1632 0.2078 0.1419 0.1089

σ4 0.1245 0.1133 0.0920 0.0842 0.0800

σ5 0.0871 0.0830 0.0694 0.0747 0.0794

σ6 0.0733 0.0649 0.0626 0.0508 0.0463

σ7 0.0324 0.0281 0.0294 0.0368 0.0352

σ8 0.0279 0.0247 0.0172 0.0270 0.0330

σ9 0.0171 0.0239 0.0130 0.0267 0.0329

σ10 0.0170 0.0237 0.0105 0.0241 0.0244

ρ 0.1828 0.4659 0.4817 0.1901 0.2155

µ1,10 8.2763 8.2452 8.2390 8.2591 8.2295

C1,10 3917 3917 3917 3917 3917

µ̃2,10 7.8221 7.7942 7.8172 7.8074 7.7904

C̃2,10 2520 2468 2480 2432 2453

µ̃3,10 8.2643 8.3278 8.2924 8.2862 8.2674

C̃3,10 3893 4190 3939 4090 3802

µ̃4,10 8.3414 8.3345 8.3474 8.3679 8.3107

C̃4,10 4229 4212 4233 4346 4075

µ̃5,10 8.2341 8.1219 8.1109 8.1873 8.1527

C̃5,10 3761 3285 3269 3597 3676

µ̃6,10 8.1670 8.0192 8.0400 8.1728 8.0593

C̃6,10 3450 3127 3120 3552 3196

µ̃7,10 8.6365 8.4910 8.4140 8.5819 8.4893

C̃7,10 5488 4719 4441 5299 4765

µ̃8,10 8.2129 8.2340 8.2634 8.0739 8.1720

C̃8,10 3652 3847 3933 3295 3708

µ̃9,10 8.3156 8.2106 8.2655 8.3794 8.2752

C̃9,10 4112 3538 3949 4426 3914

µ̃10,10 7.4112 7.9853 8.7659 8.4271 8.8414

C̃10,10 1613 3001 6511 4507 6763

  (continued)
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Table 7 gives the estimates of the mean and standard deviation, by accident year and 
in total, for the LCL, the CCL, and the Mack Models for the illustrative insurer. The 
predicted percentiles of the 40,061 outcome are also given for each model. Note that 
the standard deviations of the predicted outcomes were significantly higher for the CCL 
and the LCL models than they were for the Mack Model. This is generally the case, as 
can be seen in Figure 5. This figure plots the standard deviations (in the log scale) of 
the CCL and LCL models against those of the Mack Model for the 200 loss triangles 
listed in Appendix A. The higher standard deviations of the CCL model over the LCL 
model can be attributed to the generally positive correlation parameters that are shown 
in Figure 6 for the illustrative insurer. Generally this is the case for other insurers as can 
be seen in Figure 7.

The validation p–p plots for the LCL and CCL models run on the selected 200 
triangles are given in Figures 8 and 9. For the LCL model:
•	 The p–p plots combined lines of insurance lie within the Kolmogorov–Smrinov 

bounds for Commercial Auto, Personal Auto and Workers Comp.
•	 All four lines have the slanted S pattern that characterizes models that are too thin 

in the tails. This pattern is reinforced in the combined plot, and the resulting plot 
does not lie within the Kolmogorov–Smirnov bounds. But the combined plot is an 
improvement over the corresponding Mack p–p plot.
For the CCL Model:

•	 The p–p plots for all four lines lie within the Kolmogorov–Smirnov bounds, but 
just barely so for the Other Liability line.

•	 While the combined p–p plot lies within the Kolmogorov–Smirnov bounds, the 
slanted S pattern indicates a mildly thin tail predicted by the model.

Table 7.    CCL, LCL, and Mack Models on Illustrative Insurer Incurred Data

CCL LCL Mack Outcome

w Cw,10 SD CV Cw,10 SD CV Cw,10 SD CV Cw,10

1 3917 0 0.000 3917 0 0.000 3,917 0 0.000 3,917

2 2545 57 0.022 2544 59 0.023 2,538 0 0.000 2,532

3 4110 113 0.028 4110 106 0.026 4,167 3 0.001 4,279

4 4314 130 0.030 4307 122 0.028 4,367 37 0.009 4,341

5 3549 123 0.035 3545 115 0.032 3,597 34 0.010 3,587

6 3319 146 0.044 3317 132 0.040 3,236 40 0.012 3,268

7 5277 292 0.055 5315 265 0.050 5,358 146 0.027 5,684

8 3796 331 0.087 3775 301 0.080 3,765 225 0.060 4,128

9 4180 622 0.149 4203 561 0.134 4,013 412 0.103 4,144

10 4155 1471 0.354 4084 1157 0.283 3,955 878 0.222 4,181

Total 39161 1901 0.049 39116 1551 0.040 38,914 1,057 0.027 40,061

Percentile 73.72 76.38 86.03
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Figure 9.    p–p Plots for the CCL Model on the 
Incurred Loss Triangles
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Given the improved validation of the CCL model on incurred loss data, it seems 
appropriate to try it out on paid loss data. Table 8 shows the CCL and ODP estimates. 
As should be expected given the results in Section 5, the standard deviation of the 
outcomes produced by the CCL model are noticeably higher than those produced by 
the ODP model.

The validation p–p plots for the CCL model applied to paid data are in Figure 10. 
When comparing this plot with the validation p–p plots for the ODP model (Figure 3) 
and the Mack model (Figure 4), we see that all three models show tend to produced 
estimates that are too high for these loss triangles.

Given the improved validation of the CCL model with incurred loss data, it is 
tempting to conclude that the incurred loss data contains crucial information that is 
not present in the paid loss data. However, there is also the possibility that a model 
other than the ODP or the CCL may be appropriate. A feature of such a model might 
be that it has a trend along the payment year w d 1)(= + - . Models with a payment 
year trend have been proposed in the writings of Ben Zehnwirth over the years. See, 
for example, Barnett and Zehnwirth (2000). The inclusion of a payment year trend in 
a model has two important consequences.

1.	 The model should be based on incremental paid loss amounts rather than cumulative 
paid loss amounts. Cumulative losses include settled claims which do not change 
with time.

2.	 Incremental paid loss amounts tend to be skewed to the right and are occasionally 
negative. We need a loss distribution that allows for these features.

One distribution that has these properties is the skew normal distribution. This 
distribution is starting to be applied in actuarial settings. See, for example, Pigeon, 
Antonio and Denuit (2013) Here is a description of this distribution taken from 
Frühwirth-Schnatter and Pyne (2010). This distribution has three parameters.

1.	 µ—the location parameter.
2.	 ω—the scale parameter, with ω > 0.
3.	 δ—the shape parameter, with δ ∈ (-1, 1).14

14	 The reference calls the shape parameter α and then define δ = α + α1 .2  The parameter designation, α, was 
already taken in this monograph.

6.  Bayesian Models for Paid Loss Data
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Table 8.    CCL and ODP Models on Illustrative Insurer Paid Data

CCL ODP
Outcome 

Cw,10w Ĉ w,10 SD CV Ĉ w,10 SD CV

1 3912 0 0 3912 0 0.0000 3912

2 2568 114 0.0444 2532 21 0.0083 2527

3 4157 199 0.0479 4163 51 0.0123 4274

4 4330 234 0.0540 4369 85 0.0195 4341

5 3574 212 0.0593 3554 96 0.0270 3583

6 3417 259 0.0758 3211 148 0.0461 3268

7 5235 465 0.0888 5161 240 0.0465 5684

8 3664 463 0.1264 3437 332 0.0966 4128

9 4444 870 0.1958 4220 572 0.1355 4144

10 5036 1961 0.3894 4635 1048 0.2261 4139

Total 40337 2692 0.0667 39193 1389 0.0354 40000

Percentile 49.18 73.91

The skew normal distribution is defined as the sum of two random variables

X Z 1 2µ + ω δ + ω - δ ε∼ i i i i

where Z ∼ truncated normal[0,∞) (0,1) and ε ∼ normal(0,1). This distribution can also 
be expressed as a mixed truncated normal-normal distribution by setting

X Znormal , 1 .2( )µ + ω δ ω - δ∼ i i i

In looking at either expression for the skew normal distribution one can see that when 
δ = 0, the skew normal becomes a normal distribution. As δ approaches one, the 
distribution becomes more skewed and becomes a truncated normal distribution when 
δ = 1. Figure 11 plots15 the the density functions for µ = 0, ω = 15 and δ close to one.16

It should be apparent that the coefficient of skewness can never exceed the co-
efficient of skewness of the truncated normal distribution, which is equal to 0.995. 
As it turns out, this constraint is important. I have fit models with the skew normal 
distribution that otherwise are similar to what will be described below and found that 
for most triangles, δ is very close to its theoretical limit. This suggests that a distribution 
with a higher coefficient of skewness is needed.

15	 Using the R “sn” package.
16	 The parameters in Figures 11 and 12 are representative of what one could expect in the later settlement lags where 

negative incremental losses frequently occur.
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The formulation of the skew normal distribution described by Frühwirth-Schnatter 
and Pyne (2010) suggests an alternative. Simply replace the truncated normal distribution 
with another skewed distribution, such as the lognormal distribution. Here is one way 
to do that. Define

normal , , where lognormal , .X Z Z∼ ∼( ) ( )δ µ σ

Let’s call this distribution the mixed lognormal-normal (ln-n) distribution with parameters 
given by δ, µ and σ. Figure 12 plots the density functions for µ = 2, σ = 0.6, and two 
different values of δ.

Now that we have a loss distribution with the desired features of skewness and a 
domain that includes negative numbers, let’s describe a model for incremental paid 
losses with a calendar-year trend.

The Correlated Incremental Trend (CIT) Model
Let:

1.	  w dw d w d 1 ., ( )µ = α + β + τ + -i

2.	  Zw d w d dlognormal ,, ,( )µ σ∼  subject to the constraint that . . .1 2 10σ < σ < < σ .

3.	  I Zd dnormal , .1, 1,( )δ∼�

4.	  I Z I Z e ww d w d w d w dnormal , for 1., , 1, 1,( )( )+ ρ - δ >- -
τ� ∼ �i i

When comparing the CIT model with the CCL model (as it might be applied to 
incremental losses) there are some differences to note.

•	 The CCL model was applied to cumulative losses. One should expect σd to decrease 
as d increases as a greater proportion of claims are settled. In the CIT model, one 
should expect that the smaller less volatile claims to be settled earlier. Consequently, 
σd should increase as d increases.

•	 In the CCL model, the autocorrelation feature was applied to the logarithm of the 
cumulative losses. Since there is the possibility of negative incremental losses, it 
was necessary to apply the autocorrelation feature in Step 4 above after leaving the 
“log” space. The hierarchical feature of the mixed lognormal-normal distribution 
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Normal Distribution
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provides the opportunity to do this. For a given set of parameters, ρ is the coefficient 
of correlation between I Iw d w dand1, ,-

� � .
•	 The trend factor, τ, is applied additively in the “log” space in Step 1 above. As 

the autocorrelation feature in Step 4 above is applied outside of the “log” space, 
it is necessary to trend the prior payment year’s difference by multiplying that 
difference by eτ.

To prevent overdetermining the model, set β10 = 0. The parameters w d, ,{ } { }α σ ρ , 
and the remaining d{ }β  are assigned prior distributions as follows:

1.	 Each aw ∼ normal  log Premium logelrw , 10( )( ) +  where logelr ∼ uniform(-5,1).
2.	 Each βd ∼ uniform(0, 10) for d = 1 to 4 and βd  ∼ uniform(0, βd -1) for d > 4. This 

assures that βd decreases for d > 4.
3.	 ρ ∼ uniform(-1, 1)—The full permissible range for ρ.
4.	 τ ∼ normal(0, 0.0316)—corresponding to a precision parameter used by JAGS of 

1000.
5.	  d d duniform 0,0.5 , uniform , 0.1 .1

2 2
1

2
1

2( )( )σ σ σ σ +- -∼ ∼
6.	 δ ∼ uniform(0, Average Premium)

There are two deviations from the selection of diffuse prior distributions that are 
in the CCL model.

•	 I first tried a wider prior for τ. In examining the MCMC output I noticed that 
quite often, the value of τ was less than -0.1, which I took to be unreasonably 
low. This low value was usually compensated for by offsetting high values for the 
α and/or β parameters. This could have a noticeable effect on the final result, so I 
decided to restrict the volatility of τ to what I considered to be a reasonable range 
of payment year changes.

•	 In examining the MCMC output, I noticed that, occasionally, high values of σd 
would occur. This led to unreasonably high simulated losses in the output, so I 
decided to limit how fast σd could increase with d.

The predictive distributions of the sum, Iw dd ,1

10∑ =
�  for each w, and the overall sum, 

Iw ddw ,1

10

1

10 ∑∑ ==
�  are simulated 10,000 times with a Bayesian MCMC model. The details 

are very similar to those described in Section 5 and will not be given here.
By setting the prior distribution of ρ equal to zero, we eliminate the between 

accident year correlation. Following the naming convention of the last section, let’s call 
this model the Leveled Incremental Trend (LIT) model.

Table 9 shows the estimates of for the illustrative insurer with the CIT and the LIT 
model on paid data.

Before producing these distributions, I had no particular expectation of how ρ 
would be distributed for paid data. However, I did expect τ to be predominantly 
negative since the p–p plots in Figures 3, 4 and 10 indicted that the all the other models 
predicted results that were too high.

Let’s first examine the effects of between-year correlation in the CIT model. 
Figure 13 gives the posterior distributions for ρ for the illustrative insurer. Figure 14 
gives the histograms of the posterior means ρ for each insurer by line of business.
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Table 9.    CIT and LIT Models on Illustrative Insurer Paid Data

CIT LIT
Outcome

Cw,10w Ĉw,10 SD CV Ĉw,10 SD CV

2 2539 9 0.0035 2538 9 0.0035 2527

3 4183 21 0.0050 4185 20 0.0048 4274

4 4395 40 0.0091 4393 32 0.0073 4341

5 3553 42 0.0118 3566 32 0.0090 3583

6 3063 101 0.0330 3151 40 0.0127 3268

7 5062 123 0.0243 5065 111 0.0219 5684

8 3512 514 0.1464 3355 234 0.0697 4128

9 4025 707 0.1757 4138 594 0.1435 4144

10 4698 1482 0.3155 4703 1489 0.3166 4139

Total 38942 1803 0.0463 39006 1723 0.0442 40000

Percentile 79.04 79.69
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Figure 13.    Posterior Distribution of  
and for the Illustrative Insurer

As seen in Figure 14, the posterior means of ρ for the paid data were not as 
overwhelmingly positive as we saw in the incurred data shown in Figure 7. Figure 15 
shows a small but noticeable difference between the standard deviations of the CIT 
and LIT models.

My efforts to rein in the correlation between the w{ }α , the d{ }β , and the τ 
parameters were, at best, only partially successful, as Figure 16 indicates. The analogous 
plot for the LIT model is very similar. With the given data, it is hard for the CIT and 
the LIT models to sort out the effects of the level plus the development and the trend.

As seen in Figure 17, the posterior means of τ were predominantly negative.  
But as pointed out above, a negative might be offset by higher w{ }α s and d{ }β s. 
Figure 18 shows only a handful of triangles where there was a noticeable decrease 
in the final expected loss estimates. And most of those differences appeared in the 
Other Liability line of business.

Figures 19 and 20 show the validation p–p plots for the CIT and the LIT models. As 
do the Mack, ODP and CCL models on paid data indicate, the predictive distributions 
for the CIT and LIT models tend to overstate the estimates of the expected loss.
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Figure 14.    Posterior Mean of  by Line and 
Insurer for Paid Loss Data
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Figure 18.    Comparing Estimates for 
the CCL and the CIT Models for  
Paid Data

Figure 17.    Posterior Mean of  by Line and 
Insurer for Paid Loss Data  (continued)
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Figure 19.    p–p Plots for the CIT Model
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So, in spite of a serious attempt to improve on the results produced by the earlier 
models on paid data, the CIT and LIT models did not achieve the desired improvement. 
This result tends to support the idea that is generally accepted, that the incurred data 
reflects real information that is not in the paid data.

A reviewer of this monograph checked with some colleagues and found that claims 
are “reported and settled faster today due to technology,” and suggested that the CIT 
model might not fully reflect this change. A model that addresses the possibility of a 
speedup of claim settlement is the following.

The Changing Settlement Rate (CSR) Model
Let:

1.	 Each aw ∼ normal log Premium logelrw , 10( )( ) + where the parameter logelr ∼ 
uniform(-1,0.5).

2.	 βd ∼ uniform(-5,5) for d = 1, . . . , 9, β10 = 0.

0 20 40 60 80 100

0
20

40
60

80

CA − LIT

Expected
P

re
di

ct
ed

KS D = 18.9 

Crit. Val.= 19.2

0 20 40 60 80 100

0
20

40
60

80

PA − LIT

Expected

P
re

di
ct

ed

KS D = 50.5 *

Crit. Val.= 19.2

0 20 40 60 80 100

0
20

40
60

80
WC − LIT

Expected

P
re

di
ct

ed

KS D = 36.6 *

Crit. Val.= 19.2

0 20 40 60 80 100

0
20

40
60

80

OL − LIT

Expected
P

re
di

ct
ed

KS D = 22.1 *

Crit. Val.= 19.2

CA+PA+WC+OL

F
re

qu
en

cy

0 20 40 60 80 100

0
20

40
60

80

0 20 40 60 80 100

0
20

40
60

80
CA+PA+WC+OL

Expected

P
re

di
ct

ed

KS D = 29.6 *

Crit. Val.= 9.6

Figure 20.    p–p Plots for the LIT Model
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3.	  w d w d
w1,

1( )µ = α + β - γ ( )-
i  γ ∼ normal(0, 0.025).

4.	 Each 10∑σ =
=

ad ii d
 where ai ∼ uniform(0, 1).

5.	  C ∼
w,d has a lognormal distribution with log mean µw,d and log standard deviation σd 

subject to the constraint that . . .1 2 10σ > σ > > σ .

Since β10 = 0 and cumulative paid losses generally increase with the development 
year, d, βd for d < 10 is usually negative. Then for each d < 10, a positive value of γ will 
cause d

w1 1
i )(β - γ )( -

 to increase with w and thus indicate a speedup in claim settlement. 
Similarly, a negative value of γ will indicate a slowdown in claim settlement.

Table 10 shows the results for the CSR model on the illustrative insurer.
Figure 21 shows that the posterior distribution of γ is predominantly positive. 

This confirms the reviewer’s contention that the claim settlement rate is, in general, 
increasing.

The validation p–p plots in Figure 22 shows that for three of the four lines of 
insurance, the CSR model corrects the bias found in the earlier models. This model 
also correctly predicts the spread of the predicted percentile of the outcomes for those 
lines. While the CSR model still exhibits bias for the personal auto line of business, the 
bias is significantly smaller than that of the other models.

It appears that the incurred loss data recognized the speedup in claim settlements.

Table 10.    CIT and CSR Models on Illustrative Insurer Paid Data

CIT CSR
Outcome

Cw,10w Ĉw,10 SD CV Ĉw,10 SD CV

1 3912 0 0 3912 0 0 3912

2 2539 9 0.0035 2559 103 0.0403 2527

3 4183 21 0.0050 4135 173 0.0418 4274

4 4395 40 0.0091 4285 198 0.0462 4341

5 3553 42 0.0118 3513 180 0.0512 3583

6 3063 101 0.0330 3317 216 0.0651 3268

7 5062 123 0.0243 4967 404 0.0813 5684

8 3512 514 0.1464 3314 402 0.1213 4128

9 4025 707 0.1757 3750 734 0.1957 4144

10 4698 1482 0.3155 3753 1363 0.3632 4139

Total 38942 1803 0.0463 37506 2247 0.0599 40000

Percentile 79.04 87.62
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Figure 22.    p–p Plots for the CSR Model
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7. � Process Risk, Parameter Risk and Model Risk

Let us now address a topic that frequently comes up in stochastic modeling discussions –  
process risk, parameter risk and model risk. One way to describe process and parameter 
risk is to consider the relationship for a random variable X conditioned on a parameter q.

[ ][ ] [ ][ ] [ ]= q + qq q .Var X E Var X Var E X

Let’s call the left side of the above equation the “Total Risk.” Let’s call the first term of the 
right side the “Process Risk” as it represents the average variance of the outcomes from 
the expected result. Finally, let’s call the second term the “Parameter Risk” as it represents 
the variance due to the many possible parameters in the posterior distribution. Another 
often-used term that overlaps with parameter risk is the “range of reasonable estimates.”

For the CCL model, the parameter q is represented by the vector

( )a a β β σ σ ρ, . . . , , , . . . , , , . . . , , .1 10 1 9 1 10

The MCMC sample simulates 10,000 parameters denoted by qi. We then have the 
illustrative insurer:
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The random variables mw,10 are derived from the posterior distribution of the aw. One 
can then use the formula for the mean of a lognormal distribution to calculate:
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For this example, the parameter risk is very close to the total risk, and hence there is 
minimal process risk. I have repeated this calculation on several (including some very 
large) insurers and I obtained the same result that process risk is minimal.

Model risk is the risk that one did not select the right model. If the possible models 
fall into the class of “known unknowns” one can view model risk as parameter risk. It 
is possible to formulate a model as a weighted average of the candidate models, with 
the weights as parameters. If the posterior distribution of the weights assigned to each 
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model has significant variability, this is an indication of model risk. Viewed in this 
light, model risk is a special case of parameter risk.

As a thought experiment, one can consider what happens if we were to run this model 
on a very large dataset. The parameter risk will shrink towards zero and any remaining 
risk, such as model risk, will be interpreted as process risk.

This thought experiment is of largely academic interest since all aggregated loss 
triangles one finds in practice are small datasets. But it does serve to illustrate some of the 
theoretical difficulties that occur when one tries to work with the parameter/process/
model classifications of risk. My own preference is to focus on total risk, as that it is the 
only risk that we can test by looking at actual outcomes.
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The central thrust of this monograph is twofold.

•	 It implements the idea of large-scale retrospective testing of stochastic loss reserve 
models on real data. The goal is not to comment on the reserves of individual 
insurers. Instead the goal is to test the predictive accuracy of specific models.

•	 As shortcomings in existing models are identified, it demonstrates that Bayesian 
MCMC models can be developed to overcome some of these shortcomings.

The principle behind the retrospective testing is that a specific model is built with 
data that we customarily observe. The model is used to predict a distribution of outcomes 
that we will observe in the future. When we do observe outcomes for a large number of 
predictions, we expect the percentiles of the outcomes to be uniformly distributed. If they 
are not uniformly distributed, we look for a better model. We may or may not find one.

The data used in this study comes from the CAS Loss Reserve Database. It consists 
of hundreds of paid and incurred loss triangles that Peng Shi and I obtained from a 
proprietary database maintained by the NAIC. We are grateful that the NAIC allowed us 
to make these data available to the public. The data I used to build the models came from 
the 1997 NAIC Annual Statements. The outcomes came from subsequent statements.

Here is a high-level summary of the results obtained with these data.

•	 For incurred data, the variability predicted by Mack model is understated. One of 
its key assumptions is that the losses from different accident years are independent. 
This monograph proposes the correlated chain ladder (CCL) model as an alternative. 
This model allows for a particular form of dependency between accident years. It 
finds that the CCL model predicts the distribution of outcome correctly within a 
specified confidence level.

•	 For paid data, the bootstrap ODP model, the Mack model and the CCL model 
tend to give estimates of the expected ultimate loss that are high. This suggests that 
there is a change in the loss environment that is not being captured in these models. 
This monograph proposes three models, the Leveled Incremental Trend (LIT), the 
Correlated Incremental Trend (CIT) model, and the Changing Settlement Rate 
(CSR) as alternatives. The first two models allow for payment year trends. While 
the introduction of a payment year trend seems plausible given the bias identified 
in the earlier models, the performance of the LIT and CIT models are similar to 
the earlier models in the validation p–p plots. The CSR model corrects the bias 
identified in the previous models for three of the four lines of insurance, and has 
significantly less bias on the fourth line of insurance.

8.  Summary and Conclusions
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•	 Note that for the “Other Liability” line of insurance, the Mack and ODP models 
validate better than any of the new models proposed in this monograph. While it 
might be a small sample problem, the sample is not all that small. This suggests that 
more study is needed. Note that these results are for a specific annual statement year—
1997. Studies such as this should be repeated on other annual statement years to see if 
the above conclusions still hold.

In preparing this monograph I have made every effort to adhere to the “open source” 
philosophy. The data is publicly available. The software is publicly available for free. The 
R and JAGS scripts used in creating these models are to be made publicly available. I 
have purposely restricted my methods to widely used software (R, JAGS and RStudio) 
in order to make it easy for others to duplicate and improve on these results.

In building the Bayesian models I used prior distributions that were as diffuse 
as I could make them. The restrictions I did make (for example, the restriction that  

. . .1 2 10σ > σ > > σ  in the CCL model) reflected my experience over several years of 
general model building. I did not have intimate knowledge of each insurer’s business 
operations. Those with knowledge of an insurer’s business operation should be able to 
incorporate this knowledge to obtain better results. As all probabilities are conditional, 
the Bayesian methodology allows for one to incorporate additional information by 
adjusting the prior distributions. I made every effort to code the models transparently 
so that such adjustments are easy to make.

The models proposed in this monograph are offered as demonstrated improvements 
over current models. I expect to see further improvements over time. The Bayesian MCMC 
methodology offers a flexible framework with which one can make these improvements.
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When selecting the loss triangles to use in this monograph my overriding consideration 
was that the process should be mechanical and well defined. There are two potential 
mistakes one can make in selecting the insurers to analyze.

•	 If one were to take all the insurers in the database, or randomly select the insurers, there 
could be some insurers who made significant changes in their business operations 
that could violate the assumptions underlying the models.

•	 If one is too selective, one runs the risk of selecting only those data that best fit 
a chosen model. For example, let’s suppose that I wanted the CCL model to fit 
the incurred data even better than it does. As an extreme case, noting that CCL 
model still appears to be a bit light in the tails, I could have replaced some of the 
insurers that have outcomes in the tail with other insurers that have outcomes in 
the middle.

While I did not have inside information on any changes in the business operations, 
Schedule P provides some hints in their reporting of both net and direct earned 
premium by accident year. Both of these data elements are in the CAS Loss Reserve 
Database.

•	 If an insurer makes significant changes in its volume of business over the 10-year 
period covered by Schedule P, a change in business operation could be inferred.

•	 If an insurer makes significant changes in its net to direct premium ratio over the 
10-year period, a change in its reinsurance strategy could be inferred.

To carry out an analysis of this sort, I needed a large number of insurers. After 
looking at the quality and consistency of the data available in the CAS Loss Reserve 
Database, I decided to use 50 insurers in each of four major lines of insurance—
Commercial Auto, Personal Auto, Workers Compensation, and Other Liability. Early 
on I concluded that there were an insufficient number of insurers in the Products 
Liability and the Medical Malpractices lines to obtain an adequately sized selection.

To implement these considerations, I calculated the coefficients of variation for 
the net earned premiums and the net to direct premium ratios over the ten available 
years. By trial and error, I then set up limits on these coefficients (CV) of variation that 
obtained the desired number of insurers. This procedure should have eliminated some 
of the insurers that changed their business operations.

After some provisional testing, I eliminated insurer group 38997 from the Personal 
Auto and Workers Comp lines, and insurer groups 16373, 44598 and 14885 from the 

Appendix A. The Data Selection Process
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Other Liability line because the R “ChainLadder” package produced “NA” results for 
the Mack calculation of the standard deviation. I also eliminated insurer group 14451 
from the Other Liability line because the MCMC algorithm took very long to converge 
for paid losses. After eliminating these insurer groups I adjusted the CV limits to give 
50 insurers for each line. The final CV limits are given in Table 11. The final list of the 
selected insurer groups are in Table 12.

Table 11.  CV Limits for Insurer Triangles

Commercial Auto Personal Auto Workers’ Comp Other Liability

CV(Premium) <0.399 <0.450 <0.950 <0.390

CV(Net/Direct) <0.125 <0.125 <0.200 <0.125

Table 12.  Group Codes for Selected Insurers

Commercial Auto Personal Auto Workers’ Comp Other Liability

353 13420 353 13641 86 13528 620 14370

388 13439 388 13889 337 14176 669 14915

620 13641 620 14044 353 14320 671 15113

833 13889 692 14176 388 14508 683 15148

1066 14044 715 14257 671 14974 715 15210

1090 14176 1066 14311 715 15148 833 15571

1538 14257 1090 14443 1252 15199 1538 17043

1767 14320 1538 15199 1538 15334 1767 17450

2135 14974 1767 15393 1767 18309 2003 17493

2208 15199 2003 15660 2135 18538 2135 18163

2623 18163 2143 16373 2712 18767 2143 18686

2712 18767 3240 16799 3034 18791 2208 24830

3240 19020 4839 18163 3240 21172 3240 26797

3492 21270 5185 18791 5185 23108 5185 27065

4839 25275 6947 23574 6408 26433 5320 28550

5185 27022 7080 25275 6807 27529 6459 30449

6408 27065 8427 27022 7080 30589 6947 30651

6459 29440 8559 27065 8559 32875 7625 32301

6947 31550 10022 27499 8672 33499 10657 33049

7080 32301 13420 27766 9466 34576 13501 36315

8427 34606 13439 29440 10385 35408 13919 38733

10022 35483 13501 31550 10699 37370 13994 41068

10308 37036 13528 34509 11347 38687 14044 41580

11037 38733 13587 34592 11703 38733 14176 42439

11118 44598 13595 34606 13439 41300 14257 43354
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Since the recognition of Markov Chain Monte Carlo as a powerful tool for doing 
Bayesian analyses in 1990, there have been many efforts to create software to aid in 
these analyses. Progress in making the available software faster and more user friendly is 
still being made. In spite of this progress, I believe that it is necessary for an actuary to 
have a picture of what is happening inside the black box. The purpose of this appendix 
is to provide a brief description of what is inside the black box.

A Markov chain is a random process where the transition to the next state depends 
only on its current state, and not on prior states. Formally, a Markov chain, Xt, for 
t = 1, 2, . . . is a sequence of vectors satisfying the property that

X x X x X x X x X x X xt t t t t tPr , , . . . , Pr .1 1 1 2 2 1( ) ( )= = = = = = =+ +

The properties of Markov chains have been well studied by scholars. Those interested 
in these studies can start with Chapter 4 of Jackman (2009). What actuaries need to 
know about Markov chains in Bayesian MCMC analyses can be summarized as follows.

•	 There is a certain class of Markov chains, generally called “ergodic,” for which the 
vectors, {Xt}, approaches a limiting distribution. That is to say that as T increases, 
the distribution of {Xt} for all t > T approaches a unique limiting distribution.

•	 The Markov chains used in Bayesian MCMC analyses, such as the Metropolis 
Hastings algorithm, are members of this class.

•	 Let x be a vector of observations and let y be a vector of parameters in a model. 
In Bayesian MCMC analyses, the Markov chain is defined in terms of the prior 
distribution, p( y), and the conditional distribution, f (x  y). The limiting distribution 
is the posterior distribution, f ( y x). That is to say, if we let the chain run long 
enough, the chain will randomly visit all states with a frequency that is proportional 
to their posterior probabilities.

The operative phrase in the above is “long enough.” In practice we want to: (1) develop 
an algorithm for obtaining a chain that is “long enough” as quickly as possible; and 
(2) develop criteria for being “long enough.”

Here is how Bayesian MCMC analyses work in practice.

1.	 The user specifies the prior distribution, p( y), and the conditional distribution,  
f ( xy ).

Appendix B.  Introduction to Bayesian 
MCMC Models
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2.	 The user selects a starting vector, x1, and then, using a computer simulation, runs the 
Markov chain through a sufficiently large number, t1, of iterations. This first phase of 
the simulation is called the “adaptive” phase, where the algorithm is automatically 
modified to increase its efficiency.

3.	 The user then runs an additional t2 iterations. This phase is called the “burn-in” phase. 
t2 is selected to be high enough so that a sample taken from subsequent t3 periods 
represents the posterior distribution.

4.	 The user then runs an additional t3  iterations and then takes a sample, {xt}, from the  
(t2 + 1)th step to the (t2 + t3)th step to represent the posterior distribution f ( y x).

5.	 From the sample, one then constructs various “statistics of interest” that are relevant 
to the problem addressed by the analysis.

The most common algorithms for generating Bayesian Markov chains are variants 
of the Metropolis-Hastings algorithm.

Given a prior distribution, p( y), and a conditional distribution, f (x  y), the Metropolis-
Hastings algorithm introduces a third distribution, J( yt  yt-1), called the “proposal”  
or “jumping” distribution. Given a parameter vector, yt-1, the algorithm generates a 
Markov chain by the following steps.

1.	 Select a candidate value, y*, at random from the proposal distribution, J( yt  yt-1).
2.	 Compute the ratio

i

i

( ) ( ) ( )
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3.	 Select U at random from a uniform(0,1) distribution.
4.	 If U < R then set yt = y*. Otherwise set yt = yt-1.

The first part of the ratio, R1, represents the ratio of the posterior probability of 
the proposal, y*, to the posterior probability of yt-1. The higher the value of R1, the 
more likely will be accepted into the chain. Regardless of how the proposal density 
distribution is chosen, the distribution of yt can be regarded as a sample from the 
posterior distribution, after a suitable burn-in period.

To see the issues that can arise when implementing the Metropolis-Hastings 
algorithm, let us examine the following made-up example.

Sample Claim Data

  484	 1407	 2262	 5015	   6500
  603	 1565	 2654	 5354	   6747
  631	 1894	 2672	 5464	   9143
1189	 2140	 4019	 5598	 12782
1229	 2244	 4318	 6060	 18349

We want to model the losses using a lognormal distribution with unknown 
parameter m and known parameter σ = 1.
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The prior distribution of m is a normal distribution with mean 8 and standard 
deviation 1. For the proposal distribution of ( mt mt-1), I chose a normal distribution with 
mean mt-1 and standard deviation σProp. The starting value, m1, was set equal to 7.00. For 
this example, there is no adaptive phase and the burn-in phase was 1,000 iterations.

To illustrate the effect of the choice of the proposal distribution, I ran the 
Metropolis-Hastings algorithm using the normal proposal distributions with σProp = 0.02 
(low volatility), σProp = 20 (high volatility) and σProp = 0.4 (volatility just about right). 
Figure 23 shows plots of the value of mt as the chain progresses for each choice of σProp. 
These plots are generally called trace plots in the MCMC literature.

Note that while the starting value m1 = 7 was outside of the high density region 
of the posterior distribution of m, as t increases mt moves rather quickly into the high 
density region for σProp = 20 and σProp = 0.4. It takes a bit longer for σProp = 0.02, as the 
differences between m* and mt-1 tend to be small.

If σProp = 0.02, m* will be close to mt-1 and the ratio in Step 2 of the Metropolis–
Hastings algorithm will be relatively high and thus mt will be close to mt-1. In the first 

Figure 23.  Trace Plot 1: Metropolis— 
Hastings Example
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trace plot of Figure 23 we see a high degree of autocorrelation between successive 
iterations. If σProp = 20, m* could be quite far from mt-1 and the ratio in Step 2 could 
be relatively low and thus mt will equal mt-1. In the second trace plot of Figure 23 we 
still see a high degree of autocorrelation. If σProp = 0.4, m* can be far enough away from 
mt-1 to reduce the autocorrelation, and close enough to avoid rejection and the setting 
of mt = mt-1. Getting a good value for σProp is balancing act. The third trace plot in 
Figure 23 shows a relatively low degree of autocorrelation and suggests that mt for  
t = 1001, . . . , 11000 is a representative sample from the posterior distribution.

For a single parameter model, like the one in this example, it is relatively easy 
to scale the proposal distribution by trial and error to minimize autocorrelation. For 
models with many parameters, like the ones in the next section, such manual scaling is 
not practical. This problem has been studied extensively and here is a short description 
of the current state of the art.

A good statistic to look at when trying to minimize autocorrelation in the Metropolis-
Hastings algorithm is the acceptance rate of y* into the Markov chain. I have scanned 
a number of sources, e.g., Chapter 5 in Jackman (2009), or Chapter 4 of Brooks et al. 
(2011), that suggest that an acceptance rate of about 50% is near optimal for a one 
parameter model. The optimal acceptance rate decreases to about 25% as we increase 
the number of parameters in our model. Also, the researchers have developed methods 
to automatically adjust the proposal density function in the Metropolis-Hastings 
algorithm. Chapter 4 of Brooks et al. (2011) provides a recent description of the state 
of the art. We shall see below that all this has been mechanized in JAGS. The phase of 
generating the Markov chain where the proposal density function is optimized is called 
the “adaptive” phase.

As models become more complex, adaptive MCMC may not be good enough to 
eliminate the autocorrelation. While the theory on Markov chain convergence still 
holds, there is no guarantee on how fast it will converge. So if one observes significant 
autocorrelation after the best scaling effort, the next best practice is to increase t3 
until there are a sufficient number of ups and downs in the trace plot and then take a 
sample of the t1 + t2 + 1 to t1 + t2 + t3 iterations. This process is known as “thinning.” 
Figure 24 shows what happens when we increase t3 to 250,000 and record every 25th 
observation.

Before leaving this example, let us examine how one might turn the posterior 
distribution of m into something of interest to actuaries. One reason actuaries fit a 
lognormal distribution to a set of claims is that they want to determine the cost of 
an excess layer. Given the parameters m and σ of a lognormal distribution, there are 
formulas in Appendix A of Klugman, Panjer, and Willmot (2012) that give the cost 
of an excess layer of loss. The functions that calculate these formulas are included in 
the R “actuar” package. As the posterior distribution of m reflects the parameter risk 
in our model, it is also possible to reflect the parameter risk in the expected cost of a 
layer by calculating the expected cost of the layer for each m in the simulated posterior 
distribution. Also, it is possible to simulate an actual outcome of a loss, X, in a layer 
given each m in the posterior distribution. The distribution of X calculated in this way 
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Figure 24.  Trace Plot 2: Metropolis—Hastings 
Example with Thinning
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reflects both the parameter risk and the process risk in the model. Figure 25 shows the 
predictive distribution of the expected cost of the layer between 10,000 and 25,000, 
E[X ], and the predicted outcome of losses X in that layer.

As statisticians and practitioners became aware of the potential for Bayesian 
MCMC modeling in solving real-world problems, a general software initiative to 
implement Bayesian MCMC analyses, called the BUGS project, began. BUGS is an 
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acronym for Bayesian inference Using Gibbs Sampling.17 The project began in 1989 in  
the MRC Biostatistics Unit, Cambridge, and led initially to the ‘Classic’ BUGS program, 
and then onto the WinBUGS software developed jointly with the Imperial College 
School of Medicine at St Mary’s, London. The project’s web site is at http://www.mrc-bsu. 
cam.ac.uk/bugs/. The various software packages associated with the BUGS project have 
captured many of the good techniques involved in Bayesian MCMC modeling.

On the advice of some colleagues I chose to use the JAGS ( Just Another Gibbs 
Sampler) package. It has the additional feature that it runs on a variety of platforms 
(Window, Mac, Linux and several varieties of Unix). Like R, it can be downloaded for free.

I use JAGS with R. My typical MCMC program begins by reading in the data, calling 
the JAGS script using the R package “runjags.” I then fetch the sample of the posterior 
back into the R program where I calculate various “statistics of interest.”

While I realize that JAGS is doing something more sophisticated, I find it helpful to 
“think” of JAGS as using a simple version of the Metropolis–Hasting algorithm similar 
to that illustrated in the example above. Once a model is specified, there are three stages 
in running a JAGS program:

1.	 The adaptive stage where JAGS modifies the proposal distribution in the Metropolis-
Hastings algorithm. JAGS will issue a warning if it thinks that you haven’t allowed 
enough iterations for adapting. Let’s denote the number of iterations for scaling by t1.

2.	 The burn-in stage runs until we have reached the limiting posterior distribution. 
JAGS has diagnostics (described below) that indicate convergence. The burn-in 
stage runs from iterations t1 + 1 to t1 + t2.

3.	 The sampling stage that produces the sample of the posterior distribution. The 
sampling stage runs from iterations t1 + t2 + 1 to t1 + t2 + t3.

JAGS has a number of convergence diagnostics that are best illustrated with an 
example. We are given the total losses from a set of thirty insurance policies in the 
following table.

Exposure	 Loss	 Exposure	 Loss	 Exposure	 Loss

51	   23	 226	 273	 368	 410
66	 138	 231	 275	 374	 482
119	   53	 254	 259	 377	 500
125	   88	 255	 200	 381	 424
131	   80	 258	 123	 392	 242
152	 136	 268	 275	 444	 431
196	 165	 279	 327	 449	 337
197	 136	 295	 509	 478	 399
225	 328	 340	 457	 484	 458
225	 347	 364	 317	 495	 553

17	 Gibbs sampling is an MCMC algorithm that is a special case of the Metropolis Hastings algorithm. This is 
demonstrated in Chapter 1 of Brooks et al. (2011).
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Our task is to use these data to estimate the expected cost of losses in excess of 
1000 for an insurance policy with an exposure of 800. Note that in our data, there is 
no insurance policy with an exposure as high as 800, and no loss over 1000.

Let’s use the collective risk model with a Poisson distribution for the claim count, 
and a distribution for the claim severity. Here is the description of the model using the 
notation in Klugman, Panjer, and Willmot (2012).18

1.	 λ = k • Exposure
2.	 n ∼ Poisson(λ)
3.	 Loss ∼ Γ(n • a, θ)
4.	 k ∼ Uniform(0.05, 0.15)
5.	 a ∼ Uniform(0.1, 10)
6.	 θ ∼ Uniform(5,200)

In JAGS, the script looks pretty much like the model description above after a 
change in notation for the distribution parameters. Let’s first consider convergence 
diagnostics. First of all, with JAGS one can run multiple independent chains. I first ran 
this model with 1,000 iterations for the adaptive stage, 10,000 iterations for the burn-in 
stage and then 2,500 iterations for the sampling stage. JAGS then produces trace plots 
for all four chains, colored differently, superimposed on each other. A visual indication 
of convergence is that all the chains bounce around in the same general area. Figure 26 
shows the trace plots produced by JAGS for the three parameters in this example.

18	 This particular version of the collective risk model is called a Tweedie distribution. See Meyers (2009).
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CRM Example



52	 Casualty Actuarial Society

Stochastic Loss Reserving Using Bayesian MCMC Models

As we can see from the trace plots, the chains are very distinct, so we should 
conclude that the chains have not converged.

A second diagnostic provided by JAGS is the Gelman-Rubin statistic for each 
parameter. Here is a heuristic description of the statistic.19 First estimate the within 
chain variability, W, and the between chain variability, B. Gelman and Rubin then 
recommend that one use the statistic

R
W B

W
.

� �
�

� = +

The R�  is called the “potential scale reduction (or ‘shrink’) factor.” or PSRF. This 
statistic will approach one as the number of iterations increases, since the between 
chain variability will approach zero. What we need to know is how long the chains have 
to be before we can stop and get a representative sample of the posterior distribution. 
Chapter 6 of Brooks et al. (2011) recommends that we accept convergence if the 
PSRF is 1.1 or below for all parameters. The default for the “runjags” package is 1.05, 
which is what I used in for the models in this monograph. The PSRFs for this JAGS 
run were 1.87, 1.21 and 1.92 for the parameters a, k and θ, respectively.

Continuing the example, I reran the JAGs model with same parameters but thinned 
the chains to take every 25th iteration. The results are in Figure 27. The PSRFs for this 
JAGS run were 1.03, 1.02 and 1.01 for the parameters a, k and θ respectively. So we can 
accept that the run has converged.

JAGS then sent 10,000 parameter sets {at, kt, θt} back to the R script. R then 
simulated losses to the insurance policy as follows.

For t = 1 to 10,000.

1.	 Set λ = kt • 800.
2.	 Select nt at random from a Poisson distribution with mean λ.
3.	 Select Losst at random from a Γ(nt • at, θt) distribution.20

Figure 28 shows a histogram of the ground up losses from the above simulation 
and the expected cost of the layer in excess of 1,000.

The examples in this appendix illustrate the ideas behind Bayesian MCMC models, 
those being the adaptive phase, the burn-in phase, the sampling phase, and convergence 
testing. Understanding these concepts should enable one to start running these kinds 
of models. When running these models one should keep in mind that the state of the 
art is still evolving, so one should periodically check the current literature and software 
developments on Bayesian MCMC modeling for recent developments.

19	 See Jackman (2009, Section 6.2) or Hartman (2014) for a more detailed description of this statistic.
20	 If each Xi has a Γ(a, θ) distribution, then X1 + . . . + Xn has a Γ(n • a, θ) distribution.
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Appendix C.  Bayesian MCMC  
Model Implementation

The state of the art and the software for Bayesian MCMC modeling is still evolving. 
Since there may be upgrades by the time the reader sees this monograph, I think that it 
is important for me to describe the computing environment in which I ran the models 
in this monograph.

My computer was a Macbook Pro with a quad core processor. On this computer 
I used R version 3.0.2 and JAGS version 3.3, implementing JAGS with the “runjags” 
package. The main consideration in selecting the “runjags” package was that made 
it easy to run the four chains in parallel with my quad core computer. Running the 
chains in parallel made a significant improvement in the run time.

For the LCL, CCL, and CSR models I used 1,000 iterations for the adaptive phase, 
and 10,000 iterations for the burn-in phase. I ran the model inside a loop, with the 
sampling phase initially set at 10,000 iterations with a thinning parameter equal to four. 
If the maximum PSRF for the parameters I monitored was greater than 1.05, I doubled 
the number of iterations in the sampling phases and the thinning parameter and ran 
the simulation again—continuing until the target PSRF target was achieved.

For most of the LCL and CCL models on incurred data, the initial run achieved the 
PSRF target. The highest thinning parameter was 32. Convergence was somewhat slower 
for the CCL and CSR models on the paid data. There was one triangle that required a 
thinning parameter equal to 512.

For the CIT and LIT models on the paid data, I increased the burn-in to 50,000 
iterations. Convergence was noticeably slower. Far fewer triangles met the PSRF target 
with a thinning parameter set equal to four.

The R/JAGS scripts for all models are in a spreadsheet that will be distributed with 
this monograph. For each model, I put these scripts inside a loop that ran all 200 triangles 
while I was otherwise occupied. Summary statistics for all 200 triangles are also included 
in the spreadsheet and because I fixed the random number seed, the scripts are able to 
reproduce the summary statistics for any of the triangles.
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Claims Development by Layer: The Relationship between 
Claims Development Patterns, Trend and Claim Size Models 

 

Rajesh Sahasrabuddhe, FCAS, MAAA 
________________________________________________________________________ 

The purpose of Charles Cook’s 1970 paper Trend and Loss Development Factors was to address the “overlap fallacy.” 
That is, the focus of that paper was to demonstrate that trend and claims development were mutually exclusive 
adjustments. While this is certainly true, it should also be understood that there is a relationship between limited 
claims development patterns and trend factors. The “connector” between claims development patterns and trend 
is the claim size model. This relationship is critical to analyzing “real word” data which is rarely available on a 
ground-up, unlimited basis and where the implicit assumption of trend in a single direction may not be 
appropriate.  
 
This paper presents a demonstration of that relationship and also provides an approach to adjust development 
patterns for a particular claim size layer in order to calculate a development pattern for any other layer. As 
importantly, the approach discussed is designed to produce models that are internally consistent with respect to 
development patterns, trend factors and size of loss models (increased / decreased limit factors). 
 
Keywords development patterns, excess layer 

             

1. INTRODUCTION 

The purpose of this paper is to demonstrate the relationship between claims development, trend 
and claim size factors. Those relationships are then explored in order to provide a practical approach 
for adjusting a development pattern appropriate for any claim layer to produce a development 
pattern for any other layer. The approach also allows for adjustments related to cost level 
assumptions implicit in development patterns and ensures that assumptions related to claim size 
models, claims development and trend are internally consistent. 

The procedure may be applied to either paid claims or reported claims. Additionally, although we 
use “claims” in the discussion, the procedure may also be applied to claims and allocated claim 
adjustment expenses (or only allocated claim adjustment expenses) assuming that all parameters and 
assumptions are defined consistently.  

                                                           
1 A previous revision dated November 25, 2012 corrected minor typographical errors in Equations 2.3 and 3.6, and the 
cross reference for the calculation of item D1 in Examples 1 and 2. 
This January 2, 2013 revision includes exhibits that were inadvertently excluded from the November 25, 2013 version. 
Those exhibits include a minor correction to Example 3. 
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1.1 Research Context 
The current approach for estimating excess layer development is based on Emanuel Pinto and 

Daniel Gogol’s paper, “An Analysis of Excess Loss Development.” The focus of that paper is the fitting 
of observed development factors as a function of retentions. The observed factors were developed 
using an analysis of a large industry database. Pinto/Gogol then present an approach for calculating 
excess layer development in Section 5 and this approach is explored further in George M. Levine’s 
review. However, this approach requires that the actuary first calculate excess layer development 
using their fitting approach.  

Many actuaries would not have access to such industry data and as such the Pinto/Gogol 
approach would not be practical. In addition to this issue, the methodology does not use the 
inherent relationship of claims size models, trend and claims development patterns. 

1.2 Scope and Objective 
This paper includes comments related to assumptions implicit in the determination of 

development patterns, trend and claim size distributions in practice. However, the development of 
these actuarial models and their parameters is beyond the scope of this paper. The objective of this 
paper is to provide a methodology to calculate development factors by layer once the actuary has 
already determined his/her assumptions with respect to a “base” development pattern, trend and 
claim size models. 

1.3 Outline 
The paper presents a discussion of a robust approach and then provides an example that 

incorporates simplifying assumptions that are common in actuarial practice. The remainder of the 
paper proceeds as follows. Section 2 will provide notation and define important algebraic definitions 
of model factors. Section 3 provides the discussion of the inter-relationship between claims 
development, trend and claim size models. Section 4 will provide implementation examples to the 
oft-studied Mack triangle and a simpler approach that may be sufficient for many analyses. 

2. BACKGROUND 

We begin by examining the implicit and explicit assumptions of claims development, trend and 
claim size models.  

The discussion will assume that we are analyzing an n×n claims triangle. We generalize our 
discussion to allow for data that is truncated from below at d and censored from above at p. This is 
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typical of data subject to deductibles and policy limits. Of course, if d = 0 and p = ∞, then the claims 
data is provided on a ground-up, unlimited (GUU) basis. The notation used in this paper is as 
follows: 

𝐶𝑖,𝑗𝑳  = Cumulative claims in the layer L, for exposure period i as of the end of 
development interval j 

𝐶𝑖,∞𝑳  = Ultimate claims in the layer L, for exposure period i (j = ∞) 

𝐿(𝑑,𝑝) = Claims layer truncated from below at d and censored from above at p where 0 ≤ 
d < p ≤∞ 

Though it will be obvious that this is not a necessary assumption, in order to simplify notation, 
we will assume claims layer L is consistent throughout the data triangle. Claims data is typically 
organized as presented in Table 1. 

TABLE 1 
CUMULATIVE CLAIMS DATA 

  Development Interval (j) 
  1 2 3 … n 

E
xp

os
ur

e 
 

Pe
rio

d 
(i)

 

1 𝐶1,1
𝑳  𝐶1,2

𝑳  𝐶1,3
𝑳  … 𝐶1,𝑛

𝑳  
2 𝐶2,1

𝑳  𝐶2,2
𝑳  𝐶2,3

𝑳  …  

3 𝐶3,1
𝑳  𝐶3,2

𝑳  𝐶3,3
𝑳  …  

… …     
n 𝐶𝑛,1

𝑳      

Below we first discuss trend, claims size models and development patterns separately and then 
discuss their relationships. 

2.1 Trend Factors 
Trend rates typically refer to the annual change in cost level for a particular claims layer. In 

practice, trend rates often do not vary between accident periods. In addition, trend that acts in the 
development period or calendar period direction is often not considered. Finally, the consideration 
of the varying effects of trend applicable to different claims layer is often nonexistent.  

Rather than using annual rates of change, we will use cost level indices, T. Cost level indices are 
determined so as to apply to cumulative claims for accident year i as of development maturity j. The 
indices are an accumulation of the incremental changes relative to a “base cost level.” Any accident 
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year and maturity combination can be considered the “base.” In practice, the base cost level will 
typically be defined as the cost level associated with ultimate claims for the oldest exposure period. 

Our trend is explicitly defined to apply to the ground-up, unlimited claims layer. This is 
consistent with approaches in practice where the trend assumption is based on external cost 
information such as the Consumer Price Index. If trend is estimated from claims data that is subject 
to policy limits or deductibles then we will first need to adjust the data to a ground-up, unlimited 
basis using the claim size model.  

Our model allows for trend that acts in multiple directions. We use the following notation for 
cost level indices. 

𝑇𝑖,𝑗  = Trend indices for cumulative GUU claims for exposure period i at the end of 
development interval j 

TABLE 2 
COST LEVEL INDICES 

  Development Interval (j) 
  1 2 3 … n 

E
xp

os
ur

e 
 

Pe
rio

d 
(i)

 

1 𝑇1,1 𝑇1,2 𝑇1,3 … 𝑇1,𝑛 
2 𝑇2,1 𝑇2,2 𝑇2,3 …  

3 𝑇3,1 𝑇3,2 𝑇3,3 …  

… …     
n 𝑇𝑛,1     

2.2 Claim Size Model 
The claim size model describes the distribution of claim sizes. Though we do not restrict claim 

size models with respect to complexity, for practicality we require the following: 

 that claims size model parameters can be adjusted for the impact of inflation (includes 
most common claim size models such as the lognormal and exponential) 

 that limited expected values and unlimited means (first moments) can be calculated with 
reasonable effort. 
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2.2.1 Limit Adjustment Factors 

The limit adjustment factors, S(a,b), represents the ratio of expectations of claims between layer 
La and Lb.  

Si,∞( La, Lb) = {LEV(pa; Φi,∞) – LEV(da; Φi,∞)} / {LEV(pb; Φi,∞) – LEV(db; Φi,∞)} (2.1) 
Si,j(La, Lb) = {LEV(pa; Φi,j) – LEV(da; Φi,j)} / {LEV(pb; Φi,j) – LEV(db; Φi,j)} (2.2) 

Si,j(La, Lb) = E[𝐶𝑖,𝑗
𝑳𝑎/ 𝐶𝑖,𝑗

𝑳𝑏] (2.3) 

where LEV is the characteristic limited expected value function for the claim size model and Φ 
represents the “name” (e.g. lognormal, Pareto, exponential) and parameters of the claim size model. 
We also acknowledge that the parameters of the claims size model, Φ, will vary by exposure period i 
and development interval j as a result of differences in cost level.  

In later sections, we will use the notation LEV(L; Φ) to refer to the limited expected value for 
the layer L(d, p). This is calculated as follows: 

LEV(L; Φ) = LEV(p; Φ) – LEV(d; Φ) (2.4) 

2.2.2 Gross-up Factors 

In the special case where pa=∞ and da=0, S(a,b) simplifies to a factor to gross-up claims to a GUU 
basis. We can then use the characteristic first moment (mean) function, M, in the numerator rather 
than the limited expected value function. 

Gi,.(b) = M(Φi,∞) / {LEV(pb;Φi,∞) – LEV(db;Φi,∞)} (2.4) 
Gi,j(b) = M(Φi,j) / {LEV(pb;Φi,j) – LEV(db;Φi,j)} (2.5) 

2.3 Claims Development 
Claims development factors, F, represent the expected ratios of ultimate claims to claims at 

maturities prior to ultimate. That is: 

𝐹𝑖,𝑗𝑳  =E[ 𝐶𝑖,∞𝑳  / 𝐶𝑖,𝑗𝑳  ] (2.6) 

3. RESULTS AND DISCUSSION 

We can now explore the relationships between claims development, trend, and claim size models. 
The discussion assumes that we have been provided with unlimited claims trend factors and that we 
have developed the cost level indices as presented in Table 2. 
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3.1 Claim Size and Trend 
As per the requirements of Section 2.2, for our selected claim size model, we can calculate model 

parameters for prior or future exposure periods using the trend indices.  

𝚽𝑖,𝑗~𝑓�𝚽𝑛,𝑗,𝑇𝑖,𝑗,𝑇𝑛,𝑗� (3.1) 

3.2 Claim Development Patterns, Claim Size and Trend 
In practice, claims development patterns are estimated from unadjusted data and are applied to 

claims for all exposure periods. We should acknowledge that this is not appropriate unless (i) claims 
data are provided on a GUU basis and (ii)  trend acts only in the accident year direction. Since this is 
oftentimes not the case, we address these issues by adjusting the triangle of claims data prior to 
analysis. Specifically, we adjust observed claim amounts for differences in cost level and limit using 
the limited expected value function. 

3.2.1 Development of Basic Limit Claims Development Pattern, Exposure Year n Cost Level 

We first select a Basic Limit, B, which is the threshold at which we believe the data is sufficiently 
credible for the purpose of estimating claims development patterns. Recall from Table 1 that L 
represents the layer for which data is available. We then adjust each observation of cumulative 
claims as follows2

𝐸�𝐶𝚤,𝚥𝑩́ |𝐶𝑖,𝑗𝑳 � = 𝐶𝑖,𝑗𝑳 × 𝐿𝐸𝑉(𝑩;𝚽𝑛,𝑗)/𝐿𝐸𝑉(𝑳;𝚽𝑖,𝑗) 

: 

(3.2) 

We note that there is no restriction that B ≠ L. We should recognize that if B = L, then we are 
simply adjusting the data for differences due to the impact of trend in the layer. (Note the difference 
between the first subscript of Φ in the numerator and denominator of Equation 3.2). 

We then analyze this adjusted data, 𝐶𝚤,𝚥𝑩́ , in order to estimate development patterns at a common 
(basic) limit and an exposure period i=n cost level. This pattern is denoted 𝐹𝑛,𝑗

𝑩  and we have the 
following relationship: 

𝐹𝑛,𝑗
𝑩 = 𝐸�𝐶𝑛,∞

𝑩́ /𝐶𝑛,𝚥
𝑩́ � (3.3) 

As you review the following sections, keep in mind that this basic limit development pattern at 
exposure year n cost level will now be used to calculate basic limit development for any other layer 
and exposure period (cost level). 

                                                           
2 We presume that a triangle at the basic limit is not readily available. 
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3.2.2 Calculation of Claims Development Pattern for Any Layer and Cost Level 

Equation 3.2 also provides an important general relationship applicable to any layer X if we have 
data for layer L. 

𝐸�𝐶𝑖,𝑗𝑿 |𝐶𝑖,𝑗𝑳 � = 𝐶𝑖,𝑗𝑳 × 𝐿𝐸𝑉(𝑿;𝚽𝑖,𝑗)/𝐿𝐸𝑉(𝑳;𝚽𝑖,𝑗) 
 𝐶𝑖,𝑗𝑳 × Si,j(X, L) 

(3.4) 
(3.5) 

Using this general relationship, we can calculate basic limit development factors for any exposure 
period for any layer X from the development factor for B at exposure year n cost levels: 

𝐹𝑖,𝑗𝑿 = 𝐸 �
𝐶𝑖,∞𝑿

𝐶𝑖,𝑗𝑿
� = 𝐸 �

𝐶𝑛,∞
𝐵

𝐶𝑛,𝑗
𝐵 ×

𝐿𝐸𝑉(𝑿;𝚽𝑖,∞)/𝐿𝐸𝑉(𝑩;𝚽𝑛,∞)
𝐿𝐸𝑉(𝑿;𝚽𝑖,𝑗)/𝐿𝐸𝑉(𝑩;𝚽𝑛,𝑗)

� 
(3.6) 

𝐹𝑖,𝑗𝑿 = 𝐹𝑛,𝑗
𝑩 ×

𝐿𝐸𝑉(𝑿;𝜱𝑖,∞)/𝐿𝐸𝑉(𝑩;𝜱𝑛,∞)
𝐿𝐸𝑉(𝑿;𝜱𝑖,𝑗)/𝐿𝐸𝑉(𝑩;𝜱𝑛,𝑗)

 
(3.7) 

𝐹𝑖,𝑗𝑿 = 𝐹𝑛,𝑗
𝑩 ×

𝑆𝑖,∞(𝑿,𝑩)
𝑆𝑖,𝑗(𝑿,𝑩)

 
(3.8) 

However, as we demonstrated in Equation 3.1, 𝚽𝑖,𝑗 is a function of trend indices and 𝚽𝑛,𝑗. So, 
substituting Equation 3.1 into Equation 3.7, we have: 

𝐹𝑖,𝑗𝑿 = 𝐹𝑛,𝑗
𝑩 ×

𝐿𝐸𝑉(𝑿;𝑇𝑖,∞,𝑇𝑛,∞,𝚽𝑛,∞)/𝐿𝐸𝑉(𝑩;𝚽𝑛,∞)
𝐿𝐸𝑉(𝑿;𝑇𝑖,𝑗,𝑇𝑛,𝑗,𝚽𝑛,𝑗)/𝐿𝐸𝑉(𝑩;𝚽𝑛,𝑗)

 
(3.9) 

Equations 3.8 and 3.9 are the primary findings of this research: Development factors at 
different cost levels and different layers are related to each other based on claim size models 
and trend. 

3.3 Other Practical Uses 
Oftentimes, we are simply provided with a development pattern. Although we are typically aware 

of the limits associated with the triangle and/or pattern, it is not stated at any particular cost level.  

In Equation 3.9, we demonstrated that, for limited claims data, development patterns will vary 
with cost level. However, this relationship is often ignored usually because it is presumed immaterial. 
For convenience, we will simply assert that the cost level is that of the latest exposure period.  

We also typically have a claim size model at ultimate (e.g. increased limit factors), but size models 
by age are usually not available. Let us also assume that we are only concerned with estimating 
development factors applicable to claims at the latest valuation date. 

We can use a variation of Equation 3.6 to develop claims development patterns: 

𝐹𝑖,𝑗𝑿 = 𝐹𝑛,𝑗
𝐵 ×

𝐿𝐸𝑉(𝑿;𝚽𝑖,∞)/𝐿𝐸𝑉(𝑩;𝚽𝑛,∞)
𝑅𝑗  (𝑋,𝐵)

 
(3.10) 
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The primary difference between Equations 3.8 and Equation 3.6 is that rather than using claim 
size models by age in the denominator, we use a quantity,  𝑅𝑗  (𝑋,𝐵), that is simpler to estimate 
approximately.  

𝑅𝑗  (𝑋,𝐵) is the ratio between limited expected values for layer X and B at the end of 
development interval j. 𝑅𝑗  (𝑋,𝐵) is only evaluated along a single diagonal since we typically have at 
least one diagonal (usually the current diagonal) where we can observe ratios of claims at various 
limits. It should be noted that R carries only one subscript, that for maturity. In using this latter 
approach, we assume that differences in cost level are immaterial to the calculation of ratios of 
claims by layer3

For the moment, we will ignore the possibility of negative development and assume that 
𝑅𝑗  (𝑋,𝐵)<1. The latter assumption indicates that we are trying to develop an estimate for a pattern 
at a lower layer given a pattern at a higher layer. We should recognize that R will have the following 
properties: 

.  

i. R a > Rb for a<b - At early maturities, there will be less development in the excess layer than 
at later maturities. 

ii. R a ≥ U, where 𝑼 = lim𝑎→∞ 𝑹𝑎 - We should recognize that U can be calculated as the 
product of R and the ratio of ultimate claim development factors layer X and B. Until we 
reach ultimate, the reported ratio will always be greater than ultimate ratio. This is because 
the there is more development associated with the denominator of R (claims in layer B, the 
higher limit) than the numerator of R (claims in layer X, the lower limit) and at ultimate R = 
U. 

iii. If our base development pattern is provided on an unlimited basis (i.e. B=GUU), then the 
maximum value for R may be calculated as U*Claims Development Factor. The derivation of 
this maximum is presented in Appendix A. 

It should be recognized that these conditions will be violated if there is negative development or 
if we assume that an excess layer might develop more quickly than a working layer. These conditions 
are not necessary for application of this approach. However, it is useful to review the results under 
the typical considerations described above to provide a more intuitive understanding of the 
dynamics of the calculation. 

                                                           
3 Note that we are not asserting that they are immaterial with respect to absolute limited expected values. 



Claims Development by Layer: 
The Relationship between Claims Development Patterns, Trend and Claim Size Models 

Casualty Actuarial Society E-Forum, Fall 2010  9 

In the third example presented in Section 4, we use a simpler approach to calculating R 4

3.4 Issues 

 which is 
then used to calculate development factors for a layer other than the layer associated with the 
development pattern provided. 

Relative to common development method projections, the procedure described above requires 
additional assumptions and calculations. The use of certain assumptions and calculations would not 
appear to be overly onerous: 

1. The procedure requires that the actuary select a basic limit. However, actuaries either 
explicitly or implicitly select a basic limit in applying the development method. That is, 
whenever a development triangle is analyzed there is an implicit assumption that the limit 
associated with that triangle is sufficiently credible to produce development factors. 

2. The procedure requires the use of a(n ultimate) claim size model in order to implement a 
development method analysis. This may or may not result in an additional burden on the 
actuary. Oftentimes, claim size information (such as increased limit factors) or a claim 
size model is already available to the actuary. If not, we would submit that knowledge of 
the distribution of claim sizes is important in understanding the dynamics of claims 
development. 

We should also recognize that we use the claim size model only to calculate relative 
limited expected values near the deductible, basic limit, policy limit and limit underlying 
the development data. Deductibles generally would not be an issue for the types of 
exposures for which the actuary would be willing to invest the effort required of this 
approach. As such, what is important is that our claim size model produces reasonable 
ratios of limited expectations to unlimited means at higher values. It is less important that 
the absolute limited expected values are accurate and therefore a simpler size of loss 
model may be sufficient though we need to recognize its shortcomings and not use that 
model out of context. 

3. The procedure requires that the data triangle be adjusted to a basic limit and common 
cost level. As demonstrated in Examples 1 & 2 of Section 4, given claim size and trend 
information, the calculation and application of adjustment factors would not seem to 
create a significant additional burden. 

                                                           
4 Simpler than calculating claim size models by age. 
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There are however two sets of assumptions that could be perceived as resulting in a significant 
additional burden.  

1. Claim size models at maturities prior to ultimate are generally not available. In addition, 
these models would have limited application outside of this context. However, 
understanding changes in claims size models over time would be a significant benefit for 
actuaries to understand excess layer development.  

With an insurance company database or even a self-insured risk of sufficient size, we 
believe that an algorithm could be reasonably programmed to calculate these claim size 
models. 

Although a robust claim size model is required for full implementation of this approach 
(Examples 1 & 2), it should be recognized that only the ratio of expected values is 
required to adjust development patterns from one layer to another. This is a significantly 
reduced burden as will be demonstrated in Example 3 in the next section. 

2. The procedure requires the calculation of a triangle of trend indices in order to 
implement a development method analysis. We would expect that a trend assumption 
exists in the analysis. The trend indices specify the cost level associated with cumulative 
claim observations. This becomes somewhat difficult to conceptualize in two respects: 

a. Trend typically acts on incremental activity. 

b. The impact of trend on reported incurred claims and, more specifically, the timing 
of the effect of trend on case basis reserves, is difficult to ascertain. 

These difficulties are not an issue if we assume that development only acts in the 
exposure period direction. Even if we have trend also acting across calendar periods, we 
would submit that this will require the actuary to confront the assumption with respect to 
the direction(s) in which trend acts or (more importantly) does not act. In addition 
documenting this assumption produces greater transparency and better informs the 
consumer of actuarial information. 

4. EXAMPLES 

We now present three examples that implement the concepts described in Section 3. The first 
two examples are based on the oft-studied claims triangle included in the Distribution-Free Calculation 
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of the Standard Error of Chain Ladder Reserve Estimates by Thomas Mack. Example 1 and Example 2 are 
identical except that in Example 1, the Basic Limit is well above the working claims layer; in 
Example 2, the Basic Limit is within the working layer. The third example presents the approach 
discussed in Section 3.3 where we adjust a development pattern provided to us to determine patterns 
for other layers. 

4.1 Example 1 & 2 
For Examples 1 & 2, we provide the following additional (contrived) information about the Mack 

triangle. This information is intended to be typical of that which might apply to actual data: 

 We have selected a basic limit of $500 thousand 
 The policy limit is $2 million 
 The data in the triangle is for the ground-up layer to $1 million 
 Trend acts at a rate of 2% each exposure period; but there was a one-time increase to 5% 

between exposure period 6 and 7. 
 Trend acts at a rate of 1% each calendar period; but there was a one-time decrease of 5% 

between calendar period 2 and 3. 

The calculations in the examples are presented as follows: 

- In Section A, we present the claims data and relevant information. Both exposure periods 
and development intervals are annual. However, since this is not a strict requirement of 
our approach, we have retained the more generic labels: “Exposure Period” and 
“Development Interval.” 

- In Section B, we present the calculation of trend indices. 

- In Section C, we present the claim size model. Section C1 provides the claim size model 
at Exposure Period 10 cost level. We use an exponential model for simplicity of 
presentation; however any model that meets the requirements of Section 2.2 could be 
used.  

In Section C2, we present the calculation of adjusted exponential parameters based on the 
Exposure Year 10 parameters and trend indices. 

In Sections C4 through C6, we present the calculation of limited expected values using 
the characteristic function of the exponential model. 

- In Section D1, we present the adjusted cumulative claims triangle. This triangle adjusts all 
historical observations to the basic limit at Exposure Period 10 cost levels. The 
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adjustments are based on ratios of limited expected values. In Sections D2 and D3, we 
calculate the incremental and cumulative development patterns. 

- In Section E, we apply Equation 3.7 to calculate development factors for various layers at 
appropriate exposure year cost levels. In Section E7, we present the differences between 
factors calculated through examination of the (unadjusted) triangle in Section A1 and the 
factors resulting from our approach.  

Factors for certain excess layers are presented as “very large.” This occurs since the 
expectation of claim in the layer at early maturities is very small. 

We note that the differences presented in Section of E7 of Example 1 are quite small. 
The differences will grow with the expectation of claims in the layer between the basic 
limit and layer under review. This is demonstrated in Example 2, where the resulting 
differences are quite a bit greater. We should also recognize that layers that are excess 
layers for an insurer (or self-insured) become working layers for reinsurers (excess 
insurers). 

It will also grow in situations where trend and/or development act over longer periods or 
at higher rates. 

4.2 Example 3 
The third example presents the approach described in Section 3.3. This approach is intended to 

provide a simpler application of the theory in Section 3. As presented in Example 1, if the basic limit 
is sufficiently high and trend is contained, the impact of data adjustments is minimal.  

The calculations in Example 3 are reasonably self-explanatory. However, readers should note the 
following: 

 At ultimate, all claims development factors equal unity and the ratio at age (col. 9) equals 
the ratio at ultimate (col. 8). 

 The x axis is labeled “maturity,” not exposure period. The observed pattern should be 
viewed as one observation of a random process at a particular maturity and not viewed as 
the ratio applicable to an exposure period. 

 We use an algorithm to select ratios by age. At the earliest maturity, we know that the 
ratio should be “high.” That is because claims emergence in excess layers is still “low.”  

Our selected ratios are calculated as follows: 
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Selected Ratio = Ultimate Ratio + (1-Ultimate Ratio) * Decay Factor  
This approach recognizes that we want to “keep” a portion of the distance between the 
ultimate ratio and the maximum ratio (unity). This portion is determined through the use 
of a decay model where we keep most of the difference at the earliest maturity and none 
at ultimate. 

In practice, assuming we are analyzing development patterns at limits at or above the 
working layer, the ratios will be close to unity and the amount of error that could possibly 
be created by this approach is minimal. 

5. CONCLUSION 

In this paper we have demonstrated that there is a relationship between claim development 
patterns by layer and that that relationship is a function of trend and claim size models. This 
relationship can be used to calculate development patterns for a claims layer from a development 
pattern for any other claims layer. 

These relationships also demonstrate that limited development factors are a function of not only 
maturity but also cost level. Therefore, the same pattern of limited factors should not always be 
applied to all exposure periods under review.  

With short development patterns, low trend rates and limits above the working layer, the 
adjustment is small and often immaterial. Not all exposures exhibit these characteristics and for 
these exposures, the adjustments may be meaningful. For exposures where the adjustment may not 
be meaningful, we provided an alternative simpler approach to adjust development patterns. 
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Appendix A: Calculation of Maximum Ratios of Basic Limit to Unlimited Claims 
The maximum ratio is represented by the limiting case where all development in the unlimited 

layer occurs above the basic limit. The maximum ratio is calculated as follows: 
Notation: 
R = Ultimate ratio of basic limit to unlimited claims 
A = Ratio of basic limit to unlimited claims prior to ultimate 
D = Unlimited claim development factor 

 
Claims 

Prior to Ultimate At Ultimate 
Limited to Basic Limit Ba Br 
Excess of Basic Limit Xa Xr 

Unlimited Ca Cr 
 
Identities: 
I1: Ba = Br (All development in excess layer; basic limit layer at ultimate) 
I2: R = Br / Cr 
I3: Cr = Ca * D 
 
Then under maximum conditions: 
Amax = Ba / Ca 
Amax = Ba / (Cr/D) « per I3 » 
Amax = D * Ba / Cr 
Amax = D * Br / Cr « per I1 » 
Amax = D * R  « per I2 » 
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A. Data and Information

1 Cumulative Development Triangle (C i,j )

1 2 3 4 5 6 7 8 9 10

1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463

2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085

3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315

4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268

5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311

6 396,132 1,333,217 2,180,715 2,985,752 3,691,712

7 440,832 1,288,463 2,419,861 3,483,130

8 359,840 1,421,128 2,864,498

9 376,686 1,363,294

10 344,014

2 Limit of Data in Triangle 1,000,000

3 Selected Basic Limit 500,000

4 Policy Limit 2,000,000

B. Trend Indices

1 Exposure Period Trend Index [ 2% EP Trend; 5% between EP 6 and 7 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020

3 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040

4 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061

5 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082

6 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104

7 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159

8 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182

9 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206

10 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230

2 Calendar Period Trend Index [ 1% Calendar Period Trend; -5% between CP 2 and 3 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029

2 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039

3 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049

4 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060

5 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070

6 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081

7 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092

8 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103

9 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114

10 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114 1.125

3 Combined Trend Index [ B1 * B2 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029

2 1.030 0.979 0.988 0.998 1.008 1.018 1.029 1.039 1.049 1.060

3 0.998 1.008 1.018 1.029 1.039 1.049 1.060 1.070 1.081 1.092

4 1.028 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114 1.125

5 1.059 1.070 1.081 1.092 1.102 1.114 1.125 1.136 1.147 1.159

6 1.091 1.102 1.113 1.125 1.136 1.147 1.159 1.170 1.182 1.194

7 1.157 1.169 1.181 1.193 1.204 1.217 1.229 1.241 1.253 1.266

8 1.192 1.204 1.216 1.229 1.241 1.253 1.266 1.278 1.291 1.304

9 1.228 1.241 1.253 1.266 1.278 1.291 1.304 1.317 1.330 1.344

10 1.266 1.278 1.291 1.304 1.317 1.330 1.343 1.357 1.370 1.384
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C. Claim Size Model (Apply to Cumulative Claims)

1 Claims Size Model Parameters at Exposure Year 10 Cost Level [ via claim size modeling ]

Exponential (q) 1 2 3 4 5 6 7 8 9 10

i =10 28,138 84,242 133,998 182,460 204,649 228,245 252,830 265,063 275,707 280,000

2 Claims Size Model Parameters [ C1 * B3i,j / B310,j ]

Exponential (q) 1 2 3 4 5 6 7 8 9 10

1 22,233 66,564 99,590 135,608 152,099 169,636 187,908 197,000 204,911 208,101

2 22,905 64,501 102,598 139,703 156,693 174,759 193,583 202,949 211,099 214,386

3 22,195 66,449 105,696 143,922 161,425 180,037 199,429 209,078 217,475 220,861

4 22,865 68,455 108,888 148,268 166,300 185,474 205,452 215,392 224,042 227,531

5 23,555 70,523 112,177 152,746 171,322 191,075 211,657 221,897 230,808 234,402

6 24,267 72,653 115,564 157,359 176,496 196,846 218,049 228,598 237,779 241,481

7 25,735 77,048 122,556 166,879 187,174 208,755 231,241 242,429 252,164 256,090

8 26,512 79,375 126,257 171,919 192,827 215,059 238,224 249,750 259,780 263,824

9 27,313 81,772 130,070 177,111 198,650 221,554 245,418 257,292 267,625 271,792

10 28,138 84,242 133,998 182,460 204,649 228,245 252,830 265,063 275,707 280,000

3 Unlimited Means

1 2 3 4 5 6 7 8 9 10

1 22,233 66,564 99,590 135,608 152,099 169,636 187,908 197,000 204,911 208,101

2 22,905 64,501 102,598 139,703 156,693 174,759 193,583 202,949 211,099 214,386

3 22,195 66,449 105,696 143,922 161,425 180,037 199,429 209,078 217,475 220,861

4 22,865 68,455 108,888 148,268 166,300 185,474 205,452 215,392 224,042 227,531

5 23,555 70,523 112,177 152,746 171,322 191,075 211,657 221,897 230,808 234,402

6 24,267 72,653 115,564 157,359 176,496 196,846 218,049 228,598 237,779 241,481

7 25,735 77,048 122,556 166,879 187,174 208,755 231,241 242,429 252,164 256,090

8 26,512 79,375 126,257 171,919 192,827 215,059 238,224 249,750 259,780 263,824

9 27,313 81,772 130,070 177,111 198,650 221,554 245,418 257,292 267,625 271,792

10 28,138 84,242 133,998 182,460 204,649 228,245 252,830 265,063 275,707 280,000

4 Limited Expected Values at Policy Limits

1 2 3 4 5 6 7 8 9 10

1 22,233 66,564 99,590 135,607 152,099 169,635 187,904 196,992 204,899 208,087

2 22,905 64,501 102,598 139,703 156,692 174,757 193,577 202,938 211,083 214,367

3 22,195 66,449 105,696 143,922 161,424 180,034 199,420 209,063 217,453 220,835

4 22,865 68,455 108,888 148,268 166,299 185,470 205,440 215,372 224,013 227,496

5 23,555 70,523 112,177 152,746 171,321 191,070 211,640 221,870 230,769 234,356

6 24,267 72,653 115,564 157,358 176,494 196,838 218,026 228,562 237,726 241,420

7 25,735 77,048 122,556 166,878 187,170 208,740 231,200 242,365 252,074 255,987

8 26,512 79,375 126,257 171,917 192,821 215,039 238,170 249,667 259,662 263,690

9 27,313 81,772 130,070 177,109 198,642 221,527 245,348 257,184 267,473 271,619

10 28,138 84,242 133,998 182,456 204,638 228,209 252,737 264,922 275,512 279,779

5 Limited Expected Values at Limits of Data Triangle

1 2 3 4 5 6 7 8 9 10

1 22,233 66,564 99,586 135,522 151,887 169,169 186,990 195,770 203,355 206,398

2 22,905 64,501 102,592 139,594 156,428 174,187 192,478 201,479 209,249 212,366

3 22,195 66,449 105,688 143,784 161,096 179,340 198,105 207,328 215,285 218,474

4 22,865 68,455 108,877 148,094 165,893 184,629 203,871 213,318 221,461 224,723

5 23,555 70,523 112,161 152,527 170,822 190,056 209,778 219,448 227,777 231,112

6 24,267 72,652 115,544 157,085 175,885 195,621 215,826 225,719 234,233 237,640

7 25,735 77,048 122,521 166,462 186,279 207,020 228,179 238,510 247,385 250,932

8 26,512 79,375 126,211 171,407 191,748 213,003 234,644 245,194 254,248 257,866

9 27,313 81,772 130,010 176,486 197,356 219,126 241,247 252,014 261,246 264,932

10 28,138 84,241 133,921 181,699 203,105 225,390 247,987 258,969 268,375 272,128

6 Limited Expected Values at Basic Limit

1 2 3 4 5 6 7 8 9 10

1 22,233 66,528 98,933 132,211 146,418 160,735 174,776 181,433 187,052 189,273

2 22,905 64,473 101,813 135,805 150,248 164,762 178,957 185,674 191,337 193,574

3 22,195 66,413 104,764 139,462 154,134 168,836 183,176 189,948 195,652 197,903

4 22,865 68,409 107,785 143,181 158,075 172,956 187,431 194,253 199,993 202,256

5 23,555 70,464 110,876 146,960 162,068 177,119 191,718 198,586 204,358 206,632

6 24,267 72,578 114,037 150,798 166,111 181,322 196,035 202,944 208,743 211,026

7 25,735 76,931 120,483 158,539 174,229 189,725 204,633 211,606 217,447 219,744

8 26,512 79,229 123,851 162,538 178,404 194,029 209,019 216,018 221,873 224,175

9 27,313 81,591 127,286 166,587 182,619 198,360 213,422 220,441 226,307 228,611

10 28,138 84,019 130,788 170,682 186,869 202,716 217,839 224,873 230,745 233,050
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D. Calculation of Development Factors at Basic Limit

1 Cumulative Triangle Exposure Year 10 Cost Levels and Basic Limit (C i,j ) [ A1i,j  * C610,j  / C5i,j  ]

1 2 3 4 5 6 7 8 9 10

1 452,881 1,419,731 2,279,040 2,793,772 3,377,947 3,978,376 4,038,185 4,142,394 4,349,865 4,405,265

2 432,566 1,610,197 2,766,439 4,100,116 4,538,378 4,794,873 5,260,266 5,484,617 5,887,561

3 368,296 1,634,013 2,745,402 3,840,401 4,623,708 4,671,636 5,090,015 5,324,759

4 382,236 1,741,436 2,636,785 4,330,559 4,539,482 4,811,270 4,902,613

5 529,368 1,353,815 2,481,777 3,242,747 3,722,312 4,131,335

6 459,320 1,541,795 2,468,413 3,244,186 3,922,258

7 481,990 1,405,037 2,583,135 3,571,425

8 381,903 1,504,277 2,968,365

9 388,062 1,400,758

10 344,014

2 Exposure Year 10 Incremental Basic Limit Development Factors [ per D1; Volume Weighted Averages]

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

i =10 3.511 1.714 1.399 1.147 1.076 1.057 1.039 1.063 1.013

3 Exposure Year 10 Cumulative Development Factors [ per D2 ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

i =10 12.291 3.501 2.042 1.460 1.273 1.183 1.119 1.077 1.013 1.000

E. Calculation of Development Factors by Layer

1 Basic Limit [ D3j * (C6i,10/C610,10) / (C6i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 12.633 3.590 2.193 1.531 1.319 1.211 1.133 1.084 1.015 1.000

2 12.541 3.789 2.179 1.524 1.315 1.209 1.132 1.083 1.014

3 13.232 3.761 2.165 1.517 1.310 1.206 1.130 1.083

4 13.126 3.731 2.151 1.510 1.306 1.203 1.129

5 13.017 3.701 2.136 1.503 1.301 1.200

6 12.904 3.669 2.121 1.496 1.296

7 12.671 3.605 2.090 1.482

8 12.547 3.571 2.074

9 12.421 3.536

10 12.291

2 Basic Limit to Policy Limit [ D3j * ( (C4i,10-C6i,10) / C610,10 ) / ((C4i,j-C6i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 very large 652.420 32.802 5.924 3.380 2.175 1.499 1.257 1.057 1.000

2 very large 946.242 30.374 5.704 3.293 2.140 1.488 1.252 1.056

3 very large 807.075 28.187 5.498 3.210 2.107 1.477 1.247

4 very large 691.561 26.215 5.305 3.132 2.075 1.466

5 very large 595.239 24.431 5.124 3.058 2.044

6 very large 514.560 22.814 4.954 2.987

7 very large 390.710 20.042 4.647

8 very large 341.869 18.820

9 very large 300.278

10 very large

3 Policy Limit to Unlimited [ D3j * ( (C3i,10-C4i,10) / C610,10 ) / ( (C3i,j-C4i,j) / C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 very large very large 84,538.278 279.503 48.056 11.155 3.254 1.887 1.183 1.000

2 very large very large 62,192.336 240.423 43.321 10.464 3.157 1.857 1.178

3 very large very large 46,166.664 207.723 39.172 9.835 3.066 1.829

4 very large very large 34,571.138 180.241 35.524 9.261 2.979

5 very large very large 26,108.458 157.047 32.309 8.735

6 very large very large 19,880.311 137.391 29.466

7 very large very large 11,880.695 106.724

8 very large very large 9,257.797

9 very large very large

10 very large
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4 Limit of Data in Triangle [ D3j * ( C5i,10 / C610,10 ) / (C5i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 13.776 3.913 2.375 1.629 1.387 1.255 1.155 1.096 1.018 1.000

2 13.759 4.155 2.372 1.627 1.385 1.254 1.154 1.095 1.018

3 14.607 4.149 2.369 1.625 1.384 1.253 1.154 1.095

4 14.584 4.143 2.366 1.623 1.382 1.252 1.153

5 14.559 4.136 2.362 1.620 1.381 1.251

6 14.532 4.128 2.357 1.618 1.379

7 14.469 4.110 2.347 1.612

8 14.433 4.100 2.342

9 14.394 4.089

10 14.352

5 Unadjusted Incremental Development Factors at Limits of Data Triangle[ per A1; Volume Weighted Averages]

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

3.490 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018

6 Unadjusted Cumulative Development Factors [ per E5 ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

14.445 4.139 2.369 1.625 1.384 1.254 1.155 1.096 1.018 1.000

Differences [ E6 / E4, last diagonal -1 ]

7 +0.7% +1.2% +1.2% +0.8% +0.4% +0.3% +0.1% +0.1% +0.0% +0.0%
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A. Data and Information

1 Cumulative Development Triangle (C i,j )

1 2 3 4 5 6 7 8 9 10

1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463

2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085

3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315

4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268

5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311

6 396,132 1,333,217 2,180,715 2,985,752 3,691,712

7 440,832 1,288,463 2,419,861 3,483,130

8 359,840 1,421,128 2,864,498

9 376,686 1,363,294

10 344,014

2 Limit of Data in Triangle 1,000,000

3 Selected Basic Limit 500,000

4 Policy Limit 2,000,000

B. Trend Indices

1 Exposure Period Trend Index [ 2% EP Trend; 5% between EP 6 and 7 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020

3 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040

4 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061

5 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082

6 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104

7 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159

8 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182

9 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206

10 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230

2 Calendar Period Trend Index [ 1% Calendar Period Trend; -5% between CP 2 and 3 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029

2 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039

3 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049

4 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060

5 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070

6 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081

7 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092

8 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103

9 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114

10 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114 1.125

3 Combined Trend Index [ B1 * B2 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029

2 1.030 0.979 0.988 0.998 1.008 1.018 1.029 1.039 1.049 1.060

3 0.998 1.008 1.018 1.029 1.039 1.049 1.060 1.070 1.081 1.092

4 1.028 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114 1.125

5 1.059 1.070 1.081 1.092 1.102 1.114 1.125 1.136 1.147 1.159

6 1.091 1.102 1.113 1.125 1.136 1.147 1.159 1.170 1.182 1.194

7 1.157 1.169 1.181 1.193 1.204 1.217 1.229 1.241 1.253 1.266

8 1.192 1.204 1.216 1.229 1.241 1.253 1.266 1.278 1.291 1.304

9 1.228 1.241 1.253 1.266 1.278 1.291 1.304 1.317 1.330 1.344

10 1.266 1.278 1.291 1.304 1.317 1.330 1.343 1.357 1.370 1.384
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C. Claim Size Model (Apply to Cumulative Claims)

1 Claims Size Model Parameters at Exposure Year 10 Cost Level [ via claim size modeling ]

Exponential (q) 1 2 3 4 5 6 7 8 9 10

i =10 60,295 168,483 267,996 348,332 409,299 456,490 505,660 530,125 551,415 565,000

2 Claims Size Model Parameters [ C1 * B3i,j / B310,j ]

Exponential (q) 1 2 3 4 5 6 7 8 9 10

1 47,642 133,128 199,180 258,887 304,199 339,272 375,816 393,999 409,822 419,919

2 49,081 129,001 205,195 266,705 313,386 349,518 387,166 405,898 422,199 432,600

3 47,560 132,897 211,392 274,760 322,850 360,073 398,858 418,156 434,949 445,665

4 48,996 136,911 217,776 283,058 332,600 370,948 410,904 430,784 448,085 459,124

5 50,476 141,046 224,353 291,606 342,644 382,150 423,313 443,794 461,617 472,990

6 52,000 145,305 231,129 300,413 352,992 393,691 436,097 457,197 475,558 487,274

7 55,146 154,096 245,112 318,588 374,348 417,509 462,481 484,857 504,329 516,754

8 56,812 158,750 252,514 328,209 385,654 430,118 476,448 499,500 519,560 532,360

9 58,527 163,544 260,140 338,121 397,300 443,108 490,837 514,585 535,250 548,437

10 60,295 168,483 267,996 348,332 409,299 456,490 505,660 530,125 551,415 565,000

3 Unlimited Means

1 2 3 4 5 6 7 8 9 10

1 47,642 133,128 199,180 258,887 304,199 339,272 375,816 393,999 409,822 419,919

2 49,081 129,001 205,195 266,705 313,386 349,518 387,166 405,898 422,199 432,600

3 47,560 132,897 211,392 274,760 322,850 360,073 398,858 418,156 434,949 445,665

4 48,996 136,911 217,776 283,058 332,600 370,948 410,904 430,784 448,085 459,124

5 50,476 141,046 224,353 291,606 342,644 382,150 423,313 443,794 461,617 472,990

6 52,000 145,305 231,129 300,413 352,992 393,691 436,097 457,197 475,558 487,274

7 55,146 154,096 245,112 318,588 374,348 417,509 462,481 484,857 504,329 516,754

8 56,812 158,750 252,514 328,209 385,654 430,118 476,448 499,500 519,560 532,360

9 58,527 163,544 260,140 338,121 397,300 443,108 490,837 514,585 535,250 548,437

10 60,295 168,483 267,996 348,332 409,299 456,490 505,660 530,125 551,415 565,000

4 Limited Expected Values at Policy Limits

1 2 3 4 5 6 7 8 9 10

1 47,642 133,128 199,171 258,773 303,774 338,338 373,981 391,539 406,709 416,332

2 49,081 129,001 205,183 266,558 312,855 348,374 384,956 402,957 418,499 428,352

3 47,560 132,897 211,376 274,570 322,191 358,680 396,209 414,655 430,569 440,653

4 48,996 136,911 217,754 282,816 331,786 369,258 407,742 426,635 442,921 453,234

5 50,476 141,045 224,323 291,300 341,645 380,112 419,557 438,896 455,554 466,096

6 52,000 145,305 231,088 300,027 351,770 391,243 431,653 451,439 468,466 479,234

7 55,146 154,096 245,042 317,989 372,558 414,040 456,358 477,020 494,769 505,979

8 56,812 158,749 252,423 327,468 383,496 426,005 469,287 490,388 508,497 519,926

9 58,527 163,543 260,021 337,208 394,713 438,252 482,494 504,028 522,492 534,136

10 60,295 168,482 267,843 347,214 406,209 450,779 495,975 517,938 536,750 548,605

5 Limited Expected Values at Limits of Data Triangle

1 2 3 4 5 6 7 8 9 10

1 47,642 133,056 197,865 253,447 292,836 321,470 349,552 362,866 374,105 381,110

2 49,081 128,946 203,626 260,430 300,495 329,523 357,913 371,347 382,674 389,729

3 47,560 132,826 209,527 267,544 308,268 337,673 366,352 379,896 391,303 398,402

4 48,996 136,819 215,569 274,786 316,150 345,913 374,861 388,507 399,986 407,123

5 50,476 140,928 221,752 282,155 324,136 354,239 383,436 397,173 408,715 415,886

6 52,000 145,156 228,075 289,646 332,222 362,644 392,070 405,887 417,485 424,685

7 55,146 153,862 240,967 304,782 348,458 379,450 409,265 423,212 434,894 442,134

8 56,812 158,458 247,701 312,616 356,809 388,057 418,038 432,035 443,746 450,999

9 58,527 163,183 254,572 320,556 365,237 396,720 426,844 440,882 452,614 459,875

10 60,295 168,038 261,575 328,598 373,738 405,433 435,677 449,745 461,490 468,753

6 Limited Expected Values at Basic Limit

1 2 3 4 5 6 7 8 9 10

1 47,641 130,016 182,998 221,361 245,406 261,556 276,465 283,245 288,835 292,261

2 49,079 126,327 187,251 225,794 249,827 265,920 280,743 287,475 293,020 296,416

3 47,558 129,810 191,537 230,232 254,237 270,263 284,992 291,670 297,168 300,532

4 48,994 133,360 195,853 234,671 258,632 274,581 289,207 295,830 301,277 304,609

5 50,473 136,974 200,196 239,109 263,009 278,872 293,389 299,953 305,347 308,645

6 51,997 140,651 204,561 243,542 267,367 283,134 297,533 304,035 309,374 312,637

7 55,140 148,090 213,237 252,269 275,900 291,453 305,601 311,973 317,197 320,386

8 56,803 151,944 217,653 256,671 280,182 295,615 309,626 315,928 321,092 324,242

9 58,516 155,855 222,080 261,056 284,435 299,739 313,608 319,837 324,938 328,049

10 60,280 159,819 226,514 265,423 288,655 303,824 317,544 323,700 328,736 331,806
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D. Calculation of Development Factors at Basic Limit

1 Cumulative Triangle Exposure Year 10 Cost Levels and Basic Limit (C i,j ) [ A1i,j  * C610,j  / C5 i,j  ]

1 2 3 4 5 6 7 8 9 10

1 452,767 1,351,032 1,986,583 2,323,084 2,706,395 3,137,755 3,148,934 3,217,037 3,368,618 3,396,735

2 432,457 1,532,103 2,413,944 3,417,616 3,649,372 3,798,743 4,123,637 4,283,518 4,586,542

3 368,203 1,554,934 2,398,380 3,209,537 3,732,390 3,718,630 4,012,222 4,183,099

4 382,140 1,657,379 2,306,488 3,629,412 3,679,452 3,848,804 3,886,711

5 529,235 1,288,675 2,174,035 2,725,977 3,030,200 3,322,067

6 459,205 1,467,893 2,165,788 2,736,050 3,207,585

7 481,869 1,338,349 2,274,720 3,033,321

8 381,807 1,433,334 2,619,477

9 387,965 1,335,194

10 343,928

2 Exposure Year 10 Incremental Basic Limit Development Factors [ per D1; Volume Weighted Averages]

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

i =10 3.344 1.578 1.341 1.109 1.061 1.046 1.035 1.061 1.008

3 Exposure Year 10 Cumulative Development Factors [ per D2 ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

i =10 9.639 2.883 1.827 1.363 1.229 1.158 1.107 1.069 1.008 1.000

E. Calculation of Development Factors by Layer

1 Basic Limit [ D3j * (C6i,10/C610,10) / (C6i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 10.743 3.121 1.992 1.439 1.273 1.185 1.120 1.077 1.011 1.000

2 10.576 3.258 1.975 1.431 1.269 1.182 1.119 1.076 1.011

3 11.066 3.215 1.957 1.423 1.264 1.179 1.117 1.075

4 10.888 3.172 1.940 1.415 1.259 1.177 1.116

5 10.709 3.129 1.923 1.407 1.255 1.174

6 10.529 3.086 1.906 1.400 1.250

7 10.175 3.004 1.874 1.385

8 9.996 2.963 1.858

9 9.817 2.923

10 9.639

2 Basic Limit to Policy Limit [ D3j * ( (C4i,10-C6i,10) / C610,10 ) / ((C4i,j-C6i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 very large 55.346 9.569 3.616 2.273 1.714 1.348 1.195 1.052 1.000

2 very large 68.491 9.178 3.529 2.238 1.697 1.342 1.192 1.050

3 very large 63.024 8.810 3.445 2.205 1.681 1.335 1.189

4 very large 58.114 8.465 3.366 2.172 1.665 1.329

5 very large 53.693 8.140 3.289 2.141 1.649

6 very large 49.704 7.834 3.216 2.111

7 very large 42.907 7.279 3.079

8 very large 39.930 7.020

9 very large 37.221

10 very large

3 Policy Limit to Unlimited [ D3j * ( (C3i,10-C4i,10) / C610,10 ) / ( (C3i,j-C4i,j) / C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 very large very large 515.543 34.213 9.036 4.072 2.071 1.521 1.151 1.000

2 very large very large 441.637 31.367 8.568 3.939 2.037 1.507 1.147

3 very large very large 380.045 28.831 8.138 3.814 2.005 1.494

4 very large very large 328.487 26.566 7.741 3.697 1.974

5 very large very large 285.139 24.538 7.373 3.586

6 very large very large 248.540 22.717 7.034

7 very large very large 191.734 19.638

8 very large very large 169.080

9 very large very large

10 very large
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4 Limit of Data in Triangle [ D3j * ( C5i,10 / C610,10 ) / (C5i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 14.008 3.977 2.403 1.639 1.392 1.257 1.155 1.096 1.018 1.000

2 13.905 4.197 2.387 1.632 1.387 1.254 1.154 1.095 1.017

3 14.669 4.165 2.372 1.623 1.382 1.251 1.152 1.094

4 14.551 4.132 2.356 1.615 1.377 1.248 1.151

5 14.429 4.098 2.339 1.607 1.372 1.245

6 14.302 4.063 2.323 1.599 1.367

7 14.040 3.990 2.289 1.582

8 13.902 3.952 2.271

9 13.760 3.913

10 13.614

5 Unadjusted Incremental Development Factors at Limits of Data Triangle[ per A1; Volume Weighted Averages]

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

3.490 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018

6 Unadjusted Cumulative Development Factors [ per E5 ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

14.445 4.139 2.369 1.625 1.384 1.254 1.155 1.096 1.018 1.000

Differences [ E6 / E4, last diagonal -1 ]

7 +6.1% +5.8% +4.3% +2.8% +1.3% +0.7% +0.3% +0.1% +0.0% +0.0%

Development Interval (j )
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Claims Development by Layer

Example 3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

$500K to $1m

Exposure

Period (i ) Maturity

Claims, 

Limited to 

$1m, as of 

End of EP 10

Claims, 

Limited to 

Basic Limit 

($500K), as of 

End of EP 10

Observed 

Ratio

Exponential 

Claim Size 

Model 

Parameter (q)

Limited 

Expected 

Value at Basic 

Limit at 

Ultimate

Limited 

Expected 

Value at $1m 

Limit at 

Ultimate

Ratio at 

Ultimate

Selected Ratio 

at Age

Ultimate 

Claims 

Development 

Factor at $1m

Ultimate 

Claims 

Development 

Factor at 

$500K

Ultimate 

Claims 

Development 

Factor $500K 

to $1m

1 10 3,901,463 3,846,592 0.986 208,000 189,203 206,301 0.917 0.917 1.000 1.000 1.000

2 9 5,339,085 4,692,053 0.879 214,985 193,978 212,932 0.911 0.917 1.018 1.011 1.094

3 8 4,909,315 4,695,780 0.957 222,204 198,788 219,736 0.905 0.914 1.096 1.085 1.213

4 7 4,588,268 3,795,644 0.827 229,665 203,628 226,713 0.898 0.912 1.155 1.137 1.335

5 6 3,873,311 3,873,311 1.000 237,377 208,493 233,862 0.892 0.912 1.254 1.226 1.546

6 5 3,691,712 3,670,631 0.994 245,348 213,379 241,183 0.885 0.915 1.384 1.339 1.878

7 4 3,483,130 2,750,008 0.790 253,587 218,283 248,672 0.878 0.923 1.625 1.546 2.563

8 3 2,864,498 1,771,896 0.619 262,102 223,199 256,328 0.871 0.937 2.369 2.202 4.833

9 2 1,363,294 1,363,294 1.000 270,903 228,123 264,147 0.864 0.961 4.139 3.721 14.296

10 1 344,014 344,014 1.000 280,000 233,050 272,128 0.856 0.999 14.445 12.389 1,444.501

(5) = (4) / (3)

(6) Via claim size model

(7) LEV [exponential(q);x]= q * (1 - exp (x/q))

(8) LEV [exponential(q);x]= q * (1 - exp (x/q))

(9) = (7) / (8)

(10) See Section 4.2

(11) Provided

(12) = (11) * (9) / (10)

(13) = (11) * ( 1- (9) ) / ( 1-  (10) )

0.96751152 0.990591231
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There are many papers that describe the over-dispersed Poisson (ODP) bootstrap 
model, but these papers are either limited to the basic calculations of the model or 
focus on the theoretical aspects of the model and always implicitly assume that the 
ODP bootstrap model is perfectly suited to the data being analyzed. In order to use 
the ODP bootstrap model on real data, the analyst must first test and review the 
assumptions of the model and may need to consider various modifications to the basic 
algorithm in order to put the ODP bootstrap model to practical use. This monograph 
starts by gathering the evolutionary changes from different papers into a complete ODP 
bootstrap modeling framework using a standard notation. Then it generalizes the basic 
model into a more flexible framework. Next it describes the adjustments or enhancements 
required for practical use and addresses the diagnostic testing of the model assumptions. 
While this monograph is focused on the ODP bootstrap model, we must recognize that 
it is a special subset of a larger framework of models and that there are a wide variety of 
other stochastic models that should also be considered. However, since no single model 
is perfect we also explore ways to combine or credibility weight the ODP bootstrap model 
results with various other models in order to arrive at a “best estimate” of the distribution, 
similar to how a deterministic best estimate is generally derived in practice. Finally, the 
monograph will also extend the model to illustrate the GLM Bootstrap and the model 
output to address other risk management issues and suggest areas for future research.

Keywords. Bootstrap, Over-Dispersed Poisson, Reserve Variability, Reserve Range, 
Distribution of Possible Outcomes, Generalized Linear Model, Best Estimate.

Availability of Excel workbooks. In lieu of technical appendices, several 
companion Excel workbooks are included that illustrate the calculations described in this 
monograph. The companion materials are summarized in the Supplementary 
Materials section and are available at https://www.casact.org/sites/default/
files/2021-02/practitionerssuppl-shaplandmonograph04.zip. Other sources of ODP 
bootstrap modeling software that could be used for educational purposes would include 
working parties and other industry groups in North America and Europe, including 
but not limited to models freely available in the R statistical software package.
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The concept of bootstrapping generally invokes the idea that once a process has been 
started, it can replicate without additional external input. Disciplines from biology and 
physics to business and statistics use bootstrapping to analyze numerous processes. For 
example, in statistics, bootstrapping involves starting with one sample and using it to 
derive many more subsamples drawn from the original sample. A specialized applica-
tion within actuarial science involves derivation of a distribution of possible outcomes 
for each step in the loss development process.

Considerable literature has been developed over the past twenty-plus years regarding 
bootstrapping as it relates to actuarial science and the loss reserving process. In this work, 
Mr. Shapland collects the research from this vast literature base and frames it in one 
comprehensive presentation. The result is a complete over-dispersed Poisson (ODP) 
bootstrap model. At the same time, those who have worked with ODP bootstrapping 
know that these models have limitations when using real-world data. Mr. Shapland’s work 
also proposes modifications and enhancements that allow more practical application of 
the ODP bootstrap model. In addition, he provides details on generalized linear models, 
of which the ODP bootstrap is one form.

With the knowledge that model risk is a real risk—no single model is perfect—
Mr. Shapland further explores ways to combine the results of ODP bootstrapping with 
other types of models in an effort to determine a true “best estimate” of the distribution.

A set of illustrative Excel files, along with detailed instructions on how to use them, 
complements this monograph. With these files, the reader can follow through, step by 
step, the theory presented in monograph.

This monograph provides a one-stop shop for practical application of bootstrapping 
for the loss reserving process. The Monographs Editorial Board thanks the author for a 
valuable contribution to the casualty actuarial literature.

Leslie R. Marlo
Chairperson

Monograph Editorial Board

Foreword
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The term “bootstrap” has a colorful history that dates back to German folk tales of  
the 18th century. It is aptly conveyed in the familiar cliché admonishing laggards to 
“pull oneself up by their own bootstraps.” A physical paradox and virtual impossibility, 
the idea has nonetheless caught the imagination of scientists in a broad array of fields, 
including physics, biology and medical research, computer science, and statistics.

Bradley Efron (1979), Chairman of the Department of Statistics at Stanford Uni­
versity, is most often associated as the source of expanding bootstrapping into the realm 
of statistics, with his notion of taking one available sample and using it to arrive at many 
others through resampling.

In actuarial science, the concept of bootstrapping has become increasingly common 
in the process of loss reserving. The most commonly cited examples are England and 
Verrall (1999; 2002), Pinheiro, et al. (2003), and Kirschner, et al. (2008), who combine 
the bootstrap concept with a basic chain ladder model. These papers detail a form of 
the model where the incremental losses are modeled as over-dispersed Poisson random 
variables. In this monograph, it is called the over-dispersed Poisson bootstrap model, or 
the ODP bootstrap. The goal of the ODP bootstrap model is to generate a distribution 
of possible outcomes, rather than a point estimate, providing more information about 
the potential results.

At the present time, the vast majority of reserving actuaries in the U.S. are focused on 
deterministic point estimates. This is not surprising as the American Academy of Actuaries’ 
primary standard of practice for reserving, ASOP 36, is focused on deterministic 
point estimates and the actuarial opinion required by regulators is also focused on 
deterministic estimates. However, actuaries are moving towards estimating an unpaid 
claim distribution, encouraged by the following factors:

•	 ASOP 43 defines “actuarial central estimate” in such a way that it could include 
either deterministic point estimates or a first moment estimate from a distribution;

•	 the SEC is looking for more reserving risk information in the 10-K reports filed by 
publicly traded companies;

•	 all of the major rating agencies have built or are building dynamic risk models to 
help with their insurance rating process and welcome the input of company actuaries 
regarding unpaid claim distributions;

•	 companies that use dynamic risk models to help their internal risk management 
processes need unpaid claim distributions;

1.  Introduction
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•	 The Solvency II regime in Europe is moving many insurers towards unpaid claim 
distributions; and

•	 International Financial Accounting Standards, while still being discussed, shows 
actuaries that the future of insurance accounting may rely on unpaid claim 
distributions for booked reserves.

1.1.  Objectives
One objective of this monograph is to provide more practical details on the Generalized 

Linear Model (GLM), of which the ODP bootstrap model1 is a specific form. A GLM 
allows the user to “fit” the model to the data, as illustrated in Figure 1.1. The benefit 
of a GLM is that it can be specifically tailored to the statistical features found in the 
data under analysis. In contrast, consider algorithms that essentially force the data to 
be “fit” to a static method in order to predict the future as illustrated in Figure 1.2.2

If a method does not use parameters or assumptions that fit the statistical features 
of the data then it may not project a reasonable point estimate. Similarly, if model 
assumptions and parameters do not fit the statistical features found in the data then the 
results of a simulation may not be a very good estimate of the distribution of possible 
outcomes. Thus, the modeling framework must be able to adapt to or “fit” the model 
to the data so this point will be elaborated on in later sections.

Another objective of this monograph is to show how the ODP bootstrap modeling  
framework can be used in practice, to help the wider adoption of unpaid claim distribu­
tions. Most of the papers describing stochastic models, including the ODP bootstrap 
model, tend to focus primarily on the theoretical aspects of the model while ignoring 
the data issues that commonly arise in practice. As a result the models can be quite 
elegantly implemented yet suffer from practical limitations such as only being useful 

1	Some authors define a model as having a defined structure and error distribution, so under this more restrictive 
definition bootstrapping would be considered to be a method or algorithm. However, using a less restrictive 
definition of a model as an algorithm that produces a distribution, bootstrapping would be defined as a model.

2	For most deterministic reserving methods diagnostic tools can be used to test assumptions, adjust parameters and 
“fit” the method to the data, but not all assumptions can be adjusted and blindly applying a method is equivalent 
to a static method.

Figure 1.1.    Stochastic Model Diagram
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for complete triangles or only for positive incremental values. Thus, while keeping as 
close to the theoretical foundation as possible, another objective is to illustrate how 
practical adjustments can be made to accommodate common data issues and allow the 
model to “fit” the data. As a practical matter, it is also possible that the model does not 
fit the data very well, or less well than other models, so the process of diagnosing the 
assumptions will inform the actuary’s judgment when considering how much weight, 
if any, to give the model in relation to other models.

Another potential roadblock seems to be the notion that actuaries are still searching 
for the perfect model to describe “the” distribution of unpaid claims, as if imperfections 
in a model remove it from all consideration since it can’t be “the one.” This notion can 
also manifest itself when an actuary settles for a model that seems to work the best or is 
the easiest to use, or with the idea that each model must be used in its entirety or not at 
all. Interestingly, this notion was dispelled long ago with respect to deterministic point 
estimates as actuaries commonly use many different methods, which range from easy to 
complex, and judgmentally weight the results to arrive at their best estimate.

Model risk—the risk that the model you have chosen is not the same as the one that 
generates future losses—is very real and weighting or combining multiple estimates is a 
very practical way of addressing model risk. Thus, another objective of this monograph 
is to show how stochastic reserving can be similar to deterministic reserving when it 
comes to analyzing and using the best parts of multiple models by illustrating how the 
results from an ODP bootstrap model can be weighted together with other models. 
More importantly, the monograph hopes to illustrate the advantage of using a more 
complete set of risk estimation tools (which can include both stochastic models and 
deterministic methods) to arrive at an actuarial best estimate of the distribution of 
possible outcomes, rather than to focus on deterministic methods to select the “mean” 
and then simply “add on” a simple approximation or use only a favorite model to 
turn that selected mean into a distribution.

Figure 1.2.    Static Method Diagram
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2.  Notation

The papers that describe the basic ODP bootstrap model use different notation, 
despite sharing common steps. Rather than pick the notation in one of the papers, the 
notation from the CAS Working Party on Quantifying Variability in Reserve Estimates 
Summary Report (CAS Working Party 2005) will be used since it is intended to serve 
as a basis for further research.

Many models visualize loss data as a two-dimensional array, (w, d ) with accident 
period or policy period w, and development age d (think w = “when” and d = “delay”). 
For this discussion, we assume that the loss information available is an “upper triangular” 
subset for rows w = 1, 2, . . . , n and for development ages d = 1, 2, . . . , n - w + 1. The 
“diagonal” for which w + d equals the constant, k, represents the loss information for 
each accident period w as of accounting period k.3

For purposes of including tail factors, the development beyond the observed data 
for periods d = n + 1, n + 2, . . . , u, where u is the ultimate time period for which any 
claim activity occurs—i.e., u is the period in which all claims are final and paid in full, 
must also be considered.

The monograph uses the following notation for certain important loss statistics:

	 c(w, d ):	 cumulative loss from accident4 year w as of age d.
	 q(w, d ):	 incremental loss for accident year w from d - 1 to d.
	c(w, n) = U(w):	� total loss from accident year w when claims are at ultimate values at 

time n,5 or
	c(w, u) = U(w):	� total loss from accident year w when claims are at ultimate values at 

time u.
	 R(w):	� future development after age d for accident year w, i.e., = U(w) - 

c(w, d ).
	 f (d ):	� factor applied to c(w, d ) to estimate q(w, d + 1) or can be used more 

generally to indicate any factor relating to age d.

3	 For a more complete explanation of this two-dimensional view of the loss information, see the Foundations of 
Casualty Actuarial Science (2001), Chapter 5, particularly pages 210–226.

4	 The use of accident year is used for ease of discussion. All of the discussion and formulas that follow could also 
apply to underwriting year, policy year, report year, etc. Similarly, year could also be half-year, quarter or month.

5	 This would imply that claims reach their ultimate value without any tail factor. This is generalized by changing n 
to n + t = u, where t is the number of periods in the tail.
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	 F(d ):	� factor applied to c(w, d ) to estimate c(w, d + 1) or c(w, n) or can be 
used more generally to indicate any cumulative factor relating to age d.

	 G(w):	� factor relating to accident year w—capitalized to designate ultimate 
loss level.

	 h(k):	 factor relating to the diagonal k along which w + d is constant.6

	 e(w, d ):	 a random fluctuation, or error, which occurs at the w, d cell.
	 E(x):	 the expectation of the random variable x.
	 Var(x):	 the variance of the random variable x.
	 x*:	 a randomly sampled value of the variable x.

What are called factors here could also be summands, but if factors and summands 
are both used, some other notation for the additive terms would be needed. The 
notation does not distinguish paid vs. incurred, but if this is necessary, capitalized 
subscripts P and I could be used.

6	 Some authors define d = 0, 1, . . . , n - 1 which intuitively allows k = w along the diagonals, but in this case the 
triangle size is n × n - 1 which is not intuitive. With d = 1, 2, . . . , n defined as in this monograph, the triangle size  
n × n is intuitive, but then k = w + 1 along the diagonals is not as intuitive. A way to think about this which helps 
tie everything together is to assume the w variables are the beginning of the accident periods and the d variables 
are at the end of the development periods. Thus, if we are using years then cell c(n, 1) represents accident year n 
evaluated at 12/31/n, or essentially 1/1/n + 1.
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3. The Bootstrap Model

Although many variations of a bootstrap model framework are possible, this monograph 
will focus on the most common example which reproduces the basic chain ladder 
method—the ODP bootstrap model. Let’s briefly review the assumptions of the basic 
chain ladder method, because these assumptions are important in understanding the 
distribution created by the ODP bootstrap model.

Start with a triangle array of cumulative data:

d

1 2 3 . . . n–1 n

w 1 c(1, 1) c(1, 2) c(1, 3) . . . c(1, n-1) c(1, n)

2 c(2, 1) c(2, 2) c(2, 3) . . . c(2, n-1)

3 c(3, 1) c(3, 2) c(3, 3) . . .

. . . . . . . . .

n–1 c(n-1, 1) c(n-1, 2)

n c(n, 1)

A typical deterministic analysis of this data will start with an array of development 
ratios or development factors:

( ) ( )
( )=

−
F w d

c w d
c w d

,
,

, 1
. (3.1)

Then two key assumptions are made in order to make a projection of the known 
elements to their respective ultimate values. First, it is assumed that each accident year 
has the same development factor. Equivalently, for each w = 1, 2, . . . , n:

( ) ( )=F w d F d, .

Under this first assumption, one of the more popular estimators for the development 
factor is the weighted average:

∑
∑

( ) ( )
( )=

−
=
− +

=
− +F d

c w d
c w d

w
n d

w
n d

ˆ ,
, 1

. (3.2)1
1

1
1
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Certainly there are other popular estimators in use, but they are beyond our scope at 
this stage yet most are still consistent with our first assumption that each accident year 
has the same factor. Projections of the ultimate values, or ĉ(w, n) for w = 1, 2, . . . , n are 
then computed using:

∏( ) ( ) ( )= = − += +c w n c w d F i d n wi d
nˆ , , ˆ , for all 1. (3.3)1

This part of the claim projection algorithm relies explicitly on the second assumption, 
namely that each accident year has a parameter representing its relative level. These level 
parameters are the current cumulative values for each accident year, or c(w, n - w + 1). 
Of course variations on this second assumption are also common, but the point is that 
every model has explicit assumptions that are an integral part of understanding the 
quality of that model.

One variation on the second assumption is to assume that the accident years are 
completely homogeneous.7 In this case we would estimate the level parameter of the 
accident years using:

∑ ( )
− +

=
− + c w d
n d

w
n d ,

1
. (3.4)1

1

Complete homogeneity implies that the observations c(1, d ), c(2, d ), . . . ,  
c(n - d + 1, d ) are generated by the same mechanism. Thus, the column averages from 
(3.4) would replace the last actual values along the diagonal to calculate an estimate 
assuming homogeneity of accident years.

Interestingly, the basic chain ladder algorithm treats the processes generating the 
observations as NOT homogeneous8 and effectively that “pooling” of the data does not 
provide any increased efficiency.9 In contrast, it could be argued that the Bornhuetter-
Ferguson (1972) and Cape Cod methods are a “blend” of these two extremes as the 
homogeneity of the future expected result depends on the consistency of the a priori 
loss ratios and decay rate, respectively.

3.1.  Origins of Bootstrapping
Possibly the earliest development of a stochastic model for the actuarial array of 

cumulative development data is attributed to Kremer (1982) and the earliest discussion 
of bootstrapping is in Ashe (1986). The basic model used by Kremer is described by 
England and Verrall (1999) and Zehnwirth (1989), so there will be no further elaboration 
here. It should be noted, however, that this model can be extended by considering 
alternatives which are discussed in Barnett and Zehnwirth (2000) and Zehnwirth 
(1994), Renshaw (1989), Christofides (1990), and Verrall (1991; 2004), among others.

7	 Homogeneous data can have a different meaning in mathematics, but here we are defining it to mean having 
consistent or the same underlying exposures.

8	 Meaning the underlying exposures are changing over time and thus the current cumulative results (observation) 
for each year are more appropriate for projecting an estimate.

9	 For a more complete discussion of these assumptions of the basic chain ladder model see Zehnwirth (1989).
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10	 Generalized Linear Modeling can be done with and without link functions and with a variety of error distributions. 
We are only describing here the particular GLM model that leads to the replication of the chain ladder results. 
For a more complete treatise on Generalized Linear Modeling, see McCullagh and Nelder (1989).

11	 Some authors refer to this as the standard deviation of the posterior distribution.
12	 While over-dispersed Poisson, or ODP, are commonly used terms for this model, it is certainly possible for the 

scale parameter to be less than one and thus “under-dispersed” Poisson would be more technically correct in that 
case. Alternatively, the more general term quasi-Poisson could be used. In addition, we note that the z parameter in 
equation 3.5, and some later formulas, could be removed for simplicity since the primary focus of this monograph is 
the ODP Bootstrap model, but it is included so we do not lose sight of the fact that the ODP Bootstrap model 
is a specialized case of a larger family of models.

3.2. The Over-Dispersed Poisson Model
The genesis of this model into an ODP bootstrap framework originated with 

Renshaw and Verrall (1994) when they proposed modeling the incremental claims 
q(w, d ) directly as the response, with the same linear predictor as Kremer (1982), but 
using a generalized linear model (GLM) with a log-link function and an over-dispersed 
Poisson (ODP) error distribution.10 Then, England and Verrall (1999) discuss how a 
specific form of this model is identical to the volume weighted chain ladder model, and 
use bootstrapping (sampling the residuals with replacement) to estimate a distribution 
of point estimates11 instead of simulating from a multivariate normal distribution for a 
GLM. More formally, the following formulas are used to parameterize the GLM.

[ ] [ ] [ ]( ) ( ) ( )= = φ = φE q w d m Var q w d E q w d mw d w d
z, and , , (3.5), ,

[ ] = ηmw d w dln (3.6), ,

η = + α + β = = α = β =, where: 1, 2, . . . , ; 1, 2, . . . , ; and 0. (3.7), 1 1c w n d nw d w d

In this case the a parameters function as adjustments to the constant, c, level 
parameter and the b parameters adjust for the development trends after the first 
development period. The power, z, is used to specify the error distribution with:

z = 0 for Normal,
z = 1 for Poisson,
z = 2 for Gamma, and
z = 3 for inverse Gaussian.

Thus, the z parameter specifies not only the mean-variance relationship, but the 
whole shape of the distribution, including higher moments. Alternatively, we can 
remove the constant, c, which will cause the a parameters to function as individual 
level parameters while the b parameters continue to adjust for the development trends 
after the first development period:

η = α + β = =, where: 1, 2, . . . , ; and 2, 3, . . . , . (3.8), w n d nw d w d

Standard statistical software can be used to estimate parameters and goodness of fit 
measures. The parameter f is a scale parameter that is estimated as part of the fitting 
procedure while setting the variance proportional to the mean (thus “over-dispersed” 
Poisson for z = 1)12. For educational purposes, the calculations to solve these equations 
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for a 10 × 10 triangle are included in the “Bootstrap Models.xlsm” file, but here, and 
in the “GLM Framework.xlsm” file, the calculations are illustrated for a 3 × 3 triangle 
for ease of exposition. Consider the following incremental data triangle:

1 2 3

1 q(1, 1) q(1, 2) q(1, 3)

2 q(2, 1) q(2, 2)

3 q(3, 1)

In order to set up the GLM model to fit parameters to the data we need to do a 
log-link or transform which results in:

1 2 3

1 ln[q(1, 1)] ln[q(1, 2)] ln[q(1, 3)]

2 ln[q(2, 1)] ln[q(2, 2)]

3 ln[q(3, 1)]

The model, as described in (3.8), is then specified using a system of equations with 
vectors of aw and bd parameters as follows:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + α + α + β + β
= α + α + α + β + β
= α + α + α + β + β
= α + α + α + β + β
= α + α + α + β + β
= α + α + α + β + β

q
q
q
q
q
q

ln 1,1 1 0 0 0 0
ln 2,1 0 1 0 0 0
ln 3,1 0 0 1 0 0
ln 1, 2 1 0 0 1 0
ln 2, 2 0 1 0 1 0
ln 1, 3 1 0 0 1 1 . (3.9)

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

Converting this to matrix notation we have:

Y X A (3.10)= ×

Where:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

=





























Y

ln 1,1

ln 2,1

ln 3,1

ln 1, 2

ln 2, 2

ln 1, 3

, (3.11)

q

q

q

q

q

q
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X

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 1 0 1 0
1 0 0 1 1

, and (3.12)=























=

α
α
α
β
β























A . (3.13)

1

2

3

2

3

In this form we can use iteratively weighted least squares or maximum likelihood13 
to solve for the parameters in the A vector (3.13) that minimize the squared difference 
between the Y matrix (3.11) and the solution matrix (3.14):

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

























ln
ln
ln
ln
ln
ln

. (3.14)

1,1

2,1

3,1

1,2

2,2

1,3

m
m
m
m
m
m

After solving the system of equations we will have:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

= η = α
= η = α
= η = α
= η = α + β
= η = α + β
= η = α + β + β

ln
ln
ln
ln
ln
ln . (3.15)

1,1 1,1 1

2,1 2,1 2

3,1 3,1 3

1,2 1,2 1 2

2,2 2,2 2 2

1,3 1,3 1 2 3

m
m
m
m
m
m

This solution can then be shown as a triangle:

1 2 3

1 ln[m1,1] ln[m1,2] ln[m1,3]

2 ln[m2,1] ln[m2,2]

3 ln[m3,1]

13	 Other methods, such as orthogonal decomposition or Newton-Raphson, can also be used to solve for the parameters. 
Iteratively weighted least squares and maximum likelihood are both illustrated in the companion Excel files.
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These results can then be exponentiated to produce the fitted, or expected, incremental 
results of the GLM model:

1 2 3

1 m1,1 m1,2 m1,3

2 m2,1 m2,2

3 m3,1

This monograph will refer to this as the “GLM framework” and it is illustrated for 
a simple 3 × 3 triangle in the “GLM Framework.xlsm” file. While the GLM framework 
is used to solve these equations for the fitted results, the usefulness of this framework 
is that the fitted incremental values (with the Poisson error distribution assumption) 
will equal the incremental values that can be derived from volume-weighted average 
development factors, as shown in the “GLM Framework.xlsm” file.14 That is, it can be 
reproduced by using the last cumulative diagonal, dividing backwards successively by 
each volume-weighted average development factor and subtracting to get the fitted 
incremental results. This monograph will refer to this method as the “simplified GLM” 
or “ODP Bootstrap.” This has three very useful consequences.

First, the GLM portion of the algorithm can be replaced with a simpler development 
factor algorithm while still being based on the underlying GLM framework. Second, 
the use of the development factors serves as a “bridge” to the deterministic framework 
and allows the model to be more easily explainable to others. And, third, for the GLM 
algorithm the log-link process means that negative incremental values can often cause 
the algorithm to not have a solution, whereas using development factors will generally 
allow for a solution.15

With a model fitted to the data, the ODP bootstrap process involves sampling 
with replacement from the residuals. England and Verrall (1999) note that the 
deviance, Pearson, and Anscombe residuals could all be considered for this process, 
but the Pearson residuals are the most desirable since they are calculated consistently 
with the scale parameter. The unscaled Pearson residuals, rw,d, and scale parameter, f, 
are calculated as follows:

( )
=

−,
. (3.16),

,

,

r
q w d m

m
w d

w d

w d
z

∑φ =
−
r

N p
w d . (3.17),
2

14	 Using other than the Poisson assumption (i.e., z ≠ 1), the incremental values may be close to the values from 
the development factors, but they will not be equal.

15	 More specifically, individual negative cell values may not be a problem (by using the negative of the log of the 
absolute value in 3.14). If the total of all incremental cell values in a development column is negative, then the 
GLM algorithm will fail. This situation will not cause a problem fitting the model as a link ratio less than one 
will be perfectly useful. However, this may still cause other problems, e.g., the “GLM framework” and “simplified 
GLM” may not be equivalent, which we will address in Section 4.
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Where N = the number of observations, or incremental data cells in the triangle, 
which is typically equal to n × (n + 1) ÷ 2, and p = the number of parameters, which 
is typically equal to 2 × (n - 1).16 Sampling with replacement from the residuals can 
then be used to create new sample triangles of incremental values using formula 3.18. 
Sampling with replacement assumes that the residuals are independent and identically 
distributed, but it does not require the residuals to be normally distributed. Indeed, this 
is often cited as an advantage of the ODP bootstrap model since whatever distributional 
form the residuals have will flow through to the simulation process. Some authors have 
referred to this as a “semi-parametric” bootstrap model since we are not parameterizing 
the residuals.

= × +* ( , ) * . (3.18), ,q w d r m mw d
z

w d

The sample triangle of incremental values can then be cumulated, new average 
development factors can be calculated for the sample and applied to calculate a point 
estimate for this data, resulting in a distribution of point estimates for some large number 
of samples. In England and Verrall (1999) this is the end of the process, but at the 
end of the appendix they note that you should also adjust the resulting distribution 
by the degrees of freedom adjustment factor (3.19) and the Scale Parameter (3.17), to 
effectively allow for over-dispersion of the residuals in the sampling process and add 
process variance to approximate a distribution of possible outcomes.

=
−

. (3.19)f
N

N p
DoF

Later, in England and Verrall (2002), the authors note that the Pearson residuals 
(3.16) could be multiplied by the degrees of freedom adjustment factor (3.19) to include 
the over-dispersion in the residuals. As calculated in (3.20), these adjusted residuals 
are referred to as scaled Pearson residuals. They also expand the simulation process 
by adding process variance to the future incremental values from the point estimates. 
To add this process variance, they assume that each future incremental value mw,d is 
the mean and the mean times the scale parameter, fmw,d, is the variance of a gamma 
distribution.17 This revised model could now be described as estimating a distribution 
of possible outcomes, which incorporates process variance and parameter variance in the 
simulation of the historical and future data.18

16	 The number of data cells could be less than n × (n + 1) ÷ 2 and the number of parameters could be less than  
2 × (n - 1). For example, if the incremental values are zeros for the last three columns in a triangle then these cells 
would not be included in the total for N and there will be three fewer b parameters since none are needed to fit 
to these zero values as the development process is completed already.

17	 The Poisson distribution could be used to remain more consistent with the underlying theory of the GLM 
framework, but it is considerably slower to simulate, so gamma is a close substitute that performs much faster in 
simulation although it can be more skewed than the Poisson. Indeed, other distributions could be used as well to 
better approximate the observed “skewness” of the residuals from the diagnostics.

18	 Some authors refer to this as the full predictive distribution of the cash flows.
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( )
=

−
×

,
. (3.20),

,

,

r
q w d m

m
fw d

S w d

w d
z

DoF

However, Pinheiro et al. (2001; 2003) noted that the bias correction for the residuals 
using the degrees of freedom adjustment factor (3.20) does not create standardized 
residuals, which is an important step for making sure that the residuals all have the 
same variance. In order to have standardized Pearson residuals, the GLM framework 
requires the use of a hat matrix adjustment factor (3.23).

( )= − . (3.21)1H X X WX X WT T

First, the hat matrix (3.21) is calculated using matrix multiplication of the design 
matrix (3.12) and the weight matrix (3.22).

=



























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(3.22)

1,1

2,1

3,1

1,2

2,2

1,3

W

m
m

m
m

m
m

=
−

1
1

. (3.23),
,

f
Hw d

H

i i

The hat matrix adjustment factor (3.23) uses the diagonal of the hat matrix (3.21). In 
Pinheiro et al. (2003) the authors note two important points about the ODP bootstrap 
process as described by England and Verrall (1999; 2002). First, the sampling of the 
residuals should not include any zero-value residuals, which are typically in the corners of 
the triangle.19 The exclusion of the zero-value residuals is accounted for in the hat matrix 
adjustment factor (3.23), but another common explanation is that the zero-value cells 
will have some variance but we just don’t know what it is yet so we should sample from 
the remaining residuals but not the zeros. Second, the hat matrix adjustment factor (3.23) 
is a replacement for, and an improvement on, the degrees of freedom factor (3.19).20

Thus, the scaled Pearson residuals (3.20) should be replaced by the standardized 
Pearson residuals:

( )
=

−
×

,
. (3.24),

,

,
,r

q w d m

m
fw d

H w d

w d
z w d

H

19	 Technically, the two “corner” residuals are zero because they each have a parameter that is unique to that incremental 
value which causes the fitted incremental value to exactly equal the actual incremental value.

20	 This second point was not addressed clearly in Pinheiro et al. (2001), but as the authors updated and clarified the 
monograph in Pinheiro et al. (2003) this issue was more clearly addressed.
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However, the scale parameter (3.17) is still calculated as before, although the 
standardized Pearson residuals could be used to approximate the scale parameter as 
follows:

∑( )φ = . (3.25),
2r

N
H w d

H

At this point we have a complete basic “ODP bootstrap” model, as it is often 
referred to. It is also important to note that the two key assumptions mentioned 
earlier, each accident year has the same development factor and each accident year has 
a parameter representing its relative level, are equally applicable to this model.

In order for the reader to test out the different “combinations” of this modeling 
process the “Bootstrap Models.xlsm” file includes options to allow these historical 
algorithms to be simulated. The purpose for describing this evolution of the ODP 
bootstrap model framework is threefold: first, to allow the interested reader to better 
understand the details of the algorithm and how these papers and their authors have 
contributed to the evolution of this model framework; second, to illustrate the value of 
collaborative research via different published papers and the contributions of different 
authors; and, third, to provide a solid foundation for continuing the evolutionary 
process and to discuss practical adjustments.

3.3. Variations on the ODP Model
When estimating insurance risk it is generally considered desirable to focus on the 

claim payment stream in order to measure the variability of the actual cash flows that 
directly affect the bottom line. Clearly, changes in case reserves and IBNR reserves 
will also impact the bottom line, but to a considerable extent the changes in IBNR are 
intended to counter the impact of the changes in case reserves. To some degree, then, 
the total reserve movements can act to mask the underlying changes due to cash flows. 
On the other hand, the case reserves contain valuable information about potential 
future payments so we should not ignore them and use only paid data.

3.3.1.  Bootstrapping the Incurred Loss Triangle
The ODP bootstrap model can be used to model both paid and incurred loss data. 

Using incurred data incorporates case reserves, thus perhaps improving the ultimate 
estimates. However, the resulting distribution from using incurred data will be possible 
outcomes of the IBNR, not a distribution of the unpaid.21 There are two possible 
approaches for modeling an unpaid loss distribution using incurred loss data: modeling 
incurred data and convert the ultimate values to a payment pattern, or, modeling paid 
and case reserves separately.

Using the first approach, a convenient way of converting the results of an incurred 
data model to a payment stream is to run the paid data model in parallel with the 

21	 Using incurred data will also create issues in weighting the results of different models which will be discussed in 
Section 6.
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incurred data model, and use the random payment pattern from each iteration from 
the paid data model to convert the ultimate values from each corresponding iteration 
from the incurred data to a payment pattern for each iteration (for each accident year 
individually). The “Bootstrap Models.xlsm” file illustrates this concept. It is worth 
noting, however, that this process allows the “added value” of using the case reserves 
to help predict the ultimate results to work its way into the calculations, thus perhaps 
improving the ultimate estimates, while still focusing on the payment stream for 
measuring risk. In effect, it allows a distribution of IBNR to become a distribution of 
IBNR and case reserves. This process could be made more sophisticated by correlating 
some part of the paid and incurred models (e.g., the residual sampling and/or process 
variance portions), but that is beyond the scope of this monograph.

The second approach could be accomplished by applying the ODP bootstrap to 
the Munich chain ladder model. This has the advantage over the first approach of not 
modeling the paid losses twice, and of explicitly measuring and imposing a framework 
around the correlation of the paid and outstanding losses. Since it is so well detailed in 
Liu and Verrall (2010), it will not be discussed in detail here.

3.3.2.  Bootstrapping the Bornhuetter-Ferguson  
and Cape Cod models

Another common issue with using the ODP bootstrap model is that the distribution 
for the most recent accident years can produce results with more variance than you 
would expect when compared to earlier accident years. This is usually because more 
development factors are used to extrapolate the sampled values for the most recent 
accident years which, when coupled with random samples of incremental values, can 
result in more extreme fluctuations in point estimates. This is analogous to one of 
the weaknesses of the deterministic paid chain ladder method—a low, or high, initial 
observation can lead to an abnormally low, or high, projected ultimate, respectively.

To help alleviate this problem, the Bornhuetter-Ferguson (1972) or generalized 
Cape Cod (Struzzieri and Hussian 1998) deterministic methods can be worked into 
the underlying ODP bootstrap model, and the deterministic assumptions of these 
methods can also be converted to stochastic assumptions. For example, instead of 
using deterministic a priori loss ratios for the Bornhuetter-Ferguson model, the a priori 
loss ratios can be simulated from a distribution. Similarly, the Cape Cod algorithm can 
be applied to every ODP bootstrap model iteration to produce a stochastic Cape Cod 
projection that reflects the unique characteristics of each sample triangle.22

The “Bootstrap Models.xlsm” file also illustrates these Bornhuetter-Ferguson and 
Cape Cod ODP bootstrap models.23

22	 In addition to being consistent between paid and incurred data, to the extent there is commonality with 
deterministic methods the assumptions should also be consistent. For example, it would not make sense to use 
one set of a priori loss ratio assumptions for a deterministic Bornhuetter-Ferguson method and a different set of 
mean assumptions for a modified ODP bootstrap model.

23	 More complex implementations of these models could include modifying the underlying assumptions of the 
GLM framework which would result in a completely different set of residuals, but that is beyond the scope of 
this monograph.
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3.4. The GLM Bootstrap Model
Two limitations of the chain-ladder model, and hence the ODP bootstrap of the 

chain-ladder model, is that it does not measure or adjust for calendar-year effects, and 
it includes a significant number of parameters and many would argue that it over-fits 
the model to the data.

Another approach is to go back to the original GLM framework. Returning to 
formulas (3.5) to (3.8), the GLM framework does not require a certain number of 
parameters so we are free to specify only as many parameters as we need to get a robust 
model, which can address the over-fitting issue. Indeed, it is ONLY when we specify 
a parameter for EVERY accident year and EVERY development year and specify a 
Poisson error distribution that we end up exactly replicating the volume weighted 
average development factors that allow us to substitute the deterministic algorithm 
instead of solving the GLM fit.

Thus, using the original GLM framework, which this monograph will refer to as 
the “GLM Bootstrap” model, we can specify a model with only a few parameters, but 
there are two drawbacks to doing so.24 First, the GLM must be solved for each iteration 
of the bootstrap model (which may slow down the simulation process) and, second, the 
model is no longer directly explainable to others using development factors.25 While 
the impact of these drawbacks should be considered, the potential benefits of using the 
GLM bootstrap can be much greater.

First, having fewer parameters will help avoid over-parameterizing the model.26 For 
example, if we use only one accident year parameter then the model specified using a 
system of equations is as follows (which is analogous to formula 3.9):

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + β + β
= α + β + β
= α + β + β
= α + β + β
= α + β + β
= α + β + β

q
q
q
q
q
q

ln 1,1 1 0 0
ln 2,1 1 0 0
ln 3,1 1 0 0
ln 1, 2 1 1 0
ln 2, 2 1 1 0
ln 1, 3 1 1 1 (3.26)

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

In this case we will only have one accident year parameter and n - 1 develop-
ment trend parameters, but it will only be coincidence that we would end up with the 
equivalent of average development factors. Interestingly, this model parameterization 
moves us away from one of the common basic assumptions (i.e., each accident year has 
its own level) and substitutes the assumption that all accident years are homogeneous.

24	 Using the GLM framework allows for many other variations in the specification of models and then bootstrapping 
as described in more detail in England and Verrall (1999; 2002) and others, but this monograph will focus on 
variations consistent with the framework underpinning the ODP bootstrap model.

25	 However, age-to-age factors could be calculated for the fitted data to compare to the actual age-to-age factors and 
used as an aid in explaining the model to others.

26	 Over-parameterization will be addressed more completely in Section 5.
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Another example of using fewer parameters would be to only use one development 
year parameter (while continuing to use an accident-year parameter for each year), 
which would equate to the system of equations in (3.27).

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + α + α + β
= α + α + α + β
= α + α + α + β
= α + α + α + β
= α + α + α + β
= α + α + α + β

q
q
q
q
q
q

ln 1,1 1 0 0 0
ln 2,1 0 1 0 0
ln 3,1 0 0 1 0
ln 1, 2 1 0 0 1
ln 2, 2 0 1 0 1
ln 1, 3 1 0 0 2 (3.27)

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

In this example the model parameterization moves away from the other common 
basic assumption (i.e., each accident year has its own level, but the same development 
parameter is used for all periods), and again it would be pure coincidence to end up 
with the equivalent of average development factors.27 It is also interesting to note that 
for both of these two examples there will be one additional non-zero residual that can 
be used in the simulations because in each case one of the incremental values no longer 
has a unique parameter—i.e., for (3.26) q(3, 1) is no longer uniquely defined by a3, 
and for (3.27) q(1, 3) is no longer uniquely defined by b3.

Of course we can take this simplification to its logical extreme and use a model 
with only one accident year parameter and one development year parameter, which 
would result in the system of equations in as shown in (3.28).

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + β
= α + β
= α + β
= α + β
= α + β
= α + β

q
q
q
q
q
q

ln 1,1 1 0
ln 2,1 1 0
ln 3,1 1 0
ln 1, 2 1 1
ln 2, 2 1 1
ln 1, 3 1 2 (3.28)

1 2

1 2

1 2

1 2

1 2

1 2

In this example the model parameterization moves away from both of the common 
basic assumptions (i.e., each accident year has its own level, and the different development 
parameter is used for all periods), and again it would be pure coincidence to end up 
with the equivalent of average development factors. In this most “basic” model it is 
interesting to note that both of the “zero residuals” will now be non-zero and can be 
used in the simulations because both corners no longer have a unique parameter.

This flexibility allows the modeler to use enough parameters to capture the 
statistically relevant level and trend changes in the data without forcing a specific 
number of parameters.28

27	 While we have only one parameter to describe the development period trends, if we convert these to development 
factors there will be a different factor for each period.

28	 How to determine which parameters are statistically relevant will be discussed in Section 5.
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The second benefit, and depending on the data perhaps the most significant, is 
that this framework affords us the ability to add parameters for calendar-year trends. 
Adding diagonal, or calendar year trend, parameters to (3.8) we now have:

η = α + β + γ = =
=

w n d n
k n

w d w d k , where: 1, 2, . . . , ; 2, 3, . . . , ;
and 2, 3, . . . , . (3.29)

,

A complete system of equations for the (3.29) framework would look like the 
following:

[ ]
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[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ

q
q
q
q
q
q

ln 1,1 1 0 0 0 0 0 0
ln 2,1 0 1 0 0 0 1 0
ln 3,1 0 0 1 0 0 1 1
ln 1, 2 1 0 0 1 0 1 0
ln 2, 2 0 1 0 1 0 1 1
ln 1, 3 1 0 0 1 1 1 1 (3.30)

1 2 3 2 3 2 3

1 2 3 2 3 2 3

1 2 3 2 3 2 3

1 2 3 2 3 2 3

1 2 3 2 3 2 3

1 2 3 2 3 2 3

However, there is no unique solution for a system with seven parameters and six 
equations, so some of these parameters will need to be removed. A logical starting 
point would be to start with a “basic” model with one accident year (level) parameter, 
one development trend parameter and one calendar trend parameter and then add 
or remove parameters as needed.29 The system of equations for this basic model is as 
follows:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + β + γ
= α + β + γ
= α + β + γ
= α + β + γ
= α + β + γ
= α + β + γ

q
q
q
q
q
q

ln 1,1 1 0 0
ln 2,1 1 0 1
ln 3,1 1 0 2
ln 1, 2 1 1 1
ln 2, 2 1 1 2
ln 1, 3 1 2 2 (3.31)

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

A third benefit of the GLM bootstrap model is that it can be used to model data 
shapes other than triangles. For example, missing incremental data for the first few 
diagonals would mean that the cumulative values could not be calculated and the 
remaining values in those first few rows would not be useful for the ODP bootstrap. 
However, since the GLM bootstrap uses the incremental values the entire trapezoid 
can be used to fit the model parameters.30

29	 A simple algorithm to add and/or remove parameters in a search for the “optimal” set of parameters is included 
in the “Bootstrap Models.xlsm” file, but more complex algorithms are outside the scope of this monograph. 
We focus on the “mechanical” aspects of searching for the “optimal” set of parameters in Section 5 in order to 
enhance the educational benefits.

30	 This issue will be examined in more detail in Section 4.
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It should also be noted that the GLM bootstrap model allows the future expected 
values to be directly estimated from the parameters of the model for each sample 
triangle in the bootstrap simulation process. However, we must solve the GLM within 
each iteration for the same parameters as we originally set up for the model rather than 
using development factors to project future expected values (which is a way of fitting 
the model to each sample triangle).

The additional modeling power that this flexible GLM bootstrap model adds to 
the actuary’s toolkit cannot be overemphasized. Not only does it allow one to move 
away from the two basic assumptions of a deterministic chain ladder method, it allows 
for the ability to match the model parameters to the statistical features you find in the 
data, rather than “force” the data to fit the model, often with far fewer parameters and 
to extrapolate those features. For example, modeling with fewer development trend 
parameters means that the last parameter can be assumed to continue past the end of 
the triangle which will give the modeler a “tail” of the incremental values beyond the 
end of the triangle without the need for a specific tail factor.

While the monograph continues to illustrate the GLM bootstrap with a 3 × 3 
triangle, also included in the companion Excel files are a set of “GLM Bootstrap 
6___.xlsm” files that illustrate the calculations for these different models using a 6 × 
6 triangle. Also, the “Bootstrap Models.xlsm” file contains a “GLM bootstrap” model 
for a 10 × 10 triangle that can be used to specify any combination of accident year, 
development year, and calendar year parameters, including setting parameters to zero. 
The GLM bootstrap model is akin to the incremental log model described in Barnett 
and Zehnwirth (2000), so we will leave it to the reader to explore this flexibility by 
using the Excel file.
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4.  Practical Issues

Now that the basic ODP bootstrap model has been expanded in a variety of ways, it 
is important to address some of the key assumptions of the ODP model and some 
common data issues.

4.1.  Negative Incremental Values
As noted in Section 3.2, because of the log-link used in the GLM framework 

the incremental values must be greater than zero in order to parameterize a model. 
However, a slight modification to the log-link function will help this common 
problem become a little less restrictive. If we use (4.1) as the log-link function, then 
individual negative values are only an issue if the total of all incremental values in 
a development column is negative, as the GLM algorithm will not be able to find a 
solution in that case.

[ ]

[ ]

{ }

( ) ( )
( )

( ) ( )

>
=

− <

ln , for , 0,
0 for , 0,

ln , for , 0. (4.1)

q w d q w d
q w d

abs q w d q w d

Using (4.1) in the GLM bootstrap will help in many situations, but it is quite 
common for entire development columns of incremental values to be negative, especially 
for incurred data. To give the GLM framework the ability to solve for a solution in this 
case we need to make another modification to the basic model to include a constant. 
Whenever a column or columns of incremental values sum to a negative value, we can 
find the largest negative31 in the triangle, set y equal to the largest negative and adjust 
the log-link function by making all the incremental values positive.

[ ]
( ) ( )
( ) ( )

= − ψ+

+

, ,

ln , for all , (4.2)

q w d q w d

q w d q w d

Using the adjusted log-link function (4.2) we can solve the GLM using formulas 
(3.7), (3.8), or (3.27). Then we use (4.3) to adjust the fitted incremental values  

31	 The largest negative value can either be the largest negative among the sums of development columns (in which 
case there may still be individual negative values in the adjusted triangle) or the largest negative incremental value 
in the triangle.



Casualty Actuarial Society	 21

Using the ODP Bootstrap Model: A Practitioner’s Guide

and the constant y is used to reduce each fitted incremental value by the largest 
negative.

m mw d w d= + ψ+ (4.3), ,

The combination of formulas (4.2) and (4.3) allow the GLM bootstrap to handle 
all negative incremental values, which overcomes a common criticism of the ODP 
bootstrap. Incidentally, these formulas can also be used to allow the incremental log 
model described by Barnett and Zehnwirth (2000) to handle negative incremental 
values. As long as these formulas are used sparingly, the author believes that the resulting 
distribution will not be adversely affected.

When using the ODP bootstrap simulation process, the solution to negative incremental 
values needs to focus on the residuals and sampled incremental values since a development 
factor less than 1.00 will create negative incremental values in the fitted values. More 
specifically, we need to modify formulas (3.16) and (3.18) as follows: 32

r
q w d m

abs m
w d

w d

w d
z{ }

( )
=

−,
. (4.4),

,

,

q w d r abs m mw d
z

w d* , * . ( ), ,( )= × { } + 4 5.

While the fitted incremental values and residuals using the development factor 
simplification (ODP bootstrap) will generally not match the GLM framework solution 
using (4.1) or (4.2) and (4.3) they should be reasonably close. While the purists may 
object to these practical solutions, we must keep in mind that every model is an 
approximation of reality so our goal is to find reasonably close models that replicate the 
statistical features in the data rather than only restrict ourselves to “pure” models. After 
all, the assumptions of the “pure” models are themselves approximations.

4.1.1.  Negative Values During Simulation
Even though we have solved problems with negative values when parameterizing 

a model, negative values can still affect the process variance in the simulation process. 
When each future incremental value (using mw,d as the mean and the mean times the 
scale parameter, fmw,d, as the variance) is sampled from a gamma distribution to add 
process variance, the parameters of a gamma distribution must be positive. In this case 
we have two options for using the gamma distribution to simulate from a negative 
incremental value, mw,d.

Gamma abs m abs mw d w d[ ]{ } { }− φ, (4.6), ,

Gamma abs m abs m mw d w d w d[ ]{ } { }φ +, 2 (4.7), , ,

32	 The use of other types of residuals, as noted in Section 3.2, may also help address the issue of negative incremental 
values, but their exposition is left to the interested reader.
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Using formula (4.6) is more intuitive as we are using absolute values to simulate 
from a gamma distribution and then changing the sign of the result. However, since 
the gamma distribution is skewed to the right, the resulting distribution using (4.6) 
will be skewed to the left. Using formula (4.7) is a little less intuitive, but seems more 
logical since adding twice the mean, mw,d, will result in a distribution with a mean of 
mw,d while keeping it skewed to the right (since mw,d is negative).

Negative incremental values can also cause extreme outcomes. This is most 
prevalent when resampled triangles are created with negative incremental losses in the 
first few development periods, causing one column of cumulative values to sum close 
to zero and the next column to sum to a much larger number and, consequentially, 
produce development factors that are extremely large. This can result in one or more 
extreme iterations in a simulation (for example, outcomes that are multiples of 1,000s 
of the central estimate). These extreme outcomes cannot be ignored, even if the high 
percentiles are not of interest, because they may significantly affect the mean of the 
distribution.

In these instances, you have several options. You can 1) remove these iterations 
from your simulation and replace them with new iterations, 2) recalibrate your model, 
or 3) limit incremental values to a minimum of zero (or some other minimum value).

The first option is to identify the extreme iterations and remove them from your 
results. Care must be taken that only truly unreasonable extreme iterations are removed, 
so that the resulting distribution does not understate the probability of extreme 
outcomes.

The second option is to recalibrate the model to fix this issue. First you must 
identify the source of the negative incremental losses. The most theoretically sound 
method to deal with negative incremental values is to consider the source of these 
losses. For example, it may be from the first row in your triangle, which was the first year 
the product was written, and therefore exhibit sparse data with negative incremental 
amounts. One option is to remove this row from the triangle if it is causing extreme 
results and does not improve the parameterization of the model. Or, if they are caused 
by reinsurance or salvage and subrogation, then you can model the losses gross of 
salvage and subrogation, model the salvage and subrogation separately, and combine 
the iterations assuming the values are correlated.

The third option is to constrain the model output by limiting incremental losses to a 
minimum of zero, where any negative incremental is replaced with a zero incremental.33 
For each of these options, keep in mind that this is a form of diagnosing a model 
by reviewing the simulated results and then searching for a practical solution before 
abandoning a model altogether. This does not mean that you should never abandon 
a model in favor of a practical adjustment. Indeed, the higher the frequency of the 
underlying issue (negative incremental values in this case) the more likely that the 
model does not really fit the data.

33	 While zero is a convenient minimum or lower bound, a small positive number could also be used, in which case 
any values less than the minimum are changed to the minimum.
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4.2.  Non-Zero Sum of Residuals
The standardized residuals that are calculated in the ODP bootstrap model are 

essentially error terms, and should in theory be independent and identically distrib-
uted with a mean of zero. However, the residuals are random observations of the true 
residual distribution, so the average of all the residuals is usually non-zero. If signifi-
cantly different than zero, then the fit of the model should be questioned. If the average 
of the residuals is close to zero, then the question is whether they should be adjusted so 
that their average is zero. For example, if the average of the residuals is positive, then 
re-sampling from the residual pool will not only add variability to the resampled incre-
mental losses, but may increase the resampled incremental losses such that the average 
of the resampled loss will be greater than the fitted loss.

It could be argued that the non-zero average of residuals is a characteristic of the 
data set, and therefore should not be removed. For example, standardized residuals 
implies a normal distribution with zero mean, but skewness in the residuals does not 
necessarily imply an average of zero. However, if a zero residual average is desired, then 
one option is the addition of a single constant to all non-zero residuals, such that the 
sum of the shifted residuals is zero.

4.3.  Using an N-Year Weighted Average
It is quite common for actuaries to use weighted averages that are less than all years 

in their chain-ladder and related methods. Similarly, both the ODP bootstrap and the 
GLM bootstrap can be adjusted to only consider the data in the most recent diagonals. 
For the GLM framework (and the GLM bootstrap model), we can use only the most 
recent L + 1 diagonals (since an L-year average uses L + 1 diagonals) to parameterize 
the model. The shape of the data to be modeled essentially becomes a trapezoid instead 
of a triangle, the excluded diagonals are given zero weight in the model and we have 
fewer calendar year trend parameters if we are using formula (3.29). When running 
the GLM bootstrap simulations we will only need to sample residuals for the trapezoid 
that was used to parameterize the model as that is all that will be needed to estimate 
parameters for each iteration.

For the ODP bootstrap model, we can calculate L-year average factors instead of 
all-year factors and only have residuals for the most recent L + 1 diagonals. However, 
when running the ODP bootstrap simulations we would still need to create a whole 
resampled triangle so that we can calculate cumulative values.34 But, for consistency, 
we would want to use L-year average factors for projecting the future expected values 
from these resampled triangles.

The calculations for the GLM bootstrap are illustrated in the companion “GLM 
Bootstrap 6 with 3yr avg.xlsm” file. Note that because the GLM bootstrap estimates 
parameters for the incremental data, the fitted values will no longer match the fitted 
values from the ODP bootstrap using volume-weighted average development factors. 

34	 The fitted values for the “unused” diagonals would be calculated using the L-year average ratios, but the 
corresponding residuals for those diagonals are all excluded from the sampling process.
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Depending on the data, the fitted values from the simplified GLM (ODP bootstrap) may 
or may not be a reasonable approximation to the GLM framework (GLM bootstrap).

Note that this discussion of using L-year average factors assumes volume weighted 
averages to be consistent with the GLM framework. This also assumes that all of the 
diagnostic tests will be adjusted to reflect the use of the last L + 1 diagonals, although 
this is beyond the scope of the monograph. Finally, other types of averages could be 
used (i.e., straight average, average excluding high & low, etc.) to be more consistent 
with what actuaries might use in a deterministic analysis, but these typically move 
further away from the GLM framework and are beyond the scope of this monograph.

4.4.  Missing Values
Sometimes the loss triangle will have missing values. For example, values may be 

missing from the middle of the triangle, or a triangle may be missing the oldest diago-
nals, if loss data was not kept in the early years of the book of business.

If values are missing, then the following calculations will be affected:

•	 Loss development factors
•	 Fitted triangle—if the missing value lies on the most recent diagonal
•	 Residuals
•	 Degrees of freedom

There are several solutions. The missing value may be estimated using the surrounding 
values. Or, the loss development factors can be modified to exclude the missing values, 
and there will not be a corresponding residual for those missing values. Subsequently, 
when triangles are resampled, the simulated incremental corresponding to the 
missing value should still be resampled so that the cumulative values in those rows can 
be calculated, but they would still be excluded from the projection process (i.e., not 
included with the sample age-to-age factors) to reproduce the uncertainty in the original 
dataset.

If the missing value lies on the most recent diagonal, the fitted triangle cannot 
be calculated in the usual way. A solution is to estimate the value, or use the value in 
the second most recent diagonal to construct the fitted triangle. These are not strictly 
mathematically correct solutions, and judgment will be needed as to their effect on the 
resulting distribution. Of course for the GLM bootstrap model, the missing data only 
reduces the number of observations used in the model.

4.5.  Outliers
There may be a few extreme or incorrect values in the original triangle dataset that 

could be considered outliers. These may not be representative of the variability of the 
dataset in the future and, if so, the modeler may want to remove their impact from 
the model.

There are several solutions. These values could be removed, and dealt with in the 
same manner as missing values. Another alternative is to identify outliers and exclude 
them from the average development factors (either the numerator, denominator, or 
both) and residual calculations, as when dealing with missing values, but re-sample the 
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corresponding incremental when re-sampling triangles. In this case we have removed 
the extreme impact of the incremental cell, but we still want to include a non-extreme 
variability, which is different from a missing data cell since in that case the additional 
uncertainty of that missing data can be included by continuing to exclude that cell in 
the projection process.

The calculations for the GLM bootstrap are illustrated in the companion “GLM 
Bootstrap 6 with Outlier.xlsm” file. Again the GLM bootstrap fitted values will no 
longer exactly match the fitted values from the ODP Bootstrap using volume weighted 
average development factors, but they should normally be close.

If there are a significant number of outliers, then this could be an indication that 
the model is not a good fit to the data. With the GLM bootstrap, new parameters 
could be chosen, or the distribution of the error term can be changed (i.e., change the 
z parameter). Under the ODP bootstrap model, an L-year weighted average could be 
used, instead of an all year weighted average, which may provide a better fit to the data, 
or, heteroscedasticity may exist. Remember, though, that for the ODP bootstrap model 
there is no distribution assumption for the residuals so a significant number of residual 
outliers could just mean that the residuals are quite skewed. One of the nice features 
of the ODP bootstrap is that the skewness in the residuals will be reflected in the 
simulation process which will result in a skewed distribution of possible outcomes.35 
Thus, removing any outliers (i.e., giving them zero weight) should be done with caution 
and would most commonly be done only after understanding the underlying data.

4.6.  Heteroscedasticity
As noted earlier, the ODP bootstrap model is based on the assumption that 

the standardized Pearson residuals are independent and identically distributed. It is  
this assumption that allows the model to take a residual from one development  
period/accident period and apply it to the fitted loss in any other development period/ 
accident period, to produce the sampled values. In statistical terms this is referred to 
as homoscedasticity (the residuals have the same variance) and it is important that 
this assumption is validated.

A common problem is when some development periods have residuals that appear 
to be more variable than others—i.e., they appear to have different variances. This is 
referred to as heteroscedasticity. With heteroscedasticity, it is no longer possible to take 
a residual from one development/accident period and deem it suitable to be applied to 
any other development/accident period. In making this assessment, you must account 
for the credibility of the observed differences in variance, and also to note that there 
are fewer residuals as the development years become older, so comparing development 
years is difficult, particularly near the tail-end of the triangle.36

35	 Other methods of handling outliers could also be introduced, e.g., tempering residuals that are further away from 
the interquartile range, but the key to any approach is to understand what the residuals represent so an explicit 
assumption can be made and the “best” solution can be used.

36	 Section 5 will illustrate how to use residual graphs and other statistical tests to evaluate heteroscedasticity.
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The existence of heteroscedasticity may suggest that the model is not a good fit for 
the data. Under an ODP bootstrap, there are a number of ad-hoc adjustments that can 
be made to address heteroscedasticity, but they may or may not improve the fit of the 
model to the data. They also often result in even more parameters in a model which 
could already be over-parameterized. In contrast, under a GLM bootstrap the flexibility 
of choosing the number of parameters to use, the ability to account for any calendar year 
trends, and the flexibility to choose the distribution of the error term mean that there are 
many ways within the model framework itself to improve the fit to the data. Therefore, 
this flexibility could remove the heteroscedasticity problem or at least reduce it.

Nevertheless, if the ODP bootstrap model is still to be used, then to adjust for 
heteroscedasticity in your data there are at least three options, 1) stratified sampling, 
2) calculating hetero-adjustment (or variance) parameters, or 3) calculate non-constant 
scale parameters. Stratified sampling is accomplished by grouping those development 
periods with homogeneous variances and then sampling only from the residuals in 
each group. While this process is straightforward, some groups may only have a few 
residuals in them, which limits the amount of variability in the possible outcomes 
compared to the other two options and at least partially defeats the benefits of random 
sampling with replacement.

The second option is to group those development periods with homogeneous 
variances and calculate the standard deviation of the residuals in each of the groups. 
Then calculate hi, which is the “hetero-adjustment” factor, for each group, i:
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Now all groups have the same standard deviation and we can sample with replacement 
from among all riH

w,d. The original distribution of residuals has been altered, but this can 
be remedied. When the adjusted residuals are resampled, the residual is divided by the 
hetero-adjustment factor, hi, that applies to the development year of the incremental 
loss, as shown in (4.10).
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By doing this, the heteroscedastic variances we observed in the data are replicated 
when the sample triangles are created, but we are able to freely resample with replacement 
from the entire pool of heteroscedasticity adjusted residuals. Also note that these factors 
are new parameters so it will affect the degrees of freedom, which impacts the scale 



Casualty Actuarial Society	 27

Using the ODP Bootstrap Model: A Practitioner’s Guide

parameter (3.17) and the degrees of freedom adjustment factor (3.19).37 Finally, the 
hetero-adjustment factors should also be used to adjust the variance by development 
period when simulating the future process variance.

The third option is to modify the formula for the scale parameter (3.17) so that 
we have a different scale parameter for each hetero group, as illustrated in (4.11) and 
(4.12).38 In (4.12) ni is the number of residuals in each hetero group.
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For this option, the different scale parameters also amount to new parameters so 
the degrees of freedom adjustment factor would likewise be impacted. In this case, 
the scale parameters adjust the future process variance, but we also need to calculate 
parameters to adjust the residuals as shown in (4.13). These hetero-adjustment factors, 
hi, can also be used to adjust the residuals in (4.9) and used in calculating the resampled 
loss in (4.10), similar to the second option.

hi
i

= φ
φ

(4.13)

While the hetero-adjustment factors in (4.13) are a bit more theoretically sound, 
in practice the factors in (4.8) are likely to be very close so the differences are not likely 
to have much impact. Both of these options are illustrated in the “Bootstrap Models.
xlsm” file.

Of course no matter which formula is used, care needs to be exercised as hetero 
groups are used toward the tail of the triangle where fewer and fewer observations 
stretch the credibility of the resulting factors.39 Finally, while use of the GLM bootstrap 
should reduce the need for hetero factors, the same three options could also be used 
for that model too.

4.7.  Heteroecthesious Data
The basic ODP bootstrap model requires both a symmetrical shape (e.g., annual 

by annual, quarterly by quarterly, etc. triangles) and homoecthesious data (i.e., similar 

37	 Some authors have suggested adding a factor for each development period to insure homoscedasticity. However, 
this adds many more parameters to a model that can already suffer from the criticism of over-parameterization. 
Thus, a balance between the need for hetero parameters and parsimony is appropriate. This will be discussed in 
more detail in Section 5.

38	 For a more detailed development of this third option see England and Verrall (2006). In particular, see Appen-
dix A.1 on pages 266–268.

39	 In the discussion of diagnostics in Section 5 it will be noted that the use of the AIC and BIC statistics will 
effectively reflect the credibility of the development periods.
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exposures).40 As discussed above, using an L-year weighted average in the ODP 
bootstrap model or adjusting to a trapezoid shape allow us to “relax” the requirement 
of a symmetrical shape. Other non-symmetrical shapes (e.g., annual × quarterly data) 
can also be modeled with either the ODP bootstrap or GLM bootstrap, but they will 
not be discussed in detail in this monograph.

Most often, the actuary will encounter heteroecthesious data (i.e., incomplete 
or uneven exposures) at interim evaluation dates, with the two most common data 
triangles being either a partial first development period or a partial last calendar period. 
For example, with annual data evaluated as of June 30, partial first development period 
data would have all development periods ending at 6, 18, 30, etc. months, while 
partial last calendar period data would have development periods as of 12, 24, 36, etc. 
months for all of the data in the triangle except the last diagonal, which would have 
development periods as of 6, 18, 30, etc. months. In either case, not all of the data in 
the triangle has full annual exposures—i.e., it is heteroecthesious data.

4.7.1.  Partial First Development Period Data
For partial first development period data, the first development column has a dif-

ferent exposure period than the rest of the columns (e.g., in the earlier example the first 
column has six months of development exposure while the rest have 12). In a determin-
istic analysis this is not a problem as the development factors will reflect the change in 
exposure. For parameterizing an ODP bootstrap model, it also turns out to be a moot 
issue, since the Pearson residuals use the square root of the fitted value to make them all 
“exposure independent.”

The only adjustment for this type of heteroecthesious data is the projection of 
future incremental values. In a deterministic analysis, the most recent accident year 
needs to be adjusted to remove exposures beyond the evaluation date. For example, 
continuing the previous example the development periods at 18 months and later are 
all for an entire year of exposure whereas the six month column is only for six months 
of exposure. Thus, the 6–18 month development factor will effectively extrapolate the 
first six months of exposure in the latest accident year to a full accident year’s exposure. 
Accordingly, it is common practice to reduce the projected future payments by half to 
remove the exposure from June 30 to December 31.41

The simulation process for the ODP bootstrap model can be adjusted similarly to 
the way a deterministic analysis would be adjusted. After the development factors from 
each sample triangle are used to project the future incremental values the last accident 
year’s values can be reduced (in the previous example by 50%) to remove the future 
exposure and then process variance can be simulated as before. Alternatively, the future 
incremental values can be reduced after the process variance step.

40	 To the author’s knowledge, the terms homoecthesious and heteroecthesious are new. They are a combination of 
the Greek homos (or ÓμÓς) meaning the same or hetero (or έτερο) meaning different and the Greek ekthesë (or 
έκθεση) meaning exposure.

41	 Reduction by half is actually an approximation since we would also want to account for the differences in 
development between the first and second half years.
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4.7.2.  Partial Last Calendar Period Data
For partial last calendar period data, most of the data in the triangle has annual 

exposures and annual development periods, except for the last diagonal which, con-
tinuing our example, only has a 6-month development period. For a deterministic 
analysis, it is common to exclude the last diagonal when calculating average develop-
ment factors, then interpolate those factors to project the future values. Similarly to the 
adjustments for partial first development period data, we can adjust the calculations 
and steps in the ODP bootstrap model. Instead of ignoring the last diagonal during the 
parameterization of the model, an alternative is to adjust or annualize the exposures in 
the last diagonal to make them consistent with the rest of the triangle. The fitted tri-
angle can be calculated from this annualized triangle to obtain residuals.

During the ODP bootstrap simulation process, development factors can be 
calculated from the fully annualized sample triangles and interpolated. Then, the last 
diagonal from the sample triangle can be adjusted to de-annualize the incremental 
values in the last diagonal—i.e., reversing the annualization of the original last diagonal. 
The new cumulative values can be multiplied by the interpolated development factors 
to project future values. Again, the future incremental values for the last accident year 
must be reduced (in the previous example by 50%) to remove the future exposure.42

4.8.  Exposure Adjustment
Another common issue in real data is exposures that have changed dramatically 

over the years. For example, in a line of business that has experienced rapid growth or 
is being run off. If the earned exposures exist for this data, then a useful option for the 
ODP bootstrap model is to divide all of the claim data by the exposures for each 
accident year—i.e., effectively using pure premium development instead of total loss 
development. This may improve the fit of the model to the data.

During the ODP bootstrap simulation process, all of the calculations would be 
done using the exposure-adjusted data and only after the process variance step has been 
completed would you multiply the results by the exposures by year to restate them in 
terms of total values again.

When adjusting the GLM bootstrap for exposure, the model is fitted to exposure 
adjusted losses, similar to the ODP bootstrap model using exposure. However, under 
the GLM, the fit to the exposure adjusted losses are also exposure-weighted. That is, 
exposure adjusted losses with higher exposure are assumed to have lower variance. For 
more details, see Anderson et al. (2007).

For the GLM bootstrap, exposure adjustment could allow fewer accident year 
parameter(s) to be used.

4.9. Tail Factors
One of the most common data issues is that claim development is not complete within 

the loss triangle and tail factors are commonly used to extrapolate beyond the end of 

42	 These heteroecthesious data issues are not illustrated in the “Bootstrap Models.xlsm” file.



30	 Casualty Actuarial Society

Using the ODP Bootstrap Model: A Practitioner’s Guide

the data triangle. There are many common methods for calculating tail factors and a 
useful reference in this regard is the CAS Tail Factor Working Party Report (2013). Tail 
factors can be added to the ODP bootstrap algorithm and converted from deterministic 
to stochastic by assuming that the tail factor parameter follows a distribution. Once 
this is added, other considerations such as process variance, hetero-adjustment factors, 
etc. can all be extended to include the tail factors.

A key ingredient for all of these considerations is to verify that the simulations in 
the tail are reasonable. For example, the tail factor itself represents the accumulation of 
incremental factors (i.e., an age-to-ultimate factor) and using just a single factor may 
not produce appropriate incremental results so the “extrapolation” of “incremental tail 
factors” may be more appropriate. In the “Bootstrap Models.xlsm” file, the tail factors 
can be extrapolated for up to 5 years so that one possibility for how these concepts can 
be implemented is included in the companion files.

A rough rule of thumb for the tail factor standard deviation is 50% or less of 
the tail factor minus one (assuming the tail factor is greater than one). However, this 
should be compared to the standard deviations of the age-to-age factors leading up to 
the tail in both the actual data triangle and in the simulated results.

As noted at the end of Section 3.4, for the GLM bootstrap model the last development 
parameter can continue to apply past the end of the data triangle until the trend results 
in no further claim activity, thus indirectly creating a tail factor. In addition to the last 
development parameter, the last calendar period parameter would also extend past the 
end of the tail until the combination of the two trends resulted in no further claim 
activity.

4.10.  Fitting a Distribution to ODP Bootstrap Residuals
Because the number of data points used to parameterize the ODP bootstrap model 

are limited (in the case of a 10 × 10 triangle to 55 data points or 53 residuals), it is hard 
to determine whether the most extreme observation is a one-in-100 or a one-in-1,000 
event (or simply, in this example, a one-in-53 event). Of course, the nature of the 
extreme observations in the data will also affect the level of extreme simulations in the 
results. Judgment is involved here, but the modeler will either need to be satisfied with 
the level of extreme simulations in the results or modify the ODP bootstrap algorithm.

One way to overcome a lack of extreme residuals for the ODP bootstrap model 
would be to fit a distribution to the residuals and sample from the distribution instead of 
from the residuals themselves (e.g., use a normal distribution if the residuals are found 
to be normally distributed). This option is beyond the scope of the companion Excel 
files, but this could be referred to as parametric bootstrapping of the ODP bootstrap 
model. Note however, that as there are a wide variety of other types of models that can 
be bootstrapped, either with or without residuals, parametric bootstrapping can be 
done in other ways.
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5.  Diagnostics

The quality of any model depends on the quality of the underlying assumptions. When 
a model fails to “fit” the data, it cannot produce a good estimate of the distribution of 
possible outcomes.43 However, a balance must be considered for parsimony of parameters 
and the goodness-of-fit. Over-parameterization may cause the model to be less predictive 
of future losses. On the other hand, no model will perfectly “fit” the data, so the best 
you can hope for with any model is that it reasonably represents the data and your 
understanding of the processes that impact the data. Therefore, diagnostically evaluating 
the assumptions underlying a model is important for evaluating whether it will produce 
reasonable results or not and whether it should stay in your selected group of reasonable 
models which could receive some weight.

The CAS Working Party, in the third section of their report on quantifying variability 
in reserve estimates (2005), identified 20 criteria or diagnostic tools for gauging the 
quality of a stochastic model. The Working Party also noted that, in trying to determine 
the optimal fit of a model, or indeed an optimal model, no single diagnostic tool or 
group of tools can be considered definitive. Depending on the statistical features found 
in the data, a variety of diagnostic tools are necessary to best judge the quality of the 
model assumptions and to adjust the parameters of the model. This monograph will 
discuss some of these tools in detail as they relate to the ODP bootstrap and the GLM 
bootstrap models.

The key diagnostic tests are designed for three purposes: to test various assumptions 
in the model, to gauge the quality of the model fit to the data, and/or to help guide 
the adjustment of model parameters. Some tests are relative in nature, enabling results 
from one set of model parameters to be compared to those of another, for a specific 
model, allowing a modeler to improve the fit of the model. For the most part, however, 
the tests can’t be used to compare different models. The objective, consistent with the 
goals of a deterministic analysis, is not to find the one best model, but rather a set of 
reasonable models.

Some diagnostic measures include statistical tests, providing a pass/fail determination 
for some aspects of the model assumptions. This can be useful even though a “fail” does 
not necessarily invalidate an entire model; it only points to areas where improvements can 
be made to the model or its parameterization. The goal is to find the sets of models 

43	 While the examples are different, significant portions of Sections 5 and 6 are based on Milliman (2014) and IAA 
(2010).
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and parameters that will yield the most realistic, most consistent simulations, based on 
statistical features found in the data.

To illustrate some of the diagnostic tests for the ODP bootstrap model we will consider 
data from England and Verrall (1999).44

5.1.  Residual Graphs
The ODP bootstrap model does not require a specific type of distribution for the 

residuals, but they are assumed to be independent and identically distributed. Because 
residuals will be sampled with replacement during the simulations, this requirement is 
important and thus it is necessary to test this assumption. Graphing residuals is a good 
way to do this.

Going clock-wise, and starting from the lower-left-hand corner, the graphs in 
Figure 5.1 show the residuals (blue and red dots45) by calendar period, development 
period, and accident period and against the fitted incremental loss (in the lower-right-
hand corner). In addition, the graphs include a trend line (in green) that highlights the 
averages for each period.

At first glance, the residuals in the graphs appear reasonably random, indicating 
the model is likely a good fit of the data. But a closer look may also reveal potential 
features in the data that may indicate ways to improve the model fit.

44	 The data triangle was originally used by Taylor and Ashe (1983) and has been used by other authors. This data is 
included in the “Bootstrap Models.xlsm” file.

45	 In the graphs that follow, the red dots are outliers as identified in Figure 5.7.

Figure 5.1.    Residual Graphs Prior to Heteroscedasticity Adjustment



Casualty Actuarial Society	 33

Using the ODP Bootstrap Model: A Practitioner’s Guide

The graphs in Figure 5.1 do not appear to indicate issues with un-modeled trends 
by accident period or development period (that is, the green “average” lines appear flat 
at zero). That’s because the ODP bootstrap specifies a parameter for every accident and 
development period. The development-period graph does, however, reveal a potential 
heteroscedasticity issue associated with the data—i.e., different variances. Note how 
the upper left graph appears to show a variance of the residuals in the first three periods 
that differs from those of the middle four or last two periods.

Adjustments for heteroscedasticity can be made with the “Bootstrap Models.xlsm” 
file, which enables us to recognize groups of development periods and then adjust the 
residuals to a common standard deviation value, as described in Section 4.6. As an aid 
to visualizing how to group the development periods into “hetero” groups, graphs of 
the standard deviation and range relativities can be developed. Figure 5.2 represents 
pre-adjusted relativities for the residuals shown in Figure 5.1 (i.e., prior to adjustment 
for factors calculated using either formulas 4.8 or 4.13 and 4.9).

The relativities illustrated in Figure 5.2 help to clarify the changing variability. 
However, further testing will be required to assess the optimal groups, which can be 
performed using the other diagnostic tests noted below.

The residual plots in Figure 5.3 originate from the same data model after adjusting 
for heteroscedasticity using the third option described in Section 4.6 (i.e., using 
formulas 4.13 and 4.9). The “hetero” groups chosen are for the first three, middle four, 
and last two development periods, respectively. Determining whether this adjustment 
has improved the model will require review of other diagnostic tests.

Comparing the residual plots in Figures 5.1 and 5.3 shows that the residuals now 
appear to exhibit the same standard deviation, or homoscedasticity. More consistent rela
tivities may also be seen in a comparison of the residual relativities in Figures 5.2 and 5.4.

5.2.  Normality Test
The ODP bootstrap model does not depend on the residuals being normally 

distributed, but even so, comparing residuals against a normal distribution remains 
a useful test, enabling comparison of parameter sets and gauging skewness of the 
residuals. This test uses both graphs and calculated test values. Figure 5.5 is based on 
the data used earlier, before and after the adjustment for heteroscedasticity.

Figure 5.2.    Residual Relativities Prior to Heteroscedasticity Adjustment
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Figure 5.3.    Residual Graphs After Heteroscedasticity Adjustment

Figure 5.4.    Residual Relativities After Heteroscedasticity Adjustment

Figure 5.5.    Normality Plots Prior to and After Heteroscedasticity Adjustment

N = 55 P-Value = 19.1% R2 = N = 55 P-Value = 14.6% R2 =
Normal:  MU = 1.11,  Sigma = 224.08 AIC = 592.2, BIC = 474.2 Normal:  MU = 1.43,  Sigma = 224.07 AIC = 601.3, BIC = 487.3
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Even before the heteroscedasticity adjustment, the residual plots appear close to 
normally distributed, with the data points tightly distributed around the diagonal 
line. The P-value, a statistical pass-fail test for normality, came in at 19.1%, which 
exceeds the value generally considered a “passing” score of the normality test, which is 
greater than 5.0%.46 The graphs in Figure 5.5 also show N (the number of data points) 
and the R2 test. After the hetero adjustment, the P-value and R2 get slightly worse, 
which indicates that the heteroscedasticity adjustment has not improved the results 
of the diagnostic tests.

While the P-value and R2 tests assess the goodness of fit of the model to the data, 
they do not penalize for added parameters. Adding more parameters will almost always 
improve the fit of the model to the data, but the goal is to have a good fit with as few 
parameters as possible. Two other tests, the Akaike Information Criteria (AIC) and 
the Bayesian Information Criteria (BIC), address this limitation, using the difference 
between each residual and its normal counterpart from the normality plot to calculate 
the Residual Sum Squared (RSS) and include a penalty for additional parameters, as 
shown in (5.1) and (5.2), respectively.47

AIC
RSS

.= × + × × ×





+
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2
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BIC
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+ × ( )n
n

p nln ln ( )5 2

A smaller value for the AIC and BIC tests indicate residuals that fit a normal 
distribution more closely, and this improvement in fit overcomes the penalty of adding 
a parameter.

In our example, with some trial and error, a better “hetero” grouping was found with 
the diagnostic results shown in Figure 5.6.48 For the new “hetero” groups, all of the 
statistical tests improved significantly.

While it might be tempting to add a hetero group for each development column to 
improve normality, in general normality can be improved with far fewer groups which 
also helps keep the model from being over-parameterized. As an example, if we use  
9 hetero groups for the Taylor and Ashe (1983) data the P-value is 14.3%, which is 
worse than no groups and only slightly better than the original 3 groups, but the AIC 
and BIC increase significantly.

46	 Remember that this doesn’t indicate whether the ODP bootstrap model itself passes or fails—the ODP bootstrap 
model doesn’t require the residuals to be normally distributed. While not included in the “Bootstrap Models.
xlsm” file, as discussed in Section 4.10 it could be used to determine whether to switch to a parametric bootstrap 
process using a normal distribution.

47	 There are different versions of the AIC and BIC formula from various authors and sources, but the general idea 
of each version is consistent. Other similar formulas could also be used.

48	 In the “Bootstrap Models.xlsm” file the Taylor & Ashe data was entered as both paid and incurred. The first set 
of “hetero” groups are illustrated for the “paid” data and the second set of “hetero” groups are illustrated for the 
“incurred” data. The “best” groups were found using the optimization tool shown in the “Groups” sheet.
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5.3.  Outliers
Identifying outliers in the data provides another useful test in determining model 

fit. Outliers can be represented graphically in a box-whisker plot, which shows the 
inter-quartile range (the 25th to 75th percentiles) and the median (50th percentile) 
of the residuals—the so-called box. The whiskers then extend to the largest values 
within three times this inter-quartile range.49 Values beyond the whiskers may generally 
be considered outliers and are identified individually with a point.

Figure 5.7 shows an example of the residuals for the second set of “hetero” groups 
(Figure 5.6). A pre-hetero adjustment plot returns four outliers (red dots) in the data 
model, corresponding to the two highest and two lowest values in the previous graphs 
in Figures 5.1, 5.3, 5.5, and 5.6.

Even after the hetero adjustment, the residuals still appear to contain one outlier. 
Now comes a very delicate and often tricky matter of actuarial judgment. If the data 
in those cells genuinely represent events that cannot be expected to happen again, 
the outlier(s) may be removed from the model (by giving it/them zero weight). But 
extreme caution should be taken even when the removal of outliers seems warranted. 
The possibility always remains that apparent outliers may actually represent realistic 
extreme values, which, of course, are critically important to include as part of any sound 
analysis.

Additionally, when residuals are not normally distributed a significant number of 
outliers tend to result, which may only be an artifact of the distributional shape of the 
residuals. In this case it is preferable to let these stand in order to enable the simulation 
process to replicate this shape. Finally, a significant number of residuals can also mean 
the underlying model is not a good fit to the data so other models should be used (see 
Section 4.5 for a discussion) or this model given less weight (see Section 6).

49	 Various authors and textbooks use widths for the whiskers which tend to span from 1.5 to 3 times the inter-
quartile range. Changing the multiplier will therefore make the box-whisker plot more or less sensitive to 
outliers. It is also possible to illustrate “mild” outliers with a multiplier of 1.5 and the more “extreme” outliers 
with a multiplier of 3 using different colors and/or symbols in the graphs. Of course the actual multipliers can be 
adjusted based on personal preference.

Figure 5.6.    Normality Plots Prior to and After Heteroscedasticity Adjustment

N = 55 P-Value = 19.1% R2 = N = 55 P-Value = 89.2% R2 =
Normal:  MU = 1.11,  Sigma = 224.08 AIC = 592.2, BIC = 474.2 Normal:  MU = 1.28,  Sigma = 224.08 AIC = 537.9, BIC = 426.0
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While the three diagnostic tests shown above demonstrate techniques commonly 
used with most types of models, they are not the only tests available.50 Next, we’ll take 
a look at the flexibility of the GLM bootstrap and some of the diagnostic elements of 
the simulation results. For a more extensive list of other tests available, see the report, 
CAS Working Party on Quantifying Variability in Reserve Estimates (2005).

5.4.  Parameter Adjustment
As noted in Section 5.1 the relatively straight average lines in the development and 

accident period graphs are a reflection of having a parameter for every accident and 
development period. In most instances, this is also a strong indication that the model 
may be over-parameterized. Using the “GLM Bootstrap” model in the “Bootstrap 
Models.xlsm” file we can illustrate the power of removing some of the parameters.

Starting with a “basic” model which includes only one parameter for accident, 
development and calendar periods (i.e., only one a, b and g parameter), and adding 
vertical brown bars to signify a parameter and vertical red lines to signify no parameter 
(i.e., parameter of zero), the residual graphs for the “GLM Bootstrap” model are shown 
in Figure 5.8.

The brown bars in the basic model residual graphs represent the parameters and 
statistics shown in Table 5.1.

Now for this “basic” model the green average lines show trends in the underlying 
data that are not yet captured by the model as well as a parameter for calendar year trend 
that is not significant. For example, the overall development period trend parameter 
is -11%, but the underlying data shows a positive trend for the first 2 or 3 periods 
followed by a stronger negative trend for the remaining development periods. Another 
way to see that this basic model does not yet provide a good fit to the underlying data 
is to compare the implied development pattern with that of the ODP bootstrap model, 
as shown in Figure 5.9.

50	 For example, see Venter (1998).

Interquartile Range = [-147.44, 147.04] Median = Interquartile Range = [-150.62, 175.14] Median = 
Outliers = 4 Outliers = 1

-22.04-26.64
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Box-Whisker Plot (Prior to Hetero)

-700 -500 -300 -100 100 300 500 700

Box-Whisker Plot (After Hetero)

Figure 5.7.    Box-Whisker Plots Prior to and After Heteroscedasticity Adjustment
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Figure 5.8.    Residual Graphs for “Basic” GLM Bootstrap Model

Table 5.1.    Parameters and Statistics for “Basic” GLM Bootstrap Model

Parm Value Exp(Value) t-Stat Periods

a1 13.44 686,938 73.92 Accident Years 2006–2015

b1 (0.11) (3.19) Development Periods 12–132

g1 0.03 1.08 Calendar Years 2006–2015

ODP Bootstrap Model “Basic” GLM Bootstrap Model

Figure 5.9.    Implied Development Patterns
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With a little trial and error we can find a reasonably good fit to the data using only 
five accident, three development and no calendar parameters as shown in Figure 5.10.51

In addition to checking the remaining trends in the data with the green average 
lines, t-statistics for each new parameter can be checked to make sure each parameter 
is statistically significant.52 The final parameters and statistics for the GLM Bootstrap 
model are shown in Table 5.2.

Using the “optimal” set of “hetero” groups we can also check the normality graphs 
and statistics in Figure 5.11 and outliers in Figure 5.12.53 Comparing the statistics to the 
ODP bootstrap values shown in Figures 5.6 and 5.7, most values improved while some 
did not, yet the GLM Bootstrap model is far more parsimonious.

51	 In the “Bootstrap Models.xlsm” file the optimization tool in the “GLM” sheet can be used to help find a good fit 
for the parameters of the GLM bootstrap. The algorithm for this tool starts with the ODP bootstrap parameters 
and then removes the least significant parameters until only significant parameters remain. Then, if there are 
few enough Alpha and Beta parameters, the Gamma parameters are added and removed if not significant. The 
tool does not test to see if a parameter should be zero, so some improvements can sometimes occur by forcing 
parameters to equal zero (e.g., compare the parameters from Figure 5.10 to the parameters in the optimization 
tool). Finally, it is possible to have a better model fit (i.e., lower AIC and/or BIC) with more parameters 
even though some of the parameters may not be significant, so judgment is still appropriate for selection of 
parameters.

52	 The t-statistic indicates that a parameter is statistically significant if the absolute value is greater than 2.
53	 When using the GLM bootstrap, any selected outliers and hetero groups used for the ODP bootstrap should be 

reset and then re-evaluated as they will likely be different for the GLM bootstrap. For the “after hetero” portions 
of Figures 5.11 and 5.12 the optimization tool in the “Groups” sheet was used.

Figure 5.10.    Residual Graphs for GLM Bootstrap Model
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Table 5.2.    Parameters and Statistics for GLM Bootstrap Model

Parm Value Exp(Value) t-Stat Periods

a1 12.48 264,036 79.26 Accident Year 2006

a2 12.82 368,718 2.48 Accident Years 2007–2008

a3 12.76 347,009 2.11 Accident Years 2009–2011

a4 12.86 385,644 2.35 Accident Year 2012

a5 12.93 414,414 3.29 Accident Years 2013–2015

b1 0.98 7.88 Development Periods 12–24

— 0.00 Development Periods 24–48

b2 (0.58) (4.88) Development Periods 48–60

b3 (0.20) (3.29) Development Periods 60–132

— 0.00 Calendar Year 2006–2015

N = 55 P-Value = 10.0% R2 = N = 55 P-Value = 64.5% R2 =
Normal:  MU = 0.68,  Sigma = 219.32 AIC = 579.5, BIC = 439.5 Normal:  MU = -12.61,  Sigma = 218.95 AIC = 535.9, BIC = 399.9
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Figure 5.11.    Normality Plots for GLM Bootstrap Model

Interquartile Range = [-138.48, 129.11] Median = Interquartile Range = [-156.62, 119.43] Median = 
Outliers = 4 Outliers = 3

-59.65-53.17
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Box-Whisker Plot (Prior to Hetero)
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Box-Whisker Plot (After Hetero)

Figure 5.12.    Box-Whisker Plots for “GLM Bootstrap” Model
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As one final check on the trends in this GLM bootstrap model, we can compare a 
graph of the implied development patterns with the patterns from the chain ladder in 
the ODP bootstrap model, as shown in Figure 5.13. Because the chain ladder model 
used a parameter for each development period the implied development pattern can 
appear a bit jagged, which is why it is often “smoothed” out in practice by selecting 
development factors. Interestingly, the GLM bootstrap model looks quite similar, 
yet with much smoother trends in the development patterns. As noted earlier, the 
last GLM bootstrap development (and calendar trend) parameter can be assumed to 
extend until the projected model incremental values equal zero which could then be 
compared to tail factors used in the ODP bootstrap model.54

5.5.  Model Results
Once the parameter diagnostics have been reviewed, simulations should be run for 

each model. These simulation results provide an additional diagnostic tool to aid in 
evaluation of the model, as described in Section 3 of CAS Working Party (2005). As an 
example, we will review the results for the Taylor and Ashe (1983) data using the ODP 
bootstrap model. The estimated-unpaid results shown in Figure 5.14 were simulated 
using 10,000 iterations with the hetero adjustments from Figure 5.6.

5.5.1.  Estimated-Unpaid Results
It’s recommended to start a diagnostic review of the estimated unpaid results with 

the standard error (standard deviation) and coefficient of variation (standard error 
divided by the mean), shown in Figure 5.14. Keep in mind that the standard error should 
increase when moving from the oldest years to the most recent years, as the standard 
errors (value scale) should follow the magnitude of the mean of unpaid estimates. In 
Figure 5.14, the standard errors conform to this pattern. At the same time, the standard 
error for the total of all years should be larger than any individual year.

54	 Results for the GLM bootstrap model, as illustrated in Figures 5.9 through 5.12, are shown in Appendix E, 
although no extrapolation was included to be consistent with the ODP bootstrap results.

Figure 5.13.    Implied Development Patterns

ODP Bootstrap Model “Basic” GLM Bootstrap Model
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Also, the coefficients of variation should generally decrease when moving from the 
oldest years to the more recent years and the coefficient of variation for all years combined 
should be less than for any individual year. With the exception of the 2014 and 2015 
accident years, the coefficients of variation in Figure 5.14 seem to also conform, 
although some random fluctuations may be seen.

The main reason for the decrease in the coefficient of variation has to do with the 
independence in the incremental claim-payment stream. Because the oldest accident 
year typically has only a few incremental payments remaining, or even just one, the 
variability is nearly all reflected in the coefficient. For more current accident years, 
random variations in the future incremental payment stream may tend to offset one 
another, thereby reducing the variability of the total unpaid loss.55

While the coefficients of variation should go down, they could also start to rise 
again in the most recent years, as seen in Figure 5.14 for 2014 and 2015. Such reversals 
are from a couple of issues:

•	 With an increasing number of parameters used in the model, the parameter 
uncertainty tends to increase when moving from the oldest years to the more recent 
years. In the most recent years, parameter uncertainty can grow to overpower process 
uncertainty, which may cause the coefficient of variation to start rising again. At 
a minimum, increasing parameter uncertainty will slow the rate of decrease in the 
coefficient of variation.

•	 The model may be overestimating the uncertainty in recent accident years if the 
increase is significant. In that case, another model algorithm (e.g., Bornhuetter-
Ferguson or Cape Cod) may need to be used instead of a chain-ladder model.

Keep in mind also that the standard error or coefficient of variation for the total 
of all accident years will be less than the sum of the standard error or coefficient of 
variation for the individual years. This is because the model assumes that accident years 
are independent.

55	 To visualize this reducing Coefficient of Variation, recall that the standard deviation for the total of several 
independent variables is equal to the square root of the sum of the squares.

Figure 5.14.    Estimated Unpaid Model Results

Taylor & Ashe Data
Accident Year Unpaid

Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 -                  -                  -                  -                  -                  -                  -                  -                  
2007 94,649            96,571            102.0% (119,298)         541,054          71,176            147,232          278,360          374,056          
2008 473,619          199,302          42.1% (25,494)           1,217,544       454,644          590,676          830,916          1,018,835       
2009 714,763          250,044          35.0% 140,156          1,642,391       684,461          882,486          1,146,017       1,396,652       
2010 981,305          271,726          27.7% 324,024          2,062,359       951,467          1,148,872       1,475,857       1,731,112       
2011 1,414,007       364,527          25.8% 468,645          2,829,838       1,392,288       1,642,974       2,059,339       2,349,855       
2012 2,173,552       489,442          22.5% 806,008          4,293,160       2,142,306       2,489,525       3,033,205       3,345,364       
2013 3,969,749       768,637          19.4% 1,655,462       6,369,285       3,913,503       4,501,100       5,307,862       5,989,765       
2014 4,317,349       887,688          20.6% 1,874,779       7,677,306       4,260,113       4,898,209       5,844,560       6,516,905       
2015 4,703,420       2,176,343       46.3% 445,056          13,859,166     4,493,023       6,127,676       8,500,947       10,529,157     

Totals 18,842,414     2,902,735       15.4% 11,312,275     29,464,222     18,594,140     20,734,478     23,885,153     26,388,103     
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Minimum and maximum results are the next diagnostic element in our analysis of 
the estimated unpaid claims in Figure 5.14, representing the smallest and largest values 
from all iterations of the simulation. These values will need to be reviewed in order 
to determine their veracity. If any of them seem implausible, the model assumptions 
would need to be reviewed. Their effects could materially alter the mean indication. 
Sometimes implausible extreme iterations are the result of negative incremental values 
in those “rare” iterations and the limiting incremental value options discussed in 
Section 4.1 can be used to constrain the model simulation process.

5.5.2.  Mean, Standard Deviation and CoV of Incremental Values
The mean, standard deviation and coefficients of variation for every incremental 

value from the simulation process also provide useful diagnostic results, enabling us 
to dig deeper into potential coefficient of variation issues that may be found in the 
estimated unpaid results. Consider, for example, the mean, standard deviation and 
coefficient of variation results shown in Figures 5.15, 5.16 and 5.17, respectively.

The mean values in Figure 5.15 appear consistent throughout and support the 
increases in estimated unpaid by accident year that are shown in Figure 5.14. In fact, 
the future mean values, which lay beyond the stepped diagonal line in Figure 5.15, 
sum to the results in Figure 5.14. The standard deviation values in Figure 5.16 also 

Taylor & Ashe Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120+
2006 278,309          678,678          706,559          769,219          414,449          296,763          266,301          182,021          270,614          66,922            
2007 380,244          940,173          979,875          1,076,297       588,887          408,707          372,144          251,228          381,983          94,649            
2008 376,488          936,096          971,651          1,038,686       584,856          405,028          367,109          256,617          379,226          94,393            
2009 358,750          918,068          955,061          1,023,741       565,152          405,626          367,359          249,479          372,693          92,592            
2010 328,119          837,454          881,193          941,139          514,722          373,168          332,243          226,148          339,996          82,918            
2011 353,894          879,226          924,325          986,018          540,281          386,069          348,473          234,329          357,224          87,913            
2012 386,915          980,382          1,016,136       1,104,983       595,138          436,918          393,002          267,350          389,062          92,083            
2013 477,460          1,175,498       1,227,022       1,334,527       739,306          511,050          461,997          320,655          480,476          121,737          
2014 396,237          973,510          1,023,124       1,106,316       597,274          431,428          390,159          264,060          404,885          100,103          
2015 342,385          875,509          913,011          977,993          539,429          389,906          344,466          230,160          347,729          85,218            

Figure 5.15.    Mean of Incremental Values

Taylor & Ashe Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model

Accident Standard Error Values
Year 12 24 36 48 60 72 84 96 108 120+
2006 132,756          127,296          126,502          280,755          159,020          136,284          105,608          84,429            104,410          50,555            
2007 154,318          150,888          145,947          329,237          187,519          159,277          117,183          101,220          122,902          96,571            
2008 151,882          147,943          153,986          332,283          193,190          160,114          121,272          101,681          167,482          98,760            
2009 146,220          150,178          149,690          327,782          186,733          158,176          119,597          125,035          171,497          98,042            
2010 145,531          138,894          144,262          300,660          178,639          151,920          139,437          118,041          156,163          87,924            
2011 146,339          141,271          148,740          317,044          185,534          183,768          145,838          122,161          155,734          95,224            
2012 153,454          152,178          153,054          338,980          242,220          199,497          163,440          139,434          168,716          97,719            
2013 173,003          165,002          168,993          447,745          261,465          215,809          165,965          141,086          201,662          121,867          
2014 156,130          151,172          235,610          410,825          235,604          210,647          163,372          131,985          177,616          103,507          
2015 142,319          418,523          436,805          577,315          322,537          254,332          205,111          153,930          222,174          98,010            

Figure 5.16.    Standard Deviation of Incremental Values
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appear consistent, although the future periods seem to have larger standard deviations 
than historical periods. But the standard deviations can’t be added because the standard 
deviations in Figure 5.14 represent those for aggregated incremental values by accident 
year, which are less than perfectly correlated.

The differences between the future and historical coefficients of variation in 
Figure 5.17 help clarify any issues with the model results. For example, notice how 
the differences by development period are more significant in the bottom two rows in 
Figure 5.17. This is consistent with the increases in the accident year 2014 and 2015 
coefficients of variation noted in Figure 5.14, so they can be used to diagnose the 
causes noted above when compared to the same results for different models.

Taylor & Ashe Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model

Accident Coefficient of Variation Values
Year 12 24 36 48 60 72 84 96 108 120+
2006 47.7% 18.8% 17.9% 36.5% 38.4% 45.9% 39.7% 46.4% 38.6% 75.5%
2007 40.6% 16.0% 14.9% 30.6% 31.8% 39.0% 31.5% 40.3% 32.2% 102.0%
2008 40.3% 15.8% 15.8% 32.0% 33.0% 39.5% 33.0% 39.6% 44.2% 104.6%
2009 40.8% 16.4% 15.7% 32.0% 33.0% 39.0% 32.6% 50.1% 46.0% 105.9%
2010 44.4% 16.6% 16.4% 31.9% 34.7% 40.7% 42.0% 52.2% 45.9% 106.0%
2011 41.4% 16.1% 16.1% 32.2% 34.3% 47.6% 41.9% 52.1% 43.6% 108.3%
2012 39.7% 15.5% 15.1% 30.7% 40.7% 45.7% 41.6% 52.2% 43.4% 106.1%
2013 36.2% 14.0% 13.8% 33.6% 35.4% 42.2% 35.9% 44.0% 42.0% 100.1%
2014 39.4% 15.5% 23.0% 37.1% 39.4% 48.8% 41.9% 50.0% 43.9% 103.4%
2015 41.6% 47.8% 47.8% 59.0% 59.8% 65.2% 59.5% 66.9% 63.9% 115.0%

Figure 5.17.    Coefficient of Variation of Incremental Values
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6.  Using Multiple Models

So far we have focused only on one model. In practice, multiple stochastic models 
should be used in the same way that multiple methods should be used in a deterministic 
analysis. First the results for each model must be reviewed and finalized, after an 
iterative process of diagnostic testing and reviewing model output to make sure the 
model “fits” the data, has reasonable assumptions and produces reasonable results. 
Then these results can be combined by assigning a weight to the results of each model.

Two primary methods exist for combining the results for multiple models:

•	 Run models with the same random variables. For this algorithm, every model uses 
the exact same random variables. In the “Bootstrap Models.xlsm” file, the random 
values are simulated before they are used to simulate results, which means that this 
algorithm may be accomplished by reusing the same set of random variables for 
each model. At the end, the incremental values for each model, for each iteration 
by accident year (that have a partial weight), can be weighted together.

•	 Run models with independent random variables. For this algorithm, every 
model is run with its own random variables. In the “Bootstrap Models.xlsm” file 
the random values are simulated before they are used to simulate results, which 
means that this algorithm may be accomplished by simulating a new set of random 
variables for each model.56 At the end, the weights are used to randomly select a 
model for each iteration by accident year so that the result is a weighted “mixture” 
of models.

Both algorithms are similar to the process of weighting the results of different 
deterministic methods to arrive at an actuarial best estimate. The process of weighting 
the results of different stochastic models produces an actuarial best estimate of a 
distribution. In practice it is also common to further “adjust” or “shift” the weighted 
results by year after considering case reserves and the calculated IBNR. This “shifting” 
can also be done for weighted distributions, either additively to maintain the exact 
shape and width of the distribution by year or multiplicatively to maintain the exact 
shape of the distribution but adjusting the width of the distribution.

56	 In general, in order to simulate new random values a new seed value must be selected, otherwise the same random 
values will be simulated. In the “Bootstrap Models.xlsm” file the seed value is incremented for each model and 
data type so that different seed values are being used as long as new random numbers are generated for each 
model and data type.
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The second method of combining multiple models will be illustrated using 
combined Schedule P data for five top 50 companies.57 Data for all Schedule P lines  
with 10 years of history may be found in the “Industry Data.xlsm” file, but this 
example will be confined to Parts A, B, and C. For each line of business ODP bootstrap 
models were run for paid and incurred data (labeled Chain Ladder), as well as paid 
and incurred data for the Bornhuetter-Ferguson and Cape Cod models described in  
Section 3.3 and the GLM bootstrap model described in Section 3.4.58 For this section, 
only the results for Part A (Homeowners/Farmowners) will be reviewed.59

By comparing the results for all eight models (or fewer, depending on how many are 
used)60 a qualitative assessment of the relative merits of each model may be determined. 
Bayesian methods can be used to determine weighting based on the quality of each 
model’s forecasts. The weights can be determined separately for each year. The table in 
Figure 6.1 shows an example of weights for the Part A data.61 The weighted results are 
displayed in the “Best Estimate” column of Figure 6.2. As a parallel to a deterministic 
analysis, the means from the eight models could be used to derive a reasonable range from 
the modeled results (i.e., from $4,099 to $5,650) as shown in Figure 6.3. Alternatively, 
if we only consider results by accident year which are given some weight when deriving 
the best estimate, then the “weighted range” may be a more representative view of the 
uncertainty of the actuarial central estimate.62

When selecting weights for stochastic models, the standard deviations should also 
be considered in addition to the means by model since the weighted best estimate 
should reflect the actuary’s judgments about the entire distribution not just a central 

57	 The five companies represent large, medium and smaller companies that have been combined to maintain 
anonymity. For each Part, a unique set of five companies were used.

58	 An additional benefit of converting the incurred data models to a random payment stream as discussed in 
Section 3.3.1 is that they can be combined with other model results.

59	 Only selected weighted results are displayed and discussed in Section 6. A more complete set of results, including 
results for each model, are included in Appendix A.

60	 Other models in addition to the ODP bootstrap and GLM bootstrap models could also be included in the 
weighting process as long as the simulated results are in the form of random incremental payment streams.

61	 For simplicity, the weights are judgmental and not derived using Bayesian methods.
62	 The “modeled range” in Figure 6.3 is derived using each model that is given at least some weight for any accident 

year—i.e., if the model is used. In contrast, the “weighted range” is derived using only the models given weight 
for each accident year, which are highlighted in grey in Figure 6.2 and 6.4.

Accident Model Weights by Accident Year
Year Paid CL Incd CL Paid BF Incd BF Paid CC Incd CC Paid GLM Incd GLM TOTAL
2006 50.0% 50.0% 100.0%
2007 50.0% 50.0% 100.0%
2008 50.0% 50.0% 100.0%
2009 50.0% 50.0% 100.0%
2010 50.0% 50.0% 100.0%
2011 50.0% 50.0% 100.0%
2012 50.0% 50.0% 100.0%
2013 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%
2014 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%
2015 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%

Figure 6.1.    Model Weights by Accident Year
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estimate. Thus, coefficients of variation by model can be used for this purpose as 
illustrated in Figure 6.4.

With our focus on the entire distribution, the weights by year were used to randomly 
sample the specified percentage of iterations from each model. A more complete set 
of the results for the “weighted” iterations can be created similar to the tables shown 
in Section 5. The companion “Best Estimate.xlsm” file can be used to weight eight 
different models together in order to calculate a weighted best estimate. An example 
for Part A is shown in the table in Figure 6.5.

As one final check of the weighted results it would be common to review the 
implied IBNR to make sure there are no issues as shown in Figure 6.6. By reviewing 
this reconciliation, and perhaps also comparing it to deterministic results, additional 
adjustments could be made to various assumptions. For example, from year 2006 in 
Figure 6.6 it may be more realistic to revisit the tail factor assumption so that the 
unpaid estimate is more consistent with the case reserves. Finally, after the interactive 
process of reviewing results and adjusting assumptions is complete, it may still be 

Figure 6.2.    Summary of Mean Results by Model

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Mean Estimated Unpaid
Accident Chain Ladder Bornhuetter Ferguson Cape Cod GLM Bootstrap Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)
2006 -                  -                  -                  -                  -                  -                  -                  -                  -                  
2007 3                     3                     2                     2                     3                     3                     9                     12                   3                     
2008 41                   42                   28                   27                   32                   33                   27                   27                   41                   
2009 45                   46                   37                   39                   43                   45                   40                   45                   46                   
2010 63                   62                   60                   59                   66                   71                   62                   73                   64                   
2011 103                 103                 96                   98                   109                 115                 106                 113                 103                 
2012 222                 226                 169                 168                 191                 199                 213                 169                 224                 
2013 294                 306                 327                 334                 373                 385                 280                 307                 335                 
2014 679                 723                 722                 753                 835                 871                 646                 650                 752                 
2015 3,851              3,912              2,660              2,885              3,225              3,430              3,738              4,255              3,742              

Totals 5,300              5,422              4,099              4,366              4,878              5,151              5,120              5,650              5,308              

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Ranges
Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum
2006 -                  
2007 3                     3                     3                     2                     12                   
2008 41                   41                   42                   27                   42                   
2009 46                   45                   46                   37                   46                   
2010 64                   62                   63                   59                   73                   
2011 103                 103                 103                 96                   115                 
2012 224                 222                 226                 168                 226                 
2013 335                 294                 385                 280                 385                 
2014 752                 679                 871                 646                 871                 
2015 3,742              3,225              4,255              2,660              4,255              

Totals 5,308              4,674              5,992              4,099              5,650              

Figure 6.3.    Summary of Ranges by Accident Year
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Coefficient of Variation
Accident Chain Ladder Bornhuetter Ferguson Cape Cod GLM Bootstrap

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred
2006
2007 264.9% 309.9% 310.2% 318.6% 276.2% 326.5% 86.4% 91.5%
2008 74.7% 101.0% 89.2% 109.3% 86.1% 95.6% 177.0% 184.0%
2009 65.5% 93.2% 69.7% 93.5% 69.2% 89.0% 119.3% 118.9%
2010 49.4% 75.6% 52.2% 78.0% 47.2% 72.7% 78.5% 78.1%
2011 34.9% 62.4% 35.7% 64.6% 33.5% 59.5% 51.3% 50.9%
2012 26.1% 49.5% 31.3% 51.4% 28.1% 50.2% 33.6% 41.5%
2013 27.3% 57.5% 26.9% 59.3% 23.3% 56.2% 27.9% 34.9%
2014 18.9% 48.8% 21.8% 51.0% 17.1% 46.7% 20.3% 26.3%
2015 9.2% 39.2% 14.4% 40.5% 8.0% 39.4% 9.0% 16.0%

Totals 8.4% 29.0% 11.1% 28.9% 7.9% 27.5% 8.7% 13.3%

Figure 6.4.    Summary of CoV Results by Model

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Reconciliation of Total Results
Best Estimate (Weighted)

Accident Paid Incurred Case Estimate of Estimate of
Year To Date To Date Reserves IBNR Ultimate Unpaid
2006 5,234 5,237 3 (3) 5,234 -
2007 6,470 6,479 9 (6) 6,473 3
2008 7,848 7,867 19 23 7,890 41
2009 7,020 7,046 26 20 7,066 46
2010 7,291 7,341 50 13 7,355 64
2011 8,134 8,225 91 12 8,237 103
2012 10,800 11,085 285 (61) 11,023 224
2013 7,522 7,810 288 46 7,856 335
2014 7,968 8,703 735 17 8,720 752
2015 9,309 12,788 3,478 263 13,051 3,742

Totals 77,596 82,580 4,984 324 82,905 5,308

Figure 6.6.    Reconciliation of Total Results (weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 -                  -                  -                  -                  -                  -                  -                  -                  
2007 3                     9                     292.0% -                  173                 0                     1                     17                   42                   
2008 41                   37                   88.6% -                  391                 32                   57                   111                 168                 
2009 46                   37                   81.0% 1                     522                 36                   60                   114                 175                 
2010 64                   41                   63.6% 4                     537                 55                   81                   139                 205                 
2011 103                 50                   48.8% 10                   636                 94                   125                 193                 276                 
2012 224                 89                   40.0% 36                   917                 211                 266                 382                 529                 
2013 335                 148                 44.3% 25                   1,460              315                 401                 594                 865                 
2014 752                 293                 39.0% 106                 2,881              725                 873                 1,265              1,789              
2015 3,742              982                 26.2% 1,094              10,700            3,654              4,118              5,392              7,059              

Totals 5,308              1,044              19.7% 2,116              12,445            5,224              5,758              7,074              8,675              
Normal Dist. 5,308              1,044              19.7% 5,308              6,013              7,026              7,738              
logNormal Dist. 5,309              1,034              19.5% 5,211              5,935              7,158              8,164              
Gamma Dist. 5,308              1,044              19.7% 5,240              5,971              7,135              8,035              
TVaR 6,035              6,593              8,140              10,091            
Normal TVaR 6,142              6,636              7,463              8,092              
logNormal TVaR 6,121              6,691              7,780              8,733              
Gamma TVaR 6,137              6,688              7,689              8,516              

Figure 6.5.    Estimated Unpaid Model Results (weighted)
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prudent to make adjustments to the best estimate of the unpaid by shifting the results 
as noted earlier in this section. For example, since all of the models estimated the 
unpaid for 2012 to be less than the case reserves, if other studies show that the case 
reserves are not likely to be redundant then the actuary may decide to shift the unpaid 
for 2012 so that it is at least 285.

6.1.  Additional Useful Output
Three rows of percentile numbers for the normal, lognormal, and gamma distribu-

tions, which have been fitted to the total unpaid-claim distribution, may be seen at the 
bottom of the table in Figure 6.5. The fitted mean, standard deviation, and selected 
percentiles are in their respective columns; the smoothed results can be used to assess 
the quality of fit, parameterize a DFA model, or used to smooth the estimate of extreme 
values,63 among other applications.

Four rows of numbers indicating the Tail Value at Risk (TVaR), defined as the 
average of all of the simulated values equal to or greater than the percentile value, may 
also be seen at the bottom of Figure 6.5. For example, in this table, the 99th percentile 
value for the total unpaid claims for all accident years combined is 8,675, while the 
average of all simulated values that are greater than or equal to 8,675 is 10,091. The 
Normal TVaR, Lognormal TVaR, and Gamma TVaR rows are calculated similarly, 
except that they use the respective fitted distributions in the calculations rather than 
actual simulated values from the model.

An analysis of the TVaR values is likely to help clarify a critical issue: if the actual 
outcome exceeds the X percentile value, by how much will it exceed that value on 
average? This type of assessment can have important implications related to risk-based 
capital calculations and other technical aspects of enterprise risk management. But it is 
worth noting that the purpose of the normal, lognormal, and gamma TVaR numbers 
is to provide “smoothed” values—that is, that some of the random statistical noise is 
essentially prevented from distorting the calculations.

6.2.  Estimated Cash Flow Results
A model’s output may also be reviewed by calendar year (or by future diagonal), 

as shown in the table in Figure 6.7. A comparison of the values in Figures 6.5 and 
6.7 indicates that the total rows are identical, because summing the future payments 
horizontally or diagonally will produce the same total. Similar diagnostic issues (as 
discussed in Section 5) may be reviewed in the table in Figure 6.7, with the exception of 
the relative values of the standard errors and coefficients of variation moving in opposite 
directions for calendar years compared to accident years. This phenomenon makes sense 
on an intuitive level when one considers that “final” payments, projected to the furthest 
point in the future, should actually be the smallest, yet relatively most uncertain.

63	 A random instance of an extreme percentile can be quite erratic compared to the same percentile of a distribution 
fitted to the simulated distribution. This random noise for extreme percentiles could be cause for increasing the 
number of iterations, but if the same percentiles for the fitted distributions are stable perhaps they can be used 
in lieu of more iterations. Of course the use of the extreme values assumes that the models are reliable.
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6.3.  Estimated Ultimate Loss Ratio Results
Another output table, Figure 6.8, shows the estimated ultimate loss ratios by 

accident year. Unlike the estimated unpaid and estimated cash-flow tables, the values 
in this table are calculated using all simulated values, not just the values beyond the end 
of the historical triangle. Because the simulated sample triangles represent additional 
possibilities of what could have happened in the past, even as the “squaring of the 
triangle” and process variance represent what could happen as those same past values 
are played out into the future, we are in possession of sufficient information to enable us 
to estimate the variability in the loss ratio from day one until all claims are completely 
paid and settled for each accident year.64

Reviewing the simulated values indicates that the standard errors in Figure 6.8 should 
be proportionate to the means, while the coefficients of variation should be relatively 
constant by accident year. In terms of diagnostics, any increases in standard error and 
coefficient of variation for the most recent years would be consistent with the reasons 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 3,475 754 21.7% 1,297 8,420 3,414 3,797 4,730 5,948
2017 865 208 24.0% 293 2,148 843 982 1,224 1,483
2018 403 118 29.4% 115 1,298 387 467 614 740
2019 204 67 32.7% 56 654 194 240 325 412
2020 140 50 35.9% 40 539 132 165 233 297
2021 90 43 47.4% 12 611 82 112 169 229
2022 70 44 63.2% 6 409 60 91 152 215
2023 51 58 112.2% - 735 36 75 151 253
2024 10 15 146.5% - 199 4 15 41 67

Totals 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675

Figure 6.7.    Estimated Cash Flow (weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 67.7% 28.5% 42.1% 0.4% 220.8% 66.1% 71.1% 130.9% 158.2%
2007 79.3% 30.2% 38.1% 8.2% 262.2% 77.8% 83.1% 145.5% 178.5%
2008 90.5% 31.2% 34.5% 16.9% 261.3% 89.0% 94.6% 159.9% 188.9%
2009 72.8% 26.8% 36.7% 10.2% 215.6% 71.4% 76.1% 131.7% 180.4%
2010 65.3% 23.3% 35.7% 10.2% 225.0% 63.8% 68.0% 116.1% 139.7%
2011 64.1% 21.2% 33.1% 13.0% 190.0% 63.2% 67.0% 111.8% 130.5%
2012 80.5% 24.0% 29.9% 25.0% 234.6% 79.0% 83.7% 132.9% 154.6%
2013 54.7% 18.8% 34.4% 9.9% 157.7% 53.9% 57.4% 96.2% 115.1%
2014 58.0% 19.2% 33.0% 13.0% 164.8% 57.1% 60.6% 99.8% 118.8%
2015 88.2% 21.5% 24.4% 30.9% 232.5% 85.5% 92.5% 127.9% 158.7%

Totals 71.3% 7.4% 10.4% 46.6% 112.7% 70.8% 75.7% 84.4% 91.7%

Figure 6.8.    Estimated Loss Ratio (weighted)

64	 If we are only interested in the “remaining” volatility in the loss ratio, then the values in the estimated unpaid 
table (Figure 6.5) can be added to the cumulative paid values by year and divided by the premiums.
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previously cited in Section 5.4 for the estimated unpaid tables. Risk management-wise, 
the loss ratio distributions have important implications for projecting pricing risk—
the mean loss ratios can be used to view any underwriting cycles and help inform the 
projected mean for the next few years, while the coefficients of variation can be used to 
select a standard deviation for the next few years.65

6.4.  Estimated Unpaid Claim Runoff Results
Figure 6.9, shows the runoff of the total unpaid claim distribution by future calendar 

year. Like the estimated unpaid and estimated cash-flow tables, the values in this table 
are calculated using only future simulated values, except that future diagonal results are 
sequentially removed so that we are left with the remaining unpaid claims at the end of 
future calendar periods. These results are quite useful for calculating the runoff of the 
unpaid claim distribution when calculating risk margins using the cost of capital method.

6.5.  Distribution Graphs
A final model output to consider is a histogram of the estimated unpaid amounts 

for the total of all accident years combined, as shown in the graph in Figure 6.10. The 
histogram is created by counting the number of outcomes within each of 100 “buckets” 
of equal size spread between the minimum and maximum outcome. To smooth the 
histogram a kernel density function is often used, which is the green bars in Figure 6.10.

Another useful strategy for graphing the total unpaid distribution may be accom-
plished by creating a summary of the eight model distributions used to determine the 
weighted “best estimate” and distribution. An example of this graph using the kernel 
density functions is shown in Figure 6.11 and dots for the mean estimates, which 
would represent a traditional range,66 are also included.

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Calendar Year Unpaid Claim Runoff
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675
2016 1,834 365 19.9% 746 4,128 1,797 2,030 2,459 2,957
2017 969 218 22.5% 336 2,316 946 1,088 1,353 1,627
2018 566 146 25.8% 159 1,393 548 647 828 1,004
2019 362 114 31.5% 79 1,171 347 424 565 718
2020 222 92 41.4% 35 956 207 269 386 524
2021 132 76 57.6% 6 863 117 166 268 394
2022 62 59 96.3% (0) 745 46 84 166 269
2023 10 15 146.5% (0) 199 4 15 41 67

Figure 6.9.    Estimated Unpaid Claim Runoff (weighted)

65	 The coefficients of variation measure the variability of the loss ratios, given the movements by year. Without this 
information, it is common to base the future standard deviation on the standard deviation of the historical mean 
loss ratios, but this is not ideal since the variability of the mean loss ratios is not the same as the possible variation 
in the actual outcomes given movements in the means.

66	 A traditional range would use deterministic point estimates instead of means of the distributions, but the intent 
is consistent. While the points would technically have an infinitesimal probability and should therefore sit on the 
x-axis, they are elevated above the zero probability level purely for illustration purposes.
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Total Unpaid Distribution
Best Estimate (Weighted)
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Figure 6.10.   Total Unpaid Claims Distribution

Figure 6.11.    Summary of Model Distributions

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Summary of Model Distributions
(Using Kernel Densities)
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67	 For Part B and Part C, tail factors were used to illustrate the results when extrapolated beyond just squaring the 
triangle. This also flows through to the Aggregate results in Appendix D.

68	 This section assumes the reader is familiar with correlation.
69	 It is possible to use this process with a parametric ODP bootstrap model, as described in Section 4.10, but that is 

beyond the scope of the monograph.
70	 For a useful reference see Kirschner, et al. (2008).
71	 For example, in the “Bootstrap Models.xlsm” file the locations of the sampled residuals are shown in Step 15, 

which could be replicated iteration by iteration for each business segment.
72	 It is possible to fill in “missing” residuals in another segment using a randomly selected residual from elsewhere 

in the triangle, but in order to maintain the same amount of correlation the selection of the other residual would 
need to account for the correlation between the residuals, which complicates the process.

The corresponding tables and graphs for the Part B and Part C results are shown in 
Appendices B and C, respectively.67

6.6.  Correlation
Results for an entire business unit can be estimated, after each business segment 

has been analyzed and weighted into best estimates, using aggregation. This represents 
another area where caution is warranted. The procedure is not a simple matter of 
adding up the distributions for each segment. In order to estimate the distribution of 
possible outcomes for a company as a whole, a correlation of results between segments 
must be used.68

Simulating correlated variables is commonly accomplished with a multivariate 
distribution whose parameters and correlations have been previously specified. This 
type of simulation is most easily applied when distributions are uniformly identical and 
known in advance (for example, all derived from a multivariate normal distribution). 
Unfortunately, these conditions do not generally exist for the ODP bootstrap model 
(or other models), as quite often the modeling process does not allow us to know 
the characteristics of overall distributions in advance or combining distributions from 
different types of models is by definition not uniformly identical and known in advance. 
Indeed, as the shapes of different distributions are usually slightly different, another 
approach will be needed.69

Two useful correlation processes for the ODP bootstrap model are location mapping 
(or synchronized bootstrapping) and re-sorting.70

With location mapping, each iteration will include sampling residuals for the first 
segment and then going back to note the location in the original residual triangle of 
each sampled residual.71 Each of the other segments is sampled using the residuals at 
the same locations for their respective residual triangles. Thus, the correlation of the 
original residuals is preserved in the sampling process.

The location-mapping process is easily implemented in Excel and does not require 
the need to estimate a correlation matrix. There are, however, two drawbacks to this 
process. First, it requires all of the business segments to use data triangles that are  
precisely the same size with no missing values or outliers when comparing each location 
of the residuals.72 Second, the correlation of the original residuals is used in the model, 
and no other correlation assumptions can be used for stress testing the aggregate results.
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73	 For a useful reference see Iman and Conover (1982) or Mildenhall (2006). In the “Aggregate Estimate.xlsm” file 
the Iman-Conover algorithm is used to “Generate Rank Values” on the Inputs sheet.

74	 While judgment is clearly appropriate, the typical threshold is a P-value of 5%—i.e., a P-value of 5% or less 
indicates the correlation is significantly different than zero, while a P-value greater than 5% indicates the 
correlation is not significantly different than zero.

The second correlation process, re-sorting, can be accomplished with algorithms 
such as Iman-Conover73 or Copulas, among others. The primary advantages of re-sorting 
include:

•	 The triangles for each segment may have different shapes and sizes,
•	 Different correlation assumptions may be employed, and
•	 Different correlation algorithms may also have other beneficial impacts on the 

aggregate distribution.

For example, using a t-distribution Copula with low degrees of freedom rather 
than a normal-distribution Copula, will effectively “strengthen” the focus of the 
correlation in the tail of the distribution, all else being equal. This type of consideration 
is important for risk-based capital and other risk modeling issues.

To induce correlation among different segments in the ODP bootstrap model, a 
calculation of the correlation matrix using Spearman’s Rank Order and use of re-sorting 
based on the ranks of the total unpaid claims for all accident years combined may be 
done. The calculated correlations for Parts A, B, and C based on the paid residuals after 
hetero adjustments may be seen in the table in Figure 6.12. A second part of Figure 6.12 
are the P-values for each correlation coefficient, which are an indication of whether a cor-
relation coefficient is significantly different than zero as the P-value gets close to zero.74

By reviewing the correlation coefficients for each “pair” of segments, along with 
the P-values, from different sets of correlations matrices (e.g., from paid or incurred 
data before or after the hetero adjustment) judgment can be used to select a correlation 
matrix assumption. As noted above, caution is warranted as these calculated correlation 
matrices are limited to the data used in the calculation and the impact of other systemic 
issues, such as contagion, may also need to be considered.

Using these correlation coefficients, the “Aggregate Estimate.xlsm” file, and the 
simulation data for Parts A, B, and C, the aggregate results for the three lines of business 

Rank Correlation of Residuals after Hetero Adjustment - Paid
LOB 1 2 3

1 1.00 0.37 0.19
2 0.37 1.00 0.24
3 0.19 0.24 1.00

P-Values of Rank Correlation of Residuals after Hetero Adjustment - Paid
LOB 1 2 3

1 0.00 0.01 0.17
2 0.01 0.00 0.07
3 0.17 0.07 0.00

Figure 6.12.    Estimated Correlation and P-values
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were calculated and summarized in the table in Figure 6.13. A more complete set of 
tables for the aggregate results is shown in Appendix D.

Note that using residuals to correlate the lines of business (or other segments), as 
in the location mapping method, and measuring the correlation between residuals, as 
in the re-sorting method, both tend to create correlations that are close to zero. For 
reserve risk, the correlation that is desired is between the total unpaid amounts for 
two segments. The correlation that is being measured is the correlation between each 
incremental future loss amount, given the underlying model describing the overall 
trends in the data. This may or may not be a reasonable approximation.

While not the direct measure we are hoping for, keep in mind that some level of 
implied correlation between lines of business will naturally occur due to correlations 
between the model parameters—e.g., similarities in development parameters, so 
correlation based on the correlation between the remaining random movements in 
the incremental values given the model parameters (i.e., residuals) may be reasonable. 
However, an example of an issue not particularly well suited to measurement via 
residual correlation is contagion between lines of business—i.e., single events that 
result in claims in multiple lines of business. To account for this, and to add a bit 
of conservatism, the correlation assumption can be easily changed based on actuarial 
judgment.

Correlation is often thought of as being much stronger than “close to zero”, but 
in this case the correlation being considered is typically the loss ratio movements by 
line of business. For pricing risk, the correlation that is desired is between the loss ratio 
movements by accident year between two segments. This correlation is not as likely to 
be close to zero, so correlation of loss ratios (e.g., for the data in Figure 6.7) is often 
done with a different correlation assumption compared to reserving risk.

Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Unpaid

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 67 25 37.9% 0 186 66 83 110 130
2007 107 30 28.1% 25 295 105 126 158 185
2008 199 49 24.8% 67 622 194 226 285 342
2009 298 56 18.8% 123 800 293 331 395 457
2010 480 69 14.3% 248 959 475 522 599 668
2011 862 106 12.3% 503 1,561 860 923 1,041 1,135
2012 1,666 187 11.2% 383 2,555 1,662 1,771 1,985 2,148
2013 3,070 333 10.8% 1,808 6,522 3,066 3,249 3,649 3,928
2014 5,632 703 12.5% 2,435 8,555 5,632 6,075 6,801 7,326
2015 13,270 1,788 13.5% 5,217 22,660 13,262 14,348 16,180 18,011

Totals 25,650 2,080 8.1% 16,952 36,085 25,616 26,949 29,088 30,991
Normal Dist. 25,650 2,080 8.1% 25,650 27,053 29,072 30,490
logNormal Dist. 25,650 2,088 8.1% 25,566 27,006 29,222 30,885
Gamma Dist. 25,650 2,080 8.1% 25,594 27,021 29,165 30,736

Figure 6.13.    Aggregate Estimated Unpaid
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7.  Model Testing

Work on testing stochastic unpaid claim estimation models is still in its infancy. Most 
papers on stochastic models display results, and some even compare a few different 
models, but they tend to be void of any statistical evidence regarding how well the 
model in question predicts the underlying distribution. This is quite understandable 
since we don’t know what the underlying distribution is, so with real data the best 
we can hope for is to retrospectively test a very old data set to see how well a model 
predicted the actual outcome.75

Testing a few old data sets is better than not, but ideally we would need many simi-
lar data sets to perform meaningful tests. One recent paper authored by the General 
Insurance Reserving Oversight Committee (GI ROC) in their papers for the General 
Insurance Research Organizing (GIRO) conference in 2007 titled “Best Estimates and 
Reserving Uncertainty” (ROC/GIRO 2007) and their updated paper in 2008 titled 
“Reserving Uncertainty” (ROC/GIRO 2008) took a first step in performing more 
meaningful statistical testing of a variety of models.

A large number of models were reviewed and tested in these studies, but one of the 
most interesting portions of the studies were done by comparing the unpaid liability 
distributions created by the Mack and ODP bootstrap model against the “true” arti-
ficially generated unpaid loss percentiles. To accomplish these tests, artificial datasets  
were constructed so that all of the Mack and ODP bootstrap assumptions, respectively, 
are satisfied. While the artificial datasets were recognized as not necessarily realistic, the 
“true” results are known so the Working Parties were able to test to see how well each 
model performed against datasets that could be considered “perfect.”

7.1.  Bootstrap Model Results
To test the ODP bootstrap model, incremental losses were simulated for a 10 × 

10 square of data based on the assumptions of the ODP bootstrap model. For the 30,000 
datasets simulated, the upper triangles were used and the OPD bootstrap model from 
England and Verrall (1999; 2002) were used to estimate the expected results and various 
percentiles. The proportion of simulated scenarios in which the “true” outcome exceeded 
the 99th percentile of the ODP Bootstrap method’s results was around 2.6–3.1%. For the 
Mack method, the “true” outcome exceeded the 99th percentile around 8–13%.

75	 For example, data for accident years 1994 to 2004 could be completely settled and all results known as of 2014. 
Thus, we could use the triangle as it existed at year end 2004 to test how well a model predicted the final results.
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Thus, the ODP bootstrap model performed better than the Mack model for “per-
fect” data, even though the results for both models were somewhat deficient in the 
sense that they both seem to under-predict the extremes of the “true” distribution. In 
fairness, it should be noted however, that the ODP bootstrap model that was tested did 
not include many of the “advancements” described in Section 3.2.

7.2.  Future Testing
The testing done for GIRO was a significant improvement over simply looking at 

results for different models, without knowing anything about the “true” underlying dis-
tribution. The next step in the testing process will be to test models against “true” results 
for realistic data instead of “perfect” data. The CAS Loss Simulation Model Working 
Party (2011) has created a model that will create datasets from the claim transaction 
level up. The goal is to create thousands of datasets based on characteristics of real data 
that can be used for testing various models.
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8.  Future Research

With testing of stochastic models in its infancy, much work in the area of future research 
is needed. Only a few such areas are offered here.

•	 Expand testing of the ODP bootstrap model with realistic data using the CAS loss 
simulation model.

•	 Research on how the adjustments to the ODP bootstrap and GLM bootstrap sug-
gested in this monograph perform relative to realistic data—i.e., is there a significant 
improvement in the predictive power of the model given the different model con-
figurations and adjustments.

•	 Expand or change the ODP bootstrap model in other ways, for example use of the 
Munich chain ladder (Quarg and Mack 2008) or Berquist-Sherman (1977) method 
with an incurred/paid set of triangles, or the use of claim counts and average severi-
ties. Other examples could include the use of different residuals, such as deviance or 
Anscombe residuals noted in Section 3.2.

•	 Research the use of a Bayesian or other approach to selecting weights for different 
models by accident year to improve the process of combining multiple models dis-
cussed in Section 6.

•	 Research other risk analysis measures and how the ODP bootstrap model can be 
used for enterprise risk management.

•	 Research how the ODP bootstrap model can be used for Solvency II requirements 
in Europe and the International Accounting Standards.

•	 Research into the most difficult parameter to estimate: the correlation matrix.
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9.  Conclusions

While this monograph endeavored to show how the ODP bootstrap model can be 
used in a variety of practical ways, and to illustrate the diagnostic tools the actuary 
needs to assess whether the model is working well, it should not be assumed that the 
ODP bootstrap model is well suited for every data set. However, it is hoped that the  
ODP bootstrap and GLM bootstrap “toolsets” can become an integral part of  
the actuaries regular estimation of unpaid claim liabilities, rather than just a “black 
box” to be used only if necessary or after the deterministic methods have been used 
to select a point estimate. Finally, the modeling framework allows the actuary to “fit” 
the model to the data instead of simply accepting the model as is and essentially forcing 
the data to “fit” the model.
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T here are several companion files designed to give the reader a deeper understanding of 
the concepts discussed in the monograph. T  he files are all in the “A Practitioners 
Guide. zip” file at https://www.casact.org/sites/default/files/2021-02/
practitionerssuppl-shaplandmonograph04.zip T he files are:

Model Instructions.pdf—this file contains a written description of how to use the primary 
bootstrap modeling files.

Primary bootstrap modeling iles:
Industry Data.xls—this file contains Schedule P data by line of business for the entire 
U.S. 

industry and five of the top 50 companies, for each LOB that has 10 years of data. 
Bootstrap Models.xlsm—this file contains the detailed model steps described in this 
monograph as well as various modeling options and diagnostic tests. Data can 
be entered and simulations run and saved for use in calculating a weighted best 
estimate.

Best Estimate.xlsm—this file can be used to weight the results from eight different 
models to get a “best estimate” of the distribution of possible outcomes.

Aggregate Estimate.xlsm—this file can be used to correlate the best estimate results 
from 3 LOBs/segments.

Correlation Ranks.xlsm—this file contains examples of ranks used to correlate results 
by LOB/segment.

Simple example calculation files:
GLM Framework.xlsm—this file illustrates the calculation of the GLM bootstrap 

model (framework) and the corresponding ODP bootstrap model for a simple  
3 × 3 triangle using (3.8).

GLM Framework C.xlsm—this file illustrates the calculation of the GLM bootstrap 
model (framework) and the corresponding ODP bootstrap model for a simple 
3 × 3 triangle using (3.7).

GLM Framework 6.xlsm—this file illustrates the calculation of the GLM bootstrap 
model (framework) and the corresponding ODP bootstrap model for a simple 
6 × 6 triangle using (3.8).

GLM Framework 6C.xlsm—this file illustrates the calculation of the GLM bootstrap 
model (framework) and the corresponding ODP bootstrap model for a simple 
6 × 6 triangle using (3.7).

Supplementary Materials

http://www.casact.org/pubs/monographs/papers/practitionerssuppl-shaplandmonograph04.zip
https://www.casact.org/sites/default/files/2021-02/practitionerssuppl-shaplandmonograph04.zip
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GLM Bootstrap 6 with Outlier.xlsm—this file illustrates how the calculation of the 
GLM bootstrap for a simple 6 × 6 triangle is adjusted for an outlier. It includes 
different options for adjusting the ODP bootstrap model to remove an outlier.

GLM Bootstrap 6 with 3yr avg.xlsm—this file illustrates how the calculation of the 
GLM bootstrap for a simple 6 × 6 triangle is adjusted to only use the equivalent of 
a three-year average (i.e., the last four diagonals).

GLM Bootstrap 6 with 1 Acc Yr Parameter.xlsm—this file illustrates the calculation of 
the GLM bootstrap using only one accident year (level) parameter, a development 
year trend parameter for every year and no calendar year trend parameter for a simple 
6 × 6 triangle.

GLM Bootstrap 6 with 1 Dev Yr Parameter.xlsm—this file illustrates the calculation of 
the GLM bootstrap using only one development year trend parameter, an accident 
year (level) parameter for every year and no calendar year trend parameter for a simple 
6 × 6 triangle.

GLM Bootstrap 6 with 1 Acc Yr & 1 Dev Yr Parameter.xlsm—this file illustrates the 
calculation of the GLM bootstrap using only one accident year (level) parameter, 
one development year trend parameter and no calendar year trend parameter for a 
simple 6 × 6 triangle.

GLM 6 Bootstrap with 1 Acc Yr 1 Dev Yr & 1 Cal Yr Parameter.xlsm—this file illus-
trates the calculation of the GLM bootstrap using only one accident year (level) 
parameter, one development year trend parameter and one calendar year trend 
parameter for a simple 6 × 6 triangle.
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Appendix A—Schedule P, Part A Results

In this appendix the results for Schedule P, Part A (Homeowners/Farmowners) are shown.

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Total Unpaid Distribution
Paid Chain Ladder Model
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Figure A.2.   Total Unpaid Claims Distribution (Paid Chain Ladder)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - -
2007 3 7 264.9% - 81 0 2 17 33
2008 41 31 74.7% - 204 35 59 100 131
2009 45 30 65.5% 7 209 38 61 104 137
2010 63 31 49.4% 15 213 56 80 118 161
2011 103 36 34.9% 36 286 96 122 170 213
2012 222 58 26.1% 93 497 216 258 328 376
2013 294 80 27.3% 126 671 285 342 440 513
2014 679 128 18.9% 366 1,190 675 758 894 1,003
2015 3,851 356 9.2% 2,675 5,051 3,831 4,075 4,496 4,790

Totals 5,300 447 8.4% 4,132 6,907 5,282 5,579 6,056 6,421
Normal Dist. 5,300 447 8.4% 5,300 5,602 6,036 6,341
logNormal Dist. 5,300 448 8.4% 5,282 5,591 6,067 6,426
Gamma Dist. 5,300 447 8.4% 5,288 5,595 6,057 6,396

Figure A.1.    Estimated Unpaid Model Results (Paid Chain Ladder)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Accident Year Unpaid
Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - -
2007 3 9 309.9% - 93 0 1 17 48
2008 42 42 101.0% - 306 30 56 126 189
2009 46 42 93.2% 1 325 33 57 135 205
2010 62 47 75.6% 4 355 52 83 149 253
2011 103 64 62.4% 12 473 89 129 231 338
2012 226 112 49.5% 43 984 202 276 435 587
2013 306 176 57.5% 36 1,449 271 384 621 860
2014 723 353 48.8% 109 2,452 664 884 1,418 1,842
2015 3,912 1,534 39.2% 1,306 10,236 3,694 4,523 6,708 9,175

Totals 5,422 1,575 29.0% 1,981 12,631 5,217 6,144 8,197 10,612
Normal Dist. 5,422 1,575 29.0% 5,422 6,485 8,013 9,086
logNormal Dist. 5,423 1,569 28.9% 5,209 6,307 8,305 10,076
Gamma Dist. 5,422 1,575 29.0% 5,271 6,386 8,246 9,741

Figure A.3.    Estimated Unpaid Model Results (Incurred Chain Ladder)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Total Unpaid Distribution
Incurred Chain Ladder Model
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Figure A.4.   Total Unpaid Claims Distribution (Incurred Chain Ladder)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Accident Year Unpaid
Paid Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - -
2007 2 6 310.2% - 48 0 0 10 33
2008 28 25 89.2% - 188 21 40 71 115
2009 37 26 69.7% 5 152 30 51 87 115
2010 60 31 52.2% 11 186 53 76 127 153
2011 96 34 35.7% 32 274 89 114 163 194
2012 169 53 31.3% 60 367 161 201 269 308
2013 327 88 26.9% 115 804 319 384 483 573
2014 722 157 21.8% 332 1,314 708 826 997 1,129
2015 2,660 383 14.4% 1,689 3,887 2,645 2,908 3,340 3,659

Totals 4,099 456 11.1% 2,835 5,789 4,096 4,392 4,849 5,218
Normal Dist. 4,099 456 11.1% 4,099 4,407 4,850 5,161
logNormal Dist. 4,099 458 11.2% 4,074 4,392 4,894 5,280
Gamma Dist. 4,099 456 11.1% 4,082 4,397 4,877 5,235

Figure A.5.    Estimated Unpaid Model Results (Paid Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Total Unpaid Distribution
Paid Bornhuetter-Ferguson Model
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Figure A.6.   Total Unpaid Claims Distribution (Paid Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Incurred Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 2 7 318.6% - 67 0 1 13 41 
2008 27 30 109.3% - 234 18 37 84 142 
2009 39 36 93.5% 1 263 28 50 114 180 
2010 59 46 78.0% 4 397 47 78 149 214 
2011 98 63 64.6% 9 473 84 123 221 302 
2012 168 86 51.4% 30 659 152 210 340 443 
2013 334 198 59.3% 34 2,310 304 412 690 972 
2014 753 384 51.0% 111 3,131 688 919 1,513 1,883 
2015 2,885 1,168 40.5% 921 7,678 2,699 3,449 5,198 6,483 

Totals 4,366 1,260 28.9% 1,873 9,804 4,224 5,048 6,860 8,182 
Normal Dist. 4,366 1,260 28.9% 4,366 5,216 6,438 7,297 
logNormal Dist. 4,367 1,272 29.1% 4,193 5,083 6,704 8,143 
Gamma Dist. 4,366 1,260 28.9% 4,246 5,137 6,624 7,817 

Figure A.7.    Estimated Unpaid Model Results (Incurred Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.8.   Total Unpaid Claims Distribution (Incurred Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Paid Cape Cod Model

2006 - - - - - - - - 
2007 3 7 276.2% - 59 0 1 17 38 
2008 32 28 86.1% - 178 25 45 89 125 
2009 43 30 69.2% 6 259 36 59 97 137 
2010 66 31 47.2% 16 225 59 85 122 166 
2011 109 36 33.5% 43 283 102 130 176 213 
2012 191 54 28.1% 74 401 184 226 288 337 
2013 373 87 23.3% 156 719 366 424 525 600 
2014 835 143 17.1% 407 1,520 832 921 1,082 1,192 
2015 3,225 258 8.0% 2,384 4,098 3,227 3,389 3,659 3,855 

Totals 4,878 384 7.9% 3,823 6,174 4,871 5,116 5,528 5,836 
Normal Dist. 4,878 384 7.9% 4,878 5,137 5,510 5,772 
logNormal Dist. 4,878 385 7.9% 4,863 5,128 5,536 5,841 
Gamma Dist. 4,878 384 7.9% 4,868 5,132 5,527 5,816 

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

Figure A.9.    Estimated Unpaid Model Results (Paid Cape Cod)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Paid Cape Cod Model
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Figure A.10.   Total Unpaid Claims Distribution (Paid Cape Cod)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 3 10 326.5% - 117 0 1 17 50 
2008 33 31 95.6% - 213 24 46 91 148 
2009 45 40 89.0% 1 317 33 61 122 184 
2010 71 52 72.7% 3 375 58 91 174 251 
2011 115 68 59.5% 16 512 102 146 242 366 
2012 199 100 50.2% 31 933 181 252 388 499 
2013 385 216 56.2% 46 1,629 343 477 812 1,081 
2014 871 407 46.7% 132 3,029 802 1,049 1,658 2,191 
2015 3,430 1,352 39.4% 1,074 9,190 3,253 3,977 5,946 7,972 

Totals 5,151 1,417 27.5% 2,424 11,216 4,972 5,790 7,785 9,512 
Normal Dist. 5,151 1,417 27.5% 5,151 6,107 7,482 8,448 
logNormal Dist. 5,150 1,404 27.3% 4,969 5,953 7,719 9,264 
Gamma Dist. 5,151 1,417 27.5% 5,022 6,023 7,682 9,007 

Figure A.11.    Estimated Unpaid Model Results (Incurred Cape Cod)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.12.   Total Unpaid Claims Distribution (Incurred Cape Cod)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Paid GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 9 8 86.4% 0 53 7 13 24 32 
2008 27 47 177.0% 0 436 12 24 109 253 
2009 40 48 119.3% 2 537 27 44 117 270 
2010 62 49 78.5% 11 525 51 69 136 287 
2011 106 54 51.3% 31 559 94 117 202 347 
2012 213 72 33.6% 79 731 201 242 333 455 
2013 280 78 27.9% 100 707 271 325 418 507 
2014 646 131 20.3% 337 1,368 634 730 871 979 
2015 3,738 335 9.0% 2,696 4,939 3,731 3,953 4,307 4,583 

Totals 5,120 447 8.7% 3,766 6,807 5,090 5,411 5,877 6,293 
Normal Dist. 5,120 447 8.7% 5,120 5,422 5,856 6,161 
logNormal Dist. 5,120 446 8.7% 5,101 5,409 5,886 6,246 
Gamma Dist. 5,120 447 8.7% 5,107 5,415 5,878 6,218 

Figure A.13.    Estimated Unpaid Model Results (Paid GLM)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.14.   Total Unpaid Claims Distribution (Paid GLM)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Incurred GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 12 11 91.5% 0 66 8 16 34 48 
2008 27 51 184.0% 0 520 12 25 111 262 
2009 45 54 118.9% 3 678 31 52 117 268 
2010 73 57 78.1% 11 892 59 85 150 301 
2011 113 57 50.9% 30 771 101 128 215 360 
2012 169 70 41.5% 53 712 153 198 288 415 
2013 307 107 34.9% 93 1,550 293 362 491 615 
2014 650 171 26.3% 280 2,713 630 743 928 1,057 
2015 4,255 682 16.0% 2,581 6,888 4,216 4,670 5,413 6,295 

Totals 5,650 751 13.3% 3,707 8,639 5,586 6,137 6,960 7,650 
Normal Dist. 5,650 751 13.3% 5,650 6,157 6,886 7,398 
logNormal Dist. 5,650 749 13.3% 5,601 6,123 6,960 7,616 
Gamma Dist. 5,650 751 13.3% 5,617 6,137 6,940 7,543 

Figure A.15.    Estimated Unpaid Model Results (Incurred GLM)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.16.   Total Unpaid Claims Distribution (Incurred GLM)
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Accident Model Weights by Accident Year
Year Paid CL Incd CL Paid BF Incd BF Paid CC Incd CC Paid GLM Incd GLM TOTAL
2006 50.0% 50.0% 100.0%
2007 50.0% 50.0% 100.0%
2008 50.0% 50.0% 100.0%
2009 50.0% 50.0% 100.0%
2010 50.0% 50.0% 100.0%
2011 50.0% 50.0% 100.0%
2012 50.0% 50.0% 100.0%
2013 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%
2014 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%
2015 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%

Figure A.17.    Model Weights by Accident Year

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Mean Estimated Unpaid
Accident Chain Ladder Bornhuetter-Ferguson Cape Cod GLM Bootstrap Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)
2006 - - - - - - - - - 
2007 3 3 2 2 3 3 9 12 3 
2008 41 42 28 27 32 33 27 27 41 
2009 45 46 37 39 43 45 40 45 46 
2010 63 62 60 59 66 71 62 73 64 
2011 103 103 96 98 109 115 106 113 103 
2012 222 226 169 168 191 199 213 169 224 
2013 294 306 327 334 373 385 280 307 335 
2014 679 723 722 753 835 871 646 650 752 
2015 3,851 3,912 2,660 2,885 3,225 3,430 3,738 4,255 3,742 

Totals 5,300 5,422 4,099 4,366 4,878 5,151 5,120 5,650 5,308 

Figure A.18.    Estimated Mean Unpaid by Model

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Ranges
Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum
2006 - 
2007 3 3 3 2 12 
2008 41 41 42 27 42 
2009 46 45 46 37 46 
2010 64 62 63 59 73 
2011 103 103 103 96 115 
2012 224 222 226 168 226 
2013 335 294 385 280 385 
2014 752 679 871 646 871 
2015 3,742 3,225 4,255 2,660 4,255 

Totals 5,308 4,674 5,992 4,099 5,650 

Figure A.19.    Estimated Ranges
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Reconciliation of Total Results
Best Estimate (Weighted)

Accident Paid Incurred Case Estimate of Estimate of
Year To Date To Date Reserves IBNR Ultimate Unpaid
2006 5,234 5,237 3 (3) 5,234 - 
2007 6,470 6,479 9 (6) 6,473 3 
2008 7,848 7,867 19 23 7,890 41 
2009 7,020 7,046 26 20 7,066 46 
2010 7,291 7,341 50 13 7,355 64 
2011 8,134 8,225 91 12 8,237 103 
2012 10,800 11,085 285 (61) 11,023 224 
2013 7,522 7,810 288 46 7,856 335 
2014 7,968 8,703 735 17 8,720 752 
2015 9,309 12,788 3,478 263 13,051 3,742 

Totals 77,596 82,580 4,984 324 82,905 5,308 

Figure A.20.    Reconciliation of Total Results (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 3 9 292.0% - 173 0 1 17 42 
2008 41 37 88.6% - 391 32 57 111 168 
2009 46 37 81.0% 1 522 36 60 114 175 
2010 64 41 63.6% 4 537 55 81 139 205 
2011 103 50 48.8% 10 636 94 125 193 276 
2012 224 89 40.0% 36 917 211 266 382 529 
2013 335 148 44.3% 25 1,460 315 401 594 865 
2014 752 293 39.0% 106 2,881 725 873 1,265 1,789 
2015 3,742 982 26.2% 1,094 10,700 3,654 4,118 5,392 7,059 

Totals 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675 
Normal Dist. 5,308 1,044 19.7% 5,308 6,013 7,026 7,738 
logNormal Dist. 5,309 1,034 19.5% 5,211 5,935 7,158 8,164 
Gamma Dist. 5,308 1,044 19.7% 5,240 5,971 7,135 8,035 

Figure A.21.    Estimated Unpaid Model Results (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 3,475 754 21.7% 1,297 8,420 3,414 3,797 4,730 5,948 
2017 865 208 24.0% 293 2,148 843 982 1,224 1,483 
2018 403 118 29.4% 115 1,298 387 467 614 740 
2019 204 67 32.7% 56 654 194 240 325 412 
2020 140 50 35.9% 40 539 132 165 233 297 
2021 90 43 47.4% 12 611 82 112 169 229 
2022 70 44 63.2% 6 409 60 91 152 215 
2023 51 58 112.2% - 735 36 75 151 253 
2024 10 15 146.5% - 199 4 15 41 67 

Totals 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675 

Figure A.22.    Estimated Cash Flow (Weighted)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 67.7% 28.5% 42.1% 0.4% 220.8% 66.1% 71.1% 130.9% 158.2%
2007 79.3% 30.2% 38.1% 8.2% 262.2% 77.8% 83.1% 145.5% 178.5%
2008 90.5% 31.2% 34.5% 16.9% 261.3% 89.0% 94.6% 159.9% 188.9%
2009 72.8% 26.8% 36.7% 10.2% 215.6% 71.4% 76.1% 131.7% 180.4%
2010 65.3% 23.3% 35.7% 10.2% 225.0% 63.8% 68.0% 116.1% 139.7%
2011 64.1% 21.2% 33.1% 13.0% 190.0% 63.2% 67.0% 111.8% 130.5%
2012 80.5% 24.0% 29.9% 25.0% 234.6% 79.0% 83.7% 132.9% 154.6%
2013 54.7% 18.8% 34.4% 9.9% 157.7% 53.9% 57.4% 96.2% 115.1%
2014 58.0% 19.2% 33.0% 13.0% 164.8% 57.1% 60.6% 99.8% 118.8%
2015 88.2% 21.5% 24.4% 30.9% 232.5% 85.5% 92.5% 127.9% 158.7%

Totals 71.3% 7.4% 10.4% 46.6% 112.7% 70.8% 75.7% 84.4% 91.7%

Figure A.23.    Estimated Loss Ratio (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Calendar Year Unpaid Claim Runoff
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675 
2016 1,834 365 19.9% 746 4,128 1,797 2,030 2,459 2,957 
2017 969 218 22.5% 336 2,316 946 1,088 1,353 1,627 
2018 566 146 25.8% 159 1,393 548 647 828 1,004 
2019 362 114 31.5% 79 1,171 347 424 565 718 
2020 222 92 41.4% 35 956 207 269 386 524 
2021 132 76 57.6% 6 863 117 166 268 394 
2022 62 59 96.3% (0) 745 46 84 166 269 
2023 10 15 146.5% (0) 199 4 15 41 67 

Figure A.24.    Estimated Unpaid Claim Runoff (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120 +
2006 3,776 1,139 218 95 41 21 12 6 25 2 
2007 4,635 1,398 268 115 51 25 15 7 31 3 
2008 5,647 1,701 327 141 61 31 17 9 38 4 
2009 5,065 1,525 294 126 56 28 16 8 34 3 
2010 5,318 1,602 307 132 57 29 17 8 36 3 
2011 5,882 1,774 340 145 64 32 18 9 40 4 
2012 7,909 2,378 457 197 86 43 25 12 53 5 
2013 5,589 1,683 323 156 68 35 20 10 42 4 
2014 6,197 1,870 392 168 73 37 21 10 46 4 
2015 9,615 2,744 521 222 92 53 33 20 47 10 

Figure A.25.    Mean Of Incremental Values (Weighted)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Standard Error Values
Year 12 24 36 48 60 72 84 96 108 120 +
2006 1,597 502 119 64 33 11 7 2 23 4 
2007 1,779 550 129 68 36 12 8 3 26 9 
2008 1,960 603 147 77 38 13 8 3 35 10 
2009 1,873 576 139 73 38 13 8 3 34 9 
2010 1,906 596 143 75 38 13 9 3 34 9 
2011 1,952 610 147 76 40 14 9 3 37 10 
2012 2,375 733 173 92 49 17 11 4 44 11 
2013 1,938 599 142 88 45 16 10 4 38 10 
2014 2,054 639 173 90 47 16 10 4 41 11 
2015 2,342 727 178 101 51 20 16 13 57 15 

Figure A.26.    Standard Deviation of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Coefficients of Variation
Year 12 24 36 48 60 72 84 96 108 120 +
2006 42.3% 44.1% 54.4% 67.8% 80.8% 52.6% 58.8% 43.2% 89.8% 157.5%
2007 38.4% 39.3% 48.2% 59.5% 71.1% 47.7% 52.9% 38.7% 82.4% 292.0%
2008 34.7% 35.5% 44.8% 54.5% 62.5% 43.0% 47.9% 34.9% 92.6% 266.2%
2009 37.0% 37.8% 47.3% 58.1% 68.6% 45.4% 50.3% 37.7% 98.4% 272.2%
2010 35.8% 37.2% 46.5% 56.8% 66.1% 44.8% 52.4% 36.5% 95.5% 279.7%
2011 33.2% 34.4% 43.1% 52.8% 62.4% 42.5% 49.3% 34.0% 92.6% 267.9%
2012 30.0% 30.8% 37.8% 46.6% 57.2% 38.4% 44.6% 30.6% 82.8% 234.2%
2013 34.7% 35.6% 43.9% 56.5% 66.6% 45.8% 51.2% 37.4% 91.1% 250.9%
2014 33.2% 34.2% 44.2% 53.4% 64.1% 43.4% 49.6% 36.0% 88.9% 253.1%
2015 24.4% 26.5% 34.2% 45.3% 55.8% 37.2% 47.4% 66.2% 120.2% 146.5%

Figure A.27.    Coefficient of Variation of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.28.   Total Unpaid Claims Distribution (Weighted)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Model Distributions
(Using Kernel Densities)

1.0K 3.0K 5.0K 7.0K 9.0K 11.0K 13.0K

P
ro

b
ab

ili
ty

Total Unpaid

Best Estimate
Paid CL
Incurred CL
Paid BF
Incurred BF
Paid CC
Incurred CC
Paid GLM
Incurred GLM
Mean Estimates

Figure A.29.    Summary of Model Distributions
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In this appendix the results for Schedule P, Part B (Private Passenger Auto Liability) are 
shown.

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 59 23 38.8% - 125 58 75 97 112
2007 90 25 27.3% 26 164 90 107 131 147
2008 135 27 19.9% 64 217 134 153 178 196
2009 214 32 14.8% 128 322 213 237 265 289
2010 339 31 9.2% 252 443 340 361 390 413
2011 586 38 6.6% 459 707 585 610 651 687
2012 1,109 51 4.6% 949 1,281 1,108 1,144 1,191 1,226
2013 2,089 75 3.6% 1,868 2,329 2,090 2,140 2,211 2,252
2014 3,917 127 3.3% 3,457 4,357 3,919 4,002 4,129 4,203
2015 8,033 219 2.7% 7,335 8,667 8,042 8,175 8,399 8,532

Totals 16,573 385 2.3% 15,252 17,728 16,581 16,842 17,192 17,399
Normal Dist. 16,573 385 2.3% 16,573 16,833 17,207 17,469
logNormal Dist. 16,573 386 2.3% 16,569 16,831 17,216 17,491
Gamma Dist. 16,573 385 2.3% 16,570 16,831 17,212 17,482

Figure B.1.    Estimated Unpaid Model Results (Paid Chain Ladder)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Paid Chain Ladder Model
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Figure B.2.   Total Unpaid Claims Distribution (Paid Chain Ladder)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 58 27 46.8% - 156 56 77 103 131
2007 89 31 34.9% 17 212 87 108 146 170
2008 135 37 27.5% 48 278 133 159 196 226
2009 213 46 21.8% 106 397 210 246 290 326
2010 343 63 18.4% 178 560 342 387 445 492
2011 590 106 18.0% 304 886 590 661 764 823
2012 1,125 196 17.4% 610 2,320 1,133 1,265 1,439 1,502
2013 2,133 370 17.4% 1,167 3,115 2,165 2,404 2,722 2,846
2014 4,025 680 16.9% 2,324 5,470 4,078 4,514 5,076 5,298
2015 8,343 1,369 16.4% 4,886 12,352 8,502 9,290 10,413 10,940

Totals 17,054 1,620 9.5% 11,558 21,439 17,111 18,280 19,534 20,583
Normal Dist. 17,054 1,620 9.5% 17,054 18,147 19,719 20,824
logNormal Dist. 17,055 1,653 9.7% 16,976 18,120 19,902 21,257
Gamma Dist. 17,054 1,620 9.5% 17,003 18,117 19,804 21,048

Figure B.3.    Estimated Unpaid Model Results (Incurred Chain Ladder)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Incurred Chain Ladder Model
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Figure B.4.   Total Unpaid Claims Distribution (Incurred Chain Ladder)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Paid Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 54 22 40.2% - 126 54 68 91 109
2007 76 22 28.7% 22 157 77 90 112 130
2008 112 24 21.2% 52 189 112 127 154 171
2009 188 30 16.0% 97 295 188 208 238 258
2010 343 36 10.4% 227 472 343 366 404 429
2011 625 50 8.0% 459 819 624 657 709 747
2012 1,162 77 6.7% 910 1,386 1,160 1,212 1,289 1,353
2013 2,217 134 6.1% 1,855 2,666 2,215 2,312 2,450 2,536
2014 3,942 218 5.5% 3,304 4,750 3,937 4,083 4,308 4,444
2015 7,990 441 5.5% 6,885 9,426 7,988 8,271 8,763 9,066

Totals 16,709 562 3.4% 15,239 18,369 16,701 17,096 17,695 18,035
Normal Dist. 16,709 562 3.4% 16,709 17,088 17,633 18,016
logNormal Dist. 16,709 561 3.4% 16,700 17,083 17,648 18,057
Gamma Dist. 16,709 562 3.4% 16,703 17,085 17,644 18,043

Figure B.5.    Estimated Unpaid Model Results (Paid Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.6.   Total Unpaid Claims Distribution (Paid Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Incurred Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 54 24 45.4% - 155 52 68 97 121
2007 76 25 33.1% 13 181 74 92 120 141
2008 111 30 27.2% 42 213 108 132 165 187
2009 188 42 22.5% 78 337 187 215 261 295
2010 344 68 19.7% 142 577 347 391 455 502
2011 627 116 18.5% 319 979 626 709 816 888
2012 1,167 217 18.6% 614 2,121 1,175 1,309 1,517 1,655
2013 2,234 420 18.8% 1,124 5,710 2,270 2,517 2,855 3,060
2014 3,997 689 17.2% 2,017 5,678 4,025 4,470 5,113 5,363
2015 8,289 1,370 16.5% 2,250 11,646 8,398 9,216 10,412 10,925

Totals 17,088 1,617 9.5% 10,942 22,273 17,177 18,198 19,785 20,539
Normal Dist. 17,088 1,617 9.5% 17,088 18,178 19,747 20,849
logNormal Dist. 17,089 1,648 9.6% 17,010 18,150 19,926 21,277
Gamma Dist. 17,088 1,617 9.5% 17,037 18,149 19,831 21,072

Figure B.7.    Estimated Unpaid Model Results (Incurred Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.8.   Total Unpaid Claims Distribution (Incurred Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Paid Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 55 23 41.2% - 136 55 70 94 108
2007 80 23 28.9% 23 161 79 95 118 133
2008 117 24 20.9% 57 205 117 134 159 175
2009 196 30 15.5% 116 305 195 216 247 270
2010 354 34 9.5% 263 459 353 377 410 436
2011 642 42 6.5% 513 773 642 670 710 738
2012 1,197 54 4.5% 1,042 1,365 1,198 1,234 1,288 1,331
2013 2,292 80 3.5% 2,045 2,553 2,294 2,345 2,424 2,474
2014 4,145 118 2.9% 3,761 4,502 4,145 4,219 4,345 4,439
2015 8,598 172 2.0% 8,057 9,073 8,596 8,711 8,894 8,987

Totals 17,676 376 2.1% 16,428 18,791 17,675 17,929 18,306 18,488
Normal Dist. 17,676 376 2.1% 17,676 17,930 18,295 18,551
logNormal Dist. 17,676 377 2.1% 17,672 17,928 18,302 18,570
Gamma Dist. 17,676 376 2.1% 17,674 17,929 18,300 18,563

Figure B.9.    Estimated Unpaid Model Results (Paid Cape Cod)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.10.   Total Unpaid Claims Distribution (Paid Cape Cod)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 56 24 43.7% - 133 54 71 96 114
2007 80 27 33.8% 18 175 79 98 126 147
2008 118 32 27.4% 35 230 116 138 175 203
2009 197 44 22.5% 90 351 194 228 271 309
2010 358 69 19.3% 184 544 358 407 474 509
2011 650 115 17.6% 324 953 647 730 843 900
2012 1,201 213 17.7% 675 1,697 1,224 1,352 1,534 1,632
2013 2,308 388 16.8% 1,247 3,598 2,335 2,579 2,939 3,074
2014 4,178 701 16.8% 2,248 5,709 4,247 4,697 5,271 5,516
2015 8,526 1,424 16.7% 4,605 11,643 8,725 9,508 10,707 11,151

Totals 17,672 1,677 9.5% 12,794 21,955 17,649 18,915 20,366 21,243
Normal Dist. 17,672 1,677 9.5% 17,672 18,803 20,430 21,573
logNormal Dist. 17,673 1,706 9.7% 17,591 18,772 20,610 22,008
Gamma Dist. 17,672 1,677 9.5% 17,619 18,772 20,517 21,805

Figure B.11.    Estimated Unpaid Model Results (Incurred Cape Cod)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.12.   Total Unpaid Claims Distribution (Incurred Cape Cod)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Paid GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 29 15 53.7% 2 106 26 37 58 79
2007 56 23 40.9% 7 158 53 69 98 120
2008 99 29 29.6% 29 223 96 116 151 179
2009 177 33 18.5% 99 317 173 198 233 260
2010 302 32 10.7% 200 450 299 324 356 377
2011 552 34 6.2% 465 740 550 573 613 643
2012 1,071 53 5.0% 914 1,288 1,067 1,107 1,162 1,197
2013 2,053 78 3.8% 1,831 2,295 2,052 2,106 2,180 2,244
2014 3,879 118 3.0% 3,525 4,361 3,875 3,955 4,080 4,177
2015 8,004 229 2.9% 7,329 8,746 7,999 8,165 8,380 8,509

Totals 16,222 369 2.3% 15,169 17,945 16,200 16,473 16,833 17,164
Normal Dist. 16,222 369 2.3% 16,222 16,471 16,829 17,080
logNormal Dist. 16,222 367 2.3% 16,218 16,468 16,834 17,096
Gamma Dist. 16,222 369 2.3% 16,220 16,469 16,833 17,092

Figure B.13.    Estimated Unpaid Model Results (Paid GLM)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.14.   Total Unpaid Claims Distribution (Paid GLM)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Incurred GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 28 15 55.2% 3 110 25 35 58 76
2007 56 24 42.7% 7 178 53 69 102 138
2008 107 33 30.8% 43 298 101 127 168 200
2009 172 34 19.6% 91 301 169 191 235 263
2010 295 36 12.4% 204 419 290 316 361 394
2011 568 49 8.6% 434 764 565 597 652 702
2012 1,130 90 8.0% 857 1,422 1,126 1,189 1,285 1,332
2013 2,193 168 7.7% 1,738 2,884 2,193 2,307 2,468 2,605
2014 4,058 319 7.9% 3,096 5,040 4,063 4,294 4,573 4,764
2015 8,390 723 8.6% 5,922 10,670 8,375 8,917 9,524 9,986

Totals 16,996 985 5.8% 13,965 19,871 16,965 17,696 18,619 19,079
Normal Dist. 16,996 985 5.8% 16,996 17,660 18,616 19,287
logNormal Dist. 16,996 989 5.8% 16,967 17,645 18,669 19,424
Gamma Dist. 16,996 985 5.8% 16,977 17,649 18,647 19,371

Figure B.15.    Estimated Unpaid Model Results (Incurred GLM)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.16.   Total Unpaid Claims Distribution (Incurred GLM)
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Accident Model Weights by Accident Year
Year Paid CL Incd CL Paid BF Incd BF Paid CC Incd CC Paid GLM Incd GLM TOTAL
2006 50.0% 50.0% 100.0%
2007 50.0% 50.0% 100.0%
2008 50.0% 50.0% 100.0%
2009 50.0% 50.0% 100.0%
2010 25.0% 25.0% 25.0% 25.0% 100.0%
2011 25.0% 25.0% 25.0% 25.0% 100.0%
2012 25.0% 25.0% 25.0% 25.0% 100.0%
2013 25.0% 25.0% 25.0% 25.0% 100.0%
2014 25.0% 25.0% 25.0% 25.0% 100.0%
2015 25.0% 25.0% 25.0% 25.0% 100.0%

Figure B.17.    Model Weights by Accident Year

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Summary of Results by Model

Mean Estimated Unpaid
Accident Chain Ladder Bornhuetter-Ferguson Cape Cod GLM Bootstrap Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)
2006 59 58 54 54 55 56 29 28 59
2007 90 89 76 76 80 80 56 56 90
2008 135 135 112 111 117 118 99 107 134
2009 214 213 188 188 196 197 177 172 214
2010 339 343 343 344 354 358 302 295 351
2011 586 590 625 627 642 650 552 568 636
2012 1,109 1,125 1,162 1,167 1,197 1,201 1,071 1,130 1,184
2013 2,089 2,133 2,217 2,234 2,292 2,308 2,053 2,193 2,255
2014 3,917 4,025 3,942 3,997 4,145 4,178 3,879 4,058 4,077
2015 8,033 8,343 7,990 8,289 8,598 8,526 8,004 8,390 8,394

Totals 16,573 17,054 16,709 17,088 17,676 17,672 16,222 16,996 17,395

Figure B.18.    Estimated Mean Unpaid by Model

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Summary of Results by Model

Ranges
Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum
2006 59 58 59 28 59
2007 90 89 90 56 90
2008 134 135 135 107 135
2009 214 213 214 172 214
2010 351 343 358 295 358
2011 636 625 650 568 650
2012 1,184 1,162 1,201 1,109 1,201
2013 2,255 2,217 2,308 2,089 2,308
2014 4,077 3,997 4,178 3,917 4,178
2015 8,394 8,289 8,526 7,990 8,598

Totals 17,395 17,127 17,720 16,573 17,676

Figure B.19.    Estimated Ranges
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Reconciliation of Total Results
Best Estimate (Weighted)

Accident Paid Incurred Case Estimate of Estimate of
Year To Date To Date Reserves IBNR Ultimate Unpaid
2006 11,816 11,863 47 12 11,875 59
2007 12,679 12,752 72 18 12,770 90
2008 13,631 13,743 112 22 13,765 134
2009 14,472 14,687 216 (1) 14,686 214
2010 13,717 14,079 362 (11) 14,068 351
2011 13,090 13,691 600 36 13,726 636
2012 12,490 13,683 1,193 (9) 13,674 1,184
2013 11,598 13,912 2,313 (58) 13,854 2,255
2014 10,306 14,625 4,319 (243) 14,383 4,077
2015 6,357 15,188 8,830 (437) 14,751 8,394

Totals 120,157 138,223 18,066 (671) 137,551 17,395

Figure B.20.    Reconciliation of Total Results (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 59 25 42.2% - 178 58 75 102 122
2007 90 28 30.8% 17 221 89 109 137 161
2008 134 32 24.0% 41 297 133 156 189 215
2009 214 41 18.9% 73 401 213 240 284 321
2010 351 55 15.6% 160 600 350 383 444 492
2011 636 91 14.2% 314 1,020 636 684 794 867
2012 1,184 157 13.3% (27) 1,857 1,188 1,260 1,465 1,597
2013 2,255 293 13.0% 1,073 5,710 2,267 2,389 2,781 2,982
2014 4,077 616 15.1% 833 6,049 4,097 4,460 5,120 5,398
2015 8,394 1,234 14.7% 980 12,352 8,468 9,175 10,444 10,911

Totals 17,395 1,428 8.2% 10,057 23,150 17,439 18,375 19,729 20,525
Normal Dist. 17,395 1,428 8.2% 17,395 18,358 19,744 20,717
logNormal Dist. 17,395 1,451 8.3% 17,335 18,336 19,879 21,040
Gamma Dist. 17,395 1,428 8.2% 17,356 18,336 19,809 20,889

Figure B.21.    Estimated Unpaid Model Results (Weighted)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 8,275 715 8.6% 4,501 10,746 8,299 8,761 9,426 9,838
2017 4,072 340 8.4% 2,450 5,608 4,079 4,304 4,621 4,845
2018 2,266 198 8.7% 1,319 3,149 2,267 2,397 2,590 2,718
2019 1,210 109 9.0% 699 1,574 1,210 1,285 1,389 1,461
2020 638 58 9.1% 405 885 638 677 735 778
2021 358 35 9.8% 203 511 358 381 416 439
2022 217 30 13.7% 95 351 216 237 267 291
2023 144 25 17.2% 57 258 144 161 186 205
2024 99 23 23.4% 16 214 98 114 139 157
2025 67 22 33.1% - 157 66 81 106 124
2026 32 13 40.8% - 91 32 41 55 66
2027 16 9 57.3% - 57 15 22 31 38

Totals 17,395 1,428 8.2% 10,057 23,150 17,439 18,375 19,729 20,525

Figure B.22.    Estimated Cash Flow (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 75.6% 9.7% 12.9% 38.9% 104.5% 75.8% 77.8% 94.6% 99.4%
2007 82.2% 10.3% 12.5% 43.9% 114.0% 82.4% 84.6% 102.2% 107.6%
2008 83.9% 10.2% 12.1% 45.1% 114.4% 83.9% 86.3% 103.7% 108.6%
2009 79.6% 9.2% 11.6% 45.2% 108.3% 79.7% 81.8% 97.8% 102.7%
2010 69.3% 8.2% 11.9% 37.9% 94.6% 69.1% 71.1% 85.3% 90.1%
2011 66.0% 8.1% 12.3% 35.2% 89.7% 66.0% 67.9% 81.7% 85.9%
2012 66.9% 8.1% 12.1% -1.5% 94.6% 66.9% 68.8% 82.7% 86.8%
2013 66.9% 8.1% 12.2% 35.2% 186.1% 66.9% 68.9% 82.4% 86.3%
2014 71.9% 10.6% 14.7% 14.4% 101.9% 72.7% 78.5% 89.0% 93.5%
2015 73.0% 10.6% 14.5% 8.4% 110.0% 73.9% 79.8% 90.3% 94.2%

Totals 72.9% 3.0% 4.1% 61.6% 90.9% 73.0% 75.0% 77.7% 79.5%

Figure B.23.    Estimated Loss Ratio (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Calendar Year Unpaid Claim Runoff
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 17,395 1,428 8.2% 10,057 23,150 17,439 18,375 19,729 20,525
2016 9,120 739 8.1% 5,556 12,446 9,136 9,623 10,325 10,767
2017 5,048 419 8.3% 3,106 6,838 5,054 5,330 5,738 6,000
2018 2,782 243 8.7% 1,709 3,689 2,781 2,945 3,184 3,360
2019 1,572 157 10.0% 902 2,165 1,570 1,675 1,838 1,951
2020 934 117 12.6% 494 1,387 930 1,011 1,131 1,224
2021 576 94 16.3% 247 988 573 638 733 807
2022 359 75 21.0% 104 687 356 408 488 546
2023 214 59 27.6% 30 467 211 252 317 365
2024 115 41 36.0% (0) 283 112 142 188 222
2025 48 20 42.4% (0) 137 47 62 84 101
2026 16 9 57.3% (0) 57 15 22 31 38
2027 (0) 0 -10502.4% (0) 0 (0) 0 0 0

Figure B.24.    Estimated Unpaid Claim Runoff (Weighted)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 +
2006 5,232 3,354 1,456 842 457 224 113 58 32 25 30 15 15
2007 5,631 3,608 1,566 907 491 241 121 62 34 27 32 16 16
2008 6,082 3,902 1,691 981 530 261 131 67 37 29 34 17 17
2009 6,480 4,155 1,802 1,043 565 278 139 71 39 31 36 18 18
2010 6,225 3,992 1,732 1,002 543 267 138 71 39 31 36 18 18
2011 6,043 3,876 1,681 974 527 280 141 72 40 31 36 18 18
2012 6,008 3,851 1,671 968 560 274 138 71 39 31 36 18 18
2013 6,046 3,876 1,681 1,051 569 279 140 72 40 31 36 18 18
2014 6,453 4,138 1,821 1,055 572 281 141 72 41 30 32 17 16
2015 6,549 4,261 1,847 1,070 579 284 143 73 41 31 32 17 16

Figure B.25.    Mean of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Standard Error Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 +
2006 677 440 199 115 65 35 15 12 4 3 12 6 6
2007 708 460 207 120 68 36 16 13 4 3 13 7 7
2008 742 484 217 126 70 38 16 13 5 4 14 7 7
2009 756 493 220 129 72 39 17 16 5 4 15 8 8
2010 745 485 218 127 71 38 18 16 5 4 15 8 8
2011 747 486 218 128 71 44 19 16 5 4 15 8 8
2012 729 475 213 124 78 42 18 16 5 4 15 8 8
2013 741 483 218 142 79 43 19 16 5 4 15 8 8
2014 955 618 282 165 92 47 22 18 8 7 17 9 9
2015 966 634 280 166 92 48 22 18 9 7 17 9 9

Figure B.26.    Standard Deviation of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Coefficients of Variation
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 +
2006 12.9% 13.1% 13.6% 13.7% 14.2% 15.5% 13.4% 21.2% 12.9% 12.9% 42.1% 42.2% 42.3%
2007 12.6% 12.7% 13.2% 13.3% 13.8% 15.0% 13.0% 20.6% 12.5% 12.6% 42.0% 42.1% 42.2%
2008 12.2% 12.4% 12.8% 12.8% 13.3% 14.5% 12.6% 19.9% 12.2% 12.3% 42.3% 42.4% 42.5%
2009 11.7% 11.9% 12.2% 12.4% 12.7% 13.9% 12.1% 22.0% 11.7% 11.7% 42.0% 42.1% 42.2%
2010 12.0% 12.2% 12.6% 12.6% 13.1% 14.3% 13.1% 22.5% 12.5% 12.6% 42.5% 42.6% 42.7%
2011 12.4% 12.5% 13.0% 13.1% 13.5% 15.6% 13.4% 22.5% 12.9% 12.9% 42.5% 42.7% 42.8%
2012 12.1% 12.3% 12.8% 12.9% 13.9% 15.3% 13.2% 22.4% 12.6% 12.7% 42.3% 42.5% 42.5%
2013 12.3% 12.5% 13.0% 13.5% 13.9% 15.4% 13.2% 22.3% 12.7% 12.7% 42.0% 42.2% 42.2%
2014 14.8% 14.9% 15.5% 15.7% 16.1% 16.8% 15.4% 24.5% 20.8% 23.7% 52.6% 51.2% 57.5%
2015 14.7% 14.9% 15.2% 15.5% 15.9% 16.7% 15.2% 24.4% 20.6% 23.4% 52.1% 51.1% 57.3%

Figure B.27.    Coefficient of Variation of Incremental Values (Weighted)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Total Unpaid Distribution
Best Estimate (Weighted)
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Figure B.28.   Total Unpaid Claims Distribution (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Summary of Model Distributions
(Using Kernel Densities)
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Figure B.29.    Summary of Model Distributions
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Appendix C—Schedule P, Part C Results
In this appendix the results for Schedule P, Part C (Commercial Auto Liability) are shown.

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 8 4 50.6% - 22 8 10 15 19
2007 11 4 39.9% (0) 28 10 13 18 22
2008 21 5 24.3% 7 43 21 24 29 34
2009 35 6 18.3% 18 66 34 39 46 51
2010 61 10 16.6% 34 97 60 67 80 87
2011 110 22 20.0% 57 195 107 124 150 173
2012 216 33 15.4% 111 359 215 237 273 296
2013 410 39 9.4% 294 550 408 434 474 513
2014 773 52 6.7% 610 946 770 806 863 901
2015 1,103 75 6.8% 872 1,345 1,100 1,152 1,232 1,285

Totals 2,746 122 4.4% 2,357 3,171 2,741 2,830 2,951 3,019
Normal Dist. 2,746 122 4.4% 2,746 2,828 2,946 3,029
logNormal Dist. 2,746 122 4.4% 2,743 2,827 2,951 3,041
Gamma Dist. 2,746 122 4.4% 2,744 2,827 2,949 3,037

Figure C.1.    Estimated Unpaid Model Results (Paid Chain Ladder)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Paid Chain Ladder Model

2.35K 2.43K 2.52K 2.60K 2.68K 2.76K 2.85K 2.93K 3.01K 3.09K 3.18K

P
ro

b
ab

ili
ty

Total Unpaid

Histogram
Kernel Density

Figure C.2.   Total Unpaid Claims Distribution (Paid Chain Ladder)
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Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 11 12 108.0% - 74 7 16 35 48
2007 15 16 110.1% 0 157 9 22 46 66
2008 31 33 105.0% - 354 23 47 91 127
2009 53 54 102.3% - 533 41 86 144 200
2010 92 103 111.1% - 1,654 69 145 258 369
2011 168 176 104.5% - 1,625 127 264 498 681
2012 328 372 113.3% - 4,031 217 528 963 1,307
2013 623 615 98.7% - 3,767 484 1,049 1,782 2,238
2014 1,223 1,415 115.7% - 21,802 1,019 2,010 3,319 4,335
2015 1,513 1,618 107.0% - 13,830 1,062 2,546 4,356 5,798

Totals 4,056 2,421 59.7% 146 30,092 3,725 5,273 7,786 10,983
Normal Dist. 4,056 2,421 59.7% 4,056 5,689 8,038 9,687
logNormal Dist. 4,168 2,899 69.6% 3,422 5,227 9,616 14,755
Gamma Dist. 4,056 2,421 59.7% 3,586 5,328 8,677 11,670

Figure C.3.    Estimated Unpaid Model Results (Incurred Chain Ladder)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Incurred Chain Ladder Model
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Figure C.4.   Total Unpaid Claims Distribution (Incurred Chain Ladder)
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Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Paid Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 5 3 54.4% - 16 5 7 10 13
2007 8 3 42.3% 0 22 8 10 14 17
2008 17 4 26.7% 5 32 17 20 25 29
2009 35 7 19.3% 13 64 34 39 46 52
2010 65 11 17.1% 38 110 65 73 84 94
2011 123 25 20.5% 44 211 121 140 167 197
2012 259 40 15.6% 145 420 256 287 327 353
2013 481 52 10.8% 315 658 477 517 565 607
2014 812 76 9.3% 590 1,078 811 860 936 996
2015 1,132 100 8.9% 857 1,480 1,127 1,198 1,300 1,369

Totals 2,936 153 5.2% 2,472 3,474 2,939 3,040 3,180 3,313
Normal Dist. 2,936 153 5.2% 2,936 3,040 3,188 3,293
logNormal Dist. 2,936 154 5.2% 2,932 3,038 3,196 3,312
Gamma Dist. 2,936 153 5.2% 2,934 3,038 3,193 3,305

Figure C.5.    Estimated Unpaid Model Results (Paid Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Paid Bornhuetter-Ferguson Model
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Figure C.6.   Total Unpaid Claims Distribution (Paid Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Incurred Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 7 8 116.0% - 48 4 10 24 34
2007 11 12 110.5% - 61 7 15 36 52
2008 24 23 96.0% - 124 18 37 68 93
2009 49 45 92.9% - 216 38 80 139 165
2010 99 88 88.8% 0 375 82 162 265 318
2011 176 164 93.3% 0 821 134 279 505 630
2012 362 338 93.5% 0 1,547 296 584 1,005 1,228
2013 642 597 93.1% 1 2,344 502 1,066 1,792 2,119
2014 1,118 996 89.1% 0 4,243 980 1,862 2,919 3,447
2015 1,554 1,409 90.6% 0 5,956 1,371 2,626 4,146 4,729

Totals 4,040 1,873 46.4% 387 10,575 3,901 5,304 7,418 8,445
Normal Dist. 4,040 1,873 46.4% 4,040 5,303 7,120 8,397
logNormal Dist. 4,116 2,390 58.1% 3,560 5,120 8,638 12,472
Gamma Dist. 4,040 1,873 46.4% 3,755 5,099 7,530 9,612

Figure C.7.    Estimated Unpaid Model Results (Incurred Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Incurred Bornhuetter-Ferguson Model
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Figure C.8.   Total Unpaid Claims Distribution (Incurred Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Paid Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 6 3 52.3% - 17 6 8 12 14
2007 9 4 41.0% 0 26 9 11 15 19
2008 18 5 26.1% 7 34 18 22 27 31
2009 36 7 17.9% 20 59 36 41 48 52
2010 67 11 16.1% 39 101 66 74 86 94
2011 124 23 18.8% 67 245 122 138 163 192
2012 258 38 14.8% 166 416 255 283 323 359
2013 481 40 8.4% 363 629 478 509 548 583
2014 827 50 6.0% 684 975 827 858 915 948
2015 1,178 53 4.5% 990 1,348 1,176 1,212 1,268 1,308

Totals 3,004 122 4.0% 2,559 3,428 3,001 3,088 3,204 3,297
Normal Dist. 3,004 122 4.0% 3,004 3,086 3,204 3,286
logNormal Dist. 3,004 121 4.0% 3,001 3,084 3,208 3,297
Gamma Dist. 3,004 122 4.0% 3,002 3,085 3,206 3,294

Figure C.9.    Estimated Unpaid Model Results (Paid Cape Cod)

Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Paid Cape Cod Model
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Figure C.10.   Total Unpaid Claims Distribution (Paid Cape Cod)
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Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 8 9 110.7% - 62 5 12 25 36
2007 13 14 108.2% - 98 9 19 43 60
2008 25 25 98.6% 0 185 18 40 76 99
2009 52 51 98.2% 0 481 37 82 145 201
2010 101 98 97.9% 0 1,082 81 160 267 339
2011 183 199 108.7% 0 3,031 140 282 515 644
2012 403 410 101.7% 0 4,350 320 637 1,106 1,514
2013 696 747 107.4% 0 11,739 577 1,110 1,930 2,405
2014 1,287 1,239 96.3% 0 20,322 1,121 2,045 3,306 4,162
2015 1,647 1,748 106.1% 1 31,078 1,408 2,694 4,317 5,401

Totals 4,415 3,174 71.9% 372 72,036 4,089 5,685 8,357 11,920
Normal Dist. 4,415 3,174 71.9% 4,415 6,555 9,635 11,797
logNormal Dist. 4,465 2,906 65.1% 3,743 5,588 9,947 14,914
Gamma Dist. 4,415 3,174 71.9% 3,682 5,956 10,581 14,867

Figure C.11.    Estimated Unpaid Model Results (Incurred Cape Cod)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Incurred Cape Cod Model
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Figure C.12.   Total Unpaid Claims Distribution (Incurred Cape Cod)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Paid GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 8 5 63.7% (5) 33 7 10 17 23
2007 14 7 52.9% (3) 52 12 18 27 33
2008 23 9 39.9% (1) 72 22 29 39 49
2009 38 12 30.2% 8 90 38 45 58 70
2010 64 13 20.8% 27 112 64 73 88 100
2011 123 17 13.8% 81 178 122 135 152 162
2012 244 25 10.4% 169 331 243 261 286 305
2013 457 37 8.1% 361 577 455 480 520 543
2014 747 53 7.1% 597 926 749 784 831 870
2015 1,063 77 7.3% 851 1,346 1,060 1,112 1,192 1,259

Totals 2,781 188 6.8% 2,234 3,480 2,775 2,904 3,097 3,251
Normal Dist. 2,781 188 6.8% 2,781 2,907 3,090 3,218
logNormal Dist. 2,781 188 6.8% 2,774 2,903 3,100 3,246
Gamma Dist. 2,781 188 6.8% 2,776 2,905 3,097 3,237

Figure C.13.    Estimated Unpaid Model Results (Paid GLM)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Paid GLM Bootstrap Model
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Figure C.14.   Total Unpaid Claims Distribution (Paid GLM)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Incurred GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 10 8 81.9% (9) 57 8 13 25 39
2007 17 11 62.4% (5) 65 15 22 39 53
2008 31 17 53.2% (0) 104 29 40 63 82
2009 54 23 43.3% 7 177 50 67 97 119
2010 92 35 38.2% 17 251 88 113 153 184
2011 174 63 36.1% 23 378 171 217 278 333
2012 363 119 32.8% 76 773 360 443 572 648
2013 682 224 32.9% 100 1,490 666 833 1,078 1,211
2014 1,097 366 33.3% 267 2,346 1,084 1,334 1,716 2,055
2015 1,567 555 35.4% 452 4,027 1,515 1,899 2,536 3,071

Totals 4,087 760 18.6% 2,190 6,754 4,018 4,584 5,485 6,034
Normal Dist. 4,087 760 18.6% 4,087 4,599 5,336 5,854
logNormal Dist. 4,087 769 18.8% 4,017 4,555 5,460 6,200
Gamma Dist. 4,087 760 18.6% 4,040 4,570 5,411 6,058

Figure C.15.    Estimated Unpaid Model Results (Incurred GLM)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Incurred GLM Bootstrap Model
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Figure C.16.   Total Unpaid Claims Distribution (Incurred GLM)
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Accident Model Weights by Accident Year
Year Paid CL Incd CL Paid BF Incd BF Paid CC Incd CC Paid GLM Incd GLM TOTAL
2006 100.0% 100.0%
2007 100.0% 100.0%
2008 100.0% 100.0%
2009 100.0% 100.0%
2010 33.3% 33.3% 33.3% 100.0%
2011 33.3% 33.3% 33.3% 100.0%
2012 50.0% 50.0% 100.0%
2013 50.0% 50.0% 100.0%
2014 33.3% 33.3% 33.3% 100.0%
2015 33.3% 33.3% 33.3% 100.0%

Figure C.17.    Model Weights By Accident Year

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Summary of Results by Model
Mean Estimated Unpaid

Accident Chain Ladder Bornhuetter-Ferguson Cape Cod GLM Bootstrap Best Est.
Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)
2006 8 11 5 7 6 8 8 10 8
2007 11 15 8 11 9 13 14 17 13
2008 21 31 17 24 18 25 23 31 23
2009 35 53 35 49 36 52 38 54 38
2010 61 92 65 99 67 101 64 92 66
2011 110 168 123 176 124 183 123 174 124
2012 216 328 259 362 258 403 244 363 258
2013 410 623 481 642 481 696 457 682 480
2014 773 1,223 812 1,118 827 1,287 747 1,097 803
2015 1,103 1,513 1,132 1,554 1,178 1,647 1,063 1,567 1,134

Totals 2,746 4,056 2,936 4,040 3,004 4,415 2,781 4,087 2,947

Figure C.18.    Estimated Mean Unpaid By Model

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Summary of Results by Model
Ranges

Accident Best Est. Weighted Modeled
Year (Weighted) Minimum Maximum Mininum Maximum
2006 8 8 8 5 8
2007 13 14 14 8 14
2008 23 23 23 17 23
2009 38 38 38 35 38
2010 66 64 67 61 67
2011 124 123 124 110 124
2012 258 258 259 216 259
2013 480 481 481 410 481
2014 803 773 827 747 827
2015 1,134 1,103 1,178 1,063 1,178

Totals 2,947 2,884 3,018 2,746 3,004

Figure C.19.    Estimated Ranges



100	 Casualty Actuarial Society

Using the ODP Bootstrap Model: A Practitioner’s Guide

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Reconciliation of Total Results
Best Estimate (Weighted)

Accident Paid Incurred Case Estimate of Estimate of
Year To Date To Date Reserves IBNR Ultimate Unpaid
2006 1,563 1,577 14 (6) 1,571 8
2007 1,469 1,505 36 (23) 1,482 13
2008 1,387 1,436 49 (26) 1,410 23
2009 1,350 1,417 67 (29) 1,388 38
2010 1,342 1,445 102 (37) 1,408 66
2011 1,198 1,345 147 (24) 1,321 124
2012 1,061 1,339 278 (20) 1,318 258
2013 853 1,327 474 6 1,333 480
2014 645 1,442 797 6 1,448 803
2015 294 1,422 1,128 6 1,428 1,134

Totals 11,162 14,255 3,093 (146) 14,109 2,947

Figure C.20.    Reconciliation of Total Results (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 8 5 65.8% (8) 35 7 11 18 24
2007 13 7 51.3% (7) 52 13 17 26 33
2008 23 9 39.4% (5) 72 22 28 39 48
2009 38 11 28.9% 7 92 37 45 58 68
2010 66 12 17.8% 30 130 65 73 86 96
2011 124 22 17.6% 59 247 122 137 161 182
2012 258 40 15.4% 140 485 255 284 326 359
2013 480 47 9.8% 311 737 478 509 559 604
2014 803 65 8.1% 580 1,151 802 845 912 967
2015 1,134 83 7.3% 800 1,569 1,138 1,189 1,266 1,327

Totals 2,947 132 4.5% 2,471 3,532 2,947 3,036 3,162 3,257
Normal Dist. 2,947 132 4.5% 2,947 3,036 3,164 3,254
logNormal Dist. 2,947 132 4.5% 2,944 3,035 3,170 3,268
Gamma Dist. 2,947 132 4.5% 2,945 3,035 3,168 3,263

Figure C.21.    Estimated Unpaid Model Results (Weighted)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 1,156 58 5.0% 937 1,378 1,155 1,194 1,254 1,299
2017 796 53 6.7% 611 993 795 832 886 927
2018 475 42 8.9% 332 668 474 503 547 580
2019 248 38 15.3% 129 410 246 273 315 342
2020 125 23 18.6% 60 260 123 139 165 187
2021 64 11 16.6% 25 110 63 71 82 91
2022 37 6 17.2% 15 71 37 41 48 53
2023 22 5 23.7% 5 52 21 25 30 35
2024 11 4 35.5% (1) 31 10 13 17 21
2025 7 3 43.3% - 28 7 9 13 16
2026 4 2 53.2% - 17 3 5 7 9
2027 2 1 69.8% - 11 2 2 4 6
2028 1 1 95.7% - 9 1 1 3 4

Totals 2,947 132 4.5% 2,471 3,532 2,947 3,036 3,162 3,257

Figure C.22.    Estimated Cash Flow (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 88.5% 2.7% 3.0% 79.6% 98.3% 88.5% 90.3% 92.9% 94.7%
2007 82.9% 2.5% 3.0% 73.9% 92.3% 82.9% 84.6% 87.0% 88.6%
2008 74.9% 2.3% 3.1% 65.8% 83.0% 74.9% 76.5% 78.7% 80.3%
2009 60.3% 1.9% 3.2% 52.4% 67.3% 60.4% 61.7% 63.5% 64.7%
2010 55.0% 2.1% 3.9% 47.5% 62.5% 55.0% 56.5% 58.4% 59.7%
2011 54.3% 1.9% 3.5% 46.8% 62.7% 54.4% 55.7% 57.5% 58.7%
2012 51.8% 2.0% 3.9% 44.0% 61.8% 51.8% 53.1% 55.2% 56.7%
2013 54.1% 2.3% 4.2% 46.9% 64.8% 54.1% 55.6% 57.9% 59.8%
2014 58.3% 2.8% 4.9% 48.6% 72.0% 58.3% 60.1% 63.0% 65.1%
2015 59.9% 3.6% 6.1% 45.7% 77.7% 60.1% 62.4% 65.7% 68.3%

Totals 62.4% 0.8% 1.3% 59.1% 65.8% 62.4% 63.0% 63.7% 64.3%

Figure C.23.    Estimated Loss Ratio (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Calendar Year Unpaid Claim Runoff
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 2,947 132 4.5% 2,471 3,532 2,947 3,036 3,162 3,257
2016 1,791 101 5.6% 1,449 2,233 1,790 1,859 1,959 2,027
2017 995 73 7.3% 739 1,286 993 1,043 1,117 1,170
2018 520 52 10.0% 345 712 518 554 608 649
2019 271 31 11.5% 161 415 270 291 325 352
2020 147 18 12.6% 65 246 146 159 178 193
2021 83 13 16.0% 31 156 82 91 106 116
2022 46 10 22.2% 11 97 45 53 63 71
2023 24 7 30.7% 1 65 24 29 37 44
2024 14 5 37.9% (0) 42 13 17 23 27
2025 6 3 45.2% (0) 24 6 8 11 14
2026 3 2 60.2% (0) 13 2 4 6 8
2027 1 1 95.7% (0) 9 1 1 3 4
2028 0 0 19936.0% (0) 0 0 0 0 0

Figure C.24.    Estimated Unpaid Claim Runoff (Weighted)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 326 384 355 237 124 55 27 16 10 6 4 2 1 1
2007 328 388 326 218 114 61 27 16 9 6 3 2 1 1
2008 331 356 299 200 125 60 27 16 9 6 3 2 1 1
2009 303 327 274 219 124 60 27 16 9 6 3 2 1 1
2010 290 328 306 218 121 58 27 16 11 4 4 2 1 1
2011 269 323 291 207 115 60 27 15 10 4 4 2 1 1
2012 269 312 281 198 130 62 28 16 11 3 4 2 1 1
2013 266 308 278 229 126 60 27 16 11 3 4 2 1 1
2014 299 346 325 228 126 60 27 15 11 3 4 2 1 1
2015 294 351 317 223 123 59 26 15 11 3 4 2 1 1

Figure C.25.    Mean of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Standard Error Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 21 23 22 18 13 9 6 5 4 3 3 2 2 1
2007 21 23 21 17 13 9 6 5 4 3 3 2 2 1
2008 21 22 20 17 13 9 6 5 4 3 3 2 2 1
2009 21 21 19 17 13 9 6 5 4 3 3 2 2 1
2010 18 26 23 14 22 15 8 4 4 3 2 2 1 1
2011 18 17 22 15 22 18 8 4 4 3 2 2 1 1
2012 13 14 22 11 30 21 8 4 3 2 2 1 1 1
2013 13 14 22 18 31 21 8 4 3 2 2 1 1 1
2014 13 14 33 18 30 21 8 4 3 2 2 1 1 1
2015 13 26 32 19 30 21 8 4 3 2 2 1 1 1

Figure C.26.    Standard Deviation of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Coefficients of Variation
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 6.5% 6.0% 6.2% 7.6% 10.4% 15.9% 22.6% 29.2% 37.6% 49.0% 74.6% 95.5% 122.0% 156.9%
2007 6.4% 5.9% 6.5% 8.0% 11.0% 15.0% 22.4% 28.9% 38.1% 56.2% 73.4% 94.7% 123.1% 157.6%
2008 6.5% 6.2% 6.8% 8.3% 10.4% 15.0% 22.6% 29.3% 41.7% 56.2% 73.4% 95.5% 122.4% 160.6%
2009 6.8% 6.4% 7.1% 7.9% 10.6% 15.2% 22.7% 31.5% 42.2% 56.9% 74.2% 96.8% 121.7% 162.3%
2010 6.1% 7.9% 7.3% 6.3% 18.2% 25.8% 28.6% 26.8% 35.0% 65.1% 63.8% 81.4% 111.5% 113.7%
2011 6.6% 5.4% 7.6% 7.2% 18.7% 30.1% 29.0% 27.1% 34.8% 66.8% 64.0% 82.4% 113.2% 115.9%
2012 4.8% 4.5% 7.8% 5.6% 23.4% 34.1% 30.0% 24.4% 30.1% 60.7% 57.6% 71.7% 93.4% 94.2%
2013 4.8% 4.4% 7.9% 7.9% 24.2% 34.5% 30.4% 24.4% 30.2% 61.4% 58.2% 72.2% 94.5% 94.4%
2014 4.5% 4.2% 10.0% 8.1% 23.6% 34.6% 30.2% 24.7% 30.3% 62.0% 59.4% 73.2% 94.7% 95.6%
2015 4.6% 7.4% 10.0% 8.3% 24.3% 35.0% 31.0% 24.6% 30.6% 61.4% 59.9% 73.5% 97.0% 95.7%

Figure C.27.    Coefficient of Variation of Incremental Values (Weighted)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Best Estimate (Weighted)
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Figure C.28.   Total Unpaid Claims Distribution (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Summary of Model Distributions
(Using Kernel Densities)
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Figure C.29.    Summary of Model Distributions
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Appendix D—Aggregate Results

In this appendix the results for the correlated aggregate of the three Schedule P lines of 
business (Parts A, B, and C) are shown, using the correlation calculated from the paid 
data after adjustment for heteroscedasticity.

Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Unpaid

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 67 25 37.9% 0 186 66 83 110 130
2007 107 30 28.1% 25 295 105 126 158 185
2008 199 49 24.8% 67 622 194 226 285 342
2009 298 56 18.8% 123 800 293 331 395 457
2010 480 69 14.3% 248 959 475 522 599 668
2011 862 106 12.3% 503 1,561 860 923 1,041 1,135
2012 1,666 187 11.2% 383 2,555 1,662 1,771 1,985 2,148
2013 3,070 333 10.8% 1,808 6,522 3,066 3,249 3,649 3,928
2014 5,632 703 12.5% 2,435 8,555 5,632 6,075 6,801 7,326
2015 13,270 1,788 13.5% 5,217 22,660 13,262 14,348 16,180 18,011

Totals 25,650 2,080 8.1% 16,952 36,085 25,616 26,949 29,088 30,991
Normal Dist. 25,650 2,080 8.1% 25,650 27,053 29,072 30,490
logNormal Dist. 25,650 2,088 8.1% 25,566 27,006 29,222 30,885
Gamma Dist. 25,650 2,080 8.1% 25,594 27,021 29,165 30,736

Figure D.1.    Estimated Unpaid Model Results

Five Top 50 Companies
Aggregate Three Lines of Business

Calendar Year Unpaid

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 12,906 1,209 9.4% 8,242 19,475 12,869 13,611 14,897 16,182
2017 5,733 453 7.9% 3,991 7,589 5,727 6,024 6,488 6,836
2018 3,144 257 8.2% 2,132 4,373 3,137 3,310 3,573 3,781
2019 1,663 144 8.6% 1,163 2,415 1,657 1,757 1,906 2,018
2020 903 86 9.5% 617 1,331 900 958 1,050 1,122
2021 512 59 11.5% 319 1,064 508 546 613 678
2022 324 55 16.9% 140 699 317 353 423 484
2023 217 64 29.4% 86 931 205 245 328 431
2024 120 28 23.7% 21 308 118 137 170 197
2025 74 22 30.1% 7 165 73 89 113 131
2026 36 13 37.2% 2 94 35 45 59 70
2027 18 9 51.9% 0 58 17 24 33 41
2028 1 1 95.7% - 9 1 1 3 4

Totals 25,650 2,080 8.1% 16,952 36,085 25,616 26,949 29,088 30,991

Figure D.2.    Estimated Cash Flow
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Five Top 50 Companies
Aggregate Three Lines of Business
Accident Year Ultimate Loss Ratios

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 74.0% 10.7% 14.5% 33.5% 132.5% 73.7% 77.5% 93.7% 109.6%
2007 81.3% 11.5% 14.2% 38.3% 147.1% 81.0% 85.0% 102.0% 121.0%
2008 85.4% 11.8% 13.8% 39.5% 153.1% 85.0% 89.2% 107.7% 123.9%
2009 76.0% 10.2% 13.4% 36.8% 131.0% 75.6% 79.4% 94.7% 111.2%
2010 66.9% 9.3% 13.9% 31.0% 119.9% 66.3% 70.1% 84.1% 97.9%
2011 64.5% 8.9% 13.8% 30.1% 117.2% 64.2% 67.5% 81.1% 91.4%
2012 71.0% 10.1% 14.3% 31.6% 129.3% 70.5% 74.0% 90.5% 104.6%
2013 61.4% 8.5% 13.9% 29.3% 125.5% 61.1% 64.2% 77.3% 88.8%
2014 65.4% 9.7% 14.8% 31.3% 115.9% 65.2% 70.3% 82.2% 94.9%
2015 78.2% 11.5% 14.7% 39.0% 143.2% 77.8% 83.8% 97.6% 113.8%

Totals 71.6% 3.3% 4.6% 59.5% 88.1% 71.5% 73.7% 77.3% 80.3%

Figure D.3.    Estimated Loss Ratio

Five Top 50 Companies
Aggregate Three Lines of Business
Calendar Year Unpaid Claim Runoff

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 25,650 2,080 8.1% 16,952 36,085 25,616 26,949 29,088 30,991
2016 12,744 944 7.4% 8,710 17,043 12,733 13,373 14,296 15,047
2017 7,012 536 7.6% 4,664 9,551 7,000 7,368 7,905 8,324
2018 3,868 319 8.2% 2,512 5,388 3,861 4,075 4,406 4,671
2019 2,205 213 9.7% 1,348 3,259 2,196 2,340 2,567 2,762
2020 1,302 158 12.1% 730 2,266 1,292 1,400 1,574 1,733
2021 790 126 15.9% 401 1,697 781 864 1,003 1,145
2022 466 99 21.2% 166 1,272 458 524 636 746
2023 249 62 24.9% 45 533 245 289 359 403
2024 129 42 32.4% 13 294 126 156 202 236
2025 55 21 37.9% 3 141 53 68 90 107
2026 19 9 49.6% 0 60 18 25 34 42
2027 1 1 95.7% (0) 9 1 1 3 4

Figure D.4.    Estimated Unpaid Claim Runoff

Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 9,334 4,878 2,029 1,175 621 300 151 79 67 33 33 17 16 1
2007 10,595 5,394 2,159 1,239 655 327 163 85 75 35 35 18 17 1
2008 12,060 5,959 2,317 1,321 716 352 175 91 84 38 38 19 18 1
2009 11,848 6,007 2,371 1,389 745 365 182 95 83 40 40 20 20 1
2010 11,834 5,923 2,345 1,351 721 354 182 95 85 38 40 20 19 1
2011 12,195 5,972 2,312 1,326 707 372 185 96 90 39 40 20 19 1
2012 14,186 6,541 2,409 1,362 775 380 191 99 103 39 40 20 19 1
2013 11,901 5,868 2,282 1,436 763 374 187 97 93 38 40 20 19 1
2014 12,949 6,354 2,538 1,451 771 378 189 98 98 38 36 19 17 1
2015 16,458 7,356 2,685 1,515 794 395 202 108 99 44 36 19 17 1

Figure D.5.    Mean of Incremental Values
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Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period

Accident Standard Deviation Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 1,735 668 233 134 74 37 18 13 23 6 13 7 6 6
2007 1,909 712 244 140 77 39 18 14 26 10 14 7 7 10
2008 2,085 768 264 147 81 41 20 14 35 11 15 8 7 11
2009 2,010 754 260 149 82 41 19 17 34 10 15 8 8 10
2010 2,059 775 264 148 84 43 22 17 35 11 15 8 8 11
2011 2,085 777 261 150 84 49 22 17 37 11 16 8 8 11
2012 2,492 875 277 155 98 50 23 17 44 12 15 8 8 12
2013 2,078 767 261 169 97 51 23 17 39 11 15 8 8 11
2014 2,300 907 341 192 109 55 26 19 42 13 17 9 9 13
2015 2,728 1,087 365 210 116 59 30 23 58 17 17 9 9 17

Figure D.6.    Standard Deviation of Incremental Values

Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period

Accident Coefficients of Variation
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 18.6% 13.7% 11.5% 11.4% 11.9% 12.5% 11.7% 16.8% 35.0% 17.0% 38.4% 38.5% 40.0% 702.6%
2007 18.0% 13.2% 11.3% 11.3% 11.8% 12.0% 11.4% 16.3% 35.1% 27.8% 38.5% 38.6% 40.0% 1216.6%
2008 17.3% 12.9% 11.4% 11.1% 11.3% 11.7% 11.2% 15.7% 42.1% 28.0% 39.1% 39.2% 40.5% 1356.5%
2009 17.0% 12.6% 11.0% 10.7% 11.0% 11.3% 10.7% 17.7% 41.4% 26.2% 38.8% 39.0% 40.2% 1287.1%
2010 17.4% 13.1% 11.3% 11.0% 11.6% 12.2% 11.9% 17.7% 40.5% 27.6% 39.0% 39.4% 40.8% 1164.5%
2011 17.1% 13.0% 11.3% 11.3% 11.9% 13.3% 11.9% 17.5% 41.5% 28.2% 39.2% 39.5% 40.9% 1219.1%
2012 17.6% 13.4% 11.5% 11.4% 12.6% 13.2% 12.0% 16.9% 42.8% 31.6% 38.6% 39.0% 40.6% 1268.9%
2013 17.5% 13.1% 11.4% 11.8% 12.6% 13.6% 12.1% 17.3% 41.9% 29.1% 38.5% 38.9% 40.4% 1214.5%
2014 17.8% 14.3% 13.5% 13.3% 14.2% 14.5% 13.8% 19.0% 43.0% 34.8% 47.6% 46.7% 54.6% 1429.6%
2015 16.6% 14.8% 13.6% 13.8% 14.6% 15.0% 14.9% 21.5% 58.1% 38.8% 47.3% 46.7% 54.4% 1901.0%

Figure D.7.    Coefficient of Variation of Incremental Values

Five Top 50 Companies
Aggregate Three Lines of Business

Indicated Unpaid Claim Risk Portion of Required Capital

Earned Mean 99.0% Value at Risk Allocated Unpaid Premium
LOB / Segment Premium Unpaid Unpaid Capital Capital Ratio Ratio

Schedule P, Part A 15,148 5,308 8,675 3,367 2,642 49.8% 17.4%
Schedule P, Part B 20,467 17,395 20,525 3,130 2,456 14.1% 12.0%
Schedule P, Part C 2,383 2,947 3,257 310 243 8.3% 10.2%
Total 37,997 25,650 32,457 6,807
Aggregate 37,997 25,650 30,991 5,341 5,341 20.8% 14.1%

Figure D.8.    Calculation of Risk Based Capital
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Five Top 50 Companies
Aggregate Three Lines of Business

Total Unpaid Distribution
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Figure D.9.   Total Unpaid Claims Distribution
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Appendix E—GLM Bootstrap Results

In this appendix the results for the GLM Bootstrap model, as illustrated in Figures 5.9 
through 5.12 using the Taylor and Ashe (1983) data, are shown.

Taylor and Ashe Data
Accident Year Unpaid

Paid GLM Bootstrap Model
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - -
2007 201,062 86,944 43.2% 13,857 542,484 186,940 254,238 361,288 438,224
2008 438,222 193,377 44.1% 48,640 1,570,379 405,070 547,131 798,395 996,074
2009 701,223 229,176 32.7% 192,462 1,747,698 679,682 831,657 1,122,868 1,320,964
2010 1,024,913 264,752 25.8% 405,036 2,286,536 1,009,377 1,186,714 1,467,758 1,825,411
2011 1,452,650 315,901 21.7% 619,534 2,544,116 1,424,030 1,660,714 1,996,927 2,261,272
2012 2,181,115 481,962 22.1% 916,307 4,248,064 2,136,166 2,480,213 3,027,607 3,396,995
2013 3,468,030 603,268 17.4% 1,751,033 5,598,537 3,424,738 3,862,292 4,553,992 4,965,982
2014 4,568,990 695,194 15.2% 2,331,572 6,824,685 4,526,036 5,039,460 5,731,706 6,408,694
2015 5,672,877 744,661 13.1% 3,681,244 8,333,062 5,657,952 6,171,074 6,954,411 7,414,615

Totals 19,709,081 2,176,864 11.0% 13,360,401 27,429,908 19,594,207 21,069,822 23,354,466 24,752,422
Normal Dist. 19,709,081 2,176,864 11.0% 19,709,081 21,177,353 23,289,703 24,773,224
logNormal Dist. 19,709,844 2,194,514 11.1% 19,588,799 21,111,651 23,512,537 25,360,134
Gamma Dist. 19,709,081 2,176,864 11.0% 19,628,994 21,130,455 23,421,097 25,123,713

Figure E.1.    Estimated Unpaid Model Results

Taylor and Ashe Data
Calendar Year Unpaid

Paid GLM Bootstrap Model
Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 5,367,217 639,639 11.9% 3,363,863 7,428,225 5,343,203 5,770,597 6,447,544 6,986,539
2017 4,312,360 599,300 13.9% 2,363,704 6,455,658 4,279,059 4,673,264 5,338,534 5,922,511
2018 3,310,498 539,509 16.3% 1,993,107 5,419,760 3,288,209 3,657,889 4,209,239 4,690,515
2019 2,245,627 417,764 18.6% 1,078,000 4,088,770 2,221,086 2,510,176 2,948,019 3,475,039
2020 1,676,436 369,916 22.1% 619,943 3,157,564 1,644,779 1,921,249 2,318,054 2,614,635
2021 1,224,109 326,624 26.7% 444,913 2,352,525 1,202,484 1,436,029 1,782,066 2,085,204
2022 838,442 264,751 31.6% 226,969 2,477,444 803,316 991,076 1,302,125 1,532,640
2023 507,334 211,762 41.7% 104,873 1,268,302 480,233 635,243 889,537 1,135,405
2024 227,058 93,270 41.1% 32,667 711,619 213,471 277,710 403,483 498,676
2025 - - - - - - - -

Totals 19,709,081 2,176,864 11.0% 13,360,401 27,429,908 19,594,207 21,069,822 23,354,466 24,752,422

Figure E.2.    Estimated Cash Flow
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Taylor and Ashe Data
Accident Year Ultimate Loss Ratios

Paid GLM Bootstrap Model
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 54.8% 6.4% 11.7% 38.1% 74.0% 54.7% 59.0% 65.7% 70.4%
2007 65.0% 6.4% 9.8% 48.1% 84.1% 65.0% 68.9% 75.7% 80.7%
2008 63.1% 6.4% 10.1% 42.6% 82.0% 63.1% 67.3% 73.4% 78.6%
2009 56.0% 6.2% 11.0% 38.0% 76.4% 55.9% 60.0% 66.2% 71.6%
2010 53.1% 5.9% 11.0% 34.7% 74.7% 52.8% 57.1% 63.1% 66.6%
2011 50.5% 5.6% 11.1% 33.9% 70.0% 50.2% 54.2% 60.0% 63.9%
2012 53.8% 7.6% 14.2% 31.3% 81.3% 53.1% 59.1% 66.8% 72.8%
2013 55.3% 6.9% 12.5% 34.6% 78.4% 55.1% 59.5% 66.9% 73.4%
2014 52.9% 6.8% 12.8% 31.7% 74.5% 52.4% 57.2% 64.5% 70.1%
2015 50.7% 6.5% 12.8% 33.0% 72.4% 50.6% 55.1% 61.6% 65.8%

Totals 55.1% 2.9% 5.2% 46.9% 63.6% 55.1% 57.1% 60.0% 61.7%

Figure E.3.    Estimated Loss Ratio

Taylor and Ashe Data
Calendar Year Unpaid Claim Runoff

Paid GLM Bootstrap Model
Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 19,709,081 2,176,864 11.0% 13,360,401 27,429,908 19,594,207 21,069,822 23,354,466 24,752,422
2016 14,341,864 1,839,659 12.8% 8,990,374 21,139,070 14,231,008 15,525,987 17,412,102 19,106,264
2017 10,029,504 1,499,062 14.9% 5,923,686 15,623,104 9,926,619 10,979,472 12,605,655 13,627,923
2018 6,719,006 1,188,158 17.7% 3,317,118 11,201,515 6,612,903 7,438,758 8,841,160 9,734,081
2019 4,473,380 922,335 20.6% 1,884,408 7,436,971 4,366,371 5,040,244 6,143,079 6,968,601
2020 2,796,943 678,192 24.2% 1,137,743 5,050,304 2,740,868 3,192,138 4,018,580 4,623,373
2021 1,572,834 443,756 28.2% 595,162 3,523,942 1,524,022 1,852,397 2,369,545 2,820,528
2022 734,392 257,467 35.1% 204,545 1,654,724 708,577 888,204 1,167,670 1,463,534
2023 227,058 93,270 41.1% 32,667 711,619 213,471 277,710 403,483 498,676
2024 0 0 4017.8% (0) 0 - 0 0 0

Figure E.4.    Estimated Unpaid Claim Runoff

Taylor and Ashe Data
Accident Year Incremental Values by Development Period

Paid GLM Bootstrap Model
Accident Mean Values

Year 12 24 36 48 60 72 84 96 108 120+
2006 260,293 698,693 688,850 704,606 388,809 311,880 258,794 214,532 169,749 142,707
2007 353,111 978,505 972,391 972,627 539,441 447,302 359,572 300,611 234,076 201,062
2008 355,598 975,396 989,087 971,633 541,986 440,002 357,470 297,335 237,981 200,241
2009 343,575 914,108 911,442 913,681 502,676 421,801 335,888 282,854 231,129 187,240
2010 341,295 923,102 914,709 919,809 500,195 420,057 337,719 275,372 224,883 186,939
2011 336,529 924,119 917,372 913,328 503,784 409,092 338,662 284,360 234,436 186,099
2012 381,818 1,028,561 1,036,624 1,025,187 578,558 451,767 374,253 312,453 251,461 212,623
2013 402,258 1,107,072 1,108,427 1,111,762 614,292 501,712 410,170 332,713 265,392 231,989
2014 408,511 1,104,124 1,109,649 1,096,598 616,324 491,960 408,977 338,285 274,715 232,482
2015 406,207 1,098,540 1,104,298 1,121,727 609,668 497,186 407,810 331,738 274,852 227,058

Figure E.5.    Mean of Incremental Values
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Taylor and Ashe Data
Accident Year Incremental Values by Development Period

Paid GLM Bootstrap Model
Accident Standard Error Values

Year 12 24 36 48 60 72 84 96 108 120+
2006 108,496 120,663 181,091 248,062 129,788 119,862 108,476 67,654 126,590 56,408
2007 131,381 142,390 209,358 306,437 159,961 138,486 133,743 80,122 152,143 86,944
2008 127,448 146,072 215,044 306,874 152,841 142,207 122,350 78,132 159,664 86,683
2009 125,340 137,368 201,409 295,530 154,057 138,440 121,788 90,057 156,660 80,901
2010 127,558 139,764 193,891 297,664 152,539 136,999 129,441 88,860 139,515 78,776
2011 125,839 139,522 196,494 285,649 156,869 139,339 128,102 92,988 160,838 81,152
2012 137,400 150,449 208,476 321,223 187,435 156,077 150,736 103,377 165,336 93,178
2013 137,189 150,565 221,025 338,863 195,056 173,394 151,060 103,542 169,356 96,165
2014 132,459 159,062 254,892 329,254 195,407 162,115 149,531 106,739 171,923 94,787
2015 135,172 183,619 247,413 336,959 177,810 163,745 147,122 102,400 167,873 93,270

Figure E.6.    Standard Deviation of Incremental Values

Taylor and Ashe Data
Accident Year Incremental Values by Development Period

Paid GLM Bootstrap Model
Accident Coefficient of Variation Values

Year 12 24 36 48 60 72 84 96 108 120+
2006 41.7% 17.3% 26.3% 35.2% 33.4% 38.4% 41.9% 31.5% 74.6% 39.5%
2007 37.2% 14.6% 21.5% 31.5% 29.7% 31.0% 37.2% 26.7% 65.0% 43.2%
2008 35.8% 15.0% 21.7% 31.6% 28.2% 32.3% 34.2% 26.3% 67.1% 43.3%
2009 36.5% 15.0% 22.1% 32.3% 30.6% 32.8% 36.3% 31.8% 67.8% 43.2%
2010 37.4% 15.1% 21.2% 32.4% 30.5% 32.6% 38.3% 32.3% 62.0% 42.1%
2011 37.4% 15.1% 21.4% 31.3% 31.1% 34.1% 37.8% 32.7% 68.6% 43.6%
2012 36.0% 14.6% 20.1% 31.3% 32.4% 34.5% 40.3% 33.1% 65.8% 43.8%
2013 34.1% 13.6% 19.9% 30.5% 31.8% 34.6% 36.8% 31.1% 63.8% 41.5%
2014 32.4% 14.4% 23.0% 30.0% 31.7% 33.0% 36.6% 31.6% 62.6% 40.8%
2015 33.3% 16.7% 22.4% 30.0% 29.2% 32.9% 36.1% 30.9% 61.1% 41.1%
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1. Abstract 

Several approaches for estimating liabilities under a high deductible program are described. 
Included is a proposal for a more sophisticated approach relying upon a loss distribution model. 
Additionally, the discussion addresses several related issues dealing with deductible size and 
mix, absence of long-term histories, as well as the determination of consistent loss development 
factors among deductible limits. Lastly, approaches are proposed for estimating aggregate loss 
limit charges, if any, and the asset value for associated servicing revenue. 

2. Introduction 

With the advent of the high deductible program in the early ‘9Os, actuarial efforts focused 
principally on pricing issues. Insurers initially developed this program to provide both 
themselves and insureds many advantages, including: 

1. achieving price flexibility while passing additional risk to larger insure& in what was 
considered at that time an unprofitable line of business, 

2. ameliorating onerous residual market charges and premium taxes in some states, 

3. realizing cash flow advantages similar to those of the closely related product - the 
paid loss retro, 

4. providing insureds with another vehicle to control losses while protecting them 
against random, large losses, and 

5. allowing “self-insurance” without submitting insureds to sometimes demanding state 
requirements. 

Now as the program matures, the focus shifts to the liability side. Questions are being asked as 
to what losses are actually emerging and, more importantly, what will they ultimately cost 
insurers. For the actuary, the question is how best to estimate these liabilities when losses are not 
expected to emerge above deductible limits for many years. Many issues need to be addressed: 

1. In the absence of long-term development histories under a deductible program, how 
can the actuary construct reasonable development factors? 

2. How can the actuary determine development patterns that reflect the diversity of 
both deductible size and mix? 

3. How should the actuary determine consistent development factors between limited 
and excess values? 

4. What is a reasonable approach for the indexing of deductible limits over time? 

5. How can the actuary estimate the liability associated with aggregate loss limits, if 
any? 
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6. Is there a sound way to determine the proper asset value for associated service 
revenue?’ 

In the remainder of this paper I describe possible approaches dealing with those issues. 

3. Development Approaches 

Overview 

The development approach presented relies heavily upon my company’s extensive history of full 
coverage workers compensation claim experience. In effect, I create deductible/excess 
development patterns as needed. Of course, this approach poses problems if credible histories of 
full coverage losses are not readily available. 

Once I establish the appropriate development factors, I apply them at the account level and 
determine the overall aggregate reserve by summarizing estimated ultimates for each account. I 
argue this is a reasonable approach, if you view each account as belonging to a cohort of policies 
with similar limit characteristics. Determining the overall reserve in such a fashion allows me to 
address the issue of deductible mix by reflecting each account’s unique limits. 

Later I describe the possible use of a loss distribution model to enforce consistent results between 
deductible/excess development factors. Once the parameters of the distribution are set, it is 
possible to determine development factors, as needed, for any deductible size. Perhaps, the use 
of such a model may even provide an alternative approach for determining tail factors through 
the projection of the distribution parameters. 

Loss Ratio 

In the absence of credible development histories, a common approach for determining liabilities 
is to apply loss ratios to premiums arising from the exposures. Historically, as that element was 
required to first price the product, loss ratios for the various accounts written should be readily 
available. For immature years, where data is sparse, applying loss ratios is probably the most 
practical approach to take. Given the long-tailed nature of this business, actual experience over 
deductible limits emerges slowly over time Also the expected experience is readily converted 
to an accident year basis based upon a pro rata earnings of the policy year exposures. 

The loss ratio approach requires a database of individual accounts and pricing elements. The 
database should include an estimate of the full coverage loss ratio. From a pricing standpoint, 
that number can come from a variety of sources. One approach would be to use company 
experience by state, reflecting the individual account’s premium distribution. Possibly, that 
experience to the extent credible could be blended with industry experience. As with other 

’ Similar in usage to a loss conversion factor in retro rating, loss multipliers are applied to deductible losses to 

capture expenses that vary with loss. 
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pricing efforts, that experience ought to be developed to ultimate, brought on level, and trended 
to the appropriate exposure period. 

Besides an estimate of the full coverage loss ratio, the database should include estimates of 
excess losses for both occurrence and aggregate limits. For the occurrence limit, several 
approaches are possible including estimating excess ratios based upon company experience. A 
potentially more credible approach uses excess loss pure premium ratios underlying industry- 
based excess loss factors used in retro rating. Besides their availability by multiple limits, excess 
loss factors can easily be adjusted to a loss basis and reflect hazard groups with differing severity 
potential. Utilizing account-based excess ratios reflecting unique state and hazard group 
characteristics should lead to reasonable estimates of per occurrence excess losses: 

(3.1) P.E.x 

where P = premium, E = expected loss ratio, and x = per occurrence charge 

Regarding the aggregate loss charge, if any, an approach I prefer uses a process similar to that for 
determining insurance charges in a retro rating program. Those charges would, in turn, rely on 
the National Council on Compensation Insurance’s (NCCI) Table M. I refer the interested reader 
to the Retrospective Rating Plan [l] for further details. The process reflects the size of the 
account, deductible, state severity relativities, prospective rating period, and appropriate rating 
plan parameters: 

(3.2) P.E+-x).4 

where P = premium, E = expected loss ratio, x = per occurrence charge, 
and Q = per aggregate charge 

Applying this procedure to each account and aggregating leads to an estimate of ultimate 
accident year losses. I show in Table 1 a hypothetical case of how to apply those factors to 
determine the ultimate liabilities. Incurred But Not Reported (IBNR) amounts are easily 
determined by subtracting known losses from the ultimate estimate. 

Again, this approach is particularly useful when no data is available or the data is so immature as 
to be virtually useless. Obviously, loss ratio estimates can be consistently tied to pricing 
programs, at least at the outset. This procedure also benefits from its reliance on a more credible 
pool of company andfor industry experience. On the negative side, a loss ratio approach ignores 
actual emerging experience, which in some circumstances may differ significantly from 
estimated ultimate losses. For this reason alone, the loss ratio approach is not particularly useful 
after several years of development. Another shortcoming of this method is that it may not 
properly reflect account characteristics, as development may emerge differently due to the 
exposures written. 
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Arkansas 
Illinois 
Iowa 
Kansas 
Minnesota 
South Carolina 
South Dakota 
Total 

Table 1 
Countrywide Insurance Enterprise 

Account: Widget, Inc. 
Expected Deductible/AeerePate Loss Chargr;s 

La Ls1 fa 151 
(4)?5) 

co 
(2) x (3) L(4) - C6? x (7) 

Deductible Aggre- Aggregate 
Expected Excess Loss gate Loss 

Premium ELR u w Charge ll&Charge 
9,084 567 5,151 .062 319 .02 97 

573,066 .532 304,871 ,105 32,011 .02 5,457 
373,072 ,588 219,366 ,096 21,059 .02 3,966 
70,549 ,644 45,434 .071 3,226 .02 844 

1,012,622 ,457 462,768 .I43 66,176 .02 7,932 
22,980 .522 11,996 .048 576 .02 228 
!&&IL?97 65.797 .211jJJJ3JgJ 

2,155,774 .517 l,115,383 ,123 137,250 .02 19,562 

Implied Development 

There are many ways to incorporate actual emergence in high deductible reserve estimates. 
Determining excess development implicitly is one possibility. By implied development, I mean 
an approach that works as follows: 

I. Develop full coverage losses to ultimate. 

2. Next, develop deductible losses to ultimate by applying development factors 
reflecting various inflation indexed limits. 

3. Finally, determine ultimate excess losses by differencing the full coverage ultimate 
losses and the limited ultimate losses. 

A variety of the usual development techniques could be applied to determine full coverage 
losses. Those methods include paid and incurred techniques designed consistently with the 
company’s reserving procedures for full coverage workers compensation. However, care should 
be exercised in determining a full coverage tail factor consistent with the limited loss tail factors. 
In particular, the actuary should avoid developing limited losses beyond unlimited losses, or even 
losses for lower limits beyond those of higher limits. 

When calculating development factors for the various deductibles, it is appropriate to index the 
limits for inflationary effects. Adjusting the deductible by indexing keeps the proportion of 
deductible/excess losses constant about the limit from year to year, at least, in theory. For 
example, if inflationary forces drive claim costs ten percent higher each year, the percentage of 
losses over a $100,000 deductible for one year equate to those of a $110,000 deductible in the 
next. Indexing of deductible limits allows for the possibility of combining differing experience 
years in the determination of development factors. 
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There is really no set method for determining the indexing value. One approach would be to 
determine that index by fitting a line to average severities over a long-term history. Another 
simpler approach might be to use an index that reflects the movement in annual severity changes. 
In any event, the actuary needs to be cognizant that a constant deductible over time usually 
implies increasing excess losses. 

An advantage of the implied development approach is that it provides an estimate of excess 
losses at early maturities even when excess losses have not emerged. Also, the development 
factors for limited losses are more stable than those determined for losses above the deductible. 
This procedure also provides an important byproduct in the estimation of assets under the high 
deductible program. Specifically, estimating deductible losses helps determine the asset 
represented by revenue collected from the application of a loss multiplier to future losses. 
Despite these advantages, this approach does appear to have its focus misplaced, as one would 
like to explicitly recognize excess loss development. 

Direct Development 

This approach explicitly focuses on excess development, though it relies upon development 
factors implicit from the previous technique. That is, given development factors for limited as 
well as full coverage losses, excess loss development factors are fixed. It is important to 
recognize here that excess development is part of overall development, and the actuary should 
strive to determine excess factors in conjunction with limited development factors that balance 
back to full coverage development. That is not to say that reserve indications from implicit and 
explicit methods necessarily will be the same, but only that the underlying loss development 
factors should be. 

Again, a variety of paid and incurred techniques are applicable here. I see several disadvantages 
to directly determining excess development factors and applying them to excess losses. Those 
factors tend to be quite leveraged and extremely volatile, making them difficult to select. 
Additionally, if excess losses have not actually emerged at any particular stage of development, it 
is not possible to get an estimate of the required liability. 

Credibilig Weighting Techniques/Bornhuetter-Ferguson 

Given the significant drawbacks mentioned for the previous approaches to determining excess 
liabilities for the deductible product, the next approach described offers greater promise. It relies 
on credibility weighting indications based upon actual experience with expected values, 
preferably based on pricing estimates. This method requires that the actuary determine a suitable 
set of weights or credibilities. The Bornhuetter-Ferguson [2] technique offers one possible 
approach for determining credibilities that are specified as reciprocals of loss development 
factors. 
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(3.3) L = 0,. LDFr .Z + E.(l- Z) (Credibility view-point) 
where L = ultimate loss estimate, O,= observed loss at time t, LDF, = age to 
ultimate development factor, Z = credibility, and E = expected ultimate loss 

1 
Letting Z = - 

LDF, 
leads to: 

(Bornhuetter-Ferguson viewpoint) 

Using the Bornhuetter-Ferguson approach allows the actuary to determine liabilities either 
directly or indirectly. This procedure affords the ability to tie into pricing estimates for recent 
years where excess losses have yet to emerge. Also, it provides more stable estimates over time, 
rather than the volatility arising from erratic emergence or leveraged development factors. 
Hopefully, a credibility weighting approach like this provides better estimators of ultimate 
liabilities as well. Of course, a disadvantage of this technique is that it ignores actual experience 
to the extent of the complement of credibility. That drawback suggests finding alternative 
weights or credibilities that may be more responsive to the actual experience as desired. 

4. Development Model 

This section deals more specifically with a number of the issues I described at the outset. How 
best can the actuary determine development factors in the absence of a long-term history under 
the deductible program? How can the actuary determine development patterns that reflect the 
diversity of both deductible size and mix ? What is a reasonable approach for indexing 
deductible limits over time? How best should the process relate development for various limits 
consistently? Determining development factors for a high deductible program is really an 
exercise in partitioning development about the deductible limit. Is it possible to develop 
consistent tail factors among the limits the company is exposed to? 

Some Possible Approaches 

As I stated earlier, in the absence of long-term experience under the deductible program, I 
suggest making extensive use of a company’s history of full coverage workers compensation 
claims, if available. It is also appropriate to apply an indexed limit to the claims in order to 
determine a series of accident year loss development histories by limit. In some of the analyses I 
performed, I looked at selected Iimits ranging from $50,000 to $l,OOO,OOO. I focused, however, 
on the more common deductible sizes in the neighborhood of $250,000. I used case losses that 
included indemnity, medical, and any subject allocated claim expense. The histories I reviewed 
ran out for 25 years but were not further separated by account, injury, or state. That suggests 
eventually creating alternative development patterns that do reflect those types of break-out. I 
show in Table 2, age-to-age development factors by indexed limit resulting from my preliminary 
studies. 
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Table 2 
Workers Compensation - High Deductibles 

s & ALA-e - - to Age Develow 
by Indexed Limit (Middle 6 of Last 8) 

Limit 12:24 24:36 Months 36:48 4860 MO& 60:72 

$50,000 1 SO3 1 1.0418 1.0038 1.0025 1.0020 
$100,000 1.6225 1.0727 1.0151 1.0063 1.0080 
$250,000 1.6791 1.1300 1.0451 1.0207 1.0060 
$500,000 1.6827 1.1393 1.0684 1.0322 1.0170 
$750,000 1.6816 1.1408 1.0720 1.0359 1.0214 

$1 ,ooo,ooo 1.6811 1.1411 1.0728 1.0371 1.0229 
Unlimited 1.6876 1.1430 1.0749 1.0391 1.0196 

In order to determine those development factors, I combined several years of experience based 
upon indexed limits. For example, for the most recent year, limits were used as stated. But for 
the first prior year, I adjusted limits downward by an indexing factor of 1.095. For the current 
year, I assumed a limit of $250,000 was the equivalent of a limit of $228,3 11 for the first prior 
year. Each limit was adjusted by the same index, back for as many years as needed, to generate 
the desired development factors. 
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I simply based the selected indexing factor of 1.095 upon a long-term severity history. As I 
alluded to earlier, other approaches may be better. Possibly varying the indexing factor by year 
or adjusting for the distorting effects of larger claims are but a couple of examples of 
improvements that could be explored. I show in Chart 1 the exponential trend line fit through 
known data points determining the long-term indexing factor of 1.095. Also depicted is the 
indexed $250,000 loss limit. 

The approach I recommend requires separating claim count development from severity 
development. In my work to date I focused on the counts for full coverage losses rather than 
worrying about emergence of claims over a specific deductible limit. I feel it is much easier to 
recognize development in this fashion, as there is generally very little true claim count IBNR 
after about three years. This is true even for the larger claims, as they will be reported early on 
just like the other claims, but their true severity will not be known for some time. 

Table 3 
Workers Compensation 

Are-to-Ane Develooment Factors 
Full Coverage Claim Count 

Accident Year 12:24 24% Months 3648 months 48:60 Months 

1988 0.9999 
1989 0.9999 0.9994 
1990 1.0026 0.9999 1.0001 
1991 1.1111 1.0022 1.0002 
1992 1.1305 1.0017 
1993 1.1283 

Last 3 1.1233 I .0022 1 .oooo 0.9998 

Selected 1.1250 1.0025 1 .oooo 1 .oooo 

Age to Ultimate 1.1278 I .0025 1 .oooo 1 .oooo 

In order to handle the issue of how to develop limited losses to ultimate, 1 relied upon an inverse 
power curve recommended by Richard Sherman [3] to model the development arising in the tail. 
Specifically, I used a three parameter version of the curve depicted as follows: 

(4.1) ~=l+a,(t+c)-~ 
Again, my concern was to determine consistent tail factors by limit. Starting with the unlimited 
loss development and fitting an inverse power curve to known age-to-age factors allowed me to 
project ultimate unlimited losses. As the inverse power curve continues indefinitely, there is a 
need to select a time at which the projection should end. At this point I tied this approach to a 
similar method used for determining our full coverage tail factor that relies upon extended 
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development triangles. That procedure suggested that I could get an equivalent result from the 
inverse power curve model by stopping its projected age-to-age development factors at 40 years. 
Compounding the age-to-age factors from the fitted curve leads to the desired completion or tail 
factors. 

Once I set the ultimate age, I fit the inverse power curves to age-to-age factors for the various 
deductible limits under review and extended to that common maturity. Though this approach 
utilizes a consistent technique and generates uniformly decreasing tail factors, it is still an open 
issue whether the bias in extending all curves to a common maturity is significant or not. (At 
lower limits, development likely ceases well before forty years.) Chart 2 depicts the age-to-age 
model determined for the unlimited loss development. 

Chart 2 

Workers Compensation 
Unlimited Tail Factors 

Actual vs. Fitted 

~~~~ 

I 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

Ase (Years) 

. Actual Age to Age -Fitted Age to Age A Actual Age to Ultimate - - - - - -Fitted Age to Ultimate 

In Chart 3 I show the pattern of age-to-ultimate limited loss development factors resulting from 
the inverse power curve model. 
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Chart 3 

Workers Compensation - High Deductibles 
Age to Ultimate Loss Development Factors 

1.0 
12 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 16 19 20 

Age (Years) 

-Unlimited - - - $1,000,000 - -. - - -3760,000 - - - - $600,000 

- --- t260.000 -$100,000 - - - 660,000 

Another issue the actuary needs to be sensitive to is the relationship between loss development 
factors and limited severity relativities.2 In some of my earlier efforts I attempted to uniquely 
develop losses by limit without regard to how they might relate to one another. This led to 
inconsistencies in development factors where completion factors for smaller deductibles, for 
example, sometimes exceeded factors for larger deductibles. Upon closer inspection, I found that 
any attempts to determine deductible development factors need to address the relationship 
between the full coverage loss development and severity relativities. The following formulas 
show the relationship between limited and excess development factors with the unlimited loss 
development and severity relativities. 

(4.2) LDFL = $.f$ 
t t Rt 

where L = Deductible Limit, C = Counts, S = Severity, R = Severity 
Relativity, and t = age 

(4.3) XSLDFL = ~._s_.- 

where L = Deductible Limit, C = Counts, S = Severity, R = Severity 
Relativity, and t = age 

2 Limited severity relativities are defined simply as the ratio of the limited to unlimited severity 
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. . . . 
otwatls 

(4.4) LDF, = R; . LDFL + 

(4.5) LDF, =R~.~.~.~+(l-R~).C.S.- 
t t t 

(4.6) LDF, +.;.R”+~.$(l-R”) 
t t t t 

(4.7) LDF, = g$ 
t t 

The motivation for these relationships results from the desire to partition total loss development 
in a consistent fashion between limited and excess development. I show in Chart 4 how the 
historical limited severity relativities ought to relate to one another and change over time. 

Chart 4 

Workers Compensation - High Deductibles 
Limited Severity Relativities 

?-LTm.ww.~=sr- .I?.-&-.- - - ___. -I_“~------------ ------ 

---*--*---- 
--.-_ 

____. _ ___.._... _ -....._ _ .._. 
--------- -- . . . . ..-..... 

--. ---.- --.-.__ __.__. 
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------______ 

-.--.._ 
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---_ 

---_ 
---_ 

--0-m__--w--m- 

0.5 , 

1 2 3 4 5 6 7 6 9 10 

- - - $1,ooo,000 - - - -. -$750,000 -. -. $500,000 - -. - $250.000 -$100,000 - - - $50,000 
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In Table 4 I show age-to-age development about a $250,000 deductible limit. 

Age-to-Age Loss & ALAE Development Factors 
(Unlimited) 

Accident 
&2x 

1989 
1990 
1991 
1992 
1993 

12:24 24:36 36:48 48:60 

1.7063 1.1756 1.0929 1.0359 
1.8219 1.1574 1.0744 1.0387 
1.7724 1.1506 1.0737 
1.6912 1.1398 
1.6044 

Average 1.7192 1.1559 1.0803 1.0373 

Age-to-Age Loss & ALAE Development Factors 
($250.000 Deductible) 

Accident 
Ixkil 

1989 
1990 
1991 
1992 
1993 

12:24 24:36 2!.62!8 48:60 

1.7077 1.1598 1.0657 1.0221 
1.7755 1.1509 1.0550 1.0247 
1.7734 1.1461 1.0643 
I .6750 1.1363 
1.6229 

Average 1.7109 1.1483 1.0617 1.0234 

Age-to-Age Loss & ALAE Development Factors 
(Excess of $250.000 Deductible) 

Accident 
&&r 

1989 
1990 
1991 
1992 
1993 

12:24 24:36 36:48 5l!3.&2 

1.6646 1.6582 1.6742 1.1927 
4.4890 I .3049 1.3151 1.2411 
1.7373 1.3115 1.3675 
2.2474 1.2291 
1.1684 

Average 2.2613 1.3759 1.4523 1.2169 

Table 4 
Workers Compensation 

High Deductibles 

c?t!kz2 

1.0273 

1.0273 

f&y& 

1.0120 

1.0120 

h;22 

1.2011 

1.2011 
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In Table 5 I show relativities and their changes for the selected deductible limit. 

Table 5 
Workers Compensation 

High Deductibles 

Limited Sever@ Relativities 
(%250.000 Deductible) 

Accident 

1989 
1990 
1991 
1992 
1993 

72 Months 

0.9053 

Average 

12 Months 24 MQI& 36 Months 48 MO& 60 

0.9675 0.9683 0.9553 0.9315 0.9191 
0.9829 0.9578 0.9524 0.9353 0.9227 
0.9723 0.9728 0.9690 0.9605 - 
0.9717 0.9623 0.9594 - 
0.9593 0.9704 - 

0.9707 0.9663 0.9590 0.9424 0.9209 

Changes in Limited Sever@ Relativities 
0.000 Deductible) 

0.9053 

Accident 

1989 
1990 
1991 
1992 
1993 

m 2fL3.6 i3.6A.s iLs?L@ 

1.0008 0.9866 0.975 1 0.9867 
0.9745 0.9944 0.9820 0.9865 
1 .ooos 0.9961 0.9912 
0.9903 0.9970 
1.0116 

i5!272 

0.9850 

Average 0.9955 0.9935 0.9828 0.9866 0.9850 

Note how the change in limited loss development relates to the unlimited loss development. 
Also note how actual case loss development does not always conform to expectations, as the 
limited loss development factor sometimes exceeds the unlimited. 

(4.8) LDFL = LDF-ARL 

For example, for accident year 1993, moving from 12 to 24 months, a limited factor of 1.6229 is 
observed. That is equivalent to the unlimited loss development factor of 1.6044 compounded 
with the change in severity relativities for the same time period of 1 .0116. 
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Note also the relationship of the excess deveIopment to the unlimited loss development for the 
same year. 

(4.9) XSLDFL =LDF.A(l-RL) 

There the accident year 1993 excess development factor of 1 .I684 is equivalent to the unlimited 
development factor compounded with the ratio of the complements of the severity relativities 
moving from 12 to 24 months. (1.1684 = (1.6044) (1 - 0.9704) I ( 1 - 0.9593)) 

And, as desired, the weighted average of the limited and excess development factors using the 
relativity as the weight leads to the unlimited loss development factor. 

(4.10) LDF, = Rb LDF; + (1 - R,L) XSLDF; 

(Accident Year 1993: 1.6044 = (0.9704) (1.6229) + (1 - 0.9704) (1.1684)) 

Distributional Model -A More Promising Approach 

Because of the concepts just described, this whole approach seems ideally suited for the 
application of some form of loss distribution model. That model helps to tie the relativities to the 
severities and consequently provides consistent loss development factors. Not only that, a 
distributional model easily allows for interpolation among limits and years, as needed. 

The approach I propose models the development process by determining parameters of a 
distribution that vary over time. Once the distribution and its parameters are specified, it is 
possible to calculate the desired limited/excess severities. Comparing those severities over time 
leads to the needed development factors. Of course, care has to be exercised to recognize claim 
count development at earlier maturities. 

For my work, I relied upon a Weibull distribution to specify the workers compensation claim 
loss distribution. That distribution has been commonly used for workers compensation claims 
and is familiar to actuaries working with distributional models. It is ideally suited for this type of 
work, as it gives a reasonable depiction of the loss distributions and is easy to work with. 

Of course, the most difficult aspect of working with distributional models is estimating the 
parameters involved. There are various approaches that can be used, including Method of 
Moments as well as Maximum Likelihood. I tried an alternative approach that optimizes the fit 
between actual and theoretical severity relativities around the $250,000 deductible size. 
Specifically, I minimized the chi-square between actual and expected severity relativities to 
determine the needed parameters. I made use of a solver routine incorporated in Microsoft 
Excel’s spreadsheet application, which allowed me to constrain the optimization routine in such a 
fashion that the parameters generated produced the actual unlimited severity at the specified 
maturity. 
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I show in Table 6 an example of results used to determine age-to-ultimate loss development 
factors by limit from 48 months to ultimate. I selected 48 months in order to focus attention on 
changes in severity rather than changes in total claim counts assuming no IBNR count 
development after 36 months. (Please see Appendix I for details.) 

Table 6 
Workers Compensation High Deductibles 

Actual Versus Fitted Limited/Excess Devew Factors @ 48 Months) 
(using a Weibull Loss Distribution) 

Limit JJ&,&x! $l.OOO.OOQ $750,000 $5n0.000 S250.00Q $lOO.OOQ $SO.OOQ 

Limited Severity 6,846.4 6,159.2 5,980.4 $714.4 5,094.8 3,939.6 3,036s 
Relativity 1 .oooo 0.8996 0.8735 0.8347 0.7442 0.5754 0.4435 
Excess Severity 0.0 687.2 866.0 1,132.O 1,75 1.6 2,906.8 3,809.9 

l?&d 

Limited Severity 6,846.4 6,295.2 6,106.5 5,778.7 5,064.4 3,926.7 3,043.8 
Relativity 1 .oooo 0.9195 0.8919 0.8440 0.7397 0.5735 0.4446 
Excess Severity 0.0 551.2 739.9 1,067.7 1,782.O 2,919.7 3,802.6 

Weibull Parameters Scale = 180.0 Shape = .2326 
Mean = 6,846.4 Coefficient of Variation = 10.07 

Limit Unlimited $l.OOO.OOQ $750.000 %500.000 $250.000 %100.000 $50.000 

Limited Severity 
Relativity 
Limited LDF 
Excess Severity 
Excess LDF 

5,530.2 
1 .oooo 
1.2380 

0.0 

Limited Severity 
Relativity 
Limited LDF 
Excess Severity 
Excess LDF 

5,530.2 
1 .oooo 
1.2380 

0.0 

Weibull Parameters 

Observed 
5346.6 5,288.5 5,182.3 4,824.0 3,807.S 2,937.1 
0.9668 0.9563 0.9371 0.8723 0.6885 0.5311 
1.1520 1.1308 1.1027 1.0561 1.0347 1.0338 
183.6 241.7 347.9 706.2 1,722.7 2,593.1 

3.7429 3.5830 3.2538 2.4803 1.6874 1.4692 

lziued 

5,380.5 5,301.4 5,142,s 4,722.4 3,894.0 3,144.1 
0.9729 0.9586 0.9299 0.8539 0.7041 0.5685 
1.1700 1.1519 1.1237 1.0724 1.0084 0.9681 

149.7 228.8 387.7 807.8 1,636.2 2,386.1 
3.6820 3.2338 2.7539 2.2060 1.7844 1.5936 

Scale = 305.7 Shape = .2625 
Mean = 5J30.2 Coefficient of Variation = 7.35 

233 



Lastly, the following formulation shows how expected development can be partitioned about the 
deductible limit. 

(4.11) Expected Development = I - & 
t 

(4.13) = 
Rk,LDF;+(l-R+XSLDFk-1 

R;.LDF;+ 1-R; .XSLDF; 
( 1 

(4.14) 
= R;,(LDF;-I)+(l-Rt).(XSLDF+I) 

R; .LDF; + 1- R,L XSLDF;> 
( 1 

I show graphically in Chart 5 partitioned development for a selected $250,000 deductible limit 
based upon the previously described Weibull loss distribution model. Note the changing 
proportions of development over time. Not unexpectedly. excess development represents the vast 
majority of development with increasing age. 

Chart 5 

Workers Compensation - High Deductibles 

Partioned Development Above/Below $250,000 

1l:utt. 24:Ult. 36:Ult. 48:Ult. 60:tJtt. 

n Deductible 0 Excess 
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5. Other Elements 

Several other elements associated with high deductible plans call for further discussion: 
aggregate limits, service revenue and allocated claim expense. Determining sound estimates for 
those items involves a fair amount of complexity. In the following discussion I recommend 
using advanced collective risk modeling techniques to estimate losses excess of aggregate limits. 
I also suggest an alternative procedure using the NCCI Table M, if collective risk modeling is not 
considered practical. The asset for service revenue, though not as difficult to determine, 
however, depends upon prior estimates of losses for deductible/aggregate limits. Treating 
allocated claim expense in a similar fashion to loss simplifies the estimation process for that 
liability, but separating the two pieces is problematic. 

Aggregate Limiis 

Some risks, besides choosing to limit their per occurrence losses, desire to limit all losses that 
they will pay under a high deductible program. Insurers satisfy that need by providing aggregate 
loss limits. Those limits are conceptually similar to maximum premium limitations used in retro 
rating plans. 

Determining loss development factors for losses excess of aggregate limits is more complicated 
than for per occurrence limitations. However, the obligations arising from those aggregate limits 
are generally less significant than for per occurrence limits. Besides the additional complexity, 
the data needed to determine development factors for these limits is generally sparse and not 
likely to be very credible. Outside of actually attempting to gather data for development factors 
of this sort, I suggest making use of collective risk modeling techniques to determine the needed 
loss development factors. Such a mode1 could utilize the loss distributions just described for the 
deductible limits in conjunction with selected claim frequency distributions. 

I used a collective risk model described by Heckman and Meyers [4] to determine development 
factors for losses excess of aggregate limits. I show in Table 7 selected development factors 
using the same Weibull loss distribution I used previously to determine deductible development 
factors. I assumed a Poisson claim count distribution to model frequency. Though I did not 
incorporate any parameter risk in determining the development factors, the model does allow for 
that possibility. I refer the interested reader to a discussion by Meyers and Schenker [S] 
describing how to incorporate parameter risk into the collective risk model. 

The sampling of development factors I calculated shows that development for losses excess of 
aggregate limits decreases more rapidly over time with smaller deductibles than larger ones. 
That is not unexpected as most of the later development occurs in the layers of loss above the 
deductible limits, which is not covered by the aggregate. Also, not unexpectedly, development is 
more leveraged for larger aggregate limits. There is one additional point the reader should note 
in reviewing Table 7. Though I show hypothetical results for risks of $1 million and $2.5 
million in expected loss size, the limited expectations are considerably smaller. 
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%250;000 
$500,000 

Deductible 
$100,000 
$250,000 
$500,000 

$100,000 
$250,000 
$500,000 

Deduct&k 
$100,000 
$250,000 
$500,000 

Deductibk 
$100,000 
$250;000 
$500,000 

Table 7 
Workers Compensation High Deductibles 

Development Factors for Losses Excess of Aggregate Limits 
(Collective Risk Model Utilizing Weibull Loss Distribution) 

Lwected hlum&wes qf $1.000.000 

Aggregate Limit = 500,000 

Excess-m 
48 Months 

Excess Loss LDF 
9,253.6 13.024 114,646.O 1.051 

22,882.5 12.007 228,070.7 1.205 
28,653.6 13.255 289,389.2 1.312 

Aggregate Limit = 750,000 

Excess-m 
8 Months 

Excess m 
155.1 136.451 18,005.9 1.175 

1,844.9 63.845 84,475.1 1.394 
4,257.2 49.763 138,526.3 1.529 

Aggregate Limit = 1,000,OOO 

Excess m Excess-m 
.8 2,242.150 1,274.7 1.408 

94.5 418.531 23,343.1 1.694 
494.5 213.275 57,471.2 1.835 

~~ectedUnlrmltedLossesqf$2.500.OOQ 

Aggregate Limit = 1 ,OOO,OOO 
.&Months 48 Months 

Excess m Excess Loss km 
39,703.2 11.761 456,498.9 1.023 
8 1,084.7 10.876 759,354.4 1.161 
95,069.6 12.021 912,976.l 1.252 

Aggregate Limit = 1,250,OOO 

Excess-m Excess LDF 
3,829.0 64.779 236,271.2 1.050 

17,740.7 36.191 522,364.3 1.229 
26,520.l 33.986 674,759.3 1.336 

Aggregate Limit = 1,500,OOO 

Excess-m Excess-m 
173.5 564.077 87,988.l 1.112 

2,693.1 158.522 3 18,464.5 1.341 
6,001.8 112.833 463,359.8 1.461 

Ultimate 
Excess Loss 

120,523.3 
274,761.6 
379,794.3 

21,163.6 
117,788.5 
211.851.8 

1,794.2 
39,551.2 

105.464.6 

466,934.l 
881,844.0 

1,142,866.6 

Ultimate 
Excess J ass 

248,037.5 
642,046.5 
901,315.4 

97,867.3 
426,916.3 
677,200.3 
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Given the volatility of losses excess of aggregate limits, I recommend using a Bomhuetter- 
Ferguson method to smooth out indications of ultimate liability. The example I show in Table 8 
makes use of expected aggregate loss charges as well as expected development factors based 
upon the previously described collective risk modeling approach. The final indication adds 
together known losses excess of aggregate limits and IBNR based upon the modeled 
development patterns. 

Table 8 
Countrywide Insurance Enterprise 

Workers Compensation High Deductibles 
Estimated Ultimate Aggregate Excess of Loss 
(Utilizing Bornhuetter-Ferguson Methodology) 

lcb~wn Loss (@ 48 h4~&& 
Excess of te Ex ess of Loss 

AccountDeductibleDeductiblewm I& Indicated 
Expected Unlimited Loss - l.000.000: Aggregate Limit - 750,000 

A 
B 
C 

100,000 581,252 21,164 1.175 
250,000 703,027 117,789 1.394 
500,000 764,493 14,493 211,852 1.529 

Expected Unlimited Loss - 2.500.000; Aggregate Limit - 1.2SO. 000 

3,152 
33,292 
87,789 

X 100,000 1,453,169 203,169 248,038 1.050 214,980 
Y 250,000 1,757,616 507,616 642,047 1.229 627,248 
Z 500,000 1,911,285 661,285 901,315 1.336 887,963 

An alternative approach for determining IBNR estimates for aggregate excess of loss coverage 
merits consideration. That procedure utilizes the NCCI methodology [1] for determining 
insurance charges in retrospective rating plans. I consider it a more practical approach than 
collective risk modeling, but its accuracy hinges upon determining the proper insurance charge 
table. 

Essentially the IBNR is determined by subtracting insurance charges at different maturities. The 
process used to determine the ultimate insurance charge would be the same as that used for 
pricing purposes. The key to the NCCI procedure is the adjustment of expected losses reflecting 
loss limits. That adjustment increases expected losses used in determining the appropriate 
insurance charge table by use of the following formula: 

(5.1) Adjustment Factor = w 

where x = per occurrence charge 
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The intent of increasing expected losses for the use of a per occurrence limit is to utilize a less 
dispersed loss ratio distribution and, consequently, a smaller insurance charge. Though this 
adjustment for a loss limit moves the selection of an insurance charge table in the right direction, 
the question remains whether it does so in an appropriate manner. Additionally, the procedure 
generates smaller insurance charges by the use of limited losses in the entry ratio calculation. 

In order to calculate the insurance charge at earlier maturities I suggest determining the per 
occurrence charge used in the NCCI procedure by relating undeveloped, limited losses to 
ultimate, unlimited losses. For example, using the fitted results depicted in Table 6 for a 250,000 
deductible leads to a per occurrence charge of 3 1 percent (1 - 4722.4 / 6846.4) at 48 months. 
Besides reflecting the impact of the limit, this approach also captures the effects of development. 
Again, the issue remains whether or not the adjustment for both the limit and development is 
appropriate. 

I show in Table 9 a comparison of IBNR estimates determined using the NCCI Table M with 
estimates from the previously described collective risk modeling approach depicted in Table 8. 
I further detail IBNR estimates from the NCCI Table M in Appendix II. 

Table 9 
A Comparison of Aggregate Excess of Loss IBNR Estimates (@ 48 Months) 

Collective Risk Model Versus NCCI Table M 

Account 

A 
B 
C 

X 
Y 
Z 

Deductible Collective Risk Model NCCI Table M 

Expected Unlimited Loss - 1.000.000; Aggregate Limit - 750,000 

100,000 3,152 1,809 
250,000 33,292 38,500 
500,000 73,296 68,X1 1 

Expected Unlimited Loss - 2.500.000; Aggregate Limit - 1.250.000 

100,000 11,811 9,959 
250,000 119,633 103,000 
500,000 226,678 222,168 

Service Revenue 

A significant element that ought to be reflected on the asset side of the balance sheet is the 
revenue associated with servicing claims under a high deductible program. As I noted earlier, 
service revenue is generated in an analogous fashion to the use of a loss conversion factor in a 
retro rating plan. Generally, a factor is applied to deductible losses, limited by any applicable 
aggregate, to cover expenses that vary with those losses. In practice, however, other elements are 
captured by the loss multiplier, reflecting the desire of the individual accounts to fund the cost of 
the program as losses emerge. The service revenue is often collected as losses are paid, but it 
may also be gathered as a function of case incurred losses. 
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I propose determining the asset in the following fashion: 

I. Determine ultimate deductible losses at the account level. 

2. Subtract ultimate losses excess of aggregate limits from ultimate deductible losses. 

3. Apply the selected loss multiplier to the difference determined in step 2 to determine 
ultimate recoverables. 

4. Determine the total asset by subtracting any known recoveries from the estimated 
ultimate recoverables and aggregate results for all accounts. 

Table 10 shows an example of how in practice the asset for the service revenue might be 
determined. 

Table 10 
Countrywide Insurance Enterprise 

Workers Compensation - High Deductibles 
Estimated Ultimate Service Revenue 

Expected UnlimitedLoss - 2500,000; Aggregate Limit - 1.250,OOO; Loss Multiplier - 10% 

Ultimate Loss 
Excess of Net of Multiplier KIIOWII 

Account Deductible 
X 1,465,376 
Y 1,884,867 
2 2.147.711 gs7.9631.259.748125.975106.9121p961 

Total 5,497,954 1,730,191 3,767,763 376,777 306,584 70,193 

Allocated Claim Expense 

There are two principal means of handling allocated claim expense under a high deductible 
program. Either the account manages this expense itself or it is treated as loss and subjected to 
applicable limits. In the first instance development patterns reflecting loss only would be 
appropriate for determining liabilities, while a combination of loss and expense is appropriate for 
the second case. For this discussion I determined development factors combining loss and 
expense components assuming expenses were equivalent to additional loss dollars. Though 
different development patterns are likely for loss and expense versus loss only, the gain in 
precision is likely not worth the effort. 

A remaining issue is how best to split loss and allocated claim expense for financial reporting 
purposes. Though splitting them proportionately based upon their full coverage counterparts is 
expeditious, other more actuarially sound approaches, even if available, may not be cost 
justifiable. 
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6. Conclusion 

I intended with this discussion to suggest some possible approaches for estimating liabilities 
under a high deductible program. As with many actuarial procedures, much work and 
improvement are still needed. I hope my suggestions provoke further discussion as to how to 
better estimate these liabilities. 

Although the reader probably has many ideas to improve upon the suggestions I have made, I 
feel several stand out including: 

l Obtain longer histories of experience under the program better reflecting risk 
characteristics. 

l Derive (Select) parameters (distributions) that provide better fits to the actual data. 

. Determine better tail factors and/or parameters of the utilized loss distribution. 

. Develop more advanced approaches to index loss limits. 

None of these are really unknown issues for actuaries, who have long been confronted with 
developing either limited or excess losses. The availability of more comprehensive data in a 
workers compensation program allows for the application of more sophisticated loss 
distributional approaches that affords greater consistency to all of the pieces involved. To that 
end I hope this paper provides a few steps toward developing sounder actuarial techniques for 
analyzing workers compensation high deductible loss development. 
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Appendix I 

1. Cumulative Distribution Function F(x) = 1 - e -( 1 ’ ; where x > O,p > O,a > 0 

2. Probability Density Function f(x) = !k??? .e -(al” 
P” 

3. E(x) = b -r(i + 1) ; where r(a) = ~x”-‘e-~‘& 

L.!LX&&calculations about $250.000 deductible limit 

Severities at ultimate 
p = 180.0;a =.2326 

= 6846 

E(X) - LEV(x) = 6846- 5064 = 1782 

&‘verities at JH Months 
f3 = 305.7;a =.26X 

E(x) = 3*5.7.T(.iQ25 + lj = 5530 
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Appendix I 

E(x)- LEV(x)= 5530-4722 =808 

LDF = 6846 = 1.238 
48 5530 

250000 _ 5064 
LD4, - 4722 = 1.o72 

XSLDF4',50°00 =%=2205 
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Appendix II 

Determination of IBNR for an Aggregate Excess of 1,250,OOO 
Risk Characteristics: Expected Unlimited Loss - 2,500,OOO: 

Severity - 6846.4; Frequency - 365.2 

a. Severity: Deductible = 250,000 
b. Frequency 
c. Limited Loss: a l b 

d. Entry Ratio: Aggregate I c 

e. Loss Excess of Deductible: 1 - LEV(x) / E(x) 
f. Adjustment for Limit: (1 + .8 l e) / (1 - e) 
g. Adjusted Limited Loss: Expected Unlimited Loss l f 
h. 1994 Expected Loss Group 

i. Insumnce Charge Ratio 
j. Insurance Charge Amount: c l i 

k. IBNR 

48 Ultimate 
4722.4 5064.4 
365.2 365.2 

1,724,620.5 1,849,518.9 
0.72 0.68 

0.310 0.260 
1.810 1.633 

4,525,OOO 4,082,500 
19 20 

.336 .369 
579,472 682,472 

682,472 - 579,472 = 103,000 
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The purpose of the monograph is to provide access to generalized linear models for loss 
reserving but initially with strong emphasis on the chain ladder. The chain ladder is 
formulated in a GLM context, as is the statistical distribution of the loss reserve. This 
structure is then used to test the need for departure from the chain ladder model and 
to formulate any required model extensions.

The chain ladder is by far the most widely used method for loss reserving. The chain 
ladder algorithm itself is non-stochastic, but Mack (1993) defined a stochastic version 
of the model and showed how a mean square error of prediction may be associated 
with any loss reserve obtained from this model.

There are, however, two families of stochastic model which generate the chain ladder 
algorithm for the estimation of loss reserve, as discussed in Taylor (2011). They require 
differing treatments for the estimation of mean square error of prediction. Both 
families of model may be formulated as generalized linear models. This is not widely 
appreciated of the Mack model. The monograph commences with the identification of 
these two families and their respective GLM formulations.

GLM formulation naturally invites the use of a bootstrap to estimate prediction error. 
The bootstrap estimates the entire distribution of loss reserve rather than just the mean 
square error of prediction obtainable from Mack’s algorithm. The monograph discusses 
both parametric and semi-parametric forms of the GLM bootstrap.

Emphasis is placed on the use of statistical software to implement the GLM formulation. 
This formulation and the associated software provide the diagnostics for testing the 
validity of the model. This aspect is covered by the existing literature but the monograph 
reviews this material in view of its importance.

Practical applications of the chain ladder often depart from the strict model. There are 
a number of causes but prominent among these are:

•  the need to smooth the age-to-age factor tail;

•  the need to give greater weight to more recent data than to older.

These two matters are considered within the GLM context. The subject of smoothing 
leads to a discussion of generalized additive models. 

As regards the second point, the GLM structure is used to test whether or not data 
are time-homogeneous (as is required by the strict chain ladder model) and, if not, to 
suggest a procedure for recognising and accommodating time-heterogeneity in the data. 
This may lead to the common practice of discarding all but the last m diagonals of the 
claim triangle, but more general approaches are also be considered.

As time-heterogeneity is not consistent with the chain ladder model, it amounts to 
model failure, and is recognizable from the diagnostics introduced above. Various 
forms of model failure are considered and, in each case, a model extension constructed 
to deal with it.

Finally, extension to several models that go beyond the scope of generalized linear 
models is discussed.
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The oral tradition of the CAS has it that what we know today as the “chain-ladder 
method” was first used in the 1950s at a small Midwestern insurance company. In fact, 
the method during those early years was named after that small Midwestern mutual 
insurance company. Since that time, its name has evolved variously to the “loss devel-
opment method,” the “chain-ladder method,” and the “link ratio” method. Since those 
early days, its use spread to other companies and ultimately became the most widely 
used actuarial methodology for estimating ultimate losses. This monograph begins at 
that same point, a point that, in effect, saw the chain-ladder method as a heuristic.

In this work, Taylor and McGuire note the evolution of the chain-ladder method 
through its various developmental stages: from the first time the estimate produced 
by the chain-ladder method was recognized as a maximum likelihood estimate of a 
stochastic model (Hachemeister and Stanard, 1975), through the development of a 
non-parametric model that recognized variance in the observations (Mack, 1993), 
and then the development of a collection of models that fit this description (Taylor, 
2011), and on to the recent demonstration that all these models may be represented by 
generalized linear models (Taylor, 2015).

In addition to describing the various formal models for which the chain ladder 
algorithm provides a maximum likelihood estimate of ultimate losses, the authors 
show how the generalized linear model outputs may be used to estimate the associated 
prediction error and thus test whether the chain ladder is a reasonable representation 
of the claim data. The authors also show how adjustments to recognize eccentricities 
in the data could be made within a GLM formulation. The authors introduce two 
variations of the chain-ladder method that could not be contemplated within the 
conventional chain-ladder framework.

The authors conclude by introducing a series of model extensions that deal with a 
variety of conditions that are faced in the daily work of an actuary.

The authors make use of two devices that facilitate the assimilation of the content of 
this monograph: one is that each chapter begins with a brief abstract that describes the 
contents in direct simple terms and the other is that a single data set is used throughout 
the monograph to illustrate the results of various models and their variations. To this 
end, the reader is able to compare outputs and points of sensitivity among the various 
model presentations.

This monograph in effect covers the chain-ladder method from its humble beginnings 
through all the layers that ultimately identify its stochastic parent distributions in their 
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most generalized form. It makes for a complete presentation that practicing actuaries 
can put to good use. The Monograph Editorial Board is grateful to the authors for a 
valuable contribution to the casualty actuarial literature.

C. K. “Stan” Khury
Chairperson

Monograph Editorial Board
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Chapter summary. The claims triangle, and its generalization to arrays of other shapes, 
is introduced, along with notation and a few basic concepts such as that of outstanding 
losses. A data set to be used consistently through a number of numerical examples is 
also introduced.

Next the chain ladder algorithm is introduced, and illustrated by application to the 
example data set. The Bornhuetter-Ferguson and Cape Cod extensions of the chain 
ladder are described.

1.1.  Introduction
The chain ladder is the most ubiquitous of loss reserving models. For much of its 

life it existed as an algorithm rather than a model. Here “algorithm” implies a mere 
calculation procedure, not necessarily subject to any rigorous theoretical foundation.

This was remedied by Hachemeister and Stanard (1975) who defined a stochastic 
model of claims data for which chain ladder estimation was found to be maximum 
likelihood (“ML”). Subsequently, the collection of models that fit this description was 
extended, as discussed by Taylor (2011).

It was further shown (Taylor 2015) that all of these models could be represented as 
generalized linear models (“GLMs”), enabling their parameter estimation by means 
of statistical software. The use of this software also returns a good deal of additional 
information about the model, particularly the dispersion of the parameter estimates. 
This may be used as the basis for estimation of the prediction error associated with 
the model.

The purpose of this monograph is to provide a brief account of these matters, 
specifically:

•	 to describe the various formal models for which the chain ladder algorithm provides 
an ML forecast of loss reserve;

•	 to discuss how these models may be used to estimate the associated prediction error;
•	 to discuss how the output of GLM software may be used to test whether the chain 

ladder is indeed a reasonable representation of the claims data; and
•	 to consider some natural extensions of the chain ladder that are well adapted to the 

GLM framework.

A prior knowledge of the chain ladder as a heuristic loss reserving algorithm, though not 
its theoretical properties, is assumed. Some of the latter will be discussed in Chapter 3. 

1. The Chain Ladder Algorithm
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Although the essentials of GLMs are reviewed, a nodding acquaintance of the reader with 
them would be distinct advantage.

In any event, the purpose of the monograph is not to provide a primer on either 
the chain ladder or GLMs, but rather to show that the former may be placed within the 
context of the latter with many beneficial results. The intention is to provide this in tight, 
minimalist mathematical form.

To venture into a more discursive approach to the intuition of the modeling would 
expand this work considerably, perhaps beyond monograph length. The reader interested 
in a more intuitive approach to GLMs might consult Lindsey (1997).

1.2.  Framework and Notation
It will be convenient to follow the framework and notation of Buchwalder, 

Bühlmann, Merz and Wüthrich (2006). They consider a K × J rectangle of claims 
observations Ykj with:

•	 accident periods represented by rows and labelled k = 1, 2, . . . , K;
•	 development periods represented by columns and labelled by j = 1, 2, . . . , J ≤ K.

Within the rectangle they identify a development trapezoid of past observations

{ }( )= ≤ ≤ ≤ ≤ − +Y k K j J K kK kj:1 and 1 min , 1

The complement of this subset, representing future observations is

{ }
{ }

( )= ≤ ≤ − + < ≤

= − + < ≤ − + < ≤

Y k K J K k j J

Y K J k K K k j J

K
c

kj

kj

:1 and min , 1

: 1 and 1

Also let

= ∪+
K K K

c

On the d-th diagonal of 𝔇K, k + j - 1 = d, and so the diagonal represents claims 
experience from the d-th calendar period contained in the trapezoid. Diagonals will 
be referred to as experience periods. The final diagonal of 𝔇K is the K-th diagonal, 
consisting of observations Yk,K-k+1, k = K - J + 1, . . . , K.

In general, the problem is to predict 𝔇c
K on the basis of observed 𝔇K.

At this stage the nature of the observations Ykj will be left unspecified. They might 
be defined to be paid losses, reported claim counts, etc. The mathematical structure of 
the chain ladder model does not require stipulation of this.

The usual case in the literature (though often not in practice) is that in which J = K,  
so that the trapezoid becomes a triangle. The more general trapezoid will be retained 
throughout the present monograph.

Define the cumulative row sums

∑=
=

X Ykj ki
i

j

(1-1)
1
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Let Sℛ(k) denote summation over the entire row k of 𝔇K, i.e., Σ ( )
=

− +
j

J K k
1

min , 1
 for fixed k.

Similarly, let S𝒞( j ) denote summation over the entire column j of 𝔇K, i.e., Σ =
− +

k
K j

1
1

for fixed j.
Also define, for k = K - J + 2, . . . , K,

∑= = −
= − +

− +R Y X Xk kj
j K k

J

kJ k K k (1-2)
2

, 1

∑=
=

R Rk
k

K
(1-3)

2

Note that R is the sum of the (future) observations in 𝔇c
K . It will be referred to as the 

total amount of outstanding losses. Likewise, Rk denotes the amount of outstanding 
losses in respect of accident period k. The objective stated earlier is to forecast the  
Rk and R.

1.3.  Data for Numerical Examples
A number of the developments described in subsequent chapters will be illustrated 

by numerical example. It will be convenient to relate all examples to the same data 
set. The chosen data set appears as Table 1-1. It will be referred to henceforth as “the 
example data set”.

It is seen that the generic “observations” Ykj of Section 1.2 have now been particu-
larized as incremental paid losses.

The triangle has been obtained from the data base of Meyers and Shi (2011). It 
is in fact the workers compensation triangle of the New Jersey Manufacturers Group. 

Table 1-1.   Triangle of Incremental Paid Losses for Numerical Examples

Accident Year

Incremental Paid Losses in Development Year ($000)

1 2 3 4 5 6 7 8 9 10

1988           1 41821 34729 20147 15965 11285   5924 4775 3742 3435 2958

1989           2 48167 39495 24444 18178 10840   7379 5683 4758 3959

1990           3 52058 47459 27359 17916 11448   8846 5869 5391

1991           4 57251 49510 27036 20871 14304 10552 7742

1992           5 59213 54129 29566 22484 14114 10000

1993           6 59475 52076 26836 22332 14756

1994           7 65607 44648 27062 22655

1995           8 56748 39315 26748

1996           9 52212 40030

1997         10 43962
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The “Accident year” column shows the actual accident year, and then its translated 
version in which the earliest accident year has been re-labelled “1”, as in the general 
framework set out in Section 1.2. This dual notation will be retained through sub
sequent chapters.

Although remaining chapters will be concerned with just this one type of triangle 
(an “incremental paid loss triangle”), it should be understood that there are many 
other commonly used types, namely:

•	 “cumulative paid loss triangles”, in which each entry is equal to total payments 
up to and including the relevant development year of the row concerned, i.e., the 
entry in the (k, j) cell is Xkj instead of Ykj as in the above example;

•	 “incurred loss triangles”, in which the entry in the (k, j) cell is the insurer’s estimate, 
as at the end of development year j, of the total claim cost incurred in accident year 
k, i.e., Xkj plus the insurer’s estimate of the claim cost remaining unpaid at the end 
of development year j.

The incurred loss triangles might reasonably be referred to as “cumulative incurred 
loss triangles”, and one might define “incremental incurred loss triangles”, obtained 
by differencing rows of the cumulative incurred loss triangles.

There are yet other triangles. These include triangles of claim counts, instead of 
claim amounts. These might contain, for example, counts of:

•	 Reported claims;
•	 Finalized claims;
•	 Unfinalized claims.

These data are required by the models explored in Chapter 4 of Taylor (2000).

1.4. The Chain Ladder Algorithm
This section will give a statement of the chain ladder algorithm as it has been used 

in years past. The description below is taken largely from Mack (1993).
Define the following age-to-age factors:

( )= = − = − −+f X X k K j J K kk j k j k j
ˆ , 1,2, . . . , 1; 1,2, . . . ,min 1, (1-4), 1

and the weighted average age-to-age factors:

∑= = −
=

−
f w f j Jj k j k j

k

K j
ˆ ˆ , 1,2, . . . , 1 (1-5)

1

where, for each fixed j, {wkj, k = 1, 2, . . . , K - j} is some set of weights, i.e., wkj ≥ 0 and

∑ =
=

−
wk j

k

K j

1 (1-6)
1
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Suppose the weights are chosen as

∑=
=

−
w X Xk j k j k j

k

K j

(1-7)
1

Then the weighted average age-to-age factors in (1-5) become

∑ ∑= +
=

−

=

−
f X Xj k j

k

K j

k j
k

K j
ˆ (1-8), 1

1 1

Now define the following forecasts of the Xkj corresponding to the Ykj ∈ 𝔇c
K :

= − + − + −X X f fk j k K k K k j
ˆ ˆ . . . ˆ (1-9), 1 1 1

whence, by (1-4), the forecasts of the Ykj are:

( )= −− + − + − −Y X f f fk j k K k K k j j
ˆ ˆ . . . ˆ ˆ 1 (1-10), 1 1 2 1

It follows from (1-5) that outstanding losses Rk are estimated by

( )= − = −− + − + − + −R X X X f fk kJ k K k k K k K k J
ˆ ˆ ˆ . . . ˆ 1 (1-11), 1 , 1 1 1

Finally, denote total (over all accident years) outstanding losses by R and their estimate by

∑=
=

−
R Rk

k

K
ˆ ˆ (1-12)

1

1

As the heading of the current section indicates, the estimation schema (1-8) to (1-12) 
is only an algorithm, not a model. No model has yet been formulated in the sense 
of expressing the observations in terms of a set of parameters. This will be addressed 
in Chapter 3.

1.5.  Numerical Example
The development in Section 1.4 provides the necessary background for an explanation 

of the choice of data set in Table 1-1. That triangle has been chosen purposefully rather 
than at random. The reasons for the choice can be seen in Table 1-3. This is constructed 
from Table 1-2, which is the table of cumulative observations Xkj in the notation of 
Section 1.2. The Xkj are obtained from Table 1-1.

Then Table 1-3 is the table of f̂ kj in the notation of Section 1.4. In this table the 
age-to-age factor labelled as belonging to development year j is f̂ kj, defined in (1-4) 
as relating development years j and j + 1.

The averaging of age-to-age factors over a column in (1-5) and (1-8) suggests an 
implicit assumption of random variation of the fkj about a constant parameter for fixed j. 
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This assumption will be made explicit in the model formulation of Section 3.3.1. In the 
meantime, the approximate constancy of the f̂ kj for fixed j in Table 1-3 may be noted.

As a consequence, the chosen data set will be compatible with the formal chain 
ladder models formulated in Chapter 3. The data set has been selected for this reason 
as it is to be used for numerical illustration of various aspects of the chain ladder.

1.6.  Common Chain Ladder Extensions
There are a couple of extensions to the chain ladder forecast just described that will 

not be discussed further in this monograph but are integral to loss reserving practices 

Table 1-2.   Triangle of Cumulative Paid Losses

Accident Year

Cumulative Paid Losses to and Including Development Year ($000)

1 2 3 4 5 6 7 8 9 10

1988           1 41821   76550   96697 112662 123947 129871 134646 138388 141823 144781

1989           2 48167   87662 112106 130284 141124 148503 154186 158944 162903

1990           3 52058   99517 126876 144792 156240 165086 170955 176346

1991           4 57251 106761 133797 154668 168972 179524 187266

1992           5 59213 113342 142908 165392 179506 189506

1993           6 59475 111551 138387 160719 175475

1994           7 65607 110255 137317 159972

1995           8 56748   96063 122811

1996           9 52212   92242

1997         10 43962

Table 1-3.   Triangle of Age-to-Age Factors

Accident Year

Age-to-Age Factor for Development Year

1 2 3 4 5 6 7 8 9

1988         1 1.830 1.263 1.165 1.100 1.048 1.037 1.028 1.025 1.021

1989         2 1.820 1.279 1.162 1.083 1.052 1.038 1.031 1.025

1990         3 1.912 1.275 1.141 1.079 1.057 1.036 1.032

1991         4 1.865 1.253 1.156 1.092 1.062 1.043

1992         5 1.914 1.261 1.157 1.085 1.056

1993         6 1.876 1.241 1.161 1.092

1994         7 1.681 1.245 1.165

1995         8 1.693 1.278

1996         9 1.767
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to the extent that they will be related here. Their origins lie in the fact that the chain 
ladder algorithm, at least in its incremental paid loss form, is highly sensitive to the 
amount of claim payments to date.

Note that, by (1-10), all forecasts in respect of accident year k are directly proportional 
to Xk,K-k+1, the total paid losses to date for that accident year. This sensitivity can be 
particularly acute in the case of the more recent accident years. For example, forecasts 
for the most recent accident year K will be directly proportional to the single observation 
Ykj (= Xkj).

Some variations of the chain ladder algorithm seek to reduce this sensitivity by 
relating the estimate ultimate claim cost of an accident year to some kind of budget 
(i.e., prior-to-data estimate) cost.

Let Bk denote a budget ultimate claim cost for accident year k. An estimate of the 
portion of this paid in the future (i.e., after development year K - k + 1), based on the 
age-to age factors (1-8) is obtained by inversion of (1-11) thus:

= − = −








( )

− +
− + −

R B X B
f f

k
B

k k K k k
K k J

ˆ ˆ 1
1

ˆ . . . ˆ (1-13), 1
1 1

There are two common forms of this forecast used in practice, involving different 
budget claim costs:

•	 Bornhuetter-Ferguson forecast (Bornhuetter and Ferguson, 1972): Bk = Pkpk, 
where Pk denotes earned premium for accident year k, and pk budget loss ratio for 
the accident year; and

•	 Cape Cod forecast (Straub, 1988): Bk = Pk SK
i=1 wi [(Xi,K-i+1 + R̂i)/Pi]/SK

i=1 wi, with 
wi = 1/f K̂-i+1 . . . f Ĵ-1.

The Bornhuetter-Ferguson forecast uses a budget ultimate claim cost calculated accord-
ing to the budget loss ratio for the relevant accident year. The Cape Cod forecast is 
similar but uses the same budget loss ratio for each accident year. This single loss ratio 
is a weighted average of the loss ratios forecast by the chain ladder for the individual 
accident years.
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2.  Stochastic Models

Chapter summary. This chapter provides the theoretical background for GLMs. A 
GLM assumes observations to be subject to a distribution drawn from the Exponen-
tial Dispersion Family. This family, and its properties, are introduced. Important sub-
families, namely the Tweedie sub-family, and the over-dispersed Poisson (nested within 
Tweedie), are identified.

A GLM is then defined and explained. The two types of covariate, categorical and con-
tinuous, are discussed. A number of aspects of goodness-of-fit of a GLM are discussed, 
including deviance and residuals. The use of weights to control heteroscedasticity, and 
to deal with outlying observations, is explained. The use of a GLM to generate forecasts 
is also discussed.

2.1.  Exponential Dispersion Family
Subsequent chapters will present the chain ladder models in terms of GLMs, 

which will be defined in Section 2.2. GLMs rest on the family of distributions called 
the exponential dispersion family (“EDF”), which is defined in the present subsection.

2.1.1. The Exponential Dispersion Family in General
The EDF was introduced by Nelder and Wedderburn (1972), and discussed in 

detail in McCullagh and Nelder (1989). It is the family of distributions with probability 
density function (“pdf”) p(y; q, f) of the form

( ) ( )
( ) ( )π θ φ =

θ − θ
φ

+ φln y
y b

a
c y; , , (2-1)

where

y is the value of an observation Y;
q is a location parameter called the canonical parameter;
f is a dispersion parameter, sometimes called the scale parameter;
b(.) is called the cumulant function, and determines the shape of the distribution;
exp c(y, f) is a normalizing factor producing unit total mass for the distribution.

It is assumed that the functions a, b, c are continuous and that b is one-one and twice 
differentiable with first derivative also one-one.

A family of distributions is specified by the selection of a, b, c, and members of this 
family are then characterised by the parameters q, f. A specific member of this family 
will be denoted EDF(q, f; a, b, c).
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The form (2-1) is one which includes a number of the well-known distributions, 
as illustrated in Table 2-1.

The selection of an EDF distribution from this table to be assumed within a model 
will depend on the subject of the model and its properties. For example, the Poisson 
and binomial cases might be suitable for a model of counts; the other cases for amounts.

It may be shown that, when Y is distributed according to (2-1),

[ ] ( )= ′ θE Y b (2-2)

( ) ( )[ ] = φ ′′ θVar Y a b (2-3)

If E [Y ] is denoted by µ, then (2-2) establishes a connection between µ and q:

( ) ( )θ = ′ µ−b (2-4)1

which justifies the above description of q as a location parameter.
The relation (2-4) is one-one and so, with just a slight abuse of notation, one may 

write the pdf of y as p(y; µ, f), as an alternative to p(y; q, f).
Use of (2-2) converts (2-3) to the form:

[ ] ( ) ( )= α φ µVar Y V (2-5)

where

( )( ) ( ) ( )µ = ′′ ′ µ−V b b (2-6)1

and V (µ) is called the variance function.
Note that the somewhat confusingly named variance function is not equal to the 

variance. In fact, (2-5) decomposes the variance into factors that depend on the mean 
and the dispersion parameter respectively. The variance function is the factor dependent 
on the mean.

For all practical purposes, it is sufficient to restrict (2-1) to the special case

( )φ = φa w (2-7)

Table 2-1.    Examples of Distributions from the EDF

Distribution b(q) a(f) c(y, f)

Normal ½q2 f -½[y2/f + ln(2pf)]

Poisson exp q 1 -ln y!

Binomial ln (1 + eq) n -1 ln( n
ny)

Gamma -ln (-q) v -1 v ln(vy) - ln y - ln (Gv)

Inverse Gaussian -(-2q)-½ f -½[ln (2pfy3 + 1/fy)]
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for some constant w, and this restriction will be assumed henceforth. Variation of w from 
one observation to another creates any required variation in a(f), as will be explained 
in Section 2.2.1. However, unless otherwise stated in the following, it will be assumed 
that w = 1.

2.1.2. The Tweedie Sub-Family
The Tweedie sub-family of the EDF was introduced by Tweedie (1984). It is 

obtained from the EDF by restriction of the variance function as follows:

( )µ = µ ≤ ≥V p pp, 0 or 1 (2-8)

So, according to (2-5) and (2-7), Var[Y ] = fµp and variance is proportional to a power 
of the mean.

It may be shown that this form of variance function implies that the cumulant 
function takes the form

[ ]( ) ( ) ( )θ = − − θ−
−
−b p p

p
p2 1 (2-9)1

2
1

and this in turn implies

[ ]( )µ = − θ −p p1 (2-10)
1

1

( ) ( ) ( ) ( )π µ φ = µ
−

− µ
−







φ + φ
− −

ln y
y

p p
c y

p p

; ,
1 2

, (2-11)
1 2

Note that several of the example distributions appearing in Table 2-1 are characterized 
by a cumulant function of the form (2-9). In fact all distributions in that table other 
than binomial satisfy this condition, or at least a limiting version of it, when it is 
recognized that

[ ]( )− θ = θ
↓

−p exp
p

plim 1 (2-12)
1

1
1

( )− θ = θ
↑

− −p ln
p

plim 2 (2-13)
2

1 2

The Tweedie sub-family, which will be denoted Tw(µ, f; p), thus contains these 
distributions, as set out in Table 2-2. It also contains the over-dispersed version of 
the Poisson distribution. The final column here omits the term c(y, f).

It follows from (2-8) that the tail heaviness of Tweedie distributions increases 
with increasing p. The choice of Tweedie member for a model may therefore depend 
on the heaviness of tail indicated by the data. If, for example, a model based on 
index p generates more widely dispersed residuals than are consistent with that model, 
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then consideration might be given to increasing p. This matter is discussed further in 
Section 6.6.

Moreover, it has been shown (Jorgensen and Paes de Souza, 1994) that the cases 
1 ≤ p < 2 can be identified as compound Poisson distributions with gamma severity 
distributions.

2.1.3. The Over-Dispersed Poisson Sub-Family
The over-dispersed Poisson (“ODP”) distribution will play a central role in some 

subsequent chapters, and so is discussed a little further here.
As noted in Table 2-2, it is the Tweedie case p = 1. It may be represented, as a 

family, by Tw(µ, f; 1), which will be abbreviated to ODP(µ, f). From the last column 
of that table, its pdf is

[ ]( ) ( )π µ φ = µ −µ φ + φ = φ φφy exp c y yy; , , , 0, , 2 , etc. (2-14)

with µ = eq.
It may be checked that a unit total probability mass is obtained if

[ ]( ) ( )φ = φ −exp c y y, ! (2-15)1

Substitution of (2-15) in (2-14) yields

( ) ( )
( )π µ φ =

µ −µ φ
φ

= φ φ
φ

y
exp

y
y

y

; ,
!

, 0, , 2 , etc. (2-16)

and this is recognizable as the Poisson distribution

∼ ( )φ µ φY Poiss (2-17)

From this it follows that

[ ] [ ]= φ φ = µE Y E Y (2-18)

Table 2-2.    Some Well-Known Members of the Tweedie Family

Distribution p b(q) µ ln p(y; µ, f)

Normal 0 ½q2 q [yµ - ½µ2]/f

Over-dispersed Poisson 1 exp q exp q [y ln µ - µ]/f

Gamma 2 ln(-q) -1/q [-y/µ - ln µ]/f

Inverse Gaussian 3 -(-2q)½ (-2q)-½ [-(y/2 µ2) + 1/µ]/f
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[ ] [ ]= φ φ = φµVar Y Var Y (2-19)2

Note that (2-18) checks with the definition of µ, and (2-19) checks with (2-5), (2-7) 
and (2-8). Note also that, in the case f = 1, (2-17) reduces to the simple Poisson

∼ ( )µY Poiss (2-20)

Thus, by (2-17)–(2-19), the ODP variate is similar to a Poisson variate but with the 
relation between variance and mean changed by the dispersion parameter f.

An ODP assumption is often a convenient one when little is known of the subject 
distribution. As a simple modification of the Poisson distribution, it retains much of the 
simplicity of that case, but its 2-parameter nature endows it with much more flexibility. 
Nonetheless, as in the case of any other distributional assumption, it requires validation 
by reference to the data (see Section 6.6). Its major relevance to this monograph will 
become apparent in Section 3.3.

2.2.  Generalized Linear Models (GLMs)
2.2.1.  Definition

For the purpose of the current sub-section, let p(.; µ, f) denote a member of the 
EDF, fixed except that the parameters µ, f remain variable.

Consider a sample of observations Yi, i = 1, 2, . . . , n. Suppose that each Yi is 
associated with a known q-vector (xi1, xi2, . . . , xiq) of predictors (or covariates). Let 
the transpose of this vector be denoted xi. Suppose also that these observations satisfy 
the following conditions:

(1)	Yi ~ p(.; µi, fi) with the µi being unknown parameters.
(2)	h(µi) = xT

i b, where h(.), known as the link function, is a given one-one function 
with range (-∞, +∞), b is a q-vector of unknown parameters, and the upper T 
denotes vector or matrix transposition.

(3)	The observations Yi are stochastically independent.

The structure defined by conditions (1)–(3) is called a generalized linear model 
(“GLM”), discussed in depth by McCullagh and Nelder (1989). The variate Yi is called 
the response and the linear expression xT

i b is called the linear response. The choice of 
link function must be such as to transform the mean of each observation into a linear 
function of the parameter vector b. An example will be given in Section 3.3.2.

The dispersion parameters fi may be known but more commonly it is assumed that

φ = φ wi i (2-21)

with f unknown but the wi (called weights) known.
The GLM is a regression model. Note that, if p(.; µi, fi) = n(.; µi, fi), the normal 

density, and h = identity, then conditions (1) and (2) may be expressed in the form

∼ ( )= β + ε ε φY x Ni i
T

i i iwith 0, (2-22)
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This is recognizable as a weighted linear regression model. Thus a GLM may be 
regarded as a generalization of linear regression in which:

•	 The relation between observations and covariates may be non-linear;
•	 Error terms may be non-normal.

It will sometimes be useful to represent condition (2) in vector and matrix notation. 
Let Y denote the vector whose i-th component is Yi, µ denote the vector whose i-th 
component is µi, and let X denote the matrix whose i-th row is xT

i . The matrix X is 
called the design matrix of the regression. Then condition (2) is written as

( )µ = β−h X (2-23)1

where h-1 is understood to operate componentwise on its vector argument.
The parameter vector b is related to the canonical parameters q of (2-1) through 

(2-2) and (2-23). Within the GLM, there will be an n-vector (q1, . . . , qn) of canonical 
parameters, one corresponding to each observation. Let this vector henceforth be 
denoted by q. Then

( )( ) [ ]′ θ = = µ = β−b E Y h xi i i i
T (2-24)1

It is evident from (2-8), (2-24) and the discussion surrounding Table 2-2 that selection 
of a GLM consists of:

•	 selection of a cumulant function, controlling the model’s assumed error distribution;
•	 as part of this, selection of index p, which controls the relation between the model 

mean and variance;
•	 selection of the covariates xT

i , those explanatory variables considered to influence 
the cell mean µi;

•	 selection of a link function, which specifies the functional relation between the cell 
mean µi and the associated covariates.

Chapter 6 discusses in some detail how diagnostics derived from the data might be 
used to guide these selections.

One way in which the parameters of the GLM may be estimated from data is by 
maximum likelihood estimation (“MLE”). Usually, the MLE solutions are not expressible 
in closed form, and numerical solution is required. The numerical solution is non-
trivial, and specialist software is required.

Well known GLM software packages are SAS, R and Emblem. These use MLE, 
and this form of estimation will be assumed for the remainder of this monograph.

Sections 2.2.2 to 2.2.6 discuss a number of aspects of a GLM that are essential 
to its meaningful formulation. As part of the present chapter, which establishes the 
theoretical background, these sections are abstract in nature. However, many of the 
features discussed are illustrated numerically in Chapter 6.
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2.2.2.  Categorical and Continuous Covariates
Some covariates are discrete by nature, possibly non-numerical (e.g., gender). Such 

covariates are usually referred to as categorical in the regression context. Other covariates 
are continuous by nature (e.g., age).

Consider a categorical variate with m possible values (often referred to as levels 
of the variate), denoted x1, . . . , xm. This is represented in the GLM as m distinct 
0–1 variates xk+1, . . . , xk+m, where x1, . . . , xk, xk+m+1, . . . denote the other regression 
covariates. The 0–1 variates are defined as

= ξ

=

+xk r r1 if the categorical variate assumes the value (2-25)

0 otherwise

Note that

∑ =+
=

xk r
r

m
1 (2-26)

1

For example, if one wished to include development year as a covariate in a model, this 
might be done by treatment of development year as a categorical variate x with J levels 
x = j, j = 1, . . . , J, where the associated 0–1 variates are defined as:

= ξ =

=

+x jk j 1 if

0 otherwise

This treatment of categorical variates can sometimes lead to the introduction of 
redundant parameters. This will be illustrated, and the remedy given, in Sections 3.2 
and 3.3.2, where representation of development year as a categorical variate will be 
pursued further.

A continuous variate on the other hand assumes numerical values in a continuous 
range (e.g., age). Such a variate may be represented in a regression as simply itself. 
Alternatively, it may be represented as some transformation of itself.

For example, the function

[ ]( ) ( )= − − <L x min M m max x m m MmM , 0, with (2-27)

is linear with unit gradient between m and M, and constant outside this range, as 
illustrated in Figure 2-1.

Functions of this sort may be used to incorporate linear splines (piecewise linear 
functions) in the regression. For example, the function

∑ ( )β
=

+L xk m m
k

K

k k (2-28)
1

1

is a linear spline with knots at x = m1, . . . , mK+1 and gradient bk for x ∈ [mk, mk+1].
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The functions Lmkmk+1(x) are called basis functions since the spline may be con-
structed as a linear combination of them. If these basis functions are included as 
covariates in a regression, then the regression will return estimates of the gradients 
bk. Splines of higher degree (e.g., cubic splines) may be similarly incorporated in the 
regression model by means of appropriately defined basis functions. Basis functions 
will be central to the development of generalized additive models in Section 7.2.

2.2.3.  Goodness-of-Fit and Deviance
Let b̂ denote the MLE of b. The vector

( )= β−Y h Xˆ ˆ (2-29)1

is the MLE of µ and is referred to as the vector of fitted values (c.f. (2-23)).
The principal measure of goodness-of-fit of a GLM is its scaled deviance, defined as

∑

( ) ( )

( ) ( )

( ) = π θ φ − π θ φ 

= π θ φ − π θ φ 

( )

( )

=

D Y Y ln Y ln Y

ln Y ln Y

s

i
s

i
i

n

, ˆ 2 ; ˆ , ; ˆ, (2-30)

2 ; ˆ , ; ˆ,
1

where q is the vector of canonical parameters introduced just before (2-24), q̂ is the 
MLE of q, and q̂(s) is the estimate of q in the saturated model, a model with a parameter 
for every observation so that Ŷ  = Y.

It should be noted that nomenclature differs between authors. For example, 
McCullagh and Nelder refer to (2-30) as the scaled deviance, as is done here, whereas 
other authors refer to just the deviance.

It is evident from a comparison of (2-30) with (2-1) that maximization of likelihood 
is equivalent to minimization of deviance. A smaller scaled deviance indicates improved 
goodness-of-fit. The minimum achievable deviance is zero, when there is no difference 
between observations and fitted values (as in the saturated model).

Calculation of the scaled deviance (2-30) requires computation of a value for f. 
However, it is evident from (2-1) that f will factor out of any minimisation of scaled 
deviance, whence its value is irrelevant to MLE of parameters.

Figure 2-1.    Illustration of the Function LmM(x)



16	 Casualty Actuarial Society

Stochastic Loss Reserving Using Generalized Linear Models

For this reason it is common to define an unscaled version of the deviance, referred 
to subsequently as just the deviance, as follows:

∑ ( ) ( )( ) = π θ − π θ 
( )

=
D Y Y ln Y ln Yi

s
i

i

n
* , ˆ 2 ; ˆ ,1 ; ˆ,1 (2-31)

1

which, in effect, ignores f. MLE is then carried out by minimization of D*(Y, Ŷ ) with 
respect to q̂, equivalently b̂.

The deviance can be viewed as the logarithm of a likelihood ratio and, by an 
application of Wilks’ theorem, it is asymptotically c2 distributed with n - p as the 
number of degrees of freedom. The usual estimate of the scale parameter f is therefore

( ) ( )φ = −D Y Y n pˆ * , ˆ (2-32)

2.2.4.  Residuals
Pearson Residuals

Define the standardized Pearson residual associated with observation Yi as

( )= − σR Y Yi
P

i i i
ˆ ˆ (2-33)

where ŝ2
i is an estimator of s2

i  = Var[Yi ].
If it may be assumed that Ŷi is approximately unbiased as an estimator of µi, and 

that Var[Yi - Ŷi ] differs little from Var[Yi ] (these assumptions are often reasonable), 
then approximately

[ ] [ ]= =E R Var Ri
P

i
P0 and 1 (2-34)

It is in fact possible to correct (2-33) with a further scalar multiplier in order to ensure 
that Var[RP

i ] = 1 but details are not given here.
In this case a plot of the Yi against i will produce a scatter of residuals evenly 

about zero (unbiasedness) and with uniform dispersion as one reads from left to right 
(homoscedasticity). An example appears as Figure 2-2.

In fact the homoscedasticity of Figure 2-2 is only approximate, as is indicated by 
Figure 2-3. This plots the standard deviation of residuals by age group (right-hand 
scale). The standard deviation varies from about 0.8 to about 1.1, indicating mild 
heteroscedasticity. The same figure plots the lower quartile (“p_25”) and upper quartile 
(“p_75”) of the residuals in each age group (left-hand scale).

Routine model validation includes the examination of a separate residual plot 
against each covariate (e.g., age), checking for unbiasedness and homoscedasticity. 
The reason that unbiasedness is sought is obvious. The reason for the requirement of 
homoscedasticity will be discussed in Section 2.2.5.
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Figure 2-2.    Example of Unbiased Approximately Homoscedastic Residual Plot

Figure 2-3.    Example of Biased Homoscedastic Residual Plot
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Deviance Residuals
Although Pearson residuals have a simple intuitive interpretation, they are linear 

transformations of the observations and will reproduce any non-normality that exists in 
them. For this reason it is common to use a different form of residual in the assessment 
of a GLM. This is the standardized deviance residual, defined in relation to the 
observation Yi as

( )( )= − φR sgn Y Y di
D

i i i
ˆ ˆ (2-35)

1
2

where di is the contribution of the i-th observation to the deviance D*(Y, Ŷ ).
As was the case with Pearson residuals, it is possible to correct (2-35) with a 

further scalar multiplier in order to ensure that Var[R D
i ] = 1 but again details are not 

given here.
Pierce and Schafer (1986) showed that deviance residuals are normally distributed 

with error of order m-½, where m is a certain index derived from the specific member of 
the EDF associated with the GLM. As a result of this property, deviance residuals often 
remove much of the non-normality present in Pearson residuals and, in consequence, 
are often more useful.

An example of this is given in Figure 2-4 and Figure 2-5, which plot histograms of 
residuals from a model of individual auto bodily injury claims in one Australian state. 
Individual claims are modeled as gamma distributed with mean value depending on 
various claim characteristics but constant (and large) coefficient of variation, 1.16. 

Figure 2-4.    Histogram of Standardized Pearson Residuals
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Figure 2-5.    Histogram of Standardized Deviance Residuals

Figure 2-4 plots standardized Pearson residuals, and Figure 2-5 plots standardized 
deviance residuals.

In each case the best normal approximation to the histogram, calculated by the 
method of moments, is also shown. The Pearson residuals are seen to be highly skew and 
poorly fit by the normal approximation. The deviance residuals, while still exhibiting 
some degree of non-normality, are seen to be much closer to normal.

2.2.5.  Outliers and the Use of Weights
The need for homoscedasticity was discussed in Section 2.2.4. The reason for this 

will be discussed below. However, first a short digression on the use of variance weights 
(or simply weights).

If a residual plot reveals heteroscedasticity, correction may be made by means 
of weights. Consider the following example that is rather exaggerated but illustrates 
the point nonetheless. Suppose a GLM has been formulated on the assumption of 
homoscedasticity, specifically that (see (2-5) and (2-7))

[ ] ( )= φ µVar Y Vi i (2-36)

with f independent of i.
Suppose that standardized Pearson residuals (2-33) have been plotted by age and 

it appears that residuals above age 55 have double the standard deviation of those 
below age 55.
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First use (2-5) and (2-7) to express (2-33) in the form

( ) ( )= − φ µ R Y Y Vi
P

i î
ˆ ˆ (2-37)

1
2

Then the observed heteroscedasticity indicates that the value of f for ages above 
55 is in fact about four times that for lower ages. The heteroscedasticity would be 
removed if the model were adjusted to reflect this variation in f over age. This may 
be achieved by the use of weights. By (2-21) the required result may be achieved 
by setting

	wi	=	1 if the i-th observation involves an age below 55
		 =	¼ if the i-th observation involves an age above 55

In the default case in which there is no explicit introduction of weights (Section 2.2.5), 
all observations will be equally weighted in parameter estimation. This is appropriate 
if all observations are subject to the same f, but undesirable otherwise. It is intuitively 
obvious that observations of larger variance than this should receive lesser weight than 
those of smaller variance.

Indeed, it can be shown that estimation efficiency will be optimized if each obser-
vation is assigned a weight that is inversely proportional to its f. As noted above, the 
relative values of f for different observations are reflected in the variance of their stan-
dardized residuals.

Thus, in general, if a residual plot displays heteroscedasticity, one adjusts weights 
roughly in inverse proportion with variance of the residuals. A specific example of 
the use of weights in this way is given in Section 6.6 (see particularly Figure 6-15, 
Figure 6-17 and associated text).

A residual plot might also identify isolated observations with very large residuals. 
These are referred to as outliers. Such observations can influence the regression unduly 
by shifting the fitted values away from the main body of observations in favor of the 
outliers, as illustrated in Figure 2-6.

The solid line in the diagram is the result of linear regression using all observations, 
including the outlier at x = 14, whereas the dotted line is the result of linear regression 
excluding this observation.

In the event that a specific observation is identified as an outlier, and its inclusion 
in the regression considered distorting, it may be excluded by assigning it zero weight.

Care must be taken in the exclusion of any data points. For example, if the outlier 
represented a major natural event, whereas the other observations represented attritional 
events, the exclusion of the former from the regression may be appropriate but the cost 
of major natural events would need to be accounted for somewhere.

Moreover, the exclusion of selected observations from parameter estimation will 
have consequences for the estimation of prediction error, as discussed in Sections 5.3.1 
and 5.3.2.
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2.2.6.  Forecasts
Recall from Section 2.2.1 that

( )[ ] = µ = β−E Y h xi i i
T (2-38)1

When the GLM is to be used for forecasting, as in loss reserving, the covariate vectors xi 
will typically include information on the time of measurement. They may also contain 
other information. For example, in the case of workers compensation claims, the xi 
may include the type of claim (income replacement, medical only, etc.).

When the model is applied to forecast future observations, those observations will 
be characterized by their own covariate vectors xi. These will be distinct from those in 
the data set in that, to the extent that they include time variates, their values will all 
relate to the future.

It will be convenient to distinguish future observations from the past Yi by the 
notation Y *i , characterised by the covariate vector x*i . In general, the addition of a star 
to a symbol will indicate future values of the variate represented by the corresponding 
unstarred symbol. Thus, for example, Y * will denote the vector of target random 
quantities Y *i  to be forecast, and the relation (2-23) is extended to future values as 
follows:

( )µ = β−h X* * (2-39)1

where X * is the matrix whose rows are the (x*i )T discussed above and may be referred 
to as the forecast design matrix.

A reasonable forecast of Y * is then

( )= µ = β−Y h Xˆ* ˆ* * ˆ (2-40)1
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Figure 2-6.    Illustration of Distortion of Regression by Outlier
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3. � Stochastic Models Supporting  
the Chain Ladder

Chapter summary. This chapter is concerned with the fact that the chain ladder 
algorithm of Chapter  1, known to many actuaries as merely a heuristic device, 
in fact provides the maximum likelihood forecasts of outstanding claims for a 
couple of formal models. Several formal chain ladder models from the literature 
are surveyed.

Two distinctly different stochastic models are defined whose MLEs of future claims 
experience are the same as the predictions of the heuristic algorithm. Moreover, these 
MLEs are also seen to possess certain minimum variance properties. These results are 
summarized in three theorems.

It is shown that these formal stochastic models are expressible as GLMs, and therefore 
estimates and forecasts from these GLMs will match the chain ladder estimates and 
forecasts. This is illustrated by numerical example.

Practical applications of the chain ladder often incorporate various ad hoc adjustments, 
such as omission of older diagonals from the claims triangle or omission of isolated 
observations that are considered rogue. It is shown that such adjustments can be 
accommodated within the GLM formulation, thus maintaining a formal model 
structure in their presence.

3.1.  Mack Models
3.1.1.  Non-Parametric Mack Model

Mack (1993) introduced a stochastic chain ladder model that has subsequently 
become known as the Mack model. It satisfies the following conditions:

(M1) � Accident years are stochastically independent, i.e., Yk1 j1, Yk2 j2 are independent if 
k1 ≠ k2.

(M2)  For each k = 1, 2, . . . , K, the Xkj ( j varying) form a Markov chain.
(M3)  For each k = 1, 2, . . . , K and j = 1, 2, . . . , J-1,

(a)  E [Xk,j+1|Xkj] = fj Xkj for some parameter fj > 0;
(b)  Var[Xk,j+1|Xkj] = s2

j Xkj for some parameter sj > 0.

The model was stochastic in the sense that it considered not only expected values but 
also variances of observations. However, it was non-parametric in the sense that it did 
not consider the distribution of observations.
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Mack derived a number of results from this model, including the following:

Result 1:  The conventional chain ladder estimators fĵ of fj according to (1-8) are:
(a)  unbiased; and
(b) � minimum variance among estimators that are unbiased linear combi

nations of the f k̂ j defined by (1-4).
Result 2: � The conventional chain ladder estimator R̂ k of Rk given by (1-11) is  

unbiased.

3.1.2.  Parametric Mack Models
A parametric version of the Mack model requires that assumption (M3) be supple

mented by a distributional assumption. Parametric versions of the Mack model were 
studied by Taylor (2011). The observations Yk,j+1|Xkj were assigned distributions according 
to a member of the EDF, creating the EDF Mack model, defined as follows.

(EDFM1)  As for (M1).
(EDFM2)  As for (M2).
(EDFM3)  For each k = 1, 2, . . . , K and j = 1, 2, . . . , J-1,

(a)  Yk,j+1|Xkj ~ EDF(qkj, fkj; a, b, c); and
(b)  As for (M3a).

Assumption (EDFM3a) provides the required distributional assumption, with a general 
requirement that conditional observations be distributed according to some specific 
member of the EDF. Assumption (EDFM3b) retains the same form of conditional 
expectation as in the Mack model. No assumption about variance has been made other 
than that inherent in the selected EDF member. So the form of variance allowed in the 
EDF Mack model is more general than in the non-parametric Mack model.

Taylor (2011) also considered the following sub-families of the EDF Mack models:

Tweedie Mack model, in which (EDFM3a) is replaced by Yk,j+1|Xkj ~ Tw(µkj, fkj; p).
ODP Mack model, in which (EDFM3a) is replaced by Yk,j+1|Xkj ~ ODP(µkj, fkj).

Taylor derived the following result.

Theorem 3.1.    Suppose that the data array 𝔇K is a triangle ( J = K ) with observations 
subject to the EDF Mack model defined by assumptions (EDFM1-3).

(a) � If assumption (M3b) also holds, then the model’s MLEs of the fj are the conventional 
chain ladder estimators fĵ from (1-8). These are in turn unbiased estimators in the 
Mack model (see Result 1 of Section 3.1.1).

(b) � If the EDF Mack model is restricted to an ODP Mack model in Assumption 
(EDFM3a), and if in addition the dispersion parameters fkj are just column 
dependent (fkj = fj) (the condition (M3b) automatically holds in this case), then 
the f ĵ from (1-8) are minimum variance unbiased estimators (“MVUEs”) of the fj.

(c) � Under the same conditions as in (b), the predictors X̂kj, R̂k defined by (1-9) and 
(1-11) are also MVUEs of Xkj, Rk. n

The results of the theorem were also shown to extend to certain cases in which 
the distributions of the Ykj were binomial or negative binomial.
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The theorem is remarkable because it shows that estimates and forecasts that had 
been introduced to the actuarial literature many years earlier on an entirely heuristic 
basis turn out to be optimal estimators in the MLE and MVUE sense.

This MVUE result is much stronger than that of Mack referred to in Section 3.1.1 
as the estimators here are minimum variance out of all unbiased estimators, not just 
out of the linear combinations of the f k̂ j.

3.2.  Cross-Classified Models
Consider a model of 𝔇+

K defined by the following conditions:

(EDFCC1)  The random variables Ykj ∈ 𝔇+
K are stochastically independent.

(EDFCC2)  For each k = 1, 2, . . . , K and j = 1, 2, . . . , J,
(a)  Ykj ~ EDF(qkj, fkj; a, b, c);
(b)  E[Ykj] = akbj for some parameters ak, bj > 0; and
(c)  ∑ J

j=1 bj = 1.

Models subject to (EDFCC2b) are variously referred to in the literature as cross-
classified, ANOVA, or non-recursive. This model will be referred to here as the EDF 
cross-classified model.

The condition (EDFCC2c) merely removes redundancy from the model’s parameter 
set. If it were absent, all a’s could be doubled and all b’s halved without any substantive 
change to the model. A single restriction on the parameters is required to render their 
values unique. Condition (EDFCC2c) is widely used for this purpose but other constraints 
would serve equally well, e.g., b1 = 1 or a1 = 1.

It is noteworthy that the parameters of the EDF cross-classified model consist of 
both row and column parameters ak and bj respectively, whereas the only parameters 
contained in the Mack models are the column parameters fj. This appears to imply that 
the EDF cross-classified structure is more general.

There was considerable discussion of this around the turn of the century (e.g., Mack 
and Venter, 2000; Verrall, 2000) in which it was pointed out that, although the Mack 
model contains no explicit row parameters, its conditioning on prior observations (see 
(M3a)) in effect plays the same role. The accumulated experience Xk,J-k +1 of row k serves 
as a row parameter in the forecast of future experience of that row.

Just as for the EDF Mack model of Section 3.1.2, Tweedie and ODP sub-families 
of the EDF cross-classified family may be identified. These will be referred to as the 
Tweedie cross-classified family and ODP cross-classified family respectively.

Let âk, b̂j denote MLEs of ak, bj and let Ŷ kj = âkb̂j denote the fitted value associated 
with Ykj ∈ 𝔇K or the forecast of Ykj ∈ 𝔇c

K. The following result was obtained by England 
& Verrall (2002).

Theorem 3.2.    Suppose that the data array 𝔇K is a triangle ( J = K ) with observations 
subject to the ODP cross-classified model defined by assumptions (EDFCC1-2) and 
the following additional conditions:

(EDFCC3a)  In (EDFCC2a) Ykj is restricted to an ODP distribution;
(EDFCC3b)  The dispersion parameters fkj are identical for all cells in 𝔇+

K (i.e., fk j = f).
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Then the MLE fitted values and forecasts Ŷkj are the same as those given by the conven
tional chain ladder forecasts from (1-10). n

The same result had been obtained earlier for the special case of the simple Poisson 
distribution (f = 1) by Hachemeister and Stanard (1975) and Renshaw and Verrall 
(1998).

The same results are not true for EDF distributions more general than ODP. In 
fact, the explicit (and different) ML equations for the Tweedie case are given by Peters, 
Shevchenko and Wüthrich (2009) and by Taylor (2009), and for the general EDF case 
by Taylor (2011).

The MLEs Ŷ kj will not be unbiased in general. However, Taylor (2011) obtained 
the following result.

Theorem 3.3.    Suppose that the data array 𝔇+
K is subject to the same conditions as in 

Theorem 3.2. Suppose also that the fitted values and forecasts Ŷ kj and R̂k are corrected 
for bias. Then they are MVUEs of Ykj and Rk respectively. n

Theorems 3.2 and 3.3 together parallel Theorem 3.1 but are even more remarkable. 
First, they state that the forecasts obtained from the ODP Mack and ODP cross-
classified models are identical (and equal to those obtained from the conventional 
chain ladder) despite the very different formulations of the models. Moreover, 
notwithstanding that the cross-classified model is formulated in terms of parameters 
ak, bj, one may obtain forecasts without any consideration of them, but working as if 
the model were ODP Mack.

Numerical Example
It is instructive to illustrate this by reference to the data set in Table 1-1. It is worthy 

of note at the outset that the Mack models apply to cumulative data, whereas the cross-
classified models apply to incremental data.

Commence by applying the chain ladder algorithm of Section 1.4 to the data. 
Average age-to-age factors are obtained by the application of (1-8), yielding the results 
in Table 3-1.

Forecasts are obtained by means of (1-9). For example, the first cell requiring forecast 
for accident year 1996 is that relating to development year 3. The forecast is X̂1996,3 = 
X1996,2 f 2̂ = 92242 × 1.261 = 116312. Hence Ŷ1996,3 = 116312 - 92242 = 24070.

The full set of forecasts is given in Table 3-2, where the bold-face diagonal is merely 
transferred from Table 1-2, and then subsequent cells contain forecasts according to 
(1‑9). The final column of the table contains the amounts of estimated outstanding 
losses R̂k, obtained by means of (1-11).

Table 3-1.    Average Age-to-Age Factors

Average Age-to-Age Factor for Development Year

1 2 3 4 5 6 7 8 9

1.815 1.261 1.158 1.088 1.055 1.039 1.030 1.025 1.021
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Now consider MLE within the ODP cross-classified model. The ML equations 
are well known (see any of the authors listed earlier in the present sub-section). They 
are merely marginal sum estimation equations (Schmidt and Wünsche, 1998), which 
means that they equate each row sum of observations with the corresponding sum of 
MLEs, and similarly for column sums. That is,

ℛ
∑ ∑ ∑∑ ∑= α β = α β = α β = α − β





( ) ( ) ( )

=

− +

= − +
Yk j

k

k j k

k

j k j k
j

J kk

j
j J k

J
ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1 ˆ (3-1)

1

1

2

ℛ ℛ

the last equality following from (EDFCC2c). Also

∑ ∑ ∑= α β = β α
( ) ( ) ( )
Yk j

j

k j j

j

k

j
ˆ ˆ ˆ ˆ (3-2)

� � �

It is further known that, for a triangular data set such as in Table 1-1, these equations 
are simply solved in the following order: (3-1) for k = 1, (3-2) for j = J, (3-1) for k = 2, 
(3-2) for j = J - 1, etc. and with repeated use of the constraint (EDFCC2c).

The first step in this procedure yields

∑ ∑= = α β = α( ) ( )Yk j j144781 ˆ ˆ ˆ1
1

1
1ℛℛ

whence â1 = 144781.
The second step yields

∑ ∑= = β α = β α( ) ( )Yk j k2958 ˆ ˆ ˆ ˆ10
10

10 1
10� �

whence b̂10 = 2958/â1 = 0.020.
And so on, resulting in Table 3-3.

Table 3-3.    Parameter Estimates for ODP  
Cross-Classified Model

j or k âk b̂j

1 144781 0.293

2 166301 0.239

3 184501 0.139

4 201845 0.106

5 212151 0.069

6 207340 0.047

7 205725 0.035

8 182904 0.028

9 173225 0.024

10 149836 0.020
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From these results, one may calculate Ŷ 1996,3 = â9b̂3 = 173225 × 0.139 = 24070, 
in agreement with the estimate from the ODP Mack model. Similarly, all forecasts 
Ŷk j ∈ 𝔇c

K  may be shown to reconcile with the ODP Mack model, indicating that it 
and the ODP cross-classified model yield the same estimates of outstanding losses 
(see Table 3-2).

Indeed, it follows from the identical forecasts of the ODP Mack and ODP cross-
classified models that one may translate between the two by means of one-one relation. 
This relation, proven by Verrall (2000) using a Bayesian argument, is

∑ ∑= β β
=

+

=
f j i

i

j

i
i

jˆ ˆ ˆ (3-3)
1

1

1

or its inverse

∏ ∏( )β = −+
=

−

=

−
f f fj j r

r

j

r
r

Jˆ ˆ 1 ˆ ˆ (3-4)1
1

1

1

1

subject to the convention that P0
r =1 f r̂ = 1. Table 3-1 and Table 3-3 may be reconciled 

by this correspondence.

3.3.  GLM Representation of Chain Ladder Models
3.3.1.  ODP Mack Model

Consider the ODP Mack model of Section 3.1.2, and particularly the conditions 
(EDFM3a), modified to its ODP form, and (EDFM3b). Together these conditions 
amount to the following:

∼ ( )( )− φ+Y X ODP f Xk j k j j k j k j1 , (3-5), 1

Add the condition

φ = φ kk j j, independent of (3-6)

which was a pre-requisite in Section 3.1.2 for the ODP Mack model to yield the 
conventional chain ladder estimators as MLEs. Then

∼ ( )( )− φ+Y X ODP f Xk j k j j k j j1 , (3-7), 1

Now replace Yk,j+1 here by f k̂ j - 1 = Yk,j +1/Xkj from (1-4). It may be checked that

−  = −E f X fk j k j j
ˆ 1 1 (3-8)

[ ] ( )−  = = φ −+Var f X Var Y X X f Xk j k j k j k j k j j j k j
ˆ 1 1 (3-9), 1

2

The ODP family is known to be closed under scaling, i.e., an ODP variate, divided by a 
constant, produces another ODP variate. Combining this fact with (3-8) and (3-9) yields
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∼ ( )− − φf X ODP f Xk j k j j j k j
ˆ 1 1, (3-10)

This may be formulated as a (rather trivial) GLM by comparison of (3-10) with the 
definition of a GLM in Section 2.2.1. The response vector of the GLM consists of 
the observations f k̂ j - 1|Xkj , listed in some convenient order such as dictionary order. 
The link function is the identity.

The parameter vector b consists of the parameters f1, . . . f9, and the row of the 
design matrix X corresponding to f k̂ j - 1|Xkj is the co-ordinate 9-vector ej, which has 
unity in the j-th position and zeros elsewhere. In the terms usually required by GLM 
software for the specification of a model, this amounts to:

•	 Specification of development year j (= 1, 2, . . . , 9) as a categorical variate (referred 
to in some software systems as a class variate).

•	 Specification of the “model”, i.e., the expected value, of each observation as

∑( )−  = − δ
=

E f X fk j k j i
i

ji
ˆ 1 1 (3-11)

1

9

where dji is the Kronecker delta, and the 9 delta functions are the 0–1 variates associated 
with the categorical variate development year, as mentioned in Section 2.2.2.

It is also necessary that the model include the variance structure set out in (3-10), 
and, by (2-21), this requires that observation f k̂ j - 1 be assigned weight Xkj/fj. The 
values of fj are unknown, but the following argument will show that knowledge of 
their values is not required.

Consider MLE of the fj. Commence with the log-likelihood of the claims trap
ezoid 𝔇K :

� �∑

∑

( )

[ ]( ) ( )( ) ( )

( ) = −

=
− − −

φ
− φ









≠

− − −

− −
−

≠

f

Y X ln f f
X

ln Y

K k j
j

k j k j j j

j k j
k j j

j

K

K

ˆ 1

1 1
! (3-12)

1

, 1 1 1

1 , 1
1

1

,

,

�
�

where ,(f k̂ j - 1) has been evaluated by substitution of (3-7)–(3-9) into (2-16).
The MLE of fj-1 for a specific j, say j = i, is obtained by differentiating (3-12) with 

respect to fi-1 and setting the result to zero. On differentiation:

•	 The final member within the braces is eliminated since it does not depend on fi -1.
•	 The summation over 𝔇K is reduced to a summation over only 𝒞(i) since only this 

column depends on fi -1.

The result is as follows:

� ∑ ( ){ }( ) ( ) ( )∂
∂

=
φ

∂
∂

− − − =
( ) ( )− −

−
−

− − −
∈f

X
f

Y X ln f fK

i i
k i

i
ij k i i i

k i i

1
1 1 0 (3-13)

1 1
, 1

1
, 1 1 1

,

�

The interested reader may complete the calculation to obtain the conventional chain 
ladder estimator (1-8) as the MLE, verifying the result cited in Section 3.1.2. However, 
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all that is necessary for present purposes is to note that fi-1 may be factored out of (3-13), 
in which case it does not enter into the MLE.

This means that the value of fi-1 is arbitrary for the purpose of estimation of fi-1, 
and so it may conveniently be set to unity. This lengthy digression thus shows that the 
above requirement of a weight Xk j /fj (fj unknown) to be associated with observation 
f k̂ j - 1 in the GLM is reduced to a requirement of the simpler weight Xkj.

The ODP Mack model is now fully specified as a GLM. It may therefore be written 
in the general form of a GLM, as set out in Section 2.2.1. Specifically, the response 
vector Y now consists of all observations Yk,j+1/Xkj for all Yk,j+1 in 𝔇K other than its 
first column, and written in some convenient order. The order is unimportant, but 
dictionary order is obvious and convenient: f 1̂1, . . . , f 1̂,J-1, f 2̂1, f 2̂2, . . . , f K̂-2,1, f K̂-2,2, f K̂-1,1,  
and this will be assumed for the purpose of illustration.

Let µ denote the vector of µkj, also in dictionary order, and express it in the GLM 
form (2-23):

( )µ = β−h X (3-14)1

where h, X and b can be determined by reference to (3-11):

	 h	=	identity
	 b	=	( f1, f2, . . . , f9)T

�

�
�

}
}

=















































X

1
1

1
1

1
1

1

9 rows

8 rows

2 rows

1 row

3.3.2.  ODP Cross-Classified Model
Consider the ODP cross-classified model of Section 3.2, and particularly the con

ditions (EDFCC2a), modified to its ODP form, and (EDFCC2b). Together these 
conditions amount to the following:

∼ ( )α β φY ODPkj k j k j, (3-15)

Add the further condition

φ = φk j (3-16)
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which was seen in Section 3.2 to be a pre-requisite for ODP cross-classified model to 
yield the conventional chain ladder estimators as MLEs. Then

∼ ( )( )α β φ = µ φY ODP ODPk j k j k j, , (3-17)

where

( )µ = α + βexp ln lnk j k j (3-18)

The final equality here expresses the mean of the (k, j) cell as the exponential of a 
linear function of ln ak and ln bj. Thus (3-17) may be formulated as GLM in which 
the response vector consists of the observations Ykj, the error distribution is ODP, 
the link function is the natural logarithm and the parameter vector takes the form 
(ln a1, . . . , ln a10, ln b1, . . . , ln b10). The scale parameter is unknown but will be 
estimated by the GLM software. Note how the logarithmic link function is pre-
ordained by the multiplicative form of the assumption (EDFCC2b).

Just as in Section 3.3.1, the model may be expressed in the GLM form (2-23). If 
the components of Y are again written in dictionary order, then the design matrix is

… …
… …
�

… …
… …
… …
�
�

… … }

=















































X

1 0 0 1 0 0
1 0 0 0 1 0

1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 1 0

0 0 1 1 0 0

10 rows

9 rows

1 row

Section 3.2 noted that the full parameter vector (a1, . . . , a10, b1, . . . , b10) contained 
one degree of redundancy, which was removed by the addition of the constraint 
(EDFCC2c). Likewise, the full parameter vector (ln a1, . . . , ln a10, ln b1, . . . , ln b10) 
of the GLM will contain a degree of redundancy.

In fact, this is no impediment to the fitting of the GLM for most GLM software. 
Most such software will remove redundancy by setting one or more (just one in the 
present case) parameters to zero. These parameters are said to be aliased.

Generally, this will lead to parameter estimates that differ from those obtained under 
condition (EDFCC2c), though the two GLMs are equivalent, simply stated differently. 
This is illustrated as follows.

Suppose that the GLM software chooses to set ln b1 = 0, i.e., b1 = 1. Simply 
replace each estimate b̂j by b̂j/∑10

i=1 b̂i in order to satisfy (EDFCC2c). To compensate 
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for this change, replace each âk by âk ∑10
i=1 b̂i. With these replacements, the fitted value 

associated with Ykj is

∑ ∑= α β  β β  = α β= =Yk j k ii j ii k j
ˆ ˆ ˆ ˆ ˆ ˆ ˆ (3-19)1

10
1

10

In other words, the model fitted values are unaltered by this re-scaling of the parameters 
ak, bj. Similarly for forecasts. In this sense, the alternative statements of the GLM are 
equivalent.

The forecast design matrix, as defined in (2-39), takes the form

… …
… …
… …
�

… …
�

… …

}
}

=

































X *

0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 1

1 row

2 rows

9 rows

3.3.3.  Numerical Example
The discussion in Sections 3.3.1 and 3.3.2 is illustrated by reference to the example 

data set. This data set is submitted to the GLM procedure GENMOD in SAS software 
according to both ODP Mack and ODP cross-classified models.

ODP Mack Model
The GLM formulation of the ODP Mack model, as 

described at the end of Section 3.3.1, has been applied 
to the example data set with the results displayed in 
Table 3-4. These results are seen to accord with those 
obtained by application of the chain ladder algorithm 
and set out in Table 3-1.

ODP Cross-Classified Model
The GLM formulation of the ODP cross-classified 

model, as set out in (3-17) and (3‑18), has been applied to 
the example data set with the results displayed in Table 3-5. 
The parameter estimates in the columns headed ln ak and 
ln bj have been extracted directly from the GLM output. 
In the next two columns they have been exponentiated, 
and in final two columns re-scaled as described in the 
paragraph preceding (3-19) so that the ∑10

j =1 b̂j = 1. The 
results are seen to agree with those found in Table 3-3 
(subject to a couple of microscopic differences).

Table 3-4.    GLM 
Parameter Estimates 
for ODP Mack Model

j  f̂ j - 1

1 0.815

2 0.261

3 0.158

4 0.088

5 0.055

6 0.039

7 0.030

8 0.025

9 0.021
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3.4.  Minor Variations of Chain Ladder
Hitherto the chain ladder model has been presented as containing no flexibility; 

as the non-parametric Mack model, the EDF Mack model, or one of the other 
variations defined earlier in this chapter, but in each case fully defined without any 
scope for variation by the user. In practice, many variations occur. This section will 
consider a few of the common variations and show that they may be easily incorporated 
in a GLM.

3.4.1.  Reliance on Only Recent Experience Years
It is common to view only the most recent m experience years as relevant to 

parameter estimation. This would mean in the ODP Mack model (Section 3.3.1), 
for example, that the only observations used would be f k̂ j - 1|Xkj, k = 1, . . . , K - 1, 
 j = 1, . . . , J - 1, K + 1 - m ≤ k + j ≤ K.

This restriction is easily implemented within the GLM defined in Section 3.3.1 by 
simply setting the weight of each observation other than those above to zero, i.e., the 
weight Xkj assigned to observation f k̂ j - 1|Xkj at the end of Section 3.3.1 is modified to 
the following:

( )= + − ≤ + ≤w X I K m k j Kk j k j 1 (3-20)

where I (.) is the indicator function:

( ) =

=

I c c1 if the logical condition is true

0 otherwise (3-21)

Table 3-5.    GLM Parameter Estimates for ODP Cross-Classified Model

j or k

Estimated Directly from GLM Re-normalised

In âk In b̂j âk b̂j âk b̂j 
1 10.657 0.000 42479 1.000 144781 0.293

2 10.795 -0.205 48793 0.815 166301 0.239

3 10.899 -0.747 54133 0.474 184501 0.139

4 10.989 -1.017 59221 0.362 201845 0.106

5 11.039 -1.452 62245 0.234 212151 0.069

6 11.016 -1.833 60834 0.160 207341 0.047

7 11.008 -2.140 60360 0.118 205726 0.035

8 10.891 -2.348 53664 0.096 182905 0.028

9 10.836 -2.513 50824 0.081 173225 0.024

10 10.691 -2.664 43962 0.070 149837 0.020

Total 3.408 1.000
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Consider the likelihood (3-12), omitting the final member within the braces since it 
was seen in Section 3.1.2 to vanish in the likelihood maximization, and set weights 
according to (3-20). The weights are included in the model by means of (2-21). Thus 
log-likelihood (3-12) becomes:

∑

( ) ( ) ( )

( )( ) = + − ≤ + ≤

×
− − −

φ








≠

− − −

− −

� I K m k j K

Y X ln f f
X

K
j

k j k j j j

j k j

K

1

1 1
(3-22)

1

, 1 1 1

1 , 1

,

�
�

and the indicator function has the effect of simply selecting the Ykj from the last m 
experience years for inclusion in the log-likelihood.

3.4.2.  Outlier Observations
The argument leading to the last result has been phrased in terms specific to the 

ODP Mack model. However, it may be generalized to any model with the conclusion 
that setting the weight of any observation to zero causes that observation, in effect, to 
be deleted from the data set.

It follows that outlier observations may be excluded from the model fitting simply 
by the assignment of zero weights to them.



Casualty Actuarial Society	 35

4.  Prediction Error

Chapter summary. This chapter is concerned with the error contained in a forecast 
derived from a GLM in accordance with Chapter 2, as compared with the actual 
value of the predictand when ultimately observed. This error is decomposed into its 
components: parameter error, process error, and model error.

The properties of parameter and process errors follow from the model, whereas the 
properties of model error do not. For the main part, the chapter deals with the more 
tractable parameter and process errors.

Mean square error of prediction is discussed as a measure of forecast error, and it is 
noted that increased goodness-of-fit of a model does not necessarily imply reduced 
forecast error. Information criteria are introduced as simple rough proxies for forecast 
error to assist in the evaluation of competing models.

The literature on model error is scant, but the subject receives some discussion at the 
end of the chapter.

4.1.  Parameter Error and Process Error
4.1.1.  Individual Observations

For the purpose of the current chapter the model used for the forecast of outstanding 
losses will not be limited to the chain ladder. The model will be loosely specified as 
follows:

Y u k j Yk j k j k j K( )= θ + ε ∈ +, ; for (4-1)�

for some function u, dependent on a parameter vector q, and centered stochastic error 
ekj, i.e.,

0 (4-2)[ ]ε =E k j

It will be supposed that this model has been calibrated against that data set 𝔇K. The 
means of calibration is left unspecified. It yields parameter estimates q̂. Now define

Y u k j Yk j k j K( )= θ ∈ +ˆ , ; ˆ for (4-3)�

The Ŷkj associated with Ykj ∈ 𝔇K are fitted values, as in (2-29). The Ŷkj associated with 
Ykj ∈ 𝔇c

K are forecasts.
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The prediction error associated with the forecast Ŷkj is

e Y Y u k j u k jk j k j k j k j( )( )= − = θ − θ  + εˆ , ; , ; ˆ (4-4)

where the second equality follows from (4-1) and (4-3).
It may be noted from (4-1) and (4-2) that

E Y u k jk j[ ] ( )= θ, ; (4-5)

and so (4-4) may be represented in the alternative form

e Yk j k j k j k j= µ −  + εˆ (4-6)

where µkj denotes E[Ykj].
The square bracketed term in (4-6) (or (4-4)) is the difference between the true 

(but unknown) mean of the future observation and its forecast, and is referred to as the 
parameter error associated with forecast Ŷkj. The remaining term ekj is noise or, as it is 
usually referred to, process error. It reflects the fact that, even if the model had been 
perfectly calibrated (zero parameter error), a prediction error would still arise from the 
stochastic nature of future observation.

Typically, parameter error and process error may be shown to be stochastically 
independent. Note that Ŷkj, on which parameter error depends, is necessarily some 
function of past data 𝔇K, whereas the ekj are components of the future data 𝔇c

K. If the 
model formulation is such that the past Ykj and the future ekj are independent, then so 
are the parameter and process errors.

This follows very simply in any model, such as the EDF cross-classified model of 
Section 3.2, which specifies that all observations are independent.

The above argument is subject to a substantial qualification that will not be pursued 
in the present volume. The relation (4-5) may indeed be consistent with (4-1), but 
both assume that the model u has been correctly specified.

In fact, it is unlikely that the precise functional form of u will have been correctly 
chosen. As a result, a further component of prediction error arises in practice. This is 
the difference between E[Ykj], as specified by (4-5), and its correct specification, usually 
referred to as model error. It is discussed in greater detail in Section 4.5.

Model error, by its nature, lacks amenability to rigorous statistical treatment. For 
this reason, it is regarded as outside the scope of this monograph. This is by no means 
to suggest that it is insignificant. Indeed, its magnitude may in some cases exceed the 
total of parametric and process errors. The interested reader might consult O’Dowd, 
Smith and Hardy (2005) for a suggested treatment of model error.

4.1.2.  Loss Reserves
For notational brevity, it will be convenient to represent the above prediction errors 

in vector terms. Let Y denote the observations Ykj ∈ 𝔇K, assembled into a vector, and  
let Y * denote the observations Ykj ∈ 𝔇c

K, similarly assembled into a vector. The ordering 
of the components of these vectors is immaterial for present purposes.
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Similarly, assemble any other quantity that depends on k, j into a vector and denote 
that vector by the original quantity’s symbol with k and j omitted. Add a star to the 
symbol if it refers to the future. Again, the ordering of components is immaterial, but 
it must be consistent between different vectors, e.g., the ordering of cells of 𝔇c

K must 
be the same in Y * and Ŷ *.

In this notation, (4-6) becomes

e Y= µ −  + ε* * ˆ* * (4-7)

Now consider any linear combination of the components of Y *, represented by rTY *, 
where r denotes some vector and the upper T denotes vector transposition. For example, 
the total amount of outstanding claims is equal to 1TY *, where the vector 1 has all 
components equal to unity. As a second example, the amount of outstanding claims in 
respect of just accident year k is equal to rT

kY *, where the vector rk contains unity in those 
components that refer to accident year k, and zero for all other components.

The prediction error associated with rTY * will be denoted e*(r) and, by (4-7), is

e r e r r Y rr
T T T T= = µ −  + ε( )* * * ˆ* * (4-8)

where the members on the right can be recognized as follows:

rTµ* is the statistical expectation of outstanding losses;
rTŶ* is the forecast of the quantum of these losses;
rTe* is the process error associated with this quantum.

The square-bracketed term in (4-8) can be identified as the parameter error associated 
with the forecast of outstanding losses. If Y and e* are stochastically independent, then, 
by the same argument as in Section 4.1.1, parameter error and process error will be 
independent.

4.2.  Mean Square Error of Prediction
4.2.1.  Definition

A useful summary measure of the magnitude of prediction error e*(r) is its mean square 
error of prediction, abbreviated to MSEP and denoted MSEP[e*(r)]. It is defined as

MSEP e E er r{ }[ ] [ ]=( ) ( )* * (4-9)2

In the case where parameter and process errors can be established to be stochastically 
independent, substitution of (4-8) into (4-9) yields

MSEP e E e E er r param r proc{ } { }[ ] [ ] [ ]= +( ) ( ) ( )* * * (4-10)2 2

where the following notation has been introduced:

e r r Yr param
T T= µ − =( )* * ˆ* parameter error (4-11)

e rr proc
T= ε =( )* * process error (4-12)
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4.2.2.  Goodness-of-Fit and Prediction Error
The MSEP estimates the tightness of a forecast around its target. A model generating 

a smaller MSEP is generally to be preferred over one generating a larger MSEP.
It is to be noted, however, that improving the goodness-of-fit of a model to a data 

set does not necessarily improve its MSEP. It is evident that an effective model requires 
some degree of goodness-of-fit, but the achievement of this by the inclusion of an 
excessive number of parameters in the model will in fact increase the MSEP.

In short, the inclusion of too many parameters in a model amounts to over-fitting, and 
destabilizes the model’s predictions. The situation is summarized by Figure 4-1 (see, e.g., 
Hastie, Tibshirani and Friedman (2009, pp. 219–223)). The figure considers the effect 
of increased model complexity (number of model parameters) on the model’s predictive 
value.

It is supposed that the available data set is divided into two subsets, a training set 
and a test (or holdout) set. The model is fitted to the training set. Some form of error 
in the fit (“model error” in the figure) of the model to the data, such as squared error, 
deviance, etc., is selected and plotted against model complexity. The fit of the model to 
the data is seen to improve monotonically as model complexity is increased.

However, the value of the model as a predictor of unseen data does not improve 
in the same way. The model error when the model is used to generate fitted values 
corresponding to the test set is also plotted in the figure. It is seen that a model with 
very few parameters produces a poor fit; it represents a weak attempt to extract the 
main characteristics of the training data set.

As complexity is added to the model, it not only fits the training data set better, but also 
predicts the test set better. Beyond a certain point, however, additional complexity detracts 
from the model; its performance in the prediction of the test set begins to deteriorate.

This indicates over-fitting. The model is beginning to parameterize the noise in the 
data, of no value for prediction. In the extreme case in which the model contains as many 
parameters as the training data set contains observations, the model will fit the data 
perfectly (zero error). However, this cannot be regarded as a model at all in the usual sense. 
It has no predictive value.

The minimum point on the “Test” curve of Figure 4-1 represents the optimum 
model complexity. It is the model with greatest predictive value.

4.3.  Information Criteria
There exist statistics which function as proxies for measurement of model predictive 

error relative to a test data set. These are called information criteria, and take the 
general form:

(4-13)

( )=

+

information criterion measure of model fit error relative to training data set

penalty for number of parameters

As model complexity increases the error in the fit of the model decreases but the penalty 
for number of parameters increases. The information criterion behaves in a manner 
similar to the model error relative to a test data set, as in Figure 4-1.
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For a GLM, a convenient form of (4-13) for a model based on data Y and producing 
fitted values Ŷ is:

IC Y Y D Y Y f p( ) ( ) ( )= +, ˆ , ˆ (4-14)

where

IC(Y, Ŷ ) denotes the information criterion;
D(Y, Ŷ ) denotes the scaled deviance, defined by (2-30);
p denotes the number of model parameters; and
f (.) is some monotonically increasing function.

The two most common forms of information criterion are defined by the penalty 
functions set out in Table 4-1, where n denotes the dimensionality of Y, i.e., the number 
of observations used in the fitting of the model.

The penalty functions of both criteria are linear in p, but the BIC applies the 
heavier penalty.

There is a modified form of the AIC, called AICc, that contains a correction for 
finite sample size n. In this case, f (p) = 2p[1 + (p + 1)/(n - p - 1)] → 2p as n/p → ∞.

The information criteria are used for the comparison of different models of the 
same data set. All models involve some loss of information contained in the data. If 
the AIC (say) assumes a lower value for Model 1 than for Model 2, then Model 1 is 
indicated as the more likely of the two to have minimized the information loss, and 
Model 1 would be selected in preference to Model 2.
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Figure 4-1.    Goodness-of-Fit and Prediction Error

Table 4-1.    Information Criteria

Information Criterion Function f (p)

Akaike Information Criterion (AIC) 2p

Bayes Information Criterion (BIC) p ln n
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4.4.  Generalized Cross-Validation
Cross validation is a frequently used method for estimating prediction error, being 

easily applicable to regression and non-regression models alike. For example, in K-fold 
cross-validation, the data is split into K equal sized parts, with the model fitted on K-1 
parts and tested on the final Kth part. A common choice for K is n, i.e., one point is left 
out of the fit for each iteration of the calculation. This is also referred to as leave-one-
out cross-validation.

For linear models, where the fitted value may be expressed as ŷ = Hy, it may be 
shown that an approximation to leave-one-out validation is given by the generalized 
cross-validation (“GCV”) measure:

GCV
Y Y

n trace H n
i ii

n

=
−( )

− ( )[ ]
=∑ ˆ

( )
2

1
21

4 15-

where:

Yi is the i th observed value
Ŷ i is the i th fitted value
n is the number of observations

H is often referred to as the hat matrix. The trace of the hat matrix, trace(H), is defined 
as the effective number of parameters in a model.

Further discussion of all these points is given in Hastie, Tibshirani and Friedman 
(2009, pp. 232–233 and 241–245), who also note that the GCV measure is related to 
likelihood based measures such as AIC and BIC. As with those measures, it is composed 
of two parts: the first relating to the measure of model fit error (the residual sum of 
squares in this case, i.e., Y Yi ii

n −( )=∑ ˆ 2

1 ) and the second being a penalty for the number 
of parameters (the remainder of (4-15)).

4.5.  Model Error
Re-consider the decomposition of prediction error into parameter and process error 

in Section 4.1. Recall (4-1), where the non-stochastic part of each observation is u(k, j; q). 
Now note that the fitted values of (4-3) are assumed to take the form u(k, j; q̂), i.e., the 
same parametric form with unknown parameters replaced by their estimates.

There is a tacit pre-supposition here that the function u(k, j; q) underlying the 
data can be accurately identified for modeling purposes. Thus was useful for didactic 
reasons in Section 4.1, but in fact this function will be unknown, and essentially 
unknowable. Not even the parameter set on which it depends will be identifiable in 
practice.

To recognize this, continue to suppose that (4-1) holds, but now suppose that, in 
ignorance of this parametric form, one has supposed for modeling purposes that

Y v k j Yk j k j k j K( )= ξ + ε ∈ +, ; for (4-16)�

for some different approximation function v(.) with a different parameter set.
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The fitted values from this model will be

( )= ξ ∈ +Y v k j Yk j k j K
ˆ , ; ˆ for (4-17)�

and the decomposition of prediction error corresponding to (4-4) is now

ˆ , ; , ; ˆ

Parameter error

, ; , ;

Model errorProcess error

(4-18)( ) [ ]( ) ( ) ( )= − = ξ − ξ  + ε + θ − ξ
� ����� ����� ���� ����� �����e Y Y v k j v k j u k j v k jk j k j k j k j

The decomposition contains parameter error and process error terms as in (4-4), but 
now includes an additional term that has been labelled model error. This is the term 
[u(k, j; q) - v(k, j; x)], which measures the difference between the parametric form 
assumed for the model and the true but unknown parametric form, i.e., the error 
introduced by the choice of model.

Since model error involves the form u(k, j; q), that has already been pronounced 
unknowable, its quantification is difficult. There is no known procedure for its estimation 
by reference just to the data relied on by the modeling.

There have, however, been one or two attempts to estimate model error from data 
and/or opinions external to the data set. Notable in this respect is the contribution by 
O’Dowd, Smith and Hardy (2005), which sets out:

•	 to identify the major potential causes of model error;
•	 to score each subjectively for its likely magnitude in the model under assessment;
•	 to map the scores to quantitative measures of error (e.g., coefficient of variation);
•	 to combine these measures with those for parameter and process error, with due 

allowance for any dependencies (also subjectively assessed) between the various 
components of model error.

This monograph is, as its title indicates, concerned with the application of GLMs to 
loss reserving. The assessment of model error will address the GLM used but, as can 
be seen from the description of O’Dowd, Smith and Hardy (2005), will not be carried 
out within the framework of that GLM. It will therefore not be discussed further here.

This is not, however, to minimize the importance of model error and the need 
to address it. In many cases it will represent a material, possibly even a dominant, 
proportion of total prediction error. For example, in the case of one large insurer, model 
error was assessed as representing about three-quarters of total prediction error.
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5. The Bootstrap

Chapter summary. This chapter is concerned with the estimation of the prediction 
error associated with outstanding losses, excluding the contribution of model error (as 
explained in the summary of Chapter 4). Two approaches are taken: the delta method, 
and the bootstrap.

Although the delta method is relatively simple computationally, its accuracy in any 
particular application is unknown, and may be dubious in some cases. Further, although it 
provides an estimate of MSEP, it provides no information on the distributional properties 
of prediction error, e.g., quantiles.

The bootstrap, while computationally more demanding, remedies both shortcomings. 
This is a device that generates many synthetic data sets with the same stochastic properties 
as the original one, and produces an estimate of outstanding losses from each dataset. It 
thus estimates the full distribution of prediction error and, with sufficient computation, 
its accuracy can be increased arbitrarily. Two forms of the bootstrap are examined.

The chapter concludes with numerical examples of both the delta method and the 
bootstrap.

5.1.  Background
A chain ladder forecast was carried out in Table 3-2 on the basis of the chain ladder 

algorithm. The algorithm was merely heuristic and so the stochastic properties of the 
forecast were undetermined.

However, it was shown in Chapter 3 that the same algorithm, and so the same forecast, 
emerged from two different stochastic models. In each of those cases, the stochastic 
properties of the forecast follow, at least in principle.

The two stochastic chain ladder models were formulated in the form of GLMs 
in Section 3.3, whose parameter estimates were reported in Table 3-4 and Table 3-5. 
Although only the estimates themselves were reported there, the GLM software in 
fact also provides estimates of the associated standard errors, as in Table 5-1.

The parameter ln b1 has been aliased here in the manner described in Section 3.3.2. 
Since this amounts to selecting a zero (deterministic) value for this parameter, the associated 
standard error is zero.

The estimated correlations between parameter estimates are also provided by the 
GLM software. These are displayed in Table 5-2. Only the lower triangle of the correlation 
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Table 5-1.    GLM Parameter Estimates and Standard 
Errors for ODP Cross-Classified Model

j or k

ln âk ln b̂j

Estimate Standard Error Estimate Standard Error

1 10.657 0.0316 0.000

2 10.795 0.0299 -0.205 0.0228

3 10.899 0.0289 -0.747 0.0282

4 10.989 0.0281 -1.017 0.0328

5 11.039 0.0278 -1.452 0.0421

6 11.016 0.0285 -1.833 0.0547

7 11.008 0.0295 -2.140 0.0715

8 10.891 0.0327 -2.348 0.0931

9 10.836 0.0367 -2.513 0.1267

10 10.691 0.0510 -2.664 0.1993

Table 5-2.    Estimated Correlation Matrix of GLM Parameter Estimates  
for ODP Cross-Classified Model

Parameter

Parameter

ln â1 ln â2 ln â3 ln â4 ln â5 ln â6 ln â7 ln â8 ln â9 ln â10

ln â1 1.00

ln â2 0.20 1.00

ln â3 0.20 0.21 1.00

ln â4 0.20 0.21 0.22 1.00

ln â5 0.19 0.20 0.21 0.22 1.00

ln â6 0.18 0.19 0.20 0.20 0.20 1.00

ln â7 0.16 0.17 0.18 0.18 0.18 0.18 1.00

ln â8 0.13 0.14 0.14 0.15 0.15 0.14 0.14 1.00

ln â9 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.09 1.00

ln â10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
(continued on next page)
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Table 5-2.    Estimated Correlation Matrix of GLM Parameter Estimates  
for ODP Cross-Classified Model  (continued)

Parameter

Parameter

ln â1 ln â2 ln â3 ln â4 ln â5 ln â6 ln â7 ln â8 ln â9 ln â10

ln b̂2 -0.32 -0.34 -0.35 -0.36 -0.37 -0.36 -0.35 -0.31 -0.28 0.00

ln b̂3 -0.28 -0.29 -0.30 -0.31 -0.32 -0.31 -0.30 -0.27 -0.10 0.00

ln b̂4 -0.25 -0.27 -0.28 -0.29 -0.29 -0.28 -0.27 -0.12 -0.09 0.00

ln b̂5 -0.21 -0.22 -0.23 -0.24 -0.24 -0.24 -0.12 -0.10 -0.07 0.00

ln b̂6 -0.18 -0.19 -0.20 -0.20 -0.20 -0.10 -0.09 -0.07 -0.05 0.00

ln b̂7 -0.16 -0.17 -0.17 -0.18 -0.09 -0.08 -0.07 -0.06 -0.04 0.00

ln b̂8 -0.14 -0.15 -0.16 -0.07 -0.07 -0.06 -0.06 -0.04 -0.03 0.00

ln b̂9 -0.14 -0.15 -0.05 -0.05 -0.05 -0.04 -0.04 -0.03 -0.02 0.00

ln b̂10 -0.16 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.01 0.00

Parameter

Parameter

ln b̂2 ln b̂3 ln b̂4 ln b̂5 ln b̂6 ln b̂7 ln b̂8 ln b̂9 ln b̂10

ln b̂2 1.00

ln b̂3 0.36 1.00

ln b̂4 0.31 0.27 1.00

ln b̂5 0.24 0.21 0.19 1.00

ln b̂6 0.19 0.16 0.15 0.12 1.00

ln b̂7 0.14 0.12 0.11 0.09 0.08 1.00

ln b̂8 0.11 0.09 0.09 0.07 0.06 0.05 1.00

ln b̂9 0.08 0.07 0.06 0.05 0.04 0.04 0.04 1.00

ln b̂10 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 1.00

matrix is displayed, the upper triangle being given by symmetry. Since parameter ln b1 has 
been fixed at zero, it is non-stochastic and does not appear in the matrix.

5.2.  Delta Method
From Table 5-1 and Table 5-2 all estimated second order moments of the parameter 

estimates are available. This is sufficient for an approximate estimate of the second 
moments of the estimated total outstanding losses R̂. This is done using the so-called 
delta method (Kendall and Stuart, 1977).

5.2.1.  Uni-Dimensional
This method is most easily understood for a single-dimensional variate. Here the 

purpose is to calculate the variance of a transformed variate when the variance of the 
untransformed variate is known.
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In the interest of simplicity, the following notation will apply just to the present 
sub-section. It is unrelated to the notation introduced in Section 1.2.

Let X denote a random variate with E[X ] = µ, Var[X ] = s2, and let f denote a 
differentiable one-one transformation of X. The quantity Var[ f (X )] is required.

Take the Taylor series expansion of f (X ) to second order about X = µ:

. . . (5-1)1
2

2f X f X f X f( ) ( ) ( ) ( ) ( ) ( )= µ + − µ ′ µ + − µ ′′ µ +

where the primes denote differentiation.
Take expectations with respect to X throughout (5-1):

. . . . . . (5-2)1
2

2 1
2

2E f X f E X f f f[ ]( ) ( ) ( ) ( ) ( ) ( )= µ + − µ  ′′ µ + = µ + σ ′′ µ +

as a second order approximation of E[ f (X )], where E[X - µ] is seen to vanish in the 
first equation.

Now consider Var[ f (X )] = E{[ f (X ) - E[ f (X )]]2}. For a second order approximation 
of this quantity, a first order approximation of f (X ) - E[ f (X )] is required. This is obtained 
from (5-1) and (5-2) as

. . . (5-3)f X E f X X f[ ]( ) ( ) ( ) ( )− = − µ ′ µ +

from which

. . . . . . (5-4)2 2 2 2Var f X E X f f[ ] [ ] [ ]( ) ( ) ( ) ( )= − µ ′ µ +  = σ ′ µ +

This provides an easily calculated second order approximation of Var[f (X )].

5.2.2.  Multi-Dimensional
With Section 5.2.1 for guidance, extend to the case in which Y = f (X ) with X now 

a column n-vector, and with f: 𝔑 → ℜ acting on X componentwise (just as h-1 did in 
(2-23)). Let the components of X, Y be denoted Xi, Yi respectively. In parallel with (5-3),

. . . (5-5)Y E Y f X E f X X fi i i i i i i[ ][ ] ( ) ( ) ( ) ( )− = − = − µ ′ µ +

with µi = E[Xi].
Then second order approximations of covariances may be obtained as

[ ][ ] ( )[ ] [ ][ ] [ ]{ } ( )= − − = ′ µ ′ µ, , (5-6)Cov Y Y E Y E Y Y E Y Cov X X f fi j i i j j i j i j

This may be conveniently expressed in matrix form, thus:

(5-7)Var Y DVar X D[ ] [ ]=

where Var[Y ] now denotes the entire variance-covariance matrix of vector Y, similarly 
for Var[X ], and D = diag[ f ′(µ1), . . . , f ′(µn)].
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5.2.3.  Application to Loss Reserving
Now replace Y of Section 5.2.2 by the forecast Ŷ *, defined by (2-40), in order 

to estimate the variance of that forecast due to variation in b̂, i.e., parameter error 
as defined in Section 4.1. It will be assumed that the components of Ŷ * appear in 
dictionary order, as was illustrated in Section 3.3.2. Other quantities from Section 5.2.2  
also require replacement by those relevant to (2-40). Table 5-3 lists the required 
replacements.

With the replacements in the table, supplemented by this last one, (5-7) becomes

ˆ* * ˆ * ˆ * (5-8)Var Y DVar X D DX Var X Dparam
T( )  = β  = β 

where Varparam[Ŷ *] has been written instead of Var[Ŷ *] as a reminder that only parameter 
error is being estimated, Var[b̂] is estimated by the GLM software and

ˆ* , . . . , ˆ* (5-9)1
2,10

1
10,10D diag h h Y h h Y( )( ) ( )( )( ) ( )= ′ ′





− −

where the vector X*b of the innermost arguments has been replaced by X*b̂ = h(Ŷ *).
Finally, the full prediction error of Ŷ *, other than model error, may be estimated by 

adding process error (see (4-10)) where, for the case of the ODP distribution, process 
error is given by (2-19). Translation of this to the present context yields an estimated 
process error of

ˆ* ˆ ˆ* (5-10)Var Y DIAG Yproc   = φ  

where, for a vector v, DIAG[v] denotes the diagonal matrix with the components of v along 
its diagonal, and the estimate f̂ of scale parameter f is provided by the GLM software.

The MSEP of the forecast Ŷ * is now obtainable by combination of (5-8) and (5-10) 
thus:

ˆ* * ˆ ˆ ˆ*

* ˆ * ˆ ˆ* (5-11)

MSEP Y DVar X D DIAG Y

DX Var X D DIAG YT( )

  = β  + φ  

= β  + φ  

Table 5-3.  Replacements in Section 
5.2.2 for Estimation of Forecast Error

Quantity from Section 5.2.2 Replaced By

Y Ŷ*

X X*b̂

µ X*b

f h-1
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Estimates of the prediction error of outstanding loss amounts Rk and R, or for that 
matter sums over any other subset of Ŷ *, can be obtained by the use of vectors consisting 
of just 0-1 components, selecting out the relevant components of Ŷ *.

For example,

ˆ 1 ˆ* 1 ˆ* 1 (5-12)MSEP R MSEP Y MSEP Yk k k
T

k  =   =  

where 1T
k = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) with the 1’s so placed as to select the 

components Ŷ*k,J-k+2, . . . , Ŷ*kJ of Ŷ*.
Similarly

ˆ 1 ˆ* 1 (5-13)Var R MSEP YT  =  

where 1 is a vector consisting entirely of unit components.
A numerical example will be given in Section 5.4.1.

5.3. The Bootstrap
The delta method presents two difficulties.
First, since it is a second order approximation to covariance, it leaves an unquantified 

third order error. It is evident from the development in (5-1)–(5-4) that the error depends 
on the magnitudes of the higher derivatives f (m) (equivalently (h-1)(m) in Section 5.2.3),  
and especially on the convexity f ″ (equivalently (h-1)″). This knowledge may be 
insufficient, however, for the formation of a clear view of the magnitude of error.

Second, even a relatively accurate estimation of second order moments provides 
little distributional information. It may be necessary to estimate quantiles of R̂ for loss 
reserving purposes. For example, some regulators require the loss reserve to be equal 
to the estimated amount of outstanding losses with 100p% (p > 50) probability of 
adequacy (“PoA”). If this amount is denoted R̂p, then it is defined as follows:

ˆ (5-14)Prob R R pp<  =

It is evident that estimation of R̂p requires knowledge of the distribution of R. The delta 
method does not provide this. It is possible, of course, to assume some distribution. 
Often this is done in practice, where the lognormal distribution is often assumed for R. 
In fact, the lognormal often appears to perform quite well, but there is no guarantee of 
this and the procedure is at risk of producing erroneous PoA loss reserves, particularly 
for high p.

The bootstrap is a procedure which estimates the entire distribution of the estimand. 
It is a particularly convenient computational device since it does this without the need 
for any algebraic development such as in Section 5.2. Naturally, since it estimates an 
entire distribution, it also generates an estimate of variance (for that matter, any other 
moment or functional of the distribution).

There are many different approaches to the bootstrap. Shibata (1997) provides 
a useful classification of some of these into “non-parametric,” “semi-parametric,” 
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and “parametric,” with the terminology indicating the level of reliance on model and 
distributional assumptions. For any specific case, it is useful to consider the estimation of 
parameter and process separately and which of non-parametric or parametric methods are 
best suited to the problem in hand.

Some possible approaches to bootstrapping claims data are discussed below, following 
the terminology of Shibata where appropriate.

5.3.1.  Semi-Parametric Bootstrap
The original form of the bootstrap was introduced by Efron (1979). It is a procedure 

for estimation of the properties of a defined statistic, particularly when analytical 
computation of those properties would be complex. It falls within the general family 
of re-sampling methods, since it involves repeated sampling from the available data.

For regression models, Efron (1979) proposed a procedure that involved resampling 
residuals and constructing pseudo datasets from these and fitted values. This type of 
procedure is outlined here. Consider an n-dimensional data vector Y. For the moment 
this is a general vector, and the bootstrap will be described in a general context. Later 
it will be specialized to the loss reserving context. Suppose that a model has been fitted 
to the data vector and a prediction Ŷ * of some vector Y * of future observations made.

Suppose the target prediction is some function R(Y*) of Y *, and it has been estimated 
by R(Ŷ *). The objective now is to estimate the distribution of the prediction R(Ŷ *).

Let Ŷ  denote the model’s vector of fitted values corresponding to Y, and let S(Y; Ŷ )  
denote the vector of standardized residuals associated with Y. Residuals may be Pearson, 
deviance or any other for which the inverse S-1(.; Ŷ ) exists.

For example, in the case of Pearson residuals, the i-th component of S(Y ; Ŷ ) is

; ˆ ˆ ˆ (5-15)S Y Y Y Yi i i i( ) ( )= − σ

where ŝ2
i is an estimator of Var[Yi]. In this case

; ˆ ˆ ˆ (5-16)1Y S S Y Y Si i i i i( )= = + σ−

Now suppose that the Si are iid. In fact, the residuals from a regression will be dependent, 
and so the requirement is actually that the Si be approximately iid. The requirement 
of identical distribution is an essential one, as will be explained further below, and the 
most egregious results can be obtained if it is violated.

Now draw a random n-sample from S(Y; Ŷ ). The sampling can be without 
replacement (in which case the sample will be simply a permutation of Y ), or with 
replacement. Let the members of the sample be denoted Si, i = 1, . . . , n, and arrange 
these in a vector denoted S. This is the process of data re-sampling referred to earlier.

Form the vector Y with i-th component

; ˆ (5-17)1� �Y S S Yi i( )= −

and let Y denote the vector with components Yi, ordered in the same way as the Si in S.
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Since the Si were iid, S and S have the same stochastic properties, and then, by (5-16)  
and (5-17), Y and Y have the same stochastic properties. That is, Y may be viewed as 
an alternative data set with the same stochastic properties as the original one. It is in 
fact called a pseudo-data set.

In the case in which the residuals Si are Pearson residuals (see (5-15) and (5-16)), 
the construction of the pseudo-data (5-17) takes the form

; ˆ ˆ ˆ (5-18)1� � �Y S S Y Y Si i i i i( )= = + σ−

It is possible to draw many pseudo-data sets. The number of possibilities is n! if sampling 
without replacement is used, and nn if with replacement. These are very large numbers 
even for n of moderate size.

So draw some large number r of pseudo-data sets, denoted Y(1), Y(2), . . . , Y(r), and 
model each of them, using precisely the same model as was applied to Y originally. 
Here “precisely the same model” means having precisely the same algebraic structure. 
Obviously, the parameters will change as the data inputs change. Call the model 𝓜.

For each pseudo-data set, form the same forecasts as for the original data 
set. Thus, let b̂( j) denote the vector of parameter estimates (“pseudo-estimates”) 
associated with the pseudo-data set Y( j), and let Y̂*( j) denote the forecast of Y* using 
the j-th pseudo-data set, and let R(Y̂*(j)) denote the associated forecast of the target 
R(Y*). This is a pseudo-forecast of R(Y*), and there are now r pseudo-forecasts 
R(Y̂*( j)), j = 1, . . . , r.

The set of pseudo-forecasts has the same stochastic properties as an r-sample of 
forecasts of R(Y*), obtained by application of model 𝓜 to an r-sample of data sets. 
The variation between the pseudo-forecasts reflects parameter error introduced in 
Section 4.1, the error arising from the fact that the application of the same model to 
randomly varying data sets produces variation in the model parameter estimates.

As was also noted in Section 4.1, forecast error also needs to take account of the 
process error, or noise, contained in R(Y*) (see (4-6)). This may also be achieved by 
re-sampling, as follows.

Let the process error associated with the i-th component of Y* be denoted

* * * (5-19)Y E Yi i i[ ]ε = −

or, equivalently,

* ** (5-20)Y E Yi i i[ ]= + ε

Now, in the j-th replication (also referred to as a replicate) E[Y *i ] is estimated by the 
i-th component of Y̂*( j). To obtain a set of random drawings with the same properties 
as the collection {e*i }, draw a second vector Sproc in the same way as S was drawn, form 
the pseudo-observation vector Yproc in parallel with (5-17), and then define the vector

* ˆ ˆ (5-21)Y Yproc procε = −



50	 Casualty Actuarial Society

Stochastic Loss Reserving Using Generalized Linear Models

The components of e*proc then have the same properties as the collection {e*i }. The 
procedure can be repeated to obtain r replicates e*proc( j) of e*proc.

In the case of Pearson residuals, (5-17) is specialized to (5-18) in this process, and 
(5-21) simplifies to

* ˆ (5-22), ,
�Sproc i i proc iε = σ

where e*proc,i and Sproc,i are the i-th components of e*proc and Sproc respectively.
Replace E[Y *i ] and e*i in (5-20) by the estimators just formed to define

ˆ* ˆ* * (5-23)� �Y Yj j proc j( ) = + ε( ) ( ) ( )
+

whereupon (Y̂*( j))+ becomes a pseudo-forecast, augmented to include process error. 
Pseudo-forecasts of R(Y*), also including process error, can now be obtained as simply 
R((Y̂*( j))+), j = 1, . . . , r.

These are iid drawings with the same distribution as R(Y *), and so the r replicates 
form an empirical distribution of R(Y *). Any stochastic property of R(Y *), e.g., MSEP, 
may then be estimated from the distribution.

The bootstrap process just described may be represented diagrammatically as in 
Figure 5-1. The dashed rectangles are marked for discussion in Section 5.3.2.

Model 

Replicate

Re-sample

Model 

Data

Parameter 
estimates

Fitted 
values

Residuals

Re-sampled 
residuals

Pseudo-
data

Pseudo-
parameter 
estimates

Forecast

Pseudo-
forecast
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simulate

parameter error

Add noise to 
simulate process 
error

Modelling

Figure 5-1.    Diagrammatic Representation of the Semi-Parametric Bootstrap
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The version of the bootstrap just described is called semi-parametric here and in 
Shibata 1997 (though elsewhere in the actuarial literature, it is often referred to as non-
parametric bootstrapping) because the generation of the pseudo-data sets by means 
of the re-sampling procedure (5-17) or (5-18) makes no distributional assumption. 
However, it does rely on a fitted model from which to calculate predicted values and 
residuals. The distribution of the pseudo-data Y( j) is determined entirely by that of the 
residuals S. Similarly in the addition of process error in (5-23).

By contrast, the non-parametric bootstrap (terminology as per Shibata, 1997) does 
not require a fitted model prior to resampling. It simply generates a large number of 
pseudo-samples by repeatedly sampling the observed data with replacement. Clearly 
this is inappropriate for aggregated insurance loss data where the magnitude differs 
from one development period to the next. The use of the term “semi-parametric” 
for the residual resampling approach may be helpful to distinguish the two types of 
bootstrap, which were both proposed in Efron (1979).

It is evident from the re-sampling basis of the bootstrap that the exclusion of any 
outlying observations, as discussed in Section 2.2.5, will have ramifications not only 
for model parameter estimation (as remarked in that sub-section) but will also reduce 
any bootstrap estimate of dispersion. Once again, one would need to consider whether 
adjustment of that estimated dispersion might be required. Such adjustments are beyond 
the scope of this volume.

5.3.2.  Parametric Bootstrap
Parametric bootstrapping as defined in Shibata (1997) is functionally very similar 

to the semi-parametric method described above, but based on theoretical rather than 
empirical residuals. Thus for models such as GLMs, where the standardized deviance 
residuals are asymptotically normal, resampling of the actual residuals may be replaced 
by sampling from a normal distribution with the appropriate variance.

There are other possible ways to make use of the GLM assumptions to generate 
a distribution of reserves, including the approach described below which sim-
plifies the area of Figure 5-1 in the dotted box, in which replicates of parameter 
estimates are obtained, and also simplifies the generation of process error. With 
some abuse of terminology, this is also referred to as parametric bootstrapping in 
this monograph.

Parameter Estimates
It is supposed that the original parameter estimates b̂ (the second box in the 

figure) are MLEs, as is usually the case for GLMs. It is known that an MLE is an 
asymptotically normal unbiased estimator for indefinitely increasing sample size in 
the presence of some technical conditions (Cox and Hinckley, 1974). In symbolic 
terms,

ˆ , ˆ asymptotically (5-24)∼ N Var( )β β β 
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If this asymptotic relation is assumed to hold precisely for the finite data sample under 
consideration, then one may assume that

ˆ , ˆ (5-25)∼ N C( )β β

where Var[b̂] has been denoted by C, and Ĉ denotes the estimate of C provided by 
the GLM software (as already mentioned just prior to (5-9)). The parameter estimate 
replicates b̂(j) may then be sampled from the multi-normal N(b̂, Ĉ ).

The sampling requires care in view of the correlations contained in Ĉ. The usual 
sampling process consists of the following steps:

•	 apply a linear transformation M to b̂ such that the components of M b̂ are 
uncorrelated;

•	 sample the each of these components from a univariate normal distribution to 
obtain a random vector g;

•	 apply the inversion of M to the sampled vector g to obtain the required sampling 
from N(b̂, Ĉ ).

In mathematical terms, find M such that Var[M b̂] = L, diagonal, i.e.,

ˆ , . . . , (5-26)1MCM diagT
p( )= Λ = λ λ

Now make random drawings

ˆ , , 1,2, . . . , (5-27)∼ N M i pi
i

i( )( )γ β λ =

where (Mb̂)i denotes the i-th component of Mb̂.
Finally, construct replicates of b̂(j ) as

ˆ (5-28)1Mjβ = γ( )
−

where g = (g1, . . . , gp)T.
To check that b̂(j) ~ N(b̂, Ĉ), note that

ˆ ˆ ˆ (5-29)1 1E M E M Mj [ ]β  = γ = β = β( )
− −

and

ˆ ˆ ˆ (5-30)1 1 1 1Var M Var M M MCM M Cj
T T T( ) ( )[ ]β  = γ =   =( )

− − − −

Central to the above sampling process is the identification of the required matrix 
M in (5-26). this may be achieved by either Cholesky decomposition or spectral 
decomposition of Ĉ, both of which will be available from conventional statistical 
software.
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Cholesky decomposition expresses Ĉ in the form

ˆ (5-31)C LLT=

with L a lower triangular matrix. This is equivalent to (5-26) with M = L-1 and L = I.
Spectral decomposition expresses Ĉ in the form

ˆ (5-32)C P PT= Λ

with P an orthogonal matrix and g1, . . . , gp the eigenvalues of Ĉ. This is equivalent to 
(5-26) with M = P-1 = PT.

Process Error
The addition of process error is indicated in the bottom right box of Figure 5-1 and 

is described in (5-21) to (5-23). Now Yproc in (5-21) is a replicate of Y, which the GLM 
will have assumed subject to some particular distribution. Hence Yproc may be obtained 
simply as a random drawing from that distribution.

For example, if the assumed distribution of Yi is ODP, the i-th component of Yproc 
may be obtained as a random drawing from a ODP distribution with mean Yi and 
scale parameter f̂/wi, where this last quantity is the GLM’s estimate of (2-21).

Discussion
The parametric version of the bootstrap is so called because it makes use of assumed 

parametric forms: the normal distribution for parameter error, and the GLM’s chosen 
distributional form for process error.

Its implementation is somewhat simpler than that of the semi-parametric form 
with shorter computational times, considerably so for larger data sets. Evidently, how-
ever, its validity is dependent on the assumptions just stated, and will become more  
dubious as:

•	 the sample size n declines to the point where reliance cannot be placed upon the 
asymptotic result (5-24); and/or

•	 the error structure assumed within the GLM becomes a poor representation of the 
data.

The commentary at the end of Section 5.3.1 on the exclusion of isolated observations 
from the bootstrap applies equally to the parametric bootstrap.

5.4.  Numerical Examples
5.4.1.  Delta Method

Table 3-2 obtained the chain ladder forecasts associated with the data triangle 
of Table 1-1. These were obtained by application of the conventional chain ladder, but it 
was noted in Section 3.2 that the ODP cross-classified model produces the same forecasts.

The delta method, as described in Section 5.2.3, is now applied to estimate the forecast 
error associated with the ODP cross-classified model forecasts. Note that, although the 
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ODP Mack and ODP cross-classified models produce the same forecasts, they are different 
models and do not produce the same estimates of forecast error.

The forecast error required here is estimated by application of (5-11) to (5-13), 
where it was noted in Section 5.2.3. that values of Var[b̂] and f̂ are provided by the 
GLM software. These formulas required the evaluation of D, defined by (5-9). It is 
noted that, for the ODP cross-classified model, the link function is h = ln, and so (h-1)′ 
(h(.)) = identity. Thus, (5-9) simplifies to

*ˆ , ˆ , . . . , ˆ* * (5-33)2,10 3,9 10,10D diag ( )= µ µ µ

The results are displayed in Table 5-4. The table contains the root mean square errors 
of prediction (“RMSEP”) and coefficient of variation of prediction (“CVP”). The 
first of these is simply the square root of the MSEP, and the second is defined as

CVP
RMSEP
Forecast

=

5.4.2.  Bootstrap
The parametric bootstrap, as described in Section 5.3.2, has been applied to 

estimate the forecast error associated with the ODP cross-classified model forecasts. 

Table 5-4.  Chain Ladder Forecast Error

Accident 
Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,398 924 27.2

1990 8,155 1,363 16.7

1991 14,579 1,775 12.2

1992 22,645 2,169 9.6

1993 31,865 2,523 7.9

1994 45,753 3,036 6.6

1995 60,093 3,577 6.0

1996 80,983 4,538 5.6

1997 105,874 6,786 6.4

Total 373,346 14,076 3.8

It may be noted that the table reveals positive correlation between 
(at least some) accident years. If accident years were independent, 
then the MSEP of the total forecast would be simply the sum of the 
accident year MSEPs, and the RMSEP of the total forecast would be 
10,275 ($000), substantially less than the actual result of 14,076. The 
difference is accounted for by positive correlation.
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The information required for this consists of that in Table 5-1, together with the 
GLM estimate of the scale parameter, which is f = 114.5.

The results of 10,000 bootstrap replications are contained in Table 5-5, in which:

•	 “Forecast” is taken as the arithmetic mean of the 10,000 replicates of the forecast; 
and

•	 “RMSEP” is taken as the square root of the unbiased variance of these 10,000 
replicates.

The results are evidently very similar to those obtained by the delta method in Table 5-4.  
The forecasts are slightly different, which can be accounted for by sampling error arising 
from the limited number of replicates.

Table 5-5.  Parametric Bootstrap Estimates  
of Chain Ladder Forecast Error

Accident 
Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,476 937 27.0

1990 8,269 1,366 16.5

1991 14,738 1,794 12.2

1992 22,776 2,186 9.6

1993 32,043 2,525 7.9

1994 45,963 3,057 6.7

1995 60,273 3,608 6.0

1996 81,249 4,589 5.6

1997 106,204 6,831 6.4

Total 374,992 14,286 3.8
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6.  Model Validation

Chapter summary. Model validation consists of detailed checking that a fitted model 
is compatible with, and accounts for all features of, the data. There are many diagnostic 
plots available for this purpose. The present chapter discusses and illustrates a number 
of these.

Illustration is carried out first in the abstract, and then in relation to a simulated data 
set, and finally in relation to the actual data set given in Chapter 1 and used in numeri-
cal examples throughout this volume. In the case of simulated data, the target model 
is known, and so its effect of specific model features on some of the diagnostic plots can 
be clearly illustrated.

6.1.  Introduction
Model validation is the process of examining whether the fitted model—both 

the distributional assumptions and the fitted parameter effects—are acceptable and 
adequate descriptions of the data being modeled. It is a critical part of building any 
model—if the assumptions underlying the model are found to be flawed, this then 
casts doubt on any inferences from that model.

Typically there are three aspects to a model validation:

•	 Analysis of the distributional assumptions;
•	 Analysis of the goodness-of-fit of the model; and
•	 Analysis of the model’s predictive performance on data beyond those used in the 

model estimation.

Of these the third is not usually possible for claims reserving models based on 
simple triangles (i.e., other than individual claim models, also known as micro-models 
or granular models), since all the data would normally be used to build the model. 
Thus, out-of-sample testing is not discussed further here.

In principle, the model validation would begin by validating the choice of dis-
tribution and the link function. Of these, the link function is usually determined by 
the model structure as being that transformation that produces a linear predictor. For 
example, a multiplicative model implies a log link while an additive model uses an 
identity link. In terms of model validation, a link function is acceptable if the model 
passes the other validation tests without requiring an excessive number of interaction 
terms. Once the link and the distribution have been validated, the user can move onto 
examine the goodness-of-fit of the model.
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One’s view of the error distribution is provided by the observed residuals, which 
depend in turn on the fitted model. No view of the distribution can become available until 
some model, at least a rudimentary one, has been fitted to the data. Thus the respective 
forms of the error distribution and model are inter-dependent, and cannot simply be 
selected sequentially.

In our experience, the estimated mean of the distribution is relatively insensitive 
to the choice of distribution, and similar findings are reported by Lai and Shih (2003), 
though, of course, the same is not true of the variance. Thus, our approach to model fitting 
and validation is generally to select a reasonable set of distribution assumptions using 
common sense arguments, fit the model and test for goodness of fit, before validating the 
model distribution assumptions carefully. In more detail, a step-by-step description of 
this process is as follows:

•	 Select the appropriate link function (e.g., a multiplicative model implies a log link);
•	 Select a reasonable distribution—e.g., ODP for a cross-classified model;
•	 Fit the main effects in the model and any obvious interactions (see Section 7.6);
•	 Check the residual diagnostics for any gross violations of the distributional assump-

tions and make changes if necessary;
•	 Continue with the model fitting using goodness-of-fit tests (primarily comparisons 

of actual and model fitted values) until a satisfactory goodness-of-fit of cell means 
is obtained. This may involve the use of interactions in the model;

•	 Review the distributional diagnostics in detail and make any adjustments required 
to yield satisfactory results. After any changes, re-check the goodness-of-fit and make 
changes if necessary. Repeat until a satisfactory model is obtained.

The assessment of the goodness-of-fit and the distributional assumptions is covered 
in detail below. In practice, the tools used in this assessment are usually graphical, and 
definitions and examples of all the various graphical tools used are provided.

Following that, some examples of the graphs are given in cases of poor fit and 
good fit. To facilitate this discussion, simulated data sets are used so that the true under
lying model is known with certainty. Finally, model validation will be carried out for 
the cross-classified model using the example data set.

6.2.  Summary of Assumptions and Tests
Before commencing the definition and use of the various model diagnostics later in 

this chapter, we have gathered together the list of model assumptions and corresponding 
diagnostics that will be discussed below. This is intended as a reference list that modelers 
may use to check the fit of their model.

Distributional Assumptions
•	 The link structure is appropriate:

C	 Expectations regarding the modeled quantity will largely determine the choice 
of link—e.g., a multiplicative model structure requires the use of a log link. It 
is validated if the model passes the other diagnostics tests without requiring an 
undue number of interactions.



58	 Casualty Actuarial Society

Stochastic Loss Reserving Using Generalized Linear Models

•	 The distribution choice is appropriate:
C	 Probability-Probability (P-P) plot;
C	 Residual plots by accident, development and calendar year periods;
C	 Histograms or kernel density plots of the residuals.

Goodness-of-Fit
•	 The  model fits well by accident, development and calendar periods:

C	 Plots by accident, development and calendar periods of actual and expected 
(i.e., the expected value according to the fitted model) in some form, e.g.:
n	 actual vs. expected;
n	 log(actual) vs. log(expected);
n	 Actual/expected;

C	 Plots of residuals, also by accident, development and calendar periods;
•	 All significant interactions have been identified:

C	 A triangular (e.g., 2-d) heat map of actual/expected;
C	 Actual and expected plots for specific parts of the experience.

6.3.  Diagnostic Graphs
All diagnostics graphs involve the comparison of actual and expected quantities, 

where “expected” is an abbreviation for “expected value according to the fitted model”.
The most well-known comparison is that based on residuals but other comparisons 

such as the quotient of the actual and expected values or plots of actual and expected 
values are also useful. In more detail, the functions of actual and expected values used are:

•	 Pearson residuals—both raw and standardized. Refer to Section 2.2.4 for their 
definition;

•	 Deviance residuals—both raw and standardized. Refer to Section 2.2.4 for their 
definition;

•	 Actual values including sums of actual values across rows (Sℛ(k)), columns (S𝒞( j)) 
and diagonals (S𝒫(k+j-1)). Depending on the scale of the comparison, the logs of these 
quantities may be more useful;

•	 Expected values including sums of expected values across rows, columns and 
diagonals (denoted by Sℛ̂(k), S𝒞( j) and S𝒫̂(k+j-1) respectively). Again, the logs of these 
quantities may be useful for many reserving problems;

•	 Actual/expected values in each cell of the triangle—for example Ykj/Ŷkj; and
•	 Actual/expected marginal values by row, column and diagonal. For example, the 

marginal actual/expected comparison for accident period k is Sℛ(k)/Sℛ̂(k).

Following from the discussion of Pearson and deviance residuals in Section 2.2.4, 
only deviance residuals will be used in this chapter due to their greater degree of normality 
when the underlying distribution (Poisson in this case) is not normal. All comments 
below which discuss normality and homo- and heteroscedasticity of residuals refer to 
standardized deviance residuals.

Based on these quantities, a number of diagnostic graphs are available to the user to 
carry out model validation. These graphs are discussed below in Sections 6.3.1 to 6.3.7. 
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Note that in all of the examples in these sections, the plots are drawn using a correctly 
specified model of simulated data so that the graphs indicate a well-fitting model.

6.3.1.  Scatterplot
A scatterplot of residuals is a simple graph plotting residuals against a relevant variable 

such as the expected value, accident period, development period or calendar period. 
Figure 6-1 gives an example of a scatterplot where standardized deviance residuals are 
plotted against development period.

Departures from a random, homoscedastic plot of deviance residuals suggests 
problems with the model. A trend in the residuals indicates possible goodness-of-fit issues 
while heteroscedasticity (e.g., fanning of residuals) often indicates that the dispersion 
assumptions are inappropriate. As noted above, the example here is taken from a correctly 
specified model leading to homoscedastic residuals.

6.3.2.  Spread Plot
This plot shows some summary statistics of the residuals plotted against a variable 

of interest (e.g., development period, expected value) to provide the modeler with 
information on the spread and distribution of the statistics. Specifically, the 25th and 
75th percentiles are plotted along with the standard deviation of the residuals. The 
spread plot is particularly useful for detecting heteroscedasticity of deviance residuals 
as heteroscedasticity is indicated by widening or narrowing of the inter-quartile range 
and by significant changes in the standard deviation.

The spread plot corresponding to Figure 6-1 is shown in Figure 6-2 below. Looking 
past the volatility (particularly in the higher development periods), the interquartile 
range is reasonably consistent while the standard deviation fluctuates around unity.

Figure 6-1.    Scatterplot of Standardized Residuals
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Note that in spread plots, the green and black lines plot the 25th and 75th percentiles 
while the blue line is the standard deviation of the residuals. If standardized residuals 
are used, as is the case here, then the standard deviation of these residuals should vary 
randomly about unity and any systematic departures from this may indicate a problem 
with the model assumptions.

6.3.3.  Actual and Expected Comparison Plots
Actual and expected comparison plots display the actual and expected totals 

(e.g., by accident, development or calendar period). For example, such a plot by row 
or accident period shows the actual series (Sℛ(k)) and the expected series (Sℛ̂(k)) plotted 
for 1 ≤ k ≤ K. Areas of poor fit correspond to consistent differences in the actual and 
expected values. Figure 6-3 is an example of an acceptable graph where the expected 
values are close to the actual values.

Depending on the scale of the data, it may be more helpful to log the quantities, 
i.e., log(actual) vs log(expected).

6.3.4.  Actual and Expected Ratio Plots
These plots are similar to those in 6.3.3 except that they plot the actual/expected 

ratio rather than individual actual and expected lines. Systematic deviations away from 
100% indicate regions of poor fit.

Figure 6-4 is the ratio plot equivalent to the comparison plot shown in Figure 6-3. 
Following some volatility in early calendar periods (when there is little data), the ratios 
fluctuate randomly around 100% indicating an adequate fit.

Figure 6-2.    Spread Plot
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6.3.5.  Actual and Expected Ratio 2-D Heat Map
This diagnostic is particularly useful in the loss reserving context where it can be 

used to look at the goodness-of-fit across a data triangle (or other 2–dimensional array). 
Specifically, it calculates the actual/expected ratio in each cell of the triangle and applies 
a formatting conditional on the deviation of the ratio from 100%. In the example in 

Figure 6-4.    Actual and Expected Ratio Plot by Diagonal (calendar period)

Figure 6-3.   Actual and Expected Comparison Plot by Diagonal (calendar period)

Note that in actual and expected comparison plots, the red line shows the actual totals, the blue line the expected 
totals while the green dotted line (right-hand scale) shows the cumulative number of data points at each level.
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Figure 6-5 pink values indicate ratios larger than 100% and blue ratios less than 100%. 
The more intense the color, the greater the deviation from 100%.

The distribution of colors should be random across the triangle. Clumps of one 
color indicate areas of poor fit. For example, if the model includes terms for accident 
and development period effects, then a clumping of colors may indicate the need for 
further model terms such as interactions between accident and development periods or 
terms involving calendar periods.

The heat map in Figure 6-5 suggests that the model is not missing interaction or 
calendar period terms since the blue and pink colors are randomly distributed.

6.3.6.  Probability-Probability Plot
A Probability-Probability plot (also known as a “P-P” plot or a percent-percent 

plot) is a graphical method for comparing two probability distributions. A P-P plot 
plots two cumulative distribution functions (“cdfs”) against each other. Given an 
input u, the plotted points are (F(u), G(u)) where F and G represent the cdfs of two 
probability distributions. Thus, a P-P plot is a parametric graph, whose range is the 
unit square [0,1] × [0,1]. Each pair of numbers represents the probability of being 
≤u under the distributions F and G respectively.

In a GLM application, one distribution will correspond to the selected error dis-
tribution (e.g., ODP as discussed in this monograph), referred to as the “theoretical” 
distribution while the other will correspond to the modelled data (the “empirical” distri-
bution). If the model fits the data well, then the empirical and theoretical distributions 
should be similar and the resulting P-P plots should be an approximately straight line 

Figure 6-5.    Actual and Expected Ratio Heat Map
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of the form y = x (see Figure 6-6). Pronounced or persistent deviations from a straight 
line indicate problems with the distributional assumptions.

For the model discussed in this monograph, each observation Ykj is assumed subject 
to an ODP with mean Ŷkj and variance fkjŶkj. The value of the cdf of this “theoretical” 
distribution is computed at Ykj . Call it ukj . The empirical distribution, ûkj , may be 
obtained by sorting by ascending u with ûkj  being the proportion of data points ≤ ukj . 
In effect, the empirical readings are simply n equally spaced points in [0,1] where n is 
the number of observations in the data set.

A related and perhaps better known plot is the Quantile-Quantile (“Q-Q”) plot, 
which plots the quantiles of two distributions against each other. In more detail, the 
inverse function of a cumulative probability function is the quantile function, i.e., 
given a cdf F, its quantile function is F -1. Thus, given two cdfs F and G, with associated 
quantile functions F -1 and G -1, a Q-Q plot draws the q th quantile of F against the 
q th quantile of G for a range of values of q. Thus, the Q-Q plot is a parametric curve 
indexed over [0,1] with values in the real plane R2.

The Q-Q plot requires that all observations appearing within it be drawn from the 
same distribution. This will not usually be the case for the raw observations modeled by 
a GLM, where the mean may vary from one observation to another. However, a Q-Q 
plot may be applied to the standardized deviance residuals, which are asymptotically 
N(0,1). In this case the ordered standardized deviance residuals are plotted against the 
quantiles of the standard normal distribution. Augustin, Sauleau and Wood (2012) 
provide some further discussion on the use of Q-Q plots as GLM diagnostics.

Note that in P-P plots, the blue line is the plot that would be obtained if the actual distribution exactly matched the 
assumed distribution. The red line is the plot of the assumed theoretical quantiles against the empirical quantiles.

Figure 6-6.    Probability-Probability Plot
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6.3.7.  Histogram of Residuals
Finally, a simple histogram of standardized deviance residuals is a further useful 

check on the distributional assumptions—if the model is appropriate, then these 
residuals should be approximately standard normal, as in Figure 6-7 where magnitude 
of standardized residuals is represented on the horizontal axis and frequency of their 
occurrence on the vertical.

6.4.  Simulated Data Set and Fitted Models
Three simulated data sets were generated to illustrate the use of the various model 

diagnostics in model validation. They are described in Table 6-1. Note that the accident 
and development period effects used to simulate the data are specified from the formulae 
given in the table below.

In summary, all three simulated data sets are Poisson distributed. Simulated data set 1 
has accident and development period effects only and a constant scale so may be correctly 
described by a cross-classified model. The second data set is similar to the first except 
that its scale parameter varies by development period. Thus, a cross-classified model 
with suitably selected weights is appropriate. Finally the third data set has development 
effects that vary according to accident period. Thus the cross-classified model cannot 
adequately model this dataset since it will not capture the interaction between accident 
and development effects.

A number of different models were fitted, all GLMs of the form Ykj ~ ODP(µkj , fkj). 
The models differ in the specifics of the definitions of µk j and fk j , which are given in 
Table 6-2, together with the data sets to which they were applied.

Figure 6-7.    Histogram

Note: the solid line overlay is a normal distribution, fitted using the method of moments, while the dotted line is a kernel density  
estimator, which may be helpful for small data sets such as those that typically result from reserve estimation using aggregate 
triangle data.
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Table 6-1.    Description of Simulated Data

Characteristic Simulated Data 1 Simulated Data 2 Simulated Data 3

Accident periods 20 20 20

Development periods 20 20 20

Development period 
effect j=1 to 20

bj = exp(-0.3[j - 1] 
+ 1.5ln[j])

bj = exp(-0.3[j - 1] 
+ 1.5ln[j])

bj = exp(-0.3[j - 1]  
+ 1.5ln[j]) for k=1 to 10 
and bj = exp(-0.5[j - 1] 
+ 2ln[j]) for k=11 to 20

Accident period 
effect, k=1 to 20

ak = exp(0.05k + 4) ak = exp(0.05k + 4) ak = exp(0.05k + 4)

Scale parameter 1 min(8, j + 1)2 1

Distribution Poisson Over-dispersed 
Poisson

Poisson

Table 6-2.    Models Fitted to Simulated Data

Model Name Model Description

Simulated Data Set

1 2 3

Mean µkj = exp(µ) Y

fkj = 1

Development µkj = exp(ln bj) Y

fkj = 1

Full µkj = exp(ln ak + ln bj) Y Y Y

fkj = 1

Full weights µkj = exp(ln ak + ln bj) Y

fkj = min(8, j + 1)2

6.5.  Analysis of the Goodness-of-Fit
This aspect of model validation examines the data to ensure that all significant 

drivers of the target value have been identified. In claims reserving, this corresponds to 
reviewing the diagnostics by accident, development and calendar period to see if there 
are any un-modeled trends in the data.

In other words, the model is examined for the quality of fit to the data of its 
cell expected values. Dispersion and distributional questions will be considered in 
Section 6.6.

Traditionally this would be carried out by examining the residuals (refer back to 
Section 2.2.4 for the definition and discussion of Pearson and deviance residuals) for 
evidence of non-randomness. To illustrate this, the Mean model is fitted to simulated 
data 1. This model fits a single average to all data points, thereby ignoring the accident 
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and development period trends that exist in the data. Figure 6-8 shows scatterplots of 
the deviance residuals by accident and development periods and exhibits clear trends 
and departures from randomness.

Alternatively actual and expected comparison (Section 6.3.3) or actual and expected 
ratio (Section 6.3.4) plots may be helpful in providing a clearer view of the goodness-
of-fit (or lack thereof ).

The trends seen in Figure 6-8 may be clearly seen in the actual and expected plots 
in Figure 6-9. In general actual and expected plots may often be an easier way of  
assessing the goodness-of-fit of the data than residual plots. However, residuals plots 
should not be ignored for this purpose; in particular residual plots are very useful 

Accident period Development period

Figure 6-8.    Standardized Deviance Residuals (Mean model)

Actual and expected comparison plot by
accident period

Actual and expected ratio plot by
development period

Figure 6-9.    Actual and Expected (Mean model)

Note: Left hand graph: the red line is the actual line, while the blue line represents the expected values. The green dotted line 
represents (right-hand scale) the number of data points underlying each plotted point.
Right hand graph: The actual/expected ratios have been truncated to a minimum value of 50% and a maximum value of 150%.
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for identifying outliers that may need to be removed prior to fitting a model (refer 
to Section 2.2.5).

Suppose now that a model with development period effects has been fitted—the 
Development model. Residual and actual and expected plots by development period are 
shown in Figure 6-10. Note that, in the right-hand graph, both actual [red] and expected 
values [blue] have been plotted but they coincide so that only one (the expected line) is 
actually visible to the reader.

The residual plot no longer appears to contain trends, indicating that the model has 
captured the development period trends. This is confirmed by the actual and expected 
comparison plot, where the actual and expected totals are identical.

Note, however, that the ML equations for the ODP models are marginal sum 
estimation equations. Consequently, the actual and expected marginal totals associated 
with each model parameter are identical. The Development model contains development 
period (or column) parameters, and so actual and expected marginal totals by development 
year are identical (refer to Section 3.2 for further discussion of this point).

Thus, the actual and expected comparison and ratio plots provide no information 
in this case other than that development period trends have been captured in the slavish 
manner pre-ordained by marginal sum estimation.

On the other hand, the residual scatterplot does provide some information on the 
goodness-of-fit; in this case there is a suggestion of heteroscedasticity.

Figure 6-11 shows comparison plots of actual and expected for accident and 
calendar periods for the Development model. It is clear that the goodness-of-fit is 
still inadequate. The same plots are shown in Figure 6-12 but in this case for the fully 
specified cross-classified model, i.e., the Full model. The accident period actuals and 
expected overlay exactly due to marginal sum estimation in the presence of both 
accident and development period parameters in the model. The calendar period 
comparison is very close, suggesting that the model does not contain any calendar 
period effects.

Scatterplot of residuals Actual and expected comparison plot by development period

Figure 6-10.    Development Period Diagnostics (Development model)
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Other plots which may be useful include the residuals plotted against linear 
predictor and expected values. These plots are also used later when verifying distribution 
assumptions.

6.5.1.  Identifying Interactions
So far the examples considered have been for a model where there are no interactions. 

Consider now a case where the development period factors bj in the cross-classified 
model change significantly at a point in the past as they do in simulated data 3, and 
consider the diagnostics under the Full model where one set of development period 
factors is fitted for all accident periods.

Both the accident period and development period actual and expected comparison 
(and ratio) graphs are not useful since the actual and expected totals are identical 

Accident period Calendar period

Figure 6-11.    Accident and Calendar Period Actual and Expected Comparison Plots 
(Development model)

Note: the red lines are the actual lines while the blue lines represent the expected values. The green dotted lines represent  
(right-hand scale) the number of data points underlying each plotted point.

Accident period Calendar period

Figure 6-12.    Actual vs Expected for Full CC Model



Casualty Actuarial Society	 69

Stochastic Loss Reserving Using Generalized Linear Models

due to the use of marginal sum estimation. The calendar period actual and expected 
comparison plot does suggest areas of poor fit (see Figure 6-13), and some of the residual 
plots exhibit non-randomness such as that in the development period scatterplot also 
shown in Figure 6-13.

Since accident and development period effects have been fitted in the model, the 
missing effect may be either a calendar period effect or an interaction between accident 
and development period (or both). To determine its nature, a heat map of actual and 
expected ratios may be helpful.

The heat map is shown in Figure 6-14. The distribution of actual/expected ratios is 
non-random with clusters of ratios greater than 100% and less than 100%. The lines 
have been added by judgment to separate out areas that show greater concentrations 
of ratios greater or less than 100%. Since the clusters appear to be located for specific 
accident and development period groups rather than along entire diagonals, this suggests 
that the missing effects are interactions between accident and development periods and 
not calendar period effects.

6.6.  Analysis of the Distribution Assumptions
The goodness-of-fit tests may be viewed as checking whether the model’s cell means 

provide a good fit to the cell observations. However, in addition to the cell means, it is also 
important to check whether the model distribution is a good approximation to the data. 
This is particularly true if the model is intended to be used to assess the variability of 
the loss reserve estimate.

The main distributional assumptions are:

•	 The form of the distribution of the data;
•	 The scale parameter of that distribution; and
•	 The choice of link.

Calendar period actual and expected
comparison

Development period scatterplot

Figure 6-13.    Diagnostic Plots—Model with Missing Interaction

Note: the red lines represent the actual observations, while the blue lines represent the expected values. The green dotted lines 
represent (right-hand scale) the number of data points underlying each plotted point.
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The main tools in checking the distributional assumptions are:

•	 Plots of residuals; and
•	 Probability-Probability (P-P) plots.

As discussed in Section 6.1, the recommended approach to model validation 
was first to fit a simple model and check for any gross violations of the distributional 
assumptions. At this stage, problems such as a moderate level of heteroscedasticity could 
be ignored since they may result from poor estimation of the cell means. Providing 
the residual plots do not indicate a serious problem, the modeler may then continue 
to fit the model. Once the cell means fit well (based on the goodness of fit tests), the 
distributional assumptions may be re-examined in fine detail and adjusted as required.

Distribution diagnostics are illustrated for simulated data 2 under the Full model. 
For simulated data 2, the full model correctly specifies the form of the cell mean but does 
not correctly specify the variability/scale since it assumes a constant scale parameter 
rather than a scale that varies by development period. Thus, the diagnostics should 
show evidence of incorrect dispersion assumptions.

Recall that in the spread plot, the green and black lines represent the interquartile 
range while the blue line is the standard deviation of the residuals at each development 
period.

The residuals in Figure 6-15 are clearly heteroscedastic with a fanning out of residuals 
observable for development periods 1-8, as expected based on the assumptions for the 
scale parameter (refer to Table 6-1). From the spread plot it is seen clearly that the standard 
deviation of the residuals increases over the same range of development quarters.

The P-P plot is shown in Figure 6-16. Some deviations from the Poisson distribution 
may be seen.

Figure 6-14.    Actual/Expected Heat Map—Full Model for Simulated Data 3
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The model was refitted using the correct formulation for the scale parameter. Strictly 
speaking, it is the weights, rather than the scale parameter, that require correction. 
Recall from (2-21) that the scale or dispersion parameter may be written as fi = f/wkj. 
In this case, f = 1 and the weights vary only by development period j and are specified 
by wkj = min(8, j + 1)2 (as per the data specification in Table 6-1).

The same plots as in the preceding two figures are shown below in Figure 6-17 after 
the model refit. The improvement is apparent.

As well as adjustments to the dispersion by means of weights, the modeler should 
generally consider whether the use of a different distribution, e.g., Gamma rather than 
Poisson, is more appropriate for the data under consideration.

Development period scatterplot Development period spread plot

Figure 6-15.    Diagnostic Plots—Full Model, Scale Parameter Assumed Constant

Figure 6-16.    P-P Plot—Full Model, Scale Parameter Assumed Constant
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Finally, there are no particular tests for the choice of the link function. Rather, the link 
is usually determined by the model structure (e.g., an additive model implies an identity 
link while a multiplicative model implies a log link), which in turn is often determined 
a priori by the nature of the data being modeled. Generally speaking, if the link function 
implies a structure that makes sense for the particular data, and if the diagnostics plots 
are acceptable without requiring an unreasonable number of interactions, then the link 
function may be considered appropriate.

6.7.  Model Validation for Real Data
The examples discussed to date have used simulated data so that the true underlying 

model is known. In practice, this is not the case, so the modeler will need to select the 
best model using judgment. In the following sections, diagnostics plots for the cross-
classified model (Section 3.3.2) based on the data in Table 1-1 are shown together with 
some commentary.

6.7.1.  Initial Check of Distribution Assumptions
As a model of main effects only, the cross-classified model may be easily fitted. 

Once this is done, the first step in model validation is to check that the distributional 
assumptions are not grossly violated.

Scatterplot by development year Spread plot by development year

P-P plot

Figure 6-17.    Diagnostic Plots for Correctly Specified Variable Scale Model



Casualty Actuarial Society	 73

Stochastic Loss Reserving Using Generalized Linear Models

The P-P plot for the cross-classified model is shown in Figure 6-18. While there 
are systematic departures from the straight line, suggesting that the distributional 
assumptions could be improved, the distortion is not at a level that renders the Poisson 
log link distributional assumptions unusable as an initial set of assumptions for building 
a model.

The residual plots should also be checked first for any major problems with the 
distributional assumptions and second for indications of regions of poor fit.

Figure 6-19 shows the scatter and spread plots by development year for the cross-
classified model. As above, the residuals do not suggest a major problem with the 
distributional assumptions.

However, the spread of the residuals in development years 1 and 2 is greater than in 
other years, which may suggest a less than optimal fit to the means of the development 
year 1 and 2 data or that the Poisson assumptions may be inadequate (e.g., perhaps the 
scale parameter varies by development period).

Figure 6-18.    P-P Plot for the Cross-Classified Model

Figure 6-19.    Residuals by Development Year for the Cross-Classified Model
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The residuals by accident and calendar year are shown in Figure 6-20. The residuals 
by calendar year, in particular, suggest a problem with the model fitting that should 
be investigated further.

Thus the conclusions from this stage of the model validation process are that there are 
areas of poor fit that need further investigation and possible modeling. For the time being 
the distributional assumptions (Poisson model, constant scale, log link) may continue to 
be used, but they will need reviewing once the fit of the model has been improved.

6.7.2.  Goodness-of-Fit
The next step in the modeling process is to use the various goodness-of-fit diagnostic 

tools to identify the regions of poor fit better and determine whether these should be 
modeled.

Since the cross-classified model contains a parameter for each accident and devel-
opment year, the marginal totals will be identical under ML estimation (Section 3.2). 
Therefore actual and expected plots by accident and development years will be unhelpful. 
The comparison plot of actual and expected by calendar year is shown in Figure 6-21 
below. This appears satisfactory, even though the residuals by calendar year are prob-
lematic (Figure 6-20 above).

This suggests that the poor fit may result from some interactions, so the triangular 
heat map diagnostic may be useful and is shown in Figure 6-22. This indicates the 
presence of some missing interactions between accident year and development years 1 
and 2 (see the highlighted regions in the plot below).

Even in the absence of evidence of poor fit from the various one-way residual and 
goodness-of-fit diagnostics, the accident/development 2-d heat map should always be 
checked in reserving models.

In summary, the fit of the cross-classified model is reasonably good, but there is 
evidence of some interactions between accident and development years. Chapter 7 

Accident year Calendar year

Figure 6-20.    Residuals by Accident and Calendar Year for the Cross-Classified Model
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Figure 6-21.    Actual and Expected Comparison Plot by Calendar Year

Accident 0 1 2 3 4 5 6 7 8 9

1 98% 100% 100% 104% 113% 87% 96% 92% 100% 100%

2 99% 99% 106% 103% 95% 95% 99% 102% 100%

3 96% 108% 107% 91% 90% 102% 92% 104%

4 97% 103% 96% 97% 103% 111% 111%

5 95% 107% 100% 100% 97% 100%

6 98% 105% 93% 101% 104%

7 109% 91% 95% 104%

8 106% 90% 105%

9 103% 97%

10 100%

Development

Figure 6-22.    2-D Heat Map for Cross-Classified Model

deals with extensions to the cross-classified model, including the use of interactions, 
and the reader is referred there for further discussion concerning their use for this 
particular loss reserving problem.

Once interactions are included in the model (e.g., as per the discussions in 
Chapter 7), the modeler should then return to the tests of distributional assumptions 
and ensure that these are now satisfactory, making adjustments if required.
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7.  Model Extensions

Chapter summary. It has often been remarked in the literature that the conventional 
chain ladder involves an excessive number of parameters, with a separate parameter for 
each accident year and for each development year. The GLM formulations of Chapter 3 
follow the same parametric structure, and therefore carry the same excess of parameters.

This chapter is concerned with approaches to parameter reduction, achieved largely 
by means of generalized additive models. A GAM is obtained by the replacement of 
each of a number of categorical variates in a GLM with a parametric form that is 
economical in its parameters. Prime candidates for this sort of parameterization 
are accident year and development year trends, which are represented by categorical 
variates in the chain ladder.

The chain ladder assumes a multiplicative structure in the sense that the mean associated 
with any cell is equal to the product of a row factor and a column factor. Sometimes 
this model structure will not be supported by the data. The concept of calendar period 
effects and of interactions, required to correct the structure, is explored.

A parametric form in relation to development year also enables models to be extrapolated 
beyond the range of development years encompassed by the data. A smooth parametric 
form will ensure that the model progresses smoothly over development years, both inside 
and outside the bounds of the data.

Finally, models other than the chain ladder are briefly discussed. These include exposure-
based models of claim numbers and payments, models that comprise of a number of 
sub-models and individual claim models. The chapter concludes with a brief reference 
to Bayesian models.

7.1.  Chain Ladder Model Revisited
Consider the accident year parameter estimates ln âk appearing in Table 5-1. 

Figure 7-1 plots them against accident year k.
There are 10 parameters plotted. However, they assume a strongly parabolic appear

ance, raising the question as to whether the 10 values might be adequately represented 
by means of a smaller number of parameters.

Consider Figure 7-2 in this context. The dotted curves here describe a confidence 
envelope of ±2 standard errors about the parameter estimates, where the standard errors 
are also obtained from Table 5-1. The solid line represents the ordinary least squares fit 
of a quadratic to the parameter estimates.
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The quadratic curve, which is described by only 3 parameters, appears to track the 
parameter estimates well and does indeed lie well within the confidence envelope.

As discussed in Section 4.2.2, an excessive number of model parameters degrades 
a model’s predictive power. A question arises therefore as to whether greater predictive 
power is obtained when the conventional chain ladder model is replaced by an alternative 
version in which the 10 accident year effects are represented by a quadratic form.

Curve fitting of this sort might have a physical motivation, or might simply amount 
to abstract fitting (as in the present case). In either case, one must usually be resigned to 
the loss of some goodness-of-fit. However, the ultimate justification for such curve fitting 
is reduction of prediction error as a result of reduced parameterization.

Mathematically, the use of the suggested quadratic form amounts to replacement of 
(3-18) in the ODP cross-classified model of Section 3.3.2 (i.e., E[Ykj] = µk j = exp(ln ak + 
ln bj)) by the following:

(7-1)0 1 2
2E Y exp a a k a k lnk j k j j[ ] ( )= µ = + + + β
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Figure 7-1.    Plot of Accident Year Parameter Estimates
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Figure 7-2.    Quadratic Fit to Accident Year Parameter Estimates
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where there are now 12 free parameters a0, a1, a2, ln b2, . . . , ln b10. Recall that 
ln b1 was arbitrarily set to zero in Section 3.3.2 (see Table 3-5) due to parameter 
redundancy.

It is somewhat convenient to abbreviate this model a little further, thus:

(7-2)1 2
2E Y exp a k a k lnk j k j j[ ] ( )= µ = + + β

where the degree of freedom lost by deletion of the parameter a0 is compensated by 
restoration of ln b1 as a free parameter. Model (7-2) contains the same number (12) of 
parameters as (7-1) but those parameters are now a1, a2, ln b1, . . . , ln b10.

7.2.  Generalized Additive Models
The model (7-2) is an example of a generalized additive model (“GAM”). A 

GAM is a special case of a GLM. Recall the definition of a GLM in Section 2.2.1, and 
in particular condition (2) of that definition:

(7-3)h xi i
T( )µ = β

with xT
i = (xi1, xi2, . . . , xip), the vector of predictors associated with the i-th observation Yi.

Now suppose that one or more of the predictors takes the form

(7-4)x u zij j i( )=

where uj is a real-valued function, and zi is a vector of further covariates: zT
i = (zi1, 

zi2, . . . , ziq) which may include components of xi. The uj might be basis functions of 
the type introduced in Section 2.2.2.

When the GLM is defined subject to (7-4), it is a GAM. The model defined by 
(7-2) provides an example. In the present case,

, , . . . , , , (7-5)1 2 ,10 1 2x J J J u z u zi
T

i i i i i( )( ) ( )=

where Jij is a 0-1 indicator that takes the value unity if the i-th record relates to 
development year j and zero otherwise (compare with the design matrix X set out in 
Section 3.3.2);

(7-6)z ki i( )=

a 1-vector in which ki denotes the value of k associated with the i-th record; and

, 1,2 (7-7)u k k mm
m( ) = =

The following sections will examine a few applications of GAMs to the data triangle 
set out in Table 1-1.
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7.3.  Accident Year Trend
This model has been fitted to the data triangle set out in Table 1-1, and the resulting 

estimates appear in Table 7-1 under the heading “Simplified model”. Those under the 
heading “Chain ladder” reproduce the estimates from Table 5-1 for comparison. It is 
evident that the simplification of the model has caused very little difference to the 
estimated development pattern.

The quadratic representation of the accident year effect (see (7-2)) is 10.471 + 
0.2001k - 0.0179k2.

The simplified model has been applied to the forecast of outstanding losses, and the 
associated forecast error estimated by means of a parametric bootstrap. The procedure 
is parallel to that set out in Section 5.4.2, and its results appear in Table 7-2.

Table 7-2 may be compared with Table 5-5, which contains exactly the same 
information for the chain ladder model. The comparison indicates that the model 
simplification has affected the forecast of outstanding losses very little (0.4%), but has 
resulted in a reduction of 8.4% in estimated forecast error. In short, the reduction in 
parameterization of the model has resulted in improved forecast efficiency.

Note that, in some lines of business, an exposure measure may be used as an alternative 
means of capturing accident period trends. This is discussed below in Section 7.8.

7.4.  Development Pattern
Consider the development year parameter estimates ln b̂j appearing in Table 5-1. 

Figure 7-3 plots them against development year j.
There are 10 parameters plotted. However, it appears that they might be adequately 

represented by a linear spline with a knot at j = 7.5, again by means of a smaller number 
of parameters.

Table 7-1.    Parameter Estimates for Simplified Model

j

ln b̂j

Chain Ladder Simplified Model

1   0.000   0.000

2 -0.205 -0.206

3 -0.747 -0.750

4 -1.017 -1.015

5 -1.452 -1.452

6 -1.833 -1.830

7 -2.140 -2.142

8 -2.348 -2.353

9 -2.513 -2.514

10 -2.664 -2.661
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Consider Figure 7-4 in this context. The dotted curves here describe a confidence 
envelope of ±2 standard errors about the parameter estimates, where the standard 
errors are obtained from Table 5-1. The solid line represents the ordinary least squares 
fit of the following linear spline to the parameter estimates:

1 max 0, 7.5 (7-8)1 2b j b j b j( ) ( ) ( )= − + −

The spline, which is described by only 2 parameters, appears to track the parameter 
estimates well and does indeed lie well within the confidence envelope with the exception 

Table 7-2.    Parametric Bootstrap Estimates of Simplified 
Model’s Forecast Error

Accident Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,467 885 25.5

1990 8,334 1,295 15.5

1991 14,594 1,659 11.4

1992 22,416 2,000 8.9

1993 32,340 2,312 7.1

1994 45,263 2,614 5.8

1995 62,410 3,076 4.9

1996 79,922 3,658 4.6

1997 104,895 4,844 4.6

Total 373,641 13,086 3.5

Figure 7-3.    Plot of Development Year Parameter 
Estimates
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of the case j = 2. This suggests a model, with the accident year simplification of Section 7.3 
incorporated, of the form (7-3) with

1, , , 1, max 0, 7.5 , (7-9)2
2x k k j j Ji

T
i i i i i( )( )= − −

where ji denotes the value of j associated with the i-th record. Note the inclusion of the 
unit regressor, which allows for a constant term in the regression.

Thus the final model takes the form

1 max 0, 7.5 (7-10)0 1 2
2

1 2 2x a a k a k b j b j cJi
T

i i i i i( ) ( )β = + + + − + − +

This model has been fitted to the data triangle set out in Table 1-1, and the resulting 
estimates appear in Table 7-3.

Table 7-3.    Parameter Estimates for Model with Both 
Accident and Development Year Simplifications

Parameter Estimate

Accident year parameters

a0 10.469

a1 0.200

a2 -0.018

Development year parameters

b1 -0.358

b2 0.236

c 0.155

Figure 7-4.    Fit of Linear Spline to Development Year 
Parameter Estimates
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This model has been applied to the forecast of outstanding losses, and the associated 
forecast error estimated by means of a parametric bootstrap. The procedure is parallel 
to that set out in Sections 5.4.2 and 7.3, and its results appear in Table 7-4.

The bootstrap estimates of prediction error in Table 7-4 are comparable with those 
in Table 7-2 for the model that contained only the accident year simplification. It is 
seen that the development year simplification of the model has caused:

•	 once again, virtually no change in the forecast of outstanding losses; and
•	 just a slight increase in the associated CVP (3.50% to 3.55%).

Whether one chooses this model over the one developed in Section 7.3 is largely a matter 
of taste. The model of the present section reduces the number of model parameters 
from 12 (19 originally for the chain ladder) to 6, but without any improvement (and, 
technically, a slight deterioration) in forecast quality. However, it does express the 
development pattern in parametric form, leading to a smooth tail as well as forming 
a basis for tail extension, so it may be preferred on this basis. Tail smoothing and 
extension are discussed further in Section 7.7.

7.5.  Calendar Year Trend
The models discussed up to this point have considered accident and development 

period effects only, or alternatively, the rows and columns of triangles laid out in the 
manner of Table 1-1. There is a third direction in this triangle—the diagonal or, 
equivalently, the calendar period—that should be considered.

Table 7-4.    Parametric Bootstrap Estimates of Forecast Error for 
Model with Both Accident and Development Year Simplifications

Accident Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,542 776 21.9

1990 8,410 1,295 15.4

1991 14,490 1,678 11.6

1992 22,201 1,963 8.8

1993 32,572 2,303 7.1

1994 45,660 2,658 5.8

1995 61,592 3,088 5.0

1996 79,975 3,679 4.6

1997 104,959 4,977 4.7

Total 373,403 13,248 3.5



Casualty Actuarial Society	 83

Stochastic Loss Reserving Using Generalized Linear Models

In practice, calendar year trends are common in insurance data for a number of 
reasons. Some examples are given below:

•	 Many lines of business have a clear relationship with economic inflation. For 
example, changes in wage inflation will impact lines of business such as workers 
compensation or auto third party bodily injury claims as much of the cost of these 
claims consists of either income replacement or damages, reflecting pre-injury 
earnings in either case;

•	 Award precedents set by court decisions or other environmental change will often 
apply from a specific point in time, regardless of when the claim occurred;

•	 Changes in claims management departments such as expansion or contraction of 
staff numbers may impact the rate at which all claims are closed, which leads to a 
calendar effect on the insurance data.

A common method for dealing with economic inflation is to adjust the data so that 
all payments are in the same dollar values, e.g., the dollar values of the valuation date. 
In this case, the model forecasts will then be in the dollar values of the valuation 
date, so will need to be adjusted for future economic inflation. This has the advantage 
of producing forecasts with explicit economic assumptions, rather than an implicit 
assumption that the rate of economic inflation will be similar to that of the past, as 
is the case for the chain ladder. This may be useful for scenario tests, or if future rates 
are expected to be different to past rates, at least in the short term. Furthermore, for 
a company with multiple lines of business, carrying out a valuation in constant dollar 
values means that the consistent rates of future economic inflation may be applied 
across all LOBs. This is helpful both for scenario testing and for estimating variability 
of reserves since it introduces some correlation (that relating to economic variation) 
across the different LOBs.

Calendar period changes (both positive and negative) net of changes due to 
economic inflation are often referred to as superimposed inflation (“SI”), terminology 
introduced by Benktander (1979) and discussed in various parts of Taylor (2000). 
Typically SI is variable over time. For example, payments might increase at rates 
beyond economic inflation for a number of years, before measures are put in place to 
curtail the increase or even reduce claim size. This can lead to nil or even negative SI, 
which may last for some time, before other factors act to increase claim size once more.

Unmodeled calendar period effects can lead to distortions in the claim size 
models which would show up in the calendar period and triangular heat map 
diagnostics discussed in Chapter 6. If the diagnostics suggest calendar period effects, 
then as a first step, the modeler may wish to consider whether there is a natural  
economic inflation series for this line of business and, if so, adjust the past claim amounts 
to the valuation date. If unmodeled effects are still apparent after this step (or if there 
is no natural series to use), then the modeler should consider including calendar 
period effects in the model.

Adding calendar period effects to a model such as the cross-classified model must be 
done with due care. Accident, development and calendar period terms are not independent 
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covariates—knowledge of two of these determines the third. Thus, for the cross-classified 
model, replacing (3-18) with

(7-11)1( )µ = α + β + γ + −exp ln ln lnk j k j k j

is inappropriate since the collinearity of the accident, development and calendar terms 
(gk+j) means that there is no unique solution to the model, and any solutions returned 
by GLM software will be unstable.

Instead the modeler should impose a simple structure on the calendar period 
effects, based on examination of the model diagnostics. For example, if SI appears to 
progress at a constant rate over the first h diagonals and to be flat thereafter, then (3-18) 
could be replaced by

, 1 (7-12)( )( )µ = α + β + + − ϕexp ln ln min h k jk j k j

In practice, selection of an appropriate function should be based on model diagnostics, 
business knowledge and pragmatism; any calendar period trend will need to be 
extrapolated into the future for forecasting purposes, so the modeled trend must take 
this into account.

Recall that, although the Mack model formulation of the chain ladder may appear 
to be a development year only model, in fact the most recent diagonal of payments 
in the Mack model functions as accident period effects (see Section 3.2), so the same 
cautionary note about the addition of calendar period effects applies equally to Mack 
as to the cross-classified model.

7.6.  Interactions
Consider model (7-10). It contains some terms that depend on accident year and 

others that depend on development year. This means, for example, that the relation 
between different development years is independent of accident year. In chain ladder, 
parlance, age-to-age factors are constant across accident years.

Similarly, the relation between different accident years is independent of development 
year. In these circumstances, the individual components of the linear response are called 
main effects.

In some cases, however, the data may indicate that some development year effects 
depend on accident year. Consider, for example, Figure 7-5, which displays a heat map 
for model (7-10).

Features of this map are:

•	 for development year 1, a distinct area of blue in the earlier accident years;
•	 for development year 2, a distinct area of pink in the earlier accident years;
•	 for development year 3, a possible progression from pink to blue with increasing 

accident year;
•	 for development year 4, a preponderance of pink over the whole set of accident years.

In effect, it appears that the payment pattern has altered. Traditional actuarial methods 
typically deal with this by calculating chain ladder factors based on recent diagonals 
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only, e.g., the most recent 3 or 5 diagonals, etc. Essentially this corresponds to one 
model for older diagonals (even though the chain ladder factors may not be calculated) 
which is then modified for more recent experience and for projection.

The approach taken by the GLM is similar in principle in that the model is adapted 
to better fit the changed experience. The above features suggest testing the following 
additional terms in the model’s linear response, listed in the order of the above dot 
points to which they relate:

(7-13)1 1 ,1 6 2 2 ,1 6 3 3 4 4d J K d J K d J k d Ji i i i i i+ + +− −

where the variate Ki,1-6 is a 0-1 indicator that takes the value unity if the i-th record 
relates to an accident year in the range 1 to 6, and zero otherwise (compare with the 
definition of Jij in Section 7.2).

When these terms are added to (7-10), the complete model becomes (with a slight 
re-labelling and re-ordering of parameters for logicality):

1 max 0, 7.5

(7-14)

0 1 2
2

1 2

1 2 2 4 1 1 ,1 6 2 2 ,1 6 3 3

x a a k a k b j b j

c J c J d J K d J K d J k

i
T

i i i i

i i i i i i i

( ) ( )β = + + + − + −

+ + + + +− −

When this model is fitted to the data, the parameter estimates are as in Table 7-5. All 
parameters are significant at levels well below 5%.

The number of parameters has grown to 10, so there is a need to ensure that the 
additional model terms add to the predictive efficiency of the model.

A comparison of the CVP with that in Table 7-4 shows a substantial reduction of 
17% (see Table 7-6). The CVP is now 23% below that of the conventional chain ladder 
model (see Table 5-5).

The information criteria AIC and BIC were introduced in Section 4.3, while the 
related measure, GCV, was introduced in Section 4.4. The progression of their values 
through the sequence of models developed in the present chapter is set out in Table 7-7. 
The corresponding progression of CVPs is also shown for comparison.

Accident Development year
year 1 2 3 4 5 6 7 8 9 10
1988 99% 101% 98% 111% 112% 84% 97% 96% 100% 97%
1989 99% 99% 102% 109% 93% 90% 99% 106% 99%
1990 95% 107% 102% 96% 88% 97% 92% 107%
1991 97% 103% 94% 104% 102% 107% 113%
1992 97% 108% 99% 108% 97% 98%
1993 97% 104% 89% 106% 101%
1994 110% 92% 93% 112%
1995 102% 87% 99%
1996 105% 98%
1997 101%

Figure 7-5.    Heat Map for Model with Both Accident and 
Development Year Simplifications
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Table 7-5.    Parameter Estimates for Model 
with Interactions

Parameter Estimate

Accident year parameters

a0 10.4900

a1 0.2066

a2 -0.0183

Development year parameters

b1 -0.3685

b2 0.2720

c1 0.0375

c2 0.0528

Interaction parameters

d1 -0.0671

d2 0.1273

d3 -0.0113

Table 7-6.    Parametric Bootstrap Estimates of Forecast Error 
for Model with Interactions

Accident Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,630 569 15.7

1990 8,557 935 10.9

1991 14,563 1,203 8.3

1992 22,193 1,418 6.4

1993 32,505 1,677 5.2

1994 45,771 2,018 4.4

1995 62,998 2,459 3.9

1996 79,601 3,079 3.9

1997 101,742 4,094 4.0

Total 371,559 10,907 2.9
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The information criteria and GCV were introduced in Sections 4.3 and 4.4 as 
indicators of model predictive error. All three quantities show an improvement when 
accident year simplification is introduced and considerable improvement at the intro
duction of interactions, in line with CVP. On the other hand, the message is more 
mixed at the introduction of development year simplifications—AIC increases some-
what, BIC and GCV fall somewhat—while CVP remains almost unchanged. This 
reflects different levels of penalty placed on numbers of parameters—BIC and GCV 
penalize number of parameters more and therefore the trade-off between worse model 
predictive accuracy and fewer parameters is acceptable to these measures and not to 
AIC with its weaker penalty.

Empirical experience indicates that this sort of perverse behavior is not uncommon. 
In fact, while the information criteria are reasonable indicators of CVP behavior in 
the case of incremental changes to a model (such as the addition of interactions), 
they are frequently suspect in the case of wholesale changes (such as the shift from a 
categorical to a parametric representation). GCV, on the other hand, aligns better with 
CVP behavior for this particular data set.

Homoscedasticity
The concepts of homoscedasticity and heteroscedasticity were introduced in Sec

tions 2.2.4 and 2.2.5, and the need for ensuring the former before the acceptance of a 
model discussed in Section 2.2.5.

The above model including interactions is examined for homoscedasticity in 
Figure 7-6, which plots deviance residuals against accident year, and Figure 7-7, which 
plots them against development year. Reasonable homoscedasticity appears to have 

Table 7-7.    AIC, BIC and GCV for Various Models

Model AIC BIC GCV CVP

%

Conventional chain ladder (ODP 
cross-classified form)

-509,392 -509,354 6,685,428 3.8

Accident year simplification only -509,400 -509,376 5,075,351 3.5

Both accident and development 
year simplifications:
    without interactions
    with interactions

 
 

-509,397
-509,441

 
 
-509,385
-509,421

 
 

4,311,874
1,733,202

 
 

3.5
2.9

Notes:
• � AIC and BIC are defined in Section 4.3. The log likelihood used in their calculation is ∑n

i=1 wi[yi log ŷi − ŷi]/f 
where wi = 1 for all observations and the scale parameter is held constant at the value from the interactions 
model. The scale parameter is held constant to prevent changes in the scale from distorting the measurement 
of changed model fit.

•  GCV is defined in Section 4.4.
• �The values of AIC, BIC and GCV may differ depending on the statistical package. For AIC and BIC, this is  

because different packages may or may not include an additive constant (depending on the input data 
only) in the log likelihood expression. Thus the relativities of the scores, rather than their absolute values, 
are relevant. Additionally, the modeler should satisfy themselves that the measures are calculated  
appropriately in their package of choice.
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Figure 7-6.    Residual Plot by Accident Year for Model Including Interactions

Figure 7-7.    Residual Plot by Development Year for Model Including Interactions
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been achieved, though perhaps with a slight hint of tapering variance as development 
year advances beyond about 6. This matter is not pursued further here.

7.7. Tail Smoothing and Extension
7.7.1. Tail Extension

Note that the range of development year has been extended to j = 15 in Figure 7-4. 
The figure indicates that the parametric form fitted to development year may be extended 
beyond the range of the data, providing a means of tail extension.

By (7-14), the linear response xT
i b is linear in j ≥ 8 for fixed k, with gradient b1 + 

b2 = -0.097 (by Table 7-5). According to this model, the linear response decreases by 
0.122 from each development year to the next in the tail.

The link function in this example is exponential:

(7-15)E Y exp xk j k j i
T[ ] ( )= µ = β

(see (7-2)), which implies that E[Ykj] decreases by a factor of exp(-0.097) = 0.908 from 
each development year to the next in the tail; the tail is pure exponential.

It is necessary to recognize this form of tail extension for what it is, namely an 
extrapolation beyond the range of the data. In other words there is no direct evidence 
for the behavior imputed to the tail beyond development year 10, and one must accept 
the risks of this imputation.

On the other hand, the linear behavior of the linear predictor over the range j = 8, 
9, 10 gives reasonable cause to believe that the linearity is likely to persist for the next 
few values of j. The extrapolation becomes steadily more speculative as one progresses 
to higher development years.

7.7.2. Tail Smoothing
One aspect of the chain ladder that is often problematic is irregularity in the progres

sion of estimated age-to-age factors for the higher development years. As j approaches J 
in the case of a triangular data set ( J = K ), the number of observations contributing to 
the estimate f ĵ decreases, until at j = J - 1 the estimator (1-8) depends on only the two 
observations X1,J-1 and X1,J.

It is evident that parameter estimation on the basis of such a small sample is liable 
to lead to an estimate with a large standard error. A more reliable estimate might be 
obtained by the fit of a parametric form (such as (7-8)) to the higher development years j.

As it happens, this was unnecessary in the present example. The development year 
effects delivered by the unmodified chain ladder (see Table 3-1 or Figure 7-3) were quite 
smooth. However, other numerical examples would not have yielded such a fortunate 
result, and a device for smoothing the age-to-age factors for the higher development 
years would have been beneficial.

An example of this can be found in Table 3.1 of Taylor (2000), where the estimated 
higher age-to-age factors are as set in Table 7-8.
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7.8.  Exposure-Based Methods
It is sometimes the case that there exists a time series {ek} by accident period to which 

the claims experience of accident period k is expected to be at least roughly proportional. 
For example, the average number of motor vehicle damage claims in a year would, all else 
being equal, be expected to be proportional to the number of vehicles insured in that year.

If such a time series can be identified then it may be used to improve the model 
through the additional (known) time series data. This time series is generally referred 
to as the exposure, and may be incorporated into the model by (in the case of the cross-
classified ODP model) substituting ek for ak in (3-18):

(7-16)exp ln e lnk j k j( )µ = + β

Note that a crucial difference between (3-18) and (7-16) is that {ek} is a known series 
whereas {ak} is a series of parameters and must be estimated. In statistical parlance, ln 
ek is an offset in the GLM.

Further, it may be shown (Frees and Derrig, 2014, Section 18.3.2) that the inclusion 
of an exposure offset in a log link model (such as the cross-classified model) results in 
the remainder of the model terms producing an estimate per unit of the exposure. For 
example, in a model of ultimate motor vehicle damage claim numbers, with number 
of vehicles as an offset, the model produces an estimate of claim frequency per vehicle.

As noted in Frees and Derrig (2014), there may be accident period effects in 
addition to the offset. Thus, (3-18) could be replaced by:

(7-17)exp ln e ln lnk j k k j( )µ = + α + β

Simplifications to accident and development period effects as discussed in Sections 7.3 
to 7.7 above apply as before, the only difference being that they would now operate per 
unit of exposure.

Table 7-8.    An Example of Non-Smooth 
Age-to-Age Factors

Development 
Year

Estimated Age-to-Age 
Factor

10 1.028

11 1.014

12 1.009

13 1.008

14 1.009

15 1.001

16 1.002

17 1.001
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It is natural to think of exposure-based models for estimation of the ultimate numbers 
of claims reported in each accident period (i.e., including IBNR). However, such models 
are also useful for claim payments. Here, time series based on numbers of claims may be 
incorporated as an exposure measure to inform the payments model. Within Australian 
general insurance practice, such models are often used. These models include:

•	 Payments per claim incurred model (“PPCI”): {ek} = ultimate number of claims 
in accident period k. This model structure is conceptually very similar to the chain 
ladder model discussed in this monograph, except that the modeled payments are 
standardized for different numbers of claims incurred in each year. For lines of 
business with volatile numbers of claims, but similar average payments per claim, 
this model may be helpful.

•	 Payments per claim finalized model (“PPCF”): Here the time series varies by both 
accident and development period and is {ekj} = number of claims closed in accident 
period k and development period j. This model is suited to those lines of business 
where claims tend to settle as lump sums with closure and payment happening in 
the same cell of the triangle. In this case, the payments would be expected to relate 
to the number of claims closed in that cell. For example it may be useful for auto 
bodily injury claims or other liability claims.

•	 Payments per active claim (“PPAC”): As with the PPCF model, the time series varies 
by both accident and development period. In this case, {ekj} = number of active claims 
during accident period k and development period j. This model is suited to those 
lines of business where claims have ongoing payments for a number of years. An 
example would be weekly compensation payments from Workers’ Compensation 
insurance.

Further discussion of the PPCI and PPCF models is given in Taylor (2000) and, in a 
GLM context, in Frees and Derrig (2014), and the interested reader is directed there. 
The PPAC model, which may also be referred to as the Payments per Claim Handled 
(“PPCH”) model is discussed in Sawkins (1979) and in Taylor (1986).

Both references given above for the PPCF model discuss the concept of operational 
time, where development period in a model is replaced by the proportion of claims 
that have finalized to date. This is a useful tool in situations where the rates of claims 
closure are not constant over time, perhaps due to changes in claims departments or in 
the wider environment. Operational time may easily be incorporated into a GLM as 
outlined in Frees and Derrig (2014).

7.9.  Beyond a Single Triangle
The exposure measure for a model of ultimate claim numbers is usually a known 

quantity such as number of vehicles, policy years or wages (e.g., for workers compensation 
claims). However, the exposure-based payments models rely on counts of claim numbers 
(ultimate, closed, active) which are not fully known in advance. For example, numbers 
of claims in recent years may need to be adjusted for IBNR (Incurred but Not Reported) 
claims. Numbers of claims closed and active claims may be known in the past, but future 
numbers will require estimation.
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Consequently, implementations of the PPCI model may involve two separate 
models:

1.	 A model of the ultimate number of claims so that IBNR numbers may be estimated;
2.	 An exposure-based model of the average payments per claim incurred.

Similarly, implementation of the PPCF model may require three separate models:

1.	 A model of the ultimate number of claims so that IBNR numbers may be estimated;
2.	 A model of the rate of closure of claims to allow the timing of future claims finaliza

tions to be estimated;
3.	 An exposure-based model of the average payments per claim closed.

The prediction error of the PPCF model is the compound of the prediction errors of its 
component sub-models, and similarly for other models that consist of a number of sub-
models. The decision on whether to use models such as these must take into account 
the additional prediction error introduced by each component and whether this is more 
than offset by the model’s improved representation of the data. Detailed examination 
of this point may be found in Taylor and Xu (2016), while Taylor (2000) and Frees and 
Derrig (2014) provide more detail on implementing these models.

The double chain ladder (Martínez Miranda, Nielsen and Verrall, 2012) is another 
multi-model approach to the estimation of claims reserves. As the name suggests, two 
chain ladder models are used, one for reported claim numbers and the other for claim 
payments.

7.9.1.  Bootstrapping a Compound Model
Bootstrapping a model such as the PPCI or PPCF is a straightforward extension of 

the bootstrap for a single triangle model. For each sub-model, n bootstraps are carried 
out. In the case of the average payments sub-model of the PPCF outlined above, the 
results of bootstrap b of this model are combined with the bootstrapped ultimate 
claim numbers from the b-th bootstrap of sub-model 1 and the claim closure pattern 
that results from the b-th bootstrap of sub-model 2. Further discussion of multiple 
bootstraps such as these is given in Taylor and Xu (2016).

Note that this process does not allow for correlations between the models apart from 
those that result from the forecasted value. For example, an increase in claim notifications 
might cause the finalization rate to slow down due to claims managers having greater 
numbers of claims to manage. Such an impact will not be captured in the bootstrap 
process outlined above. However, this type of change is arguably an aspect of model error 
(Section 4.5), and should be included in the allowance for that error. Scenario testing 
may also assist in estimating the impacts of such change.

7.10.  Individual Models
Up to this point, the models discussed have assumed that the data are available 

in the form of triangles, such as that in Table 1-1. However, the data actually held 
by an insurance company will typically be in unit record form, with a considerable 
amount of information associated with each claim such as claimant information (date 
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of birth, information relevant to the particular policy type such as age, employment, 
earnings, etc.), claim information (peril, date of accident, notification, finalization, etc.) 
and transactional details on payments to date. The use of highly summarized triangles, 
rather than the individual data detail dates back to general insurance practice before the 
availability of modern computing power, and the need to summarize claims experience 
into a convenient form for analysis.

This restriction no longer applies, and it is possible to consider the claims experience 
at an individual claims level. Portfolios may contain thousands or even hundreds of 
thousands of claims, each associated with a possibly large number of explanatory variables. 
Contrast this with the small number of observations in a yearly triangle, which is likely 
to eliminate a considerable amount of useful predictive information. In more technical 
language, the triangle may not be a sufficient statistic for the mass of detail available.

Currently, there are typically two broad classes of model used in reserving and 
related problems:

•	 Aggregate or macro-models: models applied to aggregate data summarized in 
arrays of triangular, or some other, shape, such as those described above—the chain 
ladder, cross-classified model, PPCI, PPCF, etc. The aggregated data is typically 
aggregated over accident and development periods; and

•	 Individual claim, micro-models or granular models: as the name suggests these 
are applied to individual claim data or to data summarized at a granular level.

The use of individual claim rather than aggregate models may lead to more efficient 
models.

The application of GLMs to individual claims data proceeds in much the same way 
as to summarized triangular data. For example, a model with accident and development 
period effects such as (3-18) can be fitted to individual data. The difference lies in  
the design matrix, X, where each row corresponds to an individual observation rather 
than to a triangle cell as it does in Section 3.3.2. Fitting trends by accident, development 
and calendar periods and model validation proceeds in much the same way as before, 
the difference being that there are many more data points to inform the modeling 
process.

Merely fitting the same GLM to individual claim data as was fitted to the aggregate 
data (triangle) may not produce a markedly different model. However, the use of individual 
claims data opens up the possibility of using a number of claimant and claim related data 
as explanatory variables to refine estimates of average claim size. Taylor, McGuire and 
Sullivan (2008) classify explanatory variables as follows:

•	 Static variables: constant over the life of a claim (e.g., gender, pre-injury earnings);
•	 Dynamic variables: these may change over the life of a claim. Dynamic variables 

may be further categorized as:
C	 Time variables: these relate to the passage of time and are therefore future 

values are known with certainty (e.g., development period, calendar period);
C	 Unpredictable variables: future changes in these values are not predictable 

with certainty (e.g., time until a claim closes, spells off work).
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It is evident that, if any unpredictable variables are included in a model, then any forecast 
of that model will require forecasts of these variables. As noted in Section 7.9, which 
discusses the same concept for aggregate data models, any decision on the inclusion of 
an unpredictable variable in a model must offset the increase to the prediction error 
from use of this variable due to its stochastic nature against the resulting decrease in 
prediction error due to more accurate modeling.

Consequently, individual reserving models tend to lie on a spectrum from those 
models with time variables only to models with all types of predictors including 
unpredictable variables.

Taylor and McGuire (2004) discuss an individual claims reserving model that lies 
towards the simpler end of the spectrum. This is a model of the average size of auto 
bodily injury claims, which depends on the time variable accident period and functions 
of the unpredictable variable, development time until closure of a claim.

McGuire (2007) describes an update to this model where the use of claim severity 
is found to greatly increase the predictive power of the model. Micro-models are also 
discussed in detail by Pigeon, Antonio and Denuit (2013) and Antonio and Plat (2014).

At the other end of the spectrum lies the class of individual claims models referred 
to as Stochastic Case Estimate (“SCE”). These are intended to provide estimates of 
ultimate costs of individual claims that are alternatives to the physical or manual case 
estimates assigned by claims experts. As such, a model with high discriminatory power 
is to be preferred and in general, this is achieved by considering a large number of 
predictors. Further details on the construction of SCE models may be found in Taylor 
and Campbell (2002), Brookes and Prevett (2004) (which both relate to Australian 
workers’ compensation insurance) and Taylor, McGuire and Sullivan (2008) which 
applies an SCE to US medical malpractice. The latter paper also includes some discussion 
of applying a bootstrap to such models.

7.11.  Bayesian Models
Although Bayesian models and related methods such as Markov Chain Monte 

Carlo (“MCMC”) are beyond the scope of this monograph, it is noted that they are 
increasingly used for stochastic reserving models.

Each GLM considered to this point of the present monograph is non-Bayesian 
in that its parameters are treated as fixed, though unknown, quantities. It can be 
transformed into a Bayesian model by representing each unknown parameter as a 
random quantity deriving from a particular statistical distribution. Put in an alternative 
manner, a Bayesian model for a particular quantity seeks to estimate the posterior 
distribution of that quantity based on prior distributions for the model parameters and 
the likelihood based on observed data.

In many ways, the Bayesian paradigm seems a natural fit to insurance-type problems. 
The prior distributions of the parameters may be used to codify expert knowledge or a 
priori expectations, and combine this in an objective manner with emerging experience. 
The similarities with credibility theory are apparent.

For many years, Bayesian analysis was limited for computational reasons; users 
were forced to restrict themselves largely to combinations of prior distributions and 
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likelihoods that led to closed form analytic solutions (conjugate priors). That changed 
with the advent of MCMC methods into the wider statistical community, which 
enabled simulation of full distributions from any posterior distribution. For insurance 
problems, MCMC enables the modeler to combine a priori knowledge with emerging 
experience to produce a full distribution of the stochastic reserves.

There have been many papers in the actuarial literature discussing Bayesian models 
and MCMC, of which a small sample is referenced here. Verrall (2000, 2004), England 
and Verrall (2002, 2006), England and Verrall (2006), Wüthrich (2007), England, 
Verrall and Wüthrich (2012) and Taylor and Xu (2016) present various Bayesian 
models, most of them Bayesian versions of the chain ladder. Scollnik (2001 and 2002), 
Ntzoufras and Dellaportas (2002), Meyers and Shi (2011), amongst others, describe 
the implementation of MCMC for insurance data.

All modeling approaches discussed up to this point consist of specification of a 
particular model, possibly Bayesian but always with a fixed number of parameters, 
and then estimation of those parameters. More recently, reversible jump MCMC 
(“RJMCMC”) methodology has been introduced as a framework containing a com-
plete family of models with differing numbers of parameters. The calibration step 
then consists of selection of a specific model from the family, as well as estimation of 
its parameters. A strength of RJMCMC is that it enables the modeler to consider a 
number of different models simultaneously. For example. Ntzoufras, Katsis and Karlis 
(2005) use RJMCMC to fit and choose between different models for claims count 
data, while Verrall and Wüthrich (2012) and Verrall, Hössjer and Björkwall (2012) 
consider the smoothing of the development period curve in a Bayesian ODP model, 
allowing RJMCMC to choose the cut-off development period at which parametric 
functions are used rather than the individual development period parameters.
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8.  Conclusion

This monograph commenced with the application of the conventional chain ladder 
algorithm to a data set (Section 1.5). The application was non-stochastic, as is so often 
the case in practice.

Certain stochastic models were then identified as producing precisely the same forecast 
as the conventional algorithm (Section 3.3). The stochastic view regards the quantum of 
outstanding losses as a random variate, and the forecast as an estimate of the mean value 
of that variate. The stochastic models enable the estimation of the entire distribution of 
outstanding losses.

The “chain ladder algorithm”, as defined here, is absolutely rigid, with no scope for 
variation according to any eccentricities in the data to which it is applied. In practice, 
actuaries typically make a number of adjustments to it, such as calibration of the model 
on the basis of data of only recent years, or limiting in some way the influence of 
outlying observations.

It was shown (Section 3.4) that some of these adjustments could be formulated within 
the stochastic models. In consequence, the stochastic model could be made to parallel 
those used in practice while retaining its ability to estimate the entire distribution of 
outstanding losses.

Finally, Chapter 7 examined variations of the model that could not be made within 
the conventional chain ladder framework, but only within the formal stochastic model 
formulation. These variations explored the much discussed matter of whether or not 
the conventional chain ladder is over-parameterized, with the degradation of predictive 
power that comes with over-parameterization.

These model variations took two forms. First, the manner in which accident year 
was represented as influencing expected paid losses in individual cells of the claim 
triangle was changed from a separate factor for each accident year to a parametric 
function of accident year. For example, it was found possible to represent the effects 
of the 10 separate accident years by a function of only 3 parameters, rather than the 
10 parameters required by the conventional chain ladder. The parameterization of 
development year was similarly reduced.

The second form of model variation introduced was the introduction of interactions. 
The conventional chain ladder assumes that age-to-age factors are independent of accident 
year. Frequently, this assumption is violated by data triangles encountered in practice. 
Violations may be highly localized, affecting only a handful of cells, or they may consist of 
longer term systematic changes, such as trending age-to-age factors.
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In any event, if model interactions are warranted but ignored in the modeling 
(such as inevitably occurs in the application of the conventional chain ladder), then 
estimates of accident and development year effects will be distorted.

These changes produce two beneficial results. First, they improve the goodness-of-fit 
of the model. Second, they reduce the associated prediction error. The end result observed 
in Table 7-6 was a 17% reduction in prediction error solely by virtue of inclusion of the 
interactions.

The final prediction error was 23% less than that associated with the conventional 
chain ladder. It is emphasized that all of these modifications of the conventional chain 
ladder model are achievable within a GLM framework but not by the conventional 
approaches that depend essentially on row and column sums or averages.

The chapter concluded by giving an overview of models beyond the chain ladder, 
discussing exposure-based models (both as a single model, or a model consisting of a 
number of sub-models in cases where claim numbers form the exposure) and micro- (or 
granular or individual claim) models which include Stochastic Case Estimate models. 
A brief introduction to Bayesian models was also provided for the reader’s interest.

In summary then, it has been shown that the chain ladder, together with some 
common variations of it, can be expressed in GLM form. Then it has been further shown 
that the GLM structure may be extended to a more statistically efficient model in ways 
that are not achievable without the GLM (or perhaps some other model of a similar level 
of sophistication).

In the process one has progressed from a heuristic algorithm to a fully stochastic 
model with diagnostics that are adequate to determine whether that model is a reason-
able representation of the data. Further, since the model is fully stochastic, it is capable 
of producing the full stochastic properties of its forecasts, including prediction error, 
quantiles, etc.

That is, the GLM is capable of anything of which the conventional chain ladder is 
capable, but the GLM is capable of many things of which the conventional chain ladder 
is not.
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Errata  

Page 7, last line of second paragraph: should read “𝑌𝑘1(= 𝑋𝑘1)”. 

Page 7, last dot point: replace with the following: 

Cape Cod forecast:  𝐵𝑘 = 𝑃𝑘 ∑ 𝑃𝑖𝜔𝑖[(𝑋𝑖,𝐾−𝑖+1 + 𝑅̂𝑖) 𝑃𝑖⁄ ]𝐾
𝑖=1 ∑ 𝑃𝑖𝜔𝑖

𝐾
𝑖=1⁄  with 𝜔𝑖 =

1 𝑓𝐾−𝑖+1 … 𝑓𝐽−1⁄ . 

Page 9, Table 2-1.  In the “Inverse Gaussian” row, under the heading 𝑏(𝜃), the entry 

−(−2𝜃)−½ should be −(−2𝜃)½. 

Page 9, sentence immediately following Table 2-1.  Add “where 𝑛 and 𝑣 are additional 

parameters providing alternative representations of 𝜙”. 

Page 9, equation (2-5).  The factor 𝛼(𝜙) should be 𝑎(𝜙). 

Page 10, equations (2-12) and (2-13).  These are incorrect, and should be deleted.  Equation 

(2-9) holds for 𝑝 ≠ 1,2, and (2-10) holds for 𝑝 ≠ 1.  However, in these cases, the 

form of variance function implies the following: 

For 𝑝 = 1, 𝑏(𝜃) = 𝑒𝜃, 𝜇 = 𝑏′(𝜃) = 𝑒𝜃. 

For 𝑝 = 2, 𝑏(𝜃) = −𝑙𝑛(−𝜃), 𝜇 = 𝑏′(𝜃) = − 1 𝜃⁄ . 

Page 11, Table 2-2.  In the “Gamma” row, under the heading 𝑏(𝜃), the entry 𝑙𝑛(−𝜃) should 

be −𝑙𝑛(−𝜃). 

Equation (2-15):  Replace by      𝑒𝑥𝑝 𝑐(𝑦, 𝜑) = 𝜑−𝑦 𝜑⁄ [(𝑦 𝜑⁄ )!]−1. 

Equation (2-16):  Replace by     𝜋(𝑦; 𝜇, 𝜙) =
(𝜇 𝜙⁄ )𝑦 𝜙⁄ 𝑒𝑥𝑝 (−𝜇 𝜙⁄ )

(𝑦 𝜙⁄ )!
 . 

Page 29, equation (3-12) require correction in sympathy with the correction to (2-16): 

replace the term 𝑙𝑛 (𝑓𝑗−1 − 1) by 𝑙𝑛 (
𝑓𝑗−1−1

𝜙𝑗−1 𝑋𝑘,𝑗−1⁄
). 

Page 30, 3 lines after equation (3-14):  Definition of 𝛽 should be 

𝛽 = (𝑓1 − 1, 𝑓2 − 1, … , 𝑓9 − 1)𝑇 .

Page 49, equation (5-21):  Replace by 

𝜀𝑝𝑟𝑜𝑐
∗ = 𝑌̃𝑝𝑟𝑜𝑐 − 𝑌̂. 
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ESTIMATING THE PREMIUM ASSET ON
RETROSPECTIVELY RATED POLICIES

MICHAEL T. S. TENG AND MIRIAM E. PERKINS

Abstract

This paper presents a method for estimating the pre-
mium asset on retrospectively rated policies, using the
functional relationship between the losses and the ret-
rospective premium. This relationship is examined using
the historical premium and loss development data and
the retro rating parameters sold in the underlying policy.
The cumulative ratio of premium development to loss
development, when applied to the expected future loss
emergence, gives the expected future premium develop-
ment on the retro rated policies. The sum of all future
premium development is the premium asset.
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1. INTRODUCTION

On retrospectively rated policies, premium that the insurer ex-
pects to collect based on the expected ultimate loss experience,
less the premium that the insurer has already booked, is called the
premium asset. Many insurers call this the Earned But Not Re-
ported premium (EBNR). The admitted portion of the premium
asset appears on the balance sheet as the “Asset for Accrued
Retrospective Premiums.”

In recent years, retro rated policies have become popular for
several reasons.
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1. A retro rated policy returns premium to the insured for
good loss experience. This feature is attractive for a cus-
tomer who anticipates favorable loss experience through
loss control and loss management. By offering retro rated
policies, the insurer may be able to attract these good
customers.

2. A growing number of commercial insurance buyers are
taking advantage of the cash flow feature in a retro rated
policy. A retro rated policy allows the insured to pay
premium as losses are reported or paid, depending on
the contract, rather than paying all premiums up front.
This allows the insured to hold on to cash longer.

3. Inflation, rate regulations, uncertainty in claims com-
pensability, increasing utilization of the insurance ben-
efits, and growing attorney involvement have made the
cost of insurance much harder to predict today than in
the past. Since the premium for a retro rated policy varies
directly with the insured’s actual loss experience, writ-
ing retro policies allows an insurer to shift a large portion
of the actual risk to the insured. This makes the insurer
more willing to write insurance.

As a result of the growth of retro rated policies, estimat-
ing the premium asset for them is a growing need for many
commercial lines insurers. This asset frequently exceeds 10% of
surplus. Despite the growing importance of the premium asset,
there have been few articles written on this subject. Berry [1]
and Fitzgibbon [2] have presented methods of calculating the
“retro reserve,” defined as the difference between the premium
deviation to date and the ultimate premium deviation.1 The retro
reserve is the negative equivalent of the premium asset referred

1The ultimate premium deviation is the amount by which the ultimate premium for a
retro rated policy is expected to differ from the standard premium (manual premium
adjusted for experience rating). The premium deviation to date is the amount by which
the currently booked premium differs from the standard premium.
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to in this paper. Their approach is to analyze the historical rela-
tionship between the loss ratio and the premium deviation using
statistical techniques, and then apply such a relationship to the
projected loss ratio to calculate a projected ultimate premium de-
viation. This ultimate premium deviation is then reduced by the
premium deviation to date to produce the retro reserve. Berry
uses a second approach, which is to estimate ultimate premium
using the historical premium emergence pattern, and then sub-
tract current premium to get the retro reserve.

While the statistical methods presented in [1] and [2] may
be theoretically sound, they lack intuitive appeal, particularly as
they relate to how a retro rating formula actually works. On a
retro rated policy, premium is calculated as a function of loss.
This function is composed of retro rating parameters such as the
loss conversion factor, tax multiplier, retro minimum, and retro
maximum; they define how much premium an insurer can collect
given a certain amount of loss. Therefore, the premium asset on a
retro rated policy should be established as a function of reported
losses and the reserve for loss development, where this function
is defined by the retro rating parameters.

This paper will present, through an example, a method of
calculating the premium asset as a function of current losses,
expected future loss emergence, and the retro rating parame-
ters. Specifically, the method looks at how premiums develop
as losses develop. The relationship can be expressed as the ra-
tio of premium development to loss development, referred to
here as the PDLD ratio. There are two methods of calculating
the PDLD ratio—from historical premium and loss development
data, and from the retro rating parameters. The latter approach
will be developed first, and will be followed by the calculation
of the PDLD ratios from historical data. Once the relationship
between premium and loss is determined, it can be applied to the
expected future loss development to get the expected future pre-
mium development. The sum of all future premium development
is the premium asset.
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This method applies only to retro rated polices (or similar loss
sensitive rating plans), and not to prospectively rated policies.
There may be a premium asset on prospectively rated polices
due to changes in exposure, but this topic will not be discussed
here. This method is intended to be applied to an aggregate book
of business, or large segment of a book of business, rather than
at the individual policy level.

2. THE FORMULA APPROACH TO CALCULATING PDLD RATIOS

The first step is to derive the formula for a PDLD ratio. This
starts with the first retro adjustment. On a retro rated policy, the
premium calculation is based on a retro formula. A commonly
used formula is

Pn = [BP + (CLn£LCF)]£TM, (2.1)

where

Pn = Premium at the nth retro adjustment,

BP = Basic premium,

CLn = Capped loss at the nth adjustment2,

LCF = Loss conversion factor, and

TM = Tax multiplier.

For example, P1 denotes the premium computed for the first
retro adjustment; P2 denotes the premium computed for the sec-
ond retro adjustment. Note that BP, LCF, and TM typically stay
the same throughout all retro adjustments. For a more thorough
discussion of the retro rating formula, see Gillam and Snader [3].

Using formula (2.1) and denoting L1 as the amount of loss
developed for the first retro adjustment, the first PDLD ratio

2Losses that contribute to additional premium: these are total losses subject to a minimum
and a maximum amount corresponding to the plan minimum and maximum premiums.
Individual claims may also be capped by a per accident limitation, which limits the
adverse impact of any single large claim on the premium calculation.
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can be stated as follows:

P1=L1 = [BP + (CL1£LCF)]£TM/L1

= [(BP/L1)£TM] + [(CL1=L1)£LCF£TM]: (2.2)

The first term of this formula is (BP/L1)£TM. This is basic pre-
mium divided by the loss emerged for the first retro adjustment
times the retro tax multiplier. One can approximate this as

BP£TM=(SP£ELR£%Loss1), (2.3)

where

SP = Standard premium,3

ELR = Expected loss ratio

= Expected ultimate loss divided by
standard premium, and

%Loss1 = Expected percentage of loss
emerged for the first adjustment.

Formula 2.3 is equivalent to (BP/SP)£TM=(ELR£%Loss1),
which is the basic premium factor in a retro rating formula times
the tax multiplier, divided by the expected loss ratio emerged for
the first retro adjustment. The expected loss ratio for the first
retro adjustment would depend on the ultimate expected loss
ratio and the percentage of losses emerged at the first adjustment.
Typically, losses emerged as of 18 months are used to compute
the first retro adjustment.

In Formula 2.2, the term CL1=L1 is the ratio of capped losses
to uncapped losses. This ratio is referred to as the loss capping
ratio. Capped losses are losses that contribute to an additional

3Manual premium adjusted for experience rating.
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premium. Any change in loss, where total loss exceeds the min-
imum and is below the maximum, will result in additional pre-
mium. Conceptually one can view the difference between the
capped loss (CL) and the uncapped loss (L) as the portion of
loss outside the boundaries of the retro maximum and minimum.
On plans that cap the losses with a per accident loss limit, the
capped loss would also exclude the losses exceeding this limit,
since they do not contribute to additional premium. The loss cap-
ping ratio usually decreases as the data becomes more mature.
This is because an increasing portion of the loss development
occurs outside of loss limitations. The loss capping ratio can be
derived by comparing the capped and the uncapped loss develop-
ment, if such data are available; often they are not. In this paper,
the loss capping ratio is derived using a loss ratio distribution.
Because the explanation of this method is somewhat detailed, it
is presented after the example of the PDLD ratio calculation, in
Section 5.

If the loss data used is already capped (i.e., Ln equals CLn
for all n), then the loss capping ratio will be one. Otherwise, this
ratio will have to be estimated. The example assumes that the
loss capping ratio is 0.85 for losses developed through the first
retro adjustment. This means that 15 percent of the losses devel-
oped through the first retro adjustment are eliminated by the net
effect of the retro maximums, minimums, and per accident limi-
tations.

To show how Formula 2.2 can be used to estimate the PDLD
ratio, the example assumes the following retro rating parameters:

Basic premium factor = 0:20

Expected loss ratio = 0:70

Loss conversion factor = 1:20

Tax multiplier = 1:03

%Loss1 = 78:4%:
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These retro rating parameters may be computed as the average
of the sold retro parameters. Substituting these values into For-
mula 2.2, one gets a PDLD ratio for the first retro adjustment
of

[0:20£ 1:03=(0:70£78:4%)] + (0:85£1:20£1:03) = 1:426:

The PDLD ratio for the second retro adjustment period refers
to the incremental premiums developed between the first and the
second retro adjustments, divided by the incremental losses devel-
oped between these two adjustments. Typically, successive retro
adjustments occur at one year intervals. One can view the PDLD
ratio for the second retro adjustment period as the ratio of the
change in premium divided by the change in loss. Algebraically,
this equals

(P2¡P1)=(L2¡L1)

= (CL2¡CL1)£LCF£TM=(L2¡L1)

= [(CL2¡CL1)=(L2¡L1)]£LCF£TM: (2.4)

This example assumes an incremental loss capping ratio of 0.58
for the second retro adjustment period. Substituting this loss cap-
ping ratio and the retro rating parameters into Formula 2.4, one
gets a PDLD ratio of 0:58£1:20£1:03 = 0:717. The PDLD ra-
tios for the third and subsequent retro adjustments are calculated
in a similar manner.

The advantage of using the retro formula to estimate the
PDLD ratio is that it responds to changes in the retro rating
parameters that are sold, whereas the PDLD ratios derived from
the historical data may not be indicative of the future PDLD
ratios. If the retro rating parameters change significantly over
time, one should give more weight to the PDLD ratios derived
by formula than those derived from the historical data. A
summary of the formula PDLD ratios is shown in Exhibit 4,
Part 2.
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When possible one should retrospectively test the PDLD ra-
tios derived by formula against actual emergence in the subse-
quent retro adjustment periods to determine if any bias exists. A
possible source of bias is the use of average parameters for the
LCF, tax multiplier, maximum, minimum, and per accident lim-
itation. One should study the appropriateness of the selections
and adjust them as necessary. Such a study could lead to better
parameter selections and more accurate premium estimates.

3. THE EMPIRICAL APPROACH TO CALCULATING PDLD RATIOS

The use of empirical data is another way to calculate the
PDLD ratios. Two types of data are needed for the empirical
approach: booked premium development and reported loss de-
velopment.4 For the example presented in this paper, premium
booked by policy effective quarter by valuation quarter is dis-
played in Exhibit 6 and reported loss data is shown in Exhibit 7.
The calculation of the PDLD ratios is shown in Exhibit 4. The
PDLD ratio after the sixth retro adjustment is selected at zero,
which assumes that there are no further retro adjustments.5

Data should be segregated into homogeneous groups by size
of account and by the type of rating plan sold. When appro-
priate, other criteria should be used in grouping the data. Poli-
cies are grouped based on the calendar quarter in which they
became effective. These groups will be referred to as policy ef-
fective quarters. The first policy effective quarter of 1994 will be

4Booked premium on a retro rated policy is the premium computed using the retro rating
formula and the most recent loss valuation. Reported loss is the amount of loss that has
been reported to the insurer. It does not include future loss development for unreported
claims, for such losses are often not entered into the premium calculation.
5The NCCI and ISO retrospective rating manuals prescribe a maximum premium adjust-
ment period of 3 to 4 years. The actual maximum adjustment period varies from one
retro policy to another. A maximum premium adjustment period of six years is common
among major commerical line retro policies. However, due to increasing uncertainty of
loss costs and growing usage of cash flow financing of premiums, retro policies will
probably be written with longer premium adjustment periods in the future.
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denoted as 1994.1, the second quarter will be denoted as 1994.2,
and so on.

The first retro premium computation is usually based on losses
developed through 18 months. However, it takes time to do the
retro calculation and to record adjusted premiums. This paper
assumes that due to time lags in processing and recording, pre-
miums are recorded 3 to 9 months following the recording of
losses. Therefore, it is assumed that premiums booked through
27 months are the result of the first retro adjustment. Since
retro adjustments are usually done in annual intervals, premiums
recorded through 39 months would be the result of the second
retro adjustment, using losses evaluated at 30 months. Premi-
ums recorded through 51 months would be the result of the third
retro adjustment, using losses evaluated at 42 months, and so
on. In practice, the actual length of the retro adjustment period
and the premium booking lag may vary from one insurer to an-
other.

The PDLD ratio for the first retro adjustment equals premiums
booked through 27 months divided by losses reported through
18 months. At the first retro adjustment period, the PDLD ratio
indicated by an overall average of the historical data is 1.460
(see Exhibit 4, Part 1). However, there is an upward trend in
the responsiveness of premium to loss over the latest several
policy quarters and these PDLD ratios are higher than the his-
torical average. Such a trend could be the result of more liberal
retro rating parameters (higher maximum, minimum, or per ac-
cident limitation), but this is probably not the case here since
the PDLD ratio calculated by formula is 1.426 and it reflects
the plan parameters currently being sold. A more likely expla-
nation for the trend is an improvement in loss experience, ei-
ther due to chance or to known changes in the system such as
workers compensation reform. A larger portion of the loss is
within the boundaries of the retro maximum and the per acci-
dent limitation, resulting in more additional premium per dollar
of loss. The formula approach will not reflect a change in loss
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experience unless the formula is revised. (This revision is dis-
cussed in Section 5.) In recognition of these changing conditions,
a PDLD ratio of 1.750 was selected for the first adjustment.

The PDLD ratio for the second retro adjustment period is
the incremental premiums developed between the first and the
second retro adjustments divided by the incremental losses de-
veloped between these two adjustments. It is assumed that losses
developed through 30 months are used to calculate the premiums
for the second retro adjustment and that the resulting premiums
are booked at the 39 month valuation. The selected PDLD ratio
from historical data is 0.700, which is close to the formula ratio
of 0.717. The PDLD ratios from the two methods also compare
closely at the third adjustment.

The historical PDLD ratios may fluctuate significantly after
the first retro adjustment period. This is because the premium and
loss development on a few policies can be a large component of
the total incremental development on policy quarter data. His-
torical PDLD ratios for an individual policy quarter could even
be negative in spite of upward aggregate loss development—this
could happen when there is upward development in high loss
layers (resulting in no additional premium) and downward de-
velopment (and return premium) on layers that are still within
loss limitations. Where the historical PDLD ratios fluctuate sig-
nificantly, one should use an average of as many historical data
points as possible. In situations like this, the PDLD ratios derived
by formula may provide a better indication of the relationship
between premium and loss.

In the example, the historical and formula PDLD ratios begin
to diverge after the third retro adjustment period. Several factors
could be contributing to this. First, since the historical ratios are
lower than the formula ratios, worse than expected loss expe-
rience during the mid-1980s may have caused a larger portion
of the loss to be outside the boundaries of the retro maximum
and the per accident limitation than the formula approach would
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predict. This is the opposite situation from the one described at
the first retro adjustment period above. Second, average retro-
spective rating parameters may be changing over time. In the
case of shifting parameters over time, a single selected PDLD
ratio may not be the best estimate of development for all expo-
sure periods. As with loss development analysis, the actuary
must decide how best to develop each period to “square the
triangle.” For the fourth through sixth adjustment periods, the
PDLD ratios were selected between those indicated by the two
methods.

4. CUMULATIVE PDLD RATIOS

The ultimate goal of this method is to estimate the premium
asset, which is the sum of all future premium adjustments based
on the expected future loss emergence. As shown before, the
relationship between premium and loss can be expressed by the
PDLD ratios. However, the PDLD ratios are incremental factors.
To estimate how much premium can be expected based on all
future loss development, one needs to calculate the cumulative
PDLD ratios, or the CPDLD ratios.

A CPDLD ratio is the average of the PDLD ratios in all sub-
sequent retro adjustment periods, weighted by the percentage of
losses to emerge in each period. For instance, the CPDLD ratio at
the second retro adjustment is the average of the PDLD ratios for
the second and subsequent retro adjustment periods, weighted by
the percentage of losses emerged in each period. The CPDLD
ratio at the third adjustment is the average of the PDLD ratios
for the third and subsequent retro adjustment periods, weighted
by the percentage of losses emerged in each period. The loss
emergence pattern is shown at the bottom of Exhibit 7.

Using the loss emergence pattern derived from the loss de-
velopment data in Exhibit 7 and the selected PDLD ratios from
Exhibit 4, one can calculate the CPDLD ratios. For example, the
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first CPDLD ratio equals 1.492, which is computed as follows:

(1:750£78:4% + 0:700£9:3% + 0:550£ 4:4% + 0:450
£2:9% + 0:400£3:0% + 0:350£1:6%)

(78:4% + 9:3% + 4:4% + 2:9% + 3:0% + 1:6% + 0:4%)
:

The second CPDLD ratio is 0.556, which is computed as follows:

(0:700£9:3% + 0:550£4:4% + 0:450
£2:9% + 0:400£3:0% + 0:350£1:6%)

(9:3% + 4:4% + 2:9% + 3:0% + 1:6% + 0:4%)
:

The calculation of the remaining CPDLD ratios is shown in Ex-
hibit 3.

The CPDLD ratio tells how much premium an insurer can
expect to collect for a dollar of loss that has yet to emerge. For
instance, the first CPDLD ratio is 1.492, which means that each
dollar of loss emerged provides the insurer one dollar and 49
cents of premium. The second CPDLD ratio is 0.556, which
means that after the first retro adjustment, each additional dollar
of loss provides the insurer 56 cents of premium.

The relationship of premium development to loss develop-
ment is usually greater than unity at the first retro adjustment.
This is because the basic premium is included in the first retro
premium computation, and because only a small portion of loss
is limited by the retro maximum or per accident limitation at this
early maturity. The application of the loss conversion factor and
the tax multiplier results in more than a dollar of premium per
dollar of loss. As time goes on, however, a decreasing portion
of incremental loss development results in additional premium.
Incremental premium, equal to the loss capping ratio times LCF
and TM, will generally be less than loss and hence the CPDLD
ratios should be less than 1.0 at the later adjustments.

Having calculated the CPDLD ratios, the next step is to
multiply these ratios by the expected future loss emergence to
get the expected future premiums. Adding future premiums to
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the booked premiums gives ultimate premiums. For example,
at 12/31/94, policy effective quarters 1993.1 through 1994.4
have not yet had the first retro adjustment (they are all less
than 27 months old). The expected loss amount for these pol-
icy effective quarters, as computed in Exhibit 2, is $280,844,000
($196,767,000 from 1993, plus $84,077,000 from 1994). Since
the marginal premium per dollar of loss is $1.492, this means
$280,844,000£1:492 or $419,019,000 of future premium is
expected. Since there was no prior retro adjustment, the ex-
pected ultimate premium for these policy effective quarters is
$419,019,000.

At 12/31/94, policy quarters 1992.1 through 1992.4 have
had one retro adjustment (they are older than 27 months but
not yet 39 months old). For these policy periods, the expected
amount of loss yet to emerge is $50,747,000 (see Exhibit 2).
Exhibit 3 shows that for each dollar of loss emerged after the
first retro adjustment, the insurer can expect $0.556 of premium.
This means the insurer can expect to collect $50,747,000£0:556
or $28,216,000 in additional premium. Adding this to the
$328,778,000 of premium booked from the first retro adjust-
ment (the premium for 1992.1 through 1992.4 evaluated as of 27
months), gives an expected ultimate premium of $356,993,000.
Exhibit 1 shows the calculation of the ultimate premium for each
policy period.

The final step is to subtract premium booked as of 12/31/94
from the estimated ultimate premium to get the premium asset
as of 12/31/94. The sum of the premium assets for all policy
periods as calculated in Exhibit 1 is $43 million.

Note that the premiums booked as of 12/31/94 (Column (7)
of Exhibit 1) are close to but not equal to the premiums booked
from the prior retro adjustments (Column (5) of Exhibit 1). This
may be due to differences in the timing of retro adjustments,
minor premium adjustments, or interim premium booking that
occurs between the regularly scheduled retro adjustments.
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5. LOSS CAPPING RATIO

We now return to the subject of the loss capping ratio. The
loss capping ratio, CL/L, is the ratio of capped loss develop-
ment to uncapped loss development. This term is essential to
the calculation of the PDLD ratio, which expresses the relation-
ship between premium development and loss development on
a retro rated policy. Capped loss development includes the ef-
fect of the retro maximum and minimum, and the per accident
loss limit. It is often difficult to obtain capped loss development
data, especially as it pertains to losses eliminated by the retro
maximum and minimum. Hence, it may be necessary to use a
Table M6 approach to estimate the impact of the retro plan max-
imum and minimum on loss development. If a per accident limit
is purchased, the treatment of the losses eliminated by the limit
is similar to that for losses eliminated by retro maximum and
minimum.

The loss capping ratio can be solved for using the relationship

CLR = LR(1¡Â¡LER),

where

Â= Table M net insurance charge

= Table M charge at max¡Table M savings at min,

LER = Percent of losses eliminated due to
the per accident limitation,

CLR = capped loss ratio

= capped loss divided by standard premium, and

LR = uncapped loss ratio

= uncapped loss divided by standard premium.

6Also called the Table of Insurance Charges. Table M is used to calculate the insurance
charge associated with a retro plan’s maximum and minimum. Gillam and Snader [3]
give a detailed description of this table.
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The loss capping ratio is then:

CLR/LR = (1¡Â¡LER): (5.1)

To calculate the loss capping ratio, one needs the net insurance
charge at each retro adjustment period. The insurance charge is
typically determined from the values of the retro rating parame-
ters sold under the plan and the presumed loss ratio distribution
underlying Table M. However, the percentage of losses actually
affected by the retro maximum or minimum will differ from
expected due to the random nature of insurance losses and the
fact that losses are not at their ultimate valuation. Therefore, the
charge and savings computed at each retro adjustment period
should be a function of the actual loss ratio as opposed to the
expected ultimate loss ratio under the plan.

If it is assumed that the loss ratio probability distribution func-
tion has the same shape throughout all development stages, then
at each retro adjustment one may enter Table M by defining two
entry ratios:

Entry ratio at the max = (loss ratio at max/actual loss ratio), and

Entry ratio at the min = (loss ratio at min/actual loss ratio):

Loss ratios at the retro maximum and minimum should be
estimated from the sold retro rating parameters. The loss ratio
at maximum is the standard premium loss ratio at which the net
retro premium reaches the maximum premium; for this example,
we assume it is 1.200. Similarly, the loss ratio at minimum is
the standard premium loss ratio at which the net retro premium
reaches the minimum premium; for this example, we assume it
is 0.100.

The actual loss ratio may be computed by dividing the actual
loss at each retro adjustment period by the standard premium.
Alternatively, it can be estimated as the expected loss ratio (ex-
pected ultimate loss divided by standard premium) times the ex-
pected percentage of losses emerged at each retro adjustment.
For instance, if the expected loss ratio is 0.700 and 78.4% of
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losses emerge by the first retro adjustment, one can estimate the
actual loss ratio at the first retro adjustment to be 0:700£78:4%,
or 0.549.

If actual loss experience differs from the expected experience
underlying Table M, one should multiply the estimate of the ac-
tual loss ratio by a factor representing the relationship between
actual and expected losses. For example, if the original expected
loss ratio was 0.700 but actual loss experience produces an aver-
age loss ratio of 0.800, multiply 0.549 by a factor of 0.800/0.700.
Such an adjustment factor is needed to calculate the correct entry
ratios for Table M.

The two entry ratios for the first retro adjustment can be com-
puted as:

Entry ratio at the max = (1:200=0:549) = 2:19, and

Entry ratio at the min = (0:100=0:549) = 0:18:

Table M also requires one to estimate the average size of the
accounts insured by the retro rated policies. For this example, the
average size is assumed to be $750,000 in standard premium.
This may be estimated from the sold policy information. The
use of the average policy size is another potential source of bias
between the PDLD ratios calculated using the formula method
and the PDLD ratios that actually emerge. One way to reduce
this bias is by grouping the data according to policy size. The net
insurance charge for a $750,000 account at 2.19 and 0.18 entry
ratios is calculated to be 0.109. This is shown in Exhibit 5.

In the event that a per accident loss limit is sold, losses elim-
inated by such limit divided by total losses should also be con-
sidered in the calculation of the loss capping ratio. Furthermore,
the Table M insurance charge should be adjusted to reflect the
per accident loss limit. One method of making such an adjust-
ment is presented by Robbin [4]. In this example we assume
that 4.2% of losses are eliminated by the per accident limitation
as of the first retro adjustment. Thus, the loss capping ratio at
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the first retro adjustment is one minus 0.109 (the net insurance
charge) minus 0.042 (the per-accident loss elimination ratio), or
85%. Loss capping ratios for the second and subsequent retro
adjustment periods are calculated in Exhibit 5.

By using Table M to calculate the loss capping ratios, one
major assumption is that the loss ratio probability distribution
function underlying Table M is appropriate for all retro adjust-
ment periods. This may not be true. The procedure can be re-
fined by using a loss ratio distribution that is more appropriate
for each retro adjustment period. Such distributions may be cal-
culated from empirical data at the proper evaluation dates, and
be used to replace or modify the Table M distribution, depending
on the credibility of the empirical data.

Thus far the loss capping ratios calculated are those devel-
oped as of each retro adjustment. Since the PDLD ratios are
incremental, one needs to calculate the incremental loss capping
ratios, using the loss capping ratios developed through each retro
adjustment. This is done by algebraic manipulation. For example,
the incremental loss capping ratio for the second retro adjustment
period is [(CL2¡CL1)=(L2¡L1)] which may be stated as

[(CL2=L2)£ (ELR£%Loss2)¡ (CL1=L1)£ (ELR£%Loss1)]
[(ELR£%Loss2)¡ (ELR£%Loss1)]

:

(5.2)

Note Ln is the amount of losses emerged as of the nth retro
adjustment, and CLn=Ln is the loss capping ratio developed as
of the nth retro adjustment. The ELR is the expected loss ratio,
and %Lossn is the expected percentage of losses emerged as of
the nth retro adjustment. The incremental loss capping ratios are
calculated in Exhibit 5.

6. FURTHER ISSUES

The method described in this paper can be used to calculate
the premium asset for all types of loss-sensitive rating plans,
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as long as the rating formula reflects what is being sold to the
insured. Further issues to think about are:

1. The definition of loss may include allocated loss adjust-
ment expense (ALAE). Frequently, retro rated policies
are written with ALAE included in the definition of loss.
This allows the insurer to pass on to the insured not only
losses, but attorney expenses as well. The loss data used
in computing the PDLD ratios should be consistent with
that used in the rating plan.

2. Changes in the mix of business may change the PDLD
ratio. Changes in the mix of business by state, industry
group, or even geographical region can alter the aver-
age rating parameters sold and the underlying claim fre-
quency and claim severity. This will in turn affect how
sensitive the premium is to loss.

3. Collectibility of premium should be considered. When
the premium asset is secured, there is little question as to
its collectibility. If a portion of the premium asset is not
secured, then a provision should be made to anticipate
bad debt.
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ESTIMATING THE PREMIUM ASSET ON
RETROSPECTIVELY RATED POLICIES

MIRIAM PERKINS AND MICHAEL T. S. TENG

DISCUSSION BY SHOLOM FELDBLUM

1. INTRODUCTION

Perkins and Teng have provided us with a new and remark-
ably intuitive procedure for estimating the accrued retrospective
premium asset: the PDLD (premium development to loss devel-
opment) approach. This reserve is often significant—amounting
to half a billion dollars or more for some of the major workers
compensation carriers—and it has been difficult to accurately
estimate with traditional procedures. The paper by Perkins and
Teng should greatly enhance our actuarial repertoire.

Specifically, the PDLD method has several distinct advantages
over other procedures:

1. It is modeled directly on the retrospective rating formula,
so it is easily explained to underwriters and claims per-
sonnel who are familiar with retrospectively rated poli-
cies.

2. Its emphasis on the premium sensitivity in the retrospec-
tive rating formula parallels the risk-based capital loss-
sensitive contract offset in the underwriting risk charges
and the new loss-sensitive contract Part 7 of Schedule
P. For regulators familiar with the risk-based capital for-
mula and with the statutory accounting requirements, this
loss reserving approach is a natural complement to the
statutory procedures.

274
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3. The procedure may prove particularly useful when
changes in the retrospective rating plan parameters dis-
tort the indications of other methods.

There are few existing methods for estimating the accrued ret-
rospective premium asset, and the indications are often highly
uncertain. The PDLD approach will enable actuaries to estimate
this asset more accurately.

This discussion has two parts.

1. The complexity of the reserve estimation procedures for
the accrued retrospective premium asset often hides the
rationale of these methods from the average reader. The
first part of this discussion uses graphical representa-
tions of Fitzgibbon’s method and of the PDLD method
to show the rationale behind each method and to explain
the advantages of the latter method.1 We then show how
to combine the better parts of the two methods to im-
prove the PDLD procedure.

2. The second part of this discussion highlights the impli-
cations of the Perkins and Teng procedure for the calcu-
lation of the loss-sensitive contract offset to the under-
writing risk charges in the risk-based capital formula and
for the use of Schedule P, Part 7, to estimate premium
sensitivity.2

2. THE PDLD PROCEDURE

This section addresses two issues:

1. How does the PDLD procedure differ intuitively from
Fitzgibbon’s procedure, and in what ways is it better?

1See Fitzgibbon [6], F. J. Hope [8], Unthoff [11], Berry [2], and Morell [10]. The term
“Fitzgibbon’s method” in the text includes the enhancements provided by Berry and
Morell.
2The term “premium sensitivity” stems from the term “loss-sensitive contracts.” This
paper uses the term “premium responsiveness” to refer to the same phenomenon.
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2. What aspects of Fitzgibbon’s procedure can be added to
the PDLD procedure to enhance its accuracy?

Let us begin our inquiry with a more fundamental question.
Why not estimate the accrued retrospective premium asset the
same way that we estimate loss reserves? That is, why not use
a chain-ladder development procedure on historical triangles of
either collected premium or billed premium? This would be the
premium analogue to a chain-ladder development procedure us-
ing either paid losses or reported losses.

Indeed, Schedule P already does this. Part 6 of Schedule P
shows historical triangles of exposure year earned premiums
by line of business (for all types of contracts), and Part 7 of
Schedule P shows historical triangles of policy year earned pre-
mium on loss-sensitive contracts (all lines of business combined).
Why go through the complexities of Fitzgibbon’s method or the
PDLD method when a straightforward chain ladder development
method would suffice?

The underlying rationale of Fitzgibbon’s method and the
PDLD method is that

a. estimates of ultimate incurred losses can be obtained sooner
than estimates of retrospective premiums can be obtained,
and

b. retrospective premiums depend on incurred losses.

In workers compensation, for instance, a good estimate of ul-
timate incurred losses is generally available soon after the ex-
piration of the policy, since claims emerge rapidly and devel-
opment on known claims is relatively stable. The first retro-
spective adjustment, however, occurs about six months after the
expiration of the policy. The retrospective premium may not be
billed and collected for an additional three months after the ad-
justment is done.
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Using Fitzgibbon’s method or the PDLD method, an initial
estimate of the accrued retrospective premium asset can be pro-
duced soon after the policy expires, using the known loss infor-
mation and the relationships between incurred losses and retro-
spective premium. Similarly, the accrued retrospective premium
asset estimate can be updated each quarter, as new loss data
becomes available. If a chain-ladder premium development pro-
cedure is used, however, the initial estimate cannot be produced
until at least nine months after the policy expiration, and it can
be updated only annually thereafter.

The reserve estimation procedures in both Fitzgibbon’s
method and the PDLD method are based upon the retrospec-
tive rating formula. They differ in the details, not the concept,
although the details can be crucial for reserve estimation. Us-
ing graphs to clarify the methods, the two approaches will be
compared and contrasted using the following steps:

! how premium is determined in the retrospective rating for-
mula;

! how Fitzgibbon, followed by Berry, converts the premium de-
termination procedure to a reserve estimation procedure;

! what problems arise in the reserve estimation procedure, and
how Berry resorts to a second reserve estimation procedure to
resolve them;

! how the PDLD procedure modifies the original Fitzgibbon
procedure to solve the aforementioned problems, without
having to resort to a second reserve estimation procedure;
and

! how part of Fitzgibbon’s procedure can be used to enhance
the PDLD procedure, giving users the best of both worlds.
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Retrospective Premium Determination

Fitzgibbon’s method and the PDLDmethod both seek to repli-
cate the premium determination procedure in the retrospective
rating formula. Of course, a single reserving formula cannot per-
fectly replicate hundreds of slightly different rating plans. Never-
theless, the more successfully the reserving procedure can repli-
cate the rating procedure, the more accurate will be the reserve
estimates. So let us begin with the premium determination for-
mula.

The retrospective premium is composed of two parts:

1. Part of the premium covers the incurred losses, as well as
any expenses associated with these losses, such as loss ad-
justment expenses. However, not all losses enter the retro-
spective rating formula. There is a loss limit, which means
that individual losses exceeding a certain amount—such as
$250,000—do not affect the retrospective premium adjust-
ments. In addition, state premium taxes, as well as other
state assessments (such as involuntary market loads) are
levied on the premiums, whether they are standard premi-
ums or retrospective premium adjustments.

The retrospective rating plan expresses this part of the
premium as

(loss conversion factor)" (incurred losses)
" (tax multiplier),

where the loss conversion factor (LCF) covers primarily
loss adjustment expenses.

2. The other part of the premium covers company expenses
and the insurance charge. Company expenses are all ex-
penses that are not a direct function of losses, such as
underwriting expenses and acquisition expenses.
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The insurance charge results from the maximum and
minimum limitations on the retrospective premium. Hav-
ing a maximum premium, of course, is the whole pur-
pose of insurance. The insured needs protection against
the unanticipated large losses that it cannot prudently re-
tain. But the insurer must collect premium to cover these
large losses. So the insurance charge is the difference be-
tween

a. the expected loss (to the insurer) caused by the maxi-
mum premium and

b. the expected gain (to the insurer) caused by the mini-
mum premium.

The expected loss is the average additional amount of pre-
mium that the insurer would have collected had there been
no maximum premium limitation. The expected gain is
the average amount of premium that it would not have
collected had there been no minimum premium limita-
tion.

This charge must also cover any premiums lost because
of the loss limits, which cap the individual loss values
entering the retrospective rating plan.3

As before, a provision must be added for state premium
taxes and other state assessments. This part of the premium
may be expressed as

[(expense provision)+ (insurance charge)

+ (excess loss charge)]" (tax multiplier):

3The computation of the insurance charge is the standard Table M and Table L calculation.
For the “formula” approach in the PDLD method, which can be used with Fitzgibbon’s
method as well, the reserving actuary may have to recompute certain Table M or Table
L charges.
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For simplicity, the first three components are combined
into the basic premium, so the expression above can be
restated as

(basic premium)" (tax multiplier):
Thus, the formula for the retrospective premium is

Retrospective premium= (tax multiplier)

" [(basic premium)+ ((loss conversion factor)
" (limited incurred losses))].

The Reserving Formula

The formula above is the rationale for Fitzgibbon’s reserve
formula. Premium is assumed to be a linear function of the in-
curred losses, or

Retrospective premium= C+B"Losses:
The pricing formula becomes the reserving formula. For appli-
cation to an entire book of business, Fitzgibbon and Berry make
two modifications to this basic equation:

1. They use ratios to standard premium. That is, they write

Retrospective premium#Standard Premium
=K +B"Standard Loss Ratio,

where K = C#Standard Premium.
2. They examine the retrospective adjustment. In other
words, they subtract unity from both sides of the equa-
tion above, to get

Retro Adjustment = A+B"Standard Loss Ratio,
where A=K $ 1.
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The Historical Regression

Fitzgibbon and Berry estimate the parameters A and B from a
historical regression, using standard loss ratios and retrospective
adjustments from mature policy years. But the attentive reader
might observe that the two parameters in Fitzgibbon’s formula
depend on the parameters in the retrospective rating formula. So
why do they use a regression analysis on past experience? Why
don’t they just walk over to the pricing actuary in the next office
and ask what parameters are used in the retrospective rating plan?

Actuarial reserves are typically estimated on an aggregate ba-
sis, for all states, all insureds, all policy years. The parameters,
however, vary from year to year, from state to state, and from
plan to plan. For instance:

! A small insured may purchase a plan with a low maximum pre-
mium and therefore a large insurance charge, whereas a large
insured may prefer a plan with a high maximum premium and
a low insurance charge. Also, larger insureds may be offered
plans with lower expense provisions, since their underwriting
and acquisition expenses as a percentage of standard premium
are lower than for smaller insureds.

! Premium taxes differ from state to state. In addition, some
retrospective rating plans include involuntary market expense
loads as a part of the tax multiplier, and the involuntary market
loads vary widely among jurisdictions.

! The basic premium may vary from year to year. It may be low
when interest rates are high and the insurer expects to earn
its required profit margin from investment income. It may be
higher when interest rates are low, or if the insurer uses a cash
flow plan, such as a paid loss retro, so little investment income
is retained by the insurer.

In theory, the reserving actuary could collect the hundreds of
needed plan combinations and match these with the appropriate
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experience and calculate the reserve. Or the actuary, to save a
few months of work, might determine the average parameters by
means of a regression analysis on historical data.

This is what Fitzgibbon and Berry have done. The regression
analysis calculates the average retrospective rating plan parame-
ters from past experience. In fact, this method is probably more
accurate than might be achieved by collecting all the parameters
actually used in each state and each policy year for each insured.
Most companies allow their underwriters and agents substantial
flexibility in rating workers compensation contracts. The pricing
actuary may recommend a basic premium charge of 30% of stan-
dard premium, but the underwriter or salesperson may reduce the
basic premium charge to 25% of standard premium. The pricing
actuary’s recommended parameters may not match the plan pa-
rameters that are actually used in practice. The reserving actuary
needs to know the premiums that are actually charged, not the
pricing actuary’s indicated premiums. So the reserving actuary
turns to the regression analysis, not to the pricing actuary’s rate
book.4

4How is it then, that Perkins and Teng manage to estimate PDLD ratios from the ret-
rospective rating plan parameters in their formula approach? Moreover, they need to
estimate more numbers than Fitzgibbon and Berry need to estimate, so how are they able
to do this when Fitzgibbon and Berry found it unmanageable?
The answer is that the Perkins and Teng paper presents the method only. In prac-

tice, estimating the PDLD ratios from the retrospective rating plan parameters is exceed-
ingly difficult, particularly if the company writes business in different states and for
different types of insureds, if the company has changed its plan parameters over time,
or if the company allows its underwriters and agents discretion in modifying the plan
parameters to attract potentially good risks. Perhaps Ms. Perkins or Mr. Teng can elab-
orate on the relative ease or difficulty of estimating the PDLD ratios in various sce-
narios.
As pointed out by Robert Finger, the regression approach is not without its difficulties

as well. Rating plan factors and aggregate loss ratios change over time, so a regression
performed on historical data may not be equally applicable to current policies. Moreover,
the observed values are actually the result of many changes at the individual plan level.
The premium on individual plans is not a simple function of total incurred losses. For
instance, premium may decrease on an adjustment when incurred losses increase, since
there may be positive development on a claim that was already limited and negative
development on claims that were below the per accident limit. See also Morell [10],
which discusses this same issue.
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FIGURE 1

FITZGIBBON’S METHOD

Graphical Representations

To see the difference between Fitzgibbon’s method and the
PDLD method, let us look at these procedures graphically.
Fitzgibbon’s method represents the relationship between the net
earned premium5 on the retrospectively rated book of business
(as a percentage of standard premium) and the total incurred
losses on this book of business (again, as a percentage of stan-
dard premium) as a straight line, as shown in Figure 1.6 Alge-
braically, the straight line is Y = A+B%X, where A is the constant
factor and B is the slope factor.

One interpretation of this graph is as follows: if there are
no incurred losses on this book of business, then the ratio of
net premium to standard premium equals A. The constant factor
A represents the basic premium percentage in the retrospective

5Net earned premium is earned premium after retrospective adjustments; see Feldblum
[3].
6The figures on both axes of this graph are shown as ratios to standard earned premium.
Alternatively, one could show both sets of figures as absolute dollar amounts. Berry uses
ratios, though he shows the vertical axis as ratios of retrospective premium returns to
standard premium. The three methods are equivalent.
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rating formula.7 As losses are incurred, and the loss ratio to
standard premium increases, we move to the right and up along
the straight line, and the net premium as a percentage of the
standard premium increases. For each dollar of additional loss,
the net retrospective premium increases by B dollars.

The slope factor B is the premium responsiveness for this
book of business. The slope is not exactly unity, for several rea-
sons. First, some losses exceed the loss limit, or they cause the
retrospective premium to reach the maximum premium, even be-
fore the first adjustment, thereby reducing the slope of the line
segment. Second, in some plans the minimum premium exceeds
the basic premium. Third, a loss conversion factor and a tax
multiplier are applied to the incurred losses in the retrospective
rating formula, thereby changing the slope of the line segment.
The combined effect depends on the “swing” of the plan. For
plans with narrow swing, generally sold to small accounts, the
slope would be less than unity. For plans with wide swing, gen-
erally sold to large accounts, the slope might be greater than
unity.8

Projections versus Reality

The problem with this method, as Berry points out, is that
it does not consider the emerging experience on the book of
business itself. This emerging experience may differ from that
expected from the graph for several reasons. First, the A and
B factors are only estimated from the regression; they are not
known with certainty. Moreover, they may vary from year to
year. Second, the pattern of losses among the individual policies

7Since the A factor is fitted by a regression on the aggregate book of business, it would
not necessarily equal the basic factor on any particular plan.
8Fitzgibbon and Berry might say that this is not an exact interpretation of their regression
line. Their regression line relates the ultimate loss ratio to the retrospective premium
percentage. Their graph is not necessarily intended to represent the movement from no
losses at policy inception to ultimate losses many years later. However, the purpose here
is to highlight the contrast with the PDLD method, not to explain Fitzgibbon’s method
itself.
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FIGURE 2

ACTUAL VERSUS EXPECTED RESULTS

affects the results. One large loss may have the same effect on
the aggregate loss ratio as a dozen small losses. The effect on
the net premium may differ because of loss limits and maximum
premiums.

Suppose that after four years, the actual experience on this
book of business shows less premium responsiveness than had
been initially anticipated, as shown in Figure 2. The book of
business is relatively mature after four years. The projection pro-
duced by this method does not change from year to year (as long
as the incurred losses do not change), so it will continue to give
an estimate of retrospective premium that is too high.

Berry’s solution is to gradually discard this method, and to
substitute a method that relies on the actual experience of the
book of business (his “DR2” method). Initially, his reserve esti-
mate relies entirely on this method. As time goes on, and more
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information becomes available from the actual book of business,
he assigns progressively less weight to this method and more
weight to his “DR2” method.

The Perkins and Teng Solution

Perkins and Teng transform Fitzgibbon’s graph to solve this
problem. Think of Fitzgibbon’s graph in a slightly different fash-
ion: as the movement over time of reported losses, net earned
premium, and reported loss ratio. At policy inception, reported
losses are $0, so the reported loss ratio is 0% and the ratio of net
premium to standard premium equals A, the constant factor in
Fitzgibbon’s regression equation, or the Y-intercept in Fitzgib-
bon’s graph.

There are two ways to interpret the chart in Figure 1. Only the
first of these reflects the intentions of Fitzgibbon and Berry. The
second reflects the PDLD method. The alternative interpretations
are:

1. the graph relates the ultimate loss ratio and the ultimate ret-
rospective premium ratio among different books of busi-
ness or different years of experience, or

2. the graph relates the reported loss ratio and the net earned
premium at different points in time for a single book of
business.

Decreasing Slopes

These two types of graphs seem similar. In truth, they look
quite different. The first relationship is drawn by Fitzgibbon and
Berry as a straight line. Actually, the curve is concave, as ex-
plained below, but a straight line is a close enough approximation
for the majority of the curve.9 The second relationship, however,

9It is a poor approximation at high loss ratios and at low loss ratios, though, where the
maximum and minimum premium limitations flatten the curve. Fitzgibbon and Berry
were aware of the approximation problems at the end points, and adjustments could
always be made where necessary.
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FIGURE 3

THE PERKINS AND TENG “PDLD” GRAPH

is not a straight line at all. Rather, it is a set of line segments, of
steadily decreasing slope as we move to the right, as shown in
Figure 3.10

The differing slopes of these line segments result from the
loss limits and the maximum premiums in the retrospective rat-
ing plans. Most reported losses from policy inception until the
first retrospective adjustment are rateable losses, which means
that they are generally not truncated by the loss limit, and the
retrospective premium is generally not capped by the maximum
premium. The slope of the line segment is therefore close to
unity. That is, for each dollar of reported loss, the insurer re-
ceives about a dollar of premium.

During subsequent periods, new reported losses stem from
the emergence of IBNR claims and from development on known

10We use a series of line segments because retrospective adjustments are done annually,
and the PDLD method reflects this by using line segments with different slopes for each
adjustment period. In truth, a continuous concave curve better reflects reality, though it
would not lead to a feasible reserving method.
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claims. In workers compensation, for instance, new reported
losses after the first adjustment may arise from the re-evaluation
of a lower back sprain from a temporary total injury to a per-
manent total injury, with a corresponding re-estimation of the
incurred loss from $25,000 to $500,000. This loss may be trun-
cated by the loss limit in the retrospective rating formula, and
the resulting retrospective premium may also be capped by the
maximum premium.

This example is not contrived. On the contrary, it is quite com-
mon in workers compensation. Persons unfamiliar with industrial
accidents often think of lifetime pension cases as quadriplegics or
workers who have lost arms or legs in workplace accidents. Such
injuries would be recognized immediately as high-cost, perma-
nent total disabilities. These claims, which are recognized well
before the first retrospective adjustment, are the ones that are
most likely to be curtailed by the loss limits and maximum pre-
mium. This might lead some actuaries to think that the slope
of the line segment in our graph should be flattest in the initial
period.

In fact, accidents resulting in quadriplegia or the loss of arms
or legs are rare. Most lifetime pension cases stem from sprains
and strains and similar injuries that seem at first to be only tem-
porary. After several years, when it becomes evident that the
injured employee will not be returning to work, the claim is
recorded as a permanent total injury and the benefit amount is
re-estimated.11

We may state this as a general rule:12

1. As a book of business matures, premium responsiveness on
loss-sensitive contracts declines.

11In the company at which the PDLD method was developed, fewer than 20% of claims
that will ultimately be lifetime pension cases are recognized as such by the claims de-
partment at the first retrospective adjustment.
12As with any general rule, there are exceptions in particular instances.
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In other words, as policies mature, a greater percentage of loss
development is excluded from retrospective rating by the maxi-
mum premium and by the loss limit.

A second factor contributing to the declining slopes of the line
segments is the overall increase in the reported loss ratio. It is
not just that late-reported losses may be capped by the loss limit.
Even a small claim will not increase the retrospective premium
if the maximum premium has already been reached. Suppose
the retrospective premium equals the maximum premium two
years after policy inception. Then small claims reported during
the first two years would have a premium responsiveness ex-
ceeding unity (because of the loss conversion factor and the tax
multiplier), while small claims reported after the first two years
would show a premium responsiveness of zero. We can state this
second phenomenon as a general rule as well:

2. At higher loss ratios, premium responsiveness on loss-
sensitive contracts declines.

This last phenomenon relates to the overall loss ratio, not to
the types of claims reported in any particular period. At higher
overall loss ratios, more policyholders have reached their maxi-
mum premiums, so premium responsiveness is lower. Thus, it ap-
plies not only to the PDLD method, but to Fitzgibbon’s method
as well. That is, Fitzgibbon’s graph is not really a straight line.
In theory, it is a curve that is concave downwards, with steadily
decreasing slope as the loss ratio increases.

Let us return to the PDLD method. At policy inception, the
projected premium responsiveness graph is shown in Figure 4.
Each line segment represents one period. The first line segment
is from policy inception to the first retrospective adjustment, at
about 21 months.13 Subsequent periods are each one year long.

13The billing of retrospective premium generally lags the incurral of additional losses by
about three months (on average) for an individual policy and by about nine months (on
average) for a policy year. See below in the text for a full explanation of the lag times
and effects that these may have on the observed premium responsiveness.
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FIGURE 4

THE PDLD SEGMENTED GRAPH

The horizontal axis represents reported losses. For clarity, the
graph is not drawn to scale. That is, the change in reported losses
from policy inception to the first retrospective adjustment may be
50 percentage points or more in workers compensation, whereas
the change in reported losses between adjustments at late matu-
rities may be only a few percentage points. However, the graph
shows all the line segments of equal length, so that the difference
in their slopes can be seen clearly.

Actual versus Expected Experience

At the first adjustment, actual experience may differ in two
ways from the experience that would be expected from the the-
oretical graph.

1. Actual reported losses may differ from the projected re-
ported losses. For instance, at policy inception, the pro-
jected reported loss ratio to standard earned premium at
21 months may have been 55%. The actual reported loss
ratio to standard earned premium at 21 months may be
50%.
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2. The relationship between reported losses and retrospec-
tive premium may differ from that projected at policy in-
ception. For instance, suppose that the Y-intercept in the
graph is 20% and the slope of the first line segment is
1.100. Then for an actual reported loss ratio of 50% at the
first retrospective adjustment, the ratio of net premium to
standard premium is expected to be 20%+1:100%50%=
75%. Suppose, however, that the actual ratio of net pre-
mium to standard premium at the first retrospective ad-
justment is only 72%.

These effects are shown in Figure 5 (not drawn precisely to
scale).

! The projected experience at policy inception was for a reported
loss ratio of 55% and a retrospective premium ratio of 80.5%
[= 20%+1:100%55%].

! For a reported loss ratio of 50% at the first retrospective ad-
justment, the graph projects a retrospective premium ratio of
75%.

! Actual experience at the first retrospective adjustment shows
a reported loss ratio of 50% and a retrospective premium ratio
of 72%.

The Perkins and Teng Assumptions

Two assumptions underlie the PDLD method. These are:

A. The premium responsiveness during subsequent adjust-
ments is independent of the premium responsiveness dur-
ing preceding adjustments.

B. The slope of the line segment depends on the time period,
not on the beginning loss ratio or the beginning retrospec-
tive premium ratio.
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FIGURE 5

PDLD METHOD: ACTUAL VERSUS EXPECTED RESULTS

We illustrate this for the first two line segments in Figure 5.
Suppose the slope of the second line segment is 0.800. Think of
the second line segment as an infinite number of parallel lines, all
with slope of 0.800. At policy inception, we expected the second
line segment to start at the point (55%, 80.5%) and to continue
onwards with a slope of 0.800. As it turns out, the second line
segment begins at the point (50%, 72%), but it still continues
onwards with a slope of 0.800.

Compare the illustration with the two assumptions. We had
expected a 75% retrospective premium ratio with a 50% reported
loss ratio, but we actually get a 72% retro premium ratio. In
other words, the slope of the first line segment is lower than
we had originally expected. Nevertheless, we do not change our
expectations for the slope of the second line segment. This is
Assumption A.
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The second assumption relates to when we change from the
first line segment to the second line segment. From the appear-
ance of the graph in Figure 5, one might think that we change
when the reported loss ratio reaches 55%. That is not the meaning
of the graph. Rather, we change at the first adjustment, regardless
of the reported loss ratio at that time.

The manner in which the PDLD method solves Berry’s prob-
lem should now be clear. Fitzgibbon’s graph relates the ultimate
loss ratio to the ultimate retrospective premium ratio. If actual
experience differs from expected experience along the way, there
is no way to get back on track. The PDLD method relates the
reported loss ratio to the retrospective premium ratio. If actual
experience differs from expected experience along the way, the
next line segment begins at a starting point that corresponds to
the actual experience.

The PDLD method quantifies the accrued retrospective pre-
mium asset in two steps.

1. Project the future loss development in each adjustment
period.

2. Estimate the future premium revenue by the product of the
future loss development in each period and the slope of
the line segment in that period. The sum of these products
is the accrued retrospective premium asset.

The PDLD method can be thought of as follows. The line seg-
ments represent a mountain being climbed, from the 0% reported
loss ratio at policy inception to the ultimate loss ratio when all
losses are settled. At each retrospective adjustment, the remain-
ing part of the climb is shifted, both horizontally and vertically,



294 ESTIMATING THE PREMIUM ASSET

but the shape of the climb is not changed (that is, the slopes of
each line segment remain fixed).14

An Enhancement

In Figure 5, the first line segment begins at a point on the Y-
axis representing the amount of retrospective premium when the
reported loss ratio is 0%; that is, the Y-intercept is positive. This
is the proper way to estimate the accrued retrospective premium
asset. Perkins and Teng, however, have the first line segment
passing through the origin; that is, the Y-intercept is 0. As a
result, Perkins and Teng get a slope for the first line segment of
1.750. In fact, empirical data in their Exhibit 4, Sheet 1 for the
most recent four quarters shows an average slope of 1.825.

Perkins and Teng’s numbers combine two separate items: the
basic premium ratio and the slope of the first line segment (when
drawn properly). By failing to distinguish between these two el-
ements, the method becomes less intuitive: how does one explain
a slope of 1.825 or 1.750?

Similarly, the combination of these two elements leads to con-
fusing interpretations. For instance, when discussing the cumula-
tive premium development to loss development ratios (CPDLD),
Perkins and Teng write:

The CPDLD ratio tells how much premium an insurer
can expect to collect for a dollar of loss that has yet to
emerge. For instance, the first CPDLD ratio is 1.492,
which means that each dollar of loss emerged provides
the insurer one dollar and 49 cents of premium. The
second CPDLD ratio is 0.556, which means that after
the first retro adjustment, each additional dollar of loss
provides the insurer 56 cents of premium.

14Actually, although the slopes of each line segment remain fixed, the length of the
line segments may be changed. At each retrospective adjustment, Perkins and Teng re-
estimate the losses expected to be reported in each subsequent period. These revisions,
however, are generally minor.
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The interpretation of the second CPDLD ratio is correct. The
interpretation of the first CPDLD ratio, however, is mistaken. The
first CPDLD ratio relates to all the expected losses from policy
inception, at least according to the procedure in the Perkins and
Teng paper.

How should we interpret the 1.492 CPDLD ratio from pol-
icy inception to the first retrospective adjustment? Consider a
relatively wide-swing retrospective rating plan: that is, a plan
with high loss limits and maximum premiums. The amount of
expected premium for each dollar of loss equals the loss con-
version factor times the tax multiplier, minus a small amount for
the non-rateable losses. This product may be about 1.200. The
remainder of the first CPDLD ratio which Perkins and Teng cal-
culate is the basic premium charge divided by the expected loss
ratio (as a function of standard premium). For a basic premium
charge of 25% and a standard loss ratio of 85%, this calculation
gives 0:25#0:85 = 0:294. Adding 1.200 to 0.294 gives 1.494,
which is about equal to the empirical figure which Perkins and
Teng compute. In other words, when the basic premium charge
is disentangled from the slopes of the line segments, the Perkins
and Teng procedure corresponds intuitively with the actual ret-
rospective rating formula.15

The failure to separate these two issues makes it harder for
the actuary to analyze changes in the figures over time. For in-
stance, what causes the steady rise in the slope of the first line
segment from an average of 1.254 in policy year 1963 to an av-
erage of 1.825 in policy year 1992 (see Exhibit 4, Sheet 1 in the
original paper)? Is it caused by a change in the average basic

15For a plan with significant loss limits or maximum premiums, the intuitive is analo-
gous. The lower the loss limits, or the lower the maximum premium, the weaker will
be the premium responsiveness, but the basic premium charge will be greater, because
the insurance charge will be larger. These two effects will offset each other, since the
insurance charge is calculated as the expected losses arising from the loss limits and
maximum premiums.
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FIGURE 6

LOSS REPORTING PATTERNS IN THE PDLD GRAPH

premium ratio, or is it caused by a change in premium respon-
siveness during the first period? These two factors are shown
separately in the graphs drawn in this discussion, but they are
not easily distinguished in the way that Perkins and Teng show
their procedure.

This change could also be caused by a lengthening of the loss
reporting pattern. This is an equally likely cause, and a graphical
representation of it is illuminating.

In Figure 6, the basic premium ratio and the slope of the
first line segment are not changed, but the percentage of losses
expected to be reported before the first adjustment is decreased.
That is, the expected ultimate loss ratio remains the same, but
the expected reported loss ratio at the first adjustment decreases
from T to S. The first line segment is therefore shorter, though it
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has the same slope. In the PDLD procedure, however, the slope
of the first line segment appears to increase. That is, the slope
from 0 to S is greater than the slope from 0 to T.16

Fortunately, it is simple to adjust the PDLD method to show
the basic premium ratio separately from the true slope of the first
line segment. One need only estimate the average basic premium
charge as a ratio to the standard loss ratio, and then subtract this
figure from the first CPDLD.

3. LOSS-SENSITIVE CONTRACTS AND UNDERWRITING RISK

Insurance serves several important economic functions, such
as the transfer of the risk of financial loss from the consumer
to the insurance company. Because of the unlimited nature of
workers compensation benefits, a single severe workplace injury
might financially impair a small employer. The transfer of this
risk from the employer to the insurance company is a societal
benefit of workers compensation insurance.

A societal downside to insurance is moral hazard. If there
were no workers compensation insurance, then employers would
take great pains to keep their workplaces as safe as possible, since
they would shoulder any cost of workplace accidents. Insurance
has two effects on employers’ safety efforts. On the one hand,
the loss engineering staffs of most workers compensation carriers
can identify potential workplace hazards and improve employers’
safety procedures. On the other hand, some employers become
less concerned with employee safety, since they no longer bear
all the costs.

An increase in moral hazard hurts both employees and em-
ployers. It hurts employees since workplace accidents may in-

16The effect is even more pronounced in the Perkins and Teng graph, which is drawn as
a concave curve instead of a series of line segments.
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crease. It hurts employers in numerous ways: there are training
costs for new employees, work flows are interrupted, and work-
ers compensation premiums increase to cover the higher loss
costs.

Retrospectively rated contracts are an attempt to achieve the
benefits of insurance while reducing the drawbacks. Employers
are protected from the risk of large losses that might otherwise
bankrupt the firm. But they still bear the cost of most other in-
juries, so moral hazard is kept low.

Insurance involves the transfer of risk from the consumer to
the insurer. In retrospectively rated contracts, some of this risk is
transferred back to the consumer. The NAIC has developed the
loss-sensitive contract offset to the underwriting risk charges in
the risk-based capital formula in order to reflect the fact that the
risk on retrospectively rated contracts differs from the risk on
prospectively rated contracts. Previous actuarial studies had not
addressed this question, and the American Academy of Actuaries
Task Force on Risk-Based Capital had little actuarial or statistical
data to give to the NAIC.

The PDLD procedure, however, provides a direct answer. In
fact, the Perkins and Teng paper sheds light on the potential lim-
itations of both the risk-based capital loss-sensitive contract off-
set and the loss-sensitive contract exhibits in Part 7 of Sched-
ule P.

Underwriting Risk

The insurance contract transfers the risk of random loss occur-
rences from the consumer to the insurance company. This risk is
primarily process risk. For instance, suppose the consumer is an
employer concerned with industrial accidents. The employer may
estimate that there is a one in one hundred chance of a severe
accident in his workplace this year. The primary risk that this
employer faces is not that he has misestimated the probability—
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that it is truly one in ninety, not one in one hundred. Nor is it
the risk that the cost of such accidents may change, say from an
average of $20,000 per accident to $25,000 per accident. Rather,
the primary risk is that an accident will indeed occur this year in
his workplace.

The risk to the insurance company is different. It is primarily
parameter risk, not process risk. If the book of business is large
enough, process risk effectively disappears. However, the risk
that the probability of an accident is truly one in ninety, or the
risk that the average cost of these accidents is truly $25,000, are
serious concerns for the insurer. A relatively small error in the
estimation of these parameters may wipe out the expected profits
of the insurer.

Loss-sensitive contracts mitigate this risk for the insurance
company. The insured is still protected against random large
losses by the loss limit in the retrospective rating plan and by
the maximum premium. Meanwhile, the insurance company is
protected against the accumulation of more losses than expected,
or a rise in the average cost per claim, by the responsiveness of
retrospective premiums to incurred losses.17

Underwriting risk has two facets. Premium risk (or “written
premium risk,” in the NAIC risk-based capital terminology) is
the risk that future premiums will prove inadequate to cover the
future losses and expenses. This risk takes a variety of forms. For
instance, there is a market risk that the competitive pressures of
an underwriting cycle downturn will force premium rates below
adequate levels. There is a regulatory/political risk that needed
premium increases will not be approved or that new types of
claims will be deemed compensable by the courts.

Reserving risk is the risk that the reserves held for accidents
that have already occurred may prove inadequate. Once again,

17For a full discussion of the effects of loss-sensitive contracts on workers compensation
reserving risk, see Hodes, Feldblum and Blumsohn [7].
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this risk takes a variety of forms. For instance, there is the eco-
nomic risk that a recession will cause injured employees to re-
main on disability for longer periods, since there may be no jobs
to return to (workers compensation). Or there may be judicial
risk, that courts or juries may grant higher awards to claimants
(general liability).

Loss-Sensitive Contracts and Underwriting Risk

Loss-sensitive contracts reduce the risks to the insurer, since
if losses are higher than expected, additional premiums are col-
lected from the insureds. When the NAIC instituted its risk-based
capital formula, which quantified the capital needed to guard
against written premium risk and reserving risk, several large
commercial lines insurers argued that a capital requirement that
is appropriate for prospectively rated business is too high for ret-
rospectively rated business, since the retrospective rating formula
itself protects against unexpectedly high losses.

But how effective are these contracts in mitigating risk? In
other words, how responsive are the premiums to unexpected
losses?

If there were no loss limits or maximum premiums in the ret-
rospective rating plans, the premium responsiveness would equal
the product of the loss conversion factor and the tax multiplier.
We term this 100% responsiveness, since the loss conversion fac-
tor generally covers loss-related expenses and the tax multiplier
pays for premium taxes (and other state assessments) that de-
pend upon the losses incurred or the premium collected. In other
words, with 100% responsiveness, the insurer would get $1.00
in extra premium for each $1.00 in additional losses and loss-
related expenses.

If there were no loss limits or maximum premiums in the
retrospective rating plans, then the insurer would not be exposed
to underwriting risk. If underwriting results are worse than ex-
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pected, or if reserves develop adversely, the insurer would collect
the full loss from the insured through retrospective premium ad-
justments. There remain some other risks, such as the credit risk
that the insured will not be able to pay the retrospective premi-
ums when they come due, but these risks are usually far smaller
than the underwriting risk.

In practice, of course, there are loss limits and maximum pre-
miums. Premium responsiveness is less than 100%. So the NAIC
instituted a 30% loss-sensitive contract offset on primary insur-
ance policies and a 15% loss-sensitive contract offset on rein-
surance treaties. The loss-sensitive contract offset of 30% means
that if the risk-based capital underwriting risk charge for a block
of prospectively rated business is $X, then the corresponding
charge for the same book of business written on loss-sensitive
contracts is $X % (1$30%).18

In other words, the primary insurance loss-sensitive contract
offset assumes (conservatively) that the premium responsiveness
is only 30%. That is to say, for each $1.00 in additional losses and
loss-related expenses, $0.30 of additional premium (on average)
is collected.

The 30% figure was not based on definitive data because
credible industry data on premium responsiveness was not
available. The consulting firm Tillinghast/Towers Perrin con-
ducted an industry-wide survey of 16 large writers of retro-
spectively rated contracts, and calculated an average premium
responsiveness of 65%. The survey asked insurance companies
how responsive they thought their loss-sensitive contracts were
to unexpected loss emergence or unexpected loss development.
The 65% was a rough average of the company estimates. Adjust-
ing this figure downward for conservatism and for the potential

18For a complete description of the loss-sensitive contract offset in the risk-based capital
formula, see Feldblum [5].
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credit risk led to the 30% offset factor in the risk-based capital
formula.19

In order to obtain industry data to more accurately estimate
the loss-sensitive contract offset factor, the NAIC added Part 7
to Schedule P. The exhibits in this section of Schedule P are
designed to allow the estimation of premium responsiveness on
loss-sensitive contracts. These exhibits are a considerable ad-
vance over the information available previously, but they are far
less useful than the information provided by reserving studies
using the PDLD method.

In the future, insurance companies will seek to better quan-
tify the effects of loss-sensitive contracts on underwriting risk,
and state regulators will attempt more accurate estimations of
the appropriate offset factor for these contracts. The study by
Perkins and Teng highlights several areas that must be carefully
considered.

Time Frames

The Schedule P Part 7 exhibits are the NAIC’s attempt to
quantify premium responsiveness, using the same method as
Perkins and Teng, but with annual reporting of premiums and
losses. The Perkins and Teng paper shows that the Schedule P
results will be distorted in several ways, possibly to the extent
that premium responsiveness will not be shown at all. Some of
the problems can be corrected (in theory, at least) by means of
the procedures in the Perkins and Teng paper; other distortions
may be more difficult to remove.

19The rationale given by the Tillinghast study and adopted by the NAIC for the lower
(15%) offset factor used for reinsurance treaties reflects the different types of loss-
sensitive contracts generally used by primary companies and by reinsurers. The primary
company retrospective rating plan adjusts the premiums billed for adverse loss experi-
ence. Some of these plans have extremely wide swings, in that the final premium may
be as much as 100% more than the standard premium. Reinsurers generally use sliding
scale commissions, in that the reinsurance commission remitted to the ceding company
depends upon the loss experience on the book of business. Since the commission rate
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The intended use of the Schedule P Part 7 exhibits is not
explained in the Annual Statement Instructions, and few actuar-
ies understand how these exhibits purport to quantify premium
responsiveness. Let us first clarify the intention of this part of
Schedule P with an illustration. We will then explain the prob-
lems with the statutory exhibits by a comparison with the Perkins
and Teng paper.

The risk-based capital reserving risk charge is based on the
loss reserves—both case and IBNR reserves—that are shown
by the company’s Schedule P, Part 2, minus Schedule P, Part 3.
The reserving risk charge quantifies the capital needed to protect
against the risk that these reserves may develop adversely in
a worst-case scenario. The loss-sensitive contract offset factor
reduces this capital requirement to reflect the additional premium
that the insurer expects to receive in this worst-case scenario.

The dollar amount of adverse development of the loss reserve
equals the dollar amount of adverse development of the incurred
losses in Schedule P, Part 2. Part 7 of Schedule P displays in-
curred losses on loss-sensitive contracts and the corresponding
adverse or favorable premium development relative to the ad-
verse or favorable loss development.

An Illustration

An example should clarify this. Suppose we are given the
extracts from Schedule P, Part 7A, Sections 2 through 5 shown
in Table 1 (figures are in thousands of dollars). The actual ex-
hibits contain more cells, but these extracts suffice to illustrate
the quantification techniques. We wish to determine premium
responsiveness from 24 to 36 months and from 36 to 48 months.

The sections of Schedule P, Part 7A, contain the following
historical triangles, by policy year and valuation date, of experi-

is bounded below by 0%, and in many treaties it is bounded below by an even higher
amount, the swing of the typical reinsurance treaty is much narrower than that of many
primary retrospective rating plans.
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TABLE 1

SCHEDULE P, PART 7A, SECTIONS 2, 3, 4, AND 5,
SELECTED ENTRIES ($000)

Section 2 1994 1995 1996 1997

1994 1,000 2,200 2,400 2,500
1995 1,100 2,500 2,650
1996 1,200 3,000
1997 1,500

Section 3 1994 1995 1996 1997

1994 350 550 300 200
1995 400 600 450
1996 450 650
1997 500

Section 4 1994 1995 1996 1997

1994 1,500 3,150 3,300 3.350
1995 1,650 3,600 3,700
1996 1,800 4,200
1997 2,000

Section 5 1994 1995 1996 1997

1994 0 200 150 110
1995 0 210 155
1996 0 220
1997 0

ence on loss-sensitive contracts:20

! Section 2: Incurred losses and ALAE on loss-sensitive con-
tracts

! Section 3: IBNR plus bulk loss and ALAE reserves on loss-
sensitive contracts

! Section 4: Earned premium on loss-sensitive contracts

20For a full description of Schedule P, Part 7, see Feldblum [4].
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! Section 5: Accrued retrospective premium reserves on loss-
sensitive contracts.

This illustration is contrived. It is designed to show how Part 7
of Schedule P was intended to be used. We then examine how
the Perkins and Teng paper explains the problems with this use
of the Part 7 exhibits.

These exhibits are policy year exhibits, not accident year
losses (as in Parts 2, 3, and 4 of Schedule P) or exposure year
premiums (as in Part 6 of Schedule P). In Section 2 of Part
7, the incurred losses as of 24 months are about twice the in-
curred losses as of 12 months. This makes sense: the policy year
1994 incurred losses as of 12 months are those losses on policies
written in 1994 that have occurred by December 31, 1994. These
are about half of the policy year 1994 losses. By December 31,
1995, all of the policy year 1994 losses have occurred (though
they have not necessarily all been reported by this time), so
the 24 month figure is about twice as great as the 12 month fig-
ure.

The same is true for Section 4, showing the policy year earned
premiums. By the end of the policy year, all the premiums have
been written (though not necessarily collected), but only about
half of these premiums have been earned.

This example assumes that the initial written premium for this
block of business is the estimated ultimate net premium. Initially,
there is no retrospective premium reserve. At the first retrospec-
tive adjustment, some premiums are returned to policyholders,
since not all losses have yet been recorded, even though the in-
surer knows that there will probably be development on the re-
ported losses. The accrued retrospective premium asset becomes
positive after the first adjustment. For companies that charge ini-
tial premiums below the estimated ultimate net premium (for
competitive reasons), the accrued retrospective premium asset
will be positive from policy inception.
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Quantifying Premium Responsiveness

Consider first the premium responsiveness from 24 to 36
months. Only policy years 1994 and 1995 in our illustration are
mature enough to measure this.21 For policy year 1994, losses
develop from $2.20 million to $2.40 million from 24 months
to 36 months, for a change of $0.20 million. Premiums develop
from $3.15 million to $3.30 million during the same time period,
for a change of $0.15 million. The premium responsiveness is
$0:15 million# $0:20 million, or 75%.
For policy year 1995, losses develop from $2.50 million to

$2.65 million from 24 months to 36 months, for a change of
$0.15 million. Premiums develop from $3.60 million to $3.70
million during the same time period, for a change of $0.10 mil-
lion. The premium responsiveness is $0.10 million# $0:15 mil-
lion, or 67%.

As the estimated premium responsiveness from 24 months to
36 months, we might take the average of these two numbers.
Alternatively, we might give more weight to the 1995 policy
year, particularly if the rating plan parameters had changed in
1995.

For the premium responsiveness from 36 months to 48
months, only policy year 1994 is sufficiently mature to provide
the needed figures. Losses develop from $2.40 million to $2.50
million from 36 months to 48 months, for a change of $0.10
million. Premiums develop from $3.30 million to $3.35 million
during the same time period, for a change of $0.05 million.
The premium responsiveness is $0:05 million# $0:10 million,
or 50%.

This is consistent with the Perkins and Teng paper. As reserves
mature, premium responsiveness diminishes, since more losses
are censored by the loss limit and more premiums are capped

21In an actual Schedule P, all earlier policy years would also show this relationship.
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by the maximum premium. In addition, at later maturities, some
retrospective rating plans are closed.

This example was designed to illustrate the intended use of the
Schedule P exhibits; it would rarely be encountered in practice.
The incurred losses here develop smoothly upward, and the pre-
miums follow them equally smoothly. An adequately reserved
company should show flat incurred losses along development
periods, and similarly flat earned premiums. After all, these in-
curred losses include IBNR and bulk reserves, and the earned
premiums include the accrued retrospective premium asset. The
changes in incurred losses from period to period would be some-
times small and sometimes large, sometimes positive and some-
times negative, resulting primarily from random loss fluctuations.
The changes in earned premiums from period to period would be
equally variable, resulting again from random loss fluctuations
as well as from censoring by the loss limits and capping by the
premium maximums.22

We have two series of variable figures with means of zero,
since favorable and adverse development are equally likely (in
theory, at least). The ratios of these series will be even more
variable, sometimes very high, sometimes very low, sometimes
positive, and sometimes negative. These ratios may not tell us
much about premium responsiveness.

Reported Losses and Billed Premium

As the Perkins and Teng paper shows, premium responsive-
ness does not deal with the relationship of changes in total earned
premium to changes in total incurred losses. Rather, it deals with
the relationship of changes in billed premium to changes in re-

22The date of recognition of additional losses or additional accrued retrospective premium
reserves would add to the variability in the two series of changes, one of incurred losses
and one of earned premiums. That is, the reserving actuary may recognize the potential
increase in ultimate losses in one year, but he or she may not book the corresponding
increase in the accrued retrospective premium reserves until some later time.
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ported losses. Accordingly, Schedule P, Part 7 allows that anal-
ysis to be performed as well.

Section 2 of Part 7 shows incurred losses, and Section 3 shows
IBNR and bulk reserves. The difference between Sections 2 and
3 represents reported losses.23 Similarly, Section 4 shows to-
tal earned premiums, and Section 5 shows the net reserve for
premium adjustments and accrued retrospective premiums. The
difference between Sections 4 and 5 represents billed pre-
mium.

Let us repeat the premium responsiveness calculations using
the simulated Schedule P, Part 7 exhibits provided above. For the
premium responsiveness from 24 months to 36 months, we have
data from policy years 1994 and 1995. For policy year 1994,
reported losses develop from ($2.2 million–$0.55 million) at 24
months to ($2.4 million–$0.3 million) at 36 months, for a change
of $0.45 million. Billed premium develops from ($3.15 million–
$0.2 million) at 24 months to ($3.3 million–0.15 million) at 36
months, for a change of $0.20 million. Premium responsiveness
from 24 months to 36 months is $0:20 million#$0:45 million =
44:4%.

For policy year 1995, reported losses develop from ($2.50
million–$0.60 million) at 24 months to ($2.65 million–0.45 mil-
lion) at 36 months, for a change of $0.30 million. Billed pre-
mium develops from ($3.6 million–$0.21 million) at 24 months
to ($3.70 million–$0.155 million) at 36 months, for a change of
$0.155 million. Premium responsiveness from 24 months to 36
months is $0:155 million#$0:30 million = 51:7%.

Anticipated Emergence versus Unanticipated Development

These figures do indeed reflect reality, but is this reality re-
lated to the risk-based capital loss-sensitive contract offset factor?

23This is the same as the calculation of accident year reported losses as Part 2 of Schedule
P minus Part 4 of Schedule P.
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The risk-based capital reserving risk charge seeks to quantify the
amount of capital needed to guard against unanticipated adverse
development of loss reserves. For instance, if in a worst-case (but
still reasonable) scenario, the company’s reserves would develop
adversely by $15 million, then the company should hold $15
million of capital to ensure its solvency.

The figures calculated in the preceding section measure the
responsiveness of retrospective premiums to the emergence of
anticipated losses. They do not tell us how responsive the retro-
spective premiums would be to the emergence of unanticipated
losses.

An example should clarify this. Suppose we are examining
the premium responsiveness from 24 months to 36 months on a
workers compensation retrospectively rated plan with an average
swing. Suppose that at 24 months the reported losses are $100
million, and the anticipated reported losses at 36 months are $120
million. The expected ultimate losses are $150 million.

From our hypothetical experience, we find a premium respon-
siveness for this period of 50%. That is to say, when reported
losses increase by $20 million, the billed premium increases by
$10 million. What are the implications for large and unantici-
pated adverse loss development, as envisioned in the risk-based
capital worst-case scenario? For example, if the ultimate losses
are re-estimated at $180 million at 36 months instead of $150
million, will the accrued retrospective premium asset increase by
an additional $15 million, or 50% of the additional losses of $30
million?

Consider the real-world characteristics of the numerical ex-
ample given above. The development of reported losses from
$100 million to $120 million from 24 months to 36 months may
be decomposed into several parts. One part is the lengthening
of some temporary cases for another few months, or an increase
in some medical benefits. This development is rateable, so pre-
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mium responsiveness is high. Another part is the reclassification
of some temporary total cases, such as lower back sprains, into
lifetime pension cases, when it becomes clear that the injured
employee will not be returning to work. Only some of this de-
velopment is rateable, and the rest is truncated by the loss limits
or the maximum premiums.

Large and unanticipated adverse loss development has a heavy
proportion of this nonrateable element. The re-estimation of the
ultimate losses from $150 million to $180 million may result
from the re-classification of several back sprains as severe and
permanent disabilities, or from a judicial or legislative decision
that certain disease claims, or psychiatric claims, are compens-
able. These claims are generally large and they are paid over a
long period of time. A large part of these claims may not be
rateable.

The Perkins and Teng paper discusses these issues. As noted
above in this discussion, the premium responsiveness depends
on the maturity of the losses as well as on the average loss ratio
in the block of business. The emergence of anticipated losses dif-
fers from the unanticipated adverse development of the expected
losses in that:

! the anticipated losses are generally paid sooner than the unan-
ticipated losses, and

! the anticipated losses generally represent a lower loss ratio
than do the unanticipated losses.

Since the anticipated losses are generally paid sooner, they are
accompanied by a stronger premium responsiveness. Since the
anticipated losses are generally in a lower loss ratio environment,
they are associated with a stronger premium responsiveness. In
sum, the figures derived from the historical triangles in Schedule
P, Part 7 may not be relevant to the scenarios with which risk-
based capital is concerned.
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Reserving Risk Offset versus Premium Risk Offset

The NAIC risk-based capital formula uses the same loss-
sensitive contract offsets for reserving risk as for written pre-
mium risk: 30% for primary insurance contracts and 15% for
reinsurance contracts. As the Perkins and Teng paper shows, the
offset should be much higher for written premium risk than for
reserving risk.24

For the written premium risk loss-sensitive contract offset,
one must examine the first CPDLD factor in a Perkins and Teng
study. However, one must separate the basic premium charge
from the premium responsiveness to losses, or the offset factor
will be overstated; see the discussion above for further explana-
tion of this. Moreover, one must remove the effects of the loss
conversion factor and the tax multiplier, which would also over-
state the appropriate offset factor.

For the reserving risk loss-sensitive contract offset, one must
examine the CPDLD factors at each maturity. One would then
weight these CPDLD factors by the distribution of reserves at
each maturity. As is true for the written premium risk loss-
sensitive contract offset, one must remove the effects of the loss
conversion factor and the tax multiplier.

The difference between premium responsiveness to the emer-
gence of anticipated losses and premium responsiveness to unan-
ticipated adverse loss development (or unanticipated adverse un-

24The appropriate figures depend on the types of plans sold by the insurance company.
The indicated range of figures is wide, and the type of analysis used by Perkins and
Teng must be applied to each company’s book of business. For instance, for a workers
compensation carrier selling wide-swing plans to large national accounts, the appropriate
figures may be between 80% and 85% for the written premium risk loss-sensitive contract
offset and between 60% and 65% for the reserving risk loss-sensitive contract offset.
For a company selling narrow swing plans to small risks, the offsets are much smaller,
extending down as far as the figures used in the NAIC risk-based capital formula. For a
full analysis of premium sensitivity on plans sold to small accounts, see Bender [1] and
Mahler [9].
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derwriting results) can be significant. In the Perkins and Teng
framework, the CPDLD’s should be based on a book of business
with an overall loss ratio equal to the worst-case year loss ratio
in the NAIC risk-based capital scenario. Empirical data for such
CPDLD’s are not readily accessible. Approximations by curve-
fitting techniques to the CPDLD’s that are empirically available
may have to be substituted.

Premium Billing Lags

Another section of the Perkins and Teng paper brings to light
an equally significant problem with the Schedule P exhibits.
When quantifying premium responsiveness, it is important to
use corresponding premiums and losses. Premium billing occurs
about 3 months after the retrospective adjustment. This implies
that the premium billing lags the average loss occurrence by 3
to 15 months.

An example should clarify these figures. Suppose a policy is
effective from July 1, 1998 through June 30, 1999. Retrospective
adjustments are done six months after the policy’s expiration and
every 12 months subsequently. For this policy, the retrospective
adjustments will be done on each January 1, starting with Jan-
uary 1, 2000. The resulting retrospective premium adjustment
will be billed or returned to the policyholder on each April 1.

Each retrospective premium adjustment is driven by losses
that are reported between 15 months and 3 months prior to the
premium billing date. For this policy, losses reported between
January 1 and December 31 affect the premium adjustment that
will be billed on April 1. The schematic in Figure 7 shows this
graphically.

The average lag between loss reporting and premium billing
is 9 months. This is the lag used by Perkins and Teng. If one
does not use any lag, as was the intention of the designers of
Schedule P, Part 7, the results will be distorted. To see this most
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FIGURE 7

PREMIUM AND LOSS DATES FOR
RETROSPECTIVELY RATED POLICIES

clearly, suppose that:

! the retrospective premium billing is done on July 1,

! all losses occur on July 1,
! there is 100% premium responsiveness, and

! the annual incurred losses alternate between $1,000 and $0.
The Schedule P, Part 7, premium responsiveness test would show
the following:

Year 1 2 3 4 5 6

Change in incurred losses $1000 $0 $1000 $0 $1000 $0

Change in billed premium — $1000 $0 $1000 $0 $1000

The premium billing shows up a year after the loss occurs. In this
example, there is 100% premium responsiveness, but Schedule
P, Part 7, shows a $100% premium responsiveness.25

25If X denotes the change in incurred losses, and Y is the change in billed premium, than
100% premium responsiveness is represented as Y = 100%%X. This policy’s experience
shows a line of Y = $1000$100%%X. In the actual calculations of premium respon-
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In practice, simplistic examinations of premium responsive-
ness may yield regression coefficients which are negative or
seemingly random. The reserving actuary may conclude that the
data are incorrect, when the true problem is an improper match-
ing of premiums and losses.

The Perkins and Teng paper shows a possible solution to our
problem. Ideally, one should use quarterly data, with a 9-month
lag between premium billing dates and loss reporting dates. Few
insurers have this data, and the costs of obtaining such data far
outweigh any benefits from these exhibits. As a practical alter-
native, one should use a 12-month lag in the quantification of
premium responsiveness. A 12-month lag is not ideal, but it is
better than no lag at all. Moreover, this requires no change in the
exhibit completion process: the same exhibits may be used, but
the quantification procedure would be modified.

4. CONCLUSION

Miriam Perkins and Michael Teng have put together an excel-
lent paper, based on eight years of carefully examining the ac-
crued retrospective premium reserves in workers compensation,
general liability, and commercial auto for one of the country’s
largest writers of retrospectively rated policies. They methodi-
cally analyzed how premium responsiveness changes by reserve
maturity and by aggregate loss ratio, and they systematically
tested the lags between loss reporting and premium billing in
the company’s book of business.

The Perkins and Teng procedure is important not just for re-
serve projections but also for risk analysis. Our profession has
much to gain as other actuaries learn the techniques presented by
Perkins and Teng and use them to quantify the risk and rewards
of loss-sensitive contracts.

siveness, of course, one does not use successive adjustments for a single policy or block
of policies, but successive calendar years for the same adjustment for successive blocks
of policies. The underlying concepts are the same, though the schematic becomes more
complex.
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TESTING THE ASSUMPTIONS OF
AGE-TO-AGE FACTORS

GARY G. VENTER

Abstract

The use of age-to-age factors applied to cumulative
losses has been shown to produce least-squares opti-
mal reserve estimates when certain assumptions are met.
Tests of these assumptions are introduced, most of which
derive from regression diagnostic methods. Failures of
various tests lead to specific alternative methods of loss
development.
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INTRODUCTION

In his paper “Measuring the Variability of Chain Ladder
Reserve Estimates” Thomas Mack presented the assumptions
needed for least-squares optimality to be achieved by the typ-
ical age-to-age factor method of loss development (often called
“chain ladder”). Mack also introduced several tests of those as-
sumptions. His results are summarized below, and then other
tests of the assumptions are introduced. Also addressed is what
to do when the assumptions fail. Most of the assumptions, if they
fail in a particular way, imply least-squares optimality for some
alternative method.

The organization of the paper is to first show Mack’s three
assumptions and their result, then to introduce six testable im-
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plications of those assumptions, and finally to go through the
testing of each implication in detail.

PRELIMINARIES

Losses for accident year w evaluated at the end of that year
will be denoted as being as of age 0, and the first accident year in
the triangle is year 0. The notation below will be used to spec-
ify the models. Losses could be either paid or incurred. Only
development that fills out the triangle is considered. Loss devel-
opment beyond the observed data is often significant but is not
addressed here. Thus age ! will denote the oldest possible age
in the data triangle.

Notation

c(w,d): cumulative loss from accident year w as of age d
c(w,!): total loss from accident year w when end of triangle

reached
q(w,d): incremental loss for accident year w from d"1 to d
f(d): factor applied to c(w,d) to estimate q(w,d+1)
F(d): factor applied to c(w,d) to estimate c(w,!)

Assumptions

Mack showed that some specific assumptions on the process
of loss generation are needed for the chain ladder method to
be optimal. Thus if actuaries find themselves in disagreement
with one or another of these assumptions, they should look for
some other method of development that is more in harmony with
their intuition about the loss generation process. Reserving meth-
ods more consistent with other loss generation processes will be
discussed below. Mack’s three original assumptions are slightly
restated here to emphasize the task as one of predicting future in-
cremental losses. Note that the losses c(w,d) have an evaluation
date of w+d.



TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS 809

1. E[q(w,d+1) # data to w+d] = f(d)c(w,d).
In words, the expected value of the incremental losses

to emerge in the next period is proportional to the to-
tal losses emerged to date, by accident year. Note that
in Mack’s definition of the chain ladder, f(d) does not
depend on w, so the factor for a given age is constant
across accident years. Note also that this formula is a
linear relationship with no constant term. As opposed to
other models discussed below, the factor applies directly
to the cumulative data, not to an estimated parameter, like
ultimate losses. For instance, the Bornhuetter-Ferguson
method assumes that the expected incremental losses are
proportional to the ultimate for the accident year, not the
emerged to date.

2. Unless v = w, c(w,d) and c(v,g) are independent for all
v, w, d and g.
This would be violated, for instance, if there were a

strong diagonal, when all years’ reserves were revised
upwards. In this case, instead of just using the chain
ladder method, most actuaries would recommend elimi-
nating these diagonals or adjusting them. Some model-
based methods for formally recognizing diagonal effects
are discussed below.

3. Var[q(w,d+1) # data to w+ d] = a[d,c(w,d)].
That is, the variance of the next increment observa-

tion is a function of the age and the cumulative losses
to date. Note that a($, $) can be any function but does not
vary by accident year. An assumption on the variance
of the next incremental losses is needed to find a least-
squares optimal method of estimating the development
factors. Different assumptions, e.g., different functions
a($, $) will lead to optimality for different methods of es-
timating the factor f. The form of a($, $) can be tested
by trying different forms, estimating the f’s, and seeing
if the variance formula holds. There will almost always
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be some function a($, $) that reasonably accords with the
observations, so the issue with this assumption is not
its validity but its implications for the estimation proce-
dure.

Results (Mack)

In essence what Mack showed is that under the above as-
sumptions the chain ladder method gives the minimum variance
unbiased linear estimator of future emergence. This gives a good
justification for using the chain ladder in that case, but the as-
sumptions need to be tested. Mack assumed that a[d,c(w,d)] =
k(d)c(w,d), that is, he assumed that the variance is proportional
to the previous cumulative loss, with possibly a different pro-
portionality factor for each age. In this case, the minimum vari-
ance unbiased estimator of c(w,!) from the triangle of data
to date w+d is F(d)c(w,d), where the age-to-ultimate factor
F(d) = [1+f(d)][1+f(d+1)] $ $ $ , and f(d) is calculated as:

f(d) =
!
w

q(w,d+1)
"!

w

c(w,d),

where the sum is over the w’s mutually available in both columns
(assuming accident years are on separate rows and ages are in
separate columns). Actuaries often use a modified chain ladder
that uses only the last n diagonals. This will be one of the al-
ternative methods to test if Mack’s assumptions fail. Using only
part of the data when all the assumptions hold will reduce the
accuracy of the estimation, however.

Extension

In general, the minimum variance unbiased f(d) is found by
minimizing!

w

[f(d)c(w,d)"q(w,d+1)]2k(d)=a[d,c(w,d)]:
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This is the usual weighted least-squares result, where the weights
are inversely proportional to the variance of the quantity be-
ing estimated. Because only proportionality, not equality, to the
variance is required, k(d) can be any convenient function of d—
usually chosen to simplify the minimization.

For example, suppose a[d,c(w,d)] = k(d)c(w,d)2. Then the
f(d) produced by the weighted least-squares procedure is the av-
erage of the individual accident year d to d+1 ratios, q(w,d+1)
=c(w,d). For a[d,c(w,d)] = k(d), each f(d) regression above is
then just standard unweighted least squares, so f(d) is the regres-
sion coefficient

#
w c(w,d)q(w,d+1)=

#
w c(w,d)

2. (See Murphy
[8].) In all these cases, f(d) is fit by a weighted regression, and
so regression diagnostics can be used to evaluate the estimation.
In the tests below just standard least-squares will be used, but in
application the variance assumption should be reviewed.

Discussion

Without going into Mack’s derivation, the optimality of the
chain ladder method is fairly intuitive from the assumptions. In
particular, the first assumption is that the expected emergence in
the next period is proportional to the losses emerged to date. If
that were so, then a development factor applied to the emerged
to date would seem highly appropriate. Testing this assump-
tion will be critical to exploring the optimality of the chain lad-
der. For instance, if the emergence were found to be a constant
plus a percent of emergence to date, then a different method
would be indicated—namely, a factor plus constant development
method. On the other hand, if the next incremental emergence
were proportional to ultimate rather than to emerged to date, a
Bornhuetter-Ferguson type approach would be more appropriate.

To test this assumption against its alternatives, the develop-
ment method that leads from each alternative needs to be fit, and
then a goodness-of-fit measure applied. This is similar to trying
a lot of methods and seeing which one you like best, but it is
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different in two respects: (1) each method tested derives from
an alternative assumption on the process of loss emergence; (2)
there is a specific goodness-of-fit test applied. Thus the fitting
is a test of the emergence patterns that the losses are subject to,
and not just a test of estimation methods.

TESTABLE IMPLICATIONS OF ASSUMPTIONS

Verifying a hypothesis involves finding as many testable im-
plications of that hypothesis as possible, and verifying that the
tests are passed. In fact a hypothesis can never be fully verified,
as there could always be some other test you haven’t thought
of. Thus the process of verification is sometimes conceived as
being really a process of attempted falsification, with the current
tentatively-accepted hypothesis being the strongest (i.e., most
easily testable) one not yet falsified. (See Popper [9].) The as-
sumptions (1)–(3) are not directly testable, but they have testable
implications. Thus they can be falsified if any of the implications
are found not to hold, which would mean that the optimality
of the chain ladder method could not be shown for the data in
question. Holding up under all of these tests would increase the
actuary’s confidence in the hypothesis, still recognizing that no
hypothesis can ever be fully verified. Some of the testable im-
plications are:

1. Significance of factor f(d).

2. Superiority of factor assumption to alternative emer-
gence patterns such as:

(a) linear with constant: E[q(w,d+1) # data to w+d] =
f(d)c(w,d) +g(d);

(b) factor times parameter: E[q(w,d+1) # data to w+d]
= f(d)h(w);

(c) including calendar year effect: E[q(w,d+1) # data to
w+d] = f(d)h(w)g(w+ d).



TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS 813

Note that in these examples the notation has changed
slightly so that f(d) is a factor used to estimate q(w,
d+1), but not necessarily applied to c(w,d). These al-
ternative emergence models can be tested by goodness
of fit, controlling for number of parameters.

3. Linearity of model: look at residuals as a function of
c(w,d).

4. Stability of factor: look at residuals as a function of time.

5. No correlation among columns.

6. No particularly high or low diagonals.

The remainder of this paper consists of tests of these implica-
tions.

TESTING LOSS EMERGENCE—IMPLICATIONS 1 & 2

The first four of these implications are tests of assumption (1).
Standard diagnostic tests for weighted least-squares regression
can be used as measures.

Implication 1: Significance of Factors

Regression analysis produces estimates for the standard de-
viation of each parameter estimated. Usually the absolute value
of a factor is required to be at least twice its standard deviation
for the factor to be regarded as significantly different from zero.
This is a test failed by many development triangles, which means
that the chain ladder method is not optimal for those triangles.

The requirement that the factor be twice the standard devia-
tion is not a strict statistical test, but more like a level of comfort.
For the normal distribution this requirement provides that there is
only a probability of about 4.5% of getting a factor of this abso-
lute value or greater when the true factor is zero. Many analysts
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are comfortable with a factor with absolute value 1.65 times its
standard deviation, which could happen about 10% of the time by
chance alone. For heavier-tailed distributions, the same ratio of
factor to standard deviation will usually be more likely to occur
by chance. Thus, if a factor were to be considered not signifi-
cant for the normal distribution, it would probably be even less
significant for other distributions. This approach could be made
into a formal statistical test by finding the distribution that the
factors follow. The normal distribution is often satisfactory, but
it is not unusual to see some degree of positive skewness, which
would suggest the lognormal. Some of the alternative models
discussed below are easier to estimate in log form, so that is not
an unhappy finding.

It may be tempting to do the regression of cumulative on
previous cumulative and test the significance of that factor in
order to justify the use of the chain ladder. However it is only
the incrementals that are being predicted, so this would have to
be carefully interpreted. In a cumulative-to-cumulative regres-
sion, the significance of the difference of the factor from unity
is what needs to be tested. This can be done by comparing that
difference to the standard deviation of the factor, which is equiv-
alent to testing the significance of the factor in the incremental-
to-cumulative regression. Some alternative methods to try when
this assumption fails are discussed below.

Implication 2: Superiority to Alternative Emergence Patterns

If alternative emergence patterns give a better explanation of
the data triangle observed to date, then assumption (1) of the
chain ladder model is also suspect. In these cases development
based on the best-fitting emergence pattern would be a natural
option to consider. The sum of the squared errors (SSE) would be
a way to compare models (the lower the better) but this should be
adjusted to take into account the number of parameters used. Un-
fortunately it appears that there is no generally accepted method
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to make this adjustment. One possible adjustment is to compare
fits by using the SSE divided by (n"p)2, where n is the number
of observations and p is the number of parameters. More param-
eters give an advantage in fitting but a disadvantage in prediction,
so such a penalty in adjusting the residuals may be appropriate.
A more popular adjustment in recent years is to base goodness of
fit on the Akaike Information Criterion, or AIC (see Lütkepohl
[5]). For a fixed set of observations, multiplying the SSE by e2p=n

can approximate the effect of the AIC. The AIC has been criti-
cized as being too permissive of over-parameterization for large
data sets, and the Bayesian Information Criterion, or BIC, has
been suggested as an alternative. Multiplying the SSE by np=n

would rank models the same as the BIC. As a comparison, if
you have 45 observations, the improvement in SSE needed to
justify adding a 5th parameter to a 4 parameter model is about
5%, 412%, and almost 9%, respectively, for these three adjust-
ments. In the model testing below the sum of squared residuals
divided by (n"p)2 will be the test statistic, but in general the
AIC and BIC should be regarded as good alternatives.

Note again that this is not just a test of development methods
but is also a test to see what hypothetical loss generation process
is most consistent with the data in the triangle.

The chain ladder has one parameter for each age, which is
less than for the other emergence patterns listed in implication
2. This gives it an initial advantage, but if the other parameters
improve the fit enough, they overcome this advantage. In testing
the various patterns below, parameters will be fit by minimizing
the sum of squared residuals. In some cases this will require an
iterative procedure.

Alternative Emergence Pattern 1: Linear with Constant

The first alternative mentioned is just to add a constant term
to the model. This is often significant in the age 0 to age 1 stage,
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especially for highly variable and slowly reporting lines, such
as excess reinsurance. In fact, in the experience of myself and
other actuaries who have reported informally, the constant term
has often been found to be more statistically significant than the
factor itself. If the constant is significant and the factor is not, a
different development process is indicated. For instance in some
triangles earning of additional exposure could influence the 0-
to-1 development. It is important in such cases to normalize the
triangle as much as possible, e.g., by adjusting for differences
among accident years in exposure and cost levels (trend). With
these adjustments a purely additive rather than a purely multi-
plicative method could be more appropriate.

Again, the emergence assumption underlying the linear with
constant method is:

E[q(w,d+1) # data to w+ d] = f(d)c(w,d)+g(d):
If the constant is statistically significant, this emergence pattern
is more strongly supported than that underlying the chain ladder.

Alternative Emergence Pattern 2: Factor Times Parameter

The chain ladder model expresses the next period’s loss emer-
gence as a factor times losses emerged so far. An important al-
ternative, suggested by Bornhuetter and Ferguson (BF) in 1972,
is to forecast the future emergence as a factor times estimated
ultimate losses. While BF use some external measure of ultimate
losses in this process, others have tried to use the data triangle it-
self to estimate the ultimate (e.g., see Verrall [13]). In this paper,
models that estimate emerging losses as a percent of ultimate
will be called parameterized BF models, even if they differ from
the original BF method in how they estimate the ultimate losses.

The emergence pattern assumed by the parameterized BF
model is:

E[q(w,d+1) # data to w+d] = f(d)h(w):
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That is, the next period expected emerged loss is a lag factor
f(d) times an accident year parameter h(w). The latter could be
interpreted as expected ultimate for the year, or at least propor-
tional to that. This model thus has a parameter for each accident
year as well as for each age (one less actually, as you can assume
the f(d)’s sum to one—which makes h(w) an estimate of ulti-
mate losses; thus multiplying all the f(d)’s, d > 0, by a constant
and dividing all the h’s by the same constant will not change
the forecasts). For reserving purposes there is even one fewer
parameter, as the age 0 losses are already in the data triangle, so
f(0) is not needed. Thus, for a complete triangle with n accident
years the BF has 2n"2 parameters, or twice the number as the
chain ladder. This will result in a penalty to goodness of fit, so
the BF has to produce much lower fit errors than the chain ladder
to give a better test statistic.

Testing the parameterized BF emergence pattern against that
of the chain ladder cannot be done just by looking at the statis-
tical significance of the parameters, as it could with the linear
plus constant method, as one is not a special case of the other.
This testing is the role of the test statistic, the sum of squared
residuals divided by the square of the degrees of freedom. If this
statistic is better for the BF model, that is evidence that the emer-
gence pattern of the BF is more applicable to the triangle being
studied. That would suggest that loss emergence for that book
can be more accurately represented as fluctuating around a pro-
portion of ultimate losses rather than a percentage of previously
emerged losses.

Stanard [10] assumed a loss generation scheme that resulted
in the expected loss emergence for each period being propor-
tional to the ultimate losses for the period. This now can be seen
to be the BF emergence pattern. Then by generating actual loss
emergence stochastically, he tested some loss development meth-
ods. The chain ladder method gave substantially larger estimation
errors for ultimate losses than his other methods, which were ba-
sically different versions of BF estimation. This illustrates how
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far off reserves can be when one reserving technique is applied
to losses that have an emergence process different from the one
underlying the technique.

A simulation in accord with the chain ladder emergence as-
sumption would generate losses at age j by multiplying the sim-
ulated emerged losses at age j"1 by a factor and then adding
a random component. In this manner the random components
influence the expected emergence at all future ages. This may
seem an unlikely way for losses to emerge, but it is for the trian-
gles that follow this emergence pattern that the chain ladder will
be optimal. The fact that Stanard used the simulation method
consistent with the BF emergence pattern, and this was not chal-
lenged by the reviewer, John Robertson, suggests that actuaries
may be more comfortable with the BF emergence assumptions
than with those of the chain ladder. Or perhaps it just means that
no one would be likely to think of simulating losses by the chain
ladder method.

An important special case of the parameterized BF was de-
veloped by some Swiss and American reinsurance actuaries at
a meeting in Cape Cod, and is sometimes called the Cape Cod
method (CC). It is given by setting h(w) to just a single h for
all accident years. CC seems to have one more parameter than
the chain ladder, namely h. However, any change in h can be
offset by inverse changes in all the f’s. CC thus has the same
number of parameters as the chain ladder, and so its fit mea-
sure is not as heavily penalized as that of BF. However a single
h requires a relatively stable level of loss exposure across ac-
cident years. Again it would be necessary to adjust for known
exposure and price level differences among accident years, if us-
ing this method. The chain ladder and BF can handle changes
in level from year to year as long as the development pattern
remains consistent.

The BF model often has too many parameters. The last few
accident years especially are left to find their own levels based
on sparse information. Reducing the number of parameters, and
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thus using more of the information in the triangle, can often yield
better predictions, especially in predicting the last few years. It
could be that losses follow the BF emergence pattern, but this is
disguised in the test statistic due to too many parameters. Thus,
testing for the alternate emergence pattern should also include
testing reduced parameter BF models.

The full BF not only assumes that losses emerge as a percent-
age of ultimate, but also that the accident years are all at different
mean levels and that each age has a different percentage of ulti-
mate losses. It could be, however, that several years in a row, or
all of them, have the same mean level. If the mean changes, there
could be a gradual transition from one level to another over a few
years. This could be modeled as a linear progression of accident
year parameters, rather than separate parameters for each year.
A similar process could govern loss emergence. For instance,
the 9th through 15th periods could all have the same expected
percentage development. Finding these relationships and incor-
porating them in the fitting process will help determine what
emergence process is generating the development.

The CC model can be considered a reduced parameter BF
model. The CC has a single ultimate value for all accident years,
while the BF has a separate value for each year. There are nu-
merous other ways to reduce the number of parameters in BF
models. Simply using a trend line through the BF ultimate loss
parameters would use just two accident year parameters in total
instead of one for each year. Another method might be to group
years using apparent jumps in loss levels and fit an h parameter
separately to each group. Within such groupings it is also possi-
ble to let each accident year’s h parameter vary somewhat from
the group average, e.g., via credibility, or to let it evolve over
time, e.g., by exponential smoothing.

Alternative Emergence Patterns Example

Table 1 shows incremental incurred losses by age for some
excess casualty reinsurance. As an initial test, the statistical sig-
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TABLE 1

INCREMENTAL INCURRED LOSSES

Age

Year 0 1 2 3 4 5 6 7 8 9
0 5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172
1 106 4,179 1,111 5,270 3,116 1,817 "103 673 535
2 3,410 5,582 4,881 2,268 2,594 3,479 649 603
3 5,655 5,900 4,211 5,500 2,159 2,658 984
4 1,092 8,473 6,271 6,333 3,786 225
5 1,513 4,932 5,257 1,233 2,917
6 557 3,463 6,926 1,368
7 1,351 5,596 6,165
8 3,133 2,262
9 2,063

TABLE 2

STATISTICAL SIGNIFICANCE OF FACTORS

0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8
a 5,113 4,311 1,687 2,061 4,064 620 777 3,724
Std. Dev. a 1,066 2,440 3,543 1,165 2,242 2,301 145 0:000
b "0:109 0.049 0.131 0.041 "0:100 0.011 "0:008 "0:197
Std. Dev. b 0:349 0.309 0.283 0.071 0:114 0.112 0:008 0:000

nificance of the factors was tested by regression of incremental
losses against the previous cumulative losses. In the regression
the constant is denoted by a and the factor by b. This provides a
test of implication 1—significance of the factor, and also one test
of implication 2—alternative emergence patterns. In this case the
alternative emergence patterns tested are factor plus constant and
constant with no factor. Here they are being tested by looking
at whether or not the factors and the constants are significantly
different from zero, rather than by any goodness-of-fit measure.

Table 2 shows the estimated parameters and their standard
deviations. As can be seen, the constants are usually statistically
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FIGURE 1

AGE 1 VS. AGE 0 LOSSES

significant (parameter nearly double its standard deviation, or
more), but the factors never are. The chain ladder assumes the
incremental losses are proportional to the previous cumulative,
which implies that the factor is significant and the constant is
not. The lack of significance of the factors and the significance
of many of the constants both suggest that the losses to emerge
at any age d+1 are not proportional to the cumulative losses
through age d. The assumptions underlying the chain ladder
model are thus not supported by this data. A constant amount
emerging for each age usually appears to be a reasonable esti-
mator, however.

Figure 1 illustrates this. A factor by itself would be a straight
line through the origin with slope equal to the development fac-
tor, whereas a constant would give a horizontal line at the height
of the constant. As an alternative, the parameterized BF model
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was fit to the triangle. As this is a non-linear model, fitting is a
little more involved. A statistical package that includes non-linear
regression could ease the estimation. A method of fitting the
parameters without such a package will be discussed, followed
by an analysis of the resulting fit.

To do the fitting, an iterative method can be used to minimize
the sum of the squared residuals, where the (w,d) residual is
[q(w,d)"f(d)h(w)]. Weighted least squares could also be used
if the variances of the residuals are not constant over the triangle.
For instance, the variances could be proportional to f(d)ph(w)q

for some values of p and q, usually 0, 1, or 2, in which case the
regression weights would be 1=f(d)ph(w)q.

A starting point for the f’s or the h’s is needed to begin the
iteration. While almost any reasonable values could be used, such
as all f’s equal to 1=n, convergence will be faster with values
likely to be in the ballpark of the final factors. A natural starting
point thus might be the implied f(d)’s from the chain ladder
method. For ages greater than 0, these are the incremental age-
to-age factors divided by the cumulative-to-ultimate factors. To
get a starting value for age 0, subtract the sum of the other factors
from unity. Starting with these values for f(d), regressions were
performed to find the h(w)’s that minimize the sum of squared
residuals (one regression for each w). These give the best h’s for
that initial set of f’s. The standard linear regression formula for
these h’s simplifies to:

h(w) =
!
d

f(d)q(w,d)
"!

d

f(d)2:

Even though that gives the best h’s for those f’s, another regres-
sion is needed to find the best f’s for those h’s. For this step the
usual regression formula gives:

f(d) =
!
w

h(w)q(w,d)
"!

w

h(w)2:
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TABLE 3

BF PARAMETERS

Age d 0 1 2 3 4 5 6 7 8 9
f(d) 1st 0.106 0.231 0.209 0.155 0.117 0.083 0.038 0.032 0.018 0.011
f(d) ult. 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009
Year w 0 1 2 3 4 5 6 7 8 9
h(w) 1st 17,401 15,729 23,942 26,365 30,390 19,813 18,592 24,154 14,639 12,733
h(w) ult. 15,982 16,501 23,562 27,269 31,587 20,081 19,032 25,155 13,219 19,413

Now the h regression can be repeated with the new f’s, etc.
This process continues until convergence occurs, i.e., until the
f’s and h’s no longer change with subsequent iterations. It may
be possible that this procedure would converge to a local rather
than the global minimum, which can be tested by using other
starting values.

Ten iterations were used in this case, but substantial conver-
gence occurred earlier. The first round of f’s and h’s and those
at convergence are in Table 3. Note that the h’s are not the final
estimates of the ultimate losses, but are used with the estimated
factors to estimate future emergence. In this case, in fact, h(0) is
less than the emerged to date. As the h’s are unique only up to a
constant of proportionality, which can be absorbed by the f’s, it
may improve presentations to set h(0) to the estimated ultimate
losses for year 0.

Standard regression assumes each observation q has the
same variance, which is to say the variance is proportional to
f(d)ph(w)q, with p= q= 0. If p= q= 1 the weighted regression
formulas become:

h(w)2 =
!
d

[q(w,d)2=f(d)]
"!

d

f(d) and

f(d)2 =
!
w

[q(w,d)2=h(w)]
"!

w

h(w):



824 TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS

TABLE 4

DEVELOPMENT FACTORS

Incremental
Prior 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9

1.22 0.57 0.26 0.16 0.10 0.04 0.03 0.02 0.01
Ultimate

0 to 9 1 to 9 2 to 9 3 to 9 4 to 9 5 to 9 6 to 9 7 to 9 8 to 9
6.17 2.78 1.77 1.41 1.21 1.10 1.06 1.03 1.01

Incremental/Ultimate
0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009

For comparison, the development factors from the chain lad-
der are shown in Table 4. The incremental factors are the ratios
of incremental to previous cumulative. The ultimate ratios are
cumulative to ultimate. Below them are the ratios of these ratios,
which represent the portion of ultimate losses to emerge in each
period. The zeroth period shown is unity less the sum of the
other ratios. These factors were the initial iteration for the f(d)s
shown above.

Having now estimated the BF parameters, how can they be
used to test what the emergence pattern of the losses is?

A comparison of this fit to that from the chain ladder can
be made by looking at how well each method predicts the incre-
mental losses for each age after the initial one. The SSE adjusted
for number of parameters will be used as the comparison mea-
sure, where the parameter adjustment will be made by dividing
the SSE by the square of the difference between the number of
observations and the number of parameters, as discussed ear-
lier. Here there are 45 observations, as only the predicted points
count as observations. The adjusted SSE was 81,169 for the BF,
and 157,902 for the chain ladder. This shows that the emergence
pattern for the BF (emergence proportional to ultimate) is much
more consistent with this data than is the chain ladder emergence
pattern (emergence proportional to previous emerged).
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TABLE 5

FACTORS IN CC METHOD

Age d 0 1 2 3 4 5 6 7 8 9
f(d) 0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008

The CC method was also tried for this data. The iteration pro-
ceeded similarly to that for the BF, but only a single h parameter
was fit for all accident years. Now:

h=
!
w,d

f(d)q(w,d)
"!

w,d

f(d)2:

This formula for h is the same as the formula for h(w) except
the sum is taken over all w. The estimated h is 22,001, and
the final factors f are shown in Table 5. The adjusted SSE for
this fit is 75,409. Since the CC is a special case of the BF, the
unadjusted SSE is necessarily worse than that of the BF method
(in this case 59M vs. 98M), but with fewer parameters in the
CC, the adjustment makes them similar. These are close enough
that which is better depends on the adjustment chosen for extra
parameters. The BIC also favors the CC, but the AIC is better for
the BF. As is often the case, the statistics can inform decision-
making but not determine the decision.

Intermediate special cases could be fit similarly. If, for in-
stance, a single factor were sought to apply to just two accident
years, the sum would be taken over those years to estimate that
factor, etc.

This is a case where the BF has too many parameters for
prediction purposes. More parameters fit the data better but use
up information. The penalty in the fit measure adjusts for this
problem, and the penalty used finds the CC to be a somewhat
better model. Thus the data is consistent with random emergence
around an expected value that is constant over the accident years.
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TABLE 6

TERMS IN ADDITIVE CHAIN LADDER

Age d 1 2 3 4 5 6 7 8 9
g(d) 4,849.3 4,682.5 3,267.1 2,717.7 2,164.2 839.5 625.0 294.5 172.0

Again, the CC method would probably work even better for
loss ratio triangles than for loss triangles, as then a single target
ultimate value makes more sense. Adjusting loss ratios for trend
and rate level could increase this homogeneity.

In addition, an additive development was tried, as suggested
by the fact that the constant terms were significant in the origi-
nal chain ladder, even though the factors were not. The develop-
ment terms are shown in Table 6. These are just the average loss
emerged at each age. The adjusted sum of squared residuals is
75,409. This is much better than the chain ladder, which might
be expected, as the constant terms were significant in the origi-
nal significance-test regressions while the factors were not. The
additive factors in Table 6 differ from those in Table 2 because
there is no multiplicative factor in Table 6.

Is it a coincidence that the additive chain ladder gives the same
fit accuracy as the CC? Not really, in that they both estimate each
age’s loss levels with a single value. Let g(d) denote the additive
development amount for age d. As the notation suggests, this
does not vary by accident year. The CC method fits an overall h
and a factor f(d) for each age such that the estimated emergence
for age d is f(d)h. Here too the predicted development varies
by age but is a constant for each accident year. If you have
estimated the CC parameters you can just define g(d) = f(d)h.
Alternatively, if the additive method has been fit, no matter what
h is estimated, the f’s can be defined as f(d)h= g(d). As long as
the parameters are fit by least-squares they have to come out the
same: if one came out lower, you could have used the equations
in the two previous sentences to get this same lower value for
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TABLE 7

BF-CC PARAMETERS

Age d 0 1 2 3 4 5 6 7 8 9
f(d) % 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017
Year w 0 1 2 3 4 5 6 7 8 9
h(w) 14,829 14,829 20,962 25,895 30,828 20,000 20,000 20,000 20,000 20,000

the other. The two models have the same age and accident year
relationships and so will always come out the same when fit
by least-squares. They are defined differently, however, and so
other methods of estimating the parameters may come up with
separate estimates, as in Stanard [10]. In the remainder of this
paper, the models will be used interchangeably.

Finally, an intermediate BF-CC pattern was fit as an example
of the possible approaches of this type. In this case ages 1 and 2
are assumed to have the same factor, as are ages 6 and 7 and ages
8 and 9. This reduces the number of f parameters from 9 to 6.
The number of accident year parameters was also reduced: years
0 and 1 have a single parameter, as do years 5 through 9. Year 2
has its own parameter, as does year 4, but year 3 is the average
of those two. Thus there are 4 accident year parameters, and so
10 parameters in total. Any one of these can be set arbitrarily,
with the remainder adjusted by a factor, so there are really just 9.
The selections were based on consideration of which parameters
were likely not to be significantly different from each other.

The estimated factors are shown in Table 7. The factor to be
set arbitrarily was the accident year factor for the last 5 years,
which was set to 20,000. The other factors were estimated by
the same iterative regression procedure as for the BF, but the
factor constraints change the simplified regression formula. The
adjusted sum of squared residuals is 52,360, which makes it the
best approach tried. This further supports the idea that claims
emerge as a percent of ultimate for this data. It also indicates
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that the various accident years and ages are not all at different
levels. The actual and fitted values from this, the chain ladder,
and CC are in Exhibit 1. The fitted values in Exhibit 1 were
calculated as follows. For the chain ladder, the factors from Table
4 were applied to the cumulative losses implied from Table 1.
For the CC the fitted values are just the terms in Table 6. For the
BF-CC they are the products of the appropriate f and h factors
from Table 7. The parameters for all the models to this point are
summarized in Exhibit 2.

Alternative Emergence Patterns-Summary

The chain ladder assumes that future emergence for an ac-
cident year will be proportional to losses emerged to date. The
BF methods take expected emergence in each period to be a per-
centage of ultimate losses. This could be interpreted as regarding
the emerged to date to have a random component that will not
influence future development. If this is the actual emergence pat-
tern, the chain ladder method will apply factors to the random
component, and thus increase the estimation error.

The CC and additive chain ladder methods assume in effect
that years showing low losses or high losses to date will have
the same expected future dollar development. Thus a bad loss
year may differ from a good one in just a couple of emergence
periods, and have quite comparable loss emergence in all other
periods. The chain ladder and the most general form of the BF,
on the other hand, assume that a bad year will have higher emer-
gence than a good year in most periods.

The BF and chain ladder emergence patterns are not the only
ones that make sense. Some others will be reviewed when dis-
cussing diagonal effects below.

Which emergence pattern holds for a given triangle is an em-
pirical issue. Fitting parameters to the various methods and look-
ing at the significance of the parameters and the adjusted sum of
squared residuals can test this.
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FIGURE 2

RESIDUAL ANALYSIS—TESTING IMPLICATIONS 3 & 4

So far the first two of the six testable implications of the
chain ladder assumptions have been addressed. Looking at the
residuals from the fitting process can test the next two impli-
cations.

Implication 3: Test of Linearity—Residuals as Function of
Previous

Figure 2 shows a straight line fit to a curve. The residuals
can be seen to be first positive, then negative then all positive.
This pattern of residuals is indicative of a non-linear process
with a linear fit. The chain ladder model assumes the incremental
losses at each age are a linear function of the previous cumulative
losses.

A scatter plot of the incremental against the previous cumu-
lative, as in Figure 3, can be used to check linearity; looking for
this characteristic non-linear pattern (i.e., strings of positive and
negative residuals) in the residuals plotted against the previous
cumulative is equivalent. This can be tested for each age to see if
a non-linear process may be indicated. Finding this would sug-
gest that emergence is a non-linear function of losses to date. In
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FIGURE 3

Figure 3 there are no apparent strings of consecutive positive or
negative residuals, so non-linearity is not indicated.

Implication 4: Test of Stability—Residuals Over Time

If a similar pattern of sequences of high and low residuals is
found when plotted against time, instability of the factors may be
indicated. If the factors appear to be stable over time, all the acci-
dent years available should be used to calculate the development
factors, in order to reduce the effects of random fluctuations.
When the development process is unstable, the assumptions for
optimality of the chain ladder are no longer satisfied. A response
to unstable factors over time might be to use a weighted aver-
age of the available factors, with more weight going to the more
recent years, e.g., just use the last 5 diagonals. A weighted av-
erage should be used when there is a good reason for it, e.g.,
when residual analysis shows that the factors are changing, but
otherwise it will increase estimation errors by over-emphasizing
some observations and under-emphasizing others.
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FIGURE 4

2ND TO 3RD FIVE-TERM MOVING AVERAGE

Another approach to unstable development would be to ad-
just the triangle for measurable instability. For instance, Berquist
and Sherman [1] suggest testing for instability by looking for
changes in the settlement rate of claims. They measured this by
looking at the changes in the percentage of claims closed by age.
If instability is found, the triangle is adjusted to the latest pattern.
The adjusted triangle, however, should still be tested for stabil-
ity of development factors by residual analysis and as illustrated
below.

Figure 4 shows the 2nd to 3rd factor by accident year from a
large development triangle (data in Exhibit 3) along with its five-
term moving average. The moving average is the more stable of
the two lines, and is sometimes in practice called “the average of
the last five diagonals.” There is apparent movement of the factor
over time as well as a good deal of random fluctuation. There is
a period of time in which the moving average is as low as 1.1 and
other times it is as high as 1.8. This is the kind of variability that
would suggest using the average of recent diagonals instead of
the entire triangle when estimating factors. This is not suggested
due to the large fluctuations in factors, but rather because of the
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changes over time in the level around which the factors are fluc-
tuating. A lot of variability around a fixed level would in fact
suggest using all the data.

It is not clear from the data what is causing the moving av-
erage factors to drift over time. Faced with data like this, the
average of all the data would not normally be used. Grouping
accident years or taking weighted averages would be useful al-
ternatives.

The state-space model in the Verall and Zehnwirth references
provides a formal statistical treatment of the types of instability in
a data triangle. This model can be used to help analyze whether to
use all the data, or to adopt some form of weighted average that
de-emphasizes older data. It is based on comparing the degree of
instability of observations around the current mean to the degree
of instability in the mean itself over time. While this is the main
statistical model available to determine weights to apply to the
various accident years of data, a detailed discussion is beyond
the scope of this paper.

INDEPENDENCE—TESTING IMPLICATIONS 5 & 6

Implications 5 and 6 have to do with independence within the
triangle. Mack’s second assumption above is that, except for ob-
servations in the same accident year, the columns of incremental
losses need to be independent. He developed a correlation test
and a high-low diagonal test to check for dependencies. The data
may have already been adjusted for known changes in the case
reserving process. For instance, Berquist and Sherman recom-
mend looking at the difference between paid and incurred case
severity trends to determine if there has been a change in case
reserve adequacy, and if there has, adjusting the data accord-
ingly. Even after such adjustments, however, correlations may
exist within the triangle.



TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS 833

TABLE 8

SAMPLE CORRELATION="1:35=(146:37&0:20)1=2 =":25
Year X = 0 to 1 Y = 1 to 2 (X"E[X])2 (Y"E[Y])2 (X"E[X])(Y"E[Y])
1 0.65 0.32 54.27 0.14 2:78
2 39.42 0.26 986.46 0.19 "13:71
3 1.64 0.54 40.70 0.02 0:98
4 1.04 0.36 48.63 0.11 2:31
5 7.76 0.66 0.07 0.00 0:01
6 3.26 0.82 22.63 0.01 "0:57
7 6.22 1.72 3.24 1.05 "1:85
8 4.14 0.89 15.01 0.04 "0:74

Average 8.02 0.70 146.37 0.20 "1:35

Implication 5: Correlation of Development Factors

Mack developed a correlation test for adjacent columns of a
development factor triangle. If a year of high emergence tends to
follow one with low emergence, then the development method
should take this into account. Another correlation test would be
to calculate the sample correlation coefficients for all pairs of
columns in the triangle, and then see how many of these are
statistically significant, say at the 10% level. The sample cor-
relation for two columns is just the sample covariance divided
by the product of the sample standard deviations for the first n
elements of both columns, where n is the length of the shorter
column. The sample correlation calculation in Table 8 shows that
for the triangle in Table 1 above, the correlation of the first two
development factors is "25%.

Letting r denote the sample correlation coefficient, define
T = r[(n"2)=(1" r2)]1=2. A significance test for the correlation
coefficient can be made by considering T to be t-distributed with
n"2 degrees of freedom. If T is greater than the t-statistic for
0.9 at n"2 degrees of freedom, for instance, then r can be con-
sidered significant at the 10% level. (See Miller and Wichern [7,
p. 214].)



834 TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS

In this example, T ="0:63, which is not significant even at
the 10% level. This level of significance means that 10% of the
pairs of columns could show up as significant just by random
happenstance. A single correlation at this level would thus not
be a strong indicator of correlation within the triangle. If several
columns are correlated at the 10% level, however, there may be
a correlation problem.

To test this further, if m is the number of pairs of columns in
the triangle, the number that display significant correlation could
be considered a binomial variate in m and 0.1, which has stan-
dard deviation 0:3m1=2. Thus more than 0:1m+m1=2 significant
correlations (mean plus 3.33 standard deviations) would strongly
suggest there is actual correlation within the triangle. Here the
10% level and 3.33 standard deviations were chosen for illus-
tration. A single correlation that is significant at the 0.1% level
would also be indicative of a correlation problem, for example.

If there is such correlation, the product of development fac-
tors is not unbiased, but the relationship E[XY] = (E[X])(E[Y])+
Cov(X,Y) could be used to correct the product, where here X and
Y are development factors.

Implication 6: Significantly High or Low Diagonals

Mack’s high-low diagonal test counts the number of high and
low factors on each diagonal, and tests whether or not that is
likely to be due to chance. Here another high-low test is pro-
posed: use regression to see if any diagonal dummy variables are
significant. This test also provides alternatives in case the pure
chain ladder is rejected. An actuary will often have information
about changes in company operations that may have created a
diagonal effect. If so, this information could lead to choices of
modeling methods—e.g., whether to assume the effect is perma-
nent or temporary. The diagonal dummies can be used to measure
the effect in any case, but knowledge of company operations will
help determine how to use this effect. This is particularly so if
the effect occurs in the last few diagonals.
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A diagonal in the loss development triangle is defined by w+
d = constant. Suppose for some given data triangle, the diagonal
w+d = 7 has been estimated to be 10% higher than normal.
Then an adjusted BF estimate of a cell might be:

q(w,d) = 1:1f(d)h(w) if w+d = 7, and

q(w,d) = f(d)h(w) otherwise:

This is an example of a multiplicative diagonal effect. Additive
diagonal effects can also be estimated, using regression with di-
agonal dummies.

Age

Year 0 1 2 3

1 2 5 4
3 8 9
7 10
7

Incr. Cum. Cum. Cum. Dummy Dummy
Ages 1–3 Age 0 Age 1 Age 2 1 2

2 1 0 0 0 0
8 3 0 0 1 0
10 7 0 0 0 1
5 0 3 0 1 0
9 0 11 0 0 1
4 0 0 8 0 1

The small sample triangle of incremental losses here will be
used as an example of how to set up diagonal dummies in a chain
ladder model. The goal is to get a matrix of data in the form
needed to do a multiple regression. First the triangle (except the
first column) is strung out into a column vector. This is the de-
pendent variable, and forms the first column of the matrix above.
Then columns for the independent variables are added. The sec-
ond column is the cumulative losses at age 0 corresponding to
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the loss entries that are at age 1, and zero for the other loss en-
tries. The regression coefficient for this column would be the 0
to 1 cumulative-to-incremental factor. The next two columns are
cumulative losses at age 1 and age 2 corresponding to the age 2
and age 3 data in the first column. The last two columns are the
diagonal dummies. They pick out the elements of the last two
diagonals. The coefficients for these columns would be additive
adjustments for those diagonals, if significant.

This method of testing for diagonal effects is applicable to
many of the emergence models. In fact, if diagonal effects are
found to be significant in chain ladder models, they probably
are needed in the BF models of the same data. Thus tests of the
chain ladder vs. BF should be done with the diagonal elements
included. Some examples are given in the Appendix. Another
popular modeling approach is to consider diagonal effects to be a
measure of inflation (e.g., see Taylor [11]). In a payment triangle
this would be a natural interpretation, but a similar phenomenon
could occur in an incurred triangle. In this case the latest diagonal
effects might be projected ahead as estimates of future inflation.
An understanding of the aspects of company operations that drive
the diagonal effects would help address these issues.

This approach incorporates diagonal effects right into the
emergence model. For instance, an emergence model might be:

E[q(w,d+1) # data to w+d] = f(d)g(w+ d):
Here g(w+d) is a diagonal effect, but every diagonal has such a
factor. The usual interpretation is that g measures the cumulative
claims inflation applicable to that diagonal since the first accident
year. It would even be possible to add accident year effects h(w)
as well, e.g.,

E[q(w,d+1) # data to w+d] = f(d)h(w)g(w+d):
There are clearly too many parameters here, but a lot of them
might reasonably be set equal. For instance, the inflation might
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be the same for several years, or several accident years might
be at the same level. Note that since g is cumulative inflation, a
constant inflation level could be achieved by setting g(w+d) =
(1+ j)w+d. Then j is the only inflation parameter to be estimated.

The age and accident year parameters might also be able to be
written as trends rather than individual factors. If f(d) = (1+ i)d

and h(w) = h& (1+ k)w, then the model reduces to four parame-
ters h, i, j, and k. However it would be more usual to need more
parameters than this, possibly written as changing trends. That
is, i, j, and k might be constant for some periods, then change for
others. Note that if they are constant for all periods, the estimator
h(1+ i)d(1+ j)w+d(1+ k)w is h(1+ i+ j+ ij)d(1+ k+ j+ jk)w,
which eliminates the parameter j, as i becomes i+ j+ ij and
k becomes k+ j+ jk.

It might be better to start without the accident year trend and
keep the calendar year trend, especially if the triangle has been
normalized for accident year changes. The model for the (w,d)
cell would then be h(1+ i)d(i+ j)w+d, which has just three pa-
rameters.

As with the BF model, the parameters of models with diag-
onal trends can be estimated iteratively. With reasonable start-
ing values, fix two of the three sets of parameters, and fit the
third by least squares, and rotate until convergence is reached.
Alternatively, a non-linear search procedure could be utilized.
As an example of the simplest of these approaches, modeling
E[q(w,d+1) # data to w+d] as just 6,756(0:7785)d gives an ad-
justed sum of squares of 57,527 for the reinsurance triangle
above. This is not the best fitting model, but it is better than
some and has only two parameters h= 6,756 and i="0:2215.
Calendar year trend accounts for inflation in the time between

loss occurrence and loss settlement, which many actuaries be-
lieve has an impact on ultimate losses. Whether it is influencing
a given loss triangle can be investigated by testing for diagonal
effects.
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CONCLUSION

The first test that will quickly indicate the general type
of emergence pattern faced is the test of significance of the
cumulative-to-incremental factors at each age. This is equivalent
to testing if the cumulative-to-cumulative factors are significantly
different from unity. When this test fails, the future emergence is
not proportional to past emergence. It may be a constant amount,
or it may be proportional to ultimate losses, as in the BF pattern.

When this test is passed, the addition of an additive compo-
nent may give an even better fit. Even when the test is failed,
including an additive term may make the factor significant. In
either case the BF emergence pattern may still produce a better
fit. Reduced parameter BF models could also give better perfor-
mance, as they will be less responsive to random variation. If an
additive component is significant, then converting the triangle to
on-level loss ratios may improve the forecasts.

Tests of stability and for diagonal effects may lead to further
improvements in the model. However, if the emergence is stable,
excluding data by using only the last n diagonals will lead to
higher estimation errors on average.

An actuary might advise: “If the chain ladder doesn’t work,
try Bornhuetter-Ferguson.” This is a reasonable conclusion, with
the interpretation of “doesn’t work” to mean “fails the assump-
tions of least-squares optimality,” and “try” to mean “test the
underlying assumptions of.”
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EXHIBIT 1

COMPARATIVE FITS

Chain Ladder
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 6,101 4,705 2,846 1,912 1,350 656 580 296 172
% Error 87% 78% 217% 10% "49% "64% "3% 448% 0%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 129 2,438 1,408 1,728 1,374 632 499 257
% Error "97% 119% "73% "45% "24% "714% "26% "52%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,151 5,116 3,619 2,614 1,868 900 736
% Error "26% 5% 60% 1% "46% 39% 22%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 6,883 6,574 4,113 3,444 2,336 1,057
% Error 17% 56% "25% 60% "12% 7%
Actual 8,473 6,271 6,333 3,786 225
Fit 1,329 5,442 4,131 3,591 2,588
% Error "84% "13% "35% "5% 1,050%
Actual 4,932 5,257 1,233 2,917
Fit 1,842 3,667 3,053 2,095
% Error "63% "30% 148% "28%
Actual 3,463 6,926 1,368
Fit 678 2,287 2,856
% Error "80% "67% 109%
Actual 5,596 6,165
Fit 1,644 3,953
% Error "71% "36%
Actual 2,262
Fit 3,814
% Error 69%

CC
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 4,364 3,746 2,287 1,631 1,082 336 188 59 17
% Error 34% 42% 155% "6% "59% "82% "69% 9% "90%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 4,364 3,746 2,287 1,631 1,082 336 188 59
% Error 4% 237% "57% "48% "40% "426% "72% "89%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,364 3,746 2,287 1,631 1,082 336 188
% Error "22% "23% 1% "37% "69% "48% "69%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 4,364 3,746 2,287 1,631 1,082 336
% Error "26% "11% "58% "24% "59% "66%
Actual 8,473 6,271 6,333 3,786 225
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EXHIBIT 1

(CONTINUED)

Fit 4,364 3,746 2,287 1,631 1,082
% Error "48% "40% "64% "57% 381%
Actual 4,932 5,257 1,233 2,917
Fit 4,364 3,746 2,287 1,631
% Error "12% "29% 85% "44%
Actual 3,463 6,926 1,368
Fit 4,364 3,746 2,287
% Error 26% "46% 67%
Actual 5,596 6,165
Fit 4,364 3,746
% Error "22% "39%
Actual 2,262
Fit 4,364
% Error 93%

BF-CC
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 3,411 3,411 2,373 1,824 1,275 593 593 252 252
% Error 5% 29% 164% 5% "52% "68% "1% 367% 47%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 3,411 3,411 2,373 1,824 1,275 593 593 252
% Error "18% 207% "55% "41% "30% "676% "12% "53%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,821 4,821 3,354 2,578 1,803 838 838
% Error "14% "1% 48% "1% "48% 29% 39%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 5,956 5,956 4,143 3,185 2,227 1,036
% Error 1% 41% "25% 48% "16% 5%
Actual 8,473 6,271 6,333 3,786 225
Fit 7,090 7,090 4,932 3,792 2,651
% Error "16% 13% "22% 0% 1,078%
Actual 4,932 5,257 1,233 2,917
Fit 4,600 4,600 3,200 2,460
% Error "7% "12% 160% "16%
Actual 3,463 6,926 1,368
Fit 4,600 4,600 3,200
% Error 33% "34% 134%
Actual 5,596 6,165
Fit 4,600 4,600
% Error "18% "25%
Actual 2,262
Fit 4,600
% Error 103%
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EXHIBIT 1

(CONTINUED)

Additive with Multiplicative Diagonals and Accident Years
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 3,185 3,185 2,148 2,730 1,995 660 660 660 477
% Error "2% 21% 139% 57% "24% "64% 10% 1,122% 177%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 3,185 3,185 3,465 2,730 1,995 660 660 477
% Error "24% 187% "34% "12% 10% "741% "2% "11%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,036 6,508 4,390 3,460 2,529 836 604
% Error "28% 33% 94% 33% "27% 29% 0%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 6,508 6,508 4,390 3,460 2,529 604
% Error 10% 55% "20% 60% "5% "39%
Actual 8,473 6,271 6,333 3,786 225
Fit 5,136 5,136 3,465 2,730 1,442
% Error "39% "18% "45% "28% 541%
Actual 4,932 5,257 1,233 2,917
Fit 5,136 5,136 3,465 1,972
% Error 4% "2% 181% "32%
Actual 3,463 6,926 1,368
Fit 5,136 5,136 2,503
% Error 48% "26% 83%
Actual 5,596 6,165
Fit 5,136 3,710
% Error "8% "40%
Actual 2,262
Fit 3,710
% Error 64%
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EXHIBIT 2

SUMMARY OF PARAMETERS

0 1 2 3 4 5 6 7 8 9
BF f(d) 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009
BF h(w) 15,982 16,501 23,562 27,269 31,587 20,081 19,032 25,155 13,219 19,413
CC f(d) 0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008
Additive
Chain

— 4,849.3 4,682.5 3,267.1 2,717.7 2,164.2 839.5 625.0 294.5 172.0

BF-CC
f(d)

— 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017

BF-CC
h(w)

14,829 14,829 20,962 25,895 30,828 20,000 20,000 20,000 20,000 20,000

EXHIBIT 3

2ND TO 3RD FACTORS FROM LARGE TRIANGLE

2nd to 3rd' 1.81 1.60 1.41 2.29 2.25 1.38
1.36 1.07 1.60 0.89 1.42 0.99 1.01
1.03 1.02 1.35 1.21 1.28 1.51 1.17
2.00 0.98 1.21 1.24 1.79 1.32 1.48
1.51 1.01 1.51 1.06 1.60 1.10 1.11
2.20 2.00 1.50 2.20 1.19 1.28 1.52
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APPENDIX

DIAGONAL EFFECTS IN BF MODELS

As an example, a test for diagonal effects in the CCmodel was
made in the reinsurance triangle as follows. The CC is the same
as the additive chain ladder, so it can be expressed as a linear
model. This can be estimated via a single multiple regression
in which the dependent variable is the entire list of incremental
losses for ages 1 to 9 and all accident years—45 items in all.
That is, the triangle beyond age 0 is strung out into a single
vector. Age and diagonal dummy independent variables can be
established in a design matrix to pick out the right elements of
the parameter vector of age and diagonal terms to estimate each
incremental loss cell. For the additive chain ladder, the column
dummy variables will be 1 or 0, as opposed to cumulative losses
or 0 in the chain ladder example. Then the coefficient of that
column will be the additive element for the given age.

The later columns of the design matrix would be diagonal
dummies, as in the chain ladder example. By doing a multiple
linear regression for the incremental loss column in terms of
the age and diagonal dummies, additive terms by age and by
diagonal will be estimated. The regression can tell which terms
are statistically significant, and the others can be dropped from
the specification.

With the reinsurance triangle tested above, the first three di-
agonals turned out to be lower than the others, as was the last
diagonal. Also, the first two ages were not significantly different
from each other, nor were the last four. This produced a model
with five age parameters and two diagonal parameters—one for
the first three diagonals combined, and one for the last diagonal.
The parameters are shown in Table 9.

The sum of squared residuals for this model is 49,673.4 when
adjusted for seven parameters used. This is considerably better
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TABLE 9

TERMS IN ADDITIVE CHAIN LADDER WITH DIAGONAL EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1–3 Diag 9
5,569.0 5,569.0 3,739.2 2,881.8 2,361.1 993.3 993.3 993.3 993.3 "2,319:9 "984:7

than the model without diagonal effects. The multiple regression
found the diagonals to be statistically significant and adding them
to the model improved the fit.

A problem with the diagonal analysis is how to use them
in forecasting. One reason for diagonal effects is a change in
company practice, particularly in the claims handling process.
If the age effects are considered the dominant influence with
occasional distortion by diagonal effects, then including diagonal
dummy variables will give better estimates for the underlying age
terms. Then these, but not the diagonal effects, would be used in
forecasting.

Having identified the significant diagonal effects through lin-
ear regression, it may be more reasonable to convert them to
multiplicative effects through non-linear regression. The model
could be of the form:

q(w,d) = f(d)g(w+d),

where f(d) is the additive age term for age d, and g(w+ d) is
the factor for the w+dth diagonal. Again this can be estimated
iteratively by fixing the f’s to estimate the g’s by linear regres-
sion, then fixing those g’s to estimate the next iteration of f’s,
until convergence is reached. The previous model was refit with
the diagonals as factors with the result in Table 10. This had a
slightly better adjusted sum of squared residuals of 49,034.8.

Diagonal factors can be used in conjunction with accident
year factors as in:

q(w,d) = f(d)g(w+d)h(w):



TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS 847

TABLE 10

ADDITIVE CHAIN LADDER WITH MULTIPLICATIVE DIAGONAL
EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1–3 Diag 9
5,692.3 5,692.3 3,823.0 2,816.1 2,416.7 672.1 672.1 672.1 672.1 .5598 .6684

TABLE 11

ADDITIVE CHAIN LADDER WITH MULTIPLICATIVE DIAGONAL
& AY EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1-3 Diag 9 AY 3-4
5,135.6 5,135.6 3,464.7 2,730.1 1,995.4 660.1 660.1 660.1 660.1 .6201 .7225 1.2672

As an example, a factor was added to the above model to repre-
sent accident years 3 and 4, and the 4th age term was forced to
be the average of the 3rd and 5th. The result is in Table 11.

The adjusted sum of squared residuals came down to
44,700.9, which is considerably better than the previous best-
fitting model, and almost twice as good as in the original BF
model, which in turn was almost twice as good as the chain lad-
der. It appears that accident year effects and diagonal effects are
significant in this data. The fit is shown as the last section of
Exhibit 1. The numerous examples fit to this data were for the
sake of illustration. Some models of the types discussed may still
fit better than the particular ones shown here.
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This note presents errata to material in Venter’s paper on “Testing the Assumptions of Age-to-
Age Factors.” Items printed in red indicate an update, clarification, or change. 

1. Errata 
 

The following passage of Venter Factors (page 833) should be amended from: 
 

Letting r denote the sample correlation coefficient, define T = r[(n – 2) / (1 – 
r2)]1/2. A significance test for the correlation coefficient can be made by 
considering T to be t-distributed with n – 2 degrees of freedom. If T is greater 
than the t-statistic for 0.9 at n – 2 degrees of freedom, for instance, then r can be 
considered significant at the 10% level. (See Miller and Wichern [7, p. 214].) 

 
to: 

 
Letting r denote the sample correlation coefficient, define T = r[(n – 2) / (1 – 
r2)]1/2. Given correlations can be positive or negative, a two-tailed significance 
test for the correlation coefficient can be made by considering T to be t-
distributed with n – 2 degrees of freedom.  If |T| is greater than the t-statistic for 
0.95 at n – 2 degrees of freedom, for instance, then r can be considered significant 
at the 10% level. (See Miller and Wichern [7, p. 214].) 

 

 

 
1 This note was prepared by the Exam 7 Syllabus Committee. 



Obtaining Predictive Distributions
for Reserves Which Incorporate

Expert Opinion
by R. J. Verrall

ABSTRACT

This paper shows how expert opinion can be inserted into
a stochastic framework for loss reserving. The reserving
methods used are the chain-ladder and Bornhuet-
ter-Ferguson, and the stochastic framework follows Eng-
land and Verrall [8]. Although stochastic models have been
studied, there are two main obstacles to their more frequent
use in practice: ease of implementation and adaptability to
user needs. This paper attempts to address these obstacles
by utilizing Bayesian methods, and describing in some de-
tail the implementation, using freely available software and
programs supplied in the Appendix.
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1. Introduction

There has been a lot of attention given to sto-
chastic reserving methods in the actuarial liter-
ature over recent years. Useful summaries can
be found in England and Verrall [8] and Tay-
lor [17]. The reader is strongly recommended
to read England and Verrall [8], which contains
more details on the basic models, before reading
this paper.
There have been many useful things that have

resulted from the recent papers on stochastic loss
reserving: it is now possible to use a variety of
methods to obtain reserve estimates, prediction
intervals, predictive distributions, and so on. It
is possible to use these methods for assessing
the reserving risk, and for modeling a portfolio,
line of business, or a whole company in a dy-
namic financial analysis. In short, the research
published in recent years has been very success-
ful in enhancing the understanding of loss re-
serving methods. This has been done by estab-
lishing stochastic approaches to models that are
commonly used for loss reserving–for exam-
ple, the chain-ladder technique, the Hoerl curve,
and other parametric and non-parametric mod-
els. The stochastic approaches have added fur-
ther models to the range of possible approaches.
To take just one example, England and Verrall
[7] showed how a nonparametric approach can
be used to define a complete spectrum of mod-
els, with the chain-ladder technique at one end
and the Hoerl curve at the other end.
In practical terms, it appears that the stochastic

approaches that have found most popularity are
those that are the simplest to implement. To pick
out two examples, both Mack’s model ([11]) and
the bootstrap ([6] and [5]) are straightforward to
implement in a spreadsheet. In contrast, using the
full statistical model requires the use of statis-
tical software, with some careful programming.
It is not surprising, therefore, that a practitioner
requiring prediction intervals as well as reserve
estimates, or simply wanting to investigate the

use of a stochastic approach, should choose the
methods that are simplest to implement.
One aspect of reserving that has not, so far,

received a great deal of attention in the litera-
ture is the question of intervention in the pro-
cess by the actuary. In other words, the stochas-
tic models have largely concentrated on provid-
ing a framework for the basic, standard methods.
When these are used in practice, it is common to
apply some expert knowledge or opinion to ad-
just the results before they are used. Examples
of situations when intervention may be desirable
is when there has been a change in the payment
pattern due to a change in company policy, or
where legislatures have enacted benefit limita-
tions that restrict the potential for loss develop-
ment and require an adjustment to historical de-
velopment factors.
While it is possible to intervene in some mod-

els, the tendency is for this intervention to disrupt
the assumptions made in the stochastic frame-
work. For example, it is possible to change one
or more of the residuals before applying a boot-
strapping procedure, if the observed residuals ap-
pear to be out of line with what might be ex-
pected. But if this is done, the validity of the
stochastic assumptions may be compromised. To
take another example, consider the chain-ladder
technique. This method involves the estimation
of development factors, but it is often the case
that these are adjusted before being applied to
obtain reserve estimates. If this is done, the esti-
mates from the stochastic model are being aban-
doned, and it is not clear what effect this might
have on the prediction errors. For example, it is
possible to calculate estimation errors for any pa-
rameter estimated in a stochastic model, but what
estimation error should be used for a parameter
that is simply inserted? The only way to address
this properly is to use the Bayesian approach,
and this provides an important motivation for the
ideas discussed in this paper.
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A second area where expert knowledge is ap-
plied is when the Bornhuetter-Ferguson [1] tech-
nique is used. This method uses the develop-
ment factors from the chain-ladder technique, but
it does not apply these to the latest cumulative
losses to estimate the outstanding losses. Instead,
an estimate is first procured separately, using
background knowledge about the claims. This is
then used with the development factors to obtain
reserve estimates. Although not originally for-
mulated using a Bayesian philosophy, the Born-
huetter-Ferguson technique is quite clearly suited
to this approach because of the basic idea of
what it is trying to do: incorporate expert opin-
ion. Thus, we have a second important motiva-
tion for considering the use of Bayesian reserv-
ing methods. These are two very important ex-
amples of reserving approaches commonly used,
which are best modeled using Bayesian methods.
Among previous papers to discuss Bayesian loss
reserving, we would mention de Alba [4] and
Ntzoufras and Dellaportas [13].
One important property of Bayesian methods

that makes them suitable for use with a stochas-
tic reserving model is that they allow us to incor-
porate expert knowledge in a natural way, over-
coming any difficulties about the effect on the
assumptions made. In this paper, we consider the
use of Bayesian models for loss reserving in or-
der to incorporate expert opinion into the pre-
diction of reserves. We concentrate on two areas
as mentioned above: the Bornhuetter-Ferguson
technique and the insertion of prior knowledge
about individual development factors in the
chain-ladder technique. The possibility of includ-
ing expert knowledge is an important property
of Bayesian models, but there is another equally
important point: the ease with which they can
be implemented. This is due to modern devel-
opments in Bayesian methodology based on so-
called “Markov chain Monte Carlo” (MCMC)
methods. It is difficult to emphasize enough the
effect these methods have had on Bayesian statis-

tics, but the books by Congdon ([3] and [2]) give
some idea of the scope of the applications for
which they have been used. The crucial aspect
as far as this paper is concerned is that they are
based on simulation, and therefore have some
similarities with bootstrapping methods that, as
was mentioned above, have gained in popularity
for loss reserving.
It is also important that easy-to-use software

is now available that allows us to implement the
Bayesian models for loss reserving. While it is
straightforward to define a Bayesian model, it is
not always so easy to find the required posterior
distributions for the parameters and predictive
distributions for future observations. However,
this has been made much easier in recent years by
the development of MCMC methods, and by the
software package winBUGS [16]. This software
package is freely available from http://www.mrc-
bsu.cam.ac.uk/bugs, and the programs for car-
rying out the Bayesian analysis for the models
described in this paper are contained in the Ap-
pendix. Section 6.1 provides instructions on
downloading this software. An excellent refer-
ence for actuarial applications of MCMC meth-
ods using winBUGS is Scollnik [15].
The basic idea behind MCMC methods is to

simulate the posterior distribution by breaking
the simulation process down into a number of
simulations that are as easy to carry out as pos-
sible. This overcomes a common problem with
Bayesian methods–that it can be difficult to de-
rive the posterior distribution, which may in
many cases be multidimensional. Instead of try-
ing to simulate all the parameters at once, MCMC
methods use the conditional distribution of each
parameter, given all the others. In this way, the
simulation is reduced to a univariate distribution,
which is much easier to deal with. A Markov
chain is formed because each parameter is con-
sidered in turn, and it is a simulation-based
method: hence the term Markov chain Monte
Carlo. For the readers for whom this is the first
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time they have encountered MCMC methods, it
is suggested that they simply accept that they are
a neat way to get the posterior distributions for
Bayesian models and continue reading the paper.
If they like the ideas and would like to find out
more, Scollnik [15] gives a much fuller account
than is possible here, and the reader is advised
to spend time working through some simpler ex-
amples with the help of the Scollnik paper.
This paper is set out as follows. In Section 2,

we describe the notation and basic methods used,
and in Section 3 we summarize the stochastic
models used in the context of the chain-ladder
technique. Sections 4 and 5 describe the Bayesian
models for incorporating prior information into
the reserving process. In Section 6 we describe
in some detail how to implement the Bayesian
models so that the reader can investigate the use
of these models, using the programs given in the
Appendix. In Section 7 we state some conclu-
sions.

2. Notation and basic methods

To begin with, we define the notation used in
this paper, and in doing so we briefly summarize
the chain-ladder technique and the Bornhuetter-
Ferguson method.
Although the methods can also be applied to

other shapes of data, in order that the notation
should not get too complicated we make the as-
sumption that the data is in the shape of a trian-
gle. Thus, without loss of generality, we assume
that the data consist of a triangle of incremental
losses:

C11 C12 ¢ ¢ ¢ C1n

C21 ¢ ¢ ¢ C2,n¡1
...

Cn1

:

This can also be written as fCij : j = 1, : : : ,n¡
i+1; i = 1, : : : ,ng, where n is the number of ac-
cident years. Cij is used to denote incremental

losses, and Dij is used to denote the cumulative
losses, defined by:

Dij =
jX
k=1

Cik: (2.1)

One of the methods considered in this paper is
the chain-ladder technique, and the development
factors f¸j : j = 2, : : : ,ng. The usual estimates of
the development factors from the standard chain-
ladder technique are

ˆ̧
j =

Pn¡j+1
i=1 DijPn¡j+1

i=1 Di,j¡1
: (2.2)

Note that we only consider forecasting losses
up to the latest development year (n) so far ob-
served, and no tail factors are applied. It would
be possible to extend this to allow a tail factor,
using the same methods, but no specific model-
ing is carried out in this paper of the shape of
the run-off beyond the latest development year.
Thus, we refer to cumulative losses up to de-
velopment year n, Din =

Pn
k=1Cik, as “ultimate

losses.” For the chain-ladder technique, the es-
timate of outstanding losses is Di,n¡i+1( ˆ̧ n¡i+2
¢ ˆ̧n¡i+3 : : : ˆ̧ n¡ 1).
The first case we consider is when these de-

velopment factor estimates are not used for all
rows. In other words, we consider the more gen-
eral case where there is a separate development
factor in each row, ¸i,j . The standard chain-ladder
model sets ¸i,j = ¸j , for i = 1,2, : : : ,n¡ j+1;
j = 2,3, : : : ,n, but we consider allowing the more
general case where development factors can
change from row to row. Section 4 describes
the Bayesian approach to this, allowing expert
knowledge to be used to set prior distributions
for these parameters. In this way, we will be able
to intervene in the estimation of the development
factors, or else simply leave them for the standard
chain-ladder model to estimate.
In Section 5 we consider the Bornhuetter-

Ferguson method. This method uses the develop-
ment factors from the chain-ladder technique, but
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it incorporates knowledge about the “level” of
each row by replacing the chain-ladder estimate
of outstanding claims, Di,n¡i+1( ˆ̧n¡i+2 ˆ̧n¡i+3 : : :
ˆ̧
n¡ 1) by Mi(1=(

ˆ̧
n¡i+2 ˆ̧ n¡i+3 : : : ˆ̧n))( ˆ̧ n¡i+2

¢ ˆ̧n¡i+3 : : : ˆ̧n¡ 1). Here, Mi denotes a value for
the ultimate losses for accident year i that is ob-
tained using expert knowledge about the losses
(for example, taken from the premium calcula-
tion). Thus, Mi(1=(

ˆ̧
n¡i+2 ˆ̧n¡i+3 : : : ˆ̧ n)) replaces

the latest cumulative losses for accident year i, to
which the usual chain-ladder parameters are ap-
plied to obtain the estimate of outstanding losses.
From this, it can be seen that the difference be-
tween the Bornhuetter-Ferguson method and the
chain-ladder technique is that the Bornhuetter-
Ferguson technique uses an external estimate of
the “level” of each row in the triangle, while the
chain-ladder technique uses the data in that row
itself. The Bornhuetter-Ferguson method can be
formulated using a Bayesian approach, with the
information about the external estimates for each
row being used to form the prior distributions, as
in Section 5.
This section has defined the notation used in

the paper, and outlined the basic reserving meth-
ods that will be considered using stochastic ap-
proaches. In order to do this, a brief introduction
to the stochastic models is needed, and this is
given in Section 3.

3. Stochastic models for the
chain-ladder technique

This section gives a brief summary of stochas-
tic models that are related to the chain-ladder
technique. A much fuller account may be found
in England and Verrall [8], and in that paper’s
references and discussion. We consider the chain-
ladder technique and note that it is possible to ap-
ply Bayesian methods in a similar way to other
models.
There are a number of different approaches

that can be taken to the chain-ladder technique,
with various positivity constraints, all of which

give the same reserve estimates as the chain-
ladder technique. The connections between the
chain-ladder technique and various stochastic
models have been explored in a number of pre-
vious papers. For example, Mack [11] takes a
non-parametric approach and specifies only the
first two moments for the cumulative losses. In
Mack’s model the conditional mean and variance
of Dij jDi,j¡1,¸j ,¾2j are ¸jDi,j¡1 and ¾2j Di,j¡1,
respectively. Estimates of all the parameters are
derived, and the properties of the model are ex-
amined. As was stated in the introduction, one
of the advantages of this approach is that the pa-
rameter estimates and prediction errors can be
obtained using a spreadsheet, without having re-
course to a statistical package or any complex
programming. The consequence of not specify-
ing a distribution for the data is that there is no
predictive distribution. Also, there are separate
parameters in the variance that must also be esti-
mated, separately from the estimation of the de-
velopment factors.
As a separate stream of research, generalized

linear models have also been considered. Ren-
shaw and Verrall [14] used an approach based
on generalized linear models [12] and examined
the over-dispersed Poisson model for incremen-
tal losses:

Cij j c,®,¯,'» independent over-dispersed

Poisson, with mean, mij , where log(mij) =
c+®i+¯j , and ®1 = ¯1 = 0:

The term “over-dispersed” requires some
explanation. It is used here in connection with
the Poisson distribution, and it means that if X »
Poisson(¹), then Y = 'X follows the over-dis-
persed Poisson distribution with E(Y) = '¹ and
V(Y) = '2E(X) = '2¹. ' is usually greater than
1–hence the term “over-dispersed”–but this is
not a necessity. It can also be used for other dis-
tributions, and we make use of it for the negative
binomial distribution. As with the Poisson distri-
bution, the over-dispersed negative binomial dis-
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tribution is defined such that if X » negative bi-
nomial then Y = 'X follows the over-dispersed
negative binomial distribution. Furthermore, a
quasi-likelihood approach is taken so that the
loss data are not restricted to the positive inte-
gers.
It can be seen that this formulation has some

similarities with the model of Kremer [9], but it
has a number of advantages. It does not necessar-
ily break down if there are negative incremental
loss values, it gives the same reserve estimates as
the chain-ladder technique, and it has been found
to be more stable than the log-normal model of
Kremer. For these reasons, we concentrate on it
in this paper. There are a number of ways of
writing this model, which are useful in different
contexts (note that the reserve estimates are un-
affected by the way the model is written). In a
strict sense, the formulation requires that the data
are positive–otherwise it is more difficult to jus-
tify and interpret the inferences made from the
data. However, in a purely practical context, it is
useful to note that the estimation does not break
down in the presence of some negative values.
Another way of writing the over-dispersed

Poisson model for the chain-ladder technique is
as follows:

Cij j x,y,'» independent over-dispersed
Poisson, with mean xiyj , and

Xn

k=1
yk = 1:

Here x= fx1,x2, : : : ,xng and y = fy1,y2, : : : ,yng
are parameter vectors relating to the rows (acci-
dent years) and columns (development years), re-
spectively, of the run-off triangle. The parameter
xi = E[Din], and so represents expected ultimate
cumulative losses (up to the latest development
year so far observed, n) for the ith accident year.
The column parameters, yj , can be interpreted as
the proportions of ultimate losses that emerge in
each development year.
Although the over-dispersed Poisson models

give the same reserve estimates as the chain-
ladder technique (as long as the row and col-

umn sums of incremental claims are positive),
the connection with the chain-ladder technique is
not immediately apparent from this formulation
of the model. For this reason, the negative bino-
mial model was developed by Verrall [20], build-
ing on the over-dispersed Poisson model. Verrall
showed that the same predictive distribution can
be obtained from a negative binomial model (also
with the inclusion of an over-dispersion param-
eter). In this recursive approach, the incremental
claims have an over-dispersed negative binomial
distribution, with mean and variance

(¸j ¡ 1)Di,j¡1 and '¸j(¸j ¡ 1)Di,j¡1,
respectively.

Again, the reserve estimates are the same as
the chain-ladder technique, and the same posi-
tivity constraints apply as for the over-dispersed
Poisson model. It is clear from this that the col-
umn sums must be positive, since a negative sum
would result in a development factor less than 1
(¸j < 1), causing the variance to be negative. It
is important to note that exactly the same pre-
dictive distribution can be obtained from either
the Poisson or negative binomial models. Verrall
[20] also argued that the model could be speci-
fied either for incremental or cumulative losses,
with no difference in the results. The negative bi-
nomial model has the advantage that the form of
the mean is exactly the same as that which nat-
urally arises from the chain-ladder technique. In
fact, by adding the previous cumulative losses,
an equivalent model for Dij jDi,j¡1,¸j ,' has an
over-dispersed negative binomial distribution,
with mean and variance

¸jDi,j¡1 and '¸j(¸j ¡ 1)Di,j¡1, respectively.

Here the connection with the chain-ladder
technique is immediately apparent because of the
format of the mean.
Another model, which is not considered fur-

ther in this paper, is closely connected with
Mack’s model, and deals with the problem of
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negative incremental claims. This model replaces
the negative binomial by a normal distribution,
whose mean is unchanged, but whose variance
is altered to accommodate the case when ¸j < 1.
Preserving as much of ¸j(¸j ¡ 1)Di,j¡1 as pos-
sible, the variance is still proportional to Di,j¡1,
with the constant of proportionality depending
on j, but a normal approximation is used for
the distribution of incremental claims. Thus, Cij j
Di,j¡1,¸j ,'j is approximately normally distribut-
ed, with mean and variance

Di,j¡1(¸j ¡ 1) and 'jDi,j¡1, respectively,

or Dij jDi,j¡1,¸j ,'j is approximately normally
distributed, with mean and variance

¸jDi,j¡1 and 'jDi,j¡1, respectively.

As for Mack’s model, there is now another set
of parameters in the variance that needs to be
estimated.
For each of these models, the mean square er-

ror of prediction can be obtained, allowing the
construction of prediction intervals, for exam-
ple. Loss reserving is a predictive process: given
the data, we try to predict future loss emergence.
These models apply to all the data, both observed
and future observations. The estimation is based
on the observed data, and we require predictive
distributions for the future observation.
We use the expected value of the distribution

of future losses as the prediction. When con-
sidering variability, attention is focused on the
root mean squared error of prediction (RMSEP),
also known as the prediction error. To explain
what this is, we consider, for simplicity, a random
variable, y, and a predicted value ŷ. The mean
squared error of prediction (MSEP) is the ex-
pected square difference between the actual out-
come and the predicted value, E[(y¡ ŷ)2], and
can be written as follows:

E[(y¡ ŷ)2] = E[((y¡E[y])¡ (ŷ¡E[y]))2]:
(3.1)

In order to obtain an estimate of this, it is nec-
essary to plug in ŷ instead of y in the final ex-
pectation. Then the MSEP can be expanded as
follows:

E[(y¡ ŷ)2]¼ E[(y¡E[y])2]
¡ 2E[(y¡E[y])(ŷ¡E[ŷ])]
+E[(ŷ¡E[ŷ])2]: (3.2)

Assuming future observations are independent of
past observations, the middle term is zero, and

E[(y¡ ŷ)2]¼ E[(y¡E[y])2]+E[(ŷ¡E[ŷ])2]:
(3.3)

In words, this is

prediction variance= process variance
+ estimation variance.

It is important to understand the difference be-
tween the prediction error and the standard error.
Strictly, the standard error is the square root of
the estimation variance. The prediction error is
concerned with the variability of a forecast, tak-
ing account of uncertainty in parameter estima-
tion and also of the inherent variability in the
data being forecast. Further details of this can be
found in England and Verrall [8].
Using non-Bayesian methods, these two com-

ponents–the process variance and the estima-
tion variance–are estimated separately, and Sec-
tion 7 of England and Verrall [8] goes into detail
about this. The direct calculation of these quan-
tities can be a tricky process, and this is one of
the reasons for the popularity of the bootstrap.
The bootstrap uses a fairly simple simulation ap-
proach to obtain simulated estimates of the pre-
diction variance in a spreadsheet. Fortunately, the
same advantages apply to the Bayesian methods:
the full predictive distribution can be found us-
ing simulation methods, and the RMSEP can be
obtained directly by calculating its standard de-
viation. In addition, it is preferable to have the
full predictive distribution, rather than just the
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first two moments, which is another advantage
of Bayesian methods.
The purpose of this paper is to show how ex-

pert opinion, from sources other than the spe-
cific data set under consideration, can be incor-
porated into the predictive distributions of the re-
serves. We use the approach of generalized lin-
ear models outlined in this section, concentrating
on the over-dispersed Poisson and negative bino-
mial models. We begin with considering how it is
possible to intervene in the development factors
for the chain-ladder technique in Section 4, and
then consider the Bornhuetter-Ferguson method
in Section 5.

4. Incorporating expert opinion
about the development factors

In this section, the approach of Verrall and
England [21] is used to show how to specify a
Bayesian model that allows the practitioner to in-
tervene in the estimation of the development fac-
tors for the chain-ladder technique. There are a
number of ways in which this could be used, and
we describe some possibilities in this section. It
is expected that a practitioner would be able to
extend these to cover situations that, although not
specifically covered here, would also be useful.
The cases considered here are the intervention in
a development factor in a particular row, and the
choice of how many years of data to use in the
estimation. The reasons for intervening in these
ways could be that there is information that the
settlement pattern has changed, making it inap-
propriate to use the same development factor for
each row.
For the first case, what may happen in prac-

tice is that a development factor in a particular
row is simply changed. Thus, although the same
development parameters (and hence run-off pat-
tern) are usually applied for all accident years, if
there is some exogenous information that indi-
cates that this is not appropriate, the practitioner

may decide to apply a different development fac-
tor (or set of factors) in some, or all, rows.
In the second case, it is common to look at, say,

five-year volume weighted averages in calculat-
ing the development factors, rather than using all
the available data in the triangle. The Bayesian
methods make this particularly easy to do and
are flexible enough to allow many possibilities.
We use the negative binomial model described

in Section 3, with different development factors
in each row. This is the model for the data, and
we then specify prior distributions for the devel-
opment factors. In this way, we can choose prior
distributions that reproduce the chain-ladder re-
sults, or we can intervene and use prior distribu-
tions based on external knowledge. The model
for incremental claims, Cij jDi,j¡1,¸i,j ,', is an
over-dispersed negative binomial distribution,
with mean and variance

(¸i,j ¡ 1)Di,j¡1 and '¸i,j(¸i,j ¡ 1)Di,j¡1, respectively.

We next need to define prior distributions for
the development factors, ¸i,j . It is possible to set
some of these equal to each other (within each
column) in order to revert to the standard chain-
ladder model. This is done by setting

¸i,j = ¸j for i = 1,2, : : : ,n¡ j+1;
j = 2,3, : : : ,n

and defining vague prior distributions for ¸j
(j = 2,3, : : : ,n). This was the approach taken in
Section 8.4 of England and Verrall [8] and is
very similar to that taken by de Alba [4]. This
can provide a very straightforward method to ob-
tain prediction errors and predictive distributions
for the chain-ladder technique.
However, we really want to move away from

the basic chain-ladder technique, and construct
Bayesian prior distributions that encompass the
expert opinion about the development parame-
ters. Suppose, for example, that we have a 10£
10 triangle. We consider the two possibilities for
incorporating expert knowledge described above.
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To illustrate the first case, suppose that there
is information that implies that the second de-
velopment factor (from Column 2 to Column 3)
should be given the value 1.5, for rows 8, 9, and
10, and that there is no indication that the other
parameters should be treated differently from the
standard chain-ladder technique. An appropriate
way to treat this would be to specify

¸i,j = ¸j for i = 1,2, : : : ,n¡ j+1;
j = 2,4,5, : : : ,n

¸i,3 = ¸3 for i = 1,2, : : : ,7

¸8,3 = ¸9,3 = ¸10,3:

The means and variances of the prior distribu-
tions of the parameters are chosen to reflect the
expert opinion:
¸8,3 has a prior distribution with mean 1.5 and

varianceW, whereW is set to reflect the strength
of the prior information.
¸j have prior distributions with large variances.
For the second case, we divide the data into

two parts using the prior distributions. To do this,
we set

¸i,j = ¸j for i= n¡ j¡ 3,n¡ j¡2,n¡ j¡ 1,
n¡ j,n¡ j+1

¸i,j = ¸
¤
j for i= 1,2, : : : ,n¡ j¡4

and give both ¸j and ¸
¤
j prior distributions with

large variances so that they are estimated from
the data. Adjustments to the specification are
made in the later development years, where there
are less than five rows. For these columns there
is just one development parameter, ¸j .
The specific form of the prior distribution

(gamma, log-normal, etc.) is usually chosen so
that the numerical procedures in winBUGS work
as well as possible.
These models are used as illustrations of

the possibilities for incorporating expert knowl-
edge about the development pattern, but it is (of
course) possible to specify many other prior dis-
tributions. In the Appendix, the winBUGS code
is supplied, which can be cut and pasted directly

Table 1. Parameters, mean and variance of a gamma
distribution

®i ¯i Mi Mi=¯i

10000 10 1000 100
1000 1 1000 1000
100 0.1 1000 10000

in order to examine these methods. Section 6
contains a number of examples, including the
ones described in this section.

5. A Bayesian model for the
Bornhuetter-Ferguson method

In this section, we show how the Bornhuetter-
Ferguson method can be considered in a Bayes-
ian context, using the approach of Verrall [19].
For further background on the Bornhuetter-
Ferguson method, see Mack [10].
In Section 3, the over-dispersed Poisson model

was defined as follows.

Cij j x,y,'» independent over-dispersed
Poisson, with mean xiyj , and

Xn

k=1
yk = 1:

In the Bayesian context, we also require prior
distributions for the parameters. The Bornhuet-
ter-Ferguson method assumes that there is ex-
pert opinion about the level of each row, and we
therefore concentrate first on the specification of
prior distributions for these. The most convenient
form to use is gamma distributions:

xi j ®i,¯i » independent ¡ (®i,¯i): (5.1)

There is a wide range of possible choices for
the parameters of these prior distributions, ®i and
¯i. It is easiest to consider the mean and variance
of the gamma distribution, ®i=¯i and ®i=¯

2
i , re-

spectively. These can be written as Mi and Mi=¯i,
from which it can be seen that, for a given choice
ofMi, the variance can be altered by changing the
value of ¯i. To consider a simple example, sup-
pose it has been decided that Mi = 1000. Table 1
shows how the value of ¯i affects the variance of
the prior distribution, while Mi is kept constant.
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Clearly, choosing a larger value of ¯i implies
we are more sure about the value of Mi, and
choosing a smaller value means we are less sure.
We now consider the effect of using these prior

distributions on the model for the data. Recall
that, for the chain-ladder technique, the mean
of the distribution of incremental claims may be
written as (¸j ¡ 1)Di,j¡1.
Using a similar approach, Verrall [20] and Ver-

rall [19] derive the distribution of Cij , given the
past data, after the row parameters have been es-
timated. In a Bayesian context, this means first
deriving the posterior distribution of the row pa-
rameters given the data using a standard prior-
posterior analysis:

f(xi j y;data)/ f(data j x,y)f(xi j ®i,¯i):
(5.2)

Note that, if we are considering Cij , the data
used here is Ci1,Ci2, : : : ,Ci,j¡1. Having obtained
this distribution, the distribution of the next ob-
servation can be found as follows:

f(Cij j y;data) =
Z
f(Cij j xi,y)f(xi j y;data)dxi:

(5.3)

This result is derived in detail in Verrall [19],
where it is shown that it is possible to rewrite it in
terms of the usual chain-ladder development fac-
tors, ¸j , rather than using the column parameters
yj . For full details of the derivation, the reader is
referred to Verrall [19]. For the purposes of this
paper, the important point is that the mean of Cij
for the Bayesian model is

Zij(¸j ¡ 1)Di,j¡1 + (1¡Zij)(¸j ¡ 1)Mi
1

¸j¸j+1 : : :¸n
,

where

Zij =
Pj¡1
k=1 yk

¯i'+
Pj¡1
k=1 yk

:

This can be seen to be in the form of a credibil-
ity formula, and is a trade-off between the chain-
ladder ((¸j ¡ 1)Di,j¡1) and the Bornhuetter-
Ferguson ((¸j ¡ 1)Mi(1=(¸j¸j+1 : : :¸n))). The
credibility factor, Zij , governs the trade-off be-

tween the prior mean and the data. We can in-
fluence the balance of this trade-off through the
choice of ¯i. In line with the discussion above,
the larger the value of ¯i the closer we get to the
Bornhuetter-Ferguson method, and the smaller
the value of ¯i, the closer we get to the chain-
ladder technique. In this way, we can use differ-
ent specifications of the prior distributions for the
row parameters in order to use the chain-ladder
technique, the Bornhuetter-Ferguson method, or
a complete spectrum of methods between these
two extremes. If we choose to use prior distribu-
tions with large variances, we do not influence
the parameter estimates and the result will be the
same as (or extremely close to) the chain-ladder
technique. If we use very small variances, we are
saying that we are very sure what the parameter
values should be and the results will be the same
as (or very close to) the Bornhuetter-Ferguson
method. Thus, we can use these methods within
a stochastic framework, and we can also consider
using the whole range of models that lie between
these two.
We have yet to consider the estimation of the

column parameters, other than to point out that
the Bornhuetter-Ferguson method, being deter-
ministic, simply plugs in the chain-ladder pa-
rameter estimates. We now consider this issue
in more detail and define a Bayesian approach
to the Bornhuetter-Ferguson method. One option
is to simply use plug-in estimates, obtained, for
example, from the straightforward chain-ladder
technique. This is the approach used in the deter-
ministic application of the Bornhuetter-Ferguson
method, but it is not suitable here since we would
prefer a stochastic approach. A better option is
to define improper prior distributions for the col-
umn parameters, and estimate the column param-
eters first, before applying prior distributions for
the row parameters and estimating these. This
second option allows us to take into account the
fact that the column parameters have been es-
timated when calculating the prediction errors,
predictive distribution, etc. It is not required to

62 CASUALTY ACTUARIAL SOCIETY VOLUME 01/ISSUE 01



Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinion

include any information about the column pa-
rameters, and hence we use improper gamma dis-
tributions for the column parameters, and derive
the posterior distributions of these using a stan-
dard Bayesian prior-posterior analysis. The re-
sult of this is a distribution that looks similar to
the negative binomial model for the chain-ladder
technique, but which is recursive in i instead
of j:

Cij j C1,j ,C2,j , : : : ,Ci¡1,j ,x,'» over-dispersed
negative binomial, with mean (°i¡ 1)

Pi¡1
m=1Cm,j :

Comparing this to the mean of the chain-ladder
model, (¸j ¡ 1)Di,j¡1 = (¸j ¡ 1)

Pj¡1
m=1Ci,m, it can

be seen that they are identical in form, with the
recursion either being across the rows or down
the columns.
In the context of the Bornhuetter-Ferguson

method, we now have the stochastic version of
this model. The Bornhuetter-Ferguson method
inserts values for the expected ultimate claims in
each row, xi, in the form of the values Mi. In the
Bayesian context, prior distributions will be de-
fined for the parameters xi, as discussed above.
However, the model has been reparameterized,
with a new set of parameters, °i. Hence, it is
necessary to define the relationship between the
new parameters, °i, and the original parameters,
xi. This is given in the equations below, which
can be used to find values of °i from the values
of xi given in the prior distributions. Note that
there was an error in the equation given in Ver-
rall [19], and I am grateful to Peter England for
pointing this out.

°1 = 1

°2 = 1+
x2

µ
1¡ 1

¸n

¶
C1n

°i = 1+

xi

Ã
1¡ 1Pn

k=n¡i+2¸k

!
Pi¡1
m=1Cm,n+

Pn
k=n¡i+3

h³Qi¡1
l=n¡k+2 °l

´Pn¡k+1
m=1 Cm,k

i i = 3, : : : ,n:

(5.4)

The Bornhuetter-Ferguson technique can be
reproduced by using strong prior information for
the row parameters, x, and the chain-ladder tech-
nique can be reproduced by using improper pri-
ors for the row parameters. In other words, the
Bornhuetter-Ferguson technique assumes that we
are completely sure about the values of the row
parameters, and their prior distributions have
very small variances, while the chain-ladder tech-
nique assumes there is no information and has
very large variances.
The preceding equations have now defined a

stochastic version of the Bornhuetter-Ferguson
technique. Since the column parameters (the de-
velopment factors) are dealt with first, using im-
proper prior distributions, their estimates will be
those implied by the chain-ladder technique.
Prior information can be defined in terms of dis-
tributions for the parameters xi, which can then
be converted into values for the parameters °i,
and this is implemented in Section 6.

6. Implementation

This section explains how the Bayesian models
can be implemented, using the software package
winBUGS [16] which is available from http://
www.mrc-bsu.cam.ac.uk/bugs. The programs
used in these illustrations are contained in the
Appendix.
The data set used in this section is taken from

Taylor and Ashe [18], and has also been used in a
number of previous papers on stochastic reserv-
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Table 2. Data from Taylor and Ashe [18] with the chain-ladder estimates

Development Year
Accident
Year 1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046
3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405
4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286
5 443,160 693,190 991,983 769,488 504,851 470,639
6 396,132 937,085 847,498 805,037 705,960
7 440,832 847,631 1,131,398 1,063,269
8 359,480 1,061,648 1,443,370
9 376,686 986,608

10 344,014

Chain-ladder development factors:

3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177

Chain-ladder reserve estimates:

2 94,634
3 469,511
4 709,638
5 984,889
6 1,419,459
7 2,177,641
8 3,920,301
9 4,278,972

10 4,625,811

Overall 18,680,856

ing. The incremental loss data is given in Table
2, together with the chain-ladder results for com-
parison purposes.
Before looking at the uses of the Bayesian

models, we should discuss the nuisance param-
eter '. In a full Bayesian analysis, we should
also give this a prior distribution and estimate
it along with the other parameters. However, for
ease of implementation we instead use a plug-in
estimate, in line with the approach taken in clas-
sical methods (in England and Verrall [8], for ex-
ample). The value used is that obtained from the
straightforward application of the over-dispersed
Poisson model, estimating the row and column
parameters using maximum likelihood estima-
tion (it is possible to use S-Plus or Excel for
this).

6.1. Using the software

Before considering the results from the pro-
grams in any detail, we first describe how to

set up the software and run one of the programs
from scratch. An excellent reference in the con-
text of actuarial modeling is Skollnik [15]. Table
2 shows the standard chain-ladder results, and
in this section we will implement the model de-
scribed in Section 5, but use the assumptions of
the chain-ladder technique, rather than the Born-
huetter-Ferguson method. This means that we
will use large variances for the prior distributions
for the ultimate claims in each row, implying
that there is no prior knowledge about them, and
hence the results we obtain should be close to
the chain-ladder results. Thus, we will first repro-
duce the results that can also be obtained using
non-Bayesian methods (see England and Verrall
[8] for more details of the non-Bayesian meth-
ods). After going through this example in de-
tail, the remainder of this section will show how
the Bayesian models incorporating prior knowl-
edge described in Sections 4 and 5 can be imple-
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mented, and illustrate the effect that the choice
of prior distributions can have.
The steps necessary for implementing the

chain-ladder technique in winBUGS are listed
below.

1. Go to the web site, download the latest ver-
sion of the software and install.

2. Go back to the web site and register, and
you will be sent a copy of the key to unlock
the software. Follow the instructions in the
email for unlocking the software.

3. Once you have a fully functioning version
of winBUGS, you can run the programs in
the Appendix. Open winBUGS and click on
“File” in the top toolbar, and then “New”
in the pop-down list. This will open a new
window.

4. Copy the program in (i) of the Appendix,
including the word “model” at the top and all
the data at the bottom, right down to where
the next subsection begins at (ii). The last
line is 0,0,0,0,0,0,0,0,0)). Paste all of this into
the new window in winBUGS.

5. In winBUGS, select “Model” in the toolbar
at the top and “Specification” in the pop-
down list. This opens a new window called
“Specification Tool.”

6. Highlight the word “model” at the top of the
program, and then click “check model” in
the Specification Tool window. If all is well,
it will say “model is syntactically correct” in
the bottom left corner.

7. Now move down in the window containing
the program until you get to #DATA. High-
light the word “list” immediately below that,
and click “load data” in the Specification
Tool window. It should say “data loaded” in
the bottom left corner.

8. Click “compile” in the Specification Tool
window. After a few seconds, it should say
“model compiled” in the bottom left corner.

9. Now move down in the window contain-
ing the program until you get to #INITIAL
VALUES. Highlight the word “list” imme-
diately below that, and click “load inits” in
the Specification Tool window. It should say
“model is initialised” in the bottom left cor-
ner.

10. Select “Model” in the toolbar at the top and
“Update” in the pop-down list. This opens
a new window called “Update Tool.” The
number of iterations in the simulation pro-
cess can be changed in this window by
changing the figure next to “updates.” Just at
the moment, 1,000 is sufficient, so click on
“update.” This runs 1,000 simulations with-
out storing the results. This may take a few
minutes: don’t be concerned if nothing ap-
pears to be happening! When it is complete,
a message appears in the bottom left corner
saying how long the updates took (for my
laptop it was 221 seconds).

11. Select “Inference” in the toolbar at the top
and “Samples” in the pop-down list. This
opens a new window called “Sample Moni-
tor Tool.” We want to look at the row totals
and overall total, which have been defined
as a vector R and Total in the program. In
the Sample Monitor Tool window, click in
the box to the right of the word “node” and
type R. Then click on “set.” Repeat for Total,
noting that it is case sensitive.

12. Return to the Update Tool Window and click
on Update to perform 1,000 simulations.
This should be quicker (6 seconds for my
laptop). This time the values of R and Total
will be stored.

13. Return to the Sample Monitor Tool window,
type * in the box to the right of the word
“node,” and click “stats.” This will give a
new window with something like the results
below. This completes the steps necessary
for fitting the Bayesian model.
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Table 3. Results

Node Mean sd MC Error 2.5% Median 97.5% Start Sample

R[2] 92750.0 110600.0 2963.0 779.2 56320.0 412800.0 1001 1000
R[3] 473900.0 223100.0 6424.0 1.52E+5 4.4E+5 1.011E+6 1001 1000
R[4] 7.05E+5 2.58E+5 9085.0 307600.0 674500.0 1.288E+6 1001 1000
R[5] 985800.0 304600.0 8127.0 467600.0 960600.0 1.667E+6 1001 1000
R[6] 1.417E+6 378300.0 13430.0 768500.0 1.399E+6 2.217E+6 1001 1000
R[7] 2.174E+6 5.19E+5 16850.0 1.271E+6 2.132E+6 3.233E+6 1001 1000
R[8] 3.925E+6 776900.0 28100.0 2.585E+6 3.885E+6 5.555E+6 1001 1000
R[9] 4.284E+6 1.066E+6 36840.0 2.464E+6 4.207E+6 6.731E+6 1001 1000
R[10] 4.641E+6 2.002E+6 61630.0 1.73E+6 4.407E+6 9.345E+6 1001 1000

Total 1.87E+7 3.056E+6 101600.0 1.314E+7 1.861E+7 2.554E+7 1001 1000

The columns of Table 3 headed “mean” and
“sd” give the predicted reserves and prediction
errors, and these values can be compared with
the chain-ladder results in Table 2. Since this is
a simulation process, the results will depend on
the prior distributions, the initial values, and the
number of iterations carried out. The prior dis-
tributions in the program had reasonably large
variances, so the results should be close to the
chain-ladder results. More simulations should be
used in steps 10 and 12 (we use 10,000 in the il-
lustrations below), and the prior variances could
be increased. Using this number of simulations
gives the results shown in Table 4.
The results certainly confirm that we can re-

produce the chain-ladder results, and produce
the prediction errors. It is also possible to
obtain other information about the model from
winBUGS. For example, it is possible to pro-
duce full predictive distributions, using “density”
in the Sample Monitor Tool window.
We have now described one implementation of

a Bayesian model using winBUGS. In the rest of
this section, we consider the Bayesian models de-
scribed in Sections 4 and 5 in order to consider
how expert opinion can be incorporated into the
predictive distribution of reserves. In each case,
the programs are available in the Appendix, and
the results can be reproduced using steps 3 to 13,
above. It should be noted that this is a simulation-
based program, so the results obtained may not

Table 4. Chain-ladder results. the prediction error is equal to
the Bayesian standard deviation

Chain- Bayesian Prediction
Ladder Bayesian Standard Error
Reserve Mean Deviation (%)

Year 2 94,634 94,440 111,100 118%
Year 3 469,511 471,400 219,400 47%
Year 4 709,638 716,300 263,600 37%
Year 5 984,889 991,600 308,100 31%
Year 6 1,419,459 1,424,000 374,700 26%
Year 7 2,177,641 2,186,000 497,200 23%
Year 8 3,920,301 3,935,000 791,000 20%
Year 9 4,278,972 4,315,000 1,068,000 25%
Year 10 4,625,811 4,671,000 2,013,000 43%

Overall 18,680,856 18,800,000 2,975,000 16%

exactly match the results given below. However,
there should be no significant differences, with
the differences that there are being due to simu-
lation error.

6.2. Intervention in the chain-ladder
technique

We now consider using a prior distribution to
intervene in some of the parameters of the chain-
ladder model, instead of using prior distributions
with large variances that just reproduce the chain-
ladder estimates. The implementation is set up
in Section (ii) of the Appendix, and the program
can be cut and pasted into winBUGS and run
following steps 3 onwards, above.
We consider two cases, as discussed in Sec-

tion 4. For the first case, we assume that there is
information that implies that the second develop-
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Table 5. Individual development factors

Development Year
Accident
Year 2 3 4 5 6 7 8 9 10

1 3.143 1.543 1.278 1.238 1.209 1.044 1.04 1.063 1.018
2 3.511 1.755 1.545 1.133 1.084 1.128 1.057 1.086
3 4.448 1.717 1.458 1.232 1.037 1.12 1.061
4 4.568 1.547 1.712 1.073 1.087 1.047
5 2.564 1.873 1.362 1.174 1.138
6 3.366 1.636 1.369 1.236
7 2.923 1.878 1.439
8 3.953 2.016
9 3.619

ment factor (from Column 2 to Column 3) should
be given the value 1.5 for rows 7, 8, 9, and 10,
and that there is no indication that the other pa-
rameters should be treated differently from the
standard chain-ladder technique. In order to im-
plement this, the parameter for the second de-
velopment factor for rows 7—10 is given a prior
distribution with mean 1.5. We then look at two
different choices for the prior variance for this
parameter. Using a large variance means that the
parameter is estimated separately from the other
rows, but using the data without letting the prior
mean influence it too greatly. We then use a stan-
dard deviation of 0.1 for the prior distribution, so
that the prior mean has a greater influence.
We consider first the estimate of the second

development factor. The chain ladder estimate is
1.7473 and the individual development factors
for the triangle are shown in Table 5. The rows
for the second development factor that are mod-
eled separately are shown in italics. The estimate
using the Bayesian models is 1.68 for rows 1—6.
When a large variance is used for the prior distri-
bution of the development factor for rows 7—10,
the estimate using the Bayesian model is 1.971.
With the smaller variance for this prior distribu-
tion, the estimate is 1.673, and has been drawn
down towards the prior mean of 1.5. This clearly
shows how the prior distributions can be used to
influence the parameter estimates.
The effect on the reserve estimates is shown in

Table 6, which compares the reserves and predic-

tion errors for the two cases outlined above with
the results for the chain-ladder model (which
could be produced using the program in Section
6.1 on this set of data). The chain-ladder figures
are slightly different from those given in Table 4
because this is a simulation method.
It is interesting to note that, in this case, the

intervention has not had a marked effect on the
prediction errors (in percentage terms). However,
the prediction errors themselves have changed
considerably, and this indicates that it is impor-
tant to think of the prediction error as a percent-
age of the prediction. Other prior distributions
could have a greater effect on the percentage pre-
diction error.
The second case we consider is when we use

only the most recent data for the estimation of
each development factor. For the last three devel-
opment factors, all the data is used because there
is no more than three years for each. For the other
development factors, only the three most recent
years are used. The estimates of the development
factors are shown in Table 7. The estimates of
the first development factor are not affected by
the change in the model (the small differences
could be due to simulation error or the changes
elsewhere). For the other development factors,
the estimates can be seen to be affected by the
model assumptions.
The effect of using only the latest three years

in the estimation of the development factors in
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Table 6. Reserves and prediction errors for the chain-ladder and Bayesian models

Chain-Ladder Large Variance Small Variance

Prediction Prediction Prediction
Reserve Error Reserve Error Reserve Error

Year 2 97,910 115% 95,920 116% 95,380 117%
Year 3 471,200 46% 475,700 46% 470,500 47%
Year 4 711,100 38% 721,700 37% 714,400 37%
Year 5 989,200 31% 996,800 31% 994,700 31%
Year 6 1,424,000 27% 1,429,000 26% 1,428,000 27%
Year 7 2,187,000 23% 2,196,000 23% 2,185,000 23%
Year 8 3,930,000 20% 3,937,000 20% 3,932,000 20%
Year 9 4,307,000 24% 4,998,000 27% 4,044,000 25%
Year 10 4,674,000 43% 5,337,000 44% 4,496,000 43%

Overall 18,790,000 16% 20,190,000 17% 18,360,000 16%

Table 7. Development factors using three most recent years’ data separately

Development Year
Accident
Year 2 3 4 5 6 7 8 9 10

1 3.143 1.543 1.278 1.238 1.209 1.044 1.04 1.063 1.018
2 3.511 1.755 1.545 1.133 1.084 1.128 1.057 1.086
3 4.448 1.717 1.458 1.232 1.037 1.12 1.061
4 4.568 1.547 1.712 1.073 1.087 1.047
5 2.564 1.873 1.362 1.174 1.138
6 3.366 1.636 1.369 1.236
7 2.923 1.878 1.439
8 3.953 2.016
9 3.619
Earlier rows 3.575 1.688 1.513 1.197 1.139 1.045
Recent rows 3.579 1.852 1.393 1.155 1.085 1.099 1.054 1.076 1.018

All rows 3.527 1.751 1.46 1.175 1.104 1.087 1.054 1.076 1.018

the forecasting of outstanding claims can be seen
in Table 8.
In this case, the effect on the reserves is not

particularly great. The prediction errors have in-
creased for most years, although the effect is
not great on these either. The importance of the
Bayesian method is to actually be able to assess
the effect of using different sets of data on the
uncertainty of the outcome.

6.3. The Bornhuetter-Ferguson method

In this section, we consider intervention on the
level of each row, using the Bornhuetter-Ferg-
uson method. We consider two examples. The
first uses small variances for the prior distribu-
tions of the row parameters, thus reproducing
the Bornhuetter-Ferguson method. The second
example uses less strong prior information, and

Table 8. Reserve estimates using three most recent years’
data

Chain-Ladder Bayesian Model

Reserve Prediction Reserve Prediction
Error Error

Year 2 97,910 115% 94,860 115%
Year 3 471,200 46% 469,300 46%
Year 4 711,100 38% 712,900 37%
Year 5 989,200 31% 1,042,000 30%
Year 6 1,424,000 27% 1,393,000 27%
Year 7 2,187,000 23% 2,058,000 24%
Year 8 3,930,000 20% 3,468,000 22%
Year 9 4,307,000 24% 4,230,000 27%
Year 10 4,674,000 43% 4,711,000 47%

Overall 18,790,000 16% 18,180,000 18%

produces results that lie between the Bornhuetter-
Ferguson method and the chain-ladder technique.
We use the negative binomial model for the data
that was described in Section 5, and the win-
BUGS code for this is given in the Appendix,
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Table 9. Negative binomial model: Bayesian model with
precise priors for all rows: mean and prediction error of
reserves

Bayesian Bayesian Bayesian Bornhuetter-
Mean Prediction Prediction Ferguson

Reserve Error Error % Reserve

Year 2 95,680 111,100 116% 95,788
Year 3 482,500 211,900 44% 480,088
Year 4 736,400 250,100 34% 736,708
Year 5 1,118,000 296,500 27% 1,114,999
Year 6 1,533,000 339,700 22% 1,527,444
Year 7 2,305,000 410,300 18% 2,308,139
Year 8 3,474,000 497,500 14% 3,466,839
Year 9 4,547,000 555,000 12% 4,550,270
Year 10 5,587,000 610,900 11% 5,584,677

Overall 19,880,000 1,854,000 9% 19,864,951

section (i). Section 6.1 used this method with
large variances for the prior, thereby reproduc-
ing the chain-ladder technique.
First we consider the Bornhuetter-Ferguson

method, exactly as it is usually applied. For this,
we begin by using prior distributions for the row
parameters, which all have standard deviation
1,000 (which is small compared with the means),
and whose means are:

x2 x3 x4 x5

5,500,000 5,500,000 5,500,000 5,500,000

x6 x7 x8 x9

5,500,000 6,000,000 6,000,000 6,000,000

x10

6,000,000

In order to implement this, using the code
in the Appendix, it is necessary to change the
“DATA” section of the program (just before the
“INITIAL VALUES” section). It is explained in
the program exactly what changes to make.
The Bornhuetter-Ferguson estimates of out-

standing losses, and the results from the Bayesian
model are shown in Table 9.
In this case, it can be seen that the results are

very close to those of the Bornhuetter-Ferguson
technique. Thus, if it is desired to use the Born-
huetter-Ferguson method within this stochastic

framework, this is the approach that should be
used. The added information available is the pre-
diction errors. Further, it is possible to generate
predictive distributions rather than just the mean
and prediction error.
The Bornhuetter-Ferguson technique assumes

that there is strong prior information about
the row parameters, so that the standard devia-
tions of the prior distributions used in this exam-
ple are small. The other end of the spectrum is
constituted by the chain-ladder technique, when
large standard deviations are used for the prior
distributions. Between these two extremes is a
whole range of possible models, which can be
specified by using different standard deviations.
We now illustrate the results when less strongly
informative prior distributions are used for the
row parameters. We use the same prior means
as above, but this time use a standard devia-
tion of 1,000,000. We are incorporating prior
belief about the ultimate losses for each year,
but allowing for uncertainty in this information.
The associated reserve results are shown in
Table 10. Notice that the reserves are between the
chain-ladder and Bornhuetter-Ferguson results.
Notice also that the precision of the prior has
influenced the prediction errors, but to a lesser
extent. This provides an extra level of flexibility,
allowing for the choice of a range of models in
a continuous spectrum between the chain-ladder
technique and Bornhuetter-Ferguson.

7. Conclusions

This paper has shown how expert opinion, sep-
arate from the reserving data, can be incorpo-
rated into the prediction intervals for a stochastic
model. The advantages of a stochastic approach
are that statistics associated with the predictive
distribution are also available, rather than just a
point estimate. In fact, it is possible to produce
the full predictive distribution, rather than just
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Table 10. Negative binomial model: Bayesian model with informative priors: mean and prediction error of reserves

Bayesian Bayesian Bayesian Bornhuetter- Chain-
Mean Prediction Prediction Ferguson Ladder

Reserve Error Error Reserve Reserve

Year 2 94,660 111,500 118% 95,788 94,634
Year 3 470,400 218,800 47% 480,088 469,511
Year 4 717,100 265,900 37% 736,708 709,638
Year 5 994,900 308,900 31% 1,114,999 984,889
Year 6 1,431,000 376,800 26% 1,527,444 1,419,459
Year 7 2,198,000 488,900 22% 2,308,139 2,177,641
Year 8 3,839,000 727,200 19% 3,466,839 3,920,301
Year 9 4,417,000 865,500 20% 4,550,270 4,278,972
Year 10 5,390,000 1,080,000 20% 5,584,677 4,625,811

Overall 19,550,000 2,252,000 12% 19,864,951 18,680,856

Figure 1. Distribution of reserve for Bornhuetter-
Ferguson estimation

the first two moments. As was emphasized by
England and Verrall [8], the full predictive distri-
bution contains a lot more information than just
its mean and standard deviation, and it is a great
advantage to be able to look at this distribution.
As an illustration of this, Figure 1 shows the pre-
dictive distribution of outstanding losses for the
final example considered above, in Section 6.3,
Table 10.
A further possibility for including expert

knowledge within a stochastic framework applies
when the Bornhuetter-Ferguson technique is
used. This is an adaptation of the method used in
Sections 5 and 6.3, whereby the reserve is spec-
ified rather than the ultimate losses, ui. The re-
serve value can be used to infer a value for ui,
from which the stochastic version of the Born-
hetter-Ferguson method can be applied.
We have concentrated on two important situ-

ations that we believe are most common when

expert opinion is used. However, the same ap-
proach could also be taken in other situations
and for other modeling methods, such as the Ho-
erl curve. This would allow us to add tail factors
to the models considered in this paper. This pa-
per has been more concerned with the general
approach rather than specific reserving methods.
However, we acknowledge that methods based
on the chain-ladder setup are very commonly
used and we hope that, by using this framework,
we enable actuaries to appreciate the suggestions
made in this paper, and to experiment with the
programs supplied.
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Appendix

The code for winBUGS is shown below for the
models used in Section 6. This is available from
the author on request and can be cut and pasted
directly into winBUGS. Anything to the right of
“#” is ignored, so the code can be changed by
adding and removing this at the start of a line.
(i) This section contains the code for the Born-

huetter-Ferguson method in Section 5, which was
used for the illustrations in Sections 6.1 and 6.3.
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for( i in 1 : 5 ) fDD[16+i]<-DD[16+i-6]+Y[61+i-6]g
for( i in 1 : 6 ) fDD[22+i]<-DD[22+i-7]+Y[67+i-7]g
for( i in 1 : 7 ) fDD[29+i]<-DD[29+i-8]+Y[74+i-8]g
for( i in 1 : 8 ) fDD[37+i]<-DD[37+i-9]+Y[82+i-9]g

#Needed for the denominator in definition of gammas
E[3]<-E[1]*gamma[1]
for( i in 1 : 2 ) fE[4+i]<-E[4+i-3]*gamma[2]g
for( i in 1 : 3 ) fE[7+i]<-E[7+i-4]*gamma[3]g
for( i in 1 : 4 ) fE[11+i]<-E[11+i-5]*gamma[4]g
for( i in 1 : 5 ) fE[16+i]<-E[16+i-6]*gamma[5]g
for( i in 1 : 6 ) fE[22+i]<-E[22+i-7]*gamma[6]g
for( i in 1 : 7 ) fE[29+i]<-E[29+i-8]*gamma[7]g
for( i in 1 : 8 ) fE[37+i]<-E[37+i-9]*gamma[8]g

EC[1]<-E[1]/1000
EC[2]<-sum(E[2:3])/1000
EC[3]<-sum(E[4:6])/1000
EC[4]<-sum(E[7:10])/1000
EC[5]<-sum(E[11:15])/1000
EC[6]<-sum(E[16:21])/1000
EC[7]<-sum(E[22:28])/1000
EC[8]<-sum(E[29:36])/1000
EC[9]<-sum(E[37:45])/1000

#Model for future observations
for( i in 46 : 90 ) f

a1[i]<-max(0.01,a[row[i]]*DD[i-45]/(1000*scale))
b1[i]<-1/(gamma[row[i]]*1000*scale)
Z[i]»dgamma(a1[i],b1[i])
Y[i]<-Z[i]
fit[i]<-Y[i]

g
scale<-52.8615
#Convert row parameters to gamma using (5.6)

for (k in 1:9) f
gamma[k]<-1+g[k]
g[k]<-u[k]/EC[k]
a[k]<-g[k]/gamma[k]

g
#Prior distributions for row parameters.

for (k in 1:9) f
u[k]»dgamma(au[k],bu[k])
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au[k]<-bu[k]*(ultm[k+1]*(1-1/f[k]))
bu[k]<-(ultm[k+1]*(1-1/f[k]))/pow(ultsd[k+1],2)

g
#The prior distribution can be changed by changing the data input values for the
#vectors ultm and ultsd

#Row totals and overall reserve
R[1]<-0
R[2]<-fit[46]
R[3]<-sum(fit[47:48])
R[4]<-sum(fit[49:51])
R[5]<-sum(fit[52:55])
R[6]<-sum(fit[56:60])
R[7]<-sum(fit[61:66])
R[8]<-sum(fit[67:73])
R[9]<-sum(fit[74:81])
R[10]<-sum(fit[82:90])
Total<-sum(R[2:10])
g

#DATA
list(
row=c(1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,4,4,
4,4,4,4,5,5,5,5,5,
6,6,6,6,7,7,7,8,
8,9,1,2,2,3,3,3,4,4,4,
4,5,5,5,5,5,6,6,6,6,6,6,
7,7,7,7,7,7,7,8,8,8,8,8,
8,8,8,9,9,9,9,9,9,9,9,
9),
Y=c(352118,884021,933894,1183289,445745,320996,527804,266172,425046,
290507,1001799,926219,1016654,750816,146923,495992,280405,
310608,1108250,776189,1562400,272482,352053,206286,
443160,693190,991983,769488,504851,470639,
396132,937085,847498,805037,705960,
440832,847631,1131398,1063269,
359480,1061648,1443370,
376686,986608,
344014,
NA,
NA,NA,

VOLUME 01/ISSUE 01 CASUALTY ACTUARIAL SOCIETY 73



Variance Advancing the Science of Risk

NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),

D=c(357848,766940,610542,482940,527326,574398,146342,139950,227229,
709966,1650961,1544436,1666229,973071,895394,674146,406122,
1000473,2652760,2470655,2682883,1723887,1042317,1170138,
1311081,3761010,3246844,4245283,1996369,1394370,
1754241,4454200,4238827,5014771,2501220,
2150373,5391285,5086325,5819808,
2591205,6238916,6217723,
2950685,7300564,
3327371,
NA,
NA,NA,
NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),

DD=c(67948,
652275,NA,
686527,NA,NA,
1376424,NA,NA,NA,
1865009,NA,NA,NA,NA,
3207180,NA,NA,NA,NA,NA,
6883077,NA,NA,NA,NA,NA,NA,
7661093,NA,NA,NA,NA,NA,NA,NA,
8287172,NA,NA,NA,NA,NA,NA,NA,NA),

E=c(67948,
652275,NA,
686527,NA,NA,
1376424,NA,NA,NA,
1865009,NA,NA,NA,NA,
3207180,NA,NA,NA,NA,NA,
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6883077,NA,NA,NA,NA,NA,NA,
7661093,NA,NA,NA,NA,NA,NA,NA,
8287172,NA,NA,NA,NA,NA,NA,NA,NA),

f=c(1.017724725, 1.095636823, 1.154663551, 1.254275641, 1.384498969,
1.625196481, 2.368582213, 4.138701016, 14.44657687),
ultm=c(NA,5500, 5500, 5500, 5500, 5500, 6000, 6000, 6000, 6000),
ultsd=c(NA,10000,10000,10000,10000,10000,10000,10000,10000,10000))

These values for the ultsd will give the chain-ladder results. To obtain the Bornhuetter-Ferguson re-
sults, replace the last line with the following line:
ultsd=c(NA,1,1,1,1,1,1,1,1,1))
The other illustration in section 6.3 uses:
ultsd=c(NA,1000,1000,1000,1000,1000,1000,1000,1000,1000))

#INITIAL VALUES
list(u=c(5500, 5500, 5500, 5500, 5500, 6000, 6000, 6000, 6000),
Z=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,
NA,NA,
NA,
0,
0,0,
0,0,0,
0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0))

(ii) Code for the model in section 4, which was used for the illustrations in section 6.2.

model
f
#Model for data:

for( i in 1 : 45 ) f
Z[i]<-Y[i]/(scale*1000)
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pC[i]<-D[i]/(scale*1000)
C[i]<-Z[i]+pC[i]

zeros[i]<-0
zeros[i]»dpois(phi[i])
phi[i]<-(loggam(Z[i]+1)+loggam(pC[i])-loggam(C[i])-

pC[i]*log(p1[row[i],col[i]])-Z[i]*log(1-p1[row[i],col[i]]))
g

DD[3]<-DD[2]+Y[47]
for( i in 1 : 2 ) fDD[4+i]<-DD[4+i-1]+Y[49+i-1]g
for( i in 1 : 3 ) fDD[7+i]<-DD[7+i-1]+Y[52+i-1]g
for( i in 1 : 4 ) fDD[11+i]<-DD[11+i-1]+Y[56+i-1]g
for( i in 1 : 5 ) fDD[16+i]<-DD[16+i-1]+Y[61+i-1]g
for( i in 1 : 6 ) fDD[22+i]<-DD[22+i-1]+Y[67+i-1]g
for( i in 1 : 7 ) fDD[29+i]<-DD[29+i-1]+Y[74+i-1]g
for( i in 1 : 8 ) fDD[37+i]<-DD[37+i-1]+Y[82+i-1]g

#Model for future observations
for( i in 46 : 90 ) f

a1[i]<-max(0.01,(1-p1[row[i],col[i]])*DD[i-45]/(1000*scale))
b1[i]<-p1[row[i],col[i]]/(1000*scale)
Z[i]»dgamma(a1[i],b1[i])
Y[i]<-Z[i]

g
scale<-52.8615

#Set up the parameters of the negative binomial model.
for (k in 1:9) f

p[k]<-1/lambda[k]
lambda[k]<-exp(g[k])+1
g[k]»dnorm(0.5,1.0E-6)

g
#Choose one of the folllowing (1,2 or 3) and delete the “#” at the start of each line before running.

#1. Vague Priors: Chain-ladder model
# for (j in 1:9) f
# for (i in 1:10) fp1[i,j]<-p[j]g
# g

#2. Intervention in second development factor.
# for (i in 1:10) fp1[i,1]<-p[1]g
# for (i in 1:6) fp1[i,2]<-p[2]g
# p1[7,2]<-p82
# p1[8,2]<-p82
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# p1[9,2]<-p82
# p1[10,2]<-p82
# for (j in 3:9) f
# for (i in 1:10) fp1[i,j]<-p[j]g
# g
# lambda82<-g82+1
# p82<-1/lambda82
#Use one of the following 2 lines:
# g82»dgamma(0.005,0.01) #This is a prior with a large variance
# g82»dgamma(25,50) #This is a prior with a small variance

#3. Using latest 3 years for estimation of development factors.
# for (j in 1:6) f
# for (i in 1:(7-j)) fp1[i,j]<-op[j]g
# for (i in (8-j):10) fp1[i,j]<-p[j]g
# g
# for (j in 7:9) f
# for (i in 1:10) fp1[i,j]<-p[j]g
# g
# for (k in 1:6) f
# op[k]<-1/olambda[k]
# olambda[k]<-exp(og[k])+1
# og[k]»dnorm(0.5,1.0E-6)
# g

#Row totals and overall reserve
R[1]<-0
R[2]<-Y[46]
R[3]<-sum(Y[47:48])
R[4]<-sum(Y[49:51])
R[5]<-sum(Y[52:55])
R[6]<-sum(Y[56:60])
R[7]<-sum(Y[61:66])
R[8]<-sum(Y[67:73])
R[9]<-sum(Y[74:81])
R[10]<-sum(Y[82:90])
Total<-sum(R[2:10])

g
#DATA
list(
row=c(1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,4,4,
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4,4,4,4,5,5,5,5,5,
6,6,6,6,7,7,7,8,
8,9,2,3,3,4,4,
4,5,5,5,5,6,6,6,6,6,
7,7,7,7,7,7,8,8,8,8,
8,8,8,9,9,9,9,9,9,9,
9,10,10,10,10,10,10,10,10,10),
col=c(1,2,3,4,5,6,7,8,9,
1,2,3,4,5,6,7,8,
1,2,3,4,5,6,7,1,2,3,
4,5,6,1,2,3,4,5,1,
2,3,4,1,2,3,1,
2,1,9,8,9,7,8,9,
6,7,8,9,5,6,7,8,9,4,
5,6,7,8,9,3,4,5,6,7,
8,9,2,3,4,5,6,7,8,9,
1,2,3,4,5,6,7,8,9),
Y=c(
766940,610542,482940,527326,574398,146342,139950,227229,67948,
884021,933894,1183289,445745,320996,527804,266172,425046,
1001799,926219,1016654,750816,146923,495992,280405,
1108250,776189,1562400,272482,352053,206286,
693190,991983,769488,504851,470639,
937085,847498,805037,705960,
847631,1131398,1063269,
1061648,1443370,
986608,
NA,
NA,NA,
NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),
D=c(
357848,1124788,1735330,2218270,2745596,3319994,3466336,3606286,3833515,
352118,1236139,2170033,3353322,3799067,4120063,4647867,4914039,
290507,1292306,2218525,3235179,3985995,4132918,4628910,
310608,1418858,2195047,3757447,4029929,4381982,
443160,1136350,2128333,2897821,3402672,
396132,1333217,2180715,2985752,
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440832,1288463,2419861,
359480,1421128,
376686,
NA,
NA,NA,
NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),
DD=c(5339085,
4909315,NA,
4588268,NA,NA,
3873311,NA,NA,NA,
3691712,NA,NA,NA,NA,
3483130,NA,NA,NA,NA,NA,
2864498,NA,NA,NA,NA,NA,NA,
1363294,NA,NA,NA,NA,NA,NA,NA,
344014,NA,NA,NA,NA,NA,NA,NA,NA))

#INITIAL VALUES
This is what is used for 1.

For 2, replace the first line by
list(g=c(0,0,0,0,0,0,0,0,0), g82=0.5,

For 3, replace the first line by
list(g=c(0,0,0,0,0,0,0,0,0), og=c(0,0,0,0,0,0),

list(g=c(0,0,0,0,0,0,0,0,0),
Z=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,
NA,NA,
NA,
0,
0,0,
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0,0,0,
0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0))
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Errata 

 

“Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinion” 

by R. J. Verrall, Variance vol. 1, no. 1, 2007. 

 

 

 

Correction 1. 

On page 63, in equation 5.4 for γi a summation sign in the numerator should be corrected to be a 

product sign: 

 

𝑥𝑖 (1 −
1

∑ 𝜆𝑘
𝑛
𝑘=𝑛−𝑖+2

) SHOULD READ: 𝑥𝑖 (1 −
1

∏ 𝜆𝑘
𝑛
𝑘=𝑛−𝑖+2

) 

 

Correction 2. 

On page 63, in equation 5.4 for γi the upper limit on the first sum in the denominator should be 

corrected: 

 

∑ 𝐶𝑚,𝑛
𝑖−1
𝑚=1  SHOULD READ:  ∑ 𝐶𝑚,𝑛−𝑖+2

𝑖−1
𝑚=1  

 

The corrected equation for γi is: 

 

𝛾𝑖 = 1 +
𝑥𝑖(1−

1

∏ 𝜆𝑘
𝑛
𝑘=𝑛−𝑖+2

)

∑ 𝐶𝑚,𝑛−𝑖+2+∑ [(∏ 𝛾𝑙
𝑖−1
𝑙=𝑛−𝑘+2 ) ∑ 𝐶𝑚,𝑘

𝑛−𝑘+1
𝑚=1 ]𝑛

𝑘=𝑛−𝑖+3
𝑖−1
𝑚=1

  3, , .i n  
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