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Loss Development Using Credibility

Eric Brosius

Abstract ' N

Actuaries use development techniques to estimate future losses. Unfortunately, real data is
subject to both random fluctuations and systematic distortions; only in textbooks can we expect
emnnth ctahle Asvelanment natterne Th rarrart {ar thic Aovslaned laccoc are afton woichtad
smooth, stable development patterns. To correct for this, developed losses are often weighted
with a prior estimate to stabilize the results.

This paper describes a method that applies credibility directly to the loss development process.
The approach appeals to our intuition, but it also has a sound theoretical base. While it requires
little more data than the familiar link ratio method and is almost as easy to use, it responds more

gracefully to situations in which the data is thin and random fluctuations are severe.

Introduction

The method of least squares development is worth considering whenever random year to year fluctu-
ations in loss experience are significant. This paper provides both a practical guide to its use and a
discussion of its theoretical underpinnings. The goal is to provide actuaries with the familiarity and
confidence they need to use the method in their work. Along the way we will uncover some related
methods which may be used to evaluate losses for new or rapidly changing lines of business, and we
will establish a conceptual framework that broadens our understanding of loss development.

Least squares development was proposed by Simon, in his 1957 discussion! of a paper by Tapley,?
as a way to establish loss reserves for automobile bodily injury claims. More recently Clarke has used
it to develop reinsurance losses.® Both Simon and Clarke justify the method on practical grounds—it
works. DeVylder* and Robbin® apply credibility techniques to loss development, and though these
authors approach the subject from 2 slightly different direction, this paper owes much to their ideas.

We will begin the paper with a simple example that shows how least squares development works.
This will help the reader to get a feel for the method, and to compare it with more traditional
approaches. We will then apply the method to several loss models; it often proves to be the right tool
for the job, although a non-linear Bayesian development function is (in theory) preferable in some
cases. The next part of the paper develops credibility formulas, similar to those of Biihlmann, which
describe the best linear approximation to the Bayesian estimate in terms of the means and variances of
the loss and loss reporting distributions. In the final part we examine the implications of the method
for practical work, warn of its limitations, and work out a complete example.

1 Simon, L.J., PCAS 44 (1957), pp. 100-110.
2Tapley, D.A., “Month of Loss Deficiency Reserves for Automobile Bodily Injury Losses Including Reserves for
Incurred But Not Reported Claims,” PCAS 43 (1956), pp. 166-198.

3 Clarke, H.E., “Recent Developments in Reserving for Losses in the London Reinsurance Market,” PCAS 75 (1988},
pp. 912, 15-18.

4 DeVyider, F., “Estimation of IBNR Claims by Credibility Theory,"mlmmuce Matkhematics and Economics (January
1982}, pp. 35-40.

5Robbin, I., “A Bayesian Credibility Formula for IBNR Counts,” PCAS 73 (1986), pp. 129-164.




How the method works—an example

The data in Table 1, while hypothetical, is typical of what one might face in developing losses for
a small state. We will assume that the book of business is reasonably stable from year to year,
and we will ignore inflation for the time being. Even so, the data is so thin that there are serious
fluctuations—fluctuations that make it hard to apply the link ratio method. We are reluctant to give

Incurred Loss Link R;a.tios

AY 15 mo. 27 mo. 15-27
1985 19,039 23,279 1.223 _
1986 33,040 41,560 1.258
1987 14,637 18,937 1.294
1088 2,785 5,185 1.862
1989 51,606 54,206 1.050
1990 5726 15,726 2.746

1991 z=40490 y=7?

Table 1: State AA, Line BB: Losses limited to $10,000 per occurrence.

full credibility to the observed loss for 1991 (which is high already) by applying a large factor to it.
On the other hand, we do not wish to ignore it altogether.

Let’s take a step back. Focus for a moment upon the 15- and 27-month columns of the table. We
wish to predict the 27-month value for the 1991 accident year. We may base our prediction (if we
deem it appropriate) upon the 15-month value, which is already known.

Call the value in the 15-month column z and the value in the 27-month column y. We wish to
predict y based on z. In this task we are guided by the (z,y) pairs from previous years. For any
value of z—even if it had not been = = 40,490 as we see here—we would have determined in some
way a corresponding y-value. Let L(z) be our estimate of y, given that we have already observed z.

The link ratio method The traditional link ratio method estimates y as L(z) = cz, where c is a
“selected link ratio”. The value of ¢ is chosen after a review of the observed link ratios from previous

years—as an average of several years, perhaps, or as a weighted average. The choice is not easy in
situations like this one, where the observed link ratios vary greatly from year to year.

The budgeted loss method If the fluctuation is extreme, or if past data is not available, the value
of z is sometimes ignored. That is, a value k is chosen, and y is estimated as L(z) = k no matter
what z may happen to be. This method is known as the “budgeted loss® (or “pegged”) method
because it fixes the forecast loss y without reference to the observed value z. The estimate & may

be chosen either as an average of y values from past years, or by multiplying earned premium for the
year by an expected loss ratio, or by a number of other methods.®

The problem is depicted graphically in Figure 1.7 The observed (z,y) values form a collection of
points in the (z,y)-plane {Figure 1a). The link ratio method fits a line through the origin to these
points; as the observed value z increases, the estimate L(z) increases in direct proportion (Figure 1b).
The budgeted loss method, on the other hand, fits a horizontal line; as z increases, L{z) remains
unchanged (Figuare 1c). '

€ For instance, one can multiply earned exposures by an estimated pure premium. Or, if the data is for a minor
coverage which is sold in conjunction with a major coverage, one can multiply developed losses for the major coverage
by a ratio determined from the experience of previous years. Different techniques may be appropriate in different
situations.

7 See J.C. Narvells review of Clarke’s paper (PCAS 76 (1989), pp. 197-200.) Our approach here parallels Narvell’s.
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Figure 1: Fitting a hine to the loss data from Table 1—a comparison of methods.

The least squares method This method estimates L(z) by fitting a line to the points (z,y) using
the method of least squares. The resuiting line is not {(except by coincidence) either a horizontal line

or a line through the origin. Instead it is of the form L(z) = a + bz, where the constants ¢ and b are
determined by the least squares fit (Figure 1d). '

Recall how the least squares coefficients a and b are determined. One first computes the four
averages T, ¥, 2, and Z§. One then sets

b= %:;73’ and a=7y-iz
For the 1527 month development under consideration, and for accident years 1985-1990, we have
ZF = 21,139, 7 = 26,482, z2 = 7.287 x 10%, and Z5 = 8.326 x 10°. This gives us & = 0.968 and
a = 6,023, which implies that L(z) = 0.968z + 6,023. For the 1991 accident year we estimate
y = 0.968 (40,490) + 6,023 = 45,217.

The least squares fit is flexible enough to include the link ratio and budgeted loss methods as
special cases, as follows:

e When z and y are totally uncorrelated, b will be zero. In this case the estimate is identical to a
budgeted loss estimate. This makes sense; we should not make y dependent on z if we observe
no relationship between the two.

o It is also possible for a to be zero—most obviously, when the observed link ratios y/z are all
equal. In this case the estimate is identical to a link ratio estimate.

This flexibility is an important advantage of the method. As we shall see below, the least squares
method is at heart a credibility weighting system in which the weights are determined by the properties
of the loss and loss reporting distributions. It can thus adapt to the data at hand, giving more or less
weight to the observed value of z as appropriate.®

The Bornhuetter-Ferguson method A third special case is the Bornhuetter-Ferguson method,®
which estimates ultimate loss as “expected unobserved loss plus actual observed loss™; that is, it sets
L(z) = a + z for some a. This method, like ours, seeks a compromise between the link ratio and
budgeted loss methods. However, our approach allows &, the coefficient of z, to vary as needed.

& Narvell observes that the feast-squares estimate is essentially a weighted average and points out the need to
understand the nature of the weights. This paper provides such an understanding.
9 Bornhuetter, R.L. and Ferguson, R.E., “The Actuary and IBNR,” PCAS 59 (1972), p. 181.




Bornhuetter and Ferguson always have b = 1. Which can be a real limitation; in particular, Salzmann
warns against using the Bornhuetter-Ferguson method when losses develop downward.®

Potential problems in parameter estimation Least squares development, like any method that
uses observed values to estimate underlying parameters, is subject to parameter estimation errors. If
there is a significant change in the nature of the loss experience, the use of unadjusted data can lead
to serious errors. Furthermore, even when the book of business is stable sampling error can lead to
values for a and b which do not reflect its true character.?

In two cases the mismatch is obvious: if either @ < 0 or b < 0. In the former case, our estimate
of y will be negative for small values of z. In the latter case, our estimate of y gets smaller as z

increases. The actuary should intervene when either of these awuotlvm arises: one uu.suu substitute
the link ratio method if a < 0 and the budgeted loss method if b < 0 -

Hugh White’s question

It is not hard to come up with 2 variety of loss development methods. The challenge is in deciding
which method to use in a given situation. In his review of the Bornhuetter-Ferguson paper, Hugh
White asks: 12

I offer the following problem. You are trying to establish the reserve for commercial
automobile bodily injury and the reported proportion of expected losses as of statement
date for the current accident year period is 8% higher than it should be. Do you:

1. Reduce the bulk reserve a corresponding amount (because you sense an acceleration
in the rate of report);

2. Leave the bulk reserve at the same percentage level of expected losses (because you
sense a random fluctuation such as a large loss); or

3. Increase the bulk reserve in proportion to the increase of actual reported over expected
reported (because you don’t have 100% confidence in your “expected losses”)?

Obviously, none of the three suggested “answers” is satisfactory without further extensive
investigation, and yet, all are reasonable. While it is a gross over-simplification of the
question the reserve actuary will face, it still illustrates the limitations of the effectiveness
of expected losses.

We can identify the three “answers” described above as the budgeted loss method, the Bornhuetter-
Ferguson method, and the link ratio method, respectively. These three options lie on a continuum—a
continuum which also includes the many other options implied by the expression L(z) = a + bz.

Let us try to answer Mr. White’s question—in which direction, and by how much, should we change
our estimate of outstanding losses when reported losses are not what we expected? Each of the above
options can be correct in the right circumstances. But how do we know which one to choose? The
least squares fit makes sense intuitively, but is there any theoretical justification for its use?

The credibility formulas which we shall develop in this paper are analytical tools that guide us
in making these decisions. They lend credence to the least squares method, and they provide the
understanding we need to make adjustments when problems arise. Of course, no actuarial formula
can serve as a substitute for the actuary him- or herself, or for a thorough knowledge of the book of
business; these techniques should supplement, rather than replace, informed judgment.

10 Salzmann, R.E., Estimated Liabilities for Losses and Loss Adjustment Expenses (1984), p. 41.

11 This problem is not unique to least squares development; the Link ratio method is subject to similar errors.
12 White, H.G., PCAS 60 (1973), p. 166.
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Although the above example is instructive, we need more than experimental evidence if we wish to
evaluate the method’s theoretical soundness. The fit in Figure 1d looks good, but we may have been
lucky. We must know the form of the underlying distributions if we wish to prove that the method
works.

For this reason we will test the method using various theoretical models. Our first example
is designed for simplicity and not realism. Later examples use the Poisson and negative binomial
distributions to model claim counts. If the method handles these latter distributions successfully, we

can apply it with some confidence to real-life problems.
A simple model Our first model is designed to clarify the techniques we plan to use. Suppose
o The number of claims incurred each year is a random variable Y which is either 0 or 1 with
equal probability.

o If there is a claim, there is a 50% chance that it will be reported by year end.

(Many of our examples invoive claim counts. The techniques also apply to incurred losses or claim
severity, but the exposition is simplest for claim counts. Note that z and y are integers in this case.)

Question: If z claims have been reported by year end, what is the expected number outstanding?
Let the random variable X represent the number of claims (either 0 or 1) reported by year end.

If Q(z) represents the expected total number of claims, and R(z) the expected number of claims
outstanding, both given that X = z, we have

Qz) = BF¥IX=2)
R(z) = EY-X|X=2z2)
= Qz)-=z.

We begin with the case z = 0. Bayes’ Theorem tells us?? that

P(Y =0)P(X =0jY =0)

PY=0X=0) = B GRX=0r=0+P¥=DPX=0F =1
__ap
(1/2)(1) + (1/2)(1/2)
= 2/3, and similarly
PY=1X=0) = 1/3

Q(0) = E(Y{X = 0) = (0)(2/3) + (1)(1/3) = 1/3;
that is, if no claims have been reported by year end, the expected total number of claims is 1/3. When
z = 1, our job is even easier. Since in this case y must also have been 1, we must have Q(1) = 1.
Return now to the graphical viewpoint (Figure 2.) There are but three possibilities for the point
(z,¥): it will be (0,0) half the time, (0,1) one quarter of the time, and (1,1) one quarter of the time.
The best (Bayesian) estimate of y, given z, is a line with siope b = 2/3 and y-intercept a = 1/3.

13 The student may wish to refer to Herzog, T.N., An introduction to Bayesien credibility and releted topics (CAS,
1983) for an excellent introduction to Bayesian probability.
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Figure 2: The simple model

Since we have neither a = 0, b = 0, nor b = 1, this relationship is compatible with neither the
link ratio method, the budgeted loss method, nor the Bornhuetter-Ferguson method. It is, however,
compatible with the least squares method; with enough observations, the least squares estimator will
approach Q(z).1*

A Poisson-Binomial example We now consider a more realistic example. Suppose claim counts
for a small book of business have the following properties:

o The number of claims incurred each year is a random variable Y which is Poisson distributed
with mean and variance 4. )

e Any given claim has a 50% chance of being reported by year end.

o The chance of any claim being reported by year end is independent of the reporting of any other
claim, and is also independent of the number of claims incurred.

A sample data set, generated at random, is shown in Table 2. Even though each year’s experience is

taken from the same distribution, the observed values differ greatly.

Claims Reported
At year end At ultimate Link ratio

1984 1 1 1.00
1985 2 9 4.50
1986 1 2 2.00
1987 0 2 -
1988 6 7 1.17
1989 2 5 2.50
1990 1 3 3.00
1991 z v ?

Table 2: Poisson-Binomial example with g =4 and d = 1/2.

Here X is 2 binomial random variable with parameters (y,1/2). This means X is produced by a
Poisson-Binomial mixed process—a Poisson process which produces y followed by a binomial process
with y as the first parameter.

Again we ask for the expected number of outstanding claims, given that z claims have been
reported by year end. We will solve this problem in two ways: the long way and the short way. We

11 This example also demonstrates an often overlooked fact: although the least squares line z = y/2 expressing z as
a function of y passes through the origin, the line expressing v as a function of z does not.




will also consider the link ratio method, but as we shall see, it does not offer an entirely satisfactory
solution. '

The long way (Bayesian analysis) Bayes’ Theorem tells us that, for y > z,
P(Y =y)P(X =z[Y = y)
SLPY =)P(X =z|Y =3)
(474 /yH(279 (%))
Srea (et /(2 ()
2y—ze-—2
(-2t

PY=yX=2) =

It follows that

W=ze—2

Q=z) = gy<m)

od 2y—:e—2

et Y=z =2
- ;, (y—z)!] M L;,(ynz) (y-ez)!]

= z+2

(where we use our knowledge of the Poisson distribution with mean 2 to evaluate the expressions in
square brackets.) The expected number of outstanding claims is thus R(z) = Q(z) —z = 2. This
may seem surprising, but it is true in general: when the claim distribution is Poisson and the claim
reporting distribution is binomial, the expected number of outstanding claims does not depend on the
number already reported.

The short way Once we know that R(z) = 2, the special properties of the Poisson distribution
lead us to 2 quicker derivation. Consider the Poisson process that generates Y to be composed of
the sum of two independent Poisson processes with mean 2: one process generating claims that will
be reported by year end, and the other generating claims that will not be reported by year end.
Regardless of the result of the first process, the expected value of the result of the second process is 2;
this is R(z).

Unfortunately, this shortcut will not work for other distributions; in most cases we will have to
return to the method that we used above.

The link ratio method Let us now apply the familiar link ratio method to the above problem. To
use the link ratio method, one selects a ratio ¢ and uses it to obtain estimates

EY X=z) = ez,
EY-X|X=z) = (c—1)z.

Since there is no ¢ for which ¢z = z + 2, this method cannot possibly produce the correct Bayesian
estimate Q(z) for every value of z. However, there are several options for c.

Option 1. If we wish to obtain an unbiased estimate, we must ask that E{{c—1)X) = 2. This implies
that c=1+2/E(X)=2.

Option 2. Instead we can minimize the mean squared error {MSE) of our estimate. This is equivalent
to the problem of minimizing E({((c — 1)X — 2)?) = (¢ — 1)?Ver(X) + ((c — DE(X) - 2)* =
6c2 — 20c + 18. The minimum is found at ¢ = 5/3. Unfortunately, as we can see by comparison
with Option 1, this estimate is biased low. The biased estimate can have a lower MSE than the
unbiased estimate because its variance is lower.




Option 8. One commonly used method uses E(Y/X) (or an estimate thereof) for the link ratio.®
This presents problems when the data is thin, as in Table 2, since Y/X is not defined where
X = 0. If we throw these cases out and compute instead ¢ =

EY/X|X#£0) = (1-P(X=0))"" iP(X _ z)E(Y]): =2)
z=1
= ez 472 .
St o v

z=1

=~ 2.153,

~

we obtain an estimate which is biased high, despite the exclusion of cases in which z =0

Option 4. A better approach (described by Salzmann?® as the “iceberg technique”) selects
d=EX/YY#0)=1/2, c=d'=2.

This is the same value of ¢ that produced the unbiased estimate of Option 1; in this example,
it is clearly superior to Option 3.

While some values of ¢ are better than others, no link ratio estimate is as good as the Bayesian
estimate @(z). For ¢ = 5/3 the MSE is 10/3, for the unbiased estimate ¢ = 2 it is 4, and for
¢ = 2.153 it is approximately 4.752. In comparison, for Q(z) (which is also unbiased) the MSE is 2.

The general Poisson-Binomial case If we generalize our example to the situation where Y is
Poisson distributed with mean u, and where any given claim has probability d of being reported by
year end, the methods described above yield

Q=) z+p(l-4d),

R(z) = p(1-4d).
The expected number of outstanding claims is simply the total number of claims originally expected
times the expected percentage outstanding; as noted above, it does not depend upon the number

of claims already reported. We conclude that the Bornhuetter-Ferguson estimate—and hence Mr.
‘White’s second answer—is optimal in the Poisson-Binomial case.

The Negative Binomial-Binomial case Although the Poisson distribution is often used to model
claim counts, the negative binomial distribution is a better choice in some situations.’” Let us
therefore consider the situation where the distribution of Y is negative binomial with parameters

(r,p), and where any given claim has probability d of being reported by year end. Using the techniques
of Bayesian analysis described above, we compute

[y —pp] (@@ - ap—]

S [ = o [OFA =]
- (‘”’)*‘”") - 1)[(1 — (- Pl = (1 — )1 — P,

PY =y|X =z)

y—z

15 This method seems to be based on the heuristic assumption that E(Y) can be approximated by E(X)YE(Y/X).
The problem is that the random variables X and Y/X ave often negatively correlated in practice, so that E(Y) <
E(X)}E(Y/X). This issue is discussed by J.N. Stanard in “A Simulation Test of Prediction Errors of Loss Reserve
Estimation Techniques,” PCAS 72 (1985), p. 124.

16 0p. cit., p. 31.

17 See, for example, Dropkin, L., “Some Considerations on Automobile Rating Systems Utilizing Individual Driving
Records®, PCAS 46 (1959), pp. 165-176.




which is 2 negative binomial distribution in y With parameters (z+r,1—(1~d)(1—p)), shifted by z.
This implies that -
_ _(d-dfi-p
& =1 a-aga-»
Except in the trivial case where d = 1, this is an increasing linear function in z. Take for example
r=4and d = p = 1/2, so that E(Y) = 4 and Ver(Y) = 8. Here R(z) = z/3 + 4/3 and
Q(z) (4/3)::: + 4/3. This does not correspond exactly to any of. Mr. White’s answers—while
an increase in reported claims does lead to an increase in our estimate of outstanding claims, the
relationship is not proportional. Since a = b = 4/3, neither the link ratio method, the budgeted loss
method, nor the Bornhuetter-Ferguson method gives the correct estimate.

How can we make intuitive sense of this result? The negative binomial distribution has .more
variance than the Poisson distribution with the same mean; as a result, we have less confidence in
our prior estimate of expected losses. Given a value of z that is larger than predicted, we are thus
relatively more willing to increase our estimated ultimate claim count than we were when Y was
Potsson; this implies a larger b.

{z+71).

The fixed prior case Suppose the random variable Y is not random at all; that is, there is some
value k such that Y is sure to equal k& (perhaps we are selling single-premium whole life policies.) In
this case, Q(z) = & for any value of z (regardiess of the distribution of X .) The expected number of
outstanding claims is then R(z) =k —z.

This situation corresponds perfectly to White’s first answer—we decrease our estimate of outstand-

ing claims by an amount equal to the increase in reported claims, leaving the total incurred count for
the year unchanged.

The fixed reporting case For the other extreme, suppose there is 2 number d # 0 such that the
percentage of claims reported by year end is always d; thatis, P(X = dylY = y) is 1 forall y. In
this case Q(z) = d~!z and the expected number of outstanding claims is R(z) = (d~! — 1)=z.

This is our old friend the link ratio method, which corresponds perfectly to White’s third answer. 18

A non-linear example In each of the examples considered above, the Bayesian estimate @Q(z) is
linear in z, and is thus of the form e + dz. This is not always true. The following example, which
illustrates a pragmatic approach, leads to a non-linear Q(z).

‘Company management believes the number of claims Y for the year is uniformly distributed on
{2,3,4,5,6}—that is, P(Y = y) = 1/5 for y = 2,3,4,5,6. (Here E(Y) =4 and Ver(Y)=2.) Any
given claim has a 50% chance of being reported by year end. Armed with these assumptions, we
proceed to compute Q(z). The calculations (Table 3) correspond exactly to those in our first model.

In this example R(z) = Q(z) — z is not linear. It is also not monotonic; it is generally decreasing,
but it increases slightly between z = 1 and z = 2. It makes sense that R(z) should decrease; since
Y has less variance than a Poisson distribution with the same mean, we have more confidence in our
prior estimate of expected losses, and we are relatively less willing to revise our estimated ultimate
claim count based on what has been reported so far.

This example corresponds somewhat to White’s third answer, although not as much as the fixed
prior example discussed above. It also models real-life pressures in a convincing, if simplistic, way—as
long as the losses remain within a “comfort range”, the analysis is permitted to take its course, but
when the indication strays outside the bounds, there is a tendency to ignore it. The variance of Y here
seems unreasonably low; it probably reflects management psychology better than it reflects reality.

The method of Bayesian development Despite the difficulties involved, the technique used in

this section has considerable practical applicability. If we are willing to estimate the distributions of

18 Note, however, that this model is extremely unrealistic: the behavior described couid hardly occur in real life unless
the claims department were making the claims up!




Y 2 3 4 3 6

= PX=zand Y =1y) Total
0 |16/320 /320 4/320  2/320  1/320 31/320
1 32/320 24/320 16/320 10/320 6/320 88/320
2 | 16/320 24/320 24/320 20/320 15/320 99/320
3 8/320 16/320 20/320 20/320 " 64/320
4 4/320  10/320 15/320 29/320
5 2/320 6/320 8/320
6 1/320 1/320

= P(Y =ylX =1z) : -Q(z) R(z) -
o | 16/31 /31  4/31  2/31  1/31 | 83/31=267T 2677
1 32/88 24/88 16/88 10/88 6/88 256/88 = 2.909 1.909
2 16/99 24/99 24/99 20/99 15/99 390/99 = 3.939 1.939
3 8/64  16/64  20/64 20/64 | 308/64 = 4.812 1.812
4 4/28  10/29  15/29 | 156/29 = 5379  1.379
5 2/8 6/8 46/8 = 5.750 0.770
6 1/1 6/1=6.000 0.000

Table 3: Y uniform on {2,3,4,5,6} and d =1/2.

Y and X|Y, we can produce Bayesian estimates of ultimate claim costs. Even if the equations cannot
be solved exactly, it is not hard to approximate the answer to any desired degree of accuracy. We can
also test the sensitivity of the answer to changes in the distributions chosen.

The linear approximation (Bayesian credibility)

The final example in the previous section brings us to a fork in the road. While it is certainly possible
for the actuary to compute a pure Bayesian estimate @ based on assumed distributions for Y and for
XY, such a procedure requires 2 good deal of knowledge about the loss and loss reporting processes—
knowledge we may not be willing to assume. ¥or this reason we shall now consider a linear estimate
that is based on the concept of Bayesian credibility.

Bayesian credibility as described by Biihlmann!® uses not the Bayesian estimate itself, but the
best linear approximation to it. The approximation, though less accurate than the pure Bayesian
estimate, is simpler to compute, easier to understand and explain, and less dependent upon the
underlying distributions. As we study the application of Bayesian credibility to loss development, our
approach will follow the path laid down by Bihlmann.

Let Q(z) be the Bayesian estimate discussed in the previous section, and let L be the best
inear approximation to Q; that is, L is the linear function that minimizes Ex([Q(X) — L(X)}?). If
L(z) = a + bz, we must minimize

Ex([Q(X) — a - bX]).

The following is a standard statistical result:2°

Development Formula 1 Given random variables Y describing ultimate losses and X describing
reported losses, let Q(z) =__§(¥|X = z). Then the best linear epprozimetion to Q (in the sense

15 Bhlmann, H., “Experience Rating and Credibility”, The ASTIN Bulletin 4 (1967), pp. 199-207.
20 See for instance Meyers, G., Report of the Credibility Subcommittee: Development and Testing of Empirical Bayes
Credibility Procedures for Classification Retemeking, ISO (1980), p. 61.
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described above) is the funciion

Cov(X,Y)

Uz) = (= = BOO)) 5

+ E(Y).

This equation agrees with our expectations; if z = E{X), we have L(z) = E(Y), but if z differs
from E(X), our estimate differs by a proportional amount. This formula provides us with an answer
to Mr. White’s question, at least if we are willing to make do with the linear approximation:

1. If Cov(X,Y) < Var(X), a large reported amount should lead to a decrease in the reserve.

2. If Cov(X,Y) = Ver(X), a change in the reported amount should not effect the reserve. i

-

3. If Cov(X,Y) > Var(X), a large reported amount should lead to an increase in the reserve.

We conclude that each of the three answers is correct in the right circumstances.

Practical application of the first formula—Ileast-squares development

If we had hoped by using Bayesian credibility to avoid making assumptions about the distributions of
Y and X, we may be disillusioned to see terms involving these random variables in our formula. This
concern is not entirely justified; if we have 2 series of past years for which we are willing to assume a
common Y and X, we can estimate the means, variance, and covariance from the data. Taking the
simple-minded approach, we estimate Cov(X,Y) by XY ~ XY, Var(X) by X2—X°, E(X) by X,
and E(Y) by Y. This gives us

Turning back to the data in Table 2, we have X = 13/7, Y = 29/7, XY = 76/7, and X2 = 47/7.
Thus b~ 0.969, a & 2.344, and L(z) = 0.969 = + 2.344. Of course, this is only an approximation to
the true Bayesian estimate Q(z) = z + 2; sampling error makes it unlikely that we will reproduce Q
exactly. Even so, the MSE of our estimate is approximately 2.081—better than the best link ratio
estimate and not much worse than the true Bayesian estimate.

As the reader has no doubt recognized, this is the least squares procedure that was introduced at
the start of the paper. If it were not for sampling error, the least squares method would give us the
best linear approximation to the Bayesian estimate. This is true regardless of the distributions of X
and Y.

Note, however, that even if the method is working perfectly, the least squares fit may not yield a

high correlation. The points (z,y) can be expected to lie above and below the fitted line y = L(z)
because Varx(Y|X) is not zero.

A simulation test of least-squares development The fit that we obtained in the previous section
using data from Table 2 is remarkably good; we will not always do so well. To test the effectiveness
of this method, and to compare it to the traditional link ratio method, we will use a simulation test.

For each trial, seven y-values and corresponding z-values were generated at random using the
distributions used for Table 2. Two estimates were then produced: one exactly as outlined above, and
one using the link ratio method with ¢ = Y /X . The MSE was computed for each.

The results are shown in Table 4. This comparison is “fair”: neither method uses prior assumptions
about the underlying distributions, since both work solely with the observed data. As we see, when
the data fluctuates as much as it does here, either method can go astray. Even so, the least squares
method produces a superior estimate in the great majority of cases. In addition, some of its poorer
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Trial b 2 MSE Link Ratio MSE

1 0.167 4.095 3.373 2.214 5.133
2 2.605 1.079 12.395 3.444 22.296
3 0.308 3.462 2.964 3.000 14.600
4 1.362 1.447 2.291 1.895 3.645
5 1.500 1.429 2.684 2.214 5.133
6 —0.175 4.450 477 1.556 3.407
7 0.750 1.643 2.860 1571 3.388
8 1.356 1.422 2.271 1.941 3.785
9 0.750 2.750 2.188 1.882 3.612 -

10 1.500 1.500 2.750 T 3.000 14.000 -
11 0.130 3.815 3.521 2.800 11.040
12 1.574 —0.704 5.079 1.385 3.811
13 0.939. . 0.970 3.333 1.462 3.586
14 0.464 4.773 5.465 1.800 3.440
15 0.957 1.787 2.092 2.000 4.000
16 1.138 1.319 2.202 1.600 3.360
17 0.667 1.476 3.639 2.143 4.694
18 1.542 0.708 2.630 1.923 3.728
19 1.958 0.500 4.010 2.250 5.375
20 0.537 2.870 2.432 . 2.364 6.248
Average 1.001 2.040 3.658 2.122 6.384

Table 4: Comparison of the least squares method with the hink ratio method.

performances (trials 6 and 12) can be identified by the appearance of a negative coefficient and
judgmentally weeded out as suggested previously. This correction would further increase the accuracy
of this method.

Note too that the link ratio method is biased. The average link ratio of 2.122 in Table 4 is higher
than the unbiased value of 2.000. This is no accident; we can prove using 2 power series approximation
that the expected link ratio produced by this method is about 2.085. The least squares method may
have some sampling bias as well in the determination of @ and b, but the bias appears to be significantly
less than for the link ratio method.

When is least-squares development appropriate? The careful reader will have noticed the
caveat put forth above: the least squares fit makes sense “if we have a series of years for which we
are willing to assume a common Y and X.” For what real-life book of business can it truly be said
that a single pair of distributions is appropriate for all years? And what good is 2 method that relies
on such an unlikely assumption?

From a practical point of view the issue is one of relativity: if year to year changes are due largely
to systematic shifts in the book of business, other methods may be more appropriate.2! On the other
hand, if random chance is the primary cause of fluctuations, then the present method commends
itself to our attention. And it is in this very case that the actuary is in most need of an objective
approach; one can correct for systematic distortion, but the temptation when facing variability like
that in Table 2 is to throw up one’s hands in despair and ignore the data entirely.

Furthermore, one can adjust for known or suspected distortions before using least squares devel-
opment. If we are studying incurred loss data, a correction for inflation is almost certainly advisable;
we should fit our line only after putting the years on a constant-dollar basis. Similarly, if the book of

2} An excellent discussion of the types of approaches one might take in these situations appears in Berquist, JR., and
Sherman, RE., “Loss Reserve Adequacy Testing: A Comprehensive, Systematic Approach,” PCAS 64 (1978), p. 10.
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business expands, but does not change in character, we can divide each year’s losses by an exposure
measure to eliminate the resulting distortion.?*> Other adjustments may be made using techniques
such as those discussed in the Berquist-Sherman paper cited above.

A credibility form of the development formula

In this section we comsider an alternative form of Development Formula 1 that provides us with
additional insight. Following Biihlmann, we seek to express L in terms.of

Ey(Ver(X[Y)) = “Expected value of the process variance” (EVPV) and
Vary(E(X|Y)) = “Variance of the hypothetical mean” (VHEM)

(basically, EVPV represents variability resulting from the loss reporting process while VHM repre-
sents variability resulting from the loss occurrence process.) Bayesian credibility as it is customarily
presented uses one or more observations of a random variable to predict future values of that same
variable.2®> Here our task is slightly different: we wish to estimate the value of the random variable
Y by observing X, a differently distributed, though related, random variable. This leads to a for-
mula that differs slightly in form from the usual formula for Bayesian credibility, and that requires an
additional hypothesis. The proof is given in the Appendix.

Development Formula 2 Suppose there is a real number d # 0 such that E(X|Y = y) = dy for
all y. Then the best linear epprozimation to Q (in the sense described previously) is the function

_ z-E(X) VEM
=) = 7 vrzzvev TEW)

z;"'i- +(1 - 2)E(Y),

)

where

_ VAEM
= VEM + EVPV

This formula views L as a credibility weighting of the link ratio estimate z/d with the budgeted
loss estimate E(Y). If EVPV = 0 we give full weight to the link ratio estimate, as in the fixed
reporting example discussed above. If VEM = 0, as in the fixed prior example, we set L(z) = E(Y).
But when there is uncertainty about both the reporting pattern and the prior estimate, we use 2
weighted average, with weights EVPV and VHM 2%

Let us apply Formula 2 to some of the other examples discussed above.

z

o For our simple model with at most one claim per year, the process variance is 0 when ¥ =0
and 1/4 when Y = 1. (Recall that a binomial process with parameters (n,d) has mean nd and
variance nd(1 ~ d).) Thus EVPV = (1/2)0+ (1/2)(1/4) = 1/8. The hypothetical mean is 0
when Y = 0 and 1/2 when Y =1,s0 VEM =1/16. Thus Z = VEM /(VEM + EVPV)=1/3
and L(z) = (1/3)(z/d) + (2/3)E(Y) = (2/3)z + 1/3. Of course, this agrees with our previous
estimate since L(z) must equal Q(z) whenever Q is linear.

o In the Poisson-Binomial case with parameters g and d, we have EVPV = E(yd(1 — d)) =
pd(1 — d) and VAM = Ver(yd) = pd®. This gives us Z = pd?/(pd® + pd(1 — d)) = d and
Liz)=z+p(1~d). '

22 Jf we assume that the new business is homogenous with the old, both E(X) and E(Y') will increase in proportion
to exposure, while Var(X) and Cov(X,Y) will increase in proportion to the square of the exposure. This implies we
can divide by exposures to adjust data for use in Development Formula 1.

23To be precise, we should speak of a seqrence of independent, identically distributed, random variables.

2% A cynic might claim that VHM measures our distrust of the underwriter while EVPV measures our distrust of
the claims department!
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e More generally, we have Z = d whenever the least squares estimate coincides with the Born-
huetter-Ferguson estimate. This makes sense in that Z should increase from 0 to 1 over time,
but there is no reason to expect that it will always do so in exact proportion to d.*

e Iu the Negative Binomial-Binomial case with parameters (r,p) and d, we have p = E(Y) =
(1 — p)/p. Thus EVPV = pd(1 — d) while VEM = Ver(Yd) = pd?/p. In this case, Z =
df(d+p(1—-d)) and L(z) =z/(d+ p(1 — d)) + up(l — &)/(d+ p(1 — d)). Since VHM is larger
here than in the Poisson-Binomial case, while EVPV is the same,-Z is larger, and the link ratio
estimate receives more weight. -

= Qe L= - -
0 2.677 2.667 :
1 2.909 3.333
2 3.839 4.000
3 4.812 4.667
4 5.379 5.333
5 5.750 6.000
6 6.000 6.667

Table §: Linear approximation: Y uniform on {2,3,4,5,6} and d = 1/2.

e Next consider the non-linear example worked out in Table 3. We have d = 1/2 and EVPV =
E(Y)(1-d) =1. With VAM = Var(Yd) = 1/2, we obtain Z = (1/2)/(3/2) = 1/3 and
L{z) = (2/3)z+8/3. Since VHM is smaller than in the Poisson-Binomial case, while EVPV is
the same, Z is smaller, and the link ratio estimate receives less weight. Here L does not equal
@, but it is the best linear approximation to it. As Table 5 demonstrates, the fit is reasonably
good considering the rather artificial distribution of Y.

o Finally, let us return to the example of Table 1, with & = 0.968, a = 6,023, T = 21,139, and
¥ = 26,482. If we set d = /7 = 0.798, then Z = bd = 0.773. The least squares estimate
which we obtained for this problem can thus be seen to assign a weight of 0.773 to the link ratio
estimate (with link ratio d~! = 1.253) and a weight of 0.227 to the budgeted loss estimate.

A different application of Bayesian credibility The underlying assumption of the least squares
method—that year to year changes in loss and loss reporting distributions are small, or can be cor-
rected for—will sometimes fail. When this happens we can apply Bayesian credibility methods by
estimating the terms EVPV and VHM in Development Formula 2.

Consider an example. We wish to develop personal automobile losses for a state which has just
instituted a strict verbal tort threshold. Suppose

e Expected losses under the old system would have been $20 million, but industry studies estimate
that the reform should save 40% in the first year.

e In the past about 62% of incurred losses have been reported by year end, but under no fault
this figure is expected to rise to 75%.

We are thus expecting an ultimate loss of $12 million, with $9 million reported by year end.

251 would like to thank Dr. Robbin for pointing cut to me that the Bornhuetter-Ferguson estimate is 2 weighted
average of the link ratio and budgeted loss estimates.
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When the year-end data is available, how&ver, the reported loss is only $6 million. This presents
us with a dilemma. The savings resuiting from the reform may be greater than expected; if so, we
should reduce our estimate of ultimate loss. On the other hand, there may be temporary reporting
delays as claim adjusters become familiar with the new coverages. In this case, it would be 2 mistake
to reduce our estimate. What do we do while we await better information?

Neither the least squares method nor the link ratio method makes sense here. Both methods
assume that past experience is a reliable guide to the future. This assumption is not justified when
there has been a major change in coverage. On the other hand, our.doubts about the estimated
savings make the budgeted loss estimate uncertain.

The Bayesian credibility method provides us with a reasonable solution to this problem. To use
this method we must estimate the means and standard deviations-of two random variables: the loss ¥
and the reporting ratio X/Y .2¢

We already have estimates of the means: E(Y') is $12 million and E(X/Y) is 75%. Suppose we
estimate o(Y) to be $3 million and ¢(X/Y) to be 14%.%"

We can then compute

VAM = Var(0.75Y) = (0.75 x $3 million)® = 5.06,
EVPV = E((0.14)°Y?) = (0.14)*[Ver(Y)+E(Y)}] = 3.00.

Thus Z = 5.06/(5.06 + 3.00) = 0.628 and L(z) = 0.628(z/0.75) + (1 — 0.628)($12 million) =
$9.5 million.

The estimate is larger thar the link ratio estimate $6 million/(0.75) = $8 million and smaller than
the budgeted loss estimate $12 million. This reflects our relative uncertainty concerning these two
estimates. It is also slightly larger than the Bornhuetter-Ferguson estimate, which would be $9 million,
because b= 0.628/0.75 is less than 1. This implies that we have placed slightly less confidence in the

low reported loss (or, equivalently, more confidence in the high prior estimate) than if we had used
the Bornhuetter-Ferguson method.

To use this method we must be willing to select the means and standard deviations. Fortunately,
the answer is not extremely sensitive to changes in these selections. For instance, if we change (X |Y)
to 10% in the example above, L(z) becomes $8.9 million. If instead we change o(Y) to $2 million,
L(z) becomes $10.3 million.

The caseload effect

In Development Formula 2, we assumed that the expected number of claims reported is proportional
to the number of claims incurred. This might be seen as a flaw in our analysis; since a claim is more
likely to be reported in a timely fashion when the caseload is low, we expect the development ratio
E(X|Y = y)/y to be not a constant but a decreasing function of y.

Fortunately, a constant development ratio is not essential for a credibility-based development
formula. In this section we make the more general assumption that E(X|Y = y) = dy + 2o, where
d 3 0 (one can presume that both d and z¢ are positive.) This gives a development ratio of d+zo/y,
which does indeed decrease as y gets larger. On the other hand, it gives us E(X|Y = 0) = z¢ > 0.
This may perhaps be undesirable, but no one who has had dealings with a real-life claims department
is likely to be shocked by this assumption. When z¢ = 0 we obtain Development Formula 2 as 2
special case. The proof is given in the Appendix.

26 We assume for the purposes of this example that the mean and standard deviation of X/Y do not dependon Y.
This may not be strictly true, but it is likely to work well enough in practice.

271t is wise to validate such assumptions by discussing the situation with underwriters, claims officers, and company
management.
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Development Formula 3 Suppose there areTeal numbers d # 0 and zo such that E(X|Y =y) =
dy + zo for ell y. Then the funciion L defined above can be written as

Tz —Zp

d

Lz) = Z +(1 - 2)E(®Y),

where VEM

2= VEM T EVEV

~

We conclude that the least squares method can make sense even in cases where the development
ratio varies with the caseload. It may be impossible in practice to determine the values of zo and of
d, but we do not need these values to apply the least squares method.- -

A final example

In this section we will look at a fully worked out example based on real data that has been disguised
slightly. Suppose we are given earned premium and incurred losses for a small book of business.

Reported Loss ($000)

AY EP ($000) 12mo. 24 mo. 36mo. 48 mo. 60 mo.
1985 4260 102 104 209 650 847
1986 5563 0 543 1309 2443 3003
1987 7777 412 2310 3083 3358 4099
1988 8871 219 763 1637 1423

1989 10465 969 4090 3801

1990 11986 0 3467

1991 12873 932

Table 6: State CC, Line DD: Total limits losses.

One could use link ratios to develop these losses, but the least squares method is the better choice
if we believe that the changes in the book of business are accurately reflected in the earned premiums.
Because of the significant growth in volume, we will divide the losses by the premium to put the
accident years on a more nearly equal basis. This gives us a triangle of reported loss ratios:

Reported Loss Ratio
AY 12mo. 24mo. 36 mo. 48 mo. 60 mo.
1985 0.024 0.024 0.049 0.153 0.199
1986 0.000 0.098 0.235 0.439 0.540
1987 0.053 0.297 0396 0432 0.527
1988 0.025 0.086 0.185 0.160
1989 0.093 0.391 0.363
1990 0.000 0.289

1991 0.072

Table 7: Reported loss ratios.
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Unlike the data in Table 1, this data includes accident years at many different maturities. Following
Clarke, we begin by developing the most mature years to ultimate. We then use the information
obtained from those years to develop successively less mature years, ending with the 1991 vear.

Losses may continue to develop after sixty months; to assume development stops at the end of
the triangle is to assume the world ends at the horizon. For this line of business, we believe that
losses will increase by an additional 10% from sixty months to ultimate. Based on this assumption,
we estimate the ultimate loss ratios for accident years 1985, 1986, and 1987 to be 0.219, 0.394, and
0.580 respectively. .

We next turn our attention to the 1988 year. We shall estimate the ultimate loss ratio for this
year by looking at the relationship between the reported loss ratio at 48 months (our z value) and the
ultimate loss ratio (our y value.) We base this relationship upon the observed 48-month and projected
ultimate values for accident years 1985-1987. For these three years we have T = 0.341, 7 = 0.464,
zZ = 0.134, and TF = 0.181 (it will be convenient to display these values directly beneath the 48-month
column of the triangle.) This gives us = 1.301, e = 0.020, and y = 0.020 + (1.301)(0.160) = 0.22¢
as the ultimate loss ratio for 1988.

Reported Loss Ratio

AY 12mo. 24mo. 36 mo. 48 mo. 60 mo. Ultimate
1985 0.024 0024 0.049 0.153 0.199 0.219
1986 0.000 0.098 0.235 0.439 0.540 0.594
1987 0.053 0297 0.396 0.432 0.527 0.580
1988 0.025 0.086 0.185 0.160 0.229
1989 0.093 0.391 0.363
1990 0.000 0.289
1991 0.072
T 0.341
k7 0.464
z? 0.134
Ty 0.181
b 1.301
a 0.020
¢ 1.360
z 0.957

Table 8: Estimation of the ultimate loss ratio for 1988.

We can also compute some supplemental values that, while not essential to our analysis, help us
to understand the results. Our estimated ultimate loss ratio for 1988 is the weighted average of 2 link
ratio estimate and a budgeted loss estimate. We have ¢ = §/Z = 1.360, giving 2 link ratio estimate
of y = cz = (1.360)(0.160) = 0.218. For the budgeted loss estimate we have y = § = 0.464. The
credibility assigned to the link ratio estimate is Z = d/c = 0.957, giving a least squares estimate of
y = (0.957)(0.218) + (0.043)(0.464) = 0.229. We expect a high credibility for the link ratio estimate
here; at this stage of maturity, only a small portion of the variance in z arises from the reporting
process. In fact, it is not uncommon for a to be negative in this part of the triangle; when this
happens we set Z = 1 and use a simple link ratio estimate, ignoring the budgeted loss estimate.

We move next to the 1989 accident year, this time using the relationship between the reported
loss ratio at 36 months and that at ultimate. We can now base the computation of @ and b upon the
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values for 1985-1988, building on the work done in the previous step. When the ultimate loss ratio
for 1989 has been determined, we continue working backwards to determine those for 1990 and 1991.

Reported Loss Ratio

AY 12mo. 24mo. 36 mo. 48 mo. 60 mo. Ultimate
1985 0.024 0024 0.049 0.153 0.199 0.219
1986 0.000 0.098 0.235 0439 0.540 0.594
1987 0.053 0297 0.396 0432 0527 0.580
1988 0.025 008 0.185  0.160 0.229 -
1989 0.093 0391 0.963 ) 0.576 -
1990 0.000 0.289 0.537
1991 0.072 - 0.497

z 0.032 0179 0.216 0.341

7 0456 0439 0405 0.464

z2 0.002 0052 0.062 0.134

zy 0.016 0.096 0.106 0.181

b 1027 088 1162 1.301

a 0422 0281 0.154 0.020 .

c 14078 2452 1873  1.360

A 0073 0361 0.620 0.957

Table 9: Estimation of ultimate loss ratios.

In this example Z increases steadily as the accident years mature and reported losses become more
credible. The value of ¢ decreases, as-one would expect. Similarly, the value of ¢ (which is what
our estimate of ultimate losses would have been if no losses had been reported) decreases over time.
These patterns provide a way to cross-check the work; data fluctuations can lead to unusual results,
and one should not believe the analysis if it makes no sense.

In the final step we apply the ultimate loss ratios to earned premium to obtain ultimate losses.

Ultimate
AY EP Loss Ratio Loss ($000)
1985 4260 0.219 932
1986 5563 0.594 3303
1987 77 0.580 4509
1988 8871 0.229 2030
1989 10465 0.576 6028
1990 11986 0.537 6434
1991 12873 0.497 6396

Table 10: Computation of ultimate losses.

The procedure used in this section is easy to use and requires only commonly available data. It
is less fragile than the link ratio method, as this example demonstrates—a link ratio analysis of this

18



Aat—, ‘”AlnlA reguire a great Aoa] of ndemant in colactine tha fartare Tn addi+s can nracant tha
O VYL ‘U‘iull 6 u“ ‘IZGIIU lll WiG\"'l“é RIACT AQAVWLIQ. AL q\‘u‘u.vll. “C A\ -2 ¢y PLWCIAV L7y ¥ 4t

analysis in a convenient tabular form Whlch allows us to examine the assumptions that lie beneath it.

Conclusion

Least squares development as presented by Simon and Clarke is not only practically useful, but also
justifiable on theoretical grounds. When random year to year fluctuations in loss experience are
severe, it tends to produce more reasonable estimates of ultimate loss. than the more familiar link
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Least squares development is by no means a panacea. Like any method, it works best when it is
used with a clear understanding of its limitations, and in conjunction with other appropriate methods.
When there are significant exposure changes or other shifts in the loss history, one can go astray unless
one makes the necessary corrections. Even under favorable circumstances the method is subject to
the type of sampling errors that are always present when one estimates parameters from observed
A.«..

Nevertheless, least squares development is 2 method that deserves a place in every actuary’s
toolbox. At my own company we now use this method in certain analysis situations; it can be most
helpful in developing losses for small states, or for lines that are subject to serious fluctuations. This
is especially true if one can use earned premium to adjust losses from past years to 2 level consistent
with the current year.

 Finally, the ideas presented here provide us with a conceptual framework that also helps us to
understand more traditional development methods, and to see the relationships between thermn. Such
an understanding must be our goal as we seek to deal intelligently with reserving and ratemaking
issues.

Appendix—Proof of Development Formulas 2 and 3

Proof of Development Formule 2: As usual, Var(X ) = VHM + EVPV. Since E(X|Y = y) = dy by
hypothesis, it follows that VAM = Vary (E(X|Y = y)) = Var(dY) = d?Ver(Y). This means that
Cov(X,Y) = Cov(Ey(X|Y),Y) = Cov(dY,Y)=dVer(Y) = VHEM/d.
The result now follows from Development Formula 1. We have
Cov(X,Y)
Ver(X) +EQX)
VHM /d
VHM + EVPV
= z% +(1- 2)EWY),

Lz) = (z—EX))

= (z—dE(Y))

+ E(Y)

where VEM

2= VBN T EVPV"

Proof of Development Formula 3: X we let W = X — z¢, then W and X share a common EVPV
and VHM . We can thus apply Development Formula 2 to W and Y to prove the formula.

19




LDF Curve-Fitting and Stochastic Reserving:
A Maximum Likelihood Approach

DavidR. Clark, FCAS,MAAA

41



LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach
or

How to Increase Reserve Variability with Less Data
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Abstract

An application of Maximum Likelithood Estimation (MLE) theory is demonstrated for
modeling the distribution of loss development based on data available in the common
triangle format. This model is used to estimate future loss emergence, and the variability
around that estimate. The value of using an exposure base to supplement the data in a
development triangle is demonstrated as a means of reducing variability. Practical issues

concerning estimation error and extrapolation are also discussed.
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Introduction

Many papers have been written on the topic of statistical modeling of the loss reserving
process. The present paper will focus on one such model, making use of the theory of
maximum likelihood estimation (MLE) along with the common Loss Development
Factor and Cape Cod techniques. After a review of the underlying theory, the bulk of this
paper is devoted to a practical example showing how to make use of the techniques and

how to interpret the output.

Before beginning a discussion of a formal model of loss reserving, it is worth re-stating

the objectives in creating such a model.

The primary objective is to provide a tool that describes the loss emergence (either

reporting or payment) phenomenon in simple mathematical terms as a guide to selecting
amounts for carried reserves. Given the complexity of the insurance business, it should
never be expected that a model will replace a knowledgeable analyst, but the model can

become one key indication to assist them in selecting the reserve.

A secondary objective is to provide a means of estimating the range of possible outcomes
around the “expected” reserve. The range of reserves is due to both random “process”

variance, and the uncertainty in the estimate of the expected value.

From these objectives, we see that a statistical loss reserving model has two key
elements:
® The expected amount of loss to emerge in some time period

e The distribution of actual emergence around the expected value

These two elements of our model will be described in detail in the first two sections of

this paper. The full paper is oulined as follows:
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Section 1:

Section 2:

Section 3:
Section 4:

Section 5:

The practical example includes a demonstration of the reduction in variability possible

from the use of an exposure base in the Cape Cod reserving method. Extensions of the

Expected Loss Emergence

The Distribution of Actual Loss Emergence and Maximum
Liketihood

Key Assumptions of the Model

A Practical Example

Comments and Conclusion

mode] for estimating variability of the prospective loss projection or of discounted

reserves are discussed more briefly.

Most of the material presented in this paper makes use of maximum likelthood theory
that has already been described more rigorously elsewhere. The mathematics presented

here is sufficient for the reader to reproduce the calculations in the examples given, but

the focus will be on practical issues rather than on the statistical theory itself.



Section 1: Expected Loss Emergence

Our model will estimate the expected amount of loss to emerge based on a) an estimate of

the ultimate loss by year, and b) an estimate of the pattern of loss emergence.

For the expected emergence pattern, we need a pattern that moves from 0 to 100% as
time moves from 0 to 8. For our model, we will assume that this pattern is described
using the form of a cumulative distribution function' (CDF), since a library of such
curves is readily available.

G(x) = 1/LDF, =cumulative % reported (or paid) as of time x

100.0%
90.0%

80.0%
70.0% //

60.0% /
50.0% /
40.0% /
30.0%
20.0% /
10.0% /
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

AY Age in Months, x

G{x)

Cumulative Percent of Ultimate

We will assume that the time index “x” represents the time from the “average™ accident
date to the evaluation date. The details for approximating different exposure periods

(e.g., accident year versus policy year) are given in Appendix B.

For convenience, the model will include two familiar curve forms: Weibull and
Loglogistic. Each of these curve forms can be parameterized with a scale 0 and a shape

o (“warp”). The Loglogistic curve is familiar to many actuaries under the name “inverse

! We are using the formof the distribution function, but do not mean to imply any probabilistic model. The
paper by Weissner [9] makes the report lag itself the random variable. By contrast, the loss dollars will be
the random variable in our application.
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power” (see Sherman® [8]), and will be considered the benchmark result. The Weibull

will generally provide a smaller “tail” factor than the Loglogistic.

The Loglogistic curve has the form:
Glx|w,9) = 2 — LDF, = 146°x™
x¥ +8°

The Weibull curve has the form:

G(x|®,6) = 1-expl-(x/6))

In using these curve forms, we are assuming that the expected loss emergence will move
from 0% to 100% in a strictly increasing pattern. The mode! will still work if some
actual points show decreasing losses, but if there is real expected negative development
(e.g., lines of business with significant salvage recoveries) then a different model should

be used.

There are several advantages to using parameterized curves to describe the expected
emergence pattern. First, the estimation probiem is simplified because we only need to
estimate the two parameters. Second, we can use data that is not strictly from a triangle
with evenly spaced evaluation dates — such as the frequent case in which the latest
diagonal is only nine months from the second latest diagonal. Third, the final indicated
pattern is a smooth curve and does not follow every random movement in the historical

age-to-age factors.

The next step in estimating the amount of loss emergence by period is to apply the

emergence pattern G(x), to an estimate of the ultimate loss by accidert year.

Our model will base the estimate of the ultimate loss by year on one of two methods:

either the LDF or the Cape Cod method. The LDF method assumes that the ultimate loss

2 Sherman actually applies the inverse power curve to the link ratios between ages. Our model will apply
this curve to the age-to-ultimate pattern.
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amount in each accident year is independent of the losses in other years. The Cape Cod
method assumes that there is a known relationship between the amount of ultimate loss
expected in each of the years in the historical period, and that this relationship is
identified by an exposure base. The exposure base is usually onlevel premium, but can be
any other index (such as sales or payroll), which is reasonably assumed to be proportional

to expected loss.

The expected loss for a given period will be denoted:

My, = expected incremental loss dollars in accident year AY

between ages x and y

Then the two methods for the expected loss emergence are:

Method #1: __“Cape Cod”

Harsy = Premim ,-ELR-[G(y|®,0)-G(x|®,0)]
Three parameters: ELR, w, 0
Method #2: “LDF”
Barey = ULTy [Gy]0,6)~G(x|@,0)]
n+2 Parameters: n Accident Years (one ULT for each AY)+ w, 6

While both of these methods are availabie for use in estimating reserves, Method #1 will
generally be preferred. Because we are working with data summarized into annual

blocks as a development triangle, there will be relatively few data points included in the
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mode] (one data point for each “cell” in the triangle). There is a real problem with

overparameterization when the LDF method is used.

For example, if we have a triangle for ten accident years then we have provided the
model with 55 data points. The Cape Cod method requires estimation of 3 parameters,

but the LDF method requires estimation of 12 parameters.

The Cape Cod method may have somewhat higher process variance estimated, but will
usually produce a significantly smaller estimation error. This is the value of the
information in the exposure base provided by the user®. In short: the more information

that we can give to the model, the smaller the reserve variability due to estimation error.

The fact that variance can be reduced by incorporating more information into a reserve

analysis is, of course, the point of our ironic subtitle: How to Increase Reserve Variability

with Less Data. The point is obvious, but also easy to overlook. The reduction in
variability is important even to those who do not explicitly calculate reserve ranges
because it still guides us towards better estimation methods: lower variance implies a

better reserve estimate.

® Halliwell 2] provides additional arguments for the use of an exposure index. See especially pages 441-
443,
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Section 2: The Distribution of Actual Loss Emergence and Maximum Likelihood
Having defined the model for the expected loss emergence, we need to estimate the
“best” parameters for that model and, as a secondary goal, estimate the variance around
the expected value. Both of these steps will be accomplished making use of maximum

likelihood theory.

The variance will be estimated in two pieces: process variance (the “random” amount)

and parameter variance (the uncertainty in our estimator).

2.1 Process Variance

The curve G(x|,8) represents the expected loss emergence pattern. The actual loss

emergence will have a distribution around this expectation.

We assume that the loss in any period has a constant ratio of variance/mean’*:

2
Variance _ o = 1 < (CAY,A _ﬂu;)
Mean n=p ay. Har,
where p  =# of parameters

¢4y, = actual incremental loss emergence

Wy, =expected incremental loss emergence

(this is recognized as being equivalent to a chi-square error term)

For estimating the parameters of our model, we will further assume that the actual

incremental loss emergence “c” follows an over-dispersed Poisson distribution. That is,

the loss dollars will be a Poisson random variable times a scaling factor equal to ¢ 2.

* This assumption will be tested by analysis of residuals in our example.
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Ae™

Elx] = V.ar(x) = A

Standard Poisson: Pr(x) = ;
X:
lc/o’ ‘e—l
ActualLoss: ¢ = x-0® Pr(c) = ———— Elc] = A-6? =
(c/o?)!

Var(c) = A-¢* = p-o?
The “over-dispersed Poisson” sounds strange when it is first encountered, but it quickly
proves to have some key advantages. First, inclusion of the scaling factor allows us to

match the first and second moments of any distribution, which gives the model a high

degree of flexibility. Second, maximum likelihood estimation exactly produces the LDF

and Cape Cod estimates of ultimate, so the results can be presented in a format familiar to

reserving actuaries.

The fact that the distribution of ultimate reserves is approximated by a discretized curve
should not be cause for concern. The scale factor o? is generally small compared to the
mean, so little precision is lost. Also, the use of a discrete distribution allows for a mass
point at zero, representing the cases in which no change in loss is seen in a given

development increment:

Finally, we should remember that this maximum likelihood method is intended to
produce the mean and variance of the distribution of reserves. Having estimated those
two numbers, we are still free to switch to a different distribution form when the results
are used in other applications.

2.2 The Likelihood Function — Finding the “Best” Parameters

The likelihood function is:

o Ac,/U‘A -4, “i/o_z ‘/az_e-u,/a‘
Likelihood = HPr(c,) = H ‘(c./oze)! = H( (CT/O'Z)!

i
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This can be maximized using the logarithm of the likelihood function:

LogLikelihood = ¥ (c,/0?)-(,/0?)-p, /6% ~In((c, /0?)1)

Which is equivalent to maximizing:

¢ = Y, m(y)-p if 6% is assumed to be known

Maximum likelihood estimators of the parameters are found by setting the first
derivatives of the loglikelihood function ¢ equal to zero:

ae e _ 3L

JELR 26 Fr

For “Model #1: Cape Cod”, the loglikelihood function becomes:

¢ = Y, m(ELR- P, -[G(x,)-Glx,,))- ELR- P, [G(x,)- G(x,.,)])

3
where ¢,, =actual loss in accident year i, development period ¢

P =Premium for accident year i

x,., = beginning age for development period ¢

x, = ending age for development period ¢

e _ z(_c_f:__g.[c(x,)—c(x,_l)]]

9ELR <~\'ELR
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a¢ Z Cu

= 0, ELR =
" JELR > P[6(x)-G(x,,)]
if

The MLE estimate for ELR is therefore equivalent to the “Cape Cod” Ultimate. It can be

set based on 6 and @, and so reduce the problem to be solved to two parameters instead
of three.

For “Model #2: LDF”, the loglikelihood function becomes:

¢ = Y, mULT[G(x,)-Glx,, )-ULT, -[G(x,)- G(x,.,)])

it

ULT, ULT,

2 _ ;( _[G(x,)-c(x,_,nJ

ar 2,
For —— = 0, ULT, = .
" duLt, S [6(x,)-Glx,..)

t

The MLE estimate for each ULT, is therefore equivalent to the “LDF Ultimate™. It can

also be set based on 8 and @, and to again reduce the problem to be solved to two

parameters instead of n+2.

A final comment worth noting is that the maximum loglikelihood function never takes

the logarithm of the actual incremental development c,,. The model will work even if

some of these amounts are zero or negative.

5 See Mack (5], Appendix A, for a further discussion of this relationship.
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2.3 Parameter Variance®

The second step is to find the variance in the estimate of the parameters. This is done
based on the Rao-Cramer approximation, using the second derivative information matrix

I, and is commonly called the “Delta Method” (c.f. Klugman, et al [3], page 67).

The second derivative information matrix for the “Cape Cod Method” is 3x3 and assumes

the same ELR for all accident years:

¢, ; e, 23%
,z,aELR_Z_ N _,z;' OELROw 4~ JELRD?

i
LTI, EL

I = E_ | ’ :
%“awBELR ! ; dw’ ,;aw 9?

3, | <9, 2’¢,,

;a?aELR i g,"a?aw ; 9?2

The covariance matrix is calculated using the inverse of the Information matrix:

Var(ELR) ~ CoWELR,w) Cow(ELR,6)
L = |Covw,ELR) Var(w) Cow,8) | 2 -o*.I"
Cov(6,ELR) Cow8,0) Var(9)

The scale factor 6* is again estimated as above:

The second derivative matrix for “LDF Method” is (n+2)x(n+2) and assumes that there is

a different ULT for each accident year. The information matrix, 7/, is given as:

$Tobe precise, we are calculating the variance in the gstimator of the parameter; the parameter itself does
not have any variance. Nonetheless, we will retain the term “parameter variance” as shorthand.
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The covariance matrix X is again calculated using the inverse of the Information matrix,

but for the LDF Method this matrix is larger.
2.4 The Variance of the Reserves

The final step is to estimate the variance in the reserves. The variance is broken into two
pieces: the process variances and the estimation error (loosely “parameter variance”). For

an estimate of loss reserves R for a given period it .., or group of periods z Havoey

the process variance is given by:
Process Variance of R: o’ Z,u/,yw

The estimation error makes use of the covariance matrix X calculated above:
,

Parameter Variance of R: Var(E[R]) = (OR) -Z-{0R)

where

/ \ / " \
OR = 1_9_12_’_8_@,9_15\ or oR = (__a_j_e_. 795’9_15\

\OELR’ 90 " dw/ \(QULT, |, 90 ' dw/
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The future reserve R, under the Cape Cod method is given by:
Reserve: R = ZPnemlum ; -ELR-(G(y,.)— G(x,. )
The derivatives needed are then easily calculated:

ai}zx = Y Premium - (G(»,) - G(x,))

IR . REICARICED
36 Z}IE““‘"“"ELR( 36 a6

oR ) 3G(y,) 9G(x,)
— Premium | - ELR | —=+~ ————

ow 2, Premium, ( dw ow

For the LDF Method, let Premium ;, =1 and ELR =ULT,.

All of the mathematics needed for the estimate of the process and parameter variance is
provided in Appendix A. For the two curve forms used, all of the derivatives are

calculated analytically, without the need for numerical approximations.
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Section 3: Key Assumptions of this Model

Incremental losses are independent and identically distributed (iid)

The assumption that all observed points are independent and identically distributed is
the famous “iid” of classical statistics. In introductory textbooks this is often
illustrated by the problem of estimating the proportion of red and black balis in an um
based on having “randomly” selected a sample from the um. The “independence”
assumption is that the balls are shaken up after each draw, so that we do not always
pull out the same ball each time. The “identically distributed” assumption is that we

are always taking the sample from the same urn.

The “independence” assumption in the reserving context is that one period does not

affect the surrounding periods. This is a tenuous assumption but will be tested using
residual analysis. There may in fact be positive correlation if all periods are equally
impacted by a change in loss inflation. There may also be negative correlation if a

large settlement in one period replaces a stream of payments in later periods.

The “identically distributed” assumption is also difficult to justify on first principles.
We are assuming that the emergence pattern is the same for all accident years; which
is clearly a gross simplification from even a rudimentary understanding of insurance
phenomenon. Different risks and mix of business would have been written in each
historical period, and subject to different claims handling and settlement strategies.

Nonetheless, a parsimonious model requires this simplification.

The Variance/Mean Scale Parameter ¢ ° is fixed and known

In rigorous maximum likelihood theory, the variance/mean scale parameter ¢’
should be estimated simultaneously with the other model parameters, and the variance

around its estimate included in our covariance matrix.
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Unfortunately, including the scale parameter in the curve-fitting procedure leads to
mathematics that quickly becomes intractable. Treating the scale parameter as fixed
and known is an approximation made for convenience in the calculation, and the
results are sometimes called “quasi-likelihood estimators”. McCullough & Nelder {7]

give support for the approximation that we are using.

In effect, we are ignoring the variance on the variance.

In classical statistics, we usualty relax this assumption (e.g., in hypothesis testing) by
using the Student-T distribution instead of the Normal distribution. Rodney Kreps’
paper [4] provides additional discussion on how reserve ranges could increase when

this additional source of variability is considered.

Variance estimates are based on an approximation to the Rao-Cramer lower bound.

The estimate of variance based on the information matrix is only exact when we are
using linear functions. In the case of non-linear functions, including our model, the

variance estimate is a Rao-Cramer lower bound.

Technically, the Rao-Cramer lower bound is based on the true expected values of the
second derivative matrix. Since we are using approximations that plug in the
estimated values of the parameters, the result is sometimes called the “observed”
information matrix rather than the “expected” information matrix. Again, this is a
limitation common to many statistical models and is due to the fact that we do not

know the true parameters.
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All of the key assumptions listed above need to be kept in mind by the user of a
stochastic reserving model. In general, they imply that there is potential for more

variability in future loss emergence than the model itself produces.

Such limitations should not lead the user, or any of the recipients of the output, to
disregard the results. We simply want to be clear about what sources of variability we
are able to measure and what sources cannot be measured. That is a distinction that

should not be lost.
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Section 4:

4.1 The LDF Method

A Practical Example

For the first part of this example, we will use the “LDF Method” (referred to above as

“Method 2”). The improvements in the model by moving to the Cape Cod method will

be apparent as the numbers are calculated.

The triangle used in this example is taken from the 1993 Thomas Mack paper [6]. The

accident years have been added to make the display appear more familiar.

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

12

357,848
352,118
290,507
310,608
443,160
396,132
440,832
359,480
376,686
344,014

24 6

1,124,788 1,735,330
1,236,139 2,170,033
1,292,306 2,218,525
1,418,858 2,195,047
1,136,350 2,128,333
1,333,217 2,180,715
1,288,463 2,419,861
1,421,128 2,864,498
1,363,294

48

2,182,708
3,353,322
3,235,179
3,757,447
2,897,821
2,985,752
3,483,130

60

2,745,596
3,799,067
3,985,995
4,029,929
3,402,672
3,691,712

72

3,319,994
4,120,063
4,132,918
4,381,982

3,873,311

84

%6 108 120

3,466,336 3,606,286 3,833,515 3,901,463
4,647,867 4,914,039 5,339,085
4,628,910 4,909,315

4,588,268

The incremental triangle, calculated by taking differences between cells in each accident

year, is given by:

1881
1992
1983
1994
1995
1996
1997
1998
1999
2000

12

357,848
352,118
290,507
310,608
443,160
396,132
440,832
359,480
376,686
344,014

24 6

766,940 610,542
884,021 933,894

1,001,798 926,219

1,108,250 776,189
693,190 991,983
937,085 847498
847,631 1,131,308

1,061,648 1,443,370
986,608

48

447,378
1,183,289
1,016,654
1,562,400

769,488

805,037
1,063,269

60

562,888
445,745
750,816
272,482
504,851
705,960

72

574,308
320,996
146,923
352,083
470,639

84

146,342
527,804
495,992
206,286

% 108 120

139,950 227,229 67,948
266,172 425046
280,405

This incremental triangle is actually better arranged as a table of values, rather than in the

familiar triangular format (see Table 1.1). In the tabular format, the column labeled

“Increment” is the value that we will be approximating with the expression
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Harny = ULT,-[Gy|®,0)-G(x|@,6)).
The x and y values are the “From” and “To” dates.
Before calculating the fitted values, it is worth showing the flexibility in this format.
First, if we have only the latest three evaluations of the triangle, we can still use this

method directly.

The original triangle becomes:

12 24 36 48 60 72 84 9% 108 120
1991 3,606,286 3,833,515 3,901,463
1992 4,647,867 4,914,039 5,339,085
1993 4,132,918 4,628,910 4,909,315
1984 4,028,929 4,381,982 4,588,268
1995 2,897,821 3,402,672 3,873,311
1996 2,180,715 2,985,752 3,691,712
1997 1,288,463 2,419,861 3,483,130

1998 359,480 1.421,128 2,864,498
1999 376,686 1,363,294
2000 344,014

and the incremental triangle is:

12 24 3 48 60 72 84 % 108 120
1991 3,606,286 227,229 67,948
1992 4,647,867 266,172 425,046
1993 4,132,918 495992 280,405
1994 4,029,929 352,053 206,286
1995 2,897,821 504,851 470,639
1996 2,180,715 805,037 705,960
1997 1,288,463 1,131,398 1,063,269

1998 359,480 1,061,648 1,443,370
1999 376,686 986,608
2000 344,014

The tabular format then collapses from 55 rows down to 27 rows, as shown in Table 1.2.

Another common difficulty in working with development triangles is the use of irregular

evaluation periods. For example, we may have accident years evaluated at each year-end
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- producing ages 12, 24, 36, etc — but the most recent diagonal is only available as of the
end of the third quarter (ages 9, 21, 33, etc). This is put into the tabular format by simply
changing the evaluation age fields (“Diag Age”) as shown in Tabk 1.3.

Returning to the original triangle, we calculate the fitted values for a set of parameters

ULT,,, ®,0 and the MLE term to be maximized.

Fitted Value: Uarn, = ULT,-[Gy|®,8)-G(x|w,0)]

MLE Tem: cAY;x,y . ln(P'AY;x.y)- uAY;x,y

In Table 1.4, these numbers are shown as additional columns. These values also have the

desired unbiased property that the sum of the actual incremental dollars ¢,y , equals the

sum of the fitted values f,,, .

The fitted parameters for the Loglogistic growth curve are:

(0] 1.434294
6 48.6249

The fitted parameters are found by iteration, which can easily be accomplished in the
statistics capabilities of most software packages. Once the data has been arranged in the

tabular format, the curve-fitting can even be done in a spreadsheet.

The scale parameter 6 is also easily calculated. We recall that the form of this
calculation is the same as a Chi-Square statistic, with 43 degrees of freedom (55 data
points minus 12 parameters). The resulting o2 is 65,029. This scale factor may be
théught of as the size of the discrete intervals for the over-dispersed Poisson, but is better

thought of simply as the process variance-to-mean ratio. As such, we can calculate the
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process variance of the total reserve, or any sub-segment of the reserve, by just

multiplying by 65,029.

The scale factor o'? is also useful for a review of the model residuals (error terms).

Crpy —H .
Normalized Residual: r = —————( Alixy H””‘")

AYx,y 7 "
(=} '.uAY;x,y

The residuals can be plotted in various ways in order to test the assumptions in the model.
The graph below shows the residuals plotted against the increment of loss emergence.
We would hope that the residuals would be randomly scattered around the zero line for
all of the ages, and that the amount of variability would be roughly constant. The graph
below tells us that the curve form is perhaps not perfect for the early 12 and 24 points,

but the pattern is not enough to reject the model outright.

= 4
[}
g3 *
[73
@ 2
4 * ®
1 4
%o $ . .2
T [ z $ ¢ ‘ ry
,E,-z |
Z.3 — T T T T T T T - v
o 12 24 36 48 60 72 84 96 108 120
Increment Age

A second residual plot of the residuals against the expected loss in each increment (the
fitted values) is shown below. This graph is useful as a check on the assumption that the
variance/mean ratio is constant. If the variance/mean ratio were not constant, then we

would expect to see the residuals much closer to the zero line at one end of the graph.
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Normalized Residual

-2
-3

Loanw s
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250,000

500,000

750,000

1,000,000

Expected Incremental Loss

T

1,260,000

1,500,000

The residuals can also be plotted against the accident year, the calendar year of

emergence (to test diagonal effects), or any other variable of interest. The desired

outcome is always that the residuals appear to be randomly scattered around the zero line.

Any noticeable pattern or autocorrelation is an indication that the some of the model

assumptions are incorrect.

Having solved for the parameters @ and 6, and the derived ultimates by year, we can

estimate the needed reserves.

Accident

Year

1991
1992
1993
1984
1995
1996
1997
1998
1999
2000

Total

Reported
Losses

3,901,463
5,339,085
4,809,315
4,588,268
3,873,311
3,691,712
3.483,130
2,864,498
1,363,294

344,014

34,358,090

Age at
12/31/2000

120
108
96
84
72
60
48
36
24
12

Average
Age (x)

114
102
90
78
66

42
30
18

6

Growth
Function

77.24%
74.32%
70.75%
66.32%
60.78%
53.75%
44.77%
33.34%
19.38%

4.74%

Fitted
LDF

1.2946
1.3456
1.4136
1.5077
1.6452
1.8604
22338
2.9991
5.1593
21.1073

Ultimate
Losses

5,050,867
7,184,079
6,939,399
6,917,862
6,372,348
6,867,980
7.780,515
8,590,793
7.033,659
7,261,205

69,998,708

Estimated
Reserves

1,149,404
1,844,994
2,030,084
2,329,594
2,499,037
3,176,268
4,297,385
5,726,295
5,670,365
6,917,191

35,640,618

From this initial calculation, we can quickly see the impact of the extrapolated “tail”

factor. Our loss development data only includes ten years of development (out to age 120

months), but the growth curve extrapolates the losses to full ultimate. From this data, the

Loglogistic curve estimates that only 77.24% of ultimate loss has emerged as of ten

years.
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Extrapolation should always be used cautiously. For practical purposes, we may want to

rely on the extrapolation only out to some finite point — an additional ten years say.

Accident
Year

1991
1992
1893
1994
1995
1996
1997
1998
1999
2000

Total

Reported
Losses

3,901,463
5,339,085
4,909,315
4,588,268
3,873,311
3.601,712
3,483,130
2,864,498
1,363,204

344,014

34,358,090

Age at Average Growth Fited  Truncated
12/31/2000 Age (x) Function LOF LDF
240 234 90.50% 1.1050 1.0000
120 114 77.24% 1.2946 1.1718
108 102 74.32% 1.3456 1.2177
9% 90 70.75% 1.4135 1.2792

84 78 66.32% 1.5077 1.3644

72 66 60.78% 1.8452 1.4888

60 54 53.75% 1.8604 1.6836

48 42 44.77% 2.2338 2.0218

36 30 33.34% 29991 27140

24 4 19.38% 51593 4.6689

12 [ 4.74% 21.1073 19.1012

Losses
at 240 mo

4.570.810
6,501,273
6,279,848
6,260,358
5,766,692
6.215,217
7,041,021
7,774,286
6,365,149
6,571,068

63,345,723

Estimated
Reserves

669,347
1,162,188
1.370,633
1,672,080
1,893,381
2,523,505
3,557,891
4,909,788
5,001,855
6,227,054

28,987,633

As noted above, the process variance for the estimated reserve of 28,987,633 is found by

multiplying by the variance-to- mean ratio of 65,029. The process standard deviation

around our reserve is therefore 1,372,966 for a coefficient of variation (CV = SD/mean)

of about 4.7%.

As an alternative to truncating the tail factor at a selected point, such as age 240, we

could make use of a growth curve that typically has a lighter “tail”. The mathematics for

the Weibull curve is provided for this purpose. An example including a fit of the Weibull

curve is shown below.

Accident
Year

1991
1992
1983
1994
1995
1996
1997
1998
1999
2000

Total

Reported
Losses

3,901,463
6,339,085
4,809,315
4,588,268
3,873,311
3,691,712
3,483,130
2,864,498
1,363,294

344,014

34,358,090

Age at
121312000

120
108

Average
Age {x)

114
102
90
78
66
54
42
30
18
6

Growth
Function

95.01%
92.54%
88.00%
84.01%
77.14%
67.95%
56.01%
41.19%
23.94%

6.37%
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Weibull
LDF

1.0525
1.0806
11237
1.1904
1.2963
14717
1.7853
24277
41764
16.6937

Uitimate
Losses

4,106,189
5,769,409
5,516,376
5.461,745
5,020,847
5,433,242
6,218,284
6,954,204
5,693,693
5,308,863

55,572,851

Estimated
Reserves

204,726
430,324
607,061
873,477
1,147,536
1,741,530
2,735,154
4,089,708
4,330,399
5,054,849

21,214,761



The fitted Weibull parameters 8 and @ are 48.88453 and 1.296906, respectively. The
lower “tail” factor of 1.0525 (instead of 1.2946 for the Loglogistic) may be more in line
with the actuary’s expectation for casualty business. The difference between the two
curve forms also highlights the danger in relying on a purely mechanical extrapolation
formula. The selection of a truncation point is an effective way of reducing the reliance

on the extrapolation when the thicker-tailed Loglogistic is used.

The next step is our estimate of the parameter variance.

The parameter variance calculation is more involved than what was needed for process
variance. As discussed in Section 2.3, we need to first evaluate the Information Matrix,
which contains the second derivatives with respect to all of the model parameters, and so
is a 12x12 matrix. The mathematics for all of these calculations is given in Appendix A,
and is not difficult to program in most software. For purposes of this example, we will

simply show the resulting variances:

Accident Reported Estimated Process Parameter Total

Year Losses Reserves Std Dev cv Std Dev cv Std Dev v

1891 3,901,463 669,347 208,631 31.2% 158,088 23.6% 261,761  39.1%
1992 5,339,085 1,162,188 274911 237% 257,205 221% 376471 324%
1993 4,909,315 1,370,533 298,537 21.8% 298,628 21.8% 422,260 30.8%
1994 4,588,268 1,672,090 320,749 19.7% 356,827 21.3% 485,860 29.1%
1995 3,873,311 1,893,381 350881 18.5% 401,416 21.2% 533,160 28.2%
1996 3,691,712 2,523,505 405,094 16.1% 518,226 20.5% 657,768 26.1%
1997 3,483,130 3,557,891 481,005 13.5% 704,523 18.8% 853,064 24.0%
1998 2,864,498 4,909,788 565,047 11.5% 968,808 19.7% 1,121,545 228%
1998 1,363,204 5,001,855 570,321 11.4% 1,227,880 24.5% 1,353,867 27.1%
2000 344,014 6,227,054 636,348 10.2% 2,838,890 45.6% 2,909,336  46.7%
Total 34,358,090 28,987,633 1372966 4.7% 4,688,826 16.2% 4885707 16.9%

From this table, one conclusion should be readily apparent: the parameter variance
component is much more significant than the process variance. The chief reason for this
is that we have overparameterization of our model; that is, the available 55 data points are
really not sufficient-to estimate the 12 parameters of the model. The 1994 Zehnwirth
paper ([10], p. 512f) gives a helpful discussion of the dangers of overparameterization.
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The main problem is that we are estimating the ultimate loss for each accident year
independently from the ultimate losses in the other accident years. In effect, we are
saying that knowing the ultimate loss for accident year 1999 provides no information
about the ultimate loss for accident year 2000. As such, our model is fitting to what may

Jjust be “noise™ in the differences from one year to the next.

This conclusion is unsettling, because it indicates a high level of uncertainty not just in

our maximum likelihood model, but in the chain-ladder LDF method in general.

4.2 The Cape Cod Method

A natural alternative to the LDF Method is the Cape Cod method. In order to move on to
this method, we need to supplement the loss development triangle with an exposure base

that is believed to be proportional to ultimate expected losses by accident year. A natural
candidate for the exposure base is onlevel premium — premium that has been adjusted to a

common level of rate per exposure.

Unadjusted historical premium could be used for this exposure base, but the impact of the
market cycle on premium is likely to distort the results. We prefer onlevel premium so
that the assumption of a constant expected loss ratio (ELR) across all accident years is

reasonable.

A further refinement would include an adjustment for loss trend net of exposure trerd, so

that all years are at the same cost level as well as rate level.
There may be other candidates for the exposure index: sometimes the original loss

projections by year are available; the use of estimated claim counts has also been

suggested. In practice, even a judgmentally selected index may be used.
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For the example in the Mack paper, no exposure base was supplied. For this exercise, we
will use a simplifying assumption that premium was $10,000,000 in 1991 and increased

by $400,000 each subsequent year.

The tabular format of our loss data is shown in Table 2.1. This is very similar to the
format used for the LDF Method but instead of the “AY Total” column (latest diagonal),
we display the onlevel premium for each accident year. The expected ultimate loss by

year is calculated as the ELR multiplied by the onlevel premium.

Accident Onlevel Age at Average Growth Premium x Reported Ultimate
Year Premium  12/31/2000 Age (x) Function Growth Func Losses  Loss Ratio
1991 10,000,000 120 114 77.76% 7,775,733 3,901,463 50.17%
1992 10,400,000 108 102 74.85% 7,784,279 5,339,085 68.59%
1993 10,800,000 96 20 71.29% 7,699,022 4,908,315 63.77%
1994 11,200,000 84 78 66.87% 7.489,209 4,588,268 61.27%
1995 11,600,000 72 66 61.31% 7.112,024 3,873,311 54.46%
1996 12,000,000 60 54 54.24% 6,508,439 3,691,712 56.72%
1997 12,400,000 48 42 45.17% 5,600,712 3,483,130 62.19%
1998 12,800,000 36 30 33.60% 4,301,252 2,864,498 66.60%
1999 13,200,000 24 8 19.46% 2,568,496 1,363,294 53.08%
2000 13,600,000 12 [ 4.69% 638,334 344,014 53.89%
Total 118,000,000 57477500 34,358,000

The Loglogistic parameters are again solved for iteratively in order to maximize the
value of the log-likelihood function in Table 2.1. The resulting parameters are similar to
those produced by the LDF method.

[ 1.447634
6 48.0205

One check that should be made on the data before we proceed with the reserve estimate is

a quick test on the assumption that the ELR is constant over all accident years. This is

best done with a graph of the estimated ultimate loss ratios:
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_ From this graph, the ultimate loss ratios by year do not appear to be following a strong

autocorrelation pattern, or other unexplained trends. If we had observed an increasing or

decreasing pattern, then there could be a concern of bias introduced in our reserve

estimate.

The following calculation shows the method of estimating reserves out to the 240 month

evaluation point. As in the LDF method, this truncation point is used in order avoid

undue reliance on a mechanical extrapolation formula.

The Cape Cod method works much like the more familiar Bornhuetter-Ferguson formula.

Estimated reserves are calculated as a percent of the premium and the calculated expected

loss ratio (ELR).

Accident Onlevel Ageat  Average Growth  90.83% minus

Year Premium - 12/31/2000 Age () Function Growth Func
——A0 234 083%

1991 10,000,000 120 114 71.76% 13.07%
19892 10,400,000 108 102, 74.85% 15.98%
1993 10,800,000 96 20 71.29% 19.54%
1994 11,200,000 84 78 66.87% 23.96%
1995 11,600,000 72 % 61.31% 20.52%
1996 12,000,000 60 54 54.24% 36.59%
19¢7 12,400,000 48 42 45.17% 45.66%
1998 12,800,000 36 30 33.60% 57.22%
1999 13,200,000 24 18 19.48% 71.37%
2000 13,600,000 12 6 4.69% 86.13%
Total 118,000,000

Premium
xELR

5,977,659
6,216,765
6,455,872
6,694,978
6,934,085
7,173,191
7.412,297
7,651,404
7,890,510
8,129,616

70,536,377

Estimated
Reserves

781,218

893,281
1,261,416
1,604,006
2,046,646
2,624,620
3,384,400
4,378,344
5,631,298
7,002,255

29,707,484

For the variance calculation, we again begin with the process variance/mean ratio, which

follows the chi-square formula. The sum of chi-square values is divided by 52 (55 data

poinits minus 3 parameters), resulting ina o? of 61,577. This tutns out to be less than
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the 65,029 calculated for the LDF method because there we divided by 43 (55 data points

minus 12 parameters).

The covariance matrix is estimated from the second derivative Information Matrix, and
results in the following:

ELR 0] 0
ELR (0.002421 -0.002997 0.242396
(] 0.002997 0.007853 -0.401000
7] 0.242396 -0.401000 33.021994

The standard deviation of our reserve estimate is calculated in the following table.

Accident Reported Estimated Process Parameter Total

Year Losses Reserves Sid Dev cv Std Dev cv Std Dev cv

1991 3,901,463 781,218 219,329 28.1% 158913 20.3% 270848 34.7%
1992 5,339,085 993,281 247,312 24.9% 192,103  19.3% 313,156 31.5%
1993 4909315 1,261,416 278,701 221% 229,523 18.2% 361,047 28.6%
1994 4,588,268 1,604,006 314,277 19.6% 270,790 16.9% 414,846 259%
1995 3,873,311 2,046,646 355,002  17.3% 314,629 154% 474,360 23.2%
1996 3,691,712 2,624,620 402,015 15.3% 358,200 13.6% 538445 20.5%
1897 3,483,130 3,384,400 456,510 13.5% 396,353 11.7% 604,563 17.9%
1998 2,864,498 4,378,344 519,235 11.9% 421,934 96% 669,064 15.3%
1999 1,363,294 5,631,208 588,862 10.5% 430,873 77% 729,664 13.0%
2000 344,014 7,002,255 656,641  9.4% 439,441 63% 790,118  11.3%
Total 34,358,090 29,707,484 1,352,515 46% 3,143,967 10.6% 3.422,547 11.5%

In the earlier LDF example, the standard deviation on the overall reserve was 4,885,707
and this reduces to 3,422,547 when we switch to the Cape Cod method. The reduction is
primarily seen in the more recent years 1999 and 2000, but is generally true for the full
loss history. The reduction in the variance (the standard deviations squared) is even more

extreme — the overall variance in reserves is cut in half.

This conclusion is at first surprising, since the two methods are very familiar to most
actuaries. The difference is that we are making use of more information in the Cape Cod
method, namely the onlevel premium by year, and this information allows us to make a

significantly better estimate of the reserve.
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4.3 Other Calculations Possible with this Model

Once the maximum likelihood calculations have been done, there are some other uses for
the statistics besides the variance of the overall reserve. We will briefly look at three of

these uses.
4.3.1 Variance of the Prospective Losses

Reserve reviews always focus on losses that have already occurred, but there is an
intimate connection to the forecast of losses for the prospective period. The variability

estimates from the Cape Cod method help us make this connection.

If the prospective period is estimated to include 14,000,000 in premium, we have a ready
estimate of expected loss as 8,369,200 based on our 59.78% ELR. The process variance

is calculated using the variance/mean multiplier 61,577, producing a CV of 8.6%.

The parameter variance is also readily calculated using the covariance matrix from the

earlier calculation.

ELR w 6
ELR (0.002421 -0.002997 0.242396
0] 0.002997 0.007853 -0.401000
7] 0.242396 -0.401000 33.021994

The .002421 variance on the ELR translates to a standard deviation of 4.92% (by taking
the square root) around our estimated ELR of 59.78%. Combined with the process

variance, we have a total CV of 11.9%.

The CV from this estimate can then be compared to numbers produced by other

prospective pricing tools.
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4.3.2 Calendar Year Development

The stochastic reserving model can also be used to estimate development or payment for
the next calendar year period beyond the latest diagonal. An example, using the LDF

method is shown below.

Accident Reported Age at Growth Age at Growth Estimated Est. 12 month
Year Losses  12/31/2000 Function  12/31/2001 Function Ultimate Development
1991 3,901,463 120 T77.24% 132 79.67% 6,050,867 122,450
1992 5,339,085 108 74.32% 120 77.24% 7,184,079 210,145
1993 4,909,315 % 70.75% 108 74.32% 6,939,399 247,928
1994 4,588,268 84 66.32% 96 70.75% 6,917,862 305,811
1995 3,873,311 72 60.78% 84 66.32% 6,372,348 353,146
1996 3,691,712 60 53.75% 72 60.78% 6,867,980 482,859
1997 3,483,130 48 44.77% 60 53.75% 7,780,515 699,093
1998 2,864,498 36 33.34% 48 4471% 8,590,793 981,372
1999 1,363,294 24 19.38% % 33.34% 7,033,659 981,996
2000 344,014 12 4.74% 24 19.38% 7,261,205 1,063,384
Total 34,358,090 69,998,708 5,448,182

The estimated development for the next 12-month calendar period is calculated by the
difference in the growth functions at the two evaluation ages times the estimated ultimate

losses. The standard deviation around this estimated development is:

Accident Reported Est. 12 month Process Parameter Total

Year Losses Development Std Dev cv Std Dev cv Std Dev oV

1991 3,901,463 122,450 89,234 72.9% 24632 20.1% 92,572 756%
1992 5,339,085 210,145 116,900 55.6% 37,767 18.0% 122,849 58.5%
1993 4,909,315 247,928 126,974 51.2% 42,716  17.2% 133,967 54.0%
1984 4,588,268 305,811 141,020 46.1% 50,260 16.4% 149,708 49.0%
1995 3,873,311 353,146 151,541  429% 57,208 16.2% 161,980 45.9%
1998 3,691,712 482,859 177,200 36.7% 74,987 15.5% 192,413 39.8%
1997 3,483,130 699,093 213217 305% 106,043 15.2% 238,131 34.41%
1998 2,864,498 981,372 252,621 257% 158,978  16.2% 298,482 304%
1999 1,363,294 981,996 252,702 25.7% 225920 23.0% 338,968 34.5%
2000 344,014 1,063,384 262,965 24.7% 480,861 45.2% 548,068 51.5%
Yotal 34,358,090 5,448,182 595,223  10.9% 635,609 11.7% 870,798 16.0%

A major reason for calculating the 12-month development is that the estimate is testable
within a relatively short timeframe. If we project 5,448,182 of development, along with a
standard deviation of 870,798, then one year later we can compare the actual

development and see if it was within the forecast range.
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4.3.3 Variability in Discounted Reserves

The mathematics for calculating the variability around discounted reserves follows
directly from the payout pattern, model parameters and covariance matrix already
calculated. The details are provided in Appendix C. This calculation is, of course, only

appropriate if the analysis is being performed on paid data.

For the Cape Cod calculation of reserves, along with the 240 month truncation point, the

discounted reserve using a 6.0% rate is provided below.

Accident Estimated  Discounted Process Parameter Total

Year Reserves Reserves Std Dev cV. Std Dev CV. Std Dev [A'R

1991 781,218 632,995 179,807  28.4% 125,961  19.9% 219,538  34.7%
1992 993,281 796,674 201,069 252% 149,688  18.8% 250,670  31.5%
1993 1,261,416 1.003,816 225216  22.4% 175899  17.5% 285,767  28.5%
1994 1,604,006 1,269,446 252,987  19.9% 204,084 16.1% 325,043 25.6%
1995 2,046,646 1,614,650 285,275 17.7% 232,952 14.4% 368,305 22.8%
1996 2,624,620 2,068,611 323,114 156% 259,904 12.6% 414672  200%
1997 3,384,400 2,669,559 367,518  13.8% 280,605 10.5% 462,394  17.3%
1998 4,378,344 3,459,057 418912 12.1% 289,876 8.4% 509,427 14.7%
1999 5,631,298 4,449,320 475,291 10.7% 266,857 6.4% 555,147 125%
2000 7.002,255 5,490,513 526,186 9.6% 284,582 5.2% 598,213  10.9%
Total 29,707,484 23,454,641 1,089,311 4.6% 2,198,224 9.4% 2,453,322 10.5%

From Section 4.2 above, we saw that the full-value reserve of 29,707,486 had a CV of
11.5%. The discounted reserve of 23,454,641 has a CV of 10.5%. The smaller CV for
the discounted reserve is because the “tail” of the payout curve has the greatest parameter

variance and also receives the deepest discount.
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Section 5: Comments and Conclusion
5.1 Comments

Having worked through an example of stochastic reserving, a few practical comments are

in order.
1) Abandon your triangles!

The maximum likelihood model works most logically from the tabular format of data as
shown in tables 1.1 and 2.1. It is possible to first create the more familiar triangular
format and then build the table, but there is no need for that intermediate step. All that is
really needed is a consistent aggregation of losses evaluated at more than one date; we

can skip the step of creating the triangle altogether.
2) The CV Goes with the Mean

The question of the use of the standard deviation or CV from the MLE is common. If we
select a carried reserve other than the maximum likelihood estimate, then can we still use
the CV from the model?

The short answer is “no”. The estimate of the standard deviation in this model is very
explicitly the standard deviation around the maximum likelihood estimate. If you do not
trust the expected reserve from the MLE model, then there is even less reason to trust the

standard deviation.

The more practical answer is an equivocal “yes”. The final carried reserve is a selection,
based on many factors including the use of a statistical model. No purely mechanical
model should be the basis for setting the reserve, because it cannot take into account all

of the characteristics of the underlying loss phenomenon. The standard deviation or CV
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around the selected reserve must therefore also be a selection, and a reasonable basis for

that selection is the output of the MLE model.

The selection of a reserve range also needs to include consideration about changes in mix
of business and the process of seitling claims. These types of considerations might better
be labeled “model variance”, since by definition they are factors outside of the

assumptions of the model.

3) Other Curve Forms

This paper has applied the method of maximum likelihood using growth curves that
follow the Loglogistic and Weibull curve forms. These curves are useful in that they
smoothly move from 0% to 100%, they often closely match the empirical data, and the
first and second derivatives are calculable without the need for numerical
approximations. However, the method in general is not limited to these forms and a

larger library of curves can be investigated.

In this paper the Loglogistic and Weibull curves were applied to the average evaluation
age, rather than the age from inception of the historical policy period. This was done for
practical purposes, and is one way of improving the fit at immature ages. When
evaluation ages fall within the period being developed (that is the period is not yet fully
earned), then a further annualizing adjustment is needed. The formulas for this

adjustment are given in Appendix B.

5.2 Conclusion

The method of maximum likelihood is a very useful technique for estimating both the
expected development pattern and the variance around the estimated reserve. The use of

the over-dispersed Poisson distribution is a convenient link to the LDF and Cape Cod

estimates already common among reserving actuaries.
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The chief result that we observe in working on practical examples is that the “parameter
variance” component is generally larger than the “process variance” — most of the
uncertainty in the estimated reserve is related to our inability to reliably estimate the
expected reserve, not to random events. As such, our most pressing need is not for more
sophisticated models, but for more complete data. Supplementing the standard loss
development triangle with accident year exposure information is a good step in that
direction.
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Table 1.1
Original Triangle in Tabular Format

To
12
24
36
48
60
72
84
96
108
120
12
24
36
48
60
72
84
96
108
12
24
36
48
80
72
84
96
12
24
36
48
60
72
84
12
24
36
48
60
72
12
24
36
48
60
12
24
36
48
12
24
36
12
24
12

Increment
357,848
766,940
610,542
447,378
562,888
574,398
146,342
139,950
227,229

67,948
352,118
884,021
933,894

1,183,289
445,745
320,996
527,804
266,172
425,046
290,507

1,001,799
926,219

1,016,654
750,816
146,923
495,992
280,405
310,608

1,108,250
776,189

1,562,400
272,482
352,063
206,286
443,160
693,190
991,083
769,488
504,851
470,639
396,132
937,085
847,498
805,037
705,960
440,832
847,631

1,131,398

1,063,269
359,480

1.061,648

1,443,370
376,686
986,608
344,014
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Diag Age
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120
120
120
120
120
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120
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AY Total
3,901,463
3,901,463
3,901,463
3,801,463
3,901,463
3,801,463
3,901,463
3,901,463
3,901,463
3.901,463
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
4,909,315
4,908,315
4,809,315
4,909,315
4,909,315
4,909,315
4,909,315
4,809,315
4,588,268
4,588,268
4,588,268
4,588,268
4,588,268
4,588,268
4,588,268
3,873,311
3,873,311
3,873,311
3,873,311
3,873.311
3.873,311
3,691,712
3,691,712
3,691,712
3,681,712
3,691,712
3,483,130
3,483,130
3,483,130
3,483,130
2,864,498
2,864,498
2,864,498
1,363,294
1,363,294

344,014
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Table 1.2
Triangle Collapsed for Latest Three Diagonals

To
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-
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Increment
3,606,286
227,229
67,248
4,647,867
266,172
425,046
4132918
495,992
280,405
4,029,929
352,053
206,286
2,897,821
504,851
470,639
2,180,715

805037

705,960
1,288,463
1,131,398
1,063,269

359,480
1,061,648
1.443,370

376,686

986,608

344,014

Diag Aqe
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120
120
108
108
108

SRYSBLEE5BBBIINERRESS

AY Total
3,901,463
3,901,463
3,901,463
5,339,085
6,339,085
5,339,085
4,909,315
4,909,315
4,909,315
4,588,268
4,588,268
4,588,268
3,873,311
3,873,311
3,873,311
3,601,712
3,691,712
3,691,712
3,483,130
3,483,130
3,483,130
2,864,498
2,864,498
2,864,498
1,363,204
1,363,204
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Table 1.3
Latest Diagonal Representing only 9 Months of Development

AY Erom Io  locrement Diagége  AY Total

1991 0 12 357,848 117 3,901,463
1891 12 24 766,940 117 3,901,463
1991 24 36 610,542 17 3.901,463
1991 3B 48 447,378 117 3,901,463
1991 48 60 562,888 M7 3,901,463
1991 60 72 574,398 117 3,901,463
1991 72 84 146,342 117 3,901,463
1981 84 96 139,950 117 3,901,463
1991 96 108 227,229 117 3,901,463
1991 108 117 67,948 117 3,901,463
1992 0 12 352,118 105 5,339,085
1992 12 24 884,021 105 5,339,085
1992 24 36 933,894 105 5,339,085
1992 36 48 1,183,289 105 5,339,085
1982 48 60 445,745 105 5,339,085
1992 60 72 320,996 105 5,339,085
1992 72 84 527,804 105 5,339,085
1992 84 96 266,172 105 5,339,085
1892 9% 108 425,046 105 5,339,085
1993 0 12 290,507 93 4,909,315
1883 12 24 1,001,799 93 4,909,315
1993 24 36 926,219 93 4,909,315
1993 36 48 1,016,654 93 4,909,315
1993 48 60 750,816 93 4,908,315
1893 60 72 146,923 93 4,909,315
1993 72 84 495,992 93 4,909,315
1993 84 9 280,405 93 4,909,315
1994 0 12 310,608 )] 4,588,268
1804 12 24 1,108,250 81 4,588,268
1994 24 36 776,189 81 4,588,268
1994 36 48 1,562,400 a 4,588,268
1994 48 60 272,482 81 4,588,268
1994 60 72 352,053 81 4,588,268
1994 72 81 206,286 81 4,588,268
1985 o 12 443,160 88 3,873,311
1995 12 24 693,190 69 3,873,311
1985 24 36 991,983 69 3,873,311
1995 36 48 769,488 69 3,873,311
1985 48 60 504,851 60 3,873311
1995 80 89 470,639 89 3873311
1996 0 12 396,132 57 3.691,712
1996 12 24 937,085 57 3,691,712
1996 24 36 847,498 57 3,691,712
1996 36 48 805,037 57 3,691,712
1996 48 57 705,960 57 3,691,712
1997 o 12 440,832 45 3,483,130
1997 12 24 847,631 45 3,483,130
1987 24 36 1,131,398 45 3,483,130
1997 3 45 1,063,269 45 3.483,130
1998 0 12 359,480 33 2,864,498
1998 12 24 1,061,648 33 2,864,498
1998 24 33 1,443,370 33 2,864,498
1999 ) 12 376,686 21 1,363,294
1999 12 21 986,608 al 1.363,294
2000 [ 9 344,014 9 344,014
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AY
1991
1991
1991
1991
1991
1991
1991
1991
1991
1991
1862
1992
1992
1992
1992
1992
1992
1992
1992
1993
1993
1993
1993
1993
1993
1993
1993
1994
1994
1994
1994
1994
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1995
1995
1995
1995
1995
1995
1996
1996
1996
1996
1996
1997
1997
1997
1997
1998
1998
1998
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1999
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Increment
357,848
766,940
610,542
447,378
562,888
574,398
146,342
139,950
227,229

67,948
352,118
884,021
933,894

1,183,289
445,745
320,996
527,804
266,172
425,046
290,507

1,001,799
926,218

1,016,654
750,816
146,923
495,902
280,405
310,608

1,108,250
776,189

1,562,400
272,482
352,053
206,286
443,160
693,190
991,983
769,488
504,851
470,639
396,132
937,085
847,498
805,037
705,960
440,832
847,631

1,131,398

1,063,269
359,480

1,061,648

1,443,370
376,686
986,608
344,014

34,358,090

Table 1.4
Original Triangle along with Fitted Values — LDF Method

Diag Age
120
120
120
120
120
120
120
120
120
120
108
108
108
108
108
108
108
108
108

RREE8E 5653888 BINNNRNNIERRRERERE 8888

12

AY Total
3,901,463
3,901,463
3,901,463
3,901,463
3,901,463
3,901,463
3,901,463
3,901,463
3,901,463
3,901,463
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
5,339,085
4,909,315
4,909,315
4,909,315
4,909,315
4,909,315
4,909,315
4,909,315
4,309,315
4,588,268
4,588,268
4,588,268
4,588,268
4,588,268
4,588,268
4,588,268
3,873,311
3,873,311
3,873,311
3,873,311
3,873,311
3,873311
3,691,712
3,691,712
3,691,712
3,691,712
3,601,712
3,483,130
3,483,130
3,483,130
3,483,130
2,864,498
2,864,498
2,864,498
1,363,294
1,363,294

344,014
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Est ULT
5,050,868
5,050,868
5,050,868
5,050,868
5,050,868
5,050,868
5,050,868
§,050,868
5,050,868
5,050,868
7,184,081
7,184,081
7,184,081
7,184,081
7,184,081
7,184,081
7,184,081
7,184,081
7,184,081
6,939,401
6,939,401
6,939,401
6,939,401
6,839,401
6,939,401
6,939,401
6,939,401
6,917,864
6,917,864
6,917,864
6,917,864
6,917,864
6,917,864
6,917,864
6,372,350
6,372,350
6,372,350
6,372,350
6,372,350
6,372,350
6,867,982
6,867,982
6,867,982
6,867,982
6,867,982
7,780,518
7,780,518
7,780,518
7,780,518
8,590,795
8,590,795
8,590,795
7,033,660
7,033,660
7.261,202

Fitted
239,295
739,686
705,171
576,987
453,829
355,106
279,911
223,278
180,455
147,745
340,360

1,052,089
1,002,997
820,675
645,502
505,083
398,131
317,579
256,670
328,768
1,016,256
968,836
792,724
623,517
487,881
384,571
306,763
327,748
1,013,102
965,829
790.264
621,582
486,366
383,377
301,903
933,213
889,668
727,947
572,566
448,014
325,384
1,006,797
958,865
784,566
617,100
368,618
1,139,436
1,086,268
888,809
407,006
1,258,098
1,199,393
333,234
1,030,080
344,014

34,358,090

MLE Term  Chi-Square

4,192,814
9,624,727
7,516,507
5,357,739
6,878,055
6,985,799
1,555,543
1,500,370
2,568,751
661,056
4,144,834
11,206,001
11,902,020
15,293,216
5,317,578
3,710,390
6,407,657
3,054,416
5,037,510
3,361,574
12,840,263
11,798,028
13,016,722
9,394,719
1,436,491
5,993,828
3,235,826
3,616,974
14,312,364
9,730,631
20,427,319
3,013,334
4,123,668
2,268,795
5,289,828
8,595,646
12,699,114
9,658,589
6,120,690
5,676,214
4,702,625
11,945,927
10,714,153
10,142,109
8,795,314
5,281,763
10,681,663
14,638,194
13,675,465
4,236,247
13,652,867
19,003,928
4,456,931
12,629,654
4,041,627

58,734
1,004
12,698
29,114
26,208
135,422
63,737
31,008
12,124
43,089
406
26,848
4,761
160,220
61,817
67,094
42,235
8,321
110,456
4,453
208
1875
63,256
25,990
238,280
32,282
2,265
896
8,936
37,236
754,424
196,065
37,092
81,803
66,093
61,734
11,767
23N
8,008
1,143
15,382
4,694
12,935
534
12,796
14,147
74,730
1.875
34,244
5,550
30,675
49,629
5,666
1,833

0

2,796,260



Table 2.1
Original Triangle along with Fitted Values — Cape Cod Method

AY From To Increment  Diag Age Premium Est. ULT Fited MLE Term Chi-Square
1991 0 12 357,848 120 10,000,000 5,977,659 280,569 4,208,482 21,285
1991 12 24 766,940 120 10,000,000 5,877,659 882,582 9,617.292 15,152
1991 24 36 610,542 120 10,000,000 5,977,659 845,554 7,486,969 65,319
1891 36 48 447,378 120 10,000,000 5,977,659 691,227 5,324,318 86,024
1991 48 €0 562,888 120 10,000,000 5,977,699 542,171 6,889,829 792
1991 60 72 574,398 120 10,000,000 5.977,659 422,833 7,018,339 54,329
1991 72 84 146,342 120 10,000,000 5,977,659 332,202 1,528,317 103,985
1991 84 9%6 139,850 120 10,000,000 5,977,659 264,171 1,483,014 58,412
1991 9% 108 227,229 120 10,000,000 5,977,659 212,900 2,574,877 964
1991 108 120 67,948 120 10,000,000 5,977,659 173,860 646,001 64,518
1992 0 12 352,118 108 10,400,000 6,216,765 291,792 4,139,189 12.472
1992 12 24 884,021 108 10,400,000 6,216,765 917,885 11,218,571 1,249
1992 24 b 933,894 108 10,400,000 6,216,765 879.376 11,902,801 3,380
1992 36 48 1.183,289 108 10,400,000 6,216,765 718,876 15,238,302 300,023
1992 48 80 445,745 108 10,400,000 8,216,765 563,858 5,338,946 24,742
1992 60 72 320,996 108 10,400,000 6,216,765 439,746 3,731,261 32,068
1992 72 84 527,804 108 10,400,000 6.216,765 345,490 6,385,446 96,207
1992 84 96 266,172 108 10,400,000 6,216,765 274,738 3,058,687 267
1992 96 108 425.048 108 10,400,000 6,216,765 221416 5,009,964 187,273
1993 0 12 280,507 9 10,800,000 6,455,872 303,015 3,363,630 516
1993 12 24 1,001,799 9%  10.800,000 6,455,872 953,188 12,839,147 2,479
1993 24 36 926,219 96 10,800.000 6,455,872 913.198 11,798,887 186
1993 36 48 1,016,654 9 10,800,000 6,455,872 746,525 13,001,875 97,746
1993 48 80 750,816 9% 10,800,000 6,455,872 585,545 9,385,515 46,648
1993 60 72 146,923 96 10,800,000 6,455,872 456,660 1,457,996 210,084
1993 72 84 495,992 9 10,800,000 6,455,872 358,778 5,985,187 52.477
1993 84 96 280,405 % 10,800,000 6.455,872 285,305 3,236,950 84
1994 0 12 310,608 84 11,200,000 6,694,978 314,238 3.617.409 42
1994 12 24 1,108,250 84 11,200,000 6,604,978 988,491 14,308,720 14,509
1994 24 36 776,189 84 11,200,000 6,694,978 947,020 9,734,175 30.816
1994 36 48 1.562,400 84 11,200,000 6,694,978 774174 20,411,270 802,533
1994 48 272,482 84 11,200,000 6,694,978 607,232 3,021,320 184,538
1994 80 72 352,053 84 11,200,000 6,684,978 473.573 4,127,077 31,182
1994 72 84 206,286 8 11,200,000 6.694,978 372,086 2,273.829 73,866
1995 o] 12 443,160 72 11.600,000 6,934,085 325,460 5,299,568 42,565
1995 12 24 693,190 72 11,600,000 6,934,085 1,023,795 8,569,280 106,759
1895 24 38 991,983 72 11,600,000 6,934,085 980,842 12,704,721 127
1995 36 48 769,488 72 11,600,000 6,934,085 801,823 9,659,092 1,304
1995 48 60 504,851 72 11,600.000 6,934,085 628,919 6,111,729 24,475
1995 60 72 470,639 72 11,600,000 6,934,085 490,486 5,676,368 803
1996 0 12 396,132 60 12,000,000 7.173.191 336,683 4,704,848 10,497
1996 12 24 937,085 60 12,000,000 7,173,191 1.059,098 11,941,015 14,056
1996 24 36 847,498 80 12,000,000 7173181 1,014,664 10,706,291 27,541
1996 36 48 805,037 60 12,000,000 7173191 829,472 10,142,011 720
1996 48 60 705,960 60 12,000,000 7173191 650,606 8,799,134 4710
1987 0 12 440,832 48 12,400,000 7.412,297 347,906 5,276,973 24.821
1997 12 24 847,631 48 12,400,000 7.412,297 1,094,401 10,692.516 55,643
1997 24 36 1,131,398 48 12,400,000 7.412,297 1,048487 14,635,924 6,556
1997 36 48 1,063,269 48 12,400.000 7,412,297 857,121 13,668,552 49,581
1998 1) 12 359,480 36 12,800,000 7,651,404 359,129 4,239,137 0
1998 12 24 1,061,648 36 12,800,000 7,651,404 1,129,704 13,666,979 4100
1998 24 36 1,443370 36 12,800,000 7.651.404 1082309 18,972,750 120,451
1999 0 12 376,686 24 13,200.000 7,890,510 370.351 4,459,595 108
1999 12 24 986,608 24 13,200,000 7.890,510 1,165,008 12,616,168 27,319
2000 [} 12 344,014 12 13.600,000 8.129.616 381,574 4,039.715 3.697

34,358,090 34,358,090 3,202.001
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Appendix A: Derivatives of the Loglikelihood Function

The loglikelihood function for the over-dispersed Poisson is proportional to

{ = Zci 'ln(.uf)—ui

where H, = ELR-F, '[G(xl Iwye)— G(xM |wa9)]

as described in section 2.2 of this paper. The derivatives below are then used to complete

the Information Matrix needed in the parameter variance calculation.

The derivatives of the exact loglikelihood function would require dividing all of these

numbers by the constant scale factor &, but it is easier to omit that here and apply it to

the final covariance matrix at the end.

¢ -C,

OELR’ ,z:’(ELR’J

e y [BG(x,)_aG(x_l)
OELRdw &' dw b 10)
9% ¢ 9G(x,) aG(x,.,)
Y = _§¥p. |22 2PV
OELRJ® ,Z’ [ 00 a6 ]

e -c, [26(x) 36G(x.)T
EP {[(G(x,)—c(x.-.))’H do  dw }‘L

dw’

ow
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’f -c, ‘ aG(x,) 9G(x.)]] 3G(x,) 3G(x.,)
w36 %{[(G(x,)-c(x,-l))z][ W 0w ][ FE ) ]+

[y oee 2 | - 2l |

gé - g{[c“(x,)?c——(x,_,) ELR-B ] [i(‘;% ‘EGT(;—)]}

e -c, [36(x,) 36(x,)T
o " ?{[(o(x»-c(x,-l»’” e

——c—“-—j—ELR.E]A[aZ G(x) _ﬂzﬁ(ﬁ—l_)]}

-G(x,., PR 207

For the LDF Method, these same formulas apply but replacing:

ELR — ULT, and P — 1.
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Weibull Distribution

Gx) = F(x) = 1 - expl—(x/@)“’J

Sx =

=&

»(i]m<exp[—(x/e)”]

g

Elx*] = 6* T{l+k/w)

8 is approximately the 63.2%-tile = l—exp[—-l], LDF, =1.582

ol 6715 ] -ute
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Loglogistic Distribution (for “inverse power” LDFs)

x¢ 1
G = F&) = oge T ‘(rw]

0] x¢ 0°
/e = _(T](T]
Elx*] = 6*-T(l+k/w) T(1-k/o)

0 is the median of the distribution LDF, =2.000

9G(x) 8° 3 ()
0 | x® +6"’ x“+6¢ o

0G(x) B 9 .
0 x+9“’ x® +6°

e
)

CNENTE JH—-—H
J
A

—_

:ZwGa(e = (x "9 [x +e”)' ;]'{“a"h(?)'[l_z'[x”

36l _ -21+w12 x
00° x +9"’ x“ +6° 92 x°+8°
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Appendix B: Adjustments for Different Exposure Periods

The percent of ultimate curve is assumed to be a function of the average accident date of

the period being developed to ultimate.

G'(x|®,6) = cumulative percent of ultimate as of average date x

Further, we will assume that this is the percent of ultimate for the portion of the period

that has already been earned. For example, if we are 9 months into an accident year, then

the quantity G*(4.5|®,8) represents the cumulative percent of ultimate of the 9-month
period only. The loss development factor LDF, =1/G"(4.5]®,0) is the adjustment

needed to calculate the ultimate loss dollars for the 9-month period (before annualizing).
In order to estimate the cumulative percent of ultimate for the full accident year, we also
need to multiply by a scaling factor representing the portion of the accident year that has

been earned.

The AY cumulative percent of ultimate as of 9 months is
9 .
GyOlwd) = (E] G (45]0,6)

We find therefore that we need to make two calculations:

1) Calculate the percent of the period that is exposed; Expos(t)

2) Calculate the average accident date given the age from inception ?; AvgAge(t)

These functions can be easily calculated for accident year or policy year periods.
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1) Calculate the percent of the period that is exposed: Expos(t)

For accident years (AY):
t/12 t<12
Expos(t) = or
1 t>12
For policy years (PY):
L./12) t<12
Expos(ty =

I-1.max(2-¢/12,0)2 £>12

Cumulative Percent of Exposure Expos(t)

100.0% “0-0-0-0-0 w
80.0%
=
% 60.0% M—,
u% 40.0% / F ey
200% 2"
0.0%

0 1 2 3 45 67 8 9 1011121314 151617 18 18 20 21 22 23 24 25 26 27
Evaluation Age in Months = t
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2) Calculate the average accident date of the period that is earned: Avgdged(?)
For accident years (AY):

t/2 t<12
AvgAge(t) = or AvgAgdt) = max(t—~6,t/2)
t—~6 t>12

For policy years (PY):

t/3 t<12
AvgAgdr) =
(t-12)+%-(24-1)-(1- Expox(t))
Expos(t)

t>12

The final cumulative percent of ultimate curve, including annualization, is given by:

[Garur(t]0,8) = Expos(t) G (4vgdge(t)| @,0) |
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Appendix C: Variance in Discounted Reserves

The maximum likelihood estimation model allows for the estimation of variance of
discounted reserves as well as the variance of the full-value reserves. These calculations

are a bit more tedious, and so are given just in this appendix.
Calculation of Discounted Reserve

We begin by recalling that the reserve is estimated as a sum of portions of all the

historical accident years, and is calculated as:

Reserve: R = Zuﬂw = ZULTAY (GO -GX))
AY AY
This expression can be expanded as the sum of individual increments.

R = Zyz_‘jULTA, (Gx+k)—G(x+k-1)

AY k=1

To be even more precise, we could write this as a continuous function.

b4
R = YULT, [g@ar where g(1) = ag(’)
AY % t
The value of the discounted reserve R, would then be written as follows.
T 1
R, = XULT, [V gyt where v=—o
AY % 1+i

For purposes of this paper, we will assume that the discount rate 7 is constant. There is
also some debate as to what this rate should be (cost of capital?, market yield?), but we

will avoid that discussion here.

An interesting note on this expression is seen in the case of x=0 and y=-<e, in which the

form of the discounted loss at time zero is directly related to the moment generating

function of the growth curw.

[vgdr = [e gyar = MGF(-in(1+1)

0 [
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Unfortunately, for the Loglogistic and Weibull growth curves, the moment generating
function is intractable and so does not simplify our calculation. For practical purposes
we will use the incremental approximation instead.
R, = YN ULT, v (Gx+k) ~G(x +k—1)
AY k=1
The variance can then be calculated for the discounted reserve in two pieces: the process

variance and the parameter variance.
Process Variance

The process variance component is actually trivial to calculate. We already know that the
variance of the full value reserve is estimated by multiplying by the scale factor o2, We

then need to recall that the variance for some random variable times a constant is given

by Var(v* - R) = v* Var(R).

The process variance of the discounted reserve is therefore:

Var(R,) = o -EEULTA, VLG + k) - G(x + k1))

AY k=l
Parameter Variance

The parameter variance again makes use of the covariance matrix of the model
parameters . The formula is then given below.
Var(E[R,1) = (OR,) -Z-(OR,)

where

dR, OJR, OR
oR, = <m, aaj’ a(;> for the Cape Cod method

OR, } OR, IR,
4

=, for the LDF method
v 0w’ 38 >

90



In order to calculate the derivatives of the discounted reserves, we make use of the same

mathematical expressions as for the full value reserves. That is,

d R d
Pars becomes IR, = zv”x OHars
7 dw dw /77 do

R _
w
The calculation is similar to the variance calculation for the full value reserve, but now it
is expanded for each increment so that the time dimension is included. The complexity
of the calculations does not change, but the number of times they are performed greatly

increases.
The combination of the process and parameter variances is simple addition, the same as

for the full value reserves, since we make the assumption that the two sources of variance

are independent.
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Preface

As the author of the Casualty Actuarial Society’s (CAS’s) text on reserving, | am honored to prepare this
new text on reserving for reinsurance. In many ways, | view this text as a supplement to my earlier work,
Estimating Unpaid Claims Using Basic Techniques, and | strongly encourage readers to be familiar with
that text prior to this one.

With the goal of having this text used by actuaries and actuarial candidates around the world, | strive to
present concepts in a simple and straightforward manner, particularly for those for whom English may
not be their first spoken language. With this global mindset, | also chose not to use any currency in the
examples.

| wish to express sincere thanks to all the members of the CAS educational committee who helped guide
this text in its initial development and through countless reviews: Arthur Zaremba, Eric Blancke, Jill
Labbadia, Jonathan Schreck, and Fran Sarrel. Additional thanks to these CAS members for reviewing this
document: Jackie Ruan, Zora Law, Eric Lam, Meg Glenn, Kenneth Hsu and Joseph Lindner.

| also express sincere thanks to Wesley Griffiths, who worked with me as a Staff Actuary at the CAS.

Readers should be aware that figures in the supporting tables and exhibits are often carried to a greater
number of decimals than shown. Thus, totals and calculations may not agree exactly due to rounding
differences.

Please notify the CAS of any errors so that this text can be corrected in subsequent editions.

—Jacqueline Frank Friedland, FCAS, FCIA, FSA
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Chapter 1 — Introduction

The objective of this text is to address the estimation of unpaid losses? from the perspective of
reinsurance. Reinsurance, which is insurance for insurers, is critical for the operation of the insurance
industry as a whole. Through reinsurance, the cost of risk is spread across the marketplace, often
globally, and the financial effect of an insured event is lessened for a single insurer? or economy. This
text is intended for actuaries working with reinsurers as well as for actuaries working with primary
insurers who estimate losses that are ceded to reinsurers. The text is also intended for actuaries working
with self-insurers and captive insurers® who utilize reinsurance.

It is assumed that the reader of this text is knowledgeable about basic reserving, including typical data
requirements, key assumptions, and traditional methodologies (such as the chain ladder, expected loss,
and Bornhuetter-Ferguson techniques). Thus, this text focuses on the differences in reserving for
reinsurance versus primary insurance and not on the detailed mechanics of the traditional unpaid losses
projection techniques.*

Like insurers, reinsurers do not know the true cost of goods sold during a financial reporting period until
years, possibly decades, later — after all claims are settled. Thus, it is critical that insurers and reinsurers
maintain robust processes for the estimation of unpaid losses. Most frequently, the actuary estimates
unpaid losses by subtracting paid losses from projections of ultimate losses. This text explores numerous
considerations for such projections and issues related to data, understanding the environment (internal
and external to the reinsurer), and the selection of methodology and assumptions. In this text, the term
reserves refers to an amount booked in a financial statement, which may differ from the actuary’s
estimate of unpaid losses.®

Appropriate estimates of unpaid losses and reserves are essential for the internal management of a
reinsurer as well as for its key stakeholders.

! The estimation of unpaid losses is also referred to as reserving.

2 |n actuarial and accounting literature and standards, the term insurer is often used to refer to primary insurers, reinsurers, captive insurers,
and self-insurers. Given that this text focuses specifically on reinsurance, the term reinsurer is generally used to differentiate reinsurers from
other insurers.

3 The International Risk Management Institute (IRMI) Glossary defines a captive insurer as “an insurance company that has as its primary
purpose the financing of the risks of its owners or participants. Typically licensed under special purpose insurer laws and operated under a
different regulatory system than commercial insurers. The intention of such special purpose licensing laws and regulations is that the captive
provides insurance to sophisticated insureds that require less policyholder protection than the general public” (See
https://www.irmi.com/term/insurance-definitions/captive.)

4 For further information, see Jacqueline Friedland, Estimating Unpaid Claims Using Basic Techniques (Arlington, VA: Casualty Actuarial Society,
2010).

5 This use of the term reserves is consistent with the U.S. Actuarial Standards Board’s Actuarial Standard of Practice (ASOP) 43—
Property/Casualty Unpaid Claim Estimates.
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e Internal management requires sound reserves because they affect virtually every area of a
reinsurer’s operations, including but not limited to pricing, underwriting, strategic planning, and
financial decision making.

e |nvestors require appropriate reserves because they are essential to the evaluation of a
company’s financial health. Reserves that are either inadequate or excessive can lead to
misstated balance sheets and income statements for the reinsurer, and key financial metrics
used by investors could be misleading. A reinsurer with insufficient reserves could present itself
in a stronger position than it truly is. Conversely, a reinsurer with excessive reserves may appear
to be in a weaker position than its true state. Both situations could affect investors’ decisions
related to the reinsurer.

e Insurance regulators rely on the financial statements of reinsurers to carry out their supervisory
role. Inappropriate reserves could result in a misstatement of the true financial position of a
reinsurer. If a financially struggling reinsurer is masking its true state with inadequate reserves, a
regulator may not become involved until it is too late to help the reinsurer regain its strength
and protect the public’s interests.

e Rating agencies evaluate movement over time in reinsurers’ reserves. A reinsurer who reports
significant adverse reserve development that results in reduced capital and a weakened
financial position could face a downgrade from rating agencies. A rating downgrade, or even the
threat of a downgrade, threatens a reinsurer’s ability to attract and retain business because
primary insurers typically have requirements for minimum ratings of their reinsurers.

Further requirements for appropriate reserves emanate from jurisdictional law (i.e., state, provincial, or
national), the National Association of Insurance Commissioners for U.S. reinsurers, accounting standards
such as the U.S. Generally Accepted Accounting Principles (GAAP) and International Financial Reporting
Standards (IFRS), and actuarial standards of practice.

This chapter is organized in the following sections:

e Basic reinsurance terminology

e Functions of reinsurance

e  Major types of reinsurance

e Reinsurance concepts and contract provisions influencing the estimation of unpaid losses

Basic Reinsurance Terminology

Reinsurance has its own vocabulary, so it is important to start with basic reinsurance terms before a
discussion of the functions and types of reinsurance. New terms are shown in bold when defined, which
may not be at the term’s first use.

Reinsurance is a form of insurance in which the reinsurer, in consideration of a premium, agrees to
indemnify the reinsured for part or all of the loss that the reinsured may sustain under the policy or
policies that it has issued. The reinsured, which is the insurer that cedes its business (i.e., reinsures its
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liability) with another, is also referred to as the ceding company, or the cedent. Reinsurance is used by
primary insurers, captive insurers, self-insurers, and even by reinsurers. Given the range of organizations
that purchase reinsurance, the term ceding company is typically used in this text to refer to those who
purchase reinsurance. The reinsurer is the insurer that accepts all or part of the insurance liabilities of
the ceding company for a stated premium.

In the context of reinsurance, insurers and reinsurers refer to business that is ceded and assumed. For
business ceded, the risk is transferred from the ceding company to the reinsurer. Ceded insurance
policies are referred to as the subject policies or the underlying policies. In the context of IFRS 17—
Insurance Contracts, ceded reinsurance contracts are referred to as reinsurance contracts held. A
reinsurer assumes the business transferred through reinsurance from the insurer.

A reinsurer can transfer risks it has reinsured to another reinsurer through a retrocession, which is the
reinsuring of reinsurance. In a retrocession, the ceding reinsurer is known as the retrocedent, and a
retrocessionaire is the assuming reinsurer.

When working with data and reporting on financial results, the terms gross, net, and ceded (losses and
premiums) have slightly different meanings when used with primary insurers and reinsurers. When used
for a primary insurer,

e Gross experience refers to the sum of direct and assumed business,
e Ceded experience refers to business transferred through reinsurance, and
o Net experience is equal to gross less ceded experience.

In a reinsurance context,

e Gross experience refers to assumed business,
e Ceded experience refers to business transferred through retrocessions, and
e Net experience is equal to gross less ceded experience.

In a reinsurance context, the retention is the amount of insurance liability or loss that the ceding
company retains for its own account after consideration for reinsurance. Depending on the type of
reinsurance, the retention can be expressed as a percentage or a dollar amount. The ceding company’s
retention may also be referred to as the attachment point, which is the point at which reinsurance
begins to apply.

The working layer is a dollar range in which the insurer (or reinsurer) expects relatively predictable loss
experience with a fairly high level of loss frequency. The determination of the boundary of a working
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layer is subjective and depends on an organization’s unique risk appetite.® A layer that the ceding
company determines to be a working layer would typically be different from a layer that a reinsurer
determines to be a working layer. Frequently, a ceding company retains losses within its working layer
and cedes losses (or a portion of losses) in excess of such a working layer.

Reinsurers often receive data by bordereau (plural bordereaux) from ceding companies or the brokers
of their ceding companies. Bordereau is defined by the International Risk Management Institute (IRMl)
as follows:

Furnished periodically by the reinsured, a detailed report of insurance premiums or losses
affected by reinsurance. A premium bordereau contains a detailed list of policies (or bonds)
reinsured under a reinsurance treaty during the reporting period, reflecting such information as
the name and address of the primary insured, the amount and location of the risk, the effective
and termination dates of the primary insurance, the amount reinsured and the reinsurance
premium applicable thereto. A loss bordereau contains a detailed list of claims and claims
expenses outstanding and paid by the reinsured during the reporting period, reflecting the
amount of reinsurance indemnity applicable thereto. Bordereau reporting is primarily applicable
to pro rata reinsurance arrangements and to a large extent has been supplanted by summary
reporting.’

Chapter 2 expands on issues related to reinsurance bordereaux.

The final term to be defined in this section is counterparty default risk, or simply default risk. In a
reinsurance context, counterparty default risk is the risk that the reinsurer is unable to meet its
contractual obligations. In all situations, to the extent that a reinsurer is unable to meet its obligations,
the assumed liability falls back to the ceding company who has the contractual relationships with the
underlying insured or policyholder.

Functions of Reinsurance

Reinsurance is used to spread risk by transferring some of the risk from the ceding company to the
reinsurer or reinsurers. In Foundations of Casualty Actuarial Science, Gary Patrik states:

The nature and purpose of reinsurance is to reduce the financial cost to insurance companies
arising from the potential occurrence of specified insurance claims, thus further enhancing
innovation, competition, and efficiency in the marketplace. The cession of shares of liability

6 The IRMI Glossary defines risk appetite as “the degree to which an organization’s management is willing to accept the uncertainty of loss for a
given risk when it has the option to pay a fixed sum to transfer that risk to an insurer” (see https://www.irmi.com/term/insurance-

definitions/risk-appetite.)

7 Robert Strain, “Reinsurance Terminology Explained: Bordereau and Other Terms of Art,” IRMI Expert Commentary,
https://www.irmi.com/articles/expert-commentary/reinsurance-terminology-explained-bordereau.

CAS Study Note — Exam 7 8


https://www.irmi.com/term/insurance-definitions/risk-appetite
https://www.irmi.com/term/insurance-definitions/risk-appetite
https://www.irmi.com/articles/expert-commentary/reinsurance-terminology-explained-bordereau

Reserving for Reinsurance

spreads risk further throughout the insurance system. Just as an individual or company
purchases an insurance policy from an insurer, an insurance company may purchase fairly
comprehensive reinsurance from one or more reinsurers.®

Ceding companies purchase reinsurance for five primary reasons:

e  Promote stability.

e Increase capacity.

e Protect against catastrophe.

e Manage capital and solvency margin.
e Access technical expertise.

Promote Stability

Reinsurance is used to help ceding companies stabilize their loss experience within a year and from year
to year. Ceding companies typically retain smaller, more predictable claims and cede those claims that
are more unusual and infrequent. In this manner, reinsurance can protect the ceding company from
shocks associated with large unforeseeable losses. Some ceding companies use reinsurance with
relatively low attachment points to provide stability even for losses that are not considered large or
unforeseeable. With reinsurance, results can be stabilized by limiting a ceding company’s losses
following a single event or the accumulation of losses arising from multiple events. By promoting
stability, reinsurance can decrease the probability of ruin for a ceding company.

Increase Capacity

Reinsurance expands a ceding company’s ability to assume risk by ceding a portion of all its policies or
simply its larger policies. Ceding companies often purchase reinsurance to increase their capacity for
accepting more business, particularly higher limit policies. For example, assume a large primary insurer
was approached to write commercial property insurance for a sports stadium with policy limits of 500
million. Further assume that the primary insurer’s risk appetite framework established a net retention of
5 million. Thus, to be able to offer an insurance solution for the stadium, the primary insurer could seek
reinsurance from one or more reinsurers to provide the additional 495 million limits of coverage.

The ability for a cedent to offer more capacity on an individual account can be very important, especially
for quality accounts that the ceding company might otherwise not be able to write. Furthermore, by
providing capacity, reinsurers help facilitate the competition of small insurers with large insurers who,
by their nature, can and do generally accept more risk.

8 Patrik, “Reinsurance,” in Foundations of Casualty Actuarial Science, 4th ed. (Arlington, VA: CAS, 2001), 344.
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Protect Against Catastrophes

Protection from catastrophes, both natural and man-made, is a major purpose of reinsurance.
Reinsurance is used to protect ceding companies from a single catastrophic loss event (such as a
hurricane or typhoon, earthquake, or wildfire) as well as multiple large loss events (such as multiple
hurricanes or typhoons within a single year or a season of multiple wildfires in a single state, province,
or country). Reinsurance is also used to protect against casualty losses in which multiple insureds are
involved in one occurrence (such as terrorism attacks or vehicle accidents in which many people are
injured).

Manage Capital and Solvency Margin

A ceding company can avoid large losses by passing risk to a reinsurer and thus freeing up additional
capital. Insurers (including reinsurers) are required by law and regulation to have sufficient capital for
potential future claims on all policies written. According to the Insurance Information Institute, “If the
insurer can reduce its responsibility, or liability, for these claims by transferring a part of the liability to
another insurer, it can lower the amount of capital it must maintain to satisfy regulators that it is in good
financial health and will be able to pay the claims of its policyholders.”®

Through the purchase of some types of reinsurance, a ceding company can accept new risks and avoid
the need to raise additional capital. Patrik describes the reinsurance function of managing financial
results as follows:

Reinsurance can alter the timing of income, enhance statutory and/or GAAP surplus, and
improve various financial ratios by which insurers are judged. An insurance company with a
growing book of business whose growth is stressing their surplus can cede part of their liability
to a reinsurer to make use of the reinsurer’s surplus. This is essentially a loan of surplus from the
reinsurer to the cedant until the cedant’s surplus is large enough to support the new business.®

Financial results of the ceding company are managed because the ceded commission on the unearned
premium reserve transfers statutory surplus from the reinsurer to the cedent. The premium ceded also
reduces the ceding company’s net premium-to-surplus ratio, referred to as the solvency margin. With a
lower premium-to-surplus ratio, the ceding company can write more business.

Access Technical Expertise

An important function of reinsurance is access to the technical expertise of reinsurers, particularly in
areas of underwriting, marketing, claims, loss prevention, and pricing. In an IRMI Expert Commentary
article on reinsurance, Larry Schiffer states, “Quality reinsurers provide special expertise to their direct

 Quoted in Bethan Moorcraft, “Facultative and Treaty Reinsurance: The Differences Explained,” Insurance Business Canada, June 3, 2019,
https://www.insurancebusinessmag.com/ca/guides/facultative-and-treaty-reinsurance-the-differences-explained-168931.aspx.

10 patrik, “Reinsurance,” 345—46.
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insurer clients and assist the direct insurer in providing the best possible protection and risk
management for the direct insurer’s own clients.”*?

This can be particularly important for small insurers, for whom reinsurers often provide engineering,
actuarial, and claims expertise and training. Insurers seeking to enter new lines of business or regions
where they do not have experience often turn to reinsurers with market leadership for insight and
knowledge. The expertise of reinsurers can be used to help ceding companies explore their underwriting
opportunities and ultimately their book of business.

Other Functions of Reinsurance

Reinsurance can be used to facilitate a ceding company’s withdrawal from a line of business, geographic
area, or a production source. Finally, there are certain market conditions where reinsurance is used for
arbitrage when a ceding company believes that additional profits can be garnered by purchasing
reinsurance for a value less than the premium the cedent collects from its policyholders.

Different types of reinsurance serve these varied purposes to different degrees.

1 Schiffer, “Reinsurance Matters,” IRMI Expert Commentary, March 2000, https://www.irmi.com/articles/expert-commentary/reinsurance-

matters.
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Types of Reinsurance

Insurers frequently purchase a variety of reinsurance contracts to serve the functions of stability,
capacity, catastrophe protection, financing, and expertise. It is critical for the actuary to understand
details of the types of reinsurance used to cede and assume business as there are likely implications on
actuarial work, particularly on the data required, the selection of methodology, and the development of
assumptions.

An important characteristic of reinsurance contracts is their manuscript nature, whereby reinsurance
contracts are developed to meet the specific needs of the ceding company and the reinsurer(s). This is
quite different from many primary insurance contracts, particularly personal auto? and personal
property?® policies, where the contract is the same for all insureds, with the exception minors such as
deductible and policy limits and the use of standard endorsements. Given the tailored nature of
reinsurance contracts, it can be challenging to generalize about the types of reinsurance. Thus, it should
be understood that exceptions to the material presented in this section are common.

Reinsurance is typically categorized as treaty or facultative and as proportional or non-proportional.

Treaty and Facultative Reinsurance
Treaty Reinsurance

Treaty reinsurance is a type of reinsurance in which the ceding company enters into a contractual
agreement with one or more reinsurers to cede all business arising from certain lines of business as
specified in the contract. The treaty may span one year or multiple years. In treaty reinsurance, the
ceding company agrees to cede and the reinsurers agree to assume all the business written by the
ceding company that falls within the terms of the treaty, subject to the limits specified in the treaty.
With treaty reinsurance, the reinsurer agrees to accept policies that the ceding company has not yet
written to the extent that the risks fall within the treaty’s terms.

The most important characteristic of treaty reinsurance is the absence of individual underwriting by the
reinsurer. In essence, treaty reinsurance transfers underwriting risk from the ceding company to the
reinsurer, leaving the reinsurer exposed to the possibility that the initial underwriting process did not
adequately evaluate the risks insured.

Facultative Reinsurance

Facultative reinsurance differs from treaty reinsurance in that a facultative cession is not automatic. The
word facultative connotes that both the ceding company and the reinsurer usually have the faculty (i.e.,
option) of accepting or rejecting the individual submission. Facultative reinsurance is distinguished from

12 Auto insurance is also referred to as motor and car insurance.

13 personal property insurance is also referred to as homeowners, home, and household insurance.
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treaty reinsurance where there is an obligation for the cedant to cede a risk or for the reinsurer to
accept the ceding risk. In facultative reinsurance, a submission, acceptance, and resulting agreement are
required for each individual risk or a defined group of risks that the ceding company wants to reinsure,
and the ceding company negotiates an individual reinsurance agreement for each policy it reinsures.

For facultative coverage, a certificate of reinsurance is frequently used. The certificate is a record of
reinsurance coverage pending replacement by a formal reinsurance contract. With facultative
reinsurance, the ceding company can acknowledge acceptance of terms, with the reinsurer’s obligation
contingent on validity of key information that is stated in the certificate.*

The primary purpose of facultative reinsurance is capacity. Facultative contracts can be tailored to the
specific circumstances, and thus are typically used for high-value and hazardous commercial risks.
Facultative reinsurance has the potential for adverse selection. However, unlike treaty reinsurance, a
reinsurer may conduct its own underwriting with facultative reinsurance and thus mitigate the risk of
adverse selection.

Examples of Treaty and Facultative Reinsurance

Generalizing about reinsurance is challenging given the tailored nature of most reinsurance contracts.
Nevertheless, the following examples help demonstrate common uses of facultative and treaty
reinsurance:

e A ceding company maintains property treaty reinsurance for all policyholders with total insured
values (TIV) less than 25 million. Reinsurance coverage for all policyholders with TIV of 25 million
or more is placed through the facultative market.

e A ceding company maintains casualty treaty reinsurance for automobile risks and uses
facultative reinsurance for environmental liability risks.

e A ceding company maintains workers’ compensation treaty reinsurance for employers with less
than 1,000 employees. Workers’ compensation policies for employers with more than 1,000
employees are protected with facultative reinsurance.

For the treaty reinsurance mentioned above, all ceded risks would be subject to the terms and limits of
each treaty (i.e., property, casualty, and workers’ compensation). For the facultative reinsurance, terms
and conditions would be tailored to meet the unique situations of the ceded risks.

Hybrid of Treaty and Facultative Reinsurance

Hybrid contracts, which blend characteristics of treaty and facultative reinsurance, can be used to
provide capacity and some degree of stabilization as they can cover many underlying policies. Patrik

14 “Certificate of Reinsurance,” IRMI Glossary, https://www.irmi.com/term/insurance-definitions/certificate-of-reinsurance.
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notes that “because of the many special cases and exceptions, it is difficult to make correct
generalizations about reinsurance.”?® This is particularly true of hybrid agreements.

The IRMI Glossary contains the following two definitions of hybrid reinsurance arrangements:

Facultative Automatic — a form of property and casualty (P&C) reinsurance that is a hybrid
between facultative and treaty. A bordereau of risks ceded is submitted to the reinsurer, which
has limited rights to decline individual risks.

Facultative Obligatory Treaty — the hybrid between the facultative versus treaty approach. It is
a treaty under which the primary insurer has the option to cede or not cede individual risks.
However, the reinsurer must accept any risks that are ceded.®

Guy Carpenter defines facultative semi-obligatory treaty as “a reinsurance contract under which the
ceding company may or may not cede exposures or risks of a defined class to the reinsurer, which is
obligated to accept if ceded.”?’ Finally, Patrik describes non-obligatory agreements where “either the
cedant may not be required to cede or the reinsurer may not be required to assume every single policy
of the specified type.”!®

Given the manuscript nature of most reinsurance contracts, it is incumbent on the actuary working with
reinsurance to understand the details of these specialized agreements.

Proportional and Non-Proportional Reinsurance

Both treaty reinsurance and facultative reinsurance can be written on either a proportional or non-
proportional basis. Proportional reinsurance is intended to provide capacity and surplus relief to ceding
companies, while non-proportional reinsurance is intended to provide stability by protecting the risks
insured by the ceding company’s losses above a limit.

Proportional reinsurance, which is also known as pro rata reinsurance and participating reinsurance, is
given its name because both premiums and losses (payments and liabilities) are shared between the
ceding company and the reinsurers based on the cession percentage. With proportional reinsurance, the
reinsurer typically pays a ceding commission to the ceding company to reimburse for expenses
associated with issuing the underlying policy (e.g., acquisition and underwriting expenses). This
commission can be reduced if there is uncertainty about the expected profitability of the business.

15 patrik, “Reinsurance,” 344.

16 See IRMI Glossary, https://www.irmi.com/term/insurance-definitions/facultative-automatic and https://www.irmi.com/term/insurance-

definitions/facultative-obligatory-treaty.

7 “Facultative Semi-Obligatory Treaty,” Guy Carpenter Glossary,

https://www.guycarp.com/content/guycarp/en/home/the-company/media-resources/glossary/f.html.

18 patrik, “Reinsurance,” 347.
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Proportional reinsurance is generally quite easy to administer and offers protection to the ceding
company against both the frequency and severity of losses. The two types of proportional reinsurance
are quota share and surplus share.

Quota Share Reinsurance

With quota share reinsurance, the ceding company cedes to the reinsurer an agreed percentage of each
risk it insures (i.e., each subject or underlying policy) that falls within the line(s) of business subject to
the reinsurance contract. In return, the reinsurer receives a fixed percentage of premium and losses for
all risks ceded to the quota share arrangement.

A simplistic example of quota share reinsurance follows. Assume a quota share reinsurance treaty
applicable to a single line of business with a cession percentage of 60% (i.e., the ceding company retains
40% and the reinsurer assumes 60%). Table 1. 1 presents the retained and ceded premium and losses
for two underlying policies that are subject to the quota share reinsurance.
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Table 1. 1. Quota Share Reinsurance Example

Insured Gross of Reinsurance Retained Ceded
(Net of Reinsurance)
Earned Ultimate Earned Ultimate Earned Ultimate
Premium Loss Premium Loss Premium Loss
#1 1,000 600 400 240 600 360
#2 1,000 3,000 400 1,200 600 1,800
Total 2,000 3,600 800 1,440 1,200 2,160
The gross, net of reinsurance, and ceded loss ratios are summarized in Table 1. 2.
Table 1. 2. Quota Share Reinsurance Example (Continued)
Insured Ultimate Loss Ratio
Gross Net of Reinsurance Ceded
#1 60% 60% 60%
#2 300% 300% 300%
Total 180% 180% 180%

Observe that with quota share reinsurance, the loss ratios (i.e., the losses divided by the premium) are
the same for both the ceding company and the reinsurer.

Variable quota share reinsurance is a special form of quota share reinsurance in which the cession
percentage varies based on explicit risk characteristics, such as limit, geography, or type of risk.

Typically, but not always, quota share reinsurance is on a treaty basis. Quota share reinsurance usually
applies to the ceding company’s net retained account (i.e., after deducting all other reinsurance except
perhaps excess of loss catastrophe reinsurance), but practices vary.
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Surplus Share Reinsurance

With surplus share reinsurance, the ceding reinsurer only reinsures losses that exceed the “surplus”
amount after the cedant’s retention. The ceding company cedes the surplus amount of risk above its
retained line subject to a maximum ceded percentage and limit. In surplus share reinsurance, the line

describes the amount of the ceding company’s retained risk; the reinsurer’s share is typically expressed
as a multiple of the ceding company’s retained line. For example, a three-line surplus share treaty
provides reinsurance for three times the ceding company’s retained liability, enabling the ceding

company to write four times as much insurance as was possible before reinsurance. Continuing with a

three-line surplus share reinsurance example, assume the following:

e A ceding company wants to write commercial automobile insurance policies to a maximum limit

of 10 million per policy, but its risk appetite framework sets a net retention of 2.5 million per
policy.

e Athree-line surplus share treaty meets the ceding company’s objective by providing 7.5 million
surplus share reinsurance.

e Losses arising from policy limits of 2.5 million and lower are retained fully by the ceding

company.
e Forlosses arising from policies with limits greater than 2.5 million, the proportion of each loss
covered by the surplus share reinsurance is determined by the formula

Proportion Ceded = [Policy Limit — Retained Line] / [Policy Limit].

Table 1. 3 demonstrates the different proportions ceded based on three different insureds with
different policy limits assuming each insured incurs a 2.5 million loss.

Table 1. 3. Surplus Share Reinsurance Example

Policy Ultimate . Ultimate Loss (M)
Insured Limits(M) Loss (M) Proportion Ceded
imits 0ss Retained | Ceded
#1 2.5 2.5 0% 2.5 0
#2 5 2.5 50% =(5M-2.5M)/5M 1.25 1.25
#3 10 2.5 75% =(10M—-2.5M) /10 M 0.625 1.875
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Given the different proportions ceded, surplus share reinsurance can be described as variable quota
share reinsurance. In her definition of surplus treaty, Ana J. Mata explains the difference between quota
share and surplus share reinsurance:

The main difference between a surplus treaty and quota share reinsurance (or standard
proportional reinsurance) is that in a quota share the insurer and the reinsurer share in a fixed
proportion each and every risk of the portfolio (losses and premiums), for example, 80% of
every risk may be ceded to the reinsurer. In a surplus treaty, the ceding company retains a fixed
maximum amount for each risk and this amount defines the retained proportion depending on
the total size of the underlying policy. For example, if the retained line is $100 000 per risk, for a
$500 000 policy limit the ceding company retains 20%, while for a $200 000 policy limit it retains
50%.%°

With surplus share reinsurance, the ceding company limits its net exposure to one line regardless of the
amount of insurance written. In practice, there are many variations in how surplus share reinsurance
operates, with different numbers of lines that may be in separate reinsurance contracts with different
reinsurers.

Functions of Proportional Reinsurance

Of the five primary functions of reinsurance described previously, proportional reinsurance is frequently
used to manage capital and solvency margins and to increase capacity. In their 2012 CAS Study Note on
reinsurance accounting, Ralph Blanchard and Jim Klann present a detailed example of how a quota share
reinsurance contract provides surplus relief, and they comment, “Net leverage ratios [written premium-
to-surplus] are significantly improved, although ceded reinsurance leverage ratios are significantly

increased. Hence, the insurer’s solvency becomes more reliant on its reinsurers’ solvency.”?

Ceding companies often use proportional reinsurance to support their need to write larger risks than
they are comfortable with (i.e., increase capacity), and surplus share reinsurance does this most
effectively. Depending on the cession percentage and the exposure to event or catastrophic risk,
proportional reinsurance can also protect against catastrophes.

Non-Proportional Reinsurance

In non-proportional reinsurance, which is also referred to as excess of loss reinsurance, the reinsurer’s
response to a loss is determined by the size of the loss. This type of reinsurance is called non-
proportional because the premium is not proportional to the limits of coverage. Like proportional
reinsurance, non-proportional reinsurance may be written on a treaty or facultative basis.

19 Ana J. Mata, “Surplus Treaty,” in Encyclopedia of Actuarial Science (Wiley Online Library, 2006),
https://doi.org/10.1002/9780470012505.tas047.

20 Ralph S. Blanchard Il and Jim Klann, “Basic Reinsurance Accounting — Selected Topics” (CAS Study Note, Arlington, VA, 2012),
https://www.casact.org/library/studynotes/Blanchard-Klann-Basic-Rein-Accounting.pdf.
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Excess of loss reinsurance describes a form of reinsurance that, subject to a specified limit, indemnifies
the ceding company against all or a portion of the amount of loss in excess of the ceding company’s
retention. The main types of excess of loss reinsurance include the following:

e  excess per risk

e excess per occurrence and catastrophe
e annual aggregate excess of loss

e clash.

To understand the differences between these types of reinsurance, it is helpful to focus on the subject
loss, which are the losses that are relevant to the reinsurance cover.

Excess Per Risk Reinsurance

Excess per risk reinsurance, which is also referred to as excess per policy reinsurance, is a form of
excess of loss reinsurance that, subject to a specified limit, indemnifies the ceding company against the
amount of loss in excess of a specified retention with respect to each risk involved in each loss. A “risk”
in this form of reinsurance could be the coverage on one building or a group of buildings for fire or flood
or the insurance coverage under a single policy that the ceding company treats as a single risk. Excess
per risk insurance is typically less exposed than excess per occurrence and catastrophe reinsurance to
accumulations of exposures and losses but can still be impacted by natural catastrophes including
earthquakes, wildfires, floods, etc.

An example of excess per risk reinsurance is a ceding company that sells property policies with a 10
million limit and maintains excess per risk reinsurance with a 3 million attachment point and reinsurance
limit of 7 million. For a loss of 3 million, the ceding company retains the full loss (i.e., there is no
coverage from the excess per risk reinsurance). For a 6.5 million loss, the ceding company retains losses
of 3 million, and the reinsurer assumes losses of 3.5 million.

Excess per risk reinsurance is primarily used to protect property exposures, although it can be used for
casualty lines of business. Like proportional reinsurance, excess per risk reinsurance enables ceding
companies to write larger risks (i.e., increase capacity). While some excess per risk treaties have ceding
commissions, the expense and surplus relief tend to be less than proportional reinsurance because the
premiums tend to be significantly less.

Excess Per Occurrence Reinsurance and Catastrophe Reinsurance

Excess per risk and excess per occurrence are similar in that the ceding company retains the first portion
of loss and the reinsurer assumes the excess of the retention, subject to the reinsurance limit.

Excess per occurrence reinsurance differs from excess per risk as it protects a ceding company from an
accumulation of losses due to a single occurrence or event. The subject loss in excess per occurrence
reinsurance is the sum of all losses arising from an insured event for all subject policies.
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Catastrophe reinsurance, which is also referred to as catastrophe excess of loss and catastrophe cover,
is a form of excess of loss reinsurance that, subject to a specified limit, indemnifies the ceding company
for the accumulation of losses in excess of a specified retention arising from a single catastrophic event
or a series of events. Catastrophe reinsurance protects against property as well as casualty losses that
arise due to natural events (e.g., hurricanes and earthquakes) and man-made events (e.g., terrorist
attacks and airplane accidents). Catastrophe reinsurance is offered on a worldwide basis as well as in
limited regions.

In the event of a loss, which may be a full limit loss or other amount (e.g., 50% of limit) that is specified
in the reinsurance contract, most catastrophe reinsurance contracts provide for a reinstatement of the
policy limit. A reinstatement is the restoration of the policy limit following payment of a full limit loss.
One or more reinstatements may be automatic as part of the reinsurance terms or may be available on
request. Depending on the terms, the reinstatement may be included with or without additional
premium. Premium paid for a reinstatement is referred to as reinstatement premium.

It is important for the actuary to track reinstatement premiums separately, as the accounting treatment
of reinstatement premiums may differ from other reinsurance premium in that reinstatement premium
may be considered earned immediately. Furthermore, reinstatement premium can distort historical
relationships between premium and losses and should be recognized in the determination of expected
loss ratios, which are critical assumptions for some loss projection techniques.

An example of catastrophe reinsurance is a ceding company that maintains catastrophe reinsurance of
35 million. Assume a flood results in total personal property and commercial property losses of 42
million. The ceding company would retain losses of 35 million, and the reinsurer would assume losses of
7 million.

Example of Excess Per Risk and Catastrophe Reinsurance

It is critically important to understand how multiple reinsurance contracts, both treaty and facultative,
interact. In reinsurance, one refers to how a contract inures to the benefit of another. Guy Carpenter’s
Glossary of Reinsurance Terms defines inure to the benefit of as follows:

To take effect for the benefit of either the reinsurer or the reinsured. With respect to a given
reinsurance contract (usually treaty), other reinsurances which are first applied to reduce the
loss subject to the given contract are said to inure to the benefit of the reinsurer of that given
contract. If the other reinsurances are to be disregarded as respects loss to the given contract,
they are said to inure to the benefit of the reinsured.?

21 “Inure to the Benefit of,” Guy Carpenter Glossary,

https://www.guycarp.com/content/guycarp/en/home/the-company/media-resources/glossary/i.html.
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An example helps clarify the application of excess per risk reinsurance and catastrophe reinsurance as
well as how one contract inures to the benefit of another contract. Assume a ceding company writes

200 personal property policies each with a 2 million limit. Further, assume that the ceding company

purchases excess per risk reinsurance with a retention of 1 million and reinsurance policy limit of 1

million. The ceding company also purchases catastrophe reinsurance with a retention of 20 million and

reinsurance policy limit of 150 million. The per risk excess reinsurance inures to the benefit of the

catastrophe reinsurance. After a major wildfire, the ceding company’s total insured losses (prior to any

reinsurance) and the losses ceded to the per risk reinsurance are summarized in Table 1. 4

Table 1. 4. Excess Per Risk Reinsurance Example

Individual Losses
Expressed as Individual . Total Losses Ceded
. # Insureds Suffering .
Proportion of Losses Losses Insured Excess Per Risk
2 Million Per Policy Losses Reinsurance

Policy Limits

10% 200,000 35 7 million 0

50% 1 million 10 10 million 0

100% 2 million 5 10 million 5 million

The ceding company’s retained losses after the excess per risk reinsurance are 22 million, and the
catastrophe reinsurance then applies with a cession of 2 million (22 million minus retention of 20
million). Recall that the ceding company’s net retention is 20 million.

The situation would be quite different if all 200 homes were totally destroyed by the wildfire, which is a
highly unlikely situation. Nevertheless, the losses for such an event would be as follows:

e Total insured losses of 400 million (200 insureds x 2 million policy limits).
o Total losses ceded to excess per risk of 200 million (200 insureds x 1 million excess per risk policy
limits).
e Total losses ceded to catastrophe reinsurance of 150 million.
e Total losses retained by ceding company of 50 million, which are equal to
o 20 million retention of catastrophe reinsurance, and
o 30 million of losses above the 150 million policy limit of the catastrophe reinsurance.

If the ceding company were to incur a full limit loss under the catastrophe reinsurance, reinstatement of
the policy limit could be very important, especially if the losses were to occur when there is significant
time remaining in the contract period.
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Annual Aggregate Excess of Loss Reinsurance

Aggregate excess of loss reinsurance, which is also referred to as aggregate stop-loss reinsurance, is a
form of excess of loss reinsurance that provides the ceding company with a guarantee that their losses
will not exceed a predetermined threshold, which can be specified as a percentage of premiums (i.e.,
loss ratio) or a fixed dollar amount. The reinsurer indemnifies the ceding company for the amount of
losses that are greater than a specified aggregate value.

For example, assume a captive insurer writing medical malpractice coverage seeks aggregate excess of
loss reinsurance. Alternatives for the aggregate excess of loss reinsurance coverage could include:

e 20% loss ratio excess of the captive’s retention of a 90% loss ratio, and
e 10 million limits excess of the captive’s retention of 50 million.

Continuing this example, assume the aggregate excess of loss reinsurance is stated in terms of loss ratio
and that the captive has subject premium of 10 million. Thus, the aggregate excess of loss reinsurance
would provide coverage of 2 million (10 million premium x 20%) excess of 9 million losses (10 million
premium x 90%).

Aggregate excess of loss reinsurance generally applies to all or part of the ceding company’s net
retention and protects net results (i.e., other reinsurance inures to the benefit of the aggregate excess
of loss reinsurance), although claims occurring from natural catastrophes may be excluded or have per
occurrence limits. For a ceding company seeking to protect its capital, aggregate excess of loss
reinsurance best achieves this objective. However, this type of reinsurance is often unavailable and,
when available, can be very expensive.

Clash

Clash reinsurance is a casualty reinsurance contract that attaches above all other policy limits. IRMI
describes clash coverage as a type of reinsurance that protects a ceding company “from the loss of its
normal reinsurance recoveries when it is faced with multiple claims from multiple insureds arising out of
the same catastrophe and where its reinsurance does not fully reimburse the insurer for these related
losses.”?? The objective of clash coverage is to protect the ceding company burdened by multiple claims
arising from exceptional events that are beyond the types of claims contemplated by traditional primary
insurance and excess of loss reinsurance policies.

The definition of clash event is a critical aspect of a clash reinsurance contract and varies according to
the intentions of the insurer and reinsurer. IRMI notes that the core definition of clash event generally
has three components:

22 Larry Schiffer, “Clash Cover Reinsurance and Economic Catastrophe Losses,” IRMI Expert Commentary, March 2009,
https://www.irmi.com/articles/expert-commentary/clash-cover-reinsurance-and-economic-cat-losses.
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e The loss must arise out of multiple policies held by one insured or similar policies held by
multiple insureds.

e All damages are traceable to and the direct consequence of a specific event.

e The event must take place in its entirety within a specific timeframe.?

Finite Risk Reinsurance

The Insurance Information Institute describes finite risk reinsurance as “a form of reinsurance that
specifically incorporates the time value of money. Unlike most reinsurance contracts, finite risk
contracts are usually multi-year. In other words, they spread risk over time and generally take into
account the investment income generated over the period.”

Finite reinsurance products typically have the following features:

e Risk transfer and risk financing combined in a multi-year contract.

e Emphasis on the time value of money, with investment income explicitly included in the
contract.

e Limited assumption of risk by the reinsurer.

e Sharing of the results with the ceding company.?*

The Insurance Information Institute uses the term run-off to refer to a special segment of solutions and
products focused on the full-scale transfer of reserve development risks. They state:

Run-off solutions are tools that address a firm’s earnings volatility arising from past activities.
There are a number of special situations that motivate a company to choose a run-off option,
like corporate restructuring, mergers & acquisitions, discontinuation of lines of business, erratic
changes in the valuation or cost of a liability, or regulatory, accounting or tax changes. The
biggest run-off transactions to date in the United States have involved either asbestos &
environmental (A&E) or workers’ compensation liabilities. Most transactions have involved
insurers, but the economics also work for corporations and captives.?®

Loss Portfolio Transfers

While most primary P&C insurance contracts are written for a one-year policy term, losses frequently
pay out over many years. As a result, insurers hold large loss reserves that are associated with payments
in future years for policies written in prior years. At times, insurers want to be relieved of the
uncertainty associated with such loss reserves and relief in the capital that must be held for these

2 Schiffer, “Clash Cover Reinsurance.”

24 “Finite Risk Reinsurance,” Insurance Information Institute, https://www.iii.org/article/finite-risk-reinsurance.

25 “Finite Risk Reinsurance,” https://www.iii.org/article/finite-risk-reinsurance.

26 “Finite Risk Reinsurance,” https://www.iii.org/article/finite-risk-reinsurance.
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reserves. A loss portfolio transfer (LPT) is a form of reinsurance that transfers, at a specified accounting
date, from the ceding company to the reinsurer all or a portion of the liability for future loss payments.
The IRMI Glossary provides the following definition of an LPT:

A financial reinsurance transaction in which loss obligations that are already incurred and will
ultimately be paid are ceded to a reinsurer. In determining the premium paid to the reinsurer,
the time value of money is considered, and the premium is therefore less than the ultimate
amount expected to be paid. The cedent’s statutory surplus increases by the difference between
the premium and the amount that had been reserved. An insurer seeking to withdraw from
writing workers’ compensation coverage in a given state could, for example, use a loss portfolio
transfer to meet its obligations under policies it has written, without the need to continue the
day-to-day management of the claims resolution function.?’

Typically, LPTs are used with long-tail lines of business (such as medical malpractice, asbestos, and
pollution liability) where there are significant delays in the reporting of claims and the losses may not be
settled for years. Timing is the main element of risk. If claims are settled earlier than expected, then
investment income could be lower than anticipated, and the reinsurer could lose money on the
contract. In an LPT, the ultimate total nominal losses are usually limited by the finite reinsurance
contract.

Adverse Development Cover

An alternative to an LPT is adverse loss development cover (or simply adverse development cover),
where the ceding company receives reimbursement from the reinsurer for losses in excess of a pre-
agreed retention level. Unlike an LPT, there is no transfer of loss reserves from the ceding company to
the reinsurer providing the adverse loss development cover. Instead, reinsurance is set at the level of
the reserves held or at some higher level (often expressed as a multiple) of the held reserves. A key use
of adverse development cover is mergers and acquisitions where the ceding company can transfer risks
associated with both timing and adverse reserve development.

Reinsurance Concepts and Contract Provisions Influencing the
Estimation of Unpaid Losses

Losses-Occurring-During and Risks-Attaching

Given the tailor-made nature of reinsurance contracts, it is critically important that the contract wording
appropriately reflects the intent of the parties and that the ceding company and reinsurer fully
understand what risks are being reinsured. The business-covered clause?® describes “whether the
reinsurance contract is covering risks or policies written by the reinsured that attach to the reinsurance

27 “Loss Portfolio Transfer (LPT),” IRMI Glossary, https://www.irmi.com/term/insurance-definitions/loss-portfolio-transfer.

28 This clause is also known as the reinsuring clause, cover clause, business reinsured clause, or the application of agreement clause.
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contract or whether losses on policies issued by the reinsured occurring during the life of the

reinsurance contract are being reinsured.

”29

There are two primary approaches of reinsurance coverage: losses-occurring-during and risks-attaching

(also known as policies-attaching). Losses-occurring-during contracts provide reinsurance coverage for

all losses that occur between the contract inception and expiration dates regardless of when the ceding

company issued the underlying policy that resulted in the loss. Risks-attaching contracts provide

reinsurance coverage only for those policies that incepted during the reinsurance contract effective

period; the underlying policies that are covered by risks-attaching reinsurance can have a policy

expiration that is later than the expiration date of the reinsurance contract.

For example, assume a ceding company has a property per risk excess of loss reinsurance contract with

an attachment point of 2 million and policy limits of 10 million. Further assume that the reinsurance

contract is losses-occurring-during with an inception date of January 1, 2020 and expiration date of
December 31, 2020.

A 3 million fire loss that occurred on February 15, 2020 arising from an underlying policy with
effective dates of July 1, 2019 to June 30, 2020 would have reinsurance coverage of 1 million
(i.e., 3 million total loss less 2 million retention of the ceding company) because the occurrence
date of the loss is within the effective period of the reinsurance contract.

Similarly, a 3 million fire loss that occurred on February 15, 2020 arising from an underlying
policy with effective dates of February 1, 2020 to January 31, 2021 would have reinsurance
coverage of 1 million.

A 3 million fire loss that occurred on February 15, 2021 arising from an underlying policy with
effective dates of July 1, 2020 to June 30, 2021 would not have reinsurance coverage, because
the date of loss (i.e., February 15, 2021) is after the reinsurance contract expiry date of
December 31, 2020. This assumes that the reinsurance contract was not renewed or replaced
with other applicable coverage.

Next, assume a ceding company has a liability quota share risks-attaching contract with a 60% ceding

percentage (i.e., the reinsurer assumes 60% of premium and losses). Further assume that the inception
date of the contract is July 1, 2020 and the expiration date is June 30, 2021.

A 2 million liability loss that occurred on February 15, 2021 arising from an underlying policy
with effective dates of June 1, 2020 to May 31, 2021 would not have reinsurance coverage
because the underlying policy began before the inception date of the reinsurance contract (i.e.,
July 1, 2020).

2 Larry Schiffer, “Understanding the Business-Covered Clause in a Reinsurance Contract,” IRMI Expert Commentary, November 2003,

https://www.irmi.com/articles/expert-commentary/understanding-the-business-covered-clause.
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e A2 million liability loss that occurred on February 15, 2021 arising from an underlying policy
with effective dates of July 15, 2020 to July 14, 2021 would have reinsurance coverage because
the inception date of the underlying policy is within the reinsurance contract effective dates.

e A2 million liability loss that occurred on August 15, 2021 arising from an underlying policy with
effective dates of September 1, 2020 to August 31, 2021 would have reinsurance coverage
because the underlying policy incepted during the reinsurance contract period even though the
loss occurred after the expiry of the reinsurance contract period.

While losses-occurring-during and risks-attaching are the two most common types of reinsurance
contracts, coverage can be tailored to meet unique circumstances of the parties to the contract. Thus, it
is incumbent on the actuary to understand details of the contract provisions.

Subscription Percentage

Some reinsurance placements are shared by multiple reinsurers through subscription policies. In the
context of reinsurance, a subscription policy is a reinsurance policy in which multiple reinsurers share
the risk associated with providing the reinsurance coverage. Subscriptions can be used when the
amount of coverage is more than any one reinsurer is willing to assume and when the primary insurer is
seeking to diversify its risk, particularly credit risk. For losses subject to reinsurance placed with multiple
reinsurers, it is important that the actuary be aware of the percentage subscribed, as there can be
situations in which the full coverage is not placed, and thus the primary insurer would bear
responsibility for losses that had been intended for reinsurance.

Commutation Clause

Commutation refers to the cancellation or dissolution of a reinsurance contract. With a commutation,
the reinsurer pays funds (at present value) that are not yet due to the ceding company in exchange for
full termination of all future obligations related to the reinsurance contract.

Some reinsurance contracts contain a commutation clause, also known as a commutation agreement,
that sets out the terms and conditions for the estimation, payment, and complete discharge of all
obligations of the parties to a reinsurance contract. This clause is common in reinsurance contracts
covering U.S. workers’ compensation and can be optional or mandatory.

Ceding companies use commutations for many reasons. For example, a ceding company may commute
a reinsurance contract because it wants to:

e Exit a line of business or geographic region.

e Manage reserves for transfer or sale.

e Avoid the credit risk associated with its reinsurer, particularly if the reinsurer has suffered a
ratings downgrade.

e Better manage claims and claims-related expenses and believes that its own staff has the
expertise required.
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Similarly, reinsurers use commutations for a variety of reasons. For example, a reinsurer may commute
a reinsurance contract because it wants to

e Terminate a relationship with a ceding company that is in run-off or one with which it no longer
conducts business.

e Protect itself from the potential insolvency of a ceding company.

e Avoid disputes when there are significant differences of opinion with respect to future loss
development of subject losses.

Understanding commutations is important for the actuary estimating unpaid losses for several reasons.
First, actuaries are frequently involved in the analysis of reinsurance contracts that are subject to
commutation. Second, an actuary at a ceding company must be aware of contracts that are commuted,
as such affects the estimation of unpaid ceded losses. Similarly, an actuary at a reinsurer must be aware
of contracts that are commuted as there is no longer liability associated with such contracts. Finally,
actuaries working for both primary insurers and reinsurers should track commuted reinsurance
contracts, as the loss development patterns for such contracts could be different from other contracts
that remain in force. Thus, actuaries frequently choose to exclude commuted contracts from historical
data.

Conclusion

This text is meant to serve as an introduction to reinsurance with a focus on basic reserving
methodologies. Reinsurance, which is foundational to a sound global insurance market, can be
exceptionally complex. This text is not intended to address these complexities — neither those seen in
the commercial market between insurers and reinsurers nor those used within an insurance group
through the use of internal reinsurance agreements. Similarly, it is not intended to describe the
sophisticated reinsurance arrangements that are frequently created by combining different types of
reinsurance with manuscript terms and conditions. Examples and descriptions of complex reinsurance
towers can be found readily through internet searches. Instead, the objective is to provide a foundation
for the actuary that aids in further study as well as experience working with reinsurance.
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Chapter 2 — Data Requirements

This chapter is organized as follows:

e Introduction

e Sufficient and Reliable Data

e Homogeneity and Credibility of Data

e QOrganization of Data by Experience Period

e Knowledge of Reinsurance Terms and Conditions
e Types of Data

e Sources of Data

Introduction

In Actuarial Standards of Practice (ASOP) 23—-Data Quality, the U.S. Actuarial Standards Board (ASB-US)
defines data as: “numerical, census, or classification information, or information derived mathematically
from such items, but not general or qualitative information. Assumptions are not data, but data are
commonly used in the development of actuarial assumptions.” 3 The International Actuarial Standard of
Practice (ISAP) Glossary has a slightly different definition of data and states that data “are usually

quantitative but may be qualitative.”3!

Many considerations related to data (quantitative and qualitative) are similar for actuaries working with
insurers and those working with reinsurers. Actuaries seek data that are sufficient and reliable. They
strive to aggregate data in segments that are homogeneous and credible. They organize data by
experience periods that best meet their needs from operational as well as user perspectives. There are
important differences, however, in each of these areas as well as in the types and sources of data used
by actuaries working in primary insurance versus reinsurance. Many of these issues are explored in this
chapter.

Sufficient and Reliable Data

The requirements for sufficient and reliable data for actuarial work are typically set out in actuarial
standards of practice. The Canadian actuarial standards of practice describe sufficient and reliable data

30 ASB-US, ASOP 23 (revised edition, December 2016), section 2.3, http://www.actuarialstandardsboard.org/wp-
content/uploads/2017/01/asop023 185.pdf.

31 International Actuarial Association, ISAP Glossary (November 2019), 2,
https://www.actuaries.org/iaa/IAA/Publications/ISAPs/IAA/Publications/05ISAPs.aspx.
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as follows: “Data are sufficient if they include the needed information for the work ... Data are reliable if
they are sufficiently complete, consistent, and accurate for the purposes of the work.”3?

The International Actuarial Association’s ISAP 1 — General Actuarial Practice has similar descriptions.
ASOP 23 uses the term appropriate data and defines the term as: “Data suitable for the intended
purpose of an analysis and relevant to the system or process being analyzed.”>3

Sufficiency

To determine if data are sufficient for the estimation of unpaid losses, it is helpful to review the key
assumptions of the development method, which is one of the most common methods used to project
ultimate values. Key assumptions of the development method include the following:

e Losses recorded to date (reported or paid) will continue to develop in a similar manner in the
future.

e The relative change in a given year’s losses from one evaluation point to the next is similar to
the relative change in prior years’ losses at similar evaluation points.

e For an immature year, the losses observed to date are valuable for projecting the losses yet to
be observed.

e Throughout the experience period, there has been consistency in the mix of business,
attachment points and policy limits, and claim processing (which includes the reporting,
establishment of case estimates, and settlement of claims).

Ensuring the sufficiency of data can be particularly challenging for actuaries working with reinsurers due
in large part to the manuscript nature of many reinsurance contracts, where terms can differ from one
ceding company to the next and can change from year to year. Furthermore, operational and strategic
changes that were implemented at the ceding companies, the reinsurer, or both can lead to violation of
the assumption of consistency in the mix of business, attachment points and limits, and claims
processing.

Reliability

With respect to the accuracy of data, the actuary has an obligation to validate the data. ISAP 1 sets out
the following requirements for data validation:

Data Validation — The actuary should take reasonable steps to review the consistency,
completeness, and accuracy of the data used. These might include:

32 Canadian Institute of Actuaries, Standards of Practice (January 2020), Section 1440.04 and .05, https://www.cia-
ica.ca/publications/standards-of-practice.

33 ASOP 23, section 2.1.
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a. Undertaking reconciliations against audited financial statements, trial balances, or other
relevant records, if these are available;

b. Testing the data for reasonableness against external or independent data;
Testing the data for internal consistency and consistency with other relevant
information; and

d. Comparing the data to those for a prior period or periods.

The actuary should describe this review in any report.3*

ASOP 23 sets out the following requirements for the review of data:

A review of data may not always reveal defects. Nevertheless, the actuary should perform a
review, unless, in the actuary’s professional judgment, such review is not necessary or not
practical. In exercising such professional judgment, the actuary should take into account the
purpose and nature of the assignment, any relevant constraints, and the extent of any known
checking, verification, or audit of the data that has already been performed.3

ASOP 23 describes the requirements for the actuary to make a reasonable effort to determine the
definition of each data element used in the analysis, to identify questionable data values, and to review
prior data.

Actuaries working for reinsurers can face more challenges than those working with primary insurers in
the validation of data due to the following:

e For each ceding company and broker reporting on behalf of a ceding company, different it
systems that capture different types of data and use different terminology for similar types of
data.

e Use of bordereau reporting that can differ (by ceding company and broker) in the types of data
reported, the labeling of such data, and the frequency of submission to the reinsurer.

e lLagsin reporting related to:

o Theinherent delay in claims that must first be reported to the ceding company before
they are reported to the reinsurer;

o The long-tailed nature of certain types of reinsurance such as excess per risk (where it
takes time to know that a specific claim has breached the ceding company’s retention)
and catastrophe reinsurance (where it can take time before aggregated losses exceed
the ceding company’s retention); and

34 International Actuarial Association, ISAP 1 (December 2018), section 2.5.2,
https://www.actuaries.org/iaa/IAA/Publications/ISAPs/IAA/Publications/05ISAPs.aspx.

35 ASOP 23, section 3.3.
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o Bordereau reporting, where losses are only reported on a quarterly or more infrequent
basis.

e Gaps in reporting critical information from the ceding companies about claims (including loss
payments and case reserves) and claims-management expenses (e.g., investigation, legal, and
expert witness expenses).

e Manuscript nature of reinsurance policies that can lead to different coverage for similar loss
events with different ceding companies.

e Issues related to data coding for the reinsurer itself.

Nevertheless, the obligations related to using reliable data and validating data that stem from
professionalism requirements as well as insurance law and regulation are equally applicable to actuaries
working with reinsurers as primary insurers.

Homogeneity and Credibility of Data

Considerations related to the homogeneity and credibility of data are important for all actuaries
estimating unpaid losses.

Homogeneity

The term homogeneous risk group (HRG) used in the European Union’s Solvency |l Directive is helpful in
explaining the key characteristics that underlie the actuary’s segmentation of data. HRG is described as:

Set of (re)insurance obligations which are managed together and which have similar risk
characteristics in terms of, for example, underwriting policy, claims settlement patterns, risk
profile of policyholders, likely policyholder behaviour, product features (including guarantees),
future management actions and expense structure. The risks in each group should be sufficiently
similar to allow for a reliable valuation of technical provisions* (including a meaningful
statistical analysis). The classification is undertaking-specific.3’

The goal in segmenting data is to improve the robustness of the estimates of unpaid losses by
subdividing experience into groups that exhibit similar characteristics. As a result, when separating data
into groups for an analysis of unpaid losses, actuaries working for primary insurers and reinsurers focus
on similar considerations, such as

36 The term technical provisions is used widely outside of the U.S. and Canada. Technical provisions is defined in the International Association
of Insurance Supervisors’ Glossary as: “The amount that an insurer sets aside to fulfil its insurance obligations and settle all commitments to
policyholders and other beneficiaries arising over the lifetime of the portfolio, including the expenses of administering the policies,
reinsurance and of the capital required to cover the remaining risks.” (see https://www.iaisweb.org/page/supervisory-material/glossary).

37 Committee of European Insurance and Occupational Pensions Supervisors (CEIOPS), CEIOPS’ Advice for Level 2 Implementing Measures on
Solvency II: Technical Provisions — Lines of Business on the Basis of which (Re)Insurance Obligations Are to Be Segmented (October 2009),
section 3.6, https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Final-Advice-Technical-Provisions-
Segmentation.pdf.
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e Consistency of the coverage triggered by the losses in the group.

e Length of time to report the claim once an insured event has occurred (i.e., reporting patterns).

e Ability to develop an appropriate case outstanding estimate from earliest report through the life
of the claim.

o Length of time to settle the claim once it is reported (i.e., settlement, or payment, patterns).

o Likelihood of claim to reopen once it is settled.

e Average settlement value (i.e., severity).

e Volume of losses in the group.

Actuaries strive to determine HRGs in which the claims display similar traits with respect to these
characteristics.

Credibility

The goal for the actuary is to divide the data into sufficiently homogeneous risk groups without
compromising credibility. The ASB-US’s ASOP 25—Credibility Procedures defines credibility as: “A
measure of the predictive value in a given application that the actuary attaches to a particular set of
data (predictive is used here in the statistical sense and not in the sense of predicting the future).”3®
Increasing the homogeneity of the group of data and increasing the volume of data in the group tend to
increase credibility. If, however, the actuary divides the data into too many homogeneous groupings,
there is a risk that the volume of data in the individual groups becomes insufficient to perform a reliable
analysis.

Differences in Considerations Related to Homogeneity and Credibility for
Reinsurance versus Insurance

While many of the considerations are similar for actuaries working with primary insurance and
reinsurance, there are some important differences. In particular, there are notable differences in how
actuaries working with primary insurance and reinsurance segment data. For example, actuaries
working with primary insurance frequently aggregate data by line or sub-line of business, as claims
within such lines are typically subject to the same or similar laws, policy terms, claims-management
expense, etc. For reinsurance, however, there can be important differences within a line of business
based on the type of reinsurance contract (e.g., treaty versus facultative and proportional versus non-
proportional) that require further segmentation.

Using auto insurance as an example to differentiate reinsurance from primary insurance, an actuary
working with a large insurer may have a sufficient volume of credible experience to segment data by the
following:

38 ASB-US, ASOP 25 (revised edition, December 2013), section 2.1, http://www.actuarialstandardsboard.org/wp-
content/uploads/2014/02/asop025 174.pdf.
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e Personal lines auto separate from commercial lines auto;
e Jurisdiction (e.g., state, province, or region); and
e Sub-coverage, including:

o Third-party liability, which may be further separated for bodily injury (BI) and property
damage (PD);

o No-fault benefits (known as personal injury protection, or PIP, in the United States and
accident benefits, or AB, in Canada), which may be further separated for various types
of benefits including medical and rehabilitation, disability income, funeral, etc.; and

o Physical damage, which may be further separated for type of coverage, such as collision
and comprehensive.

In contrast, an actuary working with a large reinsurer may segment auto reinsurance data by:

e Personal lines auto separate from commercial lines auto.

e Treaty separate from facultative.

e Pro rata separate from excess.

e Aggregate stop-loss and finite risk covers separate from all other segments.

One notable difference with the segmentation for reinsurers when compared to primary insurers is that
losses are generally not segmented at a sub-coverage level or jurisdiction level, although a global
reinsurer would likely segment data by country or region. Furthermore, a reinsurer may segment excess
of loss per risk and excess of loss per occurrence at various attachment points, where a primary insurer
may segment losses at alternative limits (e.g., losses limited to 1 million, losses limited to 2.5 million,
etc.).

In his chapter on reinsurance, Patrik discusses partitioning the reinsurance portfolio into reasonably
homogeneous exposure groups that are relatively consistent over time with respect to the mix of
business. For partitioning a reinsurance portfolio, he provides a list of the important variables that affect
the pattern of claim report lags to the reinsurer and the development of individual case amounts.
Patrik’s priority-ordered list includes:

e Line of business (property, casualty, bonding, ocean marine, etc.);

e Type of contract (facultative, treaty, finite or financial);

e Type of reinsurance cover (quota share, surplus share, excess per risk, excess per occurrence,
aggregate excess, catastrophe, loss portfolio transfer, etc.);

e Primary line of business for casualty;

e Attachment point for casualty;

e Contract terms (flat-rated, retro-rated, sunset clause, share of loss adjustment expense, claims-
made or occurrence coverage, etc.);

e Type of ceding company (small, large, or excess and surplus; and
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e Intermediary (i.e., broker).>®

Patrik notes that it is likely not possible to separate data by all of the above criteria, as the resulting
segments would lack sufficient volume to produce credible results. A critical factor in determining how
to segment data is related to the credibility of the data. Noting that there is no “typical reinsurer,” he
nevertheless provides the following example of segmentation for a reinsurer:

e Treaty casualty excess

e Treaty casualty proportional

o Treaty property excess

e Treaty property proportional

e Treaty property catastrophe

e  Facultative casualty

e Facultative property

e Surety

e Fidelity

e Ocean marine

e Inland marine

e Construction risks

e Aviation

e Finite or nontraditional reinsurance

e Miscellaneous special contracts, pools, and associations
e Asbestos, pollution, and other health hazard or mass tort claims*

A large global reinsurer may further segregate some of the above groups by major region such as
Americas, Europe, Asia, and rest of world.

Another consideration regarding the homogeneity and the grouping of data relates to changes in the
portfolio. In some circumstances, it may be appropriate to combine data from treaty and facultative
reinsurance even if these types of reinsurance typically exhibit different underlying loss patterns.
However, if the relative volume of business is changing between these two types of reinsurance and
underlying development patterns differ, then the grouping may not be appropriate. Estimating Unpaid
Claims Using Basic Techniques contains a detailed example of the effect on various projection
techniques of analyzing a portfolio where the growth of personal automobile and commercial
automobile differ, and the consequence of the changing proportions on the various estimation
techniques is significant.

39 patrik, “Reinsurance,” 443.

40 patrik, “Reinsurance,” 444,
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Organization of Data by Experience Period

For estimating unpaid losses, reinsurers typically rely on aggregation by accident year or underwriting
year. Underwriting year is also referred to as treaty year and contract year. In this text, the terms
underwriting year and treaty year are used interchangeably.

The requirements for financial reporting as well as internal management reporting and planning are
important considerations for selecting an approach to aggregating data. For example, reinsurers
operating in the United States and Canada require accident year results for statutory financial reporting.
That said, reinsurers may analyze data by treaty year and then use allocation approaches to derive
accident year results for statutory financial reporting purposes.

Accident Year Aggregation

Accident year data refer to losses grouped according to the date of occurrence (i.e., the accident date or
the coverage triggering event). For example, accident year 2020 consists of all losses with an occurrence
date in 2020. Aggregation by accident year is the most common grouping of loss data for the actuarial
analysis of unpaid losses for primary insurers. Accident year aggregation is also used extensively by
many reinsurers in the United States and Canada because of financial and statistical reporting
requirements.

Calendar year earned premiums are used to provide an approximate matching of the losses that occur
during the year with the insurance premiums earned by an insurer during the year in which the
insurance coverage is effective.

Accident year aggregation has become the accepted norm for P&C insurers (including reinsurers) in the
United States and Canada. Accident year grouping is easy to achieve and easy to understand. It
represents losses occurring over a shorter time frame than for underwriting year aggregation, implying
that ultimate accident year losses should become reliably estimable sooner than those for an
underwriting year. Industry benchmarks, including data from the Reinsurance Association of America
(RAA) and AM Best, are based on accident year experience. Finally, tracking losses by accident year is
valuable when there are changes due to economic or regulatory forces (such as inflation or law
amendments) or major loss events (such as atypical weather or a major catastrophe) that can influence
loss experience.

A significant disadvantage of accident year aggregation is the potential mismatch between losses and
premiums. Accident year aggregation includes losses from policies underwritten and priced at more
varied times than underwriting year aggregation.

Underwriting (Treaty) Year Aggregation

Underwriting year data, which is frequently used by European reinsurers and Lloyds of London, refer to
losses grouped by the year in which the reinsurance policy became effective (i.e., the year in which the
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contract was incepted). Underwriting year for reinsurance is similar conceptually to policy year for
primary insurance.

Losses arising from an underwriting year can extend over many calendar years. For example, if the
reinsurance contract is for a 12-month duration and on a risks-attaching basis, the losses arising from
such an underwriting year can extend over three calendar years. Continuing this example, underwriting
treaty year 2020 for a reinsurer writing proportional risks-attaching reinsurance contracts refers to all
reinsurance policies with beginning effective dates between January 1, 2020 and December 31, 2020.
For annual reinsurance policies with a January 1, 2020 effective date, covered policies will have effective
dates between January 1, 2020 and December 31, 2020 and thus accident dates between January 1,
2020 and December 30, 2021. For annual reinsurance policies with a December 31, 2020 effective date,
covered policies will have effective dates between December 31, 2020 and December 30, 2021 and thus
accident dates between December 31, 2020 and December 29, 2022. Thus, for this example, treaty year
2020 includes losses arising from three calendar years.

The primary advantage of underwriting year aggregation is a true match between losses and premiumes.
Underwriting year experience can be important when underwriting or pricing changes occur, such as

e Asshift in attachment points or limits.

e A new emphasis on certain classes of business or regions.
e A change in the types of ceding company.

e Anincrease or decrease in the price.

All of the above can lead to a significant change in expected loss ratios, and many of the above can lead
to changes in loss development patterns.

The primary disadvantage of underwriting year aggregation is the extended time frame. As seen in our
previous example, an underwriting year can extend over a 36-month period, generally resulting in a
longer time until all the losses are reported and a longer time until the ultimate losses can be reliably
estimated. This disadvantage can present challenges in the projection of ultimate losses for the most
immature underwriting years where cumulative development factors are highly leveraged and the
written premium is not fully earned. (Chapter 3 includes examples of possible solutions to these
challenges.) Underwriting year data can also make it difficult to understand and isolate the effect of a
single large event such as a major court ruling that changes how insurance contracts are interpreted.

Allocation to Accident Year from Underwriting Year

Reinsurers often use underwriting year aggregation for the development of best estimates of ultimate
losses and unpaid losses and rely on accident year aggregation for financial reporting and to track how
ultimate losses (i.e., reported losses plus incurred but not reported, IBNR, losses) develop over time.
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Actuaries who conduct their analysis of unpaid losses using data aggregated by treaty year may need to
allocate results to accident year for financial reporting or other purposes. Allocation processes are
typically based on how premium is earned over the contract period.

When the reinsurer receives from the ceding company (or broker) detailed loss data including key dates
(such as date of loss and policy effective date), then accurate assignment to accident year or
underwriting year can occur. However, there are times, particularly for treaty proportional reinsurance,
when such details are not available to the reinsurer. In such situations, the reinsurer would typically use
earnings profiles to allocate estimates of unpaid losses to accident year. (See Chapter 3 for a detailed
example of earning premium.)

Knowledge of Reinsurance Terms and Conditions

It is critically important that actuaries understand the key terms and conditions of reinsurance
programs. This is true for actuaries working with reinsurers and those working with primary insurers
with responsibility for estimating the ultimate losses and unpaid losses ceded to reinsurers. For
example, actuaries need to know the following:

e Business covered, exclusions, and limitations.

e Ceding percentage for quota share reinsurance.

e Retention (i.e.,, first line) and number of lines for surplus share reinsurance.

e Retention and limits for excess of loss reinsurance and whether excess insurance is per risk or
per occurrence.

e Attachment point and limits for stop-loss reinsurance.

e Treatment of loss adjustment expenses and recoveries (such as salvage and subrogation).

It is common for reinsurance terms and conditions, including ceding percentages and retentions, to
change from time to time. Thus, it is the actuary’s responsibility to maintain documentation of historical
terms as well as be familiar with current terms. Actuaries work closely with underwriters and claims
professionals to ensure knowledge of qualitative information that can influence the estimation of
unpaid losses.

Types of Data

Actuaries working with reinsurers typically rely on paid losses, case reserves, and reported losses (i.e.,
the sum of paid losses and case reserves) as well as written and earned premiums. Case reserves often
include the case reserves set by the primary insurer as well as additional case reserves (ACR) that are
set by the reinsurer. Unlike actuaries working with primary insurers, actuaries working with reinsurers
usually do not have access to detailed claim count data nor earned exposure information, such as the
number of insured vehicles for auto insurance or number of insured properties for homeowners
insurance.
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The absence of claim count and exposure data leads to far fewer options for triangle-based diagnostics,
as the actuary is not able to calculate triangles of average claim values (e.g., average paid, average case
outstanding, and average reported) nor count-based ratio triangles (e.g., ratios of closed-to-reported
counts and closed with pay-to-closed counts). Thus, the actuary should turn to other types of
investigation, particularly interviews with management of the reinsurer and ceding companies to
understand the environment and any changes therein. Chapter 4 of Estimating Unpaid Claims Using
Basic Techniques includes significant detail about meetings with management to understand the
environment and includes sample questions for interviews with senior leaders and the underwriting,
claims, data processing, and pricing departments.

Bordereau Reporting

Reinsurers often receive data from ceding companies by bordereaux, which Robert W. Strain defined as:

Furnished periodically by the reinsured, a detailed report of insurance premiums or losses
affected by reinsurance. A premium bordereau contains a detailed list of policies (or bonds)
reinsured under a reinsurance treaty during the reporting period, reflecting such information as
the name and address of the primary insured, the amount and location of the risk, the effective
and termination dates of the primary insurance, the amount reinsured and the reinsurance
premium applicable thereto. A loss bordereau contains a detailed list of claims and outstanding
expenses and paid by the reinsured during the reporting period, reflecting the amount of
reinsurance indemnity applicable thereto. Bordereau reporting is primarily applicable to pro rata
reinsurance arrangements and to a large extent has been supplanted by summary reporting.*

There are numerous challenges associated with bordereau reporting, including how data are cumulated
by the ceding company or the broker and absorbed by the reinsurer. There are also issues related to the
frequency with which reinsurers receive bordereaux. Bordereaux can be submitted by ceding companies
or brokers on a monthly, quarterly, semi-annual, or annual basis. The more infrequent the reporting, the
greater the lag in reporting and settlement loss development patterns of the reinsurer.

Ceding companies typically have relationships with multiple reinsurers; similarly, reinsurers work with
multiple ceding companies as well as multiple brokers. Each of these companies and brokers will have
different IT systems that generate different types of reports. Ceding companies and brokers often
struggle to access data from existing systems and extract data in the formats suitable for reinsurers.
Similarly, reinsurers have difficulty efficiently and accurately absorbing the data to transform into the
format required for actuarial purposes. The creation, distribution, and absorption of data via bordereaux
files remains a manually intensive process. Another challenge with bordereau reporting is that the loss
detail on a bordereau does not contain near as complete details as are available on the claim files of the
ceding company.

41 Quoted in Larry Schiffer, “Reinsurance Terminology Explained: Bordereau and Other Terms of Art,” IRMI Expert Commentary, March 2021,
https://www.irmi.com/articles/expert-commentary/reinsurance-terminology-explained-bordereau.
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While the insurance industry has made great strides in defining standardized data sets to be used by
ceding companies and their reinsurers, the adoption of these data sets has been slow. Even when
standardized formats for reporting are used, the issue of data disparity still exists. Many stakeholders
have not fully implemented standardized data standards in their IT systems due to the high cost and
effort required to update existing systems and the higher priority of other IT transformation initiatives.

Loss Adjustment Expenses

One area that requires the actuary’s close attention is the treatment of loss adjustment expenses (LAE),
which are expenses associated with the investigation, management, and settlement of claims. This text
uses similar terminology to Estimating Unpaid Claims Using Basic Techniques. Allocated loss adjustment
expenses (ALAE) correspond to those costs the insurer (or reinsurer) can assign to a particular claim,
such as legal and expert witness expenses. Unallocated loss adjustment expenses (ULAE) are expenses
that cannot be easily allocated to a specific claim. Examples of ULAE include the payroll, rent, and
computer expenses for the claims department of an insurer (or reinsurer).

It is important that the actuary working with reinsurance (ceded and assumed) understand the
treatment of LAE in reinsurance contracts. Frequently, although not always, ULAE are excluded from
reinsurance coverage. For ALAE, there are generally three possible treatments:

1. Included with the claim amount in determining excess of loss coverage, which is a common
treatment;

2. Included on a pro rata basis (i.e., the ratio of the excess portion of the loss to the total loss
amount determines coverage for ALAE); and

3. Notincluded in the coverage.

For example, assume a ceding company issues liability policies with limits of 5 million and maintains
liability excess per occurrence reinsurance with a retention of 2 million and limits of 3 million. Table 2. 1
presents the primary insurer’s loss and ALAE on a gross of reinsurance and ceded basis for three
occurrences assuming the three different options for the treatment of ALAE.
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Table 2. 1. Examples of ALAE Treatment Under Reinsurance

Gross of Reinsurance Ceded Loss and ALAE based on
Reinsurance Treatment of ALAE
Occurrence
ALAE Included | ALAE Included ALAE Not
Loss ALAE . .
with Loss Pro Rata Basis Included
#1 2 2 2 0 0
#2 3 2 3 1.67 1
#3 0 3 1 0 0

In this example, the loss and ALAE are each 2 million for occurrence #1. If ALAE are included with the
loss amount covered by the reinsurance contract, then the total subject loss is 4 million, of which 2
million is retained by the ceding company and 2 million is assumed by the reinsurer. If ALAE are included
on a pro rata basis for occurrence #1, there is no assumption of losses by the reinsurer, as the subject
loss (i.e., 2 million) does not exceed the ceding company’s retention and there are no losses to enter
into a pro rata calculation. Finally, for occurrence #1, if ALAE are not included in the reinsurance
contract, then there is no assumption by the reinsurer as the subject loss (i.e., 2 million) does not exceed
the ceding company’s retention.

For occurrence #2, the loss of 3 million exceeds the ceding company’s retention even before
consideration of ALAE. If ALAE are included with the loss amount covered by the reinsurance contract,
then the total subject loss is 5 million, of which 2 million is retained by the ceding company and 3 million
is assumed by the reinsurer. If ALAE are included on a pro rata basis for occurrence #2, there is an
assumption of ALAE by the reinsurer as well as losses. The calculation for assumed ALAE (i.e., ALAE
ceded to the reinsurer) is equal to:

(1 million loss assumed / 3 million total loss) x 2 million ALAE = 0.67 million ALAE assumed.

If, for occurrence #2, ALAE are not included in the reinsurance contract, then assumed losses by the
reinsurer are 1 million, and the ceding company retains 2 million losses and 2 million ALAE.

Finally, for occurrence #3, the sum of the loss of 0 and ALAE of 3 million exceeds the ceding company’s
retention when ALAE are included. Thus, there is a recovery from the reinsurance of 1 million if ALAE are
included with the loss amount covered by the reinsurance contract. Given that there are no losses that
exceed the retention, there is no recovery from the reinsurer for ALAE for occurrence #3 if ALAE are
covered on a pro rata basis. Finally, if for occurrence #3, ALAE are not included in the reinsurance
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contract, then assumed losses by the reinsurer are nil, and the ceding company retains the full ALAE of 3
million.

Given the large amounts that can be paid for ALAE, particularly for legal and expert witness fees on
liability classes of business such as medical malpractice, asbestos and environmental, and directors and
officers, the treatment of ALAE and changes in such treatment over time can influence development
patterns and relationships in the data and thus have implications for projections of future losses.

Multiple Currencies

Loss data for some ceding companies may exist in the IT systems in different currencies. For example,
global reinsurers aggregate data across U.S. dollars, Canadian dollars, Euros, Japanese yen, Chinese
Yuan, etc. Depending on the volume of losses in differing currencies, the actuary may need to adjust the
data prior to the analysis. One approach is to separate the data by currency and then combine the data
after translating data to a common currency using the appropriate exchange rates at a single point in
time; such an approach avoids the influence of fluctuations in exchange rates over time. Another
approach can be used when writing catastrophe reinsurance in a region with numerous countries and
currencies (e.g., South and Central America) where losses are aggregated based on the ceding
company’s currency of origin.

Large Losses

It is important for the actuary to be aware of how large losses influence the different projection
techniques. The presence of unusually large losses, such as those arising from a natural catastrophe
event or a class action suit, can distort some of the methods used for estimating unpaid losses. In these
situations, the actuary may choose to exclude the large losses from the initial projection and, at the end
of the unpaid loss analysis, add a case-specific projection for the reported portion of large losses and a
smoothed provision for the IBNR portion of large losses. Given the nature of reinsurance and in
particular coverage on an excess of loss basis, both for individual occurrences and catastrophe events,
adjusting data, methodology, and assumptions for large losses can be particularly important for the
actuary working with reinsurance. When faced with unusually large losses, reinsurers frequently rely on
the expertise of claims adjusters as well as input from catastrophe models to supplement traditional loss
development and other basic projection methodologies.

Recoveries

Given that reinsurance is insurance for insurers, recoveries (such as deductibles, salvage, and
subrogation) that are applicable to the subject loss generally apply before the cession for both
proportional and excess of loss reinsurance. It is important for the actuary working with reinsurance to
understand the processes related to the recording of payment and case outstanding for recoverables.
Some primary insurers establish a case outstanding net of the deductible, while others do not consider
the deductible in the establishment of the case outstanding. Even within the same insurer, practices
may vary between lines of business. Similar differences in procedures can exist with respect to the
establishment of case outstanding for salvage and subrogation recoveries.
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Actuaries working with primary insurers and reinsurers should take care to understand how recoveries
are applied, particularly for large property losses that can take time to settle all aspects of the claim,
especially business interruption losses than can extend over multiple years. For example, assume the
following:

e For calendar year 2019, a primary insurer wrote 10 million limit commercial property policies
and maintained commercial property excess per risk reinsurance with a retention of 2 million
and limits of 8 million.

e Aninsured incurred a major fire due to an explosion of the boiler on January 2, 2019, which
resulted in property losses as well as substantial business interruption losses for a total loss of 7
million gross of salvage and subrogation recoveries.*?

e The primary insurer paid losses of 2 million in 2019, 3 million in 2020, and the final 2 million in
2021.

e During 2019, expected salvage recoveries of 0.25 million were received.

e During 2022, the ceding company received an unexpected subrogation recovery from the boiler
manufacturer of 1.5 million. At year-end 2019, carried reserves reflected the losses net of
salvage but without the subrogation that was received in 2022.

For year-end 2019, the ceding company would report losses net of reinsurance and salvage of 2 million
and ceded losses of 4.75 million to the reinsurer (total gross loss of 7 million minus salvage of 0.25
million minus the retention of 2 million). In 2022, the primary company receives the subrogation
payment of 1.5 million and would transfer this entirely to the reinsurer. Thus, there is no benefit to the
ceding company (or change in financial results on a net of reinsurance basis) of the unexpected
subrogation, and the benefit is solely for the reinsurer.

If the total losses net of salvage were only 2.75 million instead of 6.75 million, then a subrogation
recovery of 1.5 million would reduce the total value of the claim below the reinsurance retention. Any
payments by the reinsurer would be returned, and then the remaining subrogation recovery would
accrue to the benefit of the ceding company. In this revised example, the ceding company would report
losses net of reinsurance and salvage of 2 million for year-end 2019 and cede losses of 0.75 million to
the reinsurer. In 2022, the reinsurer would receive reimbursement of 0.75 million from the unexpected
subrogation, and the ceding company would also report favorable development of 0.75 million, the
balance of the 1.5 million subrogation recovery.

Challenges with Data for Reinsurer
Influence of Change in Operations and the Environment

The actuary working for a reinsurer can face greater challenges than the actuary working for a primary
insurer in understanding the effects of operational changes on the estimation of unpaid losses. This is in
part because operational changes can take place at the reinsurer as well as at the ceding companies,

42 For purpose of this example, assume the loss values are accurate and there is no further development on the claim.
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and both can influence the projection of ultimate losses and resulting estimates of unpaid losses. Over
the past 20 years, many insurers have instituted significant transformational projects to modernize
systems including the implementation of new policy administration and claims administration systems.
Many insurers have increased the use of analytics and big data to influence pricing, marketing, and
underwriting. These transformational initiatives can affect the operations of the ceding companies, their
target markets, how risks are underwritten and how claims are reported and settled, as well as the types
of data available. All of these changes can influence the reporting and payment patterns of ceded losses.
Similarly, reinsurers have undertaken major transformational initiatives that influence loss reporting and
settlement practices.

Further changes arise when ceding companies acquire and divest business (companies and large
portfolios), and the actuary needs to understand how such activities affect losses historically and in the
future. Finally, actuaries need to understand the legal and economic environments of the ceding
companies. For example, major reforms in a large jurisdiction (such as tort reform or product reform in
coverages such as automobile or workers’ compensation insurance) can have major implications on the
loss experience of ceding companies that is passed on to reinsurers.

Other Experience Typically Excluded from Development Analyses

Changes in the operations and environment may lead the actuary to choose to exclude discontinued
business (i.e., business in run-off) from the analysis because such data could distort historical patterns
and relationships, particularly for more recent years. Discontinued business may not be representative
of the portfolio of ongoing business, and thus development patterns and loss ratios, which are key
assumptions of basic actuarial techniques, should be selected that reflect the characteristics of the
ongoing business. This is true when selecting assumptions for reporting and settlement of losses as well
as with frequency and severity of losses (albeit reinsurers often do not have sufficient data to project
frequencies and severities). Furthermore, some types of discontinued business (such as asbestos,
environmental impairment liability, and abuse) may not be suited to development triangle analyses.

Reporting Lags

As described in Chapter 1, reinsurance is insurance for insurers. Thus, claims must first be reported and
investigated by the ceding company before loss data can be reported to the reinsurer. As a result, loss
data for reinsurers lag those of the ceding companies, and, at times, the lag can be significant. Delayed
reporting is particularly true for excess of loss reinsurance, where there is not only a lag because of the
need to report to the primary insurer first but also because these claims often take time for the insurer
to realize that the claim may exceed its retention, especially for liability claims.

Reinsurers recognize the challenges associated with lags in reporting and often incorporate reporting
requirements in the reinsurance contract. For example, the ceding company may be required to report a
claim once it reaches a certain threshold, which may be expressed as a dollar value or a percentage of
the ceding company’s retention (i.e., the reinsurer’s attachment point). Alternatively, a ceding company
may be required to report certain types of claims that are known to have a higher likelihood of resulting
in large losses (such as an abuse claim or a class action suit) regardless of amount.
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Heterogeneity of Contract Wordings

The manuscript nature of reinsurance contracts is mentioned repeatedly in this chapter. Patrik states
that the “heterogeneity of contract wordings also means that whenever you are accumulating,
analyzing, and comparing various reinsurance data, you must be careful that the reinsurance coverages
producing the data are reasonably similar.”*® This concern is true when using internal and external data.

Sources of Data

With respect to sources of data for actuarial work, ISAP 1 states:

To the extent possible and appropriate when setting assumptions, the actuary should consider
using data specific to the organization or the subject of the actuarial services. Where such data
are not available, relevant, or sufficiently credible, the actuary should consider industry data,
data from other comparable sources, population data, or other published data, adjusted as
appropriate. The data used, and the adjustments made, should be described in any report.*

Actuaries working for large reinsurers are typically able to rely on detailed loss and premium data from
their own IT systems. Internal data may be based on the experience of an individual reinsurer or
aggregated experience from affiliated reinsurers within a group.

Smaller reinsurers, however, can face more challenges with data due to IT limitations as well as
limitations in the volume and homogeneity of losses. Thus, actuaries working with small reinsurers often
need to seek external data sources. External data can be valuable when analyzing development factors
(particularly tail factors), trend rates, and expected loss ratios, as well as when the actuary evaluates
and attempts to reconcile the results of various projection methods.

There are not nearly as many external data sources for reinsurance as there are for primary insurance.
For reinsurance, actuaries can turn to the following:

e Reinsurance Association of America (RAA)

e Best’s Aggregates & Averages

e Reports from global brokers, such as Guy Carpenter, Aon, and Willis Towers Watson
e Reports from global reinsurers, such as Swiss Re, Munich Re, and SCOR S.E.

e Other internet searches

43 Patrick, “Reinsurance,” 344.

44 ISAP 1, section 2.5.3.
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Reinsurance Association of America (RAA)

The RAA is the leading trade association of P&C reinsurers doing business in the United States. Members
of the RAA include reinsurance underwriters and intermediaries licensed in the United States and those
that conduct business on a cross-border basis. Since 1969, the RAA has published a biannual study of
loss development triangles. The RAA study includes historical loss development patterns by accident
year for reinsurers writing casualty excess reinsurance for automobile liability, general liability, and
medical malpractice. In addition, the RAA study does the following:

e Organizes patterns separately by treaty and facultative business and five ranges of attachment
points.

e Presents data of broad historical loss development composites by a cross-section of reinsurers.

e Discusses how loss development patterns have changed over the last few years and suggests
possible reasons for those changes.

e Discusses how loss development has varied depending on the circumstances and the nature of
the business being considered.*

Best’s Aggregates & Averages

The data available in Best’s Aggregates & Averages*® exemplify the differences in segmentation of
insurance and reinsurance data. Schedule P, which contains data for U.S. insurers, separately presents
the loss and premium data for major lines of business including three non-proportional reinsurance
segments:

e Reinsurance — non-proportional assumed property;
e Reinsurance — non-proportional assumed liability; and
e Reinsurance — non-proportional assumed financial lines.

Schedule P-Part 1 contains 10 years of data sorted by the year in which premiums were earned and
losses incurred. The types of data include earned premiums, loss and expense payments and reserves,
and salvage and subrogation received and anticipated. Unlike primary insurance, Schedule P—Part 1 for
the three reinsurance segments does not include data for the number of reported claims and the
number of claims outstanding.

Schedule P-Part 2 contains incurred (which includes sum of paid, case outstanding, and IBNR) net losses
and defense and cost containment expenses, and Schedule P—Part 3 contains cumulative paid losses and
defense and cost containment expenses. Bulk and IBNR reserves on net losses and defense and cost

4> “Historical Loss Development Study,” RAA, https://www.reinsurance.org/ProductDetail.aspx?id=147.

46 Best’s Aggregates & Averages is an annual publication that benchmarks the performance of individual insurance companies and insurance
groups against industry totals, segments, and composites. The publication includes balance sheet, summary of operations, and annual
statement. For further information, see http://www.ambest.com/sales/AggAvg/default.asp.
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containment expenses are included in Schedule P—Part 4. The reinsurance triangles include data for 10
accident years and evaluations from 12 to 120 months.

While actuaries working with reinsurers may find some value in the aggregated industry data contained
in Schedule P, there are important limitations including but not limited to:

e An experience period of only 10 years, which is typically not long enough for excess of loss
reinsurance.

e Segmentation that is not sufficiently refined by major line of business and type of reinsurance.

e The combination of experience that may not reflect targets markets, terms and conditions, and
operations of any individual reinsurer.

Reinsurance data that are aggregated by accident year for Schedule P tend to look and behave more like
primary insurance data, which is generally not an accurate portrayal of the volatility and long-tail nature
of many reinsurance losses. Reinsurance actuaries who rely on data aggregated by treaty year will view
data much differently than the lines of business included in Schedule P of the U.S. annual statement.

Internet Searches

Another potential source for external data can be found through online searches of publicly available
reinsurer data. Generally, these triangles are presented on a worldwide basis and are highly aggregated
by major line of business.

It is important to note that many of the reinsurers who publish triangles based on worldwide
consolidated experience state that, in practice, their actuaries review between 50 to 500 separate
segments for reserving purposes. One global reinsurer describes the governance process around
segmentation and the objective to form segments that are “based on a variety of criteria (proportional
basis or not, underlying risks typology, geography, pricing environments, legislative environments).”*” It
is important to recognize that data aggregated across many countries, lines of business, and types of
reinsurance would likely not be deemed sufficient without some modification (that should be
documented in accordance with professionalism requirements) for actuarial work related to a single
reinsurer in a particular jurisdiction.

Shortcomings of External Data

Actuaries need to be aware of the potential shortcomings in the use of external data. While similar
considerations apply to actuaries working with primary insurance, the issues are heightened for
actuaries working with reinsurance. There is a risk that external data may be misleading or irrelevant
due to differences in the following:

47 SCOR’s Loss Development Triangles and Reserves (SCOR, December 2010), 9,
https://www.scor.com/sites/default/files/2011 trianglesdisclosure.pdf.
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e Manuscript wording and terms and conditions, where contracts can vary significantly.

e Mix of assumed business, particularly differences by major industry, region, attachment points,

and policy limits.
e Types of reinsurance (e.g., treaty, facultative, proportional, and non-proportional).
e Underwriting processes, including engineering and risk control services.
e Claims management philosophies and processes.
e Coding and IT systems.

Thus, the actuary must carefully evaluate the relevance and value of external data.

Conclusion — Importance of Understanding the Data

In conclusion, it is critically important for actuaries to fully appreciate their obligations with respect to
data. Actuaries should understand the different types of data that are inputs to and outputs from the
insurer’s and reinsurer’s information systems. Ceding companies and brokers who report on behalf of
ceding companies may use the same term to mean different things. The actuary is responsible for
knowing the true meaning of the types of loss data contained in the loss reports and information
systems that are used as inputs for the estimation of unpaid losses. The importance of understanding
the data is equally applicable to actuaries working with primary insurance and reinsurance.
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Chapter 3 — Methods Frequently Used to Estimate
Unpaid Losses for Reinsurance

This chapter addresses three of the most frequently used methods for estimating unpaid losses:
development, expected, and Bornhuetter-Ferguson methods. The chapter is organized in the following
major sections:

e Introductory Comments

e Review of the Development, Expected, and Bornhuetter-Ferguson Methods
e Background About Examples

e Comparison of Age-to-Age Factors and Development Patterns

e Implications of the Volatility in Loss Development Experience

e Quota Share and Stop-Loss Reinsurance Examples

As noted in Chapter 1, it is assumed that readers of this text are knowledgeable about basic reserving

including typical data requirements, key assumptions, and the traditional methodologies (such as the

development, expected loss, and Bornhuetter-Ferguson techniques). Thus, the focus of this chapter is
on differences in reserving for reinsurance versus primary insurance and not on detailed mechanics of
the traditional projection techniques.*®

Introductory Comments

For financial reporting, planning, and risk management purposes, actuaries estimate unpaid losses on a
gross, ceded, and net of reinsurance basis. For primary insurers, ceded losses reflect business
transferred to reinsurers. For reinsurers, gross losses represent the business they assume, and ceded
losses reflect the business that they retrocede. The two basic approaches for determining these three
estimates of unpaid losses include the following:

e Projecting ultimate losses and the resulting unpaid losses (i.e., ultimate losses minus paid losses)
on a gross of reinsurance basis and net of reinsurance basis, then estimating ceded unpaid
losses as the difference; and

e Projecting ultimate losses and the resulting unpaid losses on a gross of reinsurance basis and
ceded basis, then estimating net unpaid losses as the difference.

Ceded data often have limited credibility due to a lower volume of losses, higher volatility associated
with large claims and catastrophe events, and frequent changes in terms and conditions (such as
attachment points, limits, participation percentages, and treatment of ALAE) that result in data that are

48 For further information, see Friedland, Estimating Unpaid Claims Using Basic Techniques.

CAS Study Note — Exam 7 48



Reserving for Reinsurance

not homogeneous. Thus, actuaries typically use the first approach and select development patterns and
expected loss ratios, which are key assumptions of the projection methods, gross and net of reinsurance
rather than gross and ceded.

To project ultimate values and estimate unpaid losses, actuaries frequently use the development,
expected, and Bornhuetter-Ferguson methods.

Review of the Development, Expected, and Bornhuetter-Ferguson
Methods

The following descriptions of key assumptions and the major steps of the three projection methods are
based on those in Estimating Unpaid Claims Using Basic Techniques.

Development Method

Key Assumptions

The distinguishing characteristic of the development method is that ultimate values for each year® in
the experience period are produced from recorded values assuming that future development is similar
to prior years’ development. For reinsurers, the development method is used most frequently with
reported and paid losses as well as with premiums. The underlying assumption in the development
method is that values recorded to date will continue to develop in a similar manner in the future (i.e.,
the past is indicative of the future).

An implicit assumption in the development technique is that, for an immature year, the losses (or
premiums) observed thus far tell the actuary something about the losses (or premiums) yet to be
observed. This contrasts with the primary assumption underlying the expected method and the
Bornhuetter-Ferguson method, where the unrecorded (unreported or unpaid) losses are based on an a
priori (or initial) estimate of losses.

Other important assumptions of the development method include consistency throughout the
experience period in claim processing, the mix of business (and resulting losses), policy limits, and
reinsurance coverage (e.g., retention, participation percentage, and policy limits).

Mechanics

The development method consists of seven basic steps:

1. Compile development data in a development triangle.
2. Calculate age-to-age factors.

4 For insurers, the “years” are typically accident years. For reinsurers, the years are often treaty (or underwriting) years, although accident
years are used by reinsurance actuaries in the United States and Canada due to regulatory financial reporting requirements.
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Calculate average age-to-age factors.

Select development factors for each age-to-age interval.
Select tail factor.

Calculate cumulative development factors.

Project ultimate values.

No v suw

One of the major differences in projecting ultimate losses for primary insurance and reinsurance is the
credibility of the reinsurance data that, as noted previously, tends to be lower for reinsurance due to
volume, volatility, and heterogeneity of the data. By their nature, losses associated with excess of loss
reinsurance can be substantially more volatile than ground-up losses. This is true for catastrophe
coverage as well as reinsurance at high attachment points, where significant frequency of claims is not
expected.

Considerations in Selecting Age-to-Age Factors

In Estimating Unpaid Claims Using Basic Techniques, there is an important discussion about the
characteristics the actuary looks for in the selection of age-to-age factors:

e Smooth progression of individual age-to-age factors and average factors across development
periods. ldeally, the pattern should demonstrate steadily decreasing incremental development
from valuation to valuation, especially in the later valuations. Such decreases are seen in many,
although not all, of the examples presented later in this chapter.

e Stability of age-to-age factors for the same development period. Ideally, there should be a
relatively small range of factors (small variance) within each development interval (i.e., down
the columns). The actuary looks for stability within the age-to-age factors themselves as well as
within the various averages for the same development period. For both reported and paid
losses, the greatest variability in age-to-age factors is typically seen at early age-to-age intervals,
where losses are at their most immature state (i.e., when the claims professionals have the least
amount of information about the circumstances of the insured event and the potential damages
and injuries of claimants). There tends to be much greater volatility in the age-to-age factors for
reinsurance when compared with primary insurance and for non-proportional reinsurance when
compared with proportional reinsurance, and such differences are seen repeatedly in the
examples included in this chapter.

e Credibility of the experience. Actuaries generally determine credibility based on the volume and
the homogeneity of the experience for a given year and maturity age. If the loss development
experience has low credibility because of the limited volume of losses, organizational changes,
or other factors, it may be necessary to use benchmark development factors. (See the discussion
in Chapter 2 about the use of external data.)

e Changes in patterns and applicability of the historical experience. Actuaries determine the
appropriateness of historical age-to-age factors for projecting future development based on
guantitative and qualitative information regarding changes in the book of business and
operations over time. There are numerous reasons why historical development experience may
not be appropriate, such as
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Dramatic changes in volume of premiums and claims.

Presence of large claims that distort the development experience.

Significant changes in the portfolio that are not captured by trend rates.

Changes in claims processing that affect the manner in which claims are reserved and

o O O O

paid.

Actuaries also consider the effect of changes in external factors that have not yet manifested
themselves in the recorded experience (i.e., reported losses, paid losses, or premiums).

All of these considerations are equally applicable to actuaries working with primary insurance and
reinsurance.

Expected Method

The expected method is frequently used when:

e Entering a new line of business or new region.

e Changes in strategy, operations, or the environment that make recent historical loss data
irrelevant for projecting future loss activity for a particular cohort of losses.

e The development method is not appropriate for less mature periods because the development
factors to ultimate are too highly leveraged.

e Data are unavailable for other methods.

Each of these situations is equally applicable to actuaries working with primary insurance and
reinsurance.

Key Assumptions

The key assumption of the expected method is that the actuary can better estimate total unpaid losses
based on an a priori estimate than from loss experience observed to date. In certain circumstances, the
losses reported to date may provide little information about ultimate losses, especially when compared
with the a priori estimate.

Mechanics

The most common approach for estimating expected losses associated with reinsurance is an expected
loss ratio multiplied by earned premium. The expected loss ratio is often based on pricing information,
industry data, and historical experience adjusted to the conditions of the year under review. In selecting
the expected loss ratio, the actuary seeks input from management and considers changes in market
conditions, pricing, terms and conditions, underwriting, claims emergence, and other factors that could
influence expected ultimate losses.
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In addition to the expected loss ratio, actuaries working with primary insurance also use frequency-
severity and exposure-loss cost approaches to estimate expected losses. In contrast, actuaries working
with reinsurers typically do not have access to detailed claim count and exposure information. For a
reinsured, estimating ceded losses can be complicated by reinsurance coverage that spans across
multiple lines of business or years, which can complicate the assignment of claim counts and exposure
units with losses. Actuaries can also use complex stochastic models to estimate expected losses; such
models are outside the scope of this text.

Bornhuetter-Ferguson Method

Actuaries rely on the Bornhuetter-Ferguson method almost as often as they rely on the development
method. The Bornhuetter-Ferguson method is essentially a blend of the development and expected
methods. In the development method, the actuary multiplies actual losses by a cumulative development
factor. This method can lead to erratic, unreliable projections when the cumulative development factor
is large because a relatively small swing in reported losses or the reporting of an unusually large loss
could result in a very large swing in projected ultimate losses. In the expected method, the unpaid loss
estimate is equal to the difference between a predetermined estimate of expected losses and the actual
payments. This has the advantage of stability but completely ignores actual results as reported. The
Bornhuetter-Ferguson method combines the two methods by splitting ultimate losses into two
components: actual reported (or paid) losses and expected unreported (or unpaid) losses. As experience
matures, more weight is given to the actual losses and the expected losses become gradually less
important.

Key Assumptions

The key assumption of the Bornhuetter-Ferguson method is that unreported (or unpaid) losses will
develop based on expected losses. In other words, the losses reported to date contain no information
about the amount of losses yet to be reported. This is different from the development method where
the primary assumption is that unreported (or unpaid) losses will develop based on reported (or paid)
losses to date.

Mechanics

As noted, the Bornhuetter-Ferguson method is a blend of the development and expected methods. The
following two formulae represent the reported and paid Bornhuetter-Ferguson methods, respectively:

Ultimate Losses = Actual Reported Losses + Expected Unreported Losses
= Actual Reported Losses + (Expected Losses) x (% Unreported)
Ultimate Losses = Actual Paid Losses + Expected Unpaid Losses

= Actual Paid Losses + (Expected Losses) x (% Unpaid)

Given that the actual reported and paid losses are both known quantities, the challenge of the
Bornhuetter-Ferguson method is to calculate the expected unreported and expected unpaid losses. To
complete the Bornhuetter-Ferguson method, the actuary must select loss development patterns and
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develop an expected loss estimate. The development factors are typically based on the selection of age-
to-age factors from the development method applied to the insurer’s historical data, but they can also
be based on external data.

Further Comments about the Development, Expected, and Bornhuetter-
Ferguson Methods

Detailed Calculations

Detailed step-by-step explanations and calculations for the development, expected, and Bornhuetter-
Ferguson methods are included in Estimating Unpaid Claims Using Basic Techniques and are not
repeated in this text. The three methods can be used with reported losses, paid losses, and claim counts,
although claim counts are used far less with reinsurance than with primary insurance. In carrying out
each of these methods, issues related to the types of data required, considerations regarding the
selection of assumptions, and the mathematical steps to project ultimate values are similar for primary
insurance and reinsurance.

Differences in Assumptions for Reinsurance and Primary Insurance

While the mechanics for each of the methods are the same for actuaries working with primary insurance
and reinsurance, there are important differences in assumptions. For example, for reinsurance:

e For asimilar line of business, loss development factors in the earlier maturity age intervals are
often higher for reinsurance than for primary insurance due to reporting lags. (See Chapter 2 for
further discussion about the drivers of reporting lags in reinsurance). Tail factors can also be
higher, particularly for non-proportional reinsurance when compared with primary insurance
and for non-proportional when compared with proportional reinsurance for a similar line of
business.

e Loss trend factors tend to be higher for excess of loss reinsurance than primary insurance.

e There is often less precision in premium on-level factors that adjust for rate changes. Actuaries
working with primary insurance regularly maintain detailed information about historical rate
changes by major jurisdiction and line of business, especially where rates are highly regulated.
These actuaries use premium on-level factors to adjust historical premiums to current rate
levels. The rate change information available for reinsurers can be far more challenging to
quantify given the manuscript nature of reinsurance arrangements and the changes in coverage
that can occur from year to year. Nevertheless, reflecting rate changes is important when
determining expected loss ratios for the expected and Bornhuetter-Ferguson methods for
reinsurance.>°

e |nreinsurance, there is more limited use of adjustment factors for changes such as tort and
product reform than that seen with primary insurance.

0 For examples of the calculation of premium on-level factors, see chapter 5 of Geoff Werner and Claudine Modlin, Basic Ratemaking (CAS,
2016), 64-89, https://www.casact.org/library/studynotes/Werner Modlin _Ratemaking.pdf.
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The use of professional judgment is particularly important for actuaries working in reinsurance. In
selecting assumptions, actuaries should consider professionalism requirements as set forth in applicable
actuarial standards of practice, which should be reviewed on a regular basis.

Effect of Changes in Currency Exchange Rates

Changes in currency exchange rates often influence how an actuary working with reinsurance
aggregates losses in development triangles. Many global reinsurers who aggregate experience on a
global basis review triangles at the prevailing exchange rates to prevent distortions in the age-to-age
factors arising from fluctuations in currency exchange. This leads to differences in the values within the

triangles from analysis to analysis.

An example helps demonstrate the effect of changes in currency exchange on age-to-age factors. Two
reported loss development triangles are constructed based on the following assumptions:

e Cumulative reporting loss pattern of 20%, 60%, 90%, and 100% at 12, 24, 36, and 48 months,

respectively.

e Ultimate losses of 1 million Euros for accident year 2014 with 20% each for the United States,
Canada, Japan, U.K., and the rest of Europe.

e Annual growth in losses for each country of 5%.

The exchange rates at December 31 of each year are used to create the two triangles. In the first
triangle, presented in Table 3. 1, reported loss are based on each country’s reported losses restated at
each maturity age at the currency exchange rate of December 31, 2019.

Table 3. 1. Global Reported Losses Based on Currency Exchange Rates at December 31, 2019

Accident
Year 12 24 36 48 60 72
2014 206 618 927 1,030 1,030 1,030
2015 216 649 973 1,082 1,082
2016 227 681 1,022 1,136
2017 238 715 1,073
2018 250 751
2019 263

In the second triangle, reported losses are based on the aggregation of reported losses from each
country using the exchange rate at December 31 of each year. For example, the reported losses of the
United States are adjusted by the triangle of USS-Euro exchange rates seen in Table 3. 2.
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Table 3. 2. USS-Euro Exchange Rates

Accident
Year 12 24 36 48 60 72
2014 1.21100 1.08660 1.05225 1.19990 1.14550 1.12270
2015 1.08660 1.05225 1.19990 1.14550 1.12270
2016 1.05225 1.19990 1.14550 1.12270
2017 1.19990 1.14550 1.12270
2018 1.14550 1.12270
2019 1.12270

Reported losses for each of the other countries are similarly adjusted to produce the global reported

loss triangle seen in Table 3. 3.

Table 3. 3. Global Reported Losses Based on Currency Exchange Rates at Each Year-End

Accident
Year 12 24 36 48 60 72
2014 200 626 942 977 995 1,030
2015 219 659 924 1,045 1,082
2016 231 647 987 1,136
2017 226 691 1,073
2018 242 751
2019 263

Not surprisingly, the age-to-age factors are noticeably different dependent on how losses are adjusted

for currency exchange. Table 3. 4 compares the age-to-age factors of the first reported loss triangle with
those of the second reported loss triangle.
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Table 3. 4. Age-to-Age Factors for Global Reported Losses

Accident
Year 12-24 24-36 36-48 48-60 60-72
Reported Losses Adjusted by Dec 31, 2019 Exchange Rates
2014 3.00 1.50 1.11 1.00 1.00
2015 3.00 1.50 1.11 1.00
2016 3.00 1.50 1.11
2017 3.00 1.50
2018 3.00
Reported Losses by Exchange Rates at Each Year-end
2014 3.13 1.51 1.04 1.02 1.04
2015 3.01 1.40 1.13 1.04
2016 2.80 1.53 1.15
2017 3.05 1.55
2018 3.11

Adjusting losses by a common currency exchange rate allows for the true reporting pattern to be seen
without distortions from currency exchange. While the example is simplistic, in practice, the process can
be complicated. Thus, adjustments to assumed losses for the effect of changes in currency can be
extremely difficult and require approximations by the actuary.

Background About Examples

The examples included in this chapter are based primarily on the worldwide aggregated data of the
largest reinsurers obtained from internet searches. The data are disguised through additive and
multiplicative adjustments applied to reported and paid losses as well as earned premiums. The actual
years in the experience period are not identified, in part so that the examples do not become dated with
the passage of time. Similarly, the currency and units (i.e., thousands or millions) are not identified. It is
not the purpose of this text to evaluate any specific reinsurer’s experience but instead to explore
common relationships between primary insurance and reinsurance and between different types of
reinsurance.

Given that the examples in this chapter are constructed from the aggregated global experience of the
world’s largest reinsurers, the experience in these examples tends to have far greater stability than what
an actuary actually sees when analyzing reinsurance experience by HRG. For financial reporting,
reinsurers aggregate their experience into roughly 10 to 20 segments. In the commentary supporting
the publicly available financial reports, one reinsurer notes that a single segment in their financial report
includes the experience of 40 HRGs. One reinsurer reported that they maintain more than 500 HRGs,
and another uses more than 1,000 HRGs for actuarial reserving analyses. Thus, the loss development
triangle for a particular HRG for a reinsurer would be expected to have significantly less data with
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substantially more volatility than the examples of this chapter. It is not unusual for the loss development
triangles for some HRGs to have values of nil.

Numeric examples are presented to examine the relationships in development experience for the
following:

e Primary insurance and reinsurance for a similar type of business (professional lines, Exhibit I).
e Proportional and non-proportional reinsurance for the same line of business (liability, Exhibit II).
e Reinsurance excluding catastrophe and reinsurance catastrophe (property, Exhibit Il1).

For each of these examples, detailed exhibits are included at the end of the chapter and organized as
follows:

o Sheets 1-4: Reported and paid loss development triangles including data and age-to-age factors,
and cumulative development factors.

e Sheet 5: Reporting and payment patterns.

e Sheet 6: Development of expected loss ratios.

e Sheet 7: Projection of ultimate losses using expected method and Bornhuetter-Ferguson
method.

e Sheet 8: Estimation of IBNR and total unpaid losses.

Data for the professional lines example are aggregated by accident year, and the data for the liability
and property examples are aggregated by treaty year. For these latter two examples, the treaty year
premium must be adjusted to reflect earnings at the end of the year when estimating unpaid losses, and
details of these calculations are presented later in this chapter and in Sheet 8 of Exhibits Il and Ill. An
example of the development of written premium to ultimate is included for liability non-proportional
and facultative reinsurance in Exhibit I, Sheet 9.

The development examples in this chapter incorporate several simplifying approaches that are
described below.

Average Age-to-Age Factors

Three average age-to-age factors are calculated: simple three years, medial seven years (i.e., average of
seven years excluding high and low values), and volume weighted five years. The intent is to present
averages from different time periods to demonstrate potential volatility in these averages. In practice,
the actuary would select the types of average and the experience periods for averages that reflect the
specific circumstances of the insurer or reinsurer, its internal and external environments, and the
credibility of the data.
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Tail Factors

Tail factors for reported losses are selected based on the maximum of 1.00 and the latest observed
factor (e.g., the reported tail factor from 120 months-to-ultimate is based on the maximum of 1.00 and
the observed factor from 108-to-120 months). Tail factors for paid losses are derived from a review of
the projected ultimate losses using the development method with reported losses for the most mature
years. In practice, the actuary would use several approaches to select the tail factor. One approach is to
rely on industry benchmark development factors. Another common approach is to fit a curve to the
selected or observed development factors to extrapolate the tail factors. Many commercial reserving
software programs as well as open-source code have routines for such extrapolation. A more in-depth
discussion of tail factors is beyond the scope of this text. Actuaries seeking additional information are
referred to actuarial literature available on the CAS web site and the CAS Tail Factors Working Party.

Expected Loss Ratios

The projected ultimate losses using the development method applied to paid and reported losses are
shown on the exhibit for the development of expected loss ratios. For these examples, the initial
estimates of ultimate losses are based solely on the projections using reported losses. In practice, the
actuary would likely consider reported loss and paid loss development projections as well as expected
loss ratios from pricing or financial planning and possibly also industry information.

In deriving expected loss ratios, there are no adjustments for loss or premium trend, changes in rate
level, the effect of tort reform, or other changes in the claims environment, all of which could be
significant. Four averages are calculated (latest three, five, and seven years and latest five years
excluding high and low), and the selected expected loss ratio is based on the latest five years. The
selected expected loss ratios are then used for the expected and Bornhuetter-Ferguson projections.

For the examples that rely on data aggregated by treaty year, an adjustment is required for premium to
reflect earnings through the valuation date.

GL Captive Insurer

Data for the two final examples of this chapter use GL Captive Insurer, which is based on GL Self-Insurer
from Estimating Unpaid Claims Using Basic Techniques. These examples present the perspective of a
ceding company as opposed to the reinsurer.

Comparison of Age-to-Age Factors and Development Patterns

As noted previously, examples are presented to examine the relationships in development experience
for the following:

e Primary insurance and reinsurance for a similar type of business.
e Proportional and non-proportional reinsurance for the same line of business.
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e Property reinsurance excluding catastrophe and property reinsurance catastrophe.

Primary Insurance and Reinsurance for a Similar Type of Business

The first example, presented in Exhibit | at the end of this chapter, relies on the development data for
professional lines of a global insurer that writes primary insurance and reinsurance. The focus is on the
volatility of age-to-age factors and the differences in reporting and payment patterns. Greater volatility
in age-to-age factors can lead to greater volatility in the indications of expected loss ratios for
reinsurance when compared with primary insurance.

For professional lines of business, claim payment and reporting patterns are considered to be medium
to long tail in nature for both primary insurance and reinsurance. For the primary insurance, the
professional lines HRG includes the following:

e Directors & Officers (D&O) Liability.

e Employment Practices Liability (EPL).

e Fiduciary Liability.

e Crime.

e Errors & Omissions (E&O).

e Cyber Liability.

e Professional Indemnity.

e Other financial insurance related coverages for public and private commercial enterprises,
financial institutions, non-profit organizations, and professional service providers.

Professional lines primary business is written predominantly on a claims-made basis.
For the reinsurance, the professional lines HRG includes:

e D&O liability

e EPL

e Medical malpractice

e Professional indemnity
e Environmental liability
e Miscellaneous E&O

D&O liability is a much greater proportion of the reinsurance business than the primary insurance
business. For this example, the professional lines liability reinsurance HRG includes both non-
proportional and proportional treaties, although the majority of exposures are excess policies. D&0O
exposures typically attach at higher levels than the rest of the portfolio. Like the primary insurance, the
reinsurance is predominantly written on a claims-made basis, and most treaties are written on a risks-
attaching basis.
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Exhibit I, Sheets 1-4 present reported and paid loss development triangles, age-to-age and average age-
to-age factors, and cumulative development factors. Reporting and payment patterns are summarized in
Exhibit I, Sheet 5.

Comparison of Volatility in Age-to-Age Factors

The standard deviation and absolute differences of the age-to-age factors are calculated for each age-to-
age interval from 12—24 months through 72—-84 months as measures of the volatility in the reported and
paid loss development. The standard deviation is a measure of the amount of variability (i.e., dispersion)
in the age-to-age factors around the average. The absolute difference is equal to the highest age-to-age
factor minus the lowest age-to-age factor. Table 3. 5 summarizes these results.

Table 3. 5. Professional Lines
Measures of Variability in the Age-to-Age Factors

Age-to-Age Interval
12-24 24-36 36-48 48-60 60-72 72-84

Standard Deviation - Reported Age-to-Age Factors
Insurance 0.50 0.06 0.05 0.07 0.04 0.03
Reinsurance 0.84 0.16 0.14 0.10 0.08 0.12

Standard Deviation - Paid Age-to-Age Factors
Insurance 0.73 0.17 0.18 0.10 0.07 0.03
Reinsurance 291 0.46 0.19 0.12 0.07 0.04

Absolute Difference - Reported Age-to-Age Factors
Insurance 1.763 0.177 0.163 0.189 0.093 0.081
Reinsurance 2.181 0.528 0.379 0.257 0.214 0.263

Absolute Difference - Paid Age-to-Age Factors
Insurance 2.167 0.516 0.539 0.274 0.180 0.062
Reinsurance 7.643 1.179 0.568 0.331 0.179 0.080

As expected, there is more volatility seen at the earlier maturity ages with paid losses than with
reported losses for both primary insurance and reinsurance due to the longer time frame for claims
settlement and thus lower volume of paid loss data. One also readily observes much greater volatility in
the age-to-age factors for the professional lines reinsurance when compared with the professional lines
primary insurance. In this example, the differences are evident in both the reported loss and paid loss
age-to-age factors and extend from 12—24 months through 72—84 months. Greater volatility in age-to-
age factors can lead to greater uncertainty in the selection of age-to-age factors and resulting
projections of ultimate losses.
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Longer Reported and Payment Patterns for Reinsurance versus Primary Insurance

In Exhibit I, Sheet 5, reporting and payment patterns based on the three averages (i.e., simple three,
medial seven, and volume weighted five) are shown for professional lines primary insurance and
reinsurance. One readily observes longer (i.e., slower) reporting and payment patterns for the
reinsurance than the primary insurance. The reasons for longer patterns are related to the lags in
reporting that were previously discussed in Chapter 2 and include the need for the claims to first be
recognized by the ceding company before they can be reported to the reinsurer, the time required for
claims to develop beyond the ceding company’s attachment point, and delays associated with
bordereau reporting.

It is important to remember that these examples use a very simplistic approach for the selection of tail
factors. In practice, the actuary would conduct a much more comprehensive analysis of the potential for
losses beyond the experience period, and tail factors for reported and paid losses could be significantly
different from the selections in this chapter’s examples.

Proportional and Non-proportional Reinsurance for the Same Line of Business

While the previous example compared the volatility in losses for a similar type of business for primary
insurance and reinsurance, this next example compares the loss experience for the same line of
business. The development triangles included in this section are based on the experience of a global
reinsurer for liability proportional treaty reinsurance and liability non-proportional treaty and facultative
reinsurance. The focus of this example is on the volatility of age-to-age factors and the ratios of paid-to-
reported losses as well as the length of the development patterns. Exhibit I, Sheets 1-4 present the
reported and paid loss triangles. Exhibit 1, Sheet 5 contains the reporting and payment patterns for
liability proportional treaty reinsurance and liability non-proportional treaty and facultative reinsurance.

There are two notable differences in the loss development patterns of this example:

e There is significantly more volatility in the age-to-age factors for the non-proportional treaty and
facultative reinsurance than for the proportional treaty reinsurance.

e The cumulative development factors are greater (i.e., longer development patterns) for the non-
proportional treaty and facultative reinsurance than for the proportional treaty reinsurance.

Further details about these two observations follow.

Comparison of Volatility in the Age-to-Age Factors of Proportional versus Non-proportional
Reinsurance

Table 3. 6 summarizes the standard deviations and absolute differences of the age-to-age factors from
12—-24 months through 72-84 months. The greater volatility of the reported and paid losses is readily
apparent when comparing the experience of proportional treaty and non-proportional treaty and
facultative experience for the liability line of business.
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Table 3. 6. Liability Reinsurance
Measures of Variability in the Age-to-Age Factors

Age-to-Age Interval
12-24 24-36 36-48 48-60 60-72 72-84

Standard Deviation - Reported Age-to-Age Factors
Proportional 0.16 0.12 0.08 0.06 0.05 0.02
Non-Proportional and Facultative 1.53 0.30 0.15 0.40 0.05 0.07

Standard Deviation - Paid Age-to-Age Factors
Proportional 0.83 0.39 0.20 0.10 0.04 0.01
Non-Proportional and Facultative  37.77 0.35 0.39 0.15 0.20 0.11

Absolute Difference - Reported Age-to-Age Factors
Proportional 0.499 0.348 0.239 0.176 0.127 0.056
Non-Proportional and Facultative  4.837 0.953 0.420 1.117 0.140 0.163

Absolute Difference - Paid Age-to-Age Factors
Proportional 2.627 0.904 0.503 0.283 0.092 0.028
Non-Proportional and Facultative 116.571 1.179 1.110 0.380 0.502 0.250

Longer Reporting and Payment Patterns for Non-proportional versus Proportional
Reinsurance

For this reinsurer, longer reporting and payment patterns are readily seen in Exhibit Il, Sheet 5 when
comparing proportional treaty to non-proportional treaty and facultative reinsurance for liability. This is
not unexpected given the delays associated with non-proportional reinsurance and the long-tail nature
of liability coverage. The reader is again cautioned about the simplistic process used for selecting tail
factors in the examples of this chapter.

Variability in Ratios of Paid-to-Reported Losses

Many actuaries use development triangles for diagnostic purposes so that they can better understand
how changes in operations and the external environment influence the loss data. Given the absence of
data for claim counts and units of exposure for reinsurance, the ratio of paid-to-reported losses is one of
the few triangle diagnostics that an actuary can review.

Examining the consistency of paid losses relative to reported losses is important for testing whether
there might have been changes in case outstanding adequacy or in settlement patterns. Because this
diagnostic is a ratio, further investigation is required if any changes are observed to determine if the
change is occurring in paid losses (i.e., the numerator) or in the case outstanding, which are a critical
component of the reported losses (i.e., the denominator). It is important to recognize that the absence
of observed change in these ratios does not necessarily mean that changes are not occurring. There
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could be offsetting changes in both claim settlement practices and the adequacy of case outstanding
that result in no change to the ratios of paid-to-reported losses.

Table 3. 7 presents the ratios of paid-to-reported losses for the liability reinsurance example. The two
measures of variability are shown for these ratios below each triangle. There is significantly more
variability seen at all maturity ages from 12 months through 72 months in the ratios for non-
proportional and facultative reinsurance than for proportional reinsurance.

Table 3. 7. Liability Reinsurance
Ratios of Paid-to Reported Losses

Treaty Ratios Paid-to-Reported Losses as of (months)
Year 12 24 36 48 60 72 84 96 108 120

Liability - Proportional

1 0.22 0.28 0.50 0.54 0.61 0.71 0.78 0.84 0.86 0.85
2 0.20 0.34 0.46 0.51 0.65 0.72 0.77 0.83 0.87
3 0.18 0.31 0.44 0.52 0.66 0.73 0.81 0.87
4 0.20 0.34 0.45 0.55 0.66 0.74 0.81
5 0.20 0.39 0.47 0.62 0.67 0.75
6 0.20 0.30 0.48 0.60 0.68
7 0.19 0.29 0.45 0.58
8 0.20 0.28 0.44
9 0.18 0.30
10 0.20
Std Dev 0.01 0.03 0.02 0.04 0.02 0.02

Abs Diff 0.044 0.108 0.058 0.108 0.072 0.040

Liability - Non-Proportional and Facultative

1 0.19 0.18 0.36 0.38 0.29 0.34 0.35 0.78 0.81 0.81
2 0.22 0.15 0.32 0.50 0.60 0.61 0.64 0.66 0.74
3 0.14 0.23 0.36 0.52 0.53 0.54 0.60 0.66
4 0.04 0.15 0.30 0.44 0.53 0.66 0.68
5 0.13 0.19 0.32 0.44 0.51 0.71
6 0.13 0.15 0.31 0.36 0.49
7 0.18 0.19 0.33 0.49
8 0.13 0.31 0.34
9 0.02 0.30
10 0.26
Std Dev 0.07 0.06 0.02 0.06 0.11 0.15

Abs Diff 0.245 0.160 0.061 0.156 0.315 0.371

The same drivers of greater volatility in age-to-age factors for non-proportional and facultative
reinsurance versus proportional reinsurance can drive the greater volatility in ratios of paid-to-reported
losses. It is important to recognize that the volatility in the age-to-age factors and the diagnostics can
contribute to overall greater uncertainty in the selection of age-to-age factors. This can then lead to
uncertainty in the projected ultimate losses derived from the development method. In turn, this can
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lead to greater uncertainty in projections of ultimate losses from other methods, as they are often
dependent on input from the development method.

Premium Development

A written premium development triangle was constructed to demonstrate how reinsurance premiums
aggregated by treaty year can develop over time. Premium development is more pronounced for risks
attaching reinsurance but also varies from one reinsurer to another depending on the distribution of
renewal dates during the year. (See description of underwriting year in Chapter 1.) The ultimate losses
for treaty years in which the premium is not fully earned require an adjustment to reflect only the
portion of ultimate losses that are associated with occurrences prior to the valuation date. Exhibit Il,
Sheet 9 presents the premium development triangle, age-to-age factors, cumulative development
factors, and projection of ultimate written premium by treaty year.

Concluding Remarks

The greater volatility and longer loss development patterns should not be surprising given that
proportional reinsurance attaches on a ground-up basis, whereas non-proportional reinsurance is excess
of loss coverage. Furthermore, there are many different types of non-proportional reinsurance,
including excess per risk, excess per occurrence, catastrophe cover, and aggregate stop-loss. Each of
these types of reinsurance could produce very different development patterns, none of which would be
expected to be similar to or as stable as ground-up losses. While this example presents non-proportional
treaty and facultative on a combined basis, the actuary would consider whether analysis with more
segmented data would be appropriate.

Property Reinsurance excluding Catastrophe and Property Reinsurance
Catastrophe

The next example compares the volatility in the age-to-age factors for property reinsurance excluding
catastrophe and property reinsurance catastrophe. The property triangles include both treaty and
facultative reinsurance, proportional and non-proportional, as well as personal and commercial lines of
business. While in practice, these different types of risks would not be combined for detailed actuarial
analyses of unpaid losses, the observed relationships are still important for understanding the volatility
in this major line of business.

Catastrophe and Large Loss Events

Many actuaries exclude unusually large losses arising from catastrophe and other large loss events from
development triangles, as such losses can significantly distort development factors and resulting
estimates of unpaid losses. For reinsurers, carried reserves for these types of events tend not to be
based on aggregated development analyses but instead on ground-up exposure-based assessments that
reflect information provided by ceding companies on a contract-by-contract basis. Actuaries may
supplement information from claims professionals with results from catastrophe models, particularly in
the time period immediately following a catastrophe event when claims teams may not have access to
the affected area.
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In this example, losses associated with catastrophe events are included in the development triangle for
property catastrophe reinsurance. Observe the tremendous volatility in losses down each column of the
reported loss triangle, which is presented in Exhibit I, Sheet 2 and in Table 3. 8. The label “net reported
losses” in this example refers to losses that are net of retrocessions.

Table 3. 8. Property Reinsurance Catastrophe — Reported Losses

Treaty Net Reported Losses as of (months)

Year 12 24 36 48 60 72 84 96 108 120
1 13,440 30,393 31,135 31,714 32,019 32,358 32,523 32,577 32,482 32,467
2 2,905 4,172 4,024 3,966 3,944 3,910 3,890 3,905 3,914
3 4,240 6,040 6,416 6,282 6,343 6,715 6,645 6,600
4 13,080 14,350 16,228 16,786 16,807 16,806 16,742
5 4,892 9,050 9,448 9,066 8,963 8,912
6 5,531 44,749 55,431 57,542 59,903
7 10,150 13,806 14,332 16,540
8 1,546 4,184 4,211
9 15,554 18,677
10 920

The reported losses at 12 months range from a low of 920 to a high of 15,554; at 24 months, the
reported losses range from a low of 4,172 to a high of 44,749. Great variability is seen down each
column of the triangle.

The loss development seen in triangles can be distorted by the timing of catastrophe events as well as
the wide swings in losses associated with such events. For example, one year may have a catastrophic
ice storm in January that is almost fully developed by year-end (i.e., December 31), and the following
year may have a late season hurricane that occurs the first week of December. The extent of claims
reporting and settlement will be completely different for these two events as of December 31 (i.e., as of
12 months in a development triangle), and thus the loss development seen from 12-to-24 months will
be completely different. The situation could be further exacerbated with treaties that are risks-
attaching, where catastrophe events associated with a treaty year could occur within a time frame of up
to three years. (See discussion of underwriting year in Chapter 2.) This could be a driver of the significant
differences from 12-to-24 months for treaty years 6 and 7 (i.e., catastrophe events at significantly
different times of the treaty year).

The fundamental assumption of the development method is that the relative change in a given year’s
losses from one evaluation point to the next is similar to the relative change in prior years’ losses at
similar evaluation points. This assumption may not always be appropriate for property reinsurance
catastrophe.

Comparison of Volatility in Age-to-Age Factors

The reported and paid loss triangles (including age-to-age factors, average age-to-age factors, and
cumulative development factors) are seen in Exhibit Ill, Sheets 1-4. Reporting and payment patterns are
seen in Exhibit Ill, Sheet 5.
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As with the prior examples, the standard deviations and absolute differences of age-to-age factors are
calculated for each age interval from 12-to-24 months through 72-to-84 months. The measures of
variability are shown in Table 3. 9.

Table 3. 9. Property Reinsurance
Measures of Variability in the Age-to-Age Factors

Age-to-Age Interval

12-24 24-36 36-48 48-60 60-72 72-84

Standard Deviation - Reported Age-to-Age Factors

Property Reinsurance excluding Catastrophe 0.66 0.05 0.03 0.01 0.00 0.00
Property Reinsurance Catastrophe 2.20 0.09 0.06 0.02 0.03 0.01

Standard Deviation - Paid Age-to-Age Factors

Property Reinsurance excluding Catastrophe 2.23 0.09 0.04 0.01 0.02 0.00
Property Reinsurance Catastrophe 6.24 0.12 0.13 0.02 0.04 0.03

Absolute Difference - Reported Age-to-Age Factors

Property Reinsurance excluding Catastrophe 1.804 0.162 0.083 0.024 0.011 0.006
Property Reinsurance Catastrophe 6.993 0.274 0.194 0.052 0.067 0.016

Absolute Difference - Paid Age-to-Age Factors

Property Reinsurance excluding Catastrophe 7.476 0.233 0.111 0.020 0.040 0.008
Property Reinsurance Catastrophe 19.671 0.355 0.357 0.059 0.082 0.065

The volatility is substantially higher for catastrophe reinsurance than for property excluding catastrophe
reinsurance for both reported and paid losses. This is not surprising given the nature of catastrophes,
both natural and man-made. Greater variability is also seen in the ratios of paid-to-reported losses that
are presented in Table 3. 10.
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Table 3. 10. Property Reinsurance
Ratios of Paid-to Reported Losses

Treaty Ratios Paid-to-Reported Losses as of (months)

Year 12 24 36 48 60 72 84 96 108 120

Property Reinsurance excluding Catastrophe

1 0.28 0.61 0.84 0.91 0.94 0.98 0.99 0.99 0.99 1.00
2 0.30 0.60 0.82 0.90 0.95 0.97 0.97 0.98 0.98
3 0.26 0.61 0.79 0.90 0.96 0.98 0.99 0.99
4 0.21 0.65 0.83 0.93 0.96 0.97 0.99
5 0.26 0.57 0.82 0.92 0.96 0.98
6 0.33 0.54 0.78 0.91 0.95
7 0.30 0.64 0.77 0.91
8 0.28 0.57 0.77
9 0.32 0.67
10 0.39
Std Dev 0.05 0.04 0.03 0.01 0.01 0.01

Abs Diff 0.188 0.126 0.069 0.037 0.019 0.016

Property Reinsurance Catastrophe

1 0.16 0.68 0.92 0.97 0.97 1.04 0.99 0.99 1.00 1.00
2 0.13 0.65 0.87 0.92 0.95 0.97 0.98 0.98 0.98
3 0.51 0.74 0.88 0.94 0.95 0.94 0.97 0.98
4 0.31 0.72 0.80 0.91 0.98 0.98 0.99
5 0.16 0.65 0.81 0.92 0.96 0.97
6 0.24 0.62 0.79 0.89 0.91
7 0.22 0.45 0.63 0.76
8 0.55 0.61 0.75
9 0.73 0.83
10 0.19
Std Dev 0.21 0.11 0.09 0.07 0.02 0.04

Abs Diff 0.599 0.388 0.295 0.209 0.065 0.104

Given the significant volatility evident in the property reinsurance catastrophe loss development
triangle, methods that rely on selected age-to-age factors are often not appropriate. Instead, actuaries
can turn to catastrophe models and discussions with claims professionals. Catastrophe models can be
particularly valuable for catastrophe events that occur close to a financial reporting date in
circumstances where an insurer (or reinsurer) has not had time to process many claims. This assumes
that the catastrophe event lends itself to reliable catastrophe modeling (such as hurricanes and
earthquakes). As time progresses and the insurer (or reinsurer) has time to deploy claims adjusters on
site and begin to process claims, the insight from the claims team will be invaluable to the actuary
estimating unpaid losses.

Table 3. 11 presents an alternative for the projection of ultimate losses using the development method
for property catastrophe reinsurance. In this approach, the losses associated with specific catastrophes
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are excluded from the calculation and replaced with estimates derived from interaction with the claims
team and review of indications from catastrophe models.

Table 3. 11. Alternative Projection with Adjustments for Large Catastrophes

Projected Ultimate Projected Ultimate
Losses at Catastrophe Losses at 12/31/10 Cum Dev Factor Losses with Cat Adj Losses without Cat Adj
Treaty 12/31/10 Estimated at 12/31/10 Based on Based on
Year Reported Paid Reported Paid Ultimate  Reported Paid Reported Paid Reported Paid
1 32,467 32,438 28,500 28,500 28,500 1.000 1.010 32,465 32,477 32,452 32,762
2 3,914 3,817 - - - 0.999 1.010 3,910 3,856 3,910 3,856
3 6,600 6,443 - - - 0.997 1.012 6,578 6,520 6,578 6,520
4 16,742 16,563 - - - 0.997 1.016 16,696 16,835 16,696 16,835
5 8,912 8,647 - - - 0.997 0.994 8,889 8,596 8,889 8,596
6 59,903 54,576 50,000 49,000 50,500 1.007 1.042 60,469 56,309 60,299 56,853
7 16,540 12,558 - - - 1.032 1.100 17,062 13,811 17,062 13,811
8 4,211 3,167 - - - 1.076 1.297 4,530 4,108 4,530 4,108
9 18,677 15,577 13,000 8,900 20,000 1.244 1.898 27,065 32,670 23,242 29,558
10 920 179 - - - 2.988 6.626 2,749 1,186 2,749 1,186
Total 168,886 153,965 91,500 86,400 99,000 180,413 176,368 176,409 174,086

The mathematics of the projected ultimate losses with catastrophe adjustment are as follows:

o [(Reported losses — catastrophe reported losses) x reported cumulative development factor +
estimated ultimate catastrophe losses].

e [(Paid losses — catastrophe paid losses) x paid cumulative development factor + estimated
ultimate catastrophe losses].

The projected ultimate losses from the standard application of the development method are seen in the
last two columns of Table 3. 11. There are notable differences in the indicated IBNR for treaty year 9
between the projections with and without adjustment for catastrophe. Another option that the actuary
could consider is deriving separate development patterns from data inclusive and exclusive of years with
unusually large catastrophe events.

Implications of Volatility in Loss Development Experience

Greater volatility in age-to-age factors can lead to greater uncertainty in the projections of ultimate
losses and the resulting estimates of unpaid losses, not only for projections based on the development
method but also projections based on other frequently used methods. Actuaries often use estimates of
ultimate losses from the development method for mature years to determine the expected loss ratios
used in the expected method. Thus, volatility in the age-to-age factors can result in uncertainty in the
projections of the development method, which can lead to uncertainty in the selection of the expected
loss ratio. The Bornhuetter-Ferguson method relies on the selected development patterns and the
expected loss estimates. Thus, volatility and uncertainty in these can lead to uncertainty in the
Bornhuetter-Ferguson projections of ultimate losses. Professional judgment is critically important for
actuaries estimating unpaid losses for reinsurance.
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The examples continue in Sheets 6-8 of the exhibits at the end of the chapter for:

e Professional lines — primary insurance and reinsurance.

e Liability — proportional treaty reinsurance and non-proportional treaty and facultative
reinsurance.

e Property — reinsurance excluding catastrophe and reinsurance catastrophe.

Sheet 6 shows the development of the expected loss ratios. Sheet 7 presents the results of the expected
method and the Bornhuetter-Ferguson method with reported and paid losses. Finally, Sheet 8 shows
indicated IBNR and total unpaid losses.

Details of the calculations are assumed to be known and thus are not included. (For more information,
see Estimating Unpaid Claims Using Basic Techniques.) One important difference with primary insurance
and reinsurance is the need to earn the premium when analyses are conducted using treaty year data.
For the liability and property examples, where data are aggregated by treaty year, the expected loss
ratios are developed for the complete treaty year; similarly, ultimate losses are developed for the full
treaty year for all years in the experience period. On Sheet 8 of Exhibits Il and Ill, an adjustment is made
for the most recent treaty years to reduce ultimate losses for the portion of premium unearned as of the
valuation date (i.e., December 31, 10).

Observations

In Sheet 6, where expected loss ratios are selected, the standard deviation and absolute difference of
the indicated ultimate loss ratios are calculated for each category of business. Similar to the greater
volatility observed in age-to-age factors, greater volatility is also seen in the indicated ultimate loss
ratios. Table 3. 12 summarizes the standard deviations and absolute differences for the above examples.
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Table 3. 12. Measures of Variability in the Indicated Ultimate Loss Ratios

Standard Absolute
Deviation Difference

Professional Lines - Primary Insurance 0.04 13%
Professional Lines - Reinsurance 0.14 41%
Liability Proportional Treaty Reinsurance 0.08 23%
Liability Nonproportional Treaty and Facultative Reinsurance 0.14 44%
Property excluding Catastrophe Reinsurance 0.17 51%
Property Catastrophe Reinsurance 0.64 157%

Range of Indicated IBNR and Total Unpaid

Calculations are extended to project ultimate losses with the development method (with reported and
paid losses), the expected method, and the Bornhuetter-Ferguson method (also with reported and paid
losses). The indicated IBNR and total unpaid losses are then calculated. Indicated IBNR is equal to the
projected ultimate losses less total reported losses, and total unpaid losses are equal to the projected
ultimate losses less total paid losses.

Sheet 8 presents the projected ultimate losses from each method by year (with adjustment for earning
of the premium where losses are aggregated by treaty year) and the indicated IBNR and total unpaid
losses resulting from each method on a total all years combined basis.

Not surprisingly, there is a greater range of indicated IBNR as measured by the maximum value minus
the minimum value for reinsurance than for primary insurance in the professional lines example, for
non-proportional treaty than proportional and facultative reinsurance than for proportional treaty
reinsurance in the liability example, and for catastrophe than excluding catastrophe for the property
reinsurance example.

Quota Share and Stop-Loss Reinsurance Examples

The final two examples in this chapter are from the perspective of the ceding company (i.e., the
reinsured). They expand on the example of GL Self-Insurer found in Estimating Unpaid Claims Using
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Basic Techniques.>! For purposes of this reinsurance text, GL Self-Insurer is presented as GL Captive
Insurer since captive insurers routinely purchase reinsurance.

Quota Share Reinsurance

Recall that with proportional reinsurance, the reinsurer shares the experience of the ceding company
from the ground-up. For quota share, where premiums and losses are shared based on a specified
percentage, the age-to-age factors are identical for losses gross of reinsurance, ceded losses, and losses
net of reinsurance.>?

With quota share reinsurance, the ceded losses are equal to gross losses multiplied by the percentage
ceded. It is very important to understand the meaning of the percentage cited for quota share
reinsurance, as the percentage can be used to refer to the percentage ceded or the percentage
retained. The actuary should always seek clarification to ensure proper application of the percentage.

For a ceding company, the estimation of ultimate losses and unpaid losses for a line of business with a
guota share reinsurance treaty is often a straightforward calculation. The percentage ceded is applied to
the ultimate losses, case reserves, paid losses, and IBNR to determine the losses ceded to the reinsurer.
If the percentage ceded remains constant for all years in the experience period, the calculation can be
performed on a total basis for all years combined. Frequently, the percentage ceded changes over time,
and the calculations are performed by year.

Table 3. 13 presents an example where the quota share reinsurance percentages are assumed to vary by
year. (Note “QS” is used in a column heading as an abbreviation for quota share.) For GL Captive Insurer,
accident year is equivalent to policy year as there is a single policy with a January 1 effective date. In this
example, the quota share percentages are presented as the percentage ceded by GL Captive Insurer.

51 The reported and paid losses are from Chapter 8 of Estimating Unpaid Claims Using Basic Techniques, and the selected ultimate losses are
assumed equal to the reported development projection.

52 Surplus share reinsurance differs from quota share, and thus differences in age-to-age factors would exist due to the variable nature of the
percentage of losses shared in surplus share reinsurance. However, the differences are likely not nearly as pronounced as they are between
proportional and non-proportional reinsurance.
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Table 3. 13. GL Captive Insurer — Example of the Application of Quota Share Reinsurance from the
Ceding Company’s Perspective Development of Losses ($000s) Ceded to Quota Share Reinsurance at
December 31, 11

Gross of Quota Share Reinsurance Ceded to Quota Share Reinsurance Retained

Selected At December 31, 11 At December 31, 11 Ultimate
Accident Ultimate Paid Case Indicated QS % Case Total Losses

Year Losses Losses Oustanding IBNR Ceded Paid Oustanding IBNR Unpaid Ultimate After QS

1 914 890 10 14 50% 445 5 7 12 457 457

1,224 1,170 30 24 50% 585 15 12 27 612 612

3 1,339 1,265 35 39 50% 633 18 20 37 670 670

4 1,892 1,600 200 92 50% 800 100 46 146 946 946

5 1,562 1,200 250 112 40% 480 100 45 145 625 937

6 1,583 1,050 350 183 35% 368 123 64 187 554 1,029

7 2,986 900 1,500 586 30% 270 450 176 626 896 2,090

8 2,509 860 940 709 25% 215 235 177 412 627 1,882

9 2,424 525 975 924 20% 105 195 185 380 485 1,939

10 2,328 750 450 1,128 20% 150 90 226 316 466 1,862

11 1,862 170 430 1,262 15% 26 65 189 254 279 1,583

Total 20,623 10,380 5,170 5,073 4,076 1,395 1,146 2,541 6,616 14,007

The calculations above would likely not be the same for an actuary working with a primary insurer or a
reinsurer. For a primary insurer, the calculations can become complicated if the quota share coverage is
from a risks-attaching reinsurance treaty with a ceded percentage that changes over time and the
reserving analysis of gross results is prepared on an accident year basis. In this situation, the change in
the ceded percentage applies based on the policy year of the underlying risks not on the accident year
of the insured event. For a reinsurer, there would be numerous quota share treaties in a single HRG with
different ceding percentages and different terms and conditions, and thus the previous simple

calculation would not be applicable.

Stop-Loss Reinsurance

The example with GL Captive Insurer continues with stop-loss coverage where the quota share
arrangement inures to the benefit of the stop-loss coverage. Table 3. 14 presents the results, which are

described after the table.
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Table 3. 14. GL Captive Insurer — Example of the Application of Stop-Loss Limits from the Ceding
Company’s Perspective

Retained
Retained Ult Losses Losses at December 31, 11
Accident Ult Losses Stop-Loss After QS and Net of Quota Share and Stop Loss

Year After QS Limit Stop Loss Reported Paid Case O/S IBNR
1 457 750 457 450 445 5 7
2 612 750 612 600 585 15 12
3 670 750 670 650 633 18 20
4 946 750 750 750 750 - -
5 937 750 750 750 720 30 -
6 1,029 1,500 1,029 910 683 228 119
7 2,090 1,500 1,500 1,500 630 870 -
8 1,882 3,000 1,882 1,350 645 705 532
9 1,939 3,000 1,939 1,200 420 780 739
10 1,862 3,000 1,862 960 600 360 902
11 1,583 3,000 1,583 510 145 366 1,073

Total 14,007 13,034 9,630 6,255 3,376 3,404

The retained ultimate losses after quota share are derived from Table 3. 13 and are equal to ultimate
losses gross of quota share minus ultimate losses ceded to quota share. Ultimate losses after quota
share can also be calculated as ultimate losses gross of quota share multiplied by 1.0 minus the quota
share ceded percentage. Stop-loss limits are assumed for the purpose of this example.

Retained ultimate losses after quota share and stop-loss are calculated as:

Minimum [retained ultimate losses after quota share, stop-loss limit].

Reported and paid losses after quota share and stop-loss are calculated in a similar way. Observe that
reported and paid losses for accident year 4 are both capped by the stop-loss limit of 750, and there is
nil case outstanding and nil IBNR after quota share and stop-loss. For accident year 5, the reported
losses are capped but the paid losses are not, and thus there is case outstanding of 30 net of quota
share and stop-loss; however, there is no net IBNR for accident year 5. Similar observations are made for
accident year 7, where reported losses are capped by the stop-loss of 1500 but the paid losses are not,
and case outstanding are 870 with no IBNR.

In practice, once a ceding company breaches stop-loss coverage, it is not uncommon for the reinsurer to
increase the price or the attachment point of stop-loss reinsurance (or both). Depending on market
conditions, stop-loss reinsurance can be extremely challenging to secure after the ceding company
exceeds its retention on more than one occasion.
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In this example, the reported losses for accident year 7 of 2,400 (sum of paid losses of 900 and case
outstanding of 1,500) are significantly greater than all other accident years. (See Table 3.13 for details by
accident year.) Assume that there is an individual large loss for this accident year with an estimated
ultimate value of 500. Further assume that GL Captive Insurer has excess per occurrence reinsurance
with an attachment point of 100 that inures to the benefit of the quota share and stop-loss coverages.
The ultimate loss gross and net of all reinsurance coverage is calculated as shown in Table 3. 15.

Table 3. 15. GL Self-Insurer — Accident Year Losses Net of Excess Per Occurrence, Quota
Share, and Stop-Loss Reinsurance

(1) Selected ultimate loss gross of all reinsurance 2,986
(2) Single large loss 500
(3) Excess per occurrence reinsurance - attachment point 100
(4) Ceded losses to excess per occurrence reinsurer (4) = [(2) - (3)] 400
(5) Ultimate losses net of excess per occurrence reinsurance (5) = [(1) - (4)] 2,586
(6) Quota share ceded percentage 30%

(7) Ultimate losses net of excess per occurrend and quota share reinsurance 1,810
(7) = [(5) x (1.0 - (6))]

(8) Stop loss limit 1,500

(9) Ultimate losses net of all reinsurance (9) = minimum [(7), (8)] 1,500

In this example, the loss ceded to the excess per occurrence reinsurance is first removed from the
results before the application of the quota share ceded percentage. The ultimate losses net of quota
share are then determined with the application of the stop-loss limit as the final step. Stop-loss limits
typically apply after all other reinsurance. This form of reinsurance is used to protect the net result of
the ceding company.

It is very important for the actuary to have complete details about the types of reinsurance (including
attachment points, limits, participation percentages, and treatment of LAE) as well as the order in which
different reinsurance contracts are applied. The determination of ceded losses can be a very complex
process, and it is critical for the actuary to understand and clearly document the calculations and
assumptions.
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Conclusion

The estimation of ultimate losses and unpaid losses is a critical task of actuaries working with insurance
and reinsurance. While the methods described in this chapter are used extensively, they should not be
used mechanically without supplementing with professional judgment. Actuaries should meet regularly
with underwriting teams and claims personnel to ensure that as much information as possible is
considered before final decisions are made about the reserves to book in financial statements. Without
incorporating critical insight from others, results derived from mechanical application of the
development, expected, and Bornhuetter-Ferguson methods could produce inappropriate results.
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Abstract

This study note was prepared for use on the CAS Exam Syllabus. Its purpose is to describe various
valuation approaches presented in introductory finance textbooks and to discuss practical
implementation issues that arise when using these methods to value a Property & Casualty insurance
company.

The methods described focus on those used by practitioners, including the dividend discount model,
the discounted cash flow model using free cash flow, the abnormal earnings model and relative
valuation using multiples. Applications of option pricing methods in equity valuation are briefly
discussed, including the real options framework.
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1. Introduction

This study note was prepared for use on the CAS Exam Syllabus. Its purpose is to describe various
valuation approaches presented in introductory finance textbooks and to discuss practical
implementation issues that arise when using these methods to value a Property & Casualty insurance
company.

2. Summary of Valuation Methods

This section provides a brief overview of several methods used to value the common shareholders’
equity of financial and non-financial companies. Discussion of the various practical implementation
issues for P&C insurance company valuation will be covered in subsequent sections.

2.1 Dividend Discount Model (DDM)

The DDM is the basic model presented in introductory finance textbooks. The method is based on the
premise that the equity value of any firm is simply the present value of all future dividends. To apply
this methodology, dividend payments are forecasted for all future periods and then discounted to
present value using an appropriate (risk-adjusted) discount rate. Alternatively, dividends can be
forecasted over a finite horizon and a terminal value can be used to reflect the value of all remaining
dividends to be received beyond the explicit forecast horizon.

2.2 Discounted Cash Flow (DCF)

The DCF method is closely related to the DDM approach discussed above. However, rather than
forecast and discount the actual dividends, the DCF method focuses on free cash flow.

The free cash flow is defined as all cash that could be paid as a dividend, regardless of whether or not
it actually will be paid in the period it is generated. Free cash flow is measured net of any amounts
required to be reinvested in the firm to maintain its operations and generate growth at the rate
assumed in the forecasts.

The implicit assumption in this method is that the free cash flow not paid as a dividend is invested to
earn an appropriate (risk-adjusted) return. When an investment earns a fair risk-adjusted rate of
return, there is no positive or negative effect on the value of the firm from retaining rather than paying
out the free cash flow.

There are two variations of this approach. These variations are referred to as the Free Cash Flow to
the Firm (FCFF) approach and the Free Cash Flow to Equity (FCFE) approach.

e FCFF - In this variation, the focus is on the free cash flow to the entire firm, prior to taking
into account any debt payments or tax consequences associated with the debt payments®.
FCFF thus represents the cash that could be paid to all sources of capital, including both the
debtholders and the equity holders. Discounting the FCFF produces a value for the entire
firm. The value of the equity portion of the firm is then determined by subtracting the market
value of the debt from the total firm value. The ease with which most debt instruments can be
valued makes it relatively easy to value the equity portion of the firm using this indirect
approach.

e FCFE - In this variation, the focus is on the free cash flows to the equity holders only, as
opposed to the free cash flows to the entire firm. The free cash flow to equity, FCFE,
therefore represents the cash generated by the firm, over and above its reinvestment and debt
financing costs, which could be paid to the shareholders of the firm. This is estimated using
the same approach used to estimate the FCFF, with the additional step of subtracting the debt
payments, net of their associated tax consequences, from the free cash flow to the firm to

! Debt payments are deductible for corporate tax purposes.
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derive the free cash flow to equity. The resulting valuation thus represents the equity
valuation directly by determining the present value of these free cash flows.

An important distinction between the FCFF and FCFE methods is that they each use a
different discount rate. The FCFF approach uses a discount rate that reflects the overall risk
to both debtholders and equity holders (a so-called weighted average cost of capital); the
FCFE approach uses a discount rate that reflects the risk to the equity holders only.

2.3 Abnormal Earnings (AE)

The AE method separates the book value of the firm from the value of the future earnings. The book
value of a firm represents the value of the firm’s equity assuming that the firm earns only the
investors’ required return on book value in all future periods. Valuations in excess of book value
must therefore be the result of earnings in excess of the investors’ required earnings. These earnings
in excess of the investors’ required earnings are referred to as the “abnormal earnings™. The
abnormal earnings in all future periods can be discounted and then added to the current book value to
obtain the equity value of the firm.

An important distinction between this method and the DDM and DCF methods discussed earlier is
that these latter methods both adjust the accounting-based net income measure into a cash flow
measure, such as dividends paid or free cash flow. This translation is done to remove any potential
distortions introduced by accounting rules designed to defer the recognition of revenues and expenses.

While it makes sense to unwind accounting distortions, some analysts point out that these distortions
eventually unwind themselves. In some cases, using unadjusted accounting values may actually
provide a more accurate valuation than would result using “cash flow” figures derived from
unwinding certain accounting distortions, especially when applied over finite horizons®.

Another important distinction between the abnormal earnings approach and the DCF or DDM
approaches is that this method focuses on the source of value creation — the firm’s ability to earn a
return on equity in excess of investors’ required returns. The DCF and DDM focus only on the effect
of this value creation — the firm’s ability to pay cash flows to its owners.

2.4 Relative Valuation Using Multiples

One common characteristic of the previously discussed methods is that they all require detailed
assumptions regarding revenues, expenses, growth rates, etc. in perpetuity. These assumptions, when
taken together, result in forecasts of key valuation variables such as dividends, free cash flows or
earnings.

The net effect of all of these assumptions can often be summarized as a “multiple” to be applied to a
selected financial measure, such as next-period’s earnings, cash flow or book value, which will be
demonstrated in more detail later in this study note. When these assumptions regarding revenues,
expenses, growth rates, etc. are the same for comparable firms, then a shortcut valuation can be
estimated using the multiples calculated from the valuation of these comparable firms. In other
words, the firm’s equity can be valued relative to other firms.

Valuation multiples of comparable firms play an important role in all valuations. Even when the
multiples are not being used to perform the primary valuation, the valuation multiples of comparable
firms often serve as a critical reasonableness check, indicating whether or not the assumptions driving
the DDM, DCF or Abnormal Earnings approaches make sense in the aggregate and whether they
differ materially from the assumptions inherent in the valuations of other comparable firms.

2 This method of valuation often appears under a variety of other names, including the “residual income” method or the
“economic value added” method. The latter terminology was popularized by consulting firm Stern Stewart in the 1990s as
"EVA™" and is a registered trademark of that firm. The more generic term "abnormal earnings" is used in this study note.

% See Sougiannis, Theodore and Penman, Stephen H., "A Comparison of Dividend, Cash Flow, and Earnings Approaches to
Equity Valuation".
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2.5 Option Pricing Theory

In a 1974 paper®, Robert Merton showed that the equity of a firm could be viewed as a call option on
the assets of the firm with a strike price equal to the (undiscounted) value of the liabilities. The equity
owners can be thought of as having sold the assets of the firm to the debtholders but have the right to
buy back the assets by repaying the face value of the debt on the maturity date.

Using this perspective of equity as a call option, some analysts have attempted to use option pricing
formulas such as the Black-Scholes formula, or more typically variations of this formula, to value the
equity of a firm.

Although theoretically sound, this approach is difficult to implement. There are numerous practical
limitations associated with determining the necessary inputs, accurately reflecting the real-world
complexity of many firms’ capital structure (e.g. there are often multiple classes of debt with multiple
maturity dates), and other issues.

Nonetheless, the theoretical foundation of option pricing has recently proven to be useful in thinking
about specific sources of value from so-called real options. Some examples of real options include
options to expand current operations, options to make follow-on investments, options to abandon
projects and other forms of managerial flexibility.

Given this overview of the various valuation approaches, the next section of this study note will
discuss their specific application to the valuation of P&C insurance companies.

* See Merton, Robert C. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates".
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3. Dividend Discount Model (DDM)
3.1 Overview of the DDM

The DDM in many ways serves as the foundation of the other methods that will be covered in this
study note. As a result, a relatively detailed explanation is warranted. But given the coverage of this
approach in introductory finance textbooks®, it should be sufficient to simply summarize the key
points here.

To begin, one can think of the value of a share of stock as the discounted (present) value of the
expected future dividends. Since this definition includes all dividends paid, there is no need to adjust
this definition in the case of firms that do not currently pay dividends — eventually some dividends
will have to be paid, even if they merely represent a liquidating dividend at some distant date.

In symbols,

- E(Div,) , E(Div,) , E(Divy)
Q+k) @k @+k)?

where, E(Div;) reflects the expected dividends to be paid at the end of period i and k is the appropriate
discount rate (see below).

In the case where dividends are expected to grow (in perpetuity) at a constant rate, g, this can be
simplified as:

E(Div
V0 — IE l)
-9

In the more general case, dividends may be projected over a finite horizon and then assumed to grow
at a constant rate in perpetuity beyond that horizon. For example, if a three-year horizon is used, the
formula can be written as the present value of each of the next three dividends plus the present value
of the remaining future dividends beginning in year four. Since the dividends are assumed to grow at
a constant rate in perpetuity beginning in year four, the previous formula can be used to represent this
value at the end of the third year, which is referred to as the terminal value.

The resulting formula in the case of a three year horizon is therefore,

E(Div;) E(Div,) E(Divg) Terminal Value
0= + + +
L+k)  @+k)?  @Q+k)® 1+k)?
E(Div,)
-9

where, Terminal Value =

Before getting into the details of how to estimate the dividends, the growth rates and the appropriate
discount rate, consider the following example.

Example 1 — Application of DDM

Assume that as of the end of 2004, the expected dividends for an insurance company are estimated as follows:

Table 1: Estimated Dividends

Year Expected Dividend

2005 100
2006 120
2007 135
2008 150
2009 165

% See Bodie, Kane and Marcus (6" Edition), Chapter 18.
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From 2009 on, the dividends are expected to grow at a constant rate of 5% per year and the appropriate risk
adjusted discount rate is 15%.

The DDM can be used to value of the equity of this firm as of the end of 2004.

The first step is to calculate the PV of each of the first five dividends using the discount rate of 15%. This gives
a value of the dividends to be earned during the next five years (excluding the dividends beyond that point) as
follows:

100 120 135 150 165

— >+ 5+ Tt S =434
115 1.15° 1.15° 1.15% 1.15

V0052008 =

To value the remaining dividends beyond 2009, note that the dividends are expected to grow at a rate of 5%
from year 2010 on. This suggests that the 2010 dividend is 165*1.05 = 173.25 and the value as of the end of
2009 is:

E(Divyy) 17325
k—g 15-.05

=17325

2009 =
This value of 1,732.5 represents the terminal value as of the end of the explicit dividend forecast horizon. The
present value of this amount as of the end of 2004 is 1,732.5/1.15° = 861.

Adding the present value of this terminal value to the present value of the dividends for years 2005 through
2009, the total value of all future dividends is Vo4 = 434 + 861 = $1,295.

3.2 Terminal Value

In the previous example, the dividends from year 2010 on were worth a total of $1,732.5 as of the end
of 2009 and had a present value of $861 as of the end of 2004. This terminal value beyond the
explicit dividend forecast horizon is driven largely by the assumption of 5% perpetual dividend
growth beyond 2009. Given the fact that the terminal value represents 66.5% of the total value of the
firm’s equity, it is important to consider these terminal value assumptions carefully.

For convenience, the terminal value as of the end of 2009 can be expressed as:

17325 .. 105
15-.05 15-.05

In other words, the terminal value at the end of 2009 is worth “10.5 times the 2009 dividend”. This
suggests treating 10.5 as a multiple to be applied to the current dividend amount as of the terminal
date. This multiple effectively summarizes in one number the net effect of the following assumptions:

Terminal Value =

=165%10.5 = Divyg *10.5 =1732.5

i) Dividends will grow at a constant rate forever;
i) The growth rate is 5%;
iii) The appropriate discount rate is 15%.
3.3 Application of the DDM
The following three key assumptions are required to implement the DDM:
e Expected Dividends During Forecast Horizon
e Dividend Growth Rates Beyond Forecast Horizon
e Appropriate Risk-Adjusted Discount Rate
Each of these assumptions will be discussed in more detail in this section.
3.3.1 Expected Dividends During Forecast Horizon

Forecasting expected future dividends is a complex exercise with a substantial degree of uncertainty.
Fundamentally, this will involve forecasts of revenues, expenses, investment needs, cash flow needs
and other values for several future periods. These forecasts will require careful consideration of prior
business written, expected renewals and new business written.
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For the sake of brevity, this study note will assume that such forecasts have already been performed.
The models used for these forecasts will not be discussed here. For a detailed discussion of the
process one might follow to prepare these forecasts for a generic firm, see Business Analysis &
Valuation, by Palepu, Bernard and Healey. For a more focused discussion of how this could be done
for a P&C insurance company, see The Application of Fundamental Valuation Principles to
Property/Casualty Insurance Companies, by Blackburn, Jones, Schwartzman and Siegman or Using
the Public Access DFA Model: A Case Study by D’Arcy, Gorvett, Hettinger and Walling.

3.3.2 Dividend Growth Rates Beyond Forecast Horizon

Estimates of growth rates for revenues, expenses and other variables are inherently part of the process
of estimating dividends during the forecast horizon.

Beyond the explicit forecast horizon though, growth rates used in the terminal value calculation are
more difficult to determine. One simple approach is to use the growth rates during the explicit
forecast horizon to extrapolate the future growth rates.

Another approach is to base the growth rate on the dividend payout ratio, representing the portion of
earnings paid as dividends®, and the return on equity, which represents the profit per dollar of
reinvested earnings. This reflects the fact that growth in earnings, and hence dividends, is driven by
the retention of some portion of the current period’s earnings so that they can be reinvested to
generate additional future period income.

Typically, the term plowback ratio is used to refer to that portion of earnings retained and reinvested
in the firm and the firm’s return on equity (ROE) is often used to indicate the income generated from
such reinvestment. Combining these, the growth rate, g, is estimated as:

g = plowback * ROE

The assumed growth rate plays a significant role in the ultimate valuation, particularly due to its
impact on the terminal value estimate. When estimating the terminal value, the growth rate should
reflect the steady-state perpetual growth rate and should not reflect any bias resulting from higher than
normal short-term growth estimates. For instance, a growth rate in excess of the growth rate for the
entire economy should be assessed carefully, as this implies the firm’s share of the total economy will
eventually rise to unreasonable levels.

It is important to recognize that high growth rates do not necessarily increase the value of the firm. If
all other assumptions were held constant, then mathematically this would be the case. However,
assumptions about growth rates, dividend payout rates and the risk-adjusted discount rate cannot be
made independently of each other. For instance, simultaneously high growth rates and high dividend
payout rates are unlikely to be sustainable and so the effects of high growth rates are likely to be
offset by lower dividend amounts.

Additionally, the dividend payments for firms with high growth rates are likely to be riskier (in a
systematic risk sense) than those of firms with low growth rates. The high growth firms often depend
upon a favorable economic climate for their growth, which introduces more systematic risk. As a
result, the effects of high growth rates are likely to be offset by discounting the dividends to present
value using higher risk-adjusted discount rates.

3.3.3 Appropriate Risk-Adjusted Discount Rate

A key element of the previous example is the appropriate discount rate to use in the calculation of the
present value of the expected cash flows. An entire study note could be devoted to this topic alone.
Some of the most important issues associated with the choice of discount rates will be discussed here;
additional details are available from various sources contained in the References section of the paper’.

® Since stock buybacks are economically equivalent to large cash dividends, these should be included in any reference to
"dividends" in the text.

7 See, in particular, Bodie, Kane and Marcus and Cornell, Bradford, 1993, Corporate Valuation: Tools for Effective
Appraisal and Decision Making, Business One Irwin, New York, NY.
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3.3.3.1 Risk-Adjusted Discount Rates vs. Risk-Adjusted Cash Flows

When valuing uncertain or risky cash flows, it is important to reflect this risk in the value that is
calculated. The most common approach to making this risk adjustment is to discount the cash flows
at a risk-adjusted discount rate that is higher than the risk free rate, thereby producing a value that is
lower than it otherwise would be in the absence of this risk.

However, reflecting this risk in the discount rate is not the only way to accomplish this objective.
Alternative approaches that incorporate the risk adjustment directly in the cash flows may even be
preferred. Halliwell®, for instance, presents compelling arguments for reflecting risk adjustments in
the cash flows, using utility theory to produce certainty equivalent cash flows that can be discounted
at risk free discount rates. This approach is closely related to the risk neutral valuation approach
widely used to value derivative securities, as well as other probability transform methods advocated
for pricing insurance risks, such as the Proportional Hazard Transform or the Wang Transform®*°.
While the certainty equivalent, risk-neutral and probability transform approaches are appealing on
theoretical grounds, the use of risk-adjusted discount rates is currently more common in practice. No
clear consensus yet exists on how to apply these alternative approaches consistently in many real-
world applications. Therefore, this study note will follow the more common approach using risk-
adjusted discount rates and will focus on some of the principal issues involved in this process.

3.3.3.2 Private vs. Equilibrium Market Valuation

Before addressing specific methods of determining discount rates, it is important to make a distinction
between a private valuation and an equilibrium market valuation.

In a private valuation, individual investors are assumed to have their own view of "risk™ and to hold
different existing portfolios. Any potential investment is assessed relative to the investor’s existing
portfolio. As a result, the value of any stream of risky or uncertain cash flows may have a different
value to different investors.

In an equilibrium market valuation, it is often assumed that all investors hold the same portfolio,
assess the risk associated with a new investment in an identical fashion and also have the same
estimates of future cash flows. Alternatively, it can be recognized that investors will not have
identical risk and cash flows assessments, but only the marginal investor’s risk and cash flow
assumptions will determine the “market” price of the investment. In this case, it is not necessary to
assume that every investor will place the same value on a given investment, but if an investor’s
private valuation differs from others’ valuations they simply will not trade at the market price.

Theoretical rate of return models often used to determine risk-adjusted discount rates tend to focus on
market equilibrium rates of return. As a result, they serve as a useful starting point for determining
any one investor’s appropriate discount rate for a given opportunity, but may not reflect all factors
that need to be considered by any specific investor.

3.3.3.3 Determining the Discount Rate

The most popular model used to estimate (equilibrium) shareholder return expectations is the Capital
Asset Pricing Model (CAPM)*. The CAPM attempts to describe the relationship between the “risk”
of an equity investment and the return investors expect to earn on that investment. In this model, risk
is defined in terms of the investment’s beta, a measure of systematic risk (risk that cannot be
diversified away in a large portfolio). The beta reflects the degree to which the percentage changes in
market value (the rates of return) co-vary with the rates of return on a hypothetical portfolio

8 See Halliwell, Leigh J., "A Critique of Risk-Adjusted Discounting".
9 See Wang, Shaun, "Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards Transforms".
10 5ee Appendix C of Halliwell.

! The discussion of only the CAPM as the source of discount rates in this study note is not intended to suggest a particular
preference for this model. Other models, including Arbitrage Pricing Theory (APT), a Multi-factor CAPM or the Fama-
French 3-Factor Model could certainly be used in place of the CAPM throughout.
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consisting of all risky assets that an investor may choose to invest in. This portfolio of all risky assets
is referred to as the market portfolio.

Mathematically, the CAPM can be expressed as follows:

where,
k

Iy
Elrnl

k=r¢+p (Elry]-r¢)

= expected or required equity return
=risk free rate
= expected market return

E[rn] - rs = expected equity market risk premium

p

= Beta, a measure of the systematic market risk

This model is mechanically trivial to implement. However, there are important considerations to note
when estimating beta, the risk-free rate and the expected equity market risk premium.

3.3.3.3(a) Estimating Beta

There are two common methods used to determine the beta for the purposes of valuation — measuring
the target firm’s beta directly or using an industry-wide beta.

Firm Beta - Historical stock price data of the firm can be used to directly measure the
CAPM Beta. The estimation is performed using a linear regression of the company’s
returns against the market returns. The company’s historical beta can then be assumed to
remain constant for the prospective period. Betas measured in this way are commonly
reported by Bloomberg and other sources, sometimes inclusive of various statistical
adjustments to improve the estimates, as discussed in Bodie, Kane and Marcus'.

Industry Beta - Beta estimates for individual firms are often unreliable due to statistical
issues affecting individual firm data and changes in firm risk over time. Somewhat more
reliable and stable are industrywide mean or median values. For example, Cummins and
Phillips® estimate an industry-wide CPM beta for P&C insurers of approximately 0.843.
This estimate reflects an average across all P&C insurers, each with different mixes of
business and different degrees of financial leverage (debt). Therefore, the industry
average should be interpreted carefully and adjustments may be required to reflect factors
such as:

a. Mix of Business — With respect to adjustments for different mixes of
business, ideally only those firms with a comparable mix to the firm being
valued should be used. However, as the definition of “comparable firms”
gets more precise, the number of eligible firms drops significantly and the
result becomes less reliable. Ultimately, judgment is needed.

b. Financial Leverage — When firms raise capital by issuing debt, the leverage
that is introduced impacts the degree of risk to the equity holders, making
cash flows to equity holders riskier and the betas higher. This effect will
show up in any estimates of the betas of firms with debt outstanding and
therefore may make the betas of different firms difficult to compare.

To make the various betas easier to compare and to allow for the use of an
industrywide mean or median beta, the beta is often defined to reflect solely

12 5ee Bodie, Kane and Marcus, Chapter 10.

13 See Cummins and Phillips, "Estimating the Cost of Equity Capital for a Property-Liability Insurer”, March 2004
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the business risk of the firm and not the effect of debt leverage. This is the
beta that would exist had the firm been capitalized entirely with equity and is
often referred to as the all-equity beta.

Introductory finance texts provide a full description of how one could de-
lever the equity betas to estimate the beta for an all-equity firm, so that
material will not be reviewed here'®. However, once the average all-equity
beta for the industry is obtained, the equity beta for any particular firm would
be found by readjusting the beta to reflect the amount of debt leverage for
that particular firm®.

While this approach to de-levering and then re-levering industry betas is
often covered in the introductory finance textbooks, its application to
insurance company valuation is somewhat limited, and perhaps unnecessary.
This is because policyholder liabilities also result in leverage effects that are
not fully accounted for when the beta is adjusted solely for debt leverage.
Therefore, it may be reasonable to assume that the total leverage of all firms
in the insurance industry is similar and that the appropriate leveraged equity
return for any particular firm is based on the industry average equity beta,
without any further adjustments.

In the above discussion, the focus was on the beta for the equity of the firm
so that the expected returns to the equity holders can be measured. The
equity holders’ returns expectations are relevant because the intent of the
DDM is to value the dividends to the equity holders. These expected returns
to the equity holders will differ from the firm’s weighted average cost of
capital (WACC), which reflects the returns to both debt' and equity
providers. The WACC is a commonly referenced estimate of the “cost of
capital” but is not directly used in the DDM. An alternative valuation model
that does use the WACC will be discussed in a subsequent section.

Below are some representative estimates of equity betas for various publicly traded
insurers and reinsurers as of October 20047

Table 2: P&C Insurer and Reinsurer Equity Betas (Oct. 2004)

Company Beta
American International Group, Inc 0.89
The Allstate Corporation 0.38
The Progressive Corp. 0.83
Chubb Corporation 0.72
ACE Limited 0.72
XL Capital Ltd. 0.59
CNA Financial Corporation 0.64
Market Value Weighted Average 0.79

14 See Brealey & Meyers, Principles of Corporate Finance.

15 The so-called Miles-Ezzel formula reflects the relationship between the levered equity return and the all-equity return.
The levered return, re, is related to the unlevered equity return (r), the pre-tax debt return (ry), the effective corporate tax rate
(T) and the market values of the debt (D) and equity (E) according to the formula:

re =1+ (1-T)(D/E)(r-rg).

18 The debt return used in the WACC formula is usually the after-tax yield on the debt.

7 Source: Yahoo! Finance
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3.3.3.3(b) Estimating the Risk Free Rate

The risk-free rate plays an important role in the standard CAPM. It should be based on current yields
on risk free securities, which are often represented using zero-coupon U.S. Treasury yields.

To properly reflect the shape of the term structure, it is also appropriate to discount each cash flow at
a rate that reflects the time to payment. Therefore, one would want to use a different required return
for each time period, ki, to discount each cash flow at time period t, rather than a single discount rate k
for all time periods. This will also involve estimating a different equity risk premium (see below) for
each time period.

In practice, it is common to avoid this complexity and instead use a single risk free rate and a single
equity risk premium for all maturities. One still has a choice of which maturity to use for the risk free
rate. The options include:

o 90-Day T-Bills — These are the purest “risk free” instruments as they are free of both
credit and reinvestment risk. In textbook applications these are the securities most often
used.

e Maturity Matched T-Notes — Some practitioners prefer to use a Treasury security with a
term that matches the average maturity of the cash flows being valued.

e T-Bonds - Yields on 20-year Treasury bonds likely represent the most reasonable current
estimate of the long run average short-term yields. These are also the most stable and the
most logical choice for corporate decision-making because they come closest to matching
the duration of the market portfolio and of the cash flows being valued.

However, long-term yields also reflect a liquidity or term premium. As a result, the
historical term premium between long-term and short-term yields should be netted out of
the long-term yields. Bradford Cornell estimates that this term premium has historically
been approximately 1.2%,

For the remainder of this study note, the risk free rate will be based on the 20-year T-bond yield,
adjusted to reflect a 1.2% term premium, as a proxy for the long term average short-term yield.

3.3.3.3(c) Estimating the Equity Market Risk Premium

The actual spread between the market return and the short-term risk free rate has historically averaged
approximately 6% to 8%. As a result, some authors recommend using this as a forecast of the future
equity risk premium.

However, many authors have noted a so-called equity premium puzzle in that the historical premiums
seem too high relative to any commonly proposed theories of investor behavior. Many attribute the
historical return premium over risk free investments to be the result of good luck on the part of equity
investors and/or bad luck on the part of bond investors. A 2004 CAS paper by Derrig and Orr®
surveys the literature on the equity risk premium and documents estimates of the expected equity risk
premium ranging from 4% to 8%, somewhat lower than the historical average.

The key considerations in determining the appropriate equity risk premium include the following:

e Short-term vs. Long-term Risk Free Rates as Benchmark — The market risk premium
reflects the spread between the expected market return and the risk free rate. Since the
risk free rate appears twice in the CAPM formula, it is important to use a consistent
definition of the risk free rate in both the CAPM formula and in the measurement of the
market risk premium. If a short-term yield is used in the CAPM, the market risk premium
should be measured relative to short-term yields. Alternatively, if long-terms yields are

18 See Cornell, Corporate Valuation, Chapter 7.

1® Derrig, Richard A. and Elisha D. Orr, "Equity Risk Premium: Expectations Great and Small".
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used as the risk free rate, the market risk premium should reflect the spread between the
market returns and the long-term risk free yields.

e Arithmetic vs. Geometric Averages — When calculating average risk premiums, a choice
must be made between arithmetic and geometric averages. Generally, arithmetic
averages are preferred for single period forecasts. However for multiple period forecasts
or long-term averages, geometric averages are preferred”.

e Historical vs. Implied Risk Premiums — As noted in the Derrig and Orr study, risk
premiums can be estimated based on either historical averages or by estimating the risk
premium that is implied by current market prices.

For the historical risk premiums, a choice has to be made with respect to the time period
over which to measure the average returns, as the equity risk premium has fluctuated
significantly over the past 75 or so years.

The table below demonstrates the effect of using different time periods (as well as
different choices for the risk free asset and arithmetic vs. geometric averages):

Table 3: Historical U.S. Risk Premiums21

Stocks vs. T-Bills Stocks vs. T-Bonds
Period Arithmetic Geometric Arithmetic Geometric
1928-2000 8.41% 7.17% 6.53% 5.51%
1962-2000 6.41% 5.25% 5.30% 4.52%
1990-2000 11.42% 7.64% 12.67% 7.09%

Note that the use of historical data, as shown in the above table, is not the only approach
used to estimate risk premiums. An alternative method is to infer the equity risk
premium from current market prices. For instance, one could use the DDM on an
aggregate market index and solve for the risk premium given assumptions about the risk
free rate, aggregate dividends and aggregate growth rates.

Taking these considerations into account, it is difficult to recommend any single value to be used for
the equity risk premium. Any analysis should consider a range of possible values and the impact of
different assumptions should be reviewed. A baseline risk premium of 5.5% will be used throughout
the remainder of this study note and sensitivity analysis will be performed.

3.4 P&C Insurance Company Example

In this section, a simplified example of the DDM will be used to demonstrate the valuation of a P&C
insurance company. To keep the discussion focused on the valuation methodology and not the
detailed accounting issues, the example will rely upon simplified extracts from forecasted financial
statements prepared in accordance with U.S. GAAP accounting rules.

20 See Damodaran, Investment Valuation

21 Source: Damodaran, Investment Valuation
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Example 2 — DDM for Sample Insurance Company

Consider the following 5-year forecasts of the financial results for Sample Insurance Company. The data below
shows actual (2004) and 5 years of forecasted (2005 — 2009) income statement and balance sheet items, each
according to U.S. GAAP.

Table 4: U.S. GAAP Income Statement ($000’s)

2004 2005 2006 2007 2008 2009
Selected US GAAP Income Statement Items
Net Income Before Tax 14,598 15,366 16,134 16,941 17,788 18,678
Corporate Income Tax 5,109 5,378 5,647 5,929 6,226 6,537
Net Income After Tax 9,489 9,988 10,487 11,012 11,562 12,141
Selected US GAAP Balance Sheet Items
Total Assets 471,550 493,359 523,125 558,165 598,112 642,413
Total Liabilities 371,550 388,365 412,887 442,421 476,588 514,818
US GAAP Equity 100,000 104,994 110,238 115,744 121,525 127,595
Total Liabilities and Equity 471,550 493,359 523,125 558,165 598,112 642,413
Dividends Paid (50% of NI) 4,744 4,994 5,244 5,506 5,781 6,070

The following additional information is available for Sample Insurance Company:

¢ Dividend Payout Ratio — The firm has a current dividend payout ratio equal to 50% of its after-tax
net income and intends to maintain this payout ratio indefinitely.

e Risk Free Rate — The current yield®® of the 20-year U.S. Treasury Bond is approximately 4.33%
with annual compounding. This rate will be used as the risk free rate.

e Company’s Equity Beta — The company’s actual equity beta cannot be estimated directly because
itis a relatively new company with limited historical equity price data.

e Equity Betas for Peer Companies — The industry beta for this company’s closest peers is estimated
to be 0.84. The companies in the peer group have comparable levels of financial leverage (debt
outstanding as a percentage of the firm value) and operating leverage (premiums as a percentage of
GAAP equity).

The following steps are used to implement the DDM to value this company:
Step 1: Determine Dividend During Forecast Period

These amounts were provided in the table above and are summarized here for convenience:

Table 5: U.S. GAAP Income Statement ($000’s)

2005 200 2007 200 200

Dividends Paid 4,99 5,244 5,506 5,781 ,07

()
[e3)
©

~
o
o

22 As of June 2, 2004, the 20-year CMT yield with semi-annual compounding is 5.47%. Subtracting the 1.2% term premium
and converting to an annually compounding basis results in the 4.33% risk free rate.
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Step 2: Estimate Dividend Growth Rate Beyond Year 2009

Refer to the selected financial data shown below:

Table 6: Selected Financial Data

2005 2006 2007 2008 2009
GAAP Equity Beginning of Period) 100,000 104,994 110,238 115,744 121,525
GAAP Equity (End of Period) 104,994 110,238 115,744 121,525 127,595
Net Income 9,988 10,487 11,012 11,562 12,141
Dividend 4,994 5,244 5,506 5,781 6,070

Based on these values, the following values needed to estimate the growth rate in dividends beyond the
2009 forecast horizon are obtained:

Table 7: Growth Rate Data

2005 2006 2007 2008 2009
Dividend Payout Ratio 50.0% 50.0% 50.0% 50.0% 50.0%
Plowback Ratio 50.0% 50.0% 50.0% 50.0% 50.0%
ROE = NI/ Beginning GAAP Equity 10.0% 10.0% 10.0% 10.0% 10.0%
Dividend Growth Rate
Expected Plowback Ratio 50.0%
Expected Average ROE 10.0%
Growth Rate 5.0%

As shown in the table, the formula expressing the growth rate as the plowback ratio multiplied by the
ROE is used to obtain a growth rate of 5.0% beyond the forecast horizon. This is consistent with the
dividend growth rate during the forecast horizon. This may not always be the case, for instance, if the
long-term average ROE or dividend payout ratios are expected to differ from the short-term values
during the forecast horizon.

Step 3: Estimate Required Equity Return

The CAPM equity beta, based on the equity betas of peer companies, was stated earlier and assumed to
equal 0.84. Using CAPM with the following parameters, the appropriate discount rate is estimated to
be 8.95%, as shown below.

Table 8: Discount Rate

Risk Free Rate 4.33%
Equity Risk Premium 5.50%
Equity Beta 0.84
Discount Rate 8.95%
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Step 4:

Step 4:

Determine Value

The dividends and terminal value amounts can now be combined to estimate the total equity value by
discounting each amount at the 8.95% discount rate:

Table 9: Valuation Using DDM

2005 2006 2007 2008 2009 Terminal Value
Dividend 4,994 5,244 5,506 5,781 6,070 161,354
PV Factor 0.918 0.842 0.773 0.710 0.651 0.651
PV 4,584 4,418 4,257 4,103 3,954 105,110
Value 126,426

The terminal value was determined based on an assumption of constant growth beyond 2009 of 5.0%,
the discount rate of 8.95% and the year 2009 dividends of 6,070.

6,070 * (1.05)
.0895 —.05

The present value of this terminal value estimate is then 161,354/1.0895° = 105,110.

Terminal Value = =161,354

The total estimated value of the equity is then the sum of the present values of the five dividend
payments and the terminal value, which totals $126.4 million.

Sensitivity Analysis

Notice that the present value of the terminal value component is approximately $105 million. This
means that 83% of the total value of the firm is reflected in the terminal value, which assumes
perpetual growth in dividends of 5%. The magnitude of the terminal value relative to the total value of
the firm suggests the need to be very careful about the sensitivity of the result to this growth
assumption.

Below is a table that shows the sensitivity of the terminal value and the total equity value to estimates
of the growth rates. The different rates shown represent the results of alternative assumptions
regarding the ROE beyond the forecast horizon, with the dividend payout rate remaining constant. For
example, if the ROE were to decline to the level of the investor’s required return (8.95%) the growth
rate would decline to 4.475%. The resulting total valuation would decrease from $126.4 million to
$114.2 million. This represents a reduction of 9.7%.

Table 10: Sensitivity to Alternative Growth Rate Assumptions

Growth Rate Nominal Terminal Value PV Terminal Value Equity Value
4.000% 127,531 83,077 104,393
4.475% 142,543 92,856 114,172
5.000% 161,354 105,110 126,426
6.000% 218,108 142,081 163,397
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The sensitivity of the firm value to the estimated discount rate can also be tested. For instance, using
alternative assumptions about the equity risk premium would result in the following alternative
estimates of the CAPM discount rate and equity value:

Table 11: Sensitivity to Alternative Equity Risk Premium

Equity Risk Premium CAPM Discount Rate Equity Value
4.0% 7.69% 185,644
5.5% 8.95% 126,426
6.0% 9.37% 114,276
8.0% 11.06% 82,407

Combining these ranges of discount rates and ranges of growth rates beyond the forecast horizon, the
following estimates of total equity value would be obtained:

Table 12: Sensitivity to Growth and Discount Assumptions

Growth Rate Beyond Forecast Horizon

Discount Rate 4.000% 4.475% 5.000% 6.000%
7.69% 140,176 159,347 185,644 284,921
8.95% 104,393 114,172 126,426 163,397
9.37% 96,198 104,309 114,276 143,082
11.06% 73,081 77,389 82,407 95,419

Notice that the valuation in this table ranges from a low of $73 million to a high of $285 million. This
is a rather large range. But recall that the growth rates and discount rates are not independent of each
other. Rapid growth is unlikely to be possible without assuming more risk; stable, low growth
businesses are unlikely to exhibit high systematic risk. In the case of the previous table, the equity risk
premium was varied but the estimated CAPM betas were not altered to ensure consistency with the
assumed growth rates. This suggests that the more extreme values in the table are less realistic than
many of the other entries in the table.
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4. Discounted Cash Flow

The valuation approach based on the present value of future dividends is easy to understand. A fair
amount of detail for that model was presented because many of the elements of the application to a
real valuation exercise apply equally well to other methods. However, the dividend discount model
(DDM) has some important limitations. Actual dividend payments are highly discretionary and can
be difficult to forecast. In addition, the increased use of stock buybacks as an efficient vehicle for
returning funds to shareholders requires that, at a minimum, a fairly liberal definition of “dividend” be
adopted.

An alternative, though very closely related, approach is to focus on free cash flows rather than
dividends. The free cash flows represent all of the cash that could be paid out as dividends or other
payments to the capital providers, after making appropriate adjustments to reflect amounts needed to
support current operations and the expected growth. The key difference between this approach,
referred to here as the discounted cash flow (DCF) method, and the DDM is simply the recognition
that free cash flow not paid as a dividend immediately would be invested to earn a fair risk adjusted
return (i.e. it would not be stuffed in a drawer). As long as this can be assumed to be the case, there is
no impact on value, positive or negative, from not paying the funds out immediately. For the purpose
of valuation, it is acceptable to assume that the entire free cash flow is in fact paid as a dividend.

The DCF approach abstracts away from actual dividend policy and focuses on the cash that could be
paid in each future period. This is not meant to suggest that "cash flow" is measured exactly as it
might be defined under Generally Accepted Accounting Principles (GAAP). This is because free cash
flow also reflects the capital expenditures needed to maintain the firm’s operations and generate the
earnings growth inherent in the forecasts.

When applying the free cash flow approach, there are two alternative methods used. One approach is
to focus on the free cash flows to the entire firm and the other approach is to focus on the free cash
flow to the equity holders only.

4.1 Free Cash Flow to the Firm

The Free Cash Flow to the Firm (FCFF) approach values the entire firm and then subtracts off the
market value of the debt to value the equity indirectly. This valuation methodology is discussed in
some detail in Chapter 18 of Bodie, Kane and Marcus as well as other introductory finance texts.
While this approach has many advantages when applied to most industries, it is problematic when
applied to financial services firms such as insurance companies.

Damodaran discusses the difficulties applying the FCFF method to banks and insurance companies.
His key points can be summarized as follows:

e Policyholder Liabilities vs. Debt - The FCFF method values the entire firm and then
subtracts off the value of the debt to value the equity. This approach treats the debt as a
source of capital that is more like the equity of the firm rather than a part of the firm’s
normal business activities. As noted earlier with respect to the levered equity beta, the
distinction between debt and policyholders liabilities for a P&C insurance company is
rather arbitrary and there is no economic rationale for different treatment of these two
sources of liability.

e WACC and APV - The FCFF approach is applied by first using the firm’s weighted
average cost of capital (WACC) as the discount rate for the free cash flows to determine
the value of the entire firm. The market value of the debt is then subtracted from this
amount to determine the value of the equity.

Alternatively, the free cash flows could be discounted using the unlevered, all-equity
discount rate (assuming that there is no debt) to derive the value of the firm without
consideration of the debtholders’ claims, the tax consequences of the debt or the impact
of debt on the riskiness of the equity holders’ claims. The equity value is determined by
subtracting the market value of the debt from the firm value and then making two
adjustments. The first adjustment reflects the debt’s tax consequences by adding the
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value of the debt’s tax shields. The second adjustment reflects the debt’s effect on equity
risk by incorporating an estimate of the potential cost of financial distress. This
alternative approach is often referred to as an Adjusted Present Value (APV) approach.

In either case, the existence of policyholder liabilities makes it difficult to precisely define
either the WACC or the unlevered, all-equity discount rate needed for the APV approach.

Since this study note focuses on valuation for P&C insurance companies, the FCFF approach will not
be presented in any detail here?,

4.2 Free Cash Flow to Equity

When valuing insurance companies, it is preferable to focus on the Free Cash Flow to Equity (FCFE)
method. FCFE is very similar to FCFF but it reflects free cash flows after deductions for interest
payments, net of any tax consequences of these interest payments, and any net change in borrowings
(i.e. repayment of debt and new debt issued). This focus on the cash flows to the equity holders also
means that the discount rate reflects only the risk to the equity holders rather than the WACC
mentioned above. This allows the use of the levered equity return as the discount rate, which is useful
given the difficulties identified earlier with the estimation of the unlevered equity return for P&C
insurance companies.

The typical textbook definition of FCFE is summarized as shown in the following table:

Table 13: Definition of Free Cash Flow to Equity

Net Income
plus Non-Cash Charges (Expenses)
less Net Working Capital Investment
less Capital Expenditures
plus Net Borrowing

Free Cash Flow to Equity (FCFE)

Typically, expenses that are deducted under U.S. GAAP accounting but do not represent actual cash
expenditures are added back to the reported net income to determine the cash flow available to be paid
to equity holders. These amounts are referred to in the table above as Non-Cash Charges. For a P&C
insurer, the most significant of these “non-cash” expense items on the income statement are the
increases in the loss and expense reserves. These increases in reserves have a large impact on the
reported income but not on the actual cash flow. This would seem to suggest that changes in reserves
could be added back to net income, but this is not the case, as will be explained below.

Notice that two other components of the free cash flow to equity calculation include changes in net
working capital and capital expenditures. Both of these amounts represent uses of cash flow needed
to maintain the firm’s operations and support the growth that is planned. Working Capital Investment
shown in the above table reflects net short term (non-cash) assets held to facilitate company
operations, such as inventory or accounts receivable. Capital Expenditures typically refer to
investment in property, plant, equipment and other physical items. For P&C insurance companies, net
working capital is not typically significant and will not be discussed in detail here®,

The definition of capital expenditures for P&C insurance companies is more complicated because it
must be adjusted to include changes in loss and expense reserve balances as well as increases in
capital held (“invested™) to meet regulatory and/or rating agency capital requirements consistent with
the company’s business plan.

2 The interested reader should refer to Damodaran's Investment Valuation for a thorough treatment of this valuation
approach.

24 Refer to Damadoran and Stowe, et. al. for extensive discussion of the other components of Non-Cash Charges and Net
Working
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e Treatment of Increase in Loss and Expense Reserves — Recall that the FCFE represents the
cash flow that could be paid to shareholders in any particular period. In the simple case of a
two year insurance policy where the firm collects the premium net of expenses up front and
then pays claims at the end of the second period, it would not be sufficient to treat the net
premiums as the (positive) free cash flow in the first period and the claim payments as the
(negative) free cash flow in the second period. This is because some of the premium
collected in the first period is not free to be paid to shareholders. Instead, some portion of the
premium must be held in claim reserves, usually on an undiscounted basis.

The implication of this is that when calculating FCFE, changes in loss and expense reserves
can be included in the definition of capital expenditures. Since these changes in reserves
reflect the most significant Non-Cash Charges, which according to the usual definition of
FCFE would be added back to Net Income, and also reflect a significant portion of Capital
Expenditures, which would be subtracted from Net Income, these two adjustments will cancel
each other out. The result is that the increases in loss and expense reserves, which have
already been reflected in the net income figures, can be ignored in the steps used to estimate
FCFE through adjustments to net income.

e Treatment of Increase in Required Capital — In addition to reserve requirements, insurers are
subject to regulatory and/or rating agency capital requirements. Just as a widget manufacturer
must invest capital in machinery to make widgets, an insurance company must invest capital
before it can sell an insurance policy. Such regulatory minimum capital requirements should
be treated as "capital expenditures" for the purposes of determining free cash flow.
Furthermore, the ability of an insurer to meet its growth targets and profitability targets is tied
closely to public perception of its financial strength and credit standing. Therefore, capital
required to maintain the firm’s target credit rating implied by the business plan should also be
treated as equivalent to a capital expenditure. In both of these cases, the regulatory and rating
agency capital requirements serve to reduce the free cash flow relative to U.S. GAAP
definitions of net income.

To focus attention on the valuation methodology as opposed to accounting and regulatory
issues in this study note, specific regulatory or rating agency capital requirements will not be
addressed here. In the numerical examples shown, the minimum capital requirements are
approximated using simplified capital standards that are meant to mirror Standard & Poor’s
guidelines applicable to AA-rated insurers. The interested reader should refer to Standard &
Poor’s "Property/Casualty Insurance Ratings Criteria" for more information on this important
aspect of valuation.

In a real-world application, there are likely to be multiple constraints on free cash flow
resulting from the need to hold capital in the firm. The most binding constraint could be the
result of regulatory restrictions, rating agency restrictions or perhaps management’s own
assessment of the capital needed to support the risk-taking activities of the firm without
negatively impacting the firm’s ability to achieve its growth plans. In this case it would be
necessary to determine the most binding constraint on capital and assess how it impacts free
cash flow.

The resulting definition of FCFE that can be used for P&C insurers is therefore adjusted as follows:

Table 14: Simplified Definition of Free Cash Flow to Equity for P&C Insurer

Net Income
Plus Non-Cash Charges — Excluding Changes in Reserves
Less Net Working Capital Investment
Less Increase in Required Capital
Plus Net Borrowing

Free Cash Flow to Equity (FCFE)
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Example 3 — Free Cash Flow to Equity Calculation for ABC Insurance Company

Consider a hypothetical P&C insurer, ABC Insurance Company. In the current period the company had
beginning U.S. GAAP Equity equal to $103.500 million and U.S. GAAP Net Income equal to $17.193 million.
Based on their internal financial model that reflects their growth plans for the coming year, they have
determined that the capital needed (at the start of their next accounting period) to maintain their AA-rating is
$108.624 million.

For simplicity, assume that there are no non-cash charges included in the net income figure other than changes
in reserves, there are no net working capital investments and there are no increases in borrowings.

The Free Cash Flow to Equity for this firm in the current period can be calculated as follows:

Table 15: Calculation of Free Cash Flow to Equity for ABC Insurance Company ($ Millions)

Beginning US GAAP Equity 103.500
Net Income 17.193
Ending US GAAP Equity - Before Dividends 120.693
Minimum Capital - Based on Target S&P AA Rating 108.624
Beginning US GAAP Equity 103.500
Increase in Required Capital 5.124
Net Income 17.193
Non Cash Charges (Excluding Change in Reserves) 0
Net Working Capital Investment 0
Capital Expenditures = Increase in Required Capital 5.124
Net Borrowing 0
Free Cash Flow to Equity 12.069

Notice that the FCFE could also be calculated as the difference between the ending GAAP equity and the
minimum required capital, as shown here:

Table 16: Alternative Calculation of Free Cash Flow to Equity for ABC Insurance Company

Ending US GAAP Equity - Before Dividends 120.693
Minimum Capital - Based on Target S&P AA Rating 108.624
Free Cash Flow to Equity 12.069

4.3 Applying the FCFE Method

Once the FCFE values are determined, much of the remainder of the valuation exercise is similar to
what was done using the DDM. The free cash flows during the forecast horizon are valued using an
appropriate risk-adjusted discount rate and the terminal value is estimated by assuming a constant
growth rate in free cash flow and an appropriate discount rate.

Below, several details regarding this methodology will be addressed. The financial model for ABC
Insurance Company used in Example 3 above will be used as a reference. The Net Income, Equity
and Free Cash Flow to Equity amounts for the years 2005 — 2009 were calculated using the same
methodology and the key elements are summarized as follows:
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Table 17: Free Cash Flow to Equity for ABC Insurance Company 2005 — 2009 ($000’s)

2005 2006 2007 2008 2009
Beginning US GAAP Equity 103,500 108,624 113,274 117,648 122,422
Net Income 17,193 17,236 17,446 18,376 18,967
Ending US GAAP Equity - Before Dividends 120,693 125,860 130,720 136,024 141,388
Minimum Capital - Based on Target S&P AA Rating 108,624 113,274 117,648 122,422 127,250
Beginning US GAAP Equity 103,500 108,624 113,274 117,648 122,422
Increase in Required Capital 5,124 4,650 4,374 4,774 4,828
Free Cash Flow to Equity 12,069 12,586 13,072 13,602 14,139

4.3.1 Growth Rates

Earlier in the discussion of the DDM approach, growth rates were estimated using historical averages
or by relying on the fundamental principle that growth is the result of income that is reinvested in the
firm and that subsequently earns a positive return (ROE).

When using the FCFE method, it is important to note the implicit assumption that all free cash flow to
equity is paid to shareholders. Therefore, the definition of reinvestment for purposes of determining
growth rates is slightly different than it was in the DDM. In that case it was sufficient to simply
compare the dividends paid to the firm’s net income.

For a P&C insurance company, the best determinant of growth is the portion of net income that is
used to increase the capital base of the firm, since the capital base of the firm determines the
maximum growth that can be achieved given the regulatory and rating agency constraints®.

Combining this with the return on equity provides an estimate of the growth rate beyond the forecast
horizon, as shown below using the ABC Insurance Company example data.

Table 18: Estimated Growth Rate Beyond Forecast Horizon ($000’s)

2005 2006 2007 2008 2009
Net Income 17,193 17,236 17,446 18,376 18,967
Free Cash Flow to Equity 12,069 12,586 13,072 13,602 14,139
Reinvested Capital 5,124 4,650 4,374 4,774 4,828
Reinvestment Rate 29.8% 27.0% 25.1% 26.0% 25.5%
Beginning Capital 103,500 108,624 113,274 117,648 122,422
ROE 16.6% 15.9% 15.4% 15.6% 15.5%
Free Cash Flow Growth Rate
During Forecast Horizon 4.3% 3.9% 4.1% 3.9%
Beyond Forecast Horizon - Estimated 3.9%

% It can be argued that growth is also constrained by the firm's investment in quality personnel. See Damodaran, Investment
Valuation, for a more detailed discussion of this issue.
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In the above table, the following calculations are shown:
e Reinvested Capital = Net Income — Free Cash Flow
e Reinvestment Rate = Reinvested Capital / Net Income
e ROE = Net Income / Beginning Capital
e Forecast Horizon Growth Rate = FCFE, / FCFE.,

e Horizon Growth Rate = Reinvestment Ratesg * ROE 009 = 3.9%

4.3.2 Discount Rate

The appropriate discount rate for this method is determined in essentially the same manner as in the
DDM. It is, however, important to ensure that the assumption regarding the riskiness of the cash
flows is consistent with the assumption regarding the distribution of the free cash flow to
shareholders.

Compared to the DDM, the FCFE model assumes that more cash is distributed to shareholders in each
period because all cash that could be paid as a dividend is assumed to be paid. The values used in the
calculation are not impacted by the firm’s actual dividend policy. This does not affect the overall
valuation because of the implicit assumption that any cash that was not distributed in the form of
dividends and was not needed to support growth in the insurance operations would be invested in
marketable securities and would earn an appropriate risk-adjusted return. Investments in marketable
securities should generally be a zero net present value activity and so value is neither created nor
destroyed from this activity.

The riskiness of the dividend cash flows can be thought of as representing an average of the riskiness
of the insurance operations and the investment operations. As a result, it is likely to be the case that
the appropriate discount rate in the FCFE model is different than the discount rate in the DDM model.
The two models assume different proportions of investment income and underwriting income because
the FCFE method pays out all free cash flow while the DDM model pays out only the assumed
dividends and reinvests the balance in marketable securities. The DDM model’s measure of risk is
therefore impacted by a larger proportion of the risk coming from marketable securities than from
underwriting risk.

Specifically quantifying this difference in risk is a challenge. When the CAPM is used as the basis for
the risk-adjusted discount rate, what matters is systematic risk and not total risk. For most practical
purposes the precision of the discount rate calculation is low enough that this distinction is often
ignored. Therefore, for simplicity the example below will assume the same discount rates can be used
in the DDM and FCFE models.

4.3.3 Example of FCFE Method Using ABC Insurance Company Data

The following example uses the data referenced above in Table 17 for the ABC Insurance Company
to demonstrate the FCFE method and to perform sensitivity analysis of the results.
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Example 4 — Valuation of ABC Insurance Company using FCFE Method

Using the estimated FCFE for ABC Insurance Company, the 3.9% growth rate assumption discussed in the text
and the same 8.95% discount rate assumption used earlier, the calculations using the FCFE method are as shown
below.

Table 19: Valuation Using Free Cash Flow to Equity Method ($000’s)

2005 2006 2007 2008 2009 Terminal Value
FCFE 12,069 12,586 13,072 13,602 14,139 290,899
PV Factor 0.918 0.842 0.773 0.710 0.651 0.651
PV 11,078 10,603 10,108 9,654 9,210 189,499
Value 240,152

The terminal value shown above was determined based on an assumption of constant growth beyond 2009 of
3.9%, the discount rate of 8.95% and the year 2009 FCFE of 14,139.

14,139 * (1.039)
0895 —.039

Terminal Value = =290,899

The total estimated value of the equity is the sum of the present values of the five FCFE amounts and the present
value of the terminal value. The total equity value is $240.2 million.

Sensitivity Analysis

Notice that the discounted terminal value is 290,899/(1.0895°) = 189,499. This means that 79% of the total
value of the firm is reflected in the terminal value, which assumes perpetual growth in FCFE of 3.9%. This
suggests the need to be very careful about the sensitivity of the results to this growth assumption.

Below is a table that shows the sensitivity of the terminal value and the total equity value to estimates of the
growth rates. The different rates shown represent the results of alternative assumptions regarding the ROE
beyond the forecast horizon. For example, if the ROE were to decline to the level of the investor’s required
return (8.95%) then the growth rate would decline to 2.3%. The resulting equity valuation would decrease from
$240.2 million to $192.3 million, a reduction of 20%.

Table 20: Sensitivity to Alternative Growth Rate Assumptions

Growth Rate Terminal Value PV of Terminal Value Total Equity Value
2.3% 217,507 141,689 192,342
3.1% 249,185 162,325 212,978
3.9% 290,899 189,499 240,152
4.8% 357,052 232,593 283,246

The sensitivity of the firm value to the estimated discount rate can also be tested. For instance, using alternative
assumptions about the equity risk premium would result in the following alternative estimates of the CAPM
discount rate and equity value:

Table 21: Sensitivity to Alternative Equity Risk Premium

ERP Discount Rate Equity Value
4.0% 7.69% 320,023
5.5% 8.95% 240,152
6.0% 9.37% 221,706
8.0% 11.06% 169,355
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Combining these ranges of discount rates and ranges of growth rates beyond the forecast horizon, the following
estimates of total equity value would be obtained:

Table 22: Sensitivity to Growth and Discount Assumptions

Growth Rate Beyond Forecast Horizon

Discount Rate 2.3% 3.1% 3.9% 4.8%
7.69% 237,683 266,794 320,023 419,443
8.95% 185,829 212,978 240,152 283,246
9.37% 180,823 201,211 221,706 252,652
11.06% 146,872 160,882 169,355 181,227

Notice that the valuation in this table ranges from a low of approximately $147 million to a high of $419
million. It may be unrealistic to assume that the highest growth rates and the lowest discount rates would apply
simultaneously, making the most extreme values potential less reliable. Nonetheless, this highlights the wide
range of results that can be obtained and the need to carefully consider all of the assumptions made.

4.3.4 Observations Regarding Example 4

Before proceeding further, some important observations with respect to the application of the FCFE
method are noted.

Terminal Value — The terminal value calculated in the previous example ($290,899) was
based on assumptions of the Year 2009 FCFE, the growth rate beyond that point and the
discount rate. This terminal value is 290,899/14,139 = 20.6 times the Year 2009 FCFE.
In other words, the impact of the growth rate and discount rate assumptions could have
been combined into a single multiple of the FCFE and expressed the terminal value as
"20.6 times" FCFE.

Average Discount Rates — Most firms’ overall earnings and cash flows represent the total
amounts across a variety of businesses, each with their own risk profile. The discount
rate therefore represents an average discount rate reflecting the average risk from all of
these separate businesses and activities. To the extent that the mix of business or degree
of financial leverage is changing, these changes should be reflected in different discount
rates for different time periods or cash flows.

Market Value of Net Cash Flows — The use of a single discount rate for the net free cash
flow to equity implicitly discounts each of its components at the same rate. Therefore,
cash flows from investment returns and cash flows from liability payments, as well as
other cash flows, are discounted at the same weighted average rate, even though the risk
characteristics of the component cash flows likely vary considerably. It is worth
considering whether this is appropriate.

Most textbook presentations of the FCFE approach focus on the valuation of industrial
firms in which investments in cash and marketable securities are usually minimal. In
these cases, the definition of FCFE does not include investment income on currently held
marketable securities. These non-operating assets are excluded from the valuation and
added back in at their current market values at the end. For insurance companies, this
distinction between operating and non-operating assets is considerably more difficult to
make. As a result, it is typical to include investment income cash flows in the definition
of FCFE.

Including investment returns in the definition of free cash flow and then calculating their
present value at an average rate for all cash flows is unlikely to reproduce a present value
equal to the market value of the investment at inception. When investments are restricted
to marketable securities, especially those most often found in P&C insurance investment
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portfolios, $1,000 invested in stocks is worth the same on the date of the investment as
$1,000 invested in corporate bonds or $1,000 invested in risk-free bonds. It is true that
their income and cash flow profiles differ and so their future value will differ. However,
their present values at the date the investment is made should be identical. This result
will only occur though if the discount rates used to determine the present values differ
and reflect the riskiness of the respective investments. The use of an average rate for all
cash flows will not produce the correct value for any particular investment.

When future investment cash flows are included in the aggregate cash flows, it can appear
to be the case that value is either created or destroyed based on different assumptions
about the asset portfolio composition. This misleading result occurs because the discount
rate used reflects the average risk for the entire firm’s net cash flows rather than the
appropriate risk-adjusted rate for the investment asset cash flows themselves.

Similarly, using an average discount rate to calculate the present value of liability cash
flows is unlikely to produce an accurate risk-adjusted value for this liability, as the
appropriate risk-adjusted discount rate for liability cash flows is a rate below the risk free
rate?®. This would reflect the positive risk premium that would have to be paid in order to
transfer this uncertain liability to a third party.

For this reason, some analysts argue that the assets and liabilities should be valued
separately to ensure market consistent valuation of each. But separately valuing each
component of the free cash flow may not be practical. This is because the cash flow
specific risk-adjusted discount rates may be extremely difficult to quantify. This is
particularly true for assets and liabilities that are not currently reflected on the firm’s
balance sheet.

As a result, this study note will follow the common practice of discounting net cash flows
at an average rate. Sensitivity testing can be used to ensure that assumptions regarding
investment policy have reasonable and appropriate impacts on the value of the firm.
Further discussion of this issue in the context of the valuation of life insurance companies
can be found in Girard.

% See Butsic, "Determining the Proper Interest Rate for Loss Reserve Discounting: An Economic Approach®”.

Revised: October 2010 26



5. Abnormal Earnings Valuation Method

The DCF approach to valuation just described is relatively simple to understand and focuses attention
directly on the net cash flow generating capacity of the firm. Furthermore, the process of thinking
through the cash flow generating activities of the firm, quantifying the firm’s capital needs and
contemplating the risk factors is an important and worthwhile part of any valuation exercise.

However, the DCF method suffers from some practical weaknesses. To estimate free cash flows, the
analyst must first forecast financial statements (income statements and balance sheets) according to a
specific set of accounting standards (U.S. GAAP, U.S. Statutory or International Accounting
Standards). Then, a variety of adjustments are made to the forecasts of net income to estimate the free
cash flow. The resulting values for free cash flow (to equity) may then bear little resemblance to the
forecasts that management is familiar with, such as the values used within the firm’s internal planning
process, the financial results of peer companies or the forecasts of external analysts. This might make
it difficult to assess the reasonableness of the forecasted free cash flows or estimate their future
growth rates.

An alternative method that relies more directly on accounting measures of net income rather than cash
flows is referred to here as the Abnormal Earnings (AE) approach. Using this method, the accounting
net income is not adjusted to reflect cash flows. Instead, reported book value and forecasted net
income under the applicable accounting framework are used directly.

Before presenting this approach, it is useful to note that finance textbooks have long advocated a
preference for cash flow models as opposed to accounting-based earnings models in order to
accurately reflect the timing of the cash flows and to avoid problems associated with arbitrary
methodology choices that may not represent real effects on firm value. More recently, several
academics and practitioners have demonstrated that a discounted accounting-based earnings approach
often produces more accurate valuation estimates and may offer additional benefits by framing the
problem differently than the traditional cash flow models®’.

5.1 Background on Abnormal Earnings Method

Recall from the pricing of bonds that the value of a default free bond merely represents the present
value of its coupon and principal payments, discounted at the appropriate (maturity matched) zero-
coupon yields. In the event that the coupon rate and the yields are equal, the bond’s market value will
equal its face value (principal amount). This is because the periodic interest paid on the bond, based
on its coupon rate, is exactly equal to the periodic interest that investors demand. Similarly, if the
coupon rate exceeds the yields, the bond will be have a higher value than the face value; if the coupon
rate is below the yields then its market value will be below the face value.

This same concept can be extended to the valuation of a firm based on its accounting values. The
book value of the firm reflects the value of the firm’s equity capital, at least according to a specific
accounting standard (e.g. U.S. GAAP). If the firm can earn a return on this capital exactly equal to a
"normal” return demanded by its shareholders, then the market value of the firm’s equity should
exactly equal its book value?®. This is similar to the notion that the market value and face value of a
bond are equal if the coupon rate and yield are equal.

This suggests that positive (negative) deviations from book value must be due to the firm’s ability to
earn more (less) than this "normal” rate demanded by shareholders. By focusing attention solely on
these "abnormal” earnings, the present value of all future abnormal earnings can be calculated and
added to the book value to determine the total value of the firm’s equity.

27 See Sougiannis and Penham.

2 For simplicity, | will assume that the assets and liabilities are both fairly stated on the balance sheet according to the
appropriate accounting methods and that there is no systematic bias in the reported book value.
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In mathematical terms, the abnormal earnings (AE) in any given period, t, are equal to:
AE; = Net Income; — [Required Equity Return, * Book Value of Equity; ]
=NIk=k* BV,
= (ROE; - k) BV,

where, NI, is the net income for period t, BV is the beginning book value for period t, ROE; is the
return on equity in period t and k is the required return.

Of course, the actual abnormal earnings for future periods at the time of the valuation are not known.
The expected values of these abnormal earnings, denoted E[AE,], are used.

Then the value of the equity of the firm is simply:

Value of Equity =Beginning Book Value of Equity + PV(Expected Abnormal Earnings)

- BY, +i E[AEtt]
t=1 (1+Kk)

Just as with the DDM and DCF approaches, the abnormal earnings approach is typically implemented
by forecasting abnormal earnings for several periods (the forecast horizon). Then, a terminal value
must be calculated that reflects abnormal earnings beyond this forecast horizon.

In the DDM and DCF valuation approaches, the terminal value calculation usually assumes that the
dividends or free cash flows will continue in perpetuity and often the amounts are assumed to grow at
a constant rate. In the case of the AE method, these terminal valuation assumptions are often
different. Abnormal earnings are less likely to continue in perpetuity and are more likely to decline to
zero as new competition is attracted to businesses with positive abnormal earnings.

The difficulty of achieving sustained growth in abnormal earnings is one reason why practitioners
often favor the AE approach. This method forces the analyst to explicitly consider the limits of
growth from a value perspective. Growth in earnings may be easy to achieve by simply increasing the
book value of the firm, but this growth adds value only if the earnings exceed the shareholders’
expected returns. Normal earnings growth does not add value; only abnormal earnings add value.

5.2 Accounting Distortions

It may be surprising that the arbitrary nature of certain accounting rules does not necessarily limit the
usefulness of unadjusted earnings for valuation purposes. How, for instance, can one ignore the
reality that P&C insurance reserves must be carried at their nominal value rather than their discounted
value?

To reconcile this apparent weakness, note that the abnormal earnings approach includes both the
current book value and the discounted value of future abnormal earnings in the value of the equity.
As a result, accounting rules that distort estimates of earnings will also distort the estimates of book
value® and will eventually reverse themselves. This is an important point and is worth
demonstrating. An example used by Palepu, Bernard and Healy, in their textbook, Business Analysis
and Valuation, will be used here.

Assume a manufacturing firm could have capitalized $100 of expenditures and included them in the
value of its inventory, but instead decided to treat these costs as a current period expense. Both their
income and end-of-period book value will be reduced by $100 in the current period. For instance,
assume that their book value would have been $1,000 had they capitalized these costs but is only $900

2 Technically, for this to be true the forecasts must satisfy what is referred to as the “clean surplus condition”. The clean
surplus condition assumes that changes in book value solely reflect earnings, dividends and capital contributions. It
precludes accounting entries that impact book value without flowing through earnings, such as in the case of foreign
currency translations under U.S. GAAP accounting. U.S. and international accounting standards do not always adhere to the
clean surplus condition, so adjustments may be required. See Ohlson, Earnings, Book Values and Dividends in Equity
Valuation for more details.
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as the result of expensing these costs. Further assume that they will sell the inventory for $200 in two
years and that the required rate of return is 13%.

As shown in the table below, the two approaches will begin with different book values. In the first
period, there are no earnings. In the second period, the goods are sold for $200, causing one method
to report income of $100 and one method to report income of $200. But the use of different starting
book values causes the resulting equity values, found by adding the present value of the Period 1 and
Period 2 abnormal earnings to the book value, to be identical.

Table 23: Demonstration of Self-Correcting Accounting

Method 1 Method 2
Capitalize Cost Expense Cost
Beginning Book Value 1,000.00 900.00
Period 1
Sales 0.00 0.00
less Inventory Cost 0.00 0.00
Earnings 0.00 0.00
less Required Return * Book Value 130.00 117.00
Abnormal Earnings -130.00 -117.00
PV(Abnormal Earnings) = AE/1.13 -115.04 -103.54
Period 2
Sales 200.00 200.00
less Inventory Cost 100.00 0.00
Earnings 100.00 200.00
less Required Return * Book Value 130.00 117.00
Abnormal Earnings -30.00 83.00
PV(Abnormal Earnings) = AE/1.13° -23.49 65.00
Value 861.46 861.46

It is important to not take too much comfort from the self-correcting nature of the accounting entries.
The example above seems to suggest that the choice of accounting methods is irrelevant. However,
there are many reasons to prefer an accounting system that reflects the economic reality as accurately
as possible. The accounting values will influence the perception of the business’ performance by
those performing the valuation and could affect the choice of assumptions. So while the DCF and AE
approaches will produce the same value, they may produce an incorrect value if the accounting
system severely distorts the perception of value creation.

More importantly, as will be shown in the detailed discussion below, the DCF and AE approaches
result in a significantly different split between the value within the forecast horizon and the value
attributed to the terminal value. A more accurate accounting system will result in more of the value
being accurately reflected in the book value (or within the forecast horizon) and less of it attributed to
the terminal value. Given the healthy skepticism needed to assess terminal value estimates, this could
be an important consideration in some valuations.

5.3 Application to P&C Insurance Companies
5.3.1 Example

To see how the abnormal earnings approach could be used to value a P&C insurance company, the
example used earlier will be continued. The following components of the AE method are highlighted
for clarity:
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e Book Value — The beginning book value is perhaps the easiest component to estimate,
since it will in most cases be the reported book value of the equity of the firm.
Nonetheless, two adjustments may need to be made. First, any systematic bias in the
reported asset and liability values should be eliminated. For P&C insurers, this may
involve restating the reported loss reserves. Second, it is common to make an adjustment
to reflect the tangible book value rather than the reported book value. The tangible book
value of the firm is simply the reported book value adjusted to remove the impact of
intangible assets such as goodwill. In subsequent periods, the (tangible) book value is
adjusted to reflect the net income less dividends and share repurchases plus any capital
contributions™®.

e Net Income During Forecast Horizon — The net income estimates for the forecast horizon
are determined using the same forecasting models used earlier. Here, no adjustments are
made to reflect free cash flows. In this process it is acceptable, though not necessary, to
adjust the accounting basis to remove any biases that may exist in the accounting system
and develop net income estimates that more closely reflect economic reality.

For example, under U.S. GAAP accounting P&C loss reserves generally are not
discounted®. Some analysts would therefore argue that the book value should be
adjusted to reflect the discounted loss reserves as this might more closely reflect the
economic value of these liabilities. If this is done, then there should be a corresponding
adjustment to the assumed ROE, since the same earnings will be generated from a larger
capital base.

If reserves are discounted, it is also important to consider what rate is appropriate to
discount the loss reserves. Some would use a risk-free rate. However, this would not
truly reflect the economic value of the liabilities unless the liabilities were adjusted to also
include a risk margin®.

e Required Rate of Return® — As in the DDM and DCF approaches, the required return
used in an AE valuation should reflect the equity investors’ appropriate discount rate.
The CAPM can be used for this purpose.

e Abnormal Earnings — Abnormal earnings equal the amount by which net income exceeds
the required income. Required income is the product of the required rate of return and the
beginning of period book value.

e Growth Rate Beyond Forecast Horizon — In this model growth in abnormal earnings
reflects both the growth rate in the book value of the firm as well as the amount by which
the ROE exceeds the required return. Even in cases where the book value is growing
significantly, as in the case where dividends are not paid and the invested asset portfolio
grows, abnormal earnings could be declining and could even be zero. For this reason,
terminal value growth rates under this method will quite often be very low (or negative).

Recalling the clean surplus condition discussed in Footnote 29, it is also important to
ensure that the growth in book value that is assumed does not require additional capital
contributions. Otherwise, the valuation will not accurately reflect the value to the current
equity holders.

% This follows the "clean surplus condition” discussed in Footnote 29.
31 One notable exception is certain tabular workers' compensation reserves.
32 See Butsic or the CAS Fair Value White Paper.

% The terms "cost of capital” or "hurdle rate” are quite commonly used to refer to this required return in this context.
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Example 5 — Abnormal Earnings Valuation for ABC Insurance Company

Using the same financial model results for ABC Insurance Company as in the previous example, key financial
statement variables are summarized below and used to estimate the Abnormal Earnings in each period of the
forecast.

Table 24: Calculation of Abnormal Earnings

2005 2006 2007 2008 2009
GAAP Equity - Beginning of Year 103,500 108,624 113,274 117,648 122,422
Required Return 8.95% 8.95% 8.95% 8.95% 8.95%
Normal Earnings 9,263 9,722 10,138 10,529 10,957
Net Income 17,193 17,236 17,446 18,376 18,967
Abnormal Earnings 7,930 7,514 7,308 7,847 8,010

To estimate the equity value, it is important to estimate the growth rate of the abnormal earnings. One fairly
optimistic approach would be to estimate the rate of growth in the book value of the firm and assume that the
difference between the ROE and the required return is constant in perpetuity.

Table 25: Calculation of Abnormal Earnings Growth Rates

2005 2006 2007 2008 2009
GAAP Equity - Beginning of Year 103,500 108,624 113,274 117,648 122,422
GAAP Equity - End of Year 108,624 113,274 117,648 122,422 127,250
Growth in Book Value 5,124 4,650 4,374 4,774 4,828
Book Value Growth Rate 5.0% 4.3% 3.9% 4.1% 3.9%

These book value growth rates and constant abnormal earnings as a percentage of book value would result in an
abnormal earnings growth rate of roughly 4.0%. Using that assumption in perpetuity would be very optimistic.
It is more likely that the difference between ROE and the required return will decline to zero over a finite time
horizon. For simplicity here, abnormal earnings will be assumed to be constant (growth rate equal to zero) and
the valuation will be done using different assumptions with regard to the time horizon over which the abnormal
earnings will persist.

The simplest case to show first is the case where abnormal earnings continue in perpetuity.

Table 26: Valuation Using Abnormal Earnings Method — Constant AE in Perpetuity

2005 2006 2007 2008 2009 Terminal Value
Abnormal Earnings 7,930 7,514 7,308 7,847 8,010 89,494
PV Factor 0.918 0.842 0.773 0.710 0.651 0.651
PV 7,279 6,330 5,651 5,569 5,218 58,299
Sum of PV(AE) 88,345
Beginning Book Value 103,500
Total Equity Value 191,845

To calculate the Terminal Value in the table above, the 2009 abnormal earnings of $8,010 are assumed to be
constant and continue in perpetuity. When discounted to the valuation date, the terminal value represents 30%
of the total equity value.
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Sensitivity Analysis

In any valuation exercise, it is important to test the sensitivity of the results to many of the key assumptions.
For example, the terminal value assumed abnormal earnings in perpetuity. As noted, abnormal earnings should
often be assumed to decline to zero over some finite horizon. In the long run, abnormal earnings require that the
firm earn an ROE in excess of the shareholders’ required return. These will be sustainable only if there is a
competitive advantage that will not ultimately be competed away.

In the numerical example above, the abnormal earnings were assumed to continue in perpetuity. A more
realistic assumption is that the firm is able to earn abnormal returns (i.e. achieve an ROE in excess of the
shareholders’ required return) for only n-years after the forecast horizon. The following table shows what
would happen if the abnormal earnings declined linearly over a 5-, 10- or 15-year period®. In this case, the
terminal value estimates and the resulting total equity values would be as shown below:

Table 27: Sensitivity of Equity Value to Abnormal Earnings Horizon

Version A -5 Years Version B — 10 Years Version C — 15 Years

Year AE  PVoOfAE AE  PVofAE AE  PVof AE

2010 6,675 6,126 7,282 6,683 7,509 6,892

2011 5,340 4,499 6,553 5,521 7,009 5,904

2012 4,005 3,097 5,825 4,504 6,508 5,032

2013 2,670 1,895 5,097 3,618 6,007 4,264

2014 1,335 870 4,369 2,846 5,507 3,587

2015 0 0 3,641 2,177 5,006 2,993

2016 0 0 2,913 1,598 4,505 2,473

2017 0 0 2,184 1,100 4,005 2,017

2018 0 0 1,456 673 3,504 1,620

2019 0 0 728 309 3,004 1,275

2020 0 0 0 0 2,503 975

2021 0 0 0 0 2,002 716

2022 0 0 0 0 1,502 493

2023 0 0 0 0 1,001 302

2024 0 0 0 0 501 138
Terminal Value 16,486 29,030 38,681

PV of Terminal Value 10,740 18,911 25,198
PV of AE 2005-2009 30,047 30,047 30,047
Beginning Book Value 103,500 103,500 103,500
Total Equity Value 144,287 152,458 158,745

The assumption of constant abnormal earnings in perpetuity resulted in $58,299 of terminal value. This value
declines substantially (to $10,740; $18,911; or $25,198), if the abnormal earnings eventually decline to zero
over a 5-, 10- or 15-year horizon. This emphasis on the ability of the firm to generate abnormal earnings, which
is the real source of value creation, is one of the key advantages of this method as compared to the DDM and
DCF methods.

3 For this analysis, the assumption is that there are n more years of potential abnormal earnings and that the amount
decreases by 1/(n+1) times the 2009 estimated abnormal earnings each year. This ensures n additional years of positive
abnormal earnings.
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5.3.2 Observations Regarding Example 5

As demonstrated in the previous example, the AE approach takes a different perspective than the
DDM and DCF methods. Neither dividends nor free cash flows are really sources of value creation.
Instead, these measures are more accurately the consequences of value creation. By emphasizing the
firm’s ability to earn abnormal profits, the abnormal earnings approach makes use of assumptions that
are more directly tied to value creation.

An additional benefit of the approach is that it de-emphasizes the importance of the terminal value
estimates and the assumptions that drive those. In the examples demonstrating the DDM and DCF
methods, the terminal values represented 83% and 79% of the total equity value. In the AE estimate,
the terminal value represented only 30% of the total equity value even when the abnormal earnings
were expected to continue in perpetuity.

These points are emphasized here to remind the reader that the AE method is not simply an algebraic
recharacterization of the free cash flow method. Blackburn, et. al. demonstrate that under consistent
assumptions these approaches are, in fact, mathematically equivalent. However, the two methods
may not necessarily produce the same answers in practice. The use of one method or the other may
cause the analyst to focus on different aspects of the business and could result in different
assumptions being made.
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6. Relative Valuation Using Multiples

The DDM, DCF and AE methods discussed so far share as a critical starting point the availability of
long-term forecasts of key financial statement variables. Given the popularity of dynamic financial
models in recent years and the simplistic nature of the presentation here, this may not have seemed
like a daunting exercise. This is misleading. In reality, reliable forecasts of publicly traded insurers
are extremely difficult for outsiders to build.

First, an outsider or minority investor may not have access to data in sufficient detail to properly
parameterize the model. Second, without the kind of market knowledge and specific planning data
used by company executives, growth and rate adequacy estimates may be difficult to obtain. And
third, even a relatively short horizon such as 5 years may stretch the limits of one’s forecasting ability.

In this section, a methodology for valuation that appears to avoid the need to deal with these forecasts
is presented. In reality, this approach requires the same assumptions needed to prepare the detailed
forecasts in the DDM, DCF and AE models are used, though not as explicitly. As a result, this
approach tends to appear to be easier to implement.

6.1 Price-Earnings Ratio
6.1.1 P-E Ratio Based on Fundamentals

In various earlier discussions of the terminal value it was noted that one could collapse all of the
assumptions underlying a DDM, DCF or Abnormal Earnings into a single multiple.

For instance, in the DDM model a constant dividend payout rate and constant growth rate in
perpetuity result in the following formula for the price (per share) of the equity:

_ E(Earnings Per Share, ) * Dividend Payout Rate

P
0 k—g

Dividing both sides by the expected earnings per share (EPS) and dropping, for convenience, the
expected value operator, this can be written as:

P, _ Dividend Payout Rate
EPS, k—g

This indicates that the "Price-Earnings Ratio" (P-E ratio) is tied directly to the DDM and can be used
to summarize, in a single number, the combined effect of the constant dividend payout rate, the
constant growth rate and the appropriate discount rate. The price is then simply this P-E ratio times
the expected earnings per share next period.

To see what "typical" P-E ratios might be, assume that the ROE is fixed at 15% but that the dividend
payout ratios and discount rates are allowed to vary. The ROE, dividend payout rates and growth rate
are linked through the formula,

g = (1 - Dividend Payout Rate) * ROE

As a result, the following range of P-E ratios could be obtained using different discount rates and
dividend payout rates:

Table 28: lllustrative P-E Ratios (ROE = 15%)

Dividend Payout Ratio

Discount Rate 40% 50% 60%
10.0% 40.0 20.0 15.0
12.5% 11.4 10.0 9.2
15.0% 6.7 6.7 6.7

Notice that when the discount rate and the ROE are both 15%, the P-E ratio is constant across
different dividend payout rates. This demonstrates a point made previously that the dividend payout
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ratio, and hence the growth rate, does not affect the value of the firm if the firm’s ROE is equal to the
discount rate.

6.1.2 Representative P&C Industry P-E Ratios

In the basic formula for the P-E ratio shown above, the estimated future period’s earnings were used
as the basis for determining the ratio of price to "earnings". The P-E ratio could also be presented in
terms of the prior period’s earnings; often both approaches are used in practice. To avoid confusion,
the former approach using expected future earnings is referred to as the forward or leading P-E ratio;
the latter approach using prior period’s earnings is referred to as the trailing P-E ratio.

The following table indicates the trailing and forward P-E ratios of several P&C insurers as of June 6,
2005:

Table 29: P&C Insurance Trailing and Forward P-E Ratios®

Company Market Capitalization ($ B) Trailing P-E Ratio Forward P-E
American International Group 142.17 14.85 9.89
Hartford Financial Services 22.13 10.07 9.12
Chubb Corporation 16.47 9.92 10.07
ACE Limited 12.55 11.57 7.14
XL Capital Ltd. 10.44 9.24 7.33
Sample Average 203.76 13.44 9.52
P&C Insurance Industry®® 517.18 13.07 NA

In this table, the trailing P-E ratios are based upon current market prices and 2004 GAAP earnings. It
is important to recognize that these trailing P-E ratios for any individual company can be distorted by
unusually positive or negative earnings surprises in the past year. For this reason, analysts will often
favor the use of core earnings that smooth the effects of unusual, non-recurring events or the use of
forward P-E ratios that reflect analyst estimates of prospective earnings. The forward P-E ratios
shown reflect consensus analyst estimates of prospective earnings.

6.1.3 Alternative Uses for P-E Ratios
The P-E ratio can be used for several purposes:

o Validation of Assumptions — The number of assumptions required to forecast financial
results and estimate terminal values can be daunting. In many cases, it may be difficult to
verify each assumption against objective benchmarks. However, once the valuation is
performed it may be possible to recharacterize the value as a ratio to forward or trailing
earnings and compare the resulting P-E ratio to the P-E ratios implied by the market
values of peer companies.

This is instructive because if two firms are expected to have comparable growth rates,
dividend payout rates, discount rates, etc. then they should have comparable P-E ratios. If
differences in P-E ratios cannot be explained as a result of differences in one or more of
these key variables, this might indicate that one or more of the assumptions are
inappropriate.

% Source: Yahoo! Finance, June 6, 2005.

% The industry average trailing P-E is weighted by market value. The universe includes all firms included in the Yahoo!
Finance P&C Insurance Industry sector but excludes Berkshire Hathaway (an outlier with significant non-insurance
operations) as well as Renaissance Re (due to an apparent data error) and any firm with negative earnings in the most recent
period. Industry-wide forward P-E ratios were not available and are not shown.
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e Shortcut to Valuation — Aside from the validation of an otherwise full-fledged forecast
and valuation, the P-E ratio of peer companies might serve as a useful shortcut to
valuation in cases where industry average performance is expected. In this case, a group
of peer companies would be selected and their mean or median P-E ratios could be used.
Of course, given the skewed nature of such ratios, the median industry P-E may be
preferred.

e Terminal Value — Even in instances where a full valuation based on separate forecasts is
performed, it may be useful to rely on peer P-E ratios to help guide the terminal value
calculation.

In this case, the one additional point to note is that a reasonable terminal value should be
based on assumptions appropriate as of the end of the forecast horizon. If, for instance,
the industry is expected to experience excessive short-term growth and then slow down to
a low-growth steady state, the current valuations of peer companies will reflect this short-
term high growth rate to some extent. The current P-E ratios may therefore overstate the
appropriate P-E ratio at the forecast horizon.

6.2 Price to Book Value Ratio

The P-E ratio described above is just one of numerous "multiples" that can be used in this way. As
another example, consider the Price-Book Value multiple (or equivalently the Price to Tangible Book
Value). The P-BV ratio is commonly preferred over the P-E ratio when valuing banks, insurance
companies and other financial services firms with substantial holdings in marketable securities.

6.2.1 P-BV Ratio Based on Fundamentals
As before, the P-BV ratio is tied directly to the other methods discussed.

For instance, consider the abnormal earnings approach, which can be written as:

Price=BV, +3 AE
1+k)!
BV . [BV, *ROE, - BV, *k]+ [BV, *ROE, - Bvl*k]+ [BV, *ROE, - BV, *k]+m
° (1+k) (1+k)? 1+k)®

If the book value is assumed to grow at a constant rate, g, and the ROE is assumed to be constant,
then this can be written as:

BV, [ROE — k] LBV 9)[ROE —k] LBV 9)?[ROE — k] Y
(1+k) (1+k)> (1+k)°

BV, [ROE — k]
(k-9)

Finally, dividing both sides by the beginning book value, the P-BV ratio is given as:

Price =BV, +
=BV, +
Price ROE -k

+

=1
BV k-g

Note that this derivation assumed that the growth rate in book value and the excess return per period
(ROE - k) would persist in perpetuity. This will rarely be the case. The excess returns would
eventually invite competition that will put pressure on the ROE, the growth rate or both. Alternate
formulas that reflect a period after which the excess returns decline to zero can be easily derived®.
Nonetheless, the previous formula demonstrates the important link between the P-BV multiple and
fundamental firm characteristics such as the ROE, the growth rate and the discount rate.

% For example, if after 5 years the ROE is assumed to decline to the level of the cost of capital, the P-BV ratio would be:

. 5
Price 14 ROE -k 1o 1+g .
BV k-g 1+k
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If a constant ROE of 15% is assumed, the growth rate and the discount rate can be varied to derive the
following range of P-BV ratios:

Table 30: lllustrative P-BV Ratios (ROE = 15%)

Growth Rates

Discount Rate 0% 2% 4%
10.0% 1.50 1.63 1.83
12.5% 1.20 1.24 1.29
15.0% 1.00 1.00 1.00

6.2.3 Representative P&C Industry P-BV Ratios

The P-BV ratios for several P&C insurers are shown below:

Table 31: P&C Insurance Trailing P-BV Ratios*®

Company Market Capitalization ($ B) Trailing P-BV
American International Group 142.17 1.77
Hartford Financial Services 22.13 1.54
Chubb Corporation 16.47 1.57
ACE Limited 12.55 1.25
XL Capital Ltd. 10.44 1.34
Sample Average 203.76 1.67
P&C Insurance Industry 517.18 1.54

6.2.3 Alternative Uses for P-BV Ratios

Just as in the case of the P-E ratios, the P-BV ratio can be used to validate other forecasts, serve as a
shortcut or be used as a terminal value estimate in other approaches. Because it is linked directly to
these other methods, industry peer P-BV multiples can serve as a useful benchmark.

6.3 Firm vs. Equity Multiples

Recall the two alternative methods of applying the DCF approach. The FCFF method values the
entire firm and subtracts the value of debt to obtain the equity value; the FCFE method values the
equity directly. The two examples shown above, the P-E and the P-BV, both focus on per share
equity measures in the denominator. These multiples could just as readily have used a firmwide
measure, such as firmwide revenue or total asset value as the basis for a multiple. However, for the
same reasons that valuing the equity directly using free cash flows to equity (FCFE) is preferred when
valuing P&C insurers, it is preferable to avoid firmwide valuation multiples and limit the use of
multiples to equity measures.

6.4 Market vs. Transaction Multiples

The P-E and P-BV ratios shown above were based on the market price of the companies’ shares on a
particular day, their most recent financial statement values and current analyst estimates for next
year’s earnings and book value. Of course the market value and forecasted financial statement values
fluctuate, sometimes significantly, from day to day and so it may often be useful to observe these
ratios over a number of time periods.

38 Source: Yahoo! Finance, June 6, 2005.
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Some practitioners prefer to avoid these fluctuations of market multiples and focus instead on
transaction multiples based on actual merger or acquisition prices or initial public offerings (IPOs).
For example, below is a table of recent transaction multiples for several P&C insurance companies:

Table 32: Transaction Multiples®

Company P-E P-BV Transaction Year
Aspen Insurance Holdings Ltd. 13.10 1.10 IPO 2003
AXIS Capital Holdings Ltd. 28.60 1.40 IPO 2003
Endurance Specialty Holdings Ltd. 13.20 1.00 IPO 2003
Infinity Property and Casualty Corp. 13.90 0.90 IPO 2003
Mercer Insurance Group, Inc. 20.00 0.70 IPO 2003
United National Group, Ltd. 18.50 1.30 IPO 2003
Safety Insurance Group, Inc. 24.50 1.30 IPO 2002
Montpelier Re Holdings, Ltd. 20.20 1.00 IPO 2002
Travelers Property Casualty 17.50 1.00 IPO 2002

One advantage of transaction multiples is that typically the price in these transactions is based on a
complex negotiation with sophisticated parties on both sides. As a result, some practitioners consider
these prices to be more meaningful than multiples based solely on current market prices. However,
there are several reasons to be cautious:

Control Premiums — M&A transaction prices typically contain what might be considered
"control premiums"” that reflect the buyer’s willingness to pay more for a company in
order to gain control of its operations and make different strategic and managerial
decisions than the current management. In these cases, the multiples based on current
operations and/or current analyst forecasts might be misleading.

Overpricing in M&A Transactions — Academic studies of M&A transactions* show that
when mergers and acquisitions increase total shareholder value, most of these gains
accrue to the target firm’s shareholders and not the acquiring firm. This suggests that
acquiring firms have a tendency to overpay. There are multiple causes for this, including
managerial hubris, the difficulties of integrating management structures and the failure of
planned synergies to fully materialize. But regardless of the reason, it would be prudent
to consider this when using M&A transaction multiples.

Underpricing in IPO Transactions — When firms undertake an initial public offering (IPO)
there is a great deal of disclosure and thorough analyses conducted by the firm’s bankers
as well as investors. This analysis conducted during the IPO process ought to suggest a
greater degree of reliability for IPO prices than general market prices. However, the
underpricing of IPOs, reflected in the downward bias in initial offering prices, has been
widely recognized and documented in numerous academic studies*’. In recent years,
particularly during the technology bubble of the late 1990s, a misalignment of the
investment bankers’ and managers’ interest with those of the shareholders greatly
exacerbated this problem®. IPO pricing multiples should therefore be interpreted
carefully.

Reported Financial Variables — Even in cases where the prices in M&A and IPO
transactions are more reliable, it may not be the case that the reported multiples are as
accurate. This is because the reported multiples will be based on either the prior period’s

% Source: Conning & Company

40 See Damodaran, Investment Fables

1 See Ritter, "Initial Public Offerings"

“2 See Partnoy, Infectious Greed
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financial statements or some published analysts’ estimates of next period’s financial
statements. The prices themselves may have been based on different forecasts. As a
result, the multiples may not accurately reflect the buyer’s underlying assumptions about
growth rates, ROE assumptions and discount rates.

e Underlying Economic Assumptions — By definition, transaction multiples will typically
come from past transactions that may have been carried out in a different economic
environment. Key valuation variables that are imbedded in these multiples, such as
interest rates, industry growth rates and industry profitability outlooks, may no longer be
appropriate.

To understand the potential variation in valuation multiples over time, consider the
following table of P&C insurance multiples over a 10-year period:

Table 33: P&C Insurance Industry Mean Market Multiples®

Year Price to Earnings Price to Book Value
1985 21.0 1.5
1986 10.0 1.6
1987 19.0 1.2
1988 12.0 1.5
1989 10.0 1.3
1990 11.0 1.5
1991 15.0 1.3
1992 15.0 1.1
1993 18.0 1.4
1994 9.0 1.3
Average 14.0 1.4

Even during this short time period, P&C valuation multiples exhibit variation that would
be significant in practice, with high and low multiples as much as 50% above and 36%
below the mean multiples.

3 Source: Conning & Company
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Example 6 — Relative Valuation

Consider a P&C insurer with projected 2005 Earnings of $1.5 billion and a beginning book value of $10 billion.
Using the average forward P-E ratio for the five firms shown in Table 29 and the average trailing P-BV ratio for
the five firms shown in Table 31, the following three estimates of the value of this firm can be produced:

Table 34: Valuation Based on Earnings and Book Value Multiples

Method 1: Forward P-E Ratio

Forward Earnings $1.50B
P-E 9.52
Equity Value $14.28 B

Method 2: Trailing P-BV Ratio

Trailing Book Value $10.00 B
Trailing P-BV 1.67
Equity Value $16.70 B
Average $15.49B

It is important to recognize that this example utilized the average forward P-E and trailing P-BV ratios for five
selected companies that did not necessarily have identical operations. In an actual application, it would be
important to assess the appropriateness of each of the peer companies used in this average. Companies with
different underlying fundamentals (growth rates, risk profiles, leverage ratios, etc.) would not be expected to
have identical P-E or P-BV ratios and therefore the peer group has to be carefully constructed.

6.5 Application of Relative Valuation for Multi-Line Firms

Among the key issues to assess in the selection of peer companies is the comparability of the
underlying businesses. This becomes particularly difficult in a realistic application because most
insurers operate in a variety of markets, each with their own growth rates and risk profiles. The
universe of closely comparable firms is actually quite small.

This issue is best illustrated by deviating for a moment from the focus on P&C insurers only and
considering how relative valuation might be applied to a multi-line insurer with P&C, Life, and
Financial Services businesses. In each case, relative valuation can be used with the segment-specific
financial measures and multiples based on firms that operate in only the specific segment of interest.
Alternatively, peer companies with comparably diverse operations can be used along with the
firmwide financial measures. In either case, the peer groups are likely to be quite limited and
considerable effort will be required to assess the results.

6.5.1 Use of Pure Play Peers

Consider the case of a hypothetical diversified insurer, referred to here as Study Note Insurer (SNI).
SNI is assumed to represent a diversified financial services firm with operations that include P&C
insurance, life insurance and other financial services businesses such as trading, premium financing,
etc.

The valuation of SNI would proceed in the following fashion:
e Collect Financial Data by Segment

Separate the firm into its distinct business segments, each with its own growth rate,
profitability and risk level. The three business segments used include:
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= P&C Insurance
= Life Insurance
= Financial Services

Use either published financial reports (for trailing values) or independent forecasts (for
forward looking values) to obtain key financial variables for each of SNI’s segments. In
practice, this could prove to be more of a challenge than it appears, depending on the
degree of segment detail provided in the firm’s financial statements.

In the table below, segment-specific trailing earnings for the most recent fiscal year and
an allocation of the total book value of the firm to each business segment are shown. The
book values might reflect adjustments for reserve adequacy, the removal of goodwill or
similar adjustments to ensure comparability with other firms.

Table 35: SNI P&C Segment Financial Data ($ Millions) — Actual Amounts from Latest Fiscal Year

Current Year P&C Life Fin Services
Earnings 561 839 478
Book Value 3,058 6,160 2,137

Also of interest might be a smoothed estimate of earnings that reflects a forward-looking
best-estimate of next period’s earnings. These smoothed earnings will remove any
unusual results from the most recent period and reflect amounts that might reflect a more
useful base from which to project future earnings. In practice, it is common to use current
actual book value and an average ROE to derive the smoothed earnings. For simplicity,
the analysis is limited to the use of trailing earnings in this example.

e Peer Company Selections (Pure Play Companies)

The next step is to identify peer companies in each of the business segments. ldeally, one
would want to identify publicly traded firms whose operations consist solely of either
P&C insurance, life insurance or financial services businesses. The reliance on single-
business entities, known as “pure play” firms, is intended to ensure that the underlying
financial characteristics of each business are reflected.

To ensure that the selected companies are appropriate peers for each of SNI’s segments, it
would be necessary to compare the firms’ respective businesses (products offered,
markets served, etc.). The ROE, financial leverage and growth rates of the firms would
be reviewed to ensure that the firms were comparable on all of these bases.

To highlight the limitations one might encounter, only two peers are identified for the
P&C segment and one of them is assumed to have negative trailing earnings that make its
trailing P-E ratio meaningless. Four life insurance and two financial services two peers
are also identified.

e Choice of Multiples

To avoid relying on a single multiple, several valuation multiples would be used, such as
Price/Earnings (trailing) and Price/Book Value (trailing).

The following table shows the peer multiples for the P&C segment:

Table 36: P&C Insurance Segment Peer Multiples

Multiple P&C Peer1 P&C Peer2 Simple Average
P-E 17.07 N/A 17.07
P-BV 1.75 2.27 2.01
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The Life Insurance segment multiples are as follows:

Table 37: Life Insurance Segment Peer Multiples

Multiple Life Peer 1 Life Peer 2 Life Peer 3 Life Peer4  Simple Average
P-E 20.10 19.06 13.77 25.78 19.68
P-BV 2.41 2.33 3.00 4.25 3.00

And the Financial Services segment multiples are as follows:

Table 38: Financial Services Segment Peer Multiples

Multiple Asset Mgt Peer 1 Asset Mgt Peer 2 Simple Average
P-E 29.75 19.89 24.82
P-BV 6.10 2.78 4.44

o Application of Multiples for Segment Valuation

The P&C segment financial data is then combined with the P&C peer multiples to obtain
the following estimates of the value of the P&C segment.

Table 39: P&C Segment Valuation ($ Millions)

Valuation Basis SNI Amount Peer Multiple Segment Value
Earnings 561 17.07 9,576
Book Value 3,058 2.01 6,147
Average 7,862

Similar analyses are done for the other two segments, as shown in the following two
tables.

Table 40: Life Segment Valuation ($ Millions)

Valuation Basis SNI Amount Peer Multiple Segment Value
Earnings 839 19.68 16,512
Book Value 6,160 3.00 18,480
Average 17,496

Table 41: Financial Services Segment Valuation ($ Millions)

Valuation Basis SNI Amount Peer Multiple Segment Value
Earnings 478 24.82 11,864
Book Value 2,137 4.44 9,488
Average 10,676
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e Total Firm Value

The total value of SNI’s equity would reflect the sum of the segment values, as shown in
the table below:

Table 42: SNI Valuation Summary ($ Millions)

Segment Value
P&C Insurance 7,862
Life Insurance 17,496
Financial Services 10,676
Total 36,034

e Validation Against Other Diversified Insurers

Since the universe of possible peer companies by segment is very limited, it may be
difficult to select more than a few firms in each segment. If these selected peer
companies are not truly comparable, the results could be biased.

As an alternative to the segment valuation, other diversified insurance/financial services
firms could also be used as the source of peer multiples. These diversified firms would
be selected so that they are similar to SNI in many respects — similar businesses, similar
ROE, similar S&P claims paying rating, similar CAPM betas, etc.

Peer multiples for three diversified insurers are summarized as follows:

Table 43: Peer Multiples — Diversified Insurance/Financial Services

Multiple Diversified Peer 1 Diversified Peer 2 Diversified Peer 3 Average
P-E 17.53 16.89 11.48 15.30
P-BV 2.34 2.25 1.35 1.98

When the average multiples are applied to SNI’s total earnings and book value across all
segments, the following results are obtained:

Table 44: SNI Valuation — Diversified Insurance/Financial Services Peers ($ Millions)

Valuation Basis SNI Amount Peer Multiple Equity Value
Earnings 1,878 15.30 28,733
Book Value 11,355 1.98 22,483
Average 25,608

Additional Considerations

The following additional observations are made with respect to the above example:

e Choice of Peer Companies — The valuation relied heavily on the assumption that the average
multiples for the selected peer companies are appropriate for SNI. The validity of the chosen
peer companies depends on whether the ROE, growth rate and discount rate assumptions are
comparable for these firms (or at least the net effect is comparable). This is ultimately a
matter of informed judgment.
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Consider, for instance, the peer companies selected for the Life Insurance segment:

Table 45: Comparison of Life Segment Peer P-E Multiples

Life Peer 1 20.10
Life Peer 2 19.06
Life Peer 3 13.77
Life Peer 4 25.78
Simple Average 19.68

The first two firms’ multiples are approximately equal to the average multiple. However, one
firm’s P-E is approximately 30% lower than this average and another firm’s P-E is
approximately 30% higher than this average. As a result, which of these four firms are
included in the average multiple calculation can have a material impact. Determining which
of the firms has operations most like SNI’s operations is important.

Notice also that the valuation used trailing P-E ratios in the analysis. The large differences in
P-E ratios could merely reflect special circumstances in the latest reporting year for one or
more of these firms that caused their earnings to be artificially lower or higher than expected.
This may not truly reflect differences in expected ROEs, growth rates or discount rates and
therefore should not be used to proxy for the appropriate ROE, growth and discount rate
assumptions that would be used in an explicit DCF valuation.

Growth rates and discount rates for SNI and their peers could very well differ substantially
due to underlying fundamental differences in their operations.

e Simple Average vs. Weighted Average Multiples — Notice that when valuing the various
segments, the peer companies’ respective multiples were averaged using a simple average. If
the peer firms are not roughly the same size, a weighted average might be more appropriate.
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7. Option Pricing Methods

Many recently published valuation textbooks now include extensive discussion of the use of option
pricing theory in the valuation of the equity of a firm. This section briefly discusses the rationale
behind this approach and its potential applicability to insurance company valuation.

Two related approaches are presented: (a) valuing the equity as a call option rather than as a
discounted stream of future dividends, cash flow or abnormal earnings and (b) the valuation of real
options as an additional source of value to be added to the DCF, AE or relative valuation results.

7.1 Valuing Equity as a Call Option
7.1.1 Background

This method is based on Merton’s characterization of equity as a call option on the company’s assets,
with a strike price equal to the face value of the debt.

When a firm is owned entirely by equity holders, they own all of the assets of the firm — the physical
assets plus the income that those assets produce over the life of the company. If the equity holders
issue debt (i.e. borrow money), then the equity holders no longer own all of the value of the firm, V.
Instead, they own the excess of the value of the firm over the debt that they have to repay at time T,
denoted D. In other words E+ = max(V; - D, 0), which looks like a call on the value of V; with a
strike price of D.

When the equity holders borrowed the present value of D, they gave all of the assets of the firm to the
bondholders, who will keep them if the debt is not repaid. However, by repaying the debt at time T,
the equity holders have the right to buy back the assets of the firm by paying D. If V1 < D on that
date, they will not buy the assets back and will let the bondholders keep the assets. In other words,
they will default.

To value the equity of a firm as a call option on the assets, the Black-Scholes option pricing formula
can be used, with some modifications. For instance, instead of using the value of the stock and its
volatility as inputs, the value and volatility of all of the firm’s assets are the critical inputs. In
addition, the strike price is set equal to the face value of the debt and the expiration date for the option
is set equal to the (single) expiration date of the debt.

7.1.2 Application to P&C Insurers

For many years after Merton’s original presentation, this approach remained a purely theoretical
discussion and was not commonly used as a valuation framework because of its many practical
limitations. In recent years, as option pricing methods have become more widely understood, the use
of this approach has grown. For instance, a variation of this approach is now used to estimate
probabilities of default for publicly traded firms*.

However, when it comes to the valuation of P&C insurance companies, this is still largely a
theoretical model. The reason for this is similar to why equity valuation methods rather than firm
valuation methods are generally preferred for insurance company valuations — the notion of "debt" for
an insurance company is not well defined. An insurer’s policyholder liabilities are essentially
indistinguishable from other debt from the perspective of the equity holder. Due to the complexity of
the policyholder liabilities, a single expiration date for all of an insurer’s "debt" cannot be readily
approximated.

Given the limitations of this approach in a practical valuation analysis, this approach will not be
explored further in this study note.

“* The most widely known application is the Moody's/KMV Credit Default Model.
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7.2 Real Options Valuation
7.2.1 Background on Real Options

Another use of option pricing theory of relevance to valuation is the real options framework. The real
options approach attempts to value various sources of managerial flexibility that can often be thought
of as put and call options. Some of the most common real options include the following®:

e Abandonment Option — Many projects can be terminated early and the investment sold
for its liquidation value less closing-down costs. This option is valued as an American
put on the value of the project with a strike equal to the net liquidation proceeds.

e Expansion Option — Projects that are successful often contain an option to expand the
scope of the project and capture more profits. This is valued as an American call option
on the (gross) value of the additional capacity with a strike price equal to the cost of
creating the capacity.

e Contraction Option — This is the opposite of the expansion option. It is valued as an
American put on the (gross) value of the lost capacity with a strike equal to the cost
savings.

e Option to Defer — Otherwise known as the option to wait, this is an American call on the
value of a project. It essentially measures the value of being able to hold off on a project
until more information is known — hence, preventing the bad outcomes at the expense of
maybe giving up some interim revenue in the good outcomes.

e Option to Extend — This is an option to extend the life of a project by paying a fixed
amount. It is valued as a European call option on the asset’s future value.

The argument that managerial flexibility has value that should be included within the equity valuation
is appealing. However, care must be taken to distinguish between managerial choices that have value
and managerial choices that do not. For instance, all firms have the "flexibility" to buy assets at their
market prices, but this does not in itself create value. Value is created only when assets can be
purchased at less than their fair value or when the firm has exclusive access to opportunities.

7.2.2 Example of Real Option Analysis

The valuation of real options is considerably more complex than the valuation of options on financial
instruments. Practices vary widely with respect to implementation of standard option pricing models
for these sorts of options. For the sake of clarity, this section will provide a brief demonstration of
just one particular method used by some insurance company equity analysts. The example will be
intentionally simplified to highlight the rationale behind this methodology. The specific formulas
used here have certain limitations and may not be applicable in all situations.

Assume an insurer has a new business opportunity that it has not yet exploited due to uncertainty with
regard to its value. Based on current assumptions, the opportunity will require an initial investment of
$500 million and will generate an expected ROE (in perpetuity) of 8.95%, exactly equal to its cost of
capital. There is uncertainty with respect to the ROE that will be achieved, but this uncertainty will
diminish over a three year period.

Using the Abnormal Earnings valuation methodology, it is easy to see that the gross value of the
opportunity equals the initial book value of $500 million because the expected abnormal earnings are
equal to zero in every future period. Given the required investment of $500 million, the net value of
this opportunity is zero and there would be no incentive for the firm to enter into this business.

Nonetheless, there may be a real option value to consider here. Assume that the firm’s flexibility
allows it to essentially lock in the required investment for a set period, say 3 years for the sake of the
example. During this time the uncertainty with respect to the ROE that can be achieved will be

5 This list is taken from Hull. Other sources for more information on real options valuation include Damodaran and
Trigeorgis.
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resolved. If it turns out that the ROE on this business exceeds the current expected value of 8.95% in
perpetuity and the firm can still invest only $500 million in book value to enter the business, then
there may be a real option value associated with this flexibility.

The value of their flexibility to delay making the investment may be estimated using the Black-
Scholes option pricing formula and an assumption regarding the volatility of the value of the business’
cash flows. The volatility assumption would be based upon the volatility of the ROE and would be
impacted by other valuation factors such as whether the abnormal earnings continue in perpetuity.
For the sake of simplicity, the volatility is arbitrarily set at 20% for this example.

The specific formula is summarized as follows:

Real Option Value = AN(d,)—le """ N(d,)
where A = Current Value of Cash Flows ($500), | = Required Investment ($500), r = continuously
compounded risk-free interest rate (4.55%), T = Time to Expiration (3), and o = Volatility of Current

Value (20%). As in the standard Black-Scholes model, N( ) is the standard normal CDF, and d; and
d, are defined as follows:

d = IN(A/ D +(r+o2/2)T
L=

oVT

d, = IN(A/1)+(r—c® 12T _
)= =

O—ﬁ dl'(Y\/'IT

Table 46: Real Option Value of New P&C Insurance Opportunities

Asset Value (A) 500
Strike Price (1) 500
Volatility (o) 20.0%

Time to Expiration in years (T) 3.00

Risk Free Rate (r) 4.55%
d, 0.567
d; 0.221
N(dy) 0.715
N(d2) 0.587
Option Value ($ Millions) 101.1

As a result of these calculations, it would be appropriate to include an additional $101.1 million to the
valuation of the firm. The underlying new business opportunity does not have any value to the firm
now, even if the investment were made to enter the business. However, the firm’s ability to wait for
three years before committing to the investment provides it with a real option. The value of this
option, as opposed to the value of the underlying business, should be added to the estimates produced
by valuing all of the firm’s existing businesses.

7.2.3 Practical Considerations

The calculations described in the previous example were intended to demonstrate the concepts
underlying attempts to include the value of managerial flexibility in the value of a firm. In practice, it
may be substantially more difficult to a) identify the new businesses for which some real option value
may exist, b) assess the current value of these businesses and ¢) determine whether the firm actually
has the ability to enter these businesses at a fixed price or at a price that otherwise differs from the
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businesses’ market value. It is appropriate to contemplate the potential for firms to have exclusive
rights or exclusive abilities to capitalize on new business opportunities, but placing a dollar value on
these opportunities requires considerably more judgment and insight than the simplified example here
might suggest.

7.2.4 Key Valuation Considerations

In addition to the practical considerations raised in the previous section, there are also a variety of
technical issues that must be considered in the actual valuation formula. The following is a sample of
some of these considerations:

Valuing the Underlying Business Cash Flows — In this example the gross value of the
business was valued using the AE method but the abnormal earnings were assumed to
continue in perpetuity. This assumption made the value of the underlying cash flows change
each period primarily as the result of the volatility of the ROE.

In practice, abnormal earnings periods usually have a finite life. As a result, after each period
passes with the option not exercised, the gross value of the cash flows will decline. This
effect is comparable to the effect on the stock price after cash dividends are paid and
adjustments to the option valuation formula similar to those made when valuing options on
stocks that pay dividends may be appropriate.

Time to Option Maturity — In this example the time to maturity was assumed to be known and
had a finite value. In practice, real options are likely to have uncertain maturities — or
possibly no maturity date at all.

Exercise Type — The example was simplified by assuming that the option could be exercised
only at maturity. In practice, real options are more likely to be American-style options that
can be exercised any time until maturity. Appropriate adjustments to the option pricing
formula would therefore be made in these cases®.

Appropriate Valuation Formula — This example used the Black-Scholes formula to value the
option. For certain real options, the implicit assumption of a lognormal underlying asset price
distribution may be inappropriate and other valuation formulas may be appropriate.

7.2.5 Assessing the Reasonableness of Real Option Values

To assess the reasonableness of the real option valuation results, it is helpful to consider the following
characteristics that make real options more valuable:

e Options are more valuable when new information will be discovered prior to their
expiration date that will allow for a more informed decision. If no new information
exists, then waiting to make a decision might be convenient but it won’t necessarily add
significant value to the firm.

e Expansion options are valuable only if there is some exclusive right or ability to exercise
them. It is not sufficient to say that new business opportunities might come along in the
future. If there is competition, other firms might also attempt to capitalize on these
opportunities, driving up the exercise cost and eroding any net value impact to the firm
upon exercise.

e The exercise price must be fixed in order for the option to have value. As an extreme
example, an "option™ to purchase an asset at some future date at the then current market
price does not have any value.

46 See Hull.
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8. Additional Considerations

Given the limited scope of this study note, a variety of complicating factors have been ignored. This
section will include a partial list of these factors, but readers are encouraged to review the sources
included in the References section for more complete details.

Topics of particular interest may include the following:

Complex Capital Structures — The valuation methods discussed here reflect the value to all of
the stakeholders who have a claim on the equity value of the firm. These stakeholders may
include a broader group than just the current shareholders of the firm. Determining that value
of the common shareholders’ interests therefore might require more than just dividing the
total equity value by the number of outstanding common shares.

One adjustment may include special consideration for preferred shareholders. Another more
complicated adjustment is to reflect the value of any outstanding warrants or employee stock
options. These are call options issued by the firm to investors, management or other
employees. The value of the publicly traded shares must take into account the effect on firm
value and the number of shares outstanding if and when these options are exercised.

Valuation of Non-Operating Assets — The methods discussed here assumed that the assets of
the firm were used to generate the earnings and cash flows depicted in the valuation formulas.
Other assets may require special considerations.

International Considerations — A variety of issues associated with international operations
have been ignored, including methods needed to assess the consolidated financial statements
for globally diversified firms and methods used to reflect currency risk in the valuation
methods.

The text by Damodaran and the text by Stowe, Robinson, Pinto and McLeavey each provide complete
discussions of these and other related valuation topics.

Revised: October 2010 49



9. References

Blackburn, Jones, Schwartzman and Siegman, 2003, "The Application of Fundamental Valuation Principles to
Property/Casualty Insurance Companies”. (Available on the CAS Website at: http://casact.org/research/Valpap2.pdf)

Bodie, Kane and Marcus, 2004, Investments, 6™ Edition, McGraw Hill.

Butsic, Robert P., 1988, "Determining the Proper Interest Rate for Loss Reserve Discounting: An Economic Approach",
Casualty Actuarial Society Discussion Paper Program, Vol: May Page(s): 147. (Available on the CAS Website at:
http://www.casact.org/pubs/dpp/dpp88/88dpp147.pdf)

CAS Task Force on Fair Value Liabilities, 2000, White Paper on Fair Valuing Property/Casualty Insurance Liabilities,
Casualty Actuarial Society. (Available on the CAS Website at: http://www.casact.org/research/tffvl/index.htm)

Cornell, Bradford, 1993, Corporate Valuation: Tools for Effective Appraisal and Decision Making, New York: Business
One Irwin.

Cornell, Bradford, 1999, The Equity Risk Premium, New York: John Wiley & Sons, Inc.

Cummins, J. David and Richard D. Phillips, 2004 (Revised), "Estimating the Cost of Equity Capital for Property-Liability
Insurers", Presented at 2003 CAS Enterprise Risk Management Seminar.

Damodaran, Aswath, 2002, Investment Valuation, 2" Edition, John Wiley & Sons.
Damodaran, Aswath, 2004, Investment Fables, Financial Times Prentice Hall.

Derrig, Richard A and Elisha D. Orr, 2004, "Equity Risk Premium: Expectations Great and Small", Casualty Actuarial
Society  Forum, Vol:  Winter Page(s):  1-44. (Available on the CAS  Website at:
http://www.casact.org/pubs/forum/04wforum/04wf001.pdf)

D’Arcy, Stephen P., Gorvett, Richard W.; Hettinger, Thomas E.; Walling Il1, Robert J., 1998, "Using the Public Access
DFA Model: A Case Study", Casualty Actuarial Society Forum, Vol: Summer Page(s): 53-118. (Available on the CAS
Website at: http://www.casact.org/pubs/forum/98sforum/98sf053.pdf)

Girard, Luke, 2000, “Market Value of Insurance Liabilities: Reconciling the Actuarial Appraisal and Option Pricing
Methods,” North American Actuarial Journal, Volume 4, Number 1.

Girard, Luke, 2002, “An Approach to Fair Valuation of Insurance Liabilities Using the Firm’s Cost of Capital,” North
American Actuarial Journal, Volume 6, Number 2.

Halliwell, Leigh J., 2001, "A Critique of Risk-Adjusted Discounting”, ASTIN Colloquium, (Available on the CAS Website
at:http://www.casact.org/coneduc/reinsure/astin/2000/halliwell1.doc)

Hull, John C. 2006, Options, Futures and Other Derivative Securities, 6 Edition, Prentice Hall.

Merton, Robert C. 1974, "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates", Journal of Finance, Vol.
29, pp. 449-470.

Ohlson, 1995, "Earnings, Book Values and Dividends in Equity Valuation", Contemporary Accounting Research, Volume
11, No. 2 (Spring 1995).

Palepu, Bernard & Healey, 1996, Business Analysis & Valuation, Southwestern Publishing.
Partnoy, Frank, 2003, Infectious Greed: How Deceit and Risk Corrupted the Financial Markets, Times Books.
Ritter, J.R., 1998, "Initial Public Offerings", Contemporary Finance Digest, v2, 5-31.

Sougiannis, Theodore and Penman, Stephen H., "A Comparison of Dividend, Cash Flow, and Earnings Approaches to
Equity Valuation". (Internet address: http://ssrn.com/abstract=15043)

Standard & Poor’s, "Property/Casualty Insurance Ratings Criteria". Available on the S&P website at
www.standardandpoors.com/ratings.

Stowe, Robinson, Pinto and McLeavey, 2002, Analysis of Equity Investments: Valuation. AIMR.
Stewart, G.B., 1991, The Quest for Value, New York: Harper Business.
Trigeorgis, Lenos, 1996, Real Options, MIT Press.

Wang, Shaun, 1995, "Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards Transforms", Insurance
Mathematics and Economics, 17, pp. 43-54.

Revised: October 2010 50



“Credible Loss Ratio Claims Reserves: The Benktander, Neuhaus and Mack Methods Revisited”

Due to copyright restrictions, the text is not included in this complete PDF.

To access the Werner Hurlimann text, please use the following link.
Please note, candidates are not responsible for mathematical proofs.

http://www.actuaries.org/LIBRARY/ASTIN/vol39n01/81.pdf



http://www.actuaries.org/LIBRARY/ASTIN/vol39no1/81.pdf

Credible Loss Ratio Claims Reserves: The Benktander, Neuhaus
and Mack Methods Revisited

Errata to

By Hiirlimann, W. in ASTIN Bulletin 39(1), 2009

This note presents errata to various tables and formulas in Hiirlimann’s paper on “Credible Loss

Casualty Actuarial Society!

Version 1.0, January 31, 2020

Ratio Claims Reserves.” Items printed in red indicate an update, clarification, or change.

1. Errata

e Table 7.4 of Hiirlimann (page 95) should be amended from:

Origin Method
Period collective  individual  Neuhaus Benktander  optimal
all periods 86,752 87,810 86,751 86,837 86,486
1 14,307 14,307 14,307 14,307 14,307
2 9,964 9,882 9,906 9,891 9,966
3 12,772 12,660 12,706 12,686 12,779
4 11,443 11,112 11313 11,266 11,484
5 20,826 22,947 21,022 21,219 20,364
6 17,440 16,902 17,498 17,469 17,586
to:
Origin Method
Period collective  individual  Neuhaus  Benktander  optimal
all periods 85,992 87,810 86,751 86,837 86,752
1 14,307 14,307 14,307 14,307 14,307
2 10,043 9,882 9,906 9,891 9,964
3 12,878 12,660 12,706 12,686 12,772
4 11,731 11,112 11,313 11,266 11,443
5 19,284 22,947 21,022 21,219 20,826
6 17,749 16,902 17,498 17,469 17,440

! This note was prepared by the Exam 7 Syllabus Committee.
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e Table 7.5 of Hiirlimann (page 95) should be amended from:

to:

to:

Origin Method
Period collective  individual = Neuhaus  Benktander optimal
2 1.027133 1.028713 1.014146 1.022818 1
3 1.058036  1.065943 1.003002 1.038856 1
4 1.115378 1.153525 1.002692 1.044128 1
5 1.198612  1.376096 1.120972 1.012892 1
6 1.244417  1.740080 1.409648 1.002206 1
Origin Method
Period collective  individual = Neuhaus  Benktander optimal
2 1.027133 1.028713 1.014146 1.022818 1
3 1.058037 1.065943 1.023277 1.038856 1
4 1.115379 1.153525 1.023764 1.044128 1
5 1.198610  1.376096 1.003211 1.012892 1
6 1.244422 1.740080 1.008555 1.002208 1
e Table 7.10 of Hiirlimann (page 97) should be amended from:
Origin Method
Period collective  individual = Neuhaus  Benktander optimal
2 1.001629  1.001634 1.001405 1.001615 1
3 1.029900  1.031834 1.021187 1.024673 1
4 1.046368 1.051243 1.029035 1.033985 1
5 1.111731 1.146991 1.036943 1.044625 1
6 1.228790  1.548854 1.000149 1.000894 1
Origin Method
Period collective  individual = Neuhaus  Benktander optimal
2 1.001566 1.001571 1.001342 1.001551 1
3 1.029900 1.031833 1.021187 1.024673 1
4 1.046373 1.051248 1.029039 1.033989 1
5 1.111729 1.146989 1.036940 1.044623 1
6 1.228789 1.548852 1.000148 1.000893 1
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e The following formula from Hiirlimann (page 88, formula 4.14) should be amended
from:

mse(RI") = E[(RI™ — R;)?] = Var[RI™ — R;| = Var[R{°"] — 2Cov[RI", R;] + Var[R;]
to:

mse(RI") = E[(RI™ — R;)?] = Var[RI™ — R;| = Var[R}"?] — 2Cov[RI", R;] + Var[R;]

e The following formula from Hiirlimann (page 92) should be amended from:

~ 5 1-p # A
Var[R{] = <Z12 C(1+£) [1 + . bi — l — 27+ 1) - Var[R¢!]

i — 4

to:

~

1=p b = l —2Zi+ 1) - Var[R§!]

Var[R§] =(Z2- (1 +£) |1
ar[ 1] < ( + 1) l + Pi 1+t1
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The variability of chain ladder reserve estimates is quantified
without assuming any specific claims amount distribution
function. This is done by establishing a formula for the so-
called standard error which is an estimate for the standard
deviation of the outstanding claims reserve. The information
necessary for this purpose is extracted only from the usual
chain ladder formulae. With the standard error as decisive tool
it is shown how a confidence interval for the outstanding claims
reserve and for the ultimate claims amount can be constructed.
Moreover, the analysis of the information extracted and of its
implications shows when it is appropriate to apply the chain
ladder method and when not.
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1. Introduction and Qverview

The chain ladder method is probably the most popular method for
estimating outstanding claims reserves. The main reason for this
is its simplicity and the fact that it is distribution-free,
i.e. that it seems to be based on almost no assumptions. In this
paper, it will be seen that this impression is wrong and that
the chain ladder algorithm rather has far-reaching implications.
These implications also allow it to measure the variability of
chain ladder reserve estimates. With the help of this measure it
is possible to construct a confidence interval for the estimated

ultimate claims amount and for the estimated reserves.

Such a confidence interval is of great interest for the
practitioner because the estimated ultimate claims amount can
never be an exact forecast of the true ultimate claims amount
and therefore a confidence interval is of much greater
information value. A confidence interval also automatically
allows the inclusion of business policy into the claims
reserving process by using a specific confidence probability.
Moreover, there are many other claims reserving procedures and
the results of all these procedures can vary widely. But with
the help of a confidence interval it can be seen whether the
difference between the results of the chain ladder method and

any other method is significant or not.

The paper is organized as follows: In Chapter 2 a first basic
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assumption underlying the chain ladder method is derived from
the formula used to estimate the ultimate claims amount. In
Chapter 3, the comparison of the age-to-age factor formula used
by the chain ladder method with other possibilities leads to a
second underlying assumption regarding the variance of the
claims amounts. Using both of these derived assumptions and a
third assumption on the independence of the accident years, it
is possible to calculate the so-called standard error of the
estimated ultimate claims amount. This is done in Chapter 4
where it is also shown that this standard error is the
appropriate measure of variability for the construction of a
confidence interval. Chapter 5 illustrates how any given run-off
triangle can be checked using some plots to ascertain whether
the assumptions mentioned can be considered to be met. If these
plots show that the assumptions do not seem to be met, the chain
ladder method should not be applied. In Chapter 6 all formulae
and instruments established including two statistical tests set
out in Appendices G and H are applied to a numerical example.
For the sake of comparison, the reserves and standard errors
according to a well-known claims reserving software package are
also quoted. Complete and detailed proofs of all results and

formulae are given in the Appendices A - F.

The proofs are not very short and take up about one fifth of the
paper. But the resulting formula (7) for the standard error is
very simple and can be applied directly after reading the basic

notations (1) and (2) in the first two paragraphs of the next
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chapter. In the numerical example, too, we could have applied
formula (7) for the standard error immediately after the
completion of the run-off triangle. But we prefer to first carry
through the analysis of whether the chain ladder assumptions are
met in this particular case as this analysis generally should be
made first. Because this analysis comprises many tables and
plots, the example takes up another two fifths of the paper

(including the tests in Appendices G and H).

2. Notatjons and First Analysis of the Chajin Ladder Method

Let Cix denote the accumulated total claims amount of accident

year i, 1 £ 1

IA

I, either paid or incurred up to development
year kX, 1 £ k £ I. The values of Cyx for i+k € I+1 are known to
us (run-off triangle) and we want to estimate the values of Cj
for i+k > I+1, in particular the ultimate claims amount C;; of
each accident year i = 2, ..., I. Then,

Ry = Ci1 = Ci,141-i1
is the outstanding claims reserve of accident year i as Ci, I+1-i

has already been paid or incurred up to now.

The chain ladder method consists of estimating the ultimate

claims amounts C;; by

A
("
A

(1) Cir = Ci,1+1-i"fr42-4"--+"L1-1 + 2 I,

where
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I-k I-k

(2) £y = 51 Cy,k+1 / j§1 Cik 1<k < I-1,

J

are the so-called age-to-age factors.

This manner of projecting the known claims amount Ci,1+1-i to
the ultimate claims amount C;; uses for all accident years i 2
I+1-k the same factor fy, for the increase of the claims amount
from development year k to development year k+l1 although the
observed individual development factors Ci,k+1/Cik of the
accident years i < I-k are usually different from one another
and from fy. This means that each increase from C;, to ci,k+1 is
considered a random disturbance of an expected increase from Cj,
to Cyyfy where fy is an unknown 'true' factor of increase which
is the same for all accident years and which is estimated from

the available data by f,.

Consequently, if we imagine to be at the end of development year
k we have to consider Ci,k+1' «ser Cy1 as random variables
whereas the realizations of Ciq1s -+-4+ Cji are known to us and
are therefore no longer random variables but scalars. This means
that for the purposes of analysis every Cijx can be a random
variable or a scalar, depending on the development year at the
end of which we imagine to be but independently of whether Cj,
belongs to the known part i+k < I+1 of the run-off triangle or
not. When taking expected values or variances we therefore must
always also state the development year at the end of which we

imagine to be. This will be done by explicitly indicating those
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variables C;, whose values are assumed to be known. If nothing

is indicated all C;, are assumed to be unknown.

What we said above regarding the increase from Cix to Ci,k+1 can
now be formulated in stochastic terms as follows: The chain
ladder method assumes the existence of accident-year-independent
factors f,, ..., fy.; such that, given the development Cigs =rev
Cix: the realization of Ci,k+1 is ‘'close! to Cikfyr the latter

being the expected value of C; .., in its mathematical meaning,
i

i.e.
(3) E(Ci,kﬂ.lcil""'cik) =Ciifx » 1<1igI, 1x5k<I-l.
Here to the right of the '|' those C;, are listed which are

assumed to be known. Mathematically speaking, (3) is a
conditional expected value which is just the exact mathematical
formulation of the fact that we already know €31+ +++s Cyxs but
do not know Ci,k+1‘ The same notation is also used for variances
since they are specific expectations. The reader who is not
familiar with conditional expectations should not refrain from
further reading because this terminology is easily under-
standable and the usual rules for the calculation with expected
values alsc apply to conditional expected values. Any special

rule will be indicated wherever it is used.

We want to point out again that the equations (3) constitute an
assumption which is not imposed by us but rather implicitly
underlyies the chain ladder method. This is based on two aspects

of the basic chain ladder equation {1): One is the fact that (1)
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uses the same age-to-age factor fy for different accident years
i = I+i~-k, ..., I. Therefore equations (3) also postulate age-
to-age parameters f, which are the>same for all accident years.
The other is the fact that (1) uses only the most recent
observed value Cj 1,7_j as basis for the projection to ultimate
ignoring on the one hand all amounts Cj;,, ..., ci,I—i observed
earlier and on the other hand the fact that Ci,I+1—i could
sﬁbstantially deviate from its expected value. Note that it
would easily be possible to also project to ultimate the amounts
o

o] of the earlier development years with the help

iz omvr i, I-1
of the age-to-age factors £y, ..., fy_4 and to combine all these
projected amounts together with Ci,I+1-ifI+1-i""'£I-1 into a
common estimator for C,;. Moreover, it would also easily be
possible to use the values Cj,I+1-i of the earlier accident
years j < i as additional estimators for E(Ci,I+1—i) by
translating them into accident year i with the help of a measure
of volume for each accident year. These possibilities are all
ignored by the chain ladder method which uses Ci,I+1-i as the
only basis for the projection to ultimate. This means that the
chain ladder method implicitly must use an assumption which
states that the information contained in Ci,I+1—i cannot be
augmented by additionally using Ciqr conv ci,I—i or Cl,I+1-i'

ooy ci-l,I+1—i' This is very well reflected by the equations

(3).

Having now formulated this first assumption underlying the chain

ladder method we want to emphasize that this is a rather strong
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assumption which has important consequences and which cannot be
taken as met for every run-off triangle. Thus the widespread
impression the chain ladder method would work with almost no
agsumptions is not justified. In Chapter 5 we will elaborate on
the linearity constraint contained in assumption (3). But here
we want to point out another consequence of formula (3). We can
rewrite (3) into the form

B(Cy,k+1/Cik!CizreeorCix) = %k
because C;, is a scalar under the condition that we know Cj,,
cevr Cik- This form of (3) shows that the expected value of the
individual development factor ci,k+1/Cik equals f, irrespective
of the prior development Cj;, ..., Cjy and especially of the
foregoing development factor cik/ci,kvl' As is shown in Appendix
G, this implies that subsequent development factors Cik/ci,k—l
and ci,k+1/cik are uncorrelated. This means that after a rather
high value of Cik/ci,k-l the expected size of the next
development factor ci,k+1/cik is the same as after a rather low
value of cik/Ci,k—l' We therefore should not apply the chain
ladder method to a business where we usually observe a rather
small increase ci,k+1/cik if cik/ci,k-l is higher than in most
other accident years, and vice versa. Appendix G also contains a

test procedure to check this for a given run-off triangle.
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3. Analysis of the Age-to-Age Factor Formula: the Key to

Measuring the Variability

Because of the randomness of all realizations C;, we can not
infer the true values of the increase factors fl' sy fI-l from
the data. They only can be estimated and the chain ladder method
calculates estimators £, ooy fI-l according to formula (2).
Among the properties which a good estimator should have, one
prominent property is that the estimator should be unbiased,
i.e. that its expected value E(fy) (under the assumption that
the whole run-off triangle is not yet known) is equal to the
true value f,, i.e. that E(fy) = fk' Indeed, this is the case
here as is shown in Appendix A under the additional assumption
that

(4) the variables {Ciq1¢ --+r Cig1} and (cjl' ey CjI) of

different accident years 1 # j are independent.

Because the chain ladder method neither in (1) nor in (2) takes
into account any dependency between the accident years we can
conclude that the independence of the accident years is also an
implicit assumption of the chain ladder method. We will
therefore assume (4) for all further calculations. Assumption
(4), too, cannot be taken as being met for every run-off
triangle because certain calendar year effects (such as a major
change in claims handling or in case reserving or greater

changes in the inflation rate) can affect several accident years
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in the same way and can thus distort the independence. How such

a situation can be recognized is shown in Appendix H.

A closer look at formula (2) reveals that

I-k
z Gy
T I8 31 _
£ = J=1 - Izk cjk 'Cj,k+1
X o1x 3=1 I-k Cyx
Z Cs z Cs
j=1 ¥ j=1 9%

is a weighted average of the observed individual development

factors Cj,k+1/Cjk’ 1 < j £ I-k, where the weights are

proportional to Cjk' Like fy every individual development factor

n

Cj,k+1/cjk' 1 £ j £ I-k, is also an unbiased estimator of fx

because

E(cj'k+1/cjk) = E(E(cj,k+1/cjk|cjl,...,cjk))

E(E(C,x+11C410 - - - +Cy30) /Cy0)
E(Cyxfx/Cyx)

E(fy)

= fy .

Here equality (a) holds due to the iterative rule E(X)

(a)
(b)
(c)

(d)

E(E(X|Y)) for expectaticns, (b) holds because, given le to Cjk'

Cjk is, a scalar, {c) holds due to assumption (3) and (d) holds

because f, is a scalar. (When applying expectations iteratively,

e.g. E(E(X]Y)), one first takes the conditional expectation

E(X|Y) assuming Y being known and then averages over all

possible realizations of Y.)
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Therefore the question arises as to why the chain ladder method
uses just fy as estimator for fy and not the simple average
1 I-k ~

LA ¢4, x+1/C5x
of the observed development factors which alsoc would be an
unbiased estimator as is the case with any weighted average

I-k . I-k

gx = jzl Wik cj,k+1/cjk with jil Wik = 1

of the observed development factors. (Here, wjk must be a scalar

if le, ey Cjk are known.)

Here we recall one of the principles of the theory of point
estimation which states that among several unbiased estimators
preference should be given to the one with the smallest
variance, a principle which is easy to understand. We therefore
should choose the weights Wik in such a way that the variance of
gy is minimal. In Appendix B it is shown that this is the case

if and only if (for fixed k and all j)

Wik is inversely proportional to Var(cj,k+1/cjklcjl""'cjk)'

The fact that the chain ladder estimator f)y uses weights which
are proportional to cjk therefore means that Cjk is assumed to
be inversely proportional to Var(cj,k+1/cjk‘cj1'""cjk)' or
stated the other way around, that

Var(cj,k+1/cjk| Cypre+-iCyx) = akz/Cjk

with a proportionality constant ak2 which may depend on k but
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not on j and which must be non-negative because variances are
always non-negative. Since here Cjk is a scalar and because
generally Var(X/c) = Var(X)/c2 for any scalar c, we can state
the above proportionality condition alsoc in the form

(8)  Var(Cy y4ql€y1s++-sCyx) = cjkak2, 1<3<I,1<kz<I-1,

with unknown proportionality constants akz, 1 <k < I-1.

As it was the case with assumptions (3) and (4), assumption (5)
also has to be considered a basic condition implicitly
underlying the chain ladder method. Again, condition (5) cannot
a priori be assumed to be met for every run-off triangle. In
Chapter 5 we will show how to check a given triangle to see
whether (5) can be considered met or not. But before we turn to
the most important consequence of (5): Together with (3) and (4)
it namely enables us to quantify the uncertainty in the

estimation of Cy; by Cy3.

4. Quantifyin Varjability of the U te Claims Amount

The aim of the chain ladder method and of every claims reserving
method is the estimation of the ultimate claims amount C;y for
the accident years i = 2, ..., I. The chain ladder method does
this by formula (1}, i.e. by

Cir = Ci,141-i"Trer-4c- - fr-g -
This formula yields only a point estimate for Cj1 which will

normally turn out to be more or less wrong, i.e. there is only a
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very small probability for C;; being equal to C;r- This
probability is even zero if Cijy is considered to be a continuous
variable. We therefore want to know in addition if the estimator
Cir is at least on average equal to the mean of C;1 and how
large on average the error is. Precisely speaking we first would
like to have the expected values E(C4yy) and E(Cjy), 2 £ i < I,
being equal. In Appendix C it is shown that this is indeed the

case as a consequence of assumptions (3) and (4).

The second thing we want to know is the average distance between
the forecast C;; and the future realization Ci1- In Mathematical
Statistics it is common to measure such distances by the square
of the ordinary Euclidean distance ('quadratic loss function').
This means that one is interested in the size of the so-called
mean squared error

mse(Cyy) = E((Cj; = C31)2|D)
where D = { Cj; | itk < I+1 } is the set of all data observed so
far. It is important to realize that we have to calculate the
mean squared error on the condition of knowing all data observed
so far because we want to know the error due to future random-
ness only. If we calculated the unconditional error E(CiI'ciI)z'
which due to the iterative rule for expectations is equal to the
mean value E(E((Cjy - CiI)Z[D)) of the conditional mse over all
possible data sets D, we also would include all deviations from
the data observed so far which obviously makes no sense if we
want to establish a confidence interval for C;; on the basis of

the given particular run-off triangle D.
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The mean squared error is exactly the same concept which also
underlyies the notion of the variance

var(X) = E(X - E(X))2
of any random variable X. Var(X) measures the average distance

of X from its mean value E(X).

Due to the general rule E(X-c)2 = Var(X) + (E(X)-c)2 for any
scalar c we have

mse(Cjy) = Var(C;r|D) + ( E(Cyy|D) - €41 )2
because Cy; is a scalar under the condition that all data D are
known. This equation shows that the mse is the sum of the pure
future random error Var(cillD) and of the estimation error which
is measured by the squared deviation of the estimate Cy; from
its target E(ciIID). On the other hand, the mse does not take
into account any future changes in the underlying model, i.e.
future deviations from the assumptions (3), (4) and (5), an
extreme example of which was the emergence of asbestos.

Modelling such deviations is beyond the scope of this paper.

As is to be expected and can be seen in Appendix D, mse (Cy 1)
depends on the unknown model parameters fy and akz. We therefore
must develop an estimator for mse(Cjp) which can be calculated
from the known data D only. The square root of such an estimator
is usually called 'gtandard error' because it is an estimate of
the standard deviation of C;; in cases in which we have to

estimate the mean value, too. The standard error s'e'(cil) of
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Cir is at the same time the standard error s.e.(Ry) of the
reserve estimate
Ry = €41 ~ Ci,1+1-4
of the outstanding claims reserve
Ry = Ciy - Cj, 1414
because

mse(Rg) = E((Ry - Ry)2|D) = E((C43 - C;1)2|D) =

]

mse(cil)
and because the equality of the mean squared errors also implies
the equality of the standard errors. This means that

(6) s.e.(R;) = s.e.(Ciy7) -

The derivation of a formula for the standard error s.e.(ciI) of
Cjy turns out to be the most difficult part of this paper; it is

done in Appendix D. Fortunately, the resulting formula is

simple:
3 I-1 a2 1 1
(7) (s.e.(C4y))2% = Cyy p] —_—( — + —— )
k=I+1-i £,2 ¢ I-k
x ik
T Cyx
j=1
where
1 I~k Ci 1t
(8) ay? = L Cyx ( I35 fx )2, 1<k s I-2.
I-k-1 j=1 Cx

is an unbiased estimator of akz (the unbiasedness being shown in

Appendix E) and

cik = ci,I+l-i.fI+1-i."'.tk-1 , k > I+1-i,

are the amounts which are automatically obtained if the run-off
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triangle is completed step by step according to the chain ladder

method. In (7), for notational convenience we have also set

Ci,141-4 = Ci,1+1-4"

Formula (8) does not yield an estimator for a;_, because it is
not possible to estimate the two parameters fI-l and ar_q from
the single observation cl,I/C1,1-1 between development years I-1
and I. If f3_4 = 1 and if the claims development is believed to
be finished after I-1 years we can put @r.q = 0. If not, we
extrapolate the usually decreasing series @y, @y, ey Cp_g,
ay_, by one additional member, for instance by means of
loglinear regression {cf. the example in Chapter 6) or more
simply by requiring that

@y.3 / Gyep = @yopy [/ Spay
holds at least as long as ap_3 > ay_y. This last possibility

leads to

2 : 4 2 . 2 2
(9) @y.3 = min ( ay.a/a7.5, min(eay_3, Gy.5) ) .

We now want to establish a confidence interval for our target
variables C;; and R;. Because of the equation

Cir = Ci,142-4 * Ry
the ultimate claims amount C;1 consists of a known part Ci,I+1-i
and an unknown part Rj. This means that the probability
distribution function of Cyq (given the observations D which
include ci,I+1—i) is completely determined by that of Ry. We

therefore need to establish a confidence interval for Ry only

and can then simply shift it to a confidence interval for Cit-
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For this purpose we need to know the distribution function of
R;. Up to now we only have estimates R; and s.e.(Rj) for the
mean and the standard deviation of this distribution. If the
volume of the outstanding claims is large enough we can, due to
the central limit theorem, assume that this distribution
function is a Normal distribution with an expected value equal
to the point estimate given by R; and a standard deviation equal
to the standard error s.e.(Ry). A symmetric 95%-confidence

interval for R; is then given by

( Ri - 2'5.9.(Ri) , Ri + 2-s.e.(Ri) ).

But the symmetric Normal distribution may not be a goocd
approximation to the true distribution of R; if this latter
distribution is rather skewed. This will especially be the case
if s.e. (Ry) is greater than 50 % of Ry. This can also be seen at
the above Normal distribution confidence interval whose lower
limit then becomes negative even if a negative reserve is not

possible.

In this case it is recommended to use an approach based on the
Lognormal distribution. For this purpose we approximate the
unknown distribution of R; by a Lognormal distribution with
parameters f; and aiz such that mean values as well as variances
of both distributions are equal, i.e. such that

exp(p; + 032/2) = Ry ,

exp(2u; + 042) (exp(0;2)-1) = (s.e.(Ry))? .
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This leads to

042 = In(1 + (s.e.(Ry))2/R42) ,

(10)
Mj = In(Ry) - 04272 .

Now, if we want to estimate the 90th percentile of Ry, for
example, we proceed as follows. First we take the 90th
percentile of the Standard Normal distribution which is 1.28.
Then exp(u;+1.280;) with u; and ¢;2 according to (10) is the
90th percentile of the Lognormal distribution and therefore also
approximately of the distribution of R;. For instance, if
s.e.(R;) /Ry = 1, then 0;2 = In(2) and the 90th percentile is
exp(u; + 1.280;) = Ryexp(1.280; - 0;2/2) = Ryexp(.719) =
2.05°R;. If we had assumed that R; has approximately a Normal
distribution, we would have obtained in this case Ry +

1.28+s.e.(Ry) = 2.28'Rj as 90th percentile.

This may come as a surprise since we might have expected that
the 90th percentile of a Lognormal distribution always must be
higher than that of a Normal distribution with same mean and
variance. But there is no general rule, it depends on the
percentile chosen and on the size of the ratio s.e.(Rj)/Ry. The
Lognormal approximation only prevents a negative lower
confidence limit. In order to set a specific lower confidence
limit we choose a suitable percentile, for instance 10%, and
proceed analogously as with the 90% before. The question of
which confidence probability to choose has to be decided from a
business policy point of view. The value of 80% = 90% - 10%

taken here must be regarded merely as an example.
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We have now shown how to establish confidence limits for every
Ry and therefore also for every Cjy = Ci,I+1-i + Ry. We may also
be interested in having confidence limits for the overall
reserve

R=Ry, + ... + R,
and the question is whether, in order to estimate the variance
of R, we can simply add the squares (s.e.(Ri))2 of the
individual standard errors as would be the case with standard
deviations of independent variables. But unfortunately, whereas
the R;'s itself are independent, the estimators Ry are not
because they are all influenced by the same age-to-age factors
fx, i.e. the Ry's are positively correlated. In Appendix F it is
shown that the square of the standard error of the overall
reserve estimator

R=R2+...+RI
is given by

(11) (s.e.(R))2 =

I I I-1 2ak2/tk2
= = (s.e.(Ry))2 + C47( I Cyx) z _—
i=2 j=i+1 k=I+1-1i I-k
Z Chyg
n=1

Formula (11) can be used to establish a confidence interval for
the overall reserve amount R in quite the same way as it was
done before for R;. Before giving a full example of the
calculation of the standard error, we will deal in the next

chapter with the problem of how to decide for a given run-off
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triangle whether the chain ladder assumptions (3) and (5) are

met or not.

5. Checking the Chain Ladder Assumptions Against the Data

As has been pointed out before, the three basic implicit chain

ladder assumptions

(3) E(Cj, k+11Ci1s++0Cix) = Cixfy o
(4) Independence of accident years ,
(5) Var(Cy x41lCiye-+sCix) = Cixayx?

are not met in every case. In this chapter we will indicate how
these assumptions can be checked for a given run-off triangle.
We have already mentioned in Chapter 3 that Appendix H develops
a test for calendar year influences which may violate (4). We
therefore can concentrate in the following on assumptions (3)

and (5).

First, we look at the equations (3) for an arbitrary but fixed k
and for i = 1, ..., I. There, the values of Cik, 1 = i <1, are
to be considered as given non-random values and equations (3)
can be interpreted as an ordinary regression model of the type
¥i =c + xb + €5, 1<ic<iI,
where ¢ and b are the regression coefficients and €; the error
term with E(€y) = 0, i.e. E(Yy) = c + x;b. In our special case,
we have ¢ = 0, b = fk and we have observations of the

independent variable ¥y = ci,k+1 at the points %x; = Ciy for i =
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1, ..., I-k. Therefore, we can estimate the regression
coefficient b = £y by the usual least squares method
I-k

- 2
2 (C4 x+1 ~ Cixfy)
1=1

minimum .

If the derivative of the left hand side with respect to f) is
set to 0 we obtain for the minimizing parameter f, the solution
I-k I-k
(12)  fxo = I CixCj y41 / I Cix? -
1=1 i=1
This is not the same estimator for f, as according to the chain

ladder formula (2). We therefore have used an additional index

'0' at this new estimator for fy. We can rewrite fyo as

- ., 2 .

I-k Cjx Ci, k+1
f = Z .
kO X

i=1 I-k , Cix
.2 clk
i=1

which shows that fi, is the Cikz-weighted average of the
individual development factors C; kx+1/Cix+ Whereas the chain
ladder estimator fy is the C;,-weighted average. In Chapter 3 we
saw that these weights are inversely proportional to the
underlying variances var(ci,k+1/cik|cil'""Cik)'
Correspondingly, the estimator fyo assumes
Var(ci,k+1/ciklcilf'"'Cik) being proportional to 1/C;,2,
or equivalently
Var(ci,k+1lcill""cik) being proportional to 1
which means that Var(Ci,k+1|Ci1,...,Cik) is the same for all
observations i = 1, ..., I~k. This is not in agreement with the

chain ladder assumption (5).
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Here we remember that indeed the least squares method implicitly
assumes equal variances Var(¥;) = Var(e;) = 02 for all i. If
this assumption is not met, i.e. if the variances Var(Y;) =
Var(e;) depend on i, one should use a weighted least squares
approach which consists of minimizing the weighted sum of
squares

I
E wi(Yi - Cc - le)z

i=1

where the weights w; are in inverse proportion to var(¥;).
Therefore, in order to be in agreement with the chain ladder
variance assumption (5), we should use regression weights wi
which are proportional to 1/Cix (more precisely to 1/(Cikak2),
but akz can be amalgamated with the proportionality constant
because k is fixed). Then minimizing

I-k 2

iZ, Gl T Gkt ® 7 Cax
with respect to fx yields indeed

I-k I-k
fx1 = 121 Ci, k1 / 121 Cix

which is identical to the usual chain ladder age-to-age factor

fk.

It is tempting to try another set of weights, namely 1/Cik2

because then the weighted sum of squares becomes
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I-k 2 2 I-k
Z Cike - Cixf)? /ol = 3

C.
i,k+1
(—— -2 .
1 cik
Here the minimizing procedure yields
1 I-k C;
i,k+1
(13) fo = — = ———,
I-k i=1 clk
which is the ordinary unweighted average of the development
factors. The variance assumption corresponding to the weights
used is
Var(ci,k+1lci1""'cik) being proportional to Cj?

or equivalently

Var(ci,k+1/cik|ci1""'cik) being proportional to 1.

The benefit of transforming the estimation of the age-to-age
factors into the regression framework is the fact that the usual
regression analysis instruments are now available to check the
underlying assumptions, especially the linearity and the
variance assumption. This check is usually done by carefully

inspecting plots of the data and of the residuals:

First, we plot Ci,k+1 against Cixr i=1, ..., I-k, in order to
see if we really have an approximately linear relationship
around a straight line through the origin with slope fy = fy,.
Second, if linearity seems acceptable, we plot the weighted
residuals

(Ci,k+1 ~ Cikfx) / YCix » 1< i < Ik,
(whose squares have been minimized) against Cjy in order to see

if the employed variance assumption really leads to a plot in

which the residuals do not show any specific trend but appear
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purely random. It is recommended to compare all three residual
plots (for i = 1, ..., I-k)

Plot O: ci,k+1 = Cikfxo against Cix «

Plot 1: (Cj 41 - Cixfx1)/VCix against Cyy ,

Plot 2: (Ci,k+1 = Cixfxz)/Cyx 2against Cyp
and to find out which one shows the most random behaviour. All
this should be done for every development year k for which we
have sufficient data points, say at least 6, i.e. for k < I-6.
Some experience with least squares residual plots is useful,
especially because in our case we have only very few data
points. Consequently, it is not always easy to decide whether a
pattern in the residuals is systematic or random. However, if
Plot 1 exhibits a nonrandom pattern, and either Plot 0 or Plot 2
does not, and if this holds true for several values of k, we
should seriously consider replacing the chain ladder age-to-age
factors fy, = £y with f,, or f,, respectively. The following

numerical example will clarify the situation a bit more.

6. Numerical Example

The data for the following example are taken from the
'Historical Loss Development Study', 1991 Edition, published by
the Reinsurance Association of America (RAA). There, we find on

page 96 the following run-off triangle of Automatic Facultative
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business in General Liability (excluding Asbestos &

Environmental) :

I G Gz Ci3 Cig Cis Cis Ci7 Cia Cio  Cio

| so02 8269 10907 11805 13539 16181 18009 18608 18662 18834
| 106 4285 5396 10666 13782 15599 15496 16169 16704
| 3410 8992 13873 16141 18735 22214 22863 23466
| 5655 11555 15766 21266 23425 26083 27067
i=5 | 1092 9565 15836 22169 25955 26180
!
I
|
[
!

i=6 1513 445 11702 12935 15852
i=7 557 4020 10946 12314

i=8 1351 6947 13112

i=¢ 3133 5395

i=10 2063

The above figures are cumulative incurred case losses in $ 1000.
We have taken the accident years from 1981 (i=1) to 1990 (i=10)
which is enough for the sake of example but does not mean that
we believe to have reached the ultimate claims amount after 10

years of development.

We first calculate the age-to-age factors £ = f according to
r

formula (2). The result is shown in the following table together

with the alternative factors f, according to (12) and fyo

according to (13):

| k=t k=2 k=3 k= k=5 k=6 k=7 k=8 k=9
|
!

fro | 2.217 1569 1.261 1162 1.100  1.041 1.032 1,016 1.009
|

frig | 2,999 1626 1277 1,972 1113 1,062 1.033 1.017 1,009
|

frz | 8.206 1.696 1.315 1,183  1.127  1.043 1.03% 1.018 1.009
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If one has the run-off triangle on a personal computer it is’
very easy to produce the plots recommended in Chapter 5 because
most spreadsheet programs have the facility of plotting X-Y
graphs. For every kK = 1, ..., 8 we make a plot of the amounts
Ci,k+1 (y-axis) of development year k+l1 against the amounts Cjy
{x-axis) of development year k for i =1, ..., 10-k, and draw a
straight line through the origin with slope f, ;. The plots for k
= 1 to 8 are shown in the upper graphs of Figures 1 to 8,
respectively. (All figures are to be found at the end of the
paper after the appendices.) The number above each point mark
indicates the corresponding accident year. (Note that the point
mark at the upper or right hand border line of each graph does
not belong to the plotted points (Cj,, Ci,k+1)' it has only been
used to draw the regression line.) In the lower graph of each of
the Figures 1 to 8 the corresponding weighted residuals

(Ci,k+1 - Cik)ﬁ/cik are plotted against Ciy for i=1,..., 10-k.

The two plots for k = 1 (Figure 1) clearly show that the
regression line does not capture the direction of the data
points very well. The line should preferably have a positive
intercept on the y-axis and a flatter slope. However, even then
we would have a high dispersion. Using the line through the
origin we will probably underestimate any future C;, if C;, is
less than 2000 and will overestimate it if C;, is more than
4000. Fortunately, in the one relevant case i = 10 we have C10,1

= 2063 which means that the resulting forecast Ci0.2 = €10,1%2 =
! 1
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2063:2.999 = 6187 is within the bulk of the data points plotted.
In any case, Figure 1 shows that any forecast of 010’2 is
associated with a high uncertainty of about +3000 or almost
+50% of an average-sized Ci,2 which subsequently is even
enlarged when extrapolating to ultimate. If in a future accident
year we have a value Cj, outside the interval (2000, 4000) it is
reasonable to introduce an additional parameter by fitting a
regression line with positive intercept to the data and using it
for the projection to C;,. Such a procedure of employing an
additional parameter is acceptable between the first two
development years in which we have the highest number of data

points of all years.

The two plots for k = 2 (Figure 2) are more satisfactory. The
data show a clear trend along the regression line and quite
random residuals. The same holds for the two plots for k = 4
(Figure 4). In addition, for both k = 2 and k = 4 a weighted
linear regression including a parameter for intercept would
yield a value of the intercept which is not significantly
different from zero. The plots for k = 3 (Figure 3) seem to show
a curvature to the left but because of the few data points we
can hope that this is incidental. Moreover, the plots for k = 5
have a certain curvature to the right such that we can hope that
the two curvatures offset each other. The plots for k = 6, 7 and
8 are quite satisfactory. The trends in the residuals for k = 7

and 8 have no significance in view of the very few data points.
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We need not to look at the regression lines with slopes f., or
fy, as these slopes are very close to fk (except for k=1). But
we should look at the corresponding plots of weighted residuals
in order to see whether they appear more satisfactory than the
previous ones. (Note that due to the different weights the
residuals will be different even if the slopes are equal.) The
residual plots for fy, and k = 1 to 4 are shown in Figures 9 and
10. Those for fy, and k = 1 to 4 are shown in Figures 11 and 12.
In the residual plot for fl,o (Figure 9, upper graph) the point
furthest to the left is not an outlier as it is in the plots for
f1,1 = fl (Figur 1, lower graph) and f1,2 (Figure 11, upper
graph). But with all three residual plots for k=1 the main
problem is the missing intercept of the regression line which
leads to a decreasing trend in the residuals. Therefore the
improvement of the outlier is of secondary importance. For k = 2
the three residuals plots do not show any major differences
between each other. The same holds for k = 3 and 4. The residual
plots for k = 5 to 8 are not important because of the small
number of data points. Altogether, we decide to keep the usual
chain ladder method, i.e. the age-to-age factors f) = fk,l'
because the alternatives fk,O or fk,z do not lead to a clear

improvement.
Next, we can carry through the tests for calendar year

influences (see Appendix H) and for correlations between

subsequent development factors (see Appendix G). For our example
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neither test leads to a rejection of the underlying assumption

as is shown in the appendices mentioned.

Having now finished all preliminary analyses we calculate the
estimated ultimate claims amounts Ci1 according to formula (1),
the reserves Ry = Cyp - ci,I+1—i and its standard errors (7).
For the standard errors we need the estimated values of akz

which according to formula (8) are given by

K 1 2 3 4 5 6 7 8 9

akz 27883 1109 691 61.2 119 40.8 1.34 7.88

A plot of ln(akz) against k is given in Figure 13 and shows that
there indeed seems to be a linear relationship which can be used
to extrapolate ln(ag2). This yields ag2 = exp(-.44) = .64. But
we use formula (9) which is more easily programmable and in the
present case is a bit more on the safe side: it leads to a,z =

1.34. Using formula (11) for s.e.(R) as well we finally obtain

ci,lo Ry s.e(ci'lc) = s.e.(Ri) s.e. (Ry)/R}
i=2 16858 154 206 134 %
i=3 24083 617 623 101 %
i=4 28703 1636 747 46 %
i=5 28927 2747 1469 53 %
i=6 19501 3649 2002 55 %
i=7 17749 5435 2209 41 %
i=8 24019 10907 5358 49 %
i=9 16045 10650 6333 59 %
i=10 18402 16339 24566 150 %
Overall 52135 26909 52 %
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{(The numbers in the 'Overall'~-row are R, s.e.(R} and s.e.(R)/R.)
For i = 2, 3 and 10 the percentage standard error (last column)
is more than 100% of the estimated reserve Ry. For i = 2 and 3
this is due to the small amount of the corresponding reserve and
is not important because the absolute amounts of the standard
errors are rather small. But the standard error of 150 % for the
most recent accident year i = 10 might lead to some concern in
practice. The main reason for this high standard error is the
high uncertainty of forecasting next year's value Ci0,2 3s was
seen when examining the plot of C;, against C;;. Thus, one year
later we will very likely be able to give a much more precise

forecast of clO,lO'

Because all standard errors are close to or above 50 % we use
the Lognormal distribution in all years for the calculation of
confidence intervals. We first calculate the upper 90%-
confidence limit (or with any other chosen percentage) for the
overall outstanding claims reserve R. Denoting by u and o2 the
parameters of the Lognormal distribution approximating the
distribution of R and using s.e.(R)/R = .52 we have 02 = ,236
(cf. (10)) and, in the same way as in Chapter 4, the 9%0th
percentile is exp(p + 1.280) = Reexp(l1.280-02/2) = 1.655:R =
86298. Now we allocate this overall amount to the accident years
i=2,..., 10 in such a way that we reach the same level of
confidence for every accident year. Each level of confidence

corresponds to a certain percentile t of the Standard Normal
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distribution and - according to Chapter 4 - the corresponding
percentile of the distribution of Ry is Rjexp(to; - °i2/2) with
aiz = 1ln(1 + (s.e.(Ri))z/Riz). We therefore only have to choose
t in such a way that

: 2

iiz Ri-exp(tai - 0;%/2) = 86298 .

This can easily be solved with the help of spreadsheet software
(e.g. by trial and error) and yields t = 1.13208 which

corresponds to the 87th percentile per accident year and leads

to the following distribution of the overall amount 86298:

upper confidence limit

Ry s.e. (Ry) /Ry 032 Ryexp(to;-0;2/2)
i=2 154 1.34 1.028 290
i=3 617 1.01 .703 1122
i=4 1636 .46 .189 2436
i=5 2747 .53 .252 4274
i=6 3649 .55 .263 5718
i=7 5435 .41 .153 7839
i=8 10907 .49 .216 16571
i=9 10650 .59 .303 17066
i=10 16339 1.50 1.182 30981
Total 52135 86298

In order to arrive at the lower confidence limits we proceed
completely analogously. The 10th percentile, for instance, of
the total outstanding claims amount is R-exp(-1.280-02/2) =
.477-R = 24871. The distribution of this amount over the

individual accident years is made as before and leads to a value

132



of t = ~.8211 which corresponds to the 21st percentile. This
means that a 87% -~ 21% = 66% confidence interval for each
accident year leads to a 90% - 10% = 80% confidence interval for
the overall reserve amount. In the following table, the
confidence intervals thus obtained for R; are already shifted
(by adding ci,I+1-i) to confidence intervals for the ultimate
claims amounts C;; (for instance, the upper limit 16994 for i=2
has been obtained by adding C,9 = 16704 and 290 from the

preceding table):

confidence intervals

Ci,10 for 80% prob. overall empirical limits
i= 16858 ( 16744 , 16994 ) ( 16858 , 16858 )
i=3 24083 ( 23684 , 24588 ) ( 23751 , 24466 )
i=4 28703 ( 28108 , 29503 ) ( 28118 , 29446 )
i=5 28927 { 27784 , 30454 ) ( 27017 , 31699 )
i=6 19501 ( 17952 , 21570 ) { 16501 , 22939 )
i=7 17749 { 15966 , 20153 ) { 14119 , 23025 )
i=8 24019 ( 19795 , 29683 ) ( 16272 , 48462 )
i=9 16045 ( 11221 , 22461 ) { 8431 , 54294 )
i=10 18402 ( 5769 , 33044 ) { 5319 , 839271 )

The column "empirical limits" contains the minimum and maximum
size of the ultimate claims amount resulting if in formula (1)
each age-to-age factor fy is replaced with the minimum (or

maximum) individual development factor observed so far. These

factors are defined by

fx,min = min { € }43/Cix | 1 £ i 5 Ik}

fy max = Max { Cf y41/Cjy | 1 <4 5 I-k}

and can be taken from the table of all development factors which
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can be found in Appendices G and H. They are

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

1.650 1.259 1.082 1.102 1.009 %93 1.026 1.003 1.009

fy max | %0.425 2.723  1.977 1.292 1.195 1.113  1.043  1.033  1.009
‘

In comparison with the confidence intervals, these empirical
limits are narrower in the earlier accident years i < 4 and
wider in the more recent accident years i > 5. This was to be
expected because the small number of development factors
observed between the late development years only leads to a
rather small variation between the minimum and maximum factors.
Therefore these empirical limits correspond to a confidence
probability which is rather small in the early accident years
and becomes larger and larger towards the recent accident years.
Thus, this empirical approach to establishing confidence limits

does not seem to be reasonable.

If we used the Normal distribution instead of the Lognormal we
had obtained a 90th percentile of R + 1.28+R-(s.e.(R)/R) =
1.661°R (which is almost the same as the 1.655:'R with the
Lognormal) and a 10th percentile of R - 1.28-R+(s.e.(R)/R) =
.34*R (which is lower than the .477-R with the Lognormal). Also,

the allocation to the accident years would be different.

Finally, we compare the standard errors obtained to the output

of the claims reserving software package ICRFS by Ben Zehnwirth.
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This package is a modelling framework in which the user can
specify his own model within a large class of models. But it
also contains some predefined models, inter alia also a ‘'chain
ladder model'. But this is not the usual chain ladder method,
instead, it is a loglinearized approximation of it. Therefore,
the estimates of the oustanding claims amounts differ from those
obtained here with the usual chain ladder method. Moreover, it
works with the logarithms of the incremental amounts Ci,k+1'Cik
and one must therefore eliminate the negative increment Cy 9™
Cz,s' In addition, c2’1 was identified as an outlier and was
eliminated. Then the ICRFS results were quite similar to the

chain ladder results as can be seen in the following table:

est. outst. claims amount Ry standard error

chain ladder ICRFS chain ladder ICRFS
i=2 154 394 206 572
i=3 617 825 623 786
i=4 1636 2211 747 1523
i=5 2747 2743 1469 1724
i=6 3649 4092 2002 2383
i=7 5435 5071 2209 2972
i=8 10907 11899 5358 6892
i=9 10650 14569 6333 9689
i=10 16339 25424 24566 23160
Overall 52135 67228 26909 28414

Even though the reserves Ry for i=9 and i=10 as well as the
overall reserve R differ considerably they are all within one
standard error and therefore not significantly different. But it

should be remarked that this manner of using ICRFS is not
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intended by Zehnwirth because any initial model should be
further adjusted according to the indications and plots given by
the program. In this particular case there were strong
indications for developing the model further but then one would

have to give up the 'chain ladder model’'.

7. Final Remark

This paper develops a rather complete methodology of how to
attack the claims reserving task in a statistically sound manner
on the basis of the well-known and simple chain ladder method.
However, the well-known weak points of the chain ladder method
should not be concealed: These are the fact that the estimators
of the last two or three factors £1, £1.1, fI-2 rely on very few
observations and the fact that the known claims amount Cp, of
the last accident year (sometimes CI—1,2' too) forms a very
uncertain basis for the projection to ultimate. This is most
clearly seen if Cry happens to be 0: Then we have Cir = 0, Ry =
0 and s.e.(Ry) = 0 which obiously makes no sense. (Note that
this weakness often can be overcome by translating and mixing
the amounts C;, of earlier accident years i < I into accident
year I with the help of a measure of volume for each accident

year.)

Thus, even if the statistical instruments developed do not

reject the applicability of the chain ladder method, the result
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must be judged by an actuary and/or underwriter who knows the
business under consideration. Even then, unexpected future
changes can make all estimations obsolete. But for the many
normal cases it is good to have a sound and simple method.
Simple methods have the disadvantage of not capturing all
aspects of reality but have the advantage that the user is in
position to know exactly how the method works and where its
weaknesses are. Moreover, a simple method can be explained to
non-actuaries in more detail. These are invaluable advantages

simple models over more sophisticated ones.
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Appendix A: Unbiasedness of Age-to-Age Factors

Proposition: Under the assumptions

(3) There are unknown constants fi, ..., fy.j; with
E(Ci,k+1[Ci1,---,Cix) = Cixfk, 1<i<I, 15ks<I-1.

(4) The variables {Cjj;, ..., Cjr} and {C§1s +-+, Cy1} oOf

different accident years i # j are independent.

the age-to-age factors f3, ..., f1-3 defined by
I-k I-k

(2) fx = & Cy,x+1/ % Cjk , 1 5k g I-1,
1=1 J=1

are unbiased, i.e. we have E(fx) = fx, 1 < k < I-1.

Proof: Because of the iterative rule for expectations we have
(A1) E(fx) = E(E(fx|Bx))
for any set Bk of variables Cjj assumed to be known. We take
By = { Cij | i+3 s 1+1, § s x } , 1 <k <€ I-1.

According to the definition (2) of fx and because Cik, 1 < j <
I-k, is contained in Bk and therefore has to be treated as
scalar, we have

I-k I-k
(A2)  E(fx|Bx) = T E(Cj,k+1|Bx) / T Cjk -

=1 J=1
Because of the independence assumption (4) conditions relating
to accident years other than that of Cj, x+1 can be omitted, i.e.
we get
(A3)  E(Cj,k+1[Bk) = E(C3y,k+1/Cj1,---,Cjk) = Cyxfx

using assumption (3) as well. Inserting (A3) into (A2) yields
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k I-k
cjkfk / 'Z Cik = fx -
1 J=1

I_

(a4)  E(fx|Bx) = I

Finally, (Al) and (A4) yield
E(fx) = E(fx) = fx

because fx is a scalar.
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Appendix B: Minimizing the Variance of Independent Estimators

Proposition: Let T3, ..., Tr be independent unbiased estimators
of a parameter t, i.e. with

E(T§) =t , 1<i

A
A

I,

then the variance of a linear combination

(o)

T = 2 wiTj
i=1

under the constraint

(B1) wi =1

1

WM

i
(which guarantees E(T) = t) is minimal iff the coefficients wj
are inversely proportional to Var(T;), i.e. iff

wi = ¢/Var(Ti} , 1 <1< I,

Proof: We have to minimize

I

var(T) = Z wizvar(Ti)

i=1
(due to the independence of T;, ..., Ty) with respect to wj
under the constraint (Bl). A necessary condition for an extremum
is that the derivatives of the Lagrangian are zero, i.e. that

I I

(B2) — ( T wi®var(Ti) +A1 ~-Twj)) =0, 1
dwy i=1 i=1

IA
-
IA

I,

with a constant multiplier A whose value can be determined by
additionally using (Bl). (B2} yields
2wivVar(Ti) = A =0

or
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wi = A/ (2-Var(Ti)) .
These weights wj indeed lead to a minimum as can be seen by
calculating the extremal value of Var(T) and applying Schwarz's

inequality.

Corrollary: In the chain ladder case we have estimators T; =

Ci,k+1/Cik, 1 < i < I-k, for fx where the variables of the set

I-k

Ag = { Ci1, -+-, Cix }
=1

[ S

of the corresponding accident years i =1, ..., I~k up to
development year kX are considered to be given. We therefore want
to minimize the conditional variance
I-k
Var( T wiTj|Ax) .
1=1
From the above proof it is clear that the minimizing weights
should be inversely proportional to Var(Tj|Ax). Because of the
independence (4) of the accident years, conditions relating to
accident years other than that of Tj = Cj k+1/Cik can be
omitted. We therefore have
Var(Tj|Ak) = Var(Cj,k+1/Cik|Ci1,--+,Cik)
and arrive at the result that

the minimizing weights should be

inversely proportional to Var(Cj, x+1/Cik|Cii,---,Cik)-
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Appendix C: Unbiasedness_of the Estimated Ultimate Claims Amount

Proposition: Under the assumptions

{3) There are unknown constants £;, ..., fy.1 with
E(Cj,k+1/Ci1,---,Cik) = Cixfk, 1<is<I, 1<k¢«<I-l.

(4) The variables {Cjj, ..., Cjr} and {C4y1, ..., C4yr} of
different accident years i # j are independent.

the expected values of the estimator

(1) Ci1 = Ci,1+1-ifi41-i"---"f1-1

for the ultimate claims amount and of the true ultimate claims

amount Cjt are equal, i.e. we have E(Cjy) = E(Cir), 2 £ i 5 I.

Proof: We first show that the age-to-age factors fyx are
uncorrelated. With the same set
Bx = { Cij | i+ = 1+1, 3 <k } , 1 <kzx< I-1,

of variables assumed to be known as in Appendix A we have for J

< k
E(f4fx) = E(E(f£5fx|Bx)) ()
= E(f4E(fx|Bx)) (b)
= E(f4£x) (e)
= E(f§)fx (d)
= £yfx . (e

Here (a) holds because of the iterative rule for expectations,
(b) holds because 4 is a scalar for Bk given and for j < k, (c)
holds due to (A4), (d) holds because fx is a scalar and (e) was

shown in Appendix A.
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This result can easily be extended to arbitrary products of
different fx's, i.e. we have

(C1) E(fre1-i----°fx-1) = £i47-4*+..f1-1 .

This yields

[l

E{Ci1) E(E(Cir|Ci1,s.--,Ci, 1+1~1)) (a)
= E(E(Cj,1+1-1fT42~4i"--- f1-2{Ci1,.-+,Ci,1+1-1)) (D)

= E(Ci,1+1~iB(fr42~i-++f1-2|Ci1s.--,Ci, T41-1)) (€)

= E(Cj,1+1-iE{fI41-i"-. - f1-1)) (d)
= E(Cj,14+1-1i) ‘E(fr41-4-----f1-1) (e)
= E(Ci,T+1-1) "fr+1~j* .- f1-1 . ()

Here (a) holds because of the iterative rule for expectations,
(b) holds because of the definition (1) of Ci1, (c) holds
because Ci,I+1-i is a scalar under the stated condition, (d)
holds because conditions which are independent from the
conditioned variable f141-i°...'f3-1 can be omitted (observe
assumption (4) and the fact that f143-4, ..., f1r-1 only depend
on variables of accident years < i), (e) holds because E(f141-

i*+.."fr.1) is a scalar and (f) holds because of (Cl1).

Finally, repeated application of the iterative rule for
expectations and of assumption (3) yields for the expected value

of the true reserve Cjp

E(Cin)

E(E(Ci1|Ci1/+--+Ci,1-1))
= E(Cj,1-1f1-1)

= E(Ci,r-1)f1-1

E(E(Ci,1-1/Ci1/+++,C1-2))f1-2
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E(Ci,1-2f1-2)f1-1
E(Ci,1-2)f1-2f1-1

etc,

E(Ci, 1+1-1) f1+1-4i°+- - f1-1

E(Cir) -



Appendix D: Calculation of the Standard Error of Cjr

Proposition: Under the assumptions

(3) There are unknown constants £y, ..., fy-1 with
E(Cj,k+1/Ci1,-+-,Cik) = Cikfx, 1sis<I, 15ksgI-1.

(4) The variables {Ci{;, ..., Cjir} and {Cy1r oo Cyr1} of
different accident years i # j are independent.

(5) There are unknown constants @3, ..., @y.; with
Var(Ci,k+1/Ci1,-+-,Cik) = Cikox®, 1<isI, 1<ksI-L.

the standard error s.e.(Cjy) of the estimated ultimate claims

amount €41 = Cj, I+1-ifr+1-i'.-.*f1-1 is given by the formula

I-1  ax? 1 1

2
(sce.(cyp))?®=¢€i1 T —5 (——+—)
k=I+1-i fy cix I-k

where Cijx = Cj, 1+1-ifI+1-i°°"fx-1 , k > I+1-i, are the estimated

values of the future Cjx and Cj, 741~ = Ci,I+1-i-

Proof: As stated in Chapter 4, the standard error is the square
root of an estimator of mse(Cjy) and we have also seen that
(D1) mse(Ciy) = Var(Ciz|D) + (E(cir|p) - cin? .
In the following, we use the abbreviations

Ei(X) = E(X|Ci1, .-+, Ci,I+1-i)

Varj(X) = Var(X|Ci1, ..., Ci,I+1-1) -
Because of the independence of the accident years we can omit in
(D1) that part of the condition D = { Cjx | i+k < I+1 } which is
independent from Cjy, i.e. we can write

(D2) mse(Ciy) = Varj(Ciy) + (Ei(Cir) - €ir)? .
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We first consider Varj(Ciy). Because of the general rule Var(X)
= E(x%) - (E(X))2 we have

(D3)  Vari(Cir) = Ei(Cir®) - (Ei(cip))? .

For the calculation of Ej(Cjy) we use the fact that

for k 2 I+1-i

(D4)  Ei(Ci,x+1)

[

Ej (E(Ci,k+1]Ci1, ++++ Cix))
Ej (Cixfxk)

Ej (Cix)fx -

Here, we have used the iterative rule for expectations in its
general form E(X|2) = E(E(X|Y)lz) for (Y} O {2} (mostly we have
{Z} = &) . By successively applying (D4) we obtain for k 2 I+1-i
{(DS)  Ei{Ci,k+1) = Ei(Ci, 1+1-i)fr+1-i".--°Tx

= Ci, 1+1-ifr+1-i--.fx

because Cj, r+1-i is a scalar under the condition 'j'.

For the calculation of the first term Ei(CiIz) of (D3) we use

the fact that for k 2 I+1-i

(D6)  Ej(Ci,k+1%) = Ei(E(Ci,k+1%[Ci1s +--/ Cik) (a)
= Ej( Var(Cj k+1/Ci1, ..., Cik) + (b)

+ (E(Ci,k+11Ci1s «++ cix))?)
= Ei( Cikax® + (Cikfx)? ) ()

= Ej(Cix)ax® + Ej(Cik?)fx? -
Here, (a) holds due to the iterative rule for expectations, (b}
due to the rule E(XZ) = Var(X) + (E(X))2 and (c) holds due to
(3) and (5).
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Now, we apply (D6) and (D5) successively to get

(D7)  Ej(Cijr?) = Ei(Ci,I-l)aI-12 + Ei(ci,I-lz)fI-lz (D8)
= Ci,1+1-1f1+1-1"'fI-201-12 + (D3)
+ Ei(ci,x-z)a1-22f1-12 + (D6)

. 2
+ Ei(cl,I-Zz)fI'Z £1-12

- o 2
= Cj,1+1-1f141-1""fI-207-1° +

+ Ci,I+1-1fI+1-l"'fI-3“I-22fI-12 + (D5)
+ Ei(Ci,1-3)¢1-32f1-22f1-12 + (Ds6)
+ Ei(ci,I-32)fI-32fI—22fI-12
= etc.
It 2 2 2
= Ci,1+1-1 T fren-icccfr-10k“fr+1”c o f1-1
k=I+1-1

2 ,2 2
+ Ci,1+1-1“fr41-4%"-+ . o121

where in the last step we have used Ei(ci,I+i-i) = Cj,r+1-i and
Ei(ci,I+1-i2) = Ci,I+1-iz because under the condition ';'

Ci,1+1-i is a scalar.

Due to (D5) we have

2
2'...‘f1-1 .

(D8)  (Ei(Ciz))? = ci,141-if141-1
Inserting (D7) and (D8) into (D3) vyields
I-1
(D9) Varj(Ciy) = Ci, 1+1-i z £re1-i- e Ex-10k2fke1?e - £1-12
k=I+1-i
We estimate this first summand of mse(C3iy) by replacing the
unknown parameters fy, akz with their unbiased estimators fx and
akz, i.e. by
I-1

2 2 2
(D10)  Ci,1+41-i T fr41=i- - fx-1°0x'fx41-"'f1-1 =
k=I+1-1i
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2 2 2 I-1 ax?/fx?
= Ci,1+1-ifr+1-i*""f1-1 z
k=I+1-1 Cj 1+1-if141-i’" fx-1

2 I-1  a?/eg?

= ciI z —_—

k=I+1-i Cix

where we have used the notation Cjx introduced in the
proposition for the estimated amounts of the future Cjk, k >

I+i-i, including Cj, 141~ = Ci,T+1-i-

We now turn to the second summand of the expression (D2) for
mse(Cjy). Because of (D5) we have
Ej(Ci1) = Ci,1+1-ifr+1-i°---"f11
and therefore
(b11) (Ei(Cip) - €ip)? =
= Cj,1+1-i%(Exe1-iv---£1-1 = fr4a-iv----f1-1)% .
This expression cannot simply be estimated by replacing fy with
f)x because this would yield 0 which is not a good estimator
because fy43-i*.-. f1-1 generally will be different from
f141-i°*.-.°f1-1 and therefore the squared difference will be
positive. We therefore must take a different approach. We use
the algebraic identity
F=fry1-i*-ef1-1 = fr41-i"--."f1-1
= St4+1-i *+ +.. + S1-1
with
Sk = f141-4°-+- Lfx-1fkfk+1r+e. L1y -
i S CE T RERERSS T2 IS RRRTRE 5 251
= frer-4ce- - Ix-1 (Ex-fx) fk+yve-- " f1-y -
This yields
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F2 = (Sp41-i + ... + S7-1)2
I-1
= £ s¢? + 2 T S48 .
k=I+1-1 j<k

where in the last summation j and k run from I+i-i to I-1. Now
we replace Sy? with E(Sk?|Byx) and S48k, 3 < k, with E(S4Sk|Bx).
This means that we approximate Skz and 548k by varying and
averaging as little data as possible so that as many values Cjk
as possible from data observed are kept fixed. Due to (A4) we
have E(fx-fx|Bx) = 0 and therefore E(S4Sk|Bx) = 0 for j < k

because all fy, r < k, are scalars under Byx. Because of

(D12) E((fx-fx)2|Bx) = Var(fyx|By)
I-k I-k 5
= I Var(Cj,k+1|Bkx)/( T Cjk)
j=1 j=1
I-k I-k

= Var(cj,k+1lCi1,---/C3x) /(2 C0?
j=1 j=1

I-k 2 I-k )
= T Cyxax® / ( T Cyx)
j=1 j=1
, Ik
= ax® / T Cyx
=1

we obtain

2 2 2 22 2 I-k
E(Sk°|Bx) = fr4i1-i°"-fx-gokfr+1 - fr-1 / jzlcjk .

Taken together, we have replaced F2 = (= Sk)2 with zkE(sk2|Bk)
and because all terms of this sum are positive we can replace

all unknown parameters fy, ukz with their unbiased estimators
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fx, ax’. Altogether, we estimate FZ = (fr41-j+...-fy.q -
fr41-i*--- f1-1)° by

I-1 2 2 2 2 2 I-k
T (fr41-i - fx-p ok fxe1r- f1-1 / I Cyx ) =
k=I+1-i J=1

I-1 akz/sz

2 2
Rt W
= -1 -

I Cyk
j=1
Using (D11), this means that we estimate (Ej(Cj1) - ciI)2 by

2 2 2 I-1  ag?/fy?
(D13) €, 1+1-ifr41-i"--- fI-1 I = =
k=I+1-i I-k

Z Cyk
j=1
2 I-1 ax?/fy?
= ciI b [ —
k=I+1-1i I-k
Z Cix
=1

From {(D2), (D10) and (D13) we finally obtain the estimator

(S-e~(ciI))2 for mse(Cjy) as stated in the proposition.
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Appendix E: Unbiasedness of the Estimator akz

Proposjtion: Under the assumptions
(3) There are unknown constants f3, ..., fr-i with
E(Cji k+11Ci1,--+/Cikx) = Cixfx, 1< i<I, 1skgI-1.
(4) The variables {Cj3, ..., Ciy} and {C41+ ++++ Cy1} of
different accident years i # j are independent.
(5) There are unknown constants a1, ..., @¢r-3 with
var(Ci k+11Ci1s---,Cik) = Cikex?, 1 si<I, 15k s I-1.

the estimators

. Jk
I-k-1 j=1 Cyk
of akz are unbiased, i.e. we have

E(ag?) = ax? , 1<k s I-2.

Proof: In this proof all summations are over the index j from

j=1 to j=I-k. The definition of akz can be rewritten as

(E1)  (I-k-1)ay? 2,

L ( C§,x+12/C4k - 2+C§ k+1fx + Cikfx
=T ( ¢§,x+1%/Cjk ) - T ( Cikfx? )

using ZCj, k+1 = LxEIC4k according to the definition of fx. Using
again the set

Bx = { Cij | i+3 < I+1, j £ k }
of variables Cjj assumed to be known, (E1) yields
(E2)  E((I-k-1)ax?|Bx) = T E(Cj,x+12|Bx)/C3kx - = C3kE(fx?|Bk)
because C4ix is a scalar under the condition of Bg being known.
Due to the independence (4) of the accident years, conditions

which are independent from the conditioned variable can be
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omitted in E(Cj'k+12|Bk), i.e.

(E3)  E(C5,k+12IBx) = E(S5,k+121C§1,s -/ Cjk)

Var(Cj,k+11Cj1,++++Cik) *+ (E(C§,k+1]Cj1,+--,Cik))2

cikak? + (Cyxfx)?
where the rule E(xz) = Var(X) + (E(X))2 and the assumptions (5)

and (3) have also been used.

From (D12) and (A4) we gather

(E4) E(fx?|Bx) = Var(fx|Bx) + (E(fx|Bx))?

ax? / Tojk + £x2 .
Inserting (E3) and (E4) into (E2) we obtain
E((I-k-1)ax?|By) =

I-k 5 " I-k , 1
Z ( ax® + Cykfx® ) - T ( Cykak®/ T
=1

-k
j:l j=

1Cjk + Cjkfk2 )

2

(I-k)ax? - ax
= (I-k-1)ay?

From this we immediately obtain E(ax?|By) = ayx? .

Finally, the iterative rule for expectations yields

E(ax?) = E(E(ax?|Bx)) = Efagx?) = ax? .
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Appendix F: The Standard Error of the Overall Reserve Estimate

Proposition: Under the assumptions
(3) There are unknown constants £y, ..., fr.3 with
E(Cj k+11Ci1s-++,Cik) = Cixfx, 1s1<I, 1<k s I-1.
(4) The variables {Cj3, ..., Ci1} and {C31, --++ €41} of
different accident years i # j are independent.
(5) There are unknown constants o3, ..., ar-1 with
var(Cj k+1/Ci1,+-+,Cix) = Cixax®, 1si<I, 1x5ks I-1.
the standard error s.e.{R} of the overall reserve estimate
R=Rz + ... + Ry

is given by

) I ) I I-1  2ax?/fx?
{s.e.(R))° = = (s.e.(R3)° + Ci3( I Cji1) = —_—
i=2 j=i+1 k=I+1-i 1I=-k
Z Cnk
n=1

Proof: This proof is analogous to that in Appendix D. The
comments will therefore be brief.

We first must determine the mean squared error mse(R) of R.
Using again D = { Cjx | i+k £ I+1 } we have

T I I
(F1) mse{ £ Ry) = E(( T Rj - £ Rj)?|D)
i=2 i=2 ©  i=2

1 1
= E(( T C31 - £ Ci1)2|D)
i=2 i=2
I I I 2
= Var( T Cir|D) + ( E( £ Cir|D) - £ €41 )
i=2 i=2 i=2

The independence of the accident years yields

153



I I
(F2) Var(_ZZCiIID) = I var(Cir|Cii, ---, Ci,I+1-i)
1= 1=2

whose summands have been calculated in Appendix D, see (D9).

Furthermore

I
cir )% = (T ( E(cir|p) - c41) )2 =
i 1=2

It &4 -

I
(F3)  ( E( T Cjr|D) -
1=2 2

= E {E(ci1]D) - ci1)(E(Cyx|D) - €31)
2<i, 3<I

= I Ci 141-iCj,1+1-3FiFjy
2<1,3<I

I

R Ly 2 . s Cx F:iFz
2 (Ci,1+41-iF{)° + 2 £ Cj 1+41-iC,1+1-3FiFy
i=2 i<j

with (like in (D11))

Fi = fr41-1°*f1-1 - f141-i°"°f1-1
which is identical to F of Appendix D but here we have to carry
the index i, too. In Appendix D we have shown (cf. (D2) and
(D11)) that

mse(Rj) = Var(Cjir|Cji1,-..,Ci,1+1-i) + (Ci,I+1—iFi)2 .

Comparing this with (F1), (F2) and (F3) we see that

I I
(F4) mse( £ Rj) = T mse(Rj) + z 2°Ci,1+1-iC3,1+1~-3FiF3.
i=2 i=2 2<i<is<I

We therefore need only develop an estimator for FiFj. A
procedure completely analogous to that for F2 in the proof of

Appendix D yields for F;jF4, i<j, the estimator
I-k

I-1 2 2 2.2 2
Z fr41-j°cfr-ifrer-icccfx-10xfx+1 - f1-1/ Z Cnk .
k=I+1-1 n=1

which immediately leads to the result stated in the proposition.
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Appendix G: Testing for Correlations betwee ent

Development Factors

In this appendix we first prove that the basic assumption (3) of
the chain ladder method implies that subsequent development
factors Cjg/Cj k-1 and Cj k+1/Cix are not correlated. Then we
show how we can test if this uncorrelatedness is met for a given
run-off triangle. Finally, we apply this test procedure to the

numerical example of Chapter 6.

Proposition: Under the assumption

(3) There are unknown constants fj, ..., fr-1 with
E(Ci,k+11Ci1s+-+,Cix) = Cixfx, 1sisI, 15ksI-1.

subsequent development factors Cjx/Cj, k-1 and Cj, x+1/Cikx are

uncorrelated, i.e. we have (for 1 £ i £ I, 2 £ k £ I-1)

Cik Ci,k+1 Cix Ci,k+1
— ) = E( ) ~E( ) -

Ci,x-1 Cik Ci,k-1 Cik

E(

Proof: For j < k we have

(G1) E(Ci,k+1/Cij) = E(E(ci,k+1/cij[cil,...,cik)) (a)
= E(E(Ci,k+11Ci1/.--/,Cik) /Ci5) (b)
= E{Cijxfx/Cij) (c)
= E(Cix/Cij)fx - (d)

Here equation (a) holds due to the iterative rule E(X) =
E(E(X|Y)) for expectations, (b) holds because, given Cits ooy
Cikx, Cij is a scalar for j < k, (¢) holds due to (3) and (d)

holds because fx is a scalar.
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From (Gl) we obtain through the specialization j = k
(G2)  E(Cji,x+1/Cik) = E(Cik/Cik}fx = fx
and through j = k-1

Cik .Ci,k+1 ) B( Ci,k+1 : (gl) Cik

E( —— )£k .
Ci,k-1 Cix Ci,k-1 Ci, k-1

(63)  E(

Inserting (G2) into (G3) completes the proof.

Designing the test procedure:

The usual test for uncorrelatedness requires that we have
identically distributed pairs of observations which come from a
Normal distribution. Both conditions are usually not fulfilled
for adjacent columns of development factors. (Note that due to
(G2) the development factors Ci,k+1/Cikr 1 i< I-k, have the
same expectation but assumption (5) implies that they have
different variances.) We therefore use the test with Spearman's
rank correlation coefficient because this test is distribution-
free and because by using ranks the differences in the variances
of Cj x+1/Cik, 1 £ i s I-k, become less important. Even if these
differences are negligeable the test will only be of an
approximate nature because, strictly speaking, it is a test for
independence rather than for uncorrelatedness. But we will take
this into account when fixing the critical value of the test

statistic.
For the application of Spearman's test we consider a fixed

development year k and rank the development factors Cj k+1/Cik

observed so far according to their size starting with the
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smallest one on rank one and so on. Let rjkx, 1 £ i £ I-k, denote
the rank of Cj x+1/Cjx obtained in this way, 1 £ rjk < I-k. Then
we do the same with the preceding development factors
Cik/Ci, k-1, 1 < i s I-k, leaving out Cyij-k,k/Cr+i-k, k-1 fOF
which the subsequent development factor has not yet been
observed. Let syyx, 1 € i £ I-k, be the ranks obtained in this
way, 1 £ sjx < I-k. Now, Spearman's rank correlation coefficient
Tk is defined to be
I-k

(G4) Tk=1-6 I (rig- sik)? / ((1-k)3-I+k)
From a textbook of Mathematical Statistics it can be seen that

“1 £ Ty £ +1 ,
and, under the null-hypothesis,

E(Tx) = 0,

Var(Tk) = 1/(I-k-1) .
A value of Tk close to 0 indicates that the development factors
batween development years k-1 and k and those between years k

and k+1 are not correlated. Any other value of Ty indicates that

the factors are (positively or negatively) correlated.

For a formal test we do not want to consider every pair of
columns of adjacent development years separately in order to
avoid an accumulation of the error probabilities. We therefore
consider the triangle as a whole. This alsc is preferable fronm a
practical point of view because it is more important to know
whether correlations globally prevail than to find a small part

of the triangle with correlations. We therefore combine all
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values Ty, T3, ..., Ti-2 obtained in the same way like Ty.
(There is no T; because there are no development factors before
development year k=1 and similarly there is also no Ty; even
Tr-1 1s not included because there is only one rank and
therefore no randomness.) According to Appendix B we should not
form an unweighted average of T3, ..., Ty-z but rather use
weights which are inversely proportional to Var(Ty)} = 1/(I-k-1).
This leads to weights which are just equal to one less than the
number of pairs (rjx, Sik) taken into account by Ty which seenms

very reasonable.

We thus calculate

I-2 I-2
(65) T = T (I-k-1)Tx / = (I-k-1)
=2 k=2
I-2 I-k-1
= L — T,
k=2 (I-2)(I-3)/2
1-2
E(T) = = E(Tx) =0 ,
k=2
I-2 I-2
(G6) Var(T) = = (I-k-1)2 var(Tg) / ( £ (I-k-1) )2
k=2 k=2
I-2 I-2
= ¥ (I-k-1) / ( = (I-k-1) )2
k=2 x=2

1
(I-2) (I-3)/2
where for the calculation of Var(T) we used the fact that under
the null-hypothesis subsequent development factors and therefore

also different Tk's are uncorrelated.
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Because the distribution of a single Tx with I-k 2 10 is Normal
in good approximation and because T is the aggregation of
several uncorrelated Tyx's (which all are symmetrically
distributed around their mean 0) we can assume that T has
approximately a Normal distribution and use this to design a
significance test. Usually, when applying a significance test
one rejects the null-hypothesis if it is very unlikely to hold,
e.g. if the value of the test statistic is outside its 95%
confidence interval. But in our case we propose to use only a
50% confidence interval because the test is only of an
approximate nature and because we want to detect correlations
already in a substantial part of the run-off triangle.
Therefore, as the probability for a Standard Normal variate
lying in the interval (-.67, .67) is 50% we do not reject the
null-hypothesis of having uncorrelated development factors if

.67 .67
T <

- + .
V((I-2)(I-3)/2) V((1-2)(I-3)/2)

If T is outside this interval we should be reluctant with the

application of the chain ladder methocd and analyze the

correlations in more detail.

Application to the example of Chapter 6:
We start with the table of all development factors:
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Fq Fy Fj3 Fy4 Fg Fg Fo Fg Fg
i=1 1.6 1.32 1.08 1.15 1.20 1.11 1.033 1.00 1.01
i=2 40.4 1.26 1.98 1.29 1.13 0.99 1.043 1.03
i=3 2.6 1.54 1.16 1.16 1.19 1.03 1.026
i=4 2.0 1.36 1.35 1.10 1.11 1.04
i=5 8.8 1.66 1.40 1.17 1.01
i=6 4.3 1.82 1.11 1.23
i=7 7.2 2,72 1,12
i=8 5.1 1.89
i=9 1.7

As described above we first rank column F; according to the size
of the factors, then leave out the last element and rank the
column again. Then we do the same with columns F, to Fg. This

yields the following table:

Til Si2 ¥i2 Si3 ¥i3 Si4 Ti4 Sis5 Ti5 Sie rie Si7 ri7 Sig ris

1 1 2 2 1 1 2 2 5 4 4 3 2

9 8 1 1 7 6 6 S 3 2 1 1 3 2
4 3 4 4 4 3 3 3 4 3 2 2

3 2 3 3 5 4 1 1 2 1 3

8 7 5 5 6 S 4 4 1

5 4 6 6 2 2 5

7 & 8 7 3

6 5 7

2

We now add the squared differences between adjacent rank columns
of equal length, i.e. we add (sjx - rik)2 over i for every k, 2
< k £ 8. This yields 68, 74, 20, 24, 6, 6 and 0. (Remember that
we have to leave out X = 1 because there is no sj;, and k = 9

because there is only one pair of ranks and therefore no
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randomness.) From these figures we obtain Spearman's rank

correlation coefficients Tx according to formula (G4):

k 2 3 4 5 6 7 8
Ty 4/21 -9/28 3/7 -1/5 2/5 -1/2 1
I-k-1 7 6 5 4 3 2 1

The (I-k-1)-weighted average of the Ty's is T = .070 (see
formula (GS)). Because of Var(T) = 1/28 (see (G6)) the 50%
confidence limits for T are +.67/V28 = .127. Thus, T is within
its 50%-interval and the hypothesis of having uncorrelated

development factors is not rejected.
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Appendix H: Testing for Calendar Year Effects

One of the three basic assumptions underlying the chain ladder
method was seen to be assumption (4) of the independence of the
accident years. The main reason why this independence can be
violated in practice is the fact that we can have certain
calendar year effects such as major changes in claims handling
or in case reserving or external influences such as substantial
changes in court decisions or inflation. Note that a constant
rate of inflation which has not been removed from the data is
extrapolated into the future by the chain ladder method. In the
following, we first generally describe a procedure to test for

such calendar year influences and then apply it to our example.

Designing the test procedure:
A calendar year influence affects one of the diagonals
Dj = { lel cj-l,21 ey czlj-ll clj } o 1l < j < I,
and therefore also influences the adjacent development factors
Ry = { C32/€j1, €3-1,3/C3-1,2¢ -+ C1,3+2/C15 }
and
Aj-1 = { Cj-1,2/C%§-1,2+ ©§-2,3/Cj-2,2+ ---+ C15/C1,3-1 1}
where the elements of D4y form either the denominator or the
numerator. Thus, if due to a calendar year influence the
elements of Dj are larger (smaller) than usual, then the
elements of Aj.; are also larger (smaller) than usual and the

elements of Aj are smaller (larger) than usual.
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Therefore, in order to check for such calendar year influences
we only have to subdivide all development factors into ‘'smaller!
and 'larger' ones and then to examine whether there are
diagonals where the small development factors or the large ones
clearly prevail. For this purpose, we order for every k, 1 £ Xk g
I-1, the elements of the set

Fx = { Cj,k+1/Cix | 1 i <I~k},
i.e. of the column of all development factors observed between
development years k and k+1, according to their size and
subdivide them into one part LFx of larger factors being greater
than the median of Fx and into a second part SFix of smaller
factors below the median of Fix. (The median of a set of real
numbers is defined to be a number which divides the set into two
parts with the same number of elements.) If the number I-k of
elements of Fx is odd there is one element of Fx which is equal
to the median and therefore assigned to neither of the sets LFy
and SFy; this element is eliminated from all further

considerations.

Having done this procedure for each set Fg, 1 £ k < I-i, every
development factor observed is

- either eliminated (like e.g. the only element of Fr.y)

- or assigned to the set L = LFy + ... + LF1.; of larger factors
- or assigned to the set S = SF] + ... + SFy-; of smaller
factors. In this way, every development factor which is not

eliminated has a 50% chance of belonging to either L or S.
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Now we count for every diagonal Aj, 1 £3Jj g I-1, of development
factors the number Lj of large factors, i.e. elements of L, and
the number Sj of small factors, i.e. elements of S. Intuitively,
if there is no specific change from calendar year j to calendar
year j+1, Aj should have about the same number of small factors
as of large factors, i.e. L4y and S5 should be of approximately
the same size apart from pure random fluctuations. But if Ly is
significantly larger or smaller than 54 or, equivalently, if
25 = min(Lj, S4) ,
i.e. the smaller of the two figures, is significantly smaller

than (Lj+sj)/2, then there is some reason for a specific

calendar year influence.

In order to design a formal test we need the first two moments
of the probability distribution of Zj under the hypothesis that
each development factor has a 50 % probability of belonging to
either L or S. This distribution can easily be established. We
give an example for the case where Lj+sj = 5, i.e. where the set
A4y contains 5 development factors without counting any

eliminated factor. Then the number Lj has a Binomial

distribution with n S and p = .5, i.e.

n 1 5
prob(Lj =m) = (m) ;ﬁ = (m) ;3 , m=90,1, ..., 5.
Therefore
prob(Sj = 5) = prob(Lj = 0) = 1/32 ,
prob(Sj = 4) = prob(Lj = 1) = 5/32 ,



prob(Sj = 3) = prob(Lj = 2) = 10/32 ,
prob(Sj =2) = prob(Lj = 3) = 10/32 ,
prob(Sj =1) = prob(Lj = 4) = 5/32 ,
prob(sy = 0) = prob(Lj =5) = 1/32 .
This yields
prob(Zj = 0) = prob(Lj = 0) + prob(5y = 0) = 2/32 ,
prob(zj = 1) = prob(Lj = 1) + prob(Sj = 1) = 10/32 ,
prob(Zj = 2) = prob(Lj = 2) + prob(Sj = 2) = 20/32 ,

E(Z§) = (0+2 + 1-10 + 2-20)/32 = 50/32 ,
E(Z42) = (0-2 + 1-10 + 4-20)/32 = 90/32 ,

var(z4) = E(24%) - (E(2§))2 = 95/256

The derivation of the general formula is straightforward but
tedious. We therefore give only its result. If n = Ly+Sy and m =

{(n-1)/2] denotes the largest integer < (n-1)/2 then

n
(H1)  E(34) =

[ S]]
L]
—
~
-

n(n-1) n-1 n(n-1)
(H2) Var(24) = —— - (

It
|

: ) Sa *E(Z) - (BE? .

It is not advisable to test each Zj separately in order to avoid

an accumulation of the error probabilities. Instead, we consider
2 =123 + ... * 2141

where we have left out 2Z; because A; contains at most one

element which is not eliminated and therefore 2; is not a random

variable but always = 0. Similarly, we have to leave out any

other 24 if L4+S4y < 1. Because under the null-hypothesis

different Z4's are (almost) uncorrelated we have
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E(2) = E(Z2) + ... + E(21-1) ,

Var(z) = Var(2Z;) + ... + Var(2r-1)
and we can assume that Z approximately has a Normal
distribution. This means that we reject (with an error
probability of 5 %) the hypothesis of having no significant
calendar year effects only if not

E(Z) - 2-VVar(2Z) < 2 < E(2) + 2-VVvar(z) .

Application to the example of Chapter 6:

We start with the triangle of all development factors observed:

Fq Fy Fq Fa Fg Fg Fy Fg Fg
i=1 1.6 1.32 1.08 1.15 1.20 1.11 1.033 1.00 1.01
i=2 40.4 1.26 1.98 1.29 1.13 0.99 1.043 1.03
i=3 2.6 1.54 1.16 1.16 1.19 1.03 1.026
i=4 2.0 1.36 1.35 1.10 1.11 1.04
i=5 8.8 1.66 1.40 1.17 1.01
i=6 4.3 1.82 1.11 1.23
i=7 7.2 2.72 1.12
i=8 5.1 1.89
i=9 1.7

We have to subdivide each column Fy into the subset SFy of
'smaller' factors below the median of Fy and into the subset LFy
of 'larger' factors above the median. This can be done very
easily with the help of the rank columns rjx established in
Appendix G: The half of factors with small ranks belongs to SFy,
those with large ranks to LFx and if the total number is odd we

have to eliminate the mean rank. Replacing a small rank with
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'S', a large rank with 'L' and a mean rank with **' we obtain

the following picture:

J=1 §=2 3=3 j=4 j=5 j=6 =7 j=8 j=9

MW
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[ o B T ¥ B o B ]

0w e *
ot ot
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O

We now count for every diagonal Ay, 2 2 j € 9, the number Ly of
L's and the number 54 of 5's. wWith the notations 25 = min(Lj,
84), n =S5 + Ly, m = [(n-1)/2] as above and using the formulae

(1), (H2) for E(Z4) and Var(zj) we obtain the following table:

3 54 Lj Zj n m E(Zj) Var(Zj)

2 1 1 1 2 0 .5 .25

3 3 0 0 3 1 .75 .1875

4 3 1 1 4 1 1.25 .4375

5 1 3 1 4 1 1.25 .4375

6 1 3 1 4 1 1.25 .4375

7 2 4 2 6 2 2.0625 .6211

8 4 4 4 8 3 2.90625 .8037

9 4 4 4 8 3 2.90625 .8037

Total 14 12.875 3.9785 = (1.9946)2

The test statistic 2 = IZj = 14 is not outside its 95%-range

(12.875 - 2+1.9946, 12.875 + 2-1.9946) = (8.886, 16.864) and
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therefore the null-hypothesis of not having significant calendar
year influences is not rejected so that we can continue to apply

the chain ladder method.
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Figure 1: Regression and Residuals
Ci2 against Cil
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Figure 2: Regression and Residuals
Ci3 against Ci2
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Figure 32:

Regression and Residuals
Ci4 against Ci3
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Figure 32:

Regression and Residuals

Ci4 against Ci3
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Figure 4: Regression and Residuals
Ci5 against Ci4
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CiB aqainst Ci5

Figure 5: Regression and Residuals
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weighted residual
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Figure 6: Regression and Residuals

Ci7 against Ci6
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Figure 7:

Regression and Residuals

Ci8 against Ci7
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Figure 8: Regression and Residuals
Ci9 aqainst Ci8

21000 4

14000 4

7000 A

a1
82

T L
8000 16000
Ci8

24000

weighted residual

¥ T
8000 16000
ci8

177

24000



weighted residual

weighted residual

Figure 9: Residual Plots for fkO
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Figure 10: Residual Plots for k0
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Figure 11: Residual Plots for fk2
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Figure 12: Residual Plots for fk2
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Figure 13: Plot of ln(rxkz) against k
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CREDIBLE CLAIMS RESERVES: THE BENKTANDER METHOD

By
THOMAS MACK

Munich Re, Munich

ABSTRACT

A claims reserving method is reviewed which was introduced by Gunnar
Benktander in 1976. It is a very intuitive credibility mixture of Bornhuetter/
Ferguson and Chain Ladder. In this paper, the mean squared errors of all
3 methods are calculated and compared on the basis of a very simple stochastic
model. The Benktander method is found to have almost always a smaller mean
squared error than the other two methods and to be almost as precise as an exact
Bayesian procedure.

KEYWORDS

Claims Reserves, Chain Ladder, Bornhuetter/Ferguson, Credibility, Standard
Error

|. INTRODUCTION

This note on the occasion of the 80st anniversary of Gunnar Benktander focusses
on a claims reserving method which was published by him in 1976 in
“The Actuarial Review” of the Casualty Actuarial Society (CAS) under the
title “An Approach to Credibility in Calculating IBNR for Casualty Excess
Reinsurance”. The Actuarial Review is the quarterly newsletter of the CAS and is
normally not subscribed outside of North America. This might be the reason why
Gunnar’s article did not become known in Europe. Therefore, the method has
been proposed a second time by the Finnish actuary Esa Hovinen in his paper
“Additive and Continuous IBNR”, submitted to the ASTIN Colloquium 1981 in
Loen/Norway. During that colloquium, Gunnar Benktander referred to his
former article and Hovinen’s paper was not published further. Therefore it was
not unlikely that the method was invented a third time. Indeed, Walter Neuhaus
published itin 1992 in the Scandinavian Actuarial Journal under the title * Another
Pragmatic Loss Reserving Method or Bornhuetter/Ferguson Revisited”. He
mentioned neither Benktander nor Horvinen because he did not know about

ASTIN BULLETIN, Vol. 30, No. 2, 2000, pp. 333-347
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their articles. In recent years, the method has been used occasionally in actuarial
reports under the name “Iterated Bornhuetter/Ferguson Method™. The present
article gives a short review of the method and connects it with the name of its first
publisher. Furthermore, evidence is given that the method is very useful which
should already be clear from the fact that it has been invented so many times.
Using a simple stochastic model it is shown that the Benktander method
outperformes the Bornhuetter/Ferguson method and the chain ladder method in
many situations. Moreover, simple formulae for the mean squared error of all
three methods are derived. Finally, a numerical example is given and a
comparison with a credibility model and a Bayesian model is made.

2. REVIEW OF THE METHOD

To keep notation simple we concentrate on one single accident year and on paid
claims. Furthermore, we assume the payout pattern to be given, i.e. we denote
with p;, 0 <py <py <..<p,=1, the proportion of the ultimate claims
amount which is expected to be paid after j years of development. After
n years ol development, all claims are assumed to be paid. Let Uy be the
estimated ultimate claims amount, as it is expected prior to taking the own
claims experience into account. For instance, Uy can be taken from premium
calculation. Then, being at the end of a fixed development year & < n,

Rgr=qrUy with qi=1—py;

is the well-known Bornhuetter/Ferguson (BF) reserve (Bornhuetter/Ferguson
1972). The claims amount Cy, paid up to now does not enter the formula for Rgp,
i.e. this reserving method ignores completely the current claims experience of the
portfolio under consideration. Note that the axiomatic relationship between any
reserve estimate R and the corresponding ultimate claims estimate U is always

U=C.+R and R=U-C;

because the same relationship also holds for the true reserve R = C, - Cy and
the corresponding ultimate claims U = C,, 1.e. we have

U=C,+R and R=U-C;.

For the Bornhuetter/Ferguson mcthod this implies that the final estimate of the
ultimate claims is the posterior estimate

Ugr = Ci + Rgr

whereas the prior estimate Uy is only used to arrive at an estimate of the reserve.

Note further that the payout pattern {p;} is defined by p; = E(C,)/E(U).
Another well-known claims reserving method is the chain ladder (CL)

method. This method grosses up the current claims amount Cy, i.e. uses

Ucr = Ci/p
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as estimated ultimate claims amount and
Rer = UcL — Gk
as claims reserve. Note that there
Rer = qxUct

holds. This reserving method considers the current claims amount Cy to be fully
credibly predictive for the future claims and ignores the prior expectation Up
completely. One advantage of CL over BF is the fact that with CL different
actuaries come always to similar results which is not the case with BF because
there may be some dissent regarding Up.

BF and CL represent extreme positions. Therefore Benktander (1976)
proposed to replace the prior Uy with a credibility mixture

U:.=cUcL + (l - C)Uo.
As the credibility factor ¢ should increase similarly as the claims Cy develop, he
proposed to take ¢ = px and to estimate the claims reserve by
U

Pr

Rgp = Rpr- .
GB BF Us

This is the method as proposed by Gunnar Benktander (GB). Observe that we
have

Ry = qr Uy,
and

Up. = prUcL + qrUo = Cr + Rpr = Usgr,

Res = qiUpr.

This last equation means that the Benktander reserve Rgp is obtained by
applying the BF procedure in an additional step to the posterior ultimate claims
amount Ugr which was arrived at by the normal BF procedure. This way has
been taken in some recent actuarial rcports and has there been called “iterated
Bornhuetter/Ferguson method™.

Note again that the resulting posterior estimate

Ugs = Ci+ Rap = (1 = qi)Ucr + 4z Us = Ui_g2

for the ultimate claims is different from U, which was uscd as prior.
Esa Hovinen (1981) applied the credibility mixture directly to the reserves
instead of the ultimates, i.e. proposed the reserve estimate

Ren = ¢Rep + (1 = ¢) Ry,
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again with ¢ = p;. But the Hovinen reserve
Ren = prqeUct + (1 = pi)aiUo = qiUp, = R

is identical to the Benktander reserve.

We have already seen that the functions R(U) = ¢x U and U(R) = C, + R are
not inverse to each other except for U = Ug¢,. In addition, Table | shows that
the further iteration of the methods of BF and GB for an arbitrary starting
point Uy finally leads to the chain ladder method.

We want to state this as a theorem:

Theorem 1. For an arbitrary starting point U® = Up, the iteration rule

R = U and UV =C,+R™, m=0,1,2

gives credibility mixtures
UM = (1 =) Ucs + 4;' Us,
RO = (1 = ¢")Rer + ;' Ror
between BF and CL which start at BF and lead via GB finally to CL for m = oo.

TABLE |

ITERATION OF BORNHUETTER/FERGUSON

Ultimate UR) = C, + R Connection Reserve R(U) = ;U
Uy
~
Rpr = qcUo
U = Ugr = Ci + Rpr <
= (l — llk)UCI_ + (]kU()
- RY = Rgp = qx Upr
U® = Ugg = Ci + Raw - = (I = g)Rcr + g Rer
= (1 —q})Uct + Gt Uo
..... ™~

U = (1 = g Uer + 47 Uo

U(m+|) = Ck + R(m) = (] - q;‘”)RCI_ +([Z'R/;l.

- (l _ (["kH-l)UCL + (IZI-H UO

/ N/

U(W) = UCL > R(m) = RCI,
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Walter Neuhaus (1992) analyzed the situation in a full Biihlmann/Straub
credibility framework (see section 6 for details) and compared the size of the
mean squared error mse(R.) = E(R, — R)* of

R. = cReL + (1 — ¢)Rpr
and the true reserve R = U —~ C,. = C, - C; especially for

¢c=0 (BF)
¢=pr (GB, called PC-predictor by Neuhaus)
¢=c* (optimal credibility reserve),

where ¢* € [0; 1] can be defined to be that ¢ which minimizes mse(R.). Neuhaus
did not include ¢ = | (CL) explicitely into his analysis.

Neuhaus showed that the mean squared error of the Benktander reserve Rgp
is almost as small as of the optimal credibility reserve R.. except if p; is small
and ¢* is large at the same time (cf. Figures | and 2 in Neuhaus (1992)).
Moreover, he showed that the Benktander reserve Rgg has a smaller mean
squared error than Rgr whenever ¢* > pi/2 holds. This result is very plausible
because then ¢* is closer to ¢ = p than to ¢ = 0.

In the following we include the CL into the analysis and consider the case
where Uy is not necessarily equal to E(U), i.e. consider the estimation error, too.
This seems to be more realistic as in Neuhaus (1992) where Uy = E(U) was
assumed. Instead of the credibility model used by Neuhaus, we introduce a less
demanding stochastic model in order to compare the precision of Rgp, Ry and
Rig. We derive a formula for the standard error of Rgr and Rgp (and Rey)
and show how the parameters required can be estimated. A numerical example
is given in section 4. Moreover, therc is a close connection to a paper by
Gogol (1993) which will be dealt with in scction 5. Finally, the connection to the
credibility model is analyzed in section 6.

3. CALCULATION OF THE OPTIMAL CREDIBILITY FACTOR ¢* AND
OF THE MEAN SQUARED ERROR OF R,

In order to compare Rpr, Rcp and Rgp, we use the mean squared error
mse(R,) = E(R; — R)?

as criterion for the precision of the reserve estimate R. (for a discussion see
section 5). Because

R. = cRcr + (1 — ¢)Rpr = c(Rc — Rpr) + R

is linear in ¢, the mean squared error mse(R.) is a quadratic function of ¢ and
will therefore have a minimum.

In the following, we consider Uy to be an estimation function which is
independent from Ci, R, U and has expectation E(Uy) = E(U) and variance
Var(Uy). Then we have
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Theorem 2. The optimal credibility factor ¢* which minimizes the mean squared
error mse(R,) = E(R. — R)* is given by

R Cov(Cy, R) + prqie Var(Uy)
Ui Var(Cr) + /7}3 Var(U,)

)
Proof

E(R. - R)* = E[¢(Rc, — Rar) + Rgr — R
= CZE(RCL - RBF)z - 2CE[(RCL — RB/.)(R — RBF)] + E(RB/: — R)z.

0

0= E(R - R)* = 2cE(Rcy — Rur)? — 2E[(Rer — Rup)(R — Ryp)]
yields
ot = El(ReL = Rer)(R = Rer)]l _ pe E[(Ch — prUo)(R — g Up)]
E(Rci, — Rgr)’ 9k E(Cy — pxUs)®
_ P Cov(Cy — pr Uy, R — qrUy) _Px Cov(Cyr, R) + prgi Var(Uyp)
Gk Var(Cy — prUp) Gk Var(Cy) + p2Var(Uy)

Here, we have used that E(Cy) = pi E(Us) according to the definition of the
payout pattern (and therefore E(R) = g E(Uy)). Q.ED.

In order to estimate ¢*, we need a model for Var(Cy) and Cov(Cy,R). The
following model is not more than a slightly refined definition of the payout
pattern:

E(Ci/U|U) = py, 2)
Var(Ce/UIU) = prqi 32 (U). (3)
The factor ¢ in (3) is necessary in order to secure that Var(CelU) — 0 as k
approaches n. A similar argument holds for p; in case of very small values.
A parametric example is obtained if the ratio Cy/U, given U, has a
Beta(api, agi)-distribution with « > 0; in this case 8*(U) = (a+ 1)"". Thus, in
the simple cases, 8?(U) depends neither on U nor on k. If the variability of C;. /U
for high values of U is higher, then F*(U) = (U/U)- 8% is a reasonable
assumption.
From assumptions (2) and (3) and with o*(U) := U?(*(U) we gather
E(Cr|U) = pr U,
Var(C|U) = prqre(U),
E(Ck) = pE(V), ,
Var(Cy) = pquE(az(U)) + piVar(U)
:pkE(az(U)) +/),%(V(1r(U) - E(az(U))), (4)
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Cov(Cy, U) = Cov(E(C|U), U) = ppVar(U),
Cov(Ci, R) = Cov(Cy, U) — Var(Ci) = prgr (Var(U) — E(c*(U))),  (5)
E(R) = E(U) — E(Ck) = qxE(U), '
Var(R) = Var(U) = 2Cov(Cy, U) + Var(Cy)

= Var(U)(1 = 2pi + p}) + prar E(0*(V))
qiVar(U) + prqr E(2(U))
(V) + ¢ (Var(V) — E(@X(1))).

I

By inserting (4) and (5) into (1), we immediately obtain

Theorem 3. Under the assumptions of model (2)-(3), the optimal credibility
factor ¢* which minimizes mse(R,) is given by
E(a?())

» o Pk . _
€= e+t with 1= Var(Ug) + Var(U) — E(a?(U))" ©)

Some further straightforward calculations lead to

Theorem 4. Under the assumptions of model (2)-(3), we have the following
formutae for the mean squared error:

mse(Rgp) = E(GZ(U))fIk(l +qx/1),
mse(ReL) = E(aZ(U))qk/pk,

. —C 2
mse(R;) = E(a*(U)) (—6—2 + —l~+ Ul )qf_.

P qk t

Proof

mse(Rpr) = E(Rpy — R)2 = Var(Rgr — R) = Var(Rgr) + Var(R)
= qpVar(Uo) + gt (Var(U) — E(a*(U))) + g E(a?(U))
— E(e(U)) (s + 43/1),

mse(Rer) = E(Re, — R)* = Var(Re, — R)
= Var(R¢cy) — 2Cov(Rcr, R) + Var(R)
= q;Var(Cy)/p} — 2qxCov(Cy, R)/px + Var(R)
= E(a(U))qx/pr,

mse(R.) = E(cRer + (1 — ¢)Rgr — R)*

= E[c(Rer — R) + (1 = ¢)(Rur — R))?
= mse(Rey) + 2¢(1 = ¢)E[(Rer, — R)(Rar — R)] + (1 ~ ¢)*mse(Rgy),
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E[(Rc.. — R)(Rgr— R)] = Cov(Rer, — R, Rgr— R)
= —Cov(Rc¢r, R) + Var(R)
= Var(R) — qxCov(Cy, R)/px
= g E(?(U)).

and putting all pieces together leads to the formula stated. Q.E.D.

An actuary who is able to assess py = E(C./U|U) and Uy (i.e. £(Up)) should
also be able to estimate Var(Up) and Var(Cy/U|U) or E(Var(C|U)) as well as
Var(U). Therefrom, he can deduce E(a?(U)) = E(Var(Ci|U))/(pegx) — or
E(a?(U)) = Var(Ce/U\U)E(U?) [ (prax) if Var(Ci/U|U) does not depend on U
— and finally the parameter r. Then he has now a formula for the mean squared
error of the BF method and a very simple formula for the CL method (where 7 is
not needed) and can calculate the best estimate R,. including its mean squared
error as well as the one of Rgjp.

Regarding the very simple formula for mse(Rc,.) we should note that this
formula deviates from the corresponding one (i.e. for the unconditional mean
squared error with known payout pattern) of the distribution-free chain ladder
model of Mack (1993). The reason is that the models underlying are slightly

different: Here we have
C
El—|U| =
(UI ) Pk

and the model of Mack (1993) can be written as

U |
E{—I|Cr | =—.
(Ckl A) Pk

Using theorem 4, we now compare the mean squared errors of the different
methods in terms of p, and . First, we have

mse(Rgr) < mse(RcL) < pr <1,

i.e. we should use BF for the green years (py < 1) and CL for the rather mature
years (pr > ). This is very plausible and the author is aware that some
companies use this rule with r = 0.5. But the volatility measure 7 varies {rom one
business to the other and therefore the actuary should try to estimate ¢ in every
single case as is shown in the next section.

Furthermore, we have

mse(Rgg) < mse(Rpr) <= 1<2—py,
mse(Rgp) < mse(Rer) <= > pege/(1 + pi),

i.e. GB is better than BF except 1 is very large and is better than CL except ¢ is
very small, see Figure 1 where for each of the three areas it is indicated which of
BF, GB, CL is best. In the numerical example below, it will become clear that ¢ is
almost always in the GB area.
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FIGURE 1: Arcas of smallest mean squared error.

4. NUMERICAL EXAMPLE

Assume that the a priori expected ultimate claims ratio is 90% of the premium,
i.e. Uy = 90%. Assuming further pp = 0.50 for k = 3, we have Rgr = 45% (all
% ages relate to the premium). Let the paid claims ratio be Cy = 55%, then
Uer = 110% and R¢. = 55%. Taken together, we have Rgp = 50%.

In order to calculate the standard errors, we have to assess Var(U), Var(Uy)
and E(c?(U)). For Var(U), we can use a consideration of the following type:
We assume that the ultimate claims ratio will never be below 60% and only once
every 20 years above 150%. Then, assuming a shifted lognormal distribution
with expectation 90%, we get Var(U) = (35%)%. This rather high variance is
typical for a reinsurance business or a small direct portfolio.

Regarding E(a?(U)). we consider here the special case where
F(U) = §* does not depend on U (e.g. using a Beta distribution), i.e.
E(a*(U)) = E(U*)B* = E(U*)Var(Cy/U|U)/(prqx). Therefore, we have to
assess Var(Cy/U|U), i.e. the variability of the payment ratio C;/U around its
mean pi. If we assume — e.g. by looking at the ratios Cr/U of past accident
years — that C,/U will be almost always between 0.30 and 0.70, then -
using the two-sigma rule from the normal distribution — we have a
standard deviation of 0.10, ie. Var(Cy/U|U)=0.10%, which leads to
B2 = Var(Cy/U|U)/(prqx) = 0.20% and E(a?(U)) = E(U*)B* = 0.193%.

Finally, the most difficult task is to assess Var(Uy) but this has much less
influence on 7 than Var(U) (which is always larger) and E(a?®(U)). Moreover, an
actuary who is able to establish a point estimate Up should also be able to
estimate the uncertainty Var(Up) of his point estimate. Thus, there will be a
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certain interval or range of values where the actuary takes his choice of Uy from.
Then he can take this interval and use the two-sigma rule to produce the
standard deviation /Var(Uj). Let us assume that in our example
Var(Up) = (15%)*.

Now we can calculate r = 0.346 and all standard errors (= square root of the
estimated mean squared error) as well as the optimal credibility reserve R..:

Rpr =45% £21.3%
Rcr =55%+£19.3%
Regg = 50% £ 17.3%
R. =50.9% % 17.2% with ¢" =0.591.

Note that these standard errors are based on the unconditional mean squared
error (cf. discussion in the next section) and on a known pattern {pj}. Including
the uncertainty of the p; will increase the standard error.

For the purpose of comparison, we look at a more stable business, too:
Assume that Var(U) = (10%)?, Var(Up) = (5%)* and Var(Cy/U|U) = (0.03)2.
Then, everything else being equal, we obtain 8 = 0.062, E(a*(U)) = 0.0542,
t =0.309 and

Ryr = 45% + 6.2%
Rer = 55% + 5.4%
Rgp = 50% + 4.9%
R =512%+49%  with ¢ =0.618.

In both cases, GB has a smaller mean squared error than BF and CL, and the
size of t has not changed much, because the relative sizes of the three variances
Var(U), Var(Uy), Var(Cy/U|U) are similar. A closer look at formula (6) shows
that the size of 1 is changed more if E(a?(U)) (i.e. Var(Ci/U|U)) is changed than
if Var(U) or Var(Uy) are changed. In the first example, for instance, we had
Var(Cy/UJU) = 0.10° and GB was better than CL and BF. If we change the
variability of the paid ratio to Var(C/U|U) > 0.1532, then 1 > 1.51 and BF is
better than GB and CL. If we change it to Var(Ci/U|U) < 0.074?, then
1 < 0.164 and CL is better than GB and BF, see Figure |. But in the large range
of normal values of Var(Cy/U|U), GB is better than CL and BF. Because
Var(Uy) i1s always smaller than Var(U), the size of 1 is essentially determined by
the ratio Var(Cy/U\U)/Var(U).
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5. APPLICATION OF AN EXACT BAYESIAN MODEL TO THE NUMERICAL EXAMPLE

If we make distributional assumptions for U and Ci|U, we can determine the
exact distribution of U|C, according to Bayes' theorem. This was done by
Gogol (1993) who assumed that U and Ci|U have lognormal distributions
because then U|C; has a lognormal distribution, too.

Applied to our first numerical example, this model is:
U ~ Lognormal (p,0%) with E(U) = 90%, Var(U) = (35%)?,
Ci|U ~ Lognormal (v,7*) with  E(Ci|U) = peU, Var(Ci|U) = prqi3> U*

where 3% = 0.20? is as before, i.e. such that Var(Cy/U|U) = 0.102.
This yields

o = In(1 + Var(U)/(E(U))*) = 0.3752,
p=In(E)) —0?/2 = —0.176,
7 =In(1 + Bqi/pi) = 0.198%.
Then (see Gogol (1993)),
U|Ci ~ Lognormal (p,0?)

with

z(7* + In(Ce/px)) + (1 — 2)p = 0.067,
z7? = 0.175°,
o?/(o? 4+ 7%) = 0.782.
This yields (at Cr = 55%)
E(U|Cy) = exp(uu1 + 01/2) = 108.6%,
E(R|Cy) = E(U|Ck) — Ci = 53.6%,
Var(R|Cy) = Var(U|Cy) = (E(U|Cx))* (exp(a?) — 1) = (19.2%).

H
o

z

If we compare this last result with the mean squared errors obtained in section 4,
we should recall that E(R|Cy) minimizes the conditional mean squared error

E((R - R)2|Ck> = Var(R|Ck) + (R — E(R|CY))?

among all estimators R which are a square integrable function of Cy as well as it
minimizes the unconditional mean squared error

E(R = R)'= E(Var(R|CY)) + E(R — E(R|CY))?

because the first term of the r.h.s. does not depend on R. But the resulting
minimum values Var(R|Cy) and E(Var(R|C,)) are different.
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Basically, in claims reserving we should minimize the conditional mean
squared error, given Cj, because we are only interested in the future
variability and because C; remains a fixed part of the ultimate claims U.
But if F(R|Ci) is a linear function of Cy (like R.). this function can be
found by minimizing the unconditional (average) mean squared error. More-
over, the latter can often be calculated easier than the conditional mean
squared error as it is the case in model (2)-(3). The unconditional mean
squared error is the appropriate measure to compare the precision of different
reserving methods.

Altogether, it is clear that the mean squared errors calculated in section 4
are average (unconditional) mean squared errors, averaged over all possible
values of Cy. Therefore, in order to make a fair comparison of the various
methods in our numerical example, we must calculate the unconditional mean
squared error E(Var(R|Cy)) in the Bayesian model, too.

For this purpose, we have to integrate Var(R|C;) over Ci and therefore
need the distribution of C, which we obtain by mixing the distributions of
Ci|U and U:

Ci/pr ~ Lognormal (11— 72/2, o® + 72),
exp(2z In(Cy/px)) ~ Lognormal (2zp1 — 272, 42%(0” + 77)).

This yields

E(Var(R|Cy)) = E(exp(2u1 + 07) (exp(a}) — 1))
= E(exp(2z In(Ck/px))) exp (3272 + 2(1 — z)p) (exp(z7?) — 1)
= exp(2p + 20%) (exp(z7?) — 1)
= (17.0%)%.

This shows finaily, that the exact Bayesian model on average has only a slightly
smaller mean squared error than the optimal credibility reserve R, and the
Benktander reserve Rgp. But if we recall that, with the exact Bayesian
procedure, we assume to exactly know the distributional laws without any
estimation error, then the slight improvement in the mean squared error does
not pay for the strong assumptions made.

6. CONNECTION TO THE CREDIBILITY MODEL

Finally, we establish an interesting connection between the model (2)-(3) and the
credibility model used in Neuhaus (1992). There, the Biihimann/Straub
credibility model was applied to the incremental losses and payouts: For
j=1, ..., n(where n is such that p, = 1) let

mp=pj—Pp-1
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be the incremental payout pattern and
S;=C;i—Ciy

be the incremental claims (with the convention py = 0 and Cy = 0). Then the
Biihlmann/Straub credibility model makes the following assumptions:

Si|©, ..., S4|© are independent, N
E(S;/m)|©) = 1(0), I <j<n, (8)
Var(Sj/mj|@) = a*(©)/m; 1 <j<n, )

where © is the unknown distribution quality of the accident year. Assumption (7)
can be crucial in practise. Model (7)-(9) can be set up without refering to p; by
just requiring m; > 0 and m, + ... +m, = 1. Then the following formulae still
hold using py :=my + ... + my.

From (7)-(9) we obtain
E(Ci|©) = piens(©),
Var(Cy|©) = pra*(©).
The latter formula shows, that the credibility model is diflerent from
model (2)-(3) where we have Var(Ci|U) = prgra®(U), i.e. we do not have
0="U.
In the credibility model (7)-(9) we obtain further
E(Ck) = pE(u(®)) = px E(Cy) = pr E(U),
Var(Cy) = p E(6*(©)) + p Var(i(©)), (10)
Cov(Cy, U) = E(Cov(Cy, Ci|O)) + Cov(peiu(0), 1(0))
=pk(E(ol(@)) + Var(u(©))),
Cov(Cx, R) = prgiVar(u(©)),
E(R) = qxE(1(©)) = 4+ E(U),
Var(R) = qrE(0*(0)) + qi Var(j(©)).

If we compare these formulae with the corresponding formulae of model (2)-(3)
and take into account that here

Var(1(©)) = Var(U) — E(c*(©))

holds (from (10) with k& = n), then we see that these formulae are completely
identical if E(o?(U)) = E(c*(©)). This leads immediately to

Theorem 5. The formulae of theorems 3 and 4 hold for model (7)-(9). too, after
having replaced E(a?(U)) with E(c?(9)).
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In the credibility model, a natural estimate of E(c?(0©)) can be established:
From

Var(S;/m)|0) = a*(©)/m,

and

Zm, m /Z hi = C/\/p/\ UCL
J

it follows that

I & (S ?
o? = m| 2L - UL
k—14 ni;
J=1 :
is an unbiased estimator of £(c?(©)). We can write

o’ = pst [(k = 1)

where

k k
E nj(——UCL) E m;
m; .

i=1

J=1

can be calculated easily as the m;-weighted average of the squared deviations of
the observed ratios S;/m; from their weighted mean Uc,.. Note that each S;/my is
an unbiased estimate of the expected ultimate claims E(U).

If in our numerical example in addition to p3 = 0.50 and C3 = 55% we have
p1 =010, py =030, C =15%, Cy=27%, then n =0.10, my =0.20,
my =020, Sy =15%, S, =12%, S;=28%, and the ratios S,/m = 1.5,
Sy/my = 0.6, S3/m3 = 1.4 have a variance 2 =0.41%. Then the estimate for
E(0*(®)) is o =0.2052. With C; =10% and C, =30% we would get
o2 = 0.061? indicating a more stable case.

Note that for the estimation of £(a?(U)) the observation of several accident
years is necessary. Anyhow, model (2)-(3) is less demanding than model (7)-(9).

7. CONCLUSION

In claims reserving, the actuary has usually two independent estimators Rgr and
Rcy, at his disposal: One is based on prior knowledge (Uy), the other is based on
the claims already paid (Cy). It is a well-known lemma of Statistics that from
several independent and unbiased estimators one can form a better estimator
(i.e. with smaller variance) by putting them together via a linear combination.
From this general perspective, too, it is clear that the GB reserve should be
superior to BF or CL.

More precisely, the foregoing analysis has shown that GB has a smaller mean
squared error than BF and CL if the payout pattern is neither extremely volatile
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nor extremely stable. This conclusion is derived within a model whose
assumptions are nothing more than a precise definition of the term ’payout
pattern’. Therefore, actuaries should include the Benktander method in their
standard reserving methods.

Finally, we want to emphasize that all formulae derived rely on the
assumption that the prior estimate Uy and the observed claims Cj are
independent. This means that these formulae probably will not hold any more
for a “prior’ Uy which has been adjusted during the development period as it is
often done in practise. Such an adjustment is like choosing an U, with an
unknown ¢ and gives a procedure which is much less objective than the
Benktander method.
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Correction Note

to the paper
,,Credible Claims Reserves: The Benktander Method*
by Thomas Mack

In Chapter 5 (,,Application ...*), there is a mistake.
The equation for u; should be as follows:
w =z (172 + In(Ce/p) ) + (1 — ) u = 0.05155 ,

i. e. 7%/2 instead of t* and a slightly different numerical result. This mistake entails the
following further alterations later on in the same chapter:

E(UICy) = ... =106.9% (instead of 108.6%),
ERICy) =...=51.9% (instead of 53.6%),
VarRICY) = ... = ... = (18.9%)" (instead of 19.2%).

Finally, the last equations of Chapter 5 change as follows:
E(Var(RICy)) = E( exp(2u; + 01%) (exp(c1’) — 1))
= E(exp(2z In(Ci/py))) exp(2zt” + 2(1 — z)u) (exp(zt®) — 1)
=exp(2u + (1+2)0°) (exp(zt?) — 1)
= (16.8%)" .

(.e. 277° instead of 3z7> in the second line, (1+z)c52 instead of 267 in the third line and 16.8%
instead of 17.0% in the forth line.) This concludes the list of corrections.
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appropriate.
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Abstract

The main purpose of this paper is to propose a comprehensive framework for assessing
insurance liability risk margins and to provide practical advice on how to implement it. The
key sources of uncertainty are examined and the main quantitative approaches to analysing
uncertainty discussed, including commentary on the advantages and disadvantages of each
approach. The framework recognises, however, that quantitative analysis of historical data
cannot alone capture adequately all aspects of future uncertainty. There will always be a need
for judgement to be applied and in many situations such considerations will dominate the risk
margin assessment. The application of judgement, however, is arguably the most difficult
aspect of any attempt to estimate future uncertainty and assess appropriate risk margins. Our
paper examines the key judgmental aspects and introduces a structured approach to
combining these qualitative considerations with the results of any available quantitative
analysis.

Keywords: framework, risk margins, uncertainty, APRA, independent risk, systemic risk.
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Introduction

Preamble

General Insurance actuaries in Australia have, for many years, been analysing the
uncertainty involved in the claim process with a view to assessing appropriate risk
margins for inclusion in insurance liabilities. The approaches adopted to date range
from those that involve little analysis of the underlying claim portfolio to those that
involve significant analysis of the uncertainty using a wide range of information and
techniques, including stochastic modelling.

The Risk Margins Taskforce was created to provide Gl actuaries in Australia with
support and guidance in the assessment of risk margins. In particular, it was felt that
actuaries would benefit greatly from a stronger awareness of the key considerations
when analysing uncertainty and the tools at their disposal when undertaking such
analysis. A better equipped actuarial profession could feel more confident that key
stakeholders, including APRA, insurance company boards, senior management and
auditors, better understand the nature of and feel more comfortable with the quality
and consistency of actuarial advice in this area.

The main purpose of this paper is to propose a comprehensive framework for
assessing insurance liability risk margins and to provide practical advice on how to
implement it. The key sources of uncertainty are examined and a combination of
guantitative and qualitative approaches to their measurement explored.

Current approaches to assessing risk margins

In preparation for a presentation to the 2006 Reserving Seminar of the Institute of
Actuaries of Australia (IAAust), the Taskforce canvassed a number of actuaries and
APRA to gain a better understanding of the range of approaches used in Australia to
assess risk margins. This information was supplemented with feedback from the
2006 General Insurance Claims Reserving and Risk Margins Survey, the results of
which were presented at the same seminar.

Although there appear to be a wide range of approaches used by Australian actuaries
in the assessment of risk margins it is fair to say that most of the differences relate to
the analysis and investigations conducted to parameterise a generally adopted risk
margin calculation methodology, rather than the calculation methodology itself. The
calculation methodology can be generalised as follows:

o Coefficients of variation (CoVs) are determined for individual valuation
portfolios or groupings of portfolios, where these groupings include insurance
classes made up of relatively homogeneous risks.

e A correlation matrix is populated with assumed correlation coefficients reflecting
the expected correlations between valuation portfolios or groupings of portfolios.

e CoVs and correlation matrices are determined separately for outstanding claim
liabilities and premium liabilities and further assumptions made about the
correlation between these two components of the insurance liabilities.

e A statistical distribution is selected and combined with the adopted CoVs and
correlation coefficients to determine the aggregate risk margin at a particular
probability of adequacy.
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The approaches used to determine CoVs vary significantly. The least sophisticated
approaches involve deriving CoVs using either or both of two papers, Research and
Data Analysis Relevant to the Development of Standards and Guidelines on Liability
Valuation for General Insurance by Bateup and Reed (the Tillinghast paper) and
APRA Risk Margin Analysis by Collings and White (the Trowbridge paper), both
prepared at the end of 2001 (collectively these papers are referred to as the 2001
papers). These approaches often ignore the individual characteristics of the valuation
portfolio for which risk margins are being assessed, deferring instead to the
characteristics of the portfolios analysed by the authors of the two papers.

More sophisticated approaches include some form of quantitative analysis (stochastic
or otherwise) supplemented by a qualitative assessment of the sources of uncertainty
not captured by quantitative techniques. One such approach is discussed in the paper,
A Framework for Estimating Uncertainty in Insurance Claims Cost by O’Dowd,
Smith and Hardy, prepared for the IAAust’s XVth General Insurance Seminar which
was held in October 2005 (the PwC paper).

Anyone who has read the PwC paper will appreciate the similarities between the
framework proposed in that paper to the framework discussed in this paper. The
Taskforce is collectively of the view that the PwC paper has significant merit and
the concepts advocated by the authors of that paper have played a prominent
role in the development of the framework discussed in this paper. We would
encourage readers of this paper to read the PwC paper to ensure a more
complete understanding of some of the concepts discussed.

The most common approach to populating the correlation matrix with correlation
coefficients is via the deployment of actuarial judgement. Usually the key risks that
are considered to cause valuation portfolios to be correlated are considered in turn
and the correlation between classes categorised as high, medium or low with each
category having associated correlation coefficient values. The techniques deployed in
the assessment of correlations range from those that are quite basic and heavily
influenced by the benchmark correlation matrices discussed in the 2001 papers to
those that take a more methodical approach to analysing the contribution to
correlation from each key risk.

It is more the exception than the norm to include a quantitative analysis of past
experience in the assessment of correlation effects. The main reason for this is that
most quantitative techniques require a significant amount of data, time and cost to
produce results that are sufficiently credible and intuitively justifiable. It is more
common to see such techniques deployed when assessing more extreme probabilities
of adequacy, i.e. well in excess of 90%, rather than probabilities of adequacy around
the 75% level.

Generally, the most common distribution adopted to determine the aggregate risk
margin at a particular probability of adequacy is the LogNormal distribution. The
Normal distribution is also used by some actuaries, particularly at lower probabilities
of adequacy where it can generate a risk margin that is higher than a heavier tailed
distribution, such as the LogNormal distribution. It is uncommon for actuaries to test
the adopted distribution against past experience or, taking a step further, derive a
distributional form that explains the shape of the distribution of future claim cost
outcomes based on past experience and/or future expectations.

The general risk margins approach adopted by most actuaries is often referred to as a
bolt-on approach in that separate analyses are conducted to estimate the central
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estimate of insurance liabilities and the risk margins. The term bolt-on is also
generally used to refer to any approach that does not involve the development of a
single unified distribution of the entire distribution of possible future claim cost
outcomes.

Judgement pervades both the central estimate assessment process and the risk margin
assessment process. Also, well fitting models are those that adequately reflect past
sources of uncertainty only. For these reasons, it is impossible to develop a purely
quantitative model, fitted to the past data, that accurately represents the range of
possible future claim cost outcomes. Rather, an approach that advocates internal
consistency between the assessment of the central estimate and the sources of future
uncertainty around that central estimate is important. The framework discussed in
this paper is one such approach. This transparent framework combines guantitative
and qualitative analysis, both of which are conducted giving full consideration to the
central estimate assessment.

Practical framework for assessing risk margins

A number of key stakeholders, including Appointed Actuaries, APRA and auditors,
have expressed some concern that the wide range of approaches adopted in practice to
assess risk margins might lead to significant inconsistencies in the final outcomes,
whether those be for regulatory or financial reporting purposes. Actuaries working in
this area have also asked for guidance to help them when they are faced with
analysing uncertainty. Finally, APRA have indicated that they would like to see more
documentary justification of the risk margins adopted by some insurance companies.

With all of this in mind, we have prepared this paper to provide a comprehensive
framework for assessing insurance liability risk margins and to provide practical
advice on how to use this framework. There are a number of parts to our framework
including the provision of guidance and further information on the tools, both
quantitative and qualitative, that an actuary may deploy when analysing the
uncertainty associated with insurance liabilities. We have included or referred to
practical examples of how to deploy parts of the framework.

The proposed framework recognises that quantitative analysis of historical data
cannot alone capture adequately all possible sources of future uncertainty. There will
always be a need for judgement to be applied and in many situations such
considerations will dominate the risk margin assessment. The application of
judgement, however, is arguably the most difficult aspect of any attempt to estimate
future uncertainty and assess appropriate risk margins. Our paper examines the key
judgmental aspects and introduces a structured approach to combining these
gualitative considerations with the results of any available quantitative analysis.

In preparing this paper the Taskforce has mainly considered, as a surrounding
context, the current risk margin environment in Australia, in particular the percentile,
or quantile, approach to determining margins for uncertainty. Having said this, we
are aware that international developments, including proposed changes to
International Financial Reporting Standards, are likely to overtake us in the not too
distant future. We are of the view that the main aspects of our proposed framework
can be readily adopted, altered or enhanced to complement analysis of uncertainty in
the evolving wider international context.
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The framework discussed in this paper can also be considered in the broader context
of quantifying the uncertainty associated with reserve risk and underwriting risk for
stochastic capital modelling (often referred to as Dynamic Financial Analysis or
Internal Capital Modelling) purposes. In fact, when parameterising these
components of a DFA model, one should draw on any analysis conducted for risk
margin purposes and expand the framework to encapsulate those aspects of the
parameterisation not captured by an analysis conducted specifically for risk margin
purposes.

It is not proposed that this risk margin framework will have the prescriptive nature of
a professional standard. Nevertheless, it is hoped that the structure and educational
benefits it provides will encourage all actuaries to critically examine their current risk
margin methodologies and to take from the framework those insights that are helpful
to them in their particular situation. Inevitably, each actuary estimating risk margins
will need to make their own judgements and this will be driven by their own
knowledge and experience. The proposed framework does not attempt to usurp that
process. Ultimately this framework is about enabling the profession and stakeholders
to feel more confident in the quality and overall consistency of risk margins advice in
future.

This is not a paper on stochastic reserving. Nor is it intended to provide all of the
answers. Rather, its aim is to equip actuaries to ask the right questions and then
proceed to answer these in a methodical and rigorous manner.

Structure of this paper

In Section 2, we present a framework which takes a methodical and rigorous
approach to examining each of the key sources of uncertainty and provides a practical
and user-friendly platform to help actuaries determine appropriate and justifiable risk
margins for their insurance liability valuation portfolios.

Sections 3 and 4 discuss the assessment of independent risk and systemic risk,
respectively, providing more practical guidance and considerations for the assessment
of these sources of risk with a view to determining risk margins.

The framework is summarised in Table 1. The sections of the paper that address each
step are also shown.
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Table 1: Summary of risk margin analysis framework

Step ‘Framework component :Description ‘Section of paper
1 ‘Portfolio preparation iDetermlne \{aluatlon portfolios, claim groups and techniques to deploy 'Section 2.3
H ‘for each claim group |
2 flndependent risk analysis EConduct. quantitative analysis, gonduct be.nchmarklng Whgre 'Sections 2.4 and 3
! rappropriate, conduct retrospective analysis for stable periods !
5 ‘Apply balanced scorecard approach to objectively score central 5
3 :Internal systemic risk analysis restimate valuation methodologies. Conduct analysis to determine :Sections 2.5 and 4
: ;appropriate CoVs to map to scores. :
E L . ildentif , categorise and quantify potential future external sources of : .
4 ‘External systemic risk analysis | y, categ q yp :Sections 2.5 and 4
E 'systemic risk |
: iSeIect correlation coefficients beween valuation classes and between :
5 iAnalysis of correlation effects ;outstanding claim and premium liabilities for internal systemic risk and iSections 2.5
: .for each external systemic risk category. |
! . . iConsolidate CoVs and correlation coefficients. Independence assumed ! .
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2.1.

A Framework for Assessing Risk Margins

The proposed framework

Introduction to framework

The proposed framework provides a practical and robust platform that requires a
combination of quantitative and qualitative techniques to be deployed to examine the
uncertainty associated with assessing insurance liabilities with a view to determining
risk margins.

Quantitative techniques alone are insufficient to enable a complete assessment of the
various sources of uncertainty. These techniques must be supplemented by
qualitative analysis to ensure that all sources of uncertainty are captured. It is
common practice for Australian actuaries to adjust the results obtained using
guantitative techniques to allow for their known weaknesses. However, this is not
always done in a rigorous manner, nor is there much consistency across the
profession.

The framework is designed to introduce more rigour and consistency to the risk
margin assessment process by encouraging actuaries to examine their own portfolios
using a step-by-step process that requires them to ask a number of questions in the
context of these portfolios. This will enable judgemental aspects of the process to be
better reasoned, justified and documented and ultimately provide more structure in
the application and combination of both quantitative and qualitative processes.

It is not expected that all of the techniques discussed in this paper will be used in
practice for all valuation portfolios. Rather, if an actuary proceeds through the step-
by-step process using techniques suited to their own portfolios, understanding the
strengths and weaknesses of these techniques and asking the right questions along the
way, they can only be more comfortable that the risk margins adopted are
appropriate.

The framework revolves around quantifying the contribution to uncertainty from each
of the main sources of uncertainty and is graphically represented in Figure 1 below.



Claims Portfolio

A Framework for Assessing Risk Margins

Figure 1: Framework for determining insurance liability risk margins
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Sources of uncertainty

The sources of uncertainty are the cornerstones of the framework. The framework
itself has been designed to ensure alignment between the analysis and the techniques
deployed with the key sources of uncertainty, ensuring a complete measurement of
uncertainty.

At the highest level, the sources of uncertainty can be categorised as belonging to
either the systemic risk source or the independent risk source.

Systemic risk represents those risks that are potentially common across valuation
classes or claim groups. Systemic risks arise from two sources:

e Risks internal to the insurance liability valuation process, collectively referred to
in this paper as internal systemic risk. This source of uncertainty encapsulates the
extent to which the adopted actuarial valuation approach is an imperfect
representation of a complex real life process. Model structure and adequacy,
model parameterisation and data accuracy are all aspects of internal systemic risk.
This source of uncertainty is alternatively referred to as model specification risk.

e Risks external to the actuarial modelling process, collectively referred to in this
paper as external systemic risk. Even if the valuation model is an appropriate
representation of reality, as it exists today, future systemic trends in claim cost
outcomes that are external to the modelling process may result in actual
experience differing from that expected based on the current environment and
trends.

Independent risk represents those risks arising due to the randomness inherent in the
insurance process. Independent risk also arises from two sources:

e The random component of parameter risk, representing the extent to which the
randomness associated with the insurance process compromises the ability to
select appropriate parameters in the valuation models.

e The random component of process risk being the pure effect of the randomness
associated with the insurance process. Even if the valuation model was perfectly
calibrated to reflect expected future outcomes, the volatility associated with the
insurance process is likely to result in differences from the perfect expected
outcomes.

In the detailed discussion of the framework below, quantitative and/or qualitative
techniques are considered and aligned to the assessment and measurement of the
internal and external sources of systemic risk and independent risk, the latter
incorporating both parameter and process risk.

The nature of traditional quantitative modelling techniques, e.g. bootstrapping and
stochastic chain ladder, are such that they are best suited to analysing sources of
independent risk and past episodes of external systemic risk. However, they are
inadequate alone to capture internal systemic risk or external systemic risk, to the
extent that this latter differs from the past. For both systemic risk sources, traditional
guantitative modelling techniques must be supplemented by other analysis, both
guantitative and qualitative.
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2.3.

A Framework for Assessing Risk Margins

Preparing the claims portfolio for analysis

Before commencing any analysis one must prepare the claims portfolio for analysis.
The claims portfolio would normally represent the aggregate insurance entity or
aggregation of insurance entities for which the risk margin analysis is being
conducted.

The claims portfolio should be split into appropriate valuation classes. A number of
factors will impact how the valuation classes are selected.

An important consideration is whether the valuation portfolio split adopted to
determine central estimates of insurance liabilities, or outstanding claim liabilities and
premium liabilities where the split is different, should be adopted for risk margin
analysis purposes. This would be preferable as it allows the risk margin analysis to
be conducted in the context of the central estimate analysis and quantitative and
gualitative analysis to be aligned with the key valuation drivers observed as part of
the central estimate valuation. One of the attractions of the framework is that each of
the sources of uncertainty being analysed can be aligned with the central estimate
analysis and appropriate decisions around volatility made in the context of that
analysis.

It may not be possible or particularly insightful, however, to conduct quantitative
analysis at the same granular level as used for central estimate valuation purposes.
The central estimate valuation portfolios may be too small for credible analysis or the
valuation portfolio allocation may be at a more granular level than makes practical
sense. For example, a large insurer may split its motor and home portfolios by state,
product and claim type, resulting in a large number of individual central estimate
valuation portfolios. The task of conducting quantitative analysis at the same
granular level may be significant, costly and, considering the level of qualitative
analysis that will be deployed as part of the assessment, unlikely to materially
improve the final outcome. In such cases, quantitative analysis may be conducted on
aggregated valuation classes and the results then allocated down, in an appropriate
manner, to the valuation classes that are considered appropriate for the deployment of
the framework.

In the end, the choice of valuation classes for risk margins analysis purposes will
come down to a balance between the practical benefits gained from a higher level
portfolio allocation and the potential additional benefit and insights gained from a
more granular allocation. When making this decision consideration should be given
to the need to retain as much consistency as possible between the central estimate
methodology and basis and the risk margin analysis.

Once the claims portfolio has been allocated into risk margin valuation classes,
consideration should be given to whether any valuation classes would benefit from a
further allocation. For certain portfolios, it will be apparent that different groups of
claims are materially more or less uncertain than others and should be treated
separately for risk margin analysis purposes. Within each of these claim groups there
is an element of homogeneity but between claim groups behaviour is expected to be
different.

A good example of a valuation class that would normally require further segregation
is a home portfolio. These portfolios are normally materially exposed to claims
arising from natural peril events. The patterns of development for event claims often
differ materially from those for non-event claims. Separate analysis of event and
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non-event claims will usually provide valuable insights into the past contribution to
uncertainty from each of these claim sources with a view to making appropriate
assumptions regarding future uncertainty. Also, home liability claims typically
behave quite differently from other home claims and should be considered for
separate analysis.

Again, a pragmatic view should be taken when considering whether groups of claims
are homogeneous, a view that balances the benefits against the practicalities and cost.

For certain valuation portfolios, e.g. those with little historical data, it may not be
possible to deploy all components of the framework. However, we do consider it
important to consider each component in the context of each valuation portfolio as
this will ensure that appropriate questions are asked as part of the analysis.

Analysing independent risk sources

Many approaches used in practice by actuaries to analyse uncertainty and assess risk
margins have an element of quantitative analysis conducted using stochastic (or
other) modelling techniques. Often, but not always, adjustments are made to the
results from this modelling, reflecting an appreciation that it has not fully
encapsulated all sources of uncertainty.

There are a number of reasons why stochastic modelling techniques do not enable a
complete analysis of all sources of uncertainty:

e A good stochastic model will fit the past data well and, in doing so, fit away most
past systemic episodes of risk external to the valuation process, leaving behind
largely random sources of uncertainty. Some techniques, e.g Generalised Linear
Modelling (GLM), offer more flexibility in fitting to the past experience than
others, e.g. Mack method.

o Where it has not been possible to fit away all past systemic episodes of risk or
where no attempt has been made to do so, the outcome of the analysis may be
substantially affected by these episodes. Consideration then needs to be given to
whether past episodes of systemic risk are reasonably representative of what one
can expect in the future. For some portfolios this will be a very significant
assumption, based solely on judgemental considerations.

e Even where one is comfortable that a model adequately reflects the volatility
expected in the future from both independent and systemic sources external to the
actuarial valuation process, the model is highly unlikely to incorporate
uncertainty arising from sources internal to the actuarial valuation process, i.e.
internal systemic risk.

The framework proposes the use of one or more stochastic modelling techniques to
analyse independent sources of risk and to inform on past episodes of systemic risk
external to the actuarial valuation process. There are a number of approaches that
may be used to analyse independent sources of risk, including:

Mack method;

Bootstrapping;

Stochastic Chain Ladder;

Generalised Linear Modelling (GLM) techniques; and
Bayesian techniques.

13
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Although these techniques can be used for both outstanding claim liabilities and
premium liabilities, it is possible and practically helpful to analyse independent risk
as it pertains to premium liabilities using techniques specifically designed for this
purpose.

The analysis of independent risk is an art in itself and actuaries will only become
comfortable in this area with practical experience of working through the main issues
on their own valuation portfolios. A range of stochastic techniques may be used and
decisions made on the strengths and weaknesses of each approach in the context of
the past experience. It may be possible to refine the modelling to focus on certain
past periods with limited past episodes of systemic risk, thus largely isolating past
independent risk and examining the extent to which it has impacted past volatility.

Finally, we do consider it useful to supplement any analysis of independent risk for a
particular valuation portfolio with internal and external benchmarking.
Benchmarking is discussed in section 2.7. The main source of external benchmarking
in this regard would be the 2001 Tillinghast paper which identified the independent
risk component in its overall uncertainty benchmarks. For some portfolios,
benchmarking may be the only way to obtain some view of the contribution from
independent risk once all other avenues have been exhausted.

Analysing systemic risk sources

The framework proposes separate analysis of internal systemic risk and external
systemic risk. Qualitative approaches are proposed for this purpose. Two approaches
are discussed in Section 4 of the paper, one designed to analyse internal systemic risk
and the other designed to analyse external systemic risk. Introductions to these
approaches are given in this sub-section. Both techniques have been designed to
allow judgement to be deployed in a robust, transparent and consistent manner,
giving due consideration to each of the key contributors to the two sources of
systemic risk.

Internal systemic risk

Internal systemic risk refers to the uncertainty arising from the actuarial valuation
models used being an imperfect representation of the insurance process as it pertains
to insurance liabilities. Valuation models are designed to predict future claim cost
outcomes based largely on an examination of the key predictors of claim cost, and
trends in these predictors, as these have been observed in the past claim experience.

When assessing the uncertainty associated with the insurance liabilities it is important
to subject the valuation methodology to objective scrutiny to assess the extent to
which the quality of the insurance liability estimate may be compromised by
inadequacies in the valuation process. The need to be objective as part of this process
is important. Human nature is such that it is easy to become overly defensive of the
modelling approach adopted for central estimate purposes. Objective comparisons
and scoring of the adopted valuation methodology against best practice, irrespective
of whether such best practice is possible in the context of the portfolio being
analysed, is crucial to forming an appropriate view of the contribution of internal
systemic risk to uncertainty.

We consider there to be three main sources of internal systemic risk. These are:
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e Specification error - the error that can arise from an inability to build a model
that is fully representative of the underlying insurance process. The process is
likely to be too complicated to be replicated in any actuarial valuation model.
Also, the information available may be such that the underlying process cannot
be fully understood and the model structure is simplified as a consequence.

e Parameter selection error - the error that can arise because the model is unable to
adequately measure all predictors of claim cost outcomes or trends in these
predictors. Again the insurance process is such that there can be a large number
of claim cost drivers that would be difficult to fully capture in an actuarial
valuation model.

o Data error - the error that can arise due to poor data or unavailability of data
required to conduct a credible valuation. Data error also relates to inadequate
knowledge of the portfolio being analysed, including pricing, underwriting and
claims management processes and strategies.

One approach to analysing internal systemic risk is discussed in detail in section 4 of
the paper. This involves developing a balanced scorecard to objectively assess the
model specification against a set of criteria designed to rank aspects of the modelling
from worst to best practice. For each of the sources of internal systemic risk, risk
indicators are developed and then scored against the adopted criteria. The scores are
then aggregated for each valuation class and mapped to a quantitative measure (CoV)
of the variation arising from internal systemic risk.

There are a number of subjective decisions that are required to be made as part of this
process. These include the risk indicators, the measurement and scoring criteria, the
importance (or weight) afforded to each risk indicator and the CoVs that map to each
score from the balanced scorecard. Quantitative techniques may be used to inform
aspects of these decisions.

Development and deployment of a balanced scorecard approach to measuring internal
systemic risk is a blend of art and science. Actuaries unfamiliar with the approach
will need time to develop the skills required:

e to draw out all of the risk indicators;
e objectively score them against best practice; and
e map them to a CoV in the context of their own valuation classes.

Section 4 of the paper provides some thoughts and tools that may be used as part of
such an exercise. However, it is fully expected that new techniques will emerge as
experience develops and the writers of this paper welcome and encourage future
contributions to the development of actuarial thinking in this area.

The analysis of internal systemic risk is summarised in Figure 2 below.
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Qualitative assessment

v

Parameter
selection
error

v

Assess specification error using a range of risk
indicators and diagnostics

Risk indicators may include number of models

used and range of results, reasonableness checks
conducted, subjective adjustments required,
extent of monitoring and review.

Score each risk indicator against best practice
using a range from 1to 5

Data error

v

v

Assess parameter selection error using a range of
risk indicators and diagnostics

Risk indicators may include ability to identify and
use predictors, extent to which predictors lead

Figure 2: Internal systemic risk — systemic risk internal to the actuarial valuation process

Combine scores

rather than lag claim costs, subjective adjustments
required, ability to detect trends, stability,
uncertainty in superimposed inflation.

Score each risk indicator against best practice
using a range from 1to 5

Assess data error using a range of risk indicators
and diagnostics

Risk indicators may include extent, timeliness and

reliability of information from business, access to
data, quality of reconciliations, extent of revisions
to past data.

Score each risk indicator against best practice
using a range from 1to 5
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External Systemic Risk

All of the standard quantitative modelling technigues analyse the volatility inherent in
the past claim experience. As such, they can only be used to inform on the
uncertainty arising from past episodes of external systemic risk. To use these
techniques in isolation would require an assumption that the contribution to volatility
from future external systemic risk is expected to be similar to that experienced in the
past. It is quite possible, and for some valuation classes likely, that future external
systemic risk will exhibit significantly different characteristics from actual past
episodes.

It is, therefore, important to identify each of the main potential sources of external
systemic risk and, for each of these sources, quantify their impact on the overall
volatility of the insurance liabilities. The main external systemic risks for any
valuation class can be categorised as belonging to a number of risk categories. These
include:

e Economic and social risks — normal inflation and other social and environmental
trends

e Legislative, political risks and claim inflation risks — relates to known or
unknown changes to legislative or political environment within which each
valuation portfolio currently operates and shifts or trends in the level of claim
settlements (this risk category encapsulates most systemic trends normally
referred to as superimposed inflation)

e Claim management process change risk — changes to the processes relating to
claim reporting, payment, finalisation or estimation

e Expense risk — the uncertainty associated with the cost of managing the run off of
the insurance liabilities or the cost of maintaining the unexpired risk until the date
of loss

e Event risk — the uncertainty associated with claim costs arising from events,
either natural peril events or man-made events

e Latent claim risk — the uncertainty associated with claims that may arise from a
particular source, a source that is currently not considered to be covered

e Recovery risk — the uncertainty associated with recoveries, either reinsurance or
non-reinsurance

Each of these risk categories will normally have been considered as part of the central
estimate valuation of outstanding claim or premium liabilities. There is, therefore, a
strong case for conducting the analysis of external systemic risk in conjunction with
the central estimate valuation, thereby ensuring that both parts of the valuation take a
consistent and complete view of all systemic risk categories.

A critical step in any valuation process is the interaction between the valuation
actuary and business unit management. This is required to ensure that the valuation
actuary has an appropriate level of understanding of all aspects of the insurance
process, particularly as this relates to the valuation of insurance liabilities. These
interactions will normally incorporate discussions about all aspects of the portfolio
management process, including underwriting and risk selection, pricing, claims
management, expense management, emerging portfolio trends and the environment
within which the portfolio operates. It would be of great benefit to the valuation
process, and not particularly onerous, to extend discussions to consider the main
potential external systemic risks that may impact the portfolio. This information can
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then be used to inform both the central estimate valuation and in the identification
and quantification of risks associated with each external systemic risk category.

For most valuation classes, the risk identification and categorisation process will
identify a small number of systemic risks and categories that account for the majority
of the uncertainty. For property classes, for example, event risk is likely to dominate
the volatility of the premium liabilities whereas for long-tail portfolios legislative,
political and claims inflation risks are likely to be the key contributors to the
volatility for both outstanding claim and premium liabilities.

When analysing external systemic risk it is useful to rank each of the risk categories
in descending order in terms of expected impact on insurance liability uncertainty.
This ranking can then be used to guide the effort to be expended on quantifying the
risks associated with each risk category. More time and effort would be spent on
guantifying the uncertainty associated with material risk categories.

Section 4 of the paper discusses the assessment of external systemic risk in more
detail and includes some examples of potential sources of systemic risk within each
risk category.

Correlation effects

At this point in the deployment of the framework, an actuary will have derived CoVs
for independent risk, internal systemic risk and for each source of external systemic
risk in each systemic risk category. The next step requires making allowance for the
fact that each of these sources of risk is not fully correlated either within valuation
classes or between valuation classes.

At this stage, it is worth commenting that we do not consider or discuss any
guantitative methods to assessing correlation effects as part of this paper. The main
reasons for this are as follows:

e Available techniques tend to be technically complex and often require a
substantial amount of data. The time and effort required to learn, implement and
appropriately adjust these techniques may outweigh the benefits gained.

e These techniques will yield correlations that are heavily influenced by the
correlations, if any, experienced in past data. Correlations associated with
external systemic risk sources may differ materially from correlations associated
with past episodes of systemic risk.

o Also, it is difficult, if not impossible, to separate the past correlation effects
between independent risk and systemic risk or to identify the pure effect of each
past systemic risk.

e Internal systemic risk cannot be modelled using standard correlation modelling
techniques.

e Even if modelling of correlation effects were practical, they are unlikely to yield
results that could be aligned to the outcomes of the framework discussed above in
relation to independent risk, internal systemic risk and external systemic risk.

Having said this, it is not our intention to entirely rule out quantitative analysis of past

correlation effects. Such analysis may provide useful insights that can help in the
assessment of potential future correlation effects.
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The framework can be readily extended to incorporate an appropriate allowance for
correlation effects. This extension follows the spirit of the framework discussed so
far and requires that correlation effects be considered in the context of each source of
uncertainty and/or risk category. Again, reliance is placed on an actuary’s own
judgement but the actuary is encouraged to deploy their judgement in a robust and
transparent manner in the context of each of the risks affecting their valuation classes.

Correlation effects can be considered in the context of each source of uncertainty.
The key considerations are discussed below.

e Independent risk — as suggested by the name, this source of uncertainty can be
assumed to be uncorrelated with any other source of uncertainty, either within a
particular valuation class or between valuation classes.

e Internal systemic risk — this source of uncertainty can be assumed to be
uncorrelated with independent risk, as discussed above, and with each potential
external systemic source of risk, either within a particular valuation class or
between valuation classes. Internal systemic risk contributes to correlation
effects through correlation of this source of uncertainty between valuation classes
or between outstanding claim and premium liabilities.

o The same actuary effect and the use of template or valuation models across
different valuation classes are key considerations for correlation effects
between valuation classes.

o Linkages between the premium liability methodology and outcomes from the
outstanding claim valuation are key considerations for correlation effects
between outstanding claim and premium liabilities.

e External systemic risk — it is reasonable to assume that the contribution to
uncertainty from each risk category is uncorrelated with independent risk,
internal systemic risk and with the contribution to uncertainty from each other
risk category, either within a particular valuation class or between valuation
classes. Correlation effects will arise from correlations between classes or
between outstanding claim and premium liabilities from risks categorised as
belonging to similar risk categories, e.g. claims inflation risk across long-tail
portfolios or event risk across property and motor portfolios.

It is possible that external systemic risk categories may be partially correlated either
within or between valuation classes. If this is the case, the correlated risk categories
may be aggregated into broader categories that are not correlated with other risk
categories.

For practical purpose, the correlation relationship between any two sources of
uncertainty or risk categories can be considered to belong to one of a finite number of
assumed correlation bands. For example, five correlation bands may be defined as
nil, low, medium, high and full correlation. For quantification purposes one might
allocate correlation coefficients of 25%, 50% and 75%, respectively, to the low,
medium and high correlation bands. Having any more than five categories is likely to
result in spurious accuracy attaching to what is already a largely subjective process.

The PwC paper describes a useful way of considering and assessing correlation
effects. A root dummy variable, which can be considered to be the root source of
correlations within a risk category, is created. Dummy variables may also be set up
for groupings of valuation classes that belong to the same class of business, e.g.
separate valuations may be conducted by state within a worker’s compensation class
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of business. A hierarchical structure can then be constructed for each systemic risk
category containing correlations between the following components:

e premium liabilities and outstanding claim liabilities for a particular valuation
class;

e outstanding claim liabilities for individual valuation classes and the relevant class
of business dummy variables; and

o class of business dummy variables and root dummy variables.

The implied correlations, both within valuation classes or classes of business and
between valuation classes, can then be assessed.

Consolidation of analysis into risk margin calculation

Once an actuary has progressed through the analysis discussed above they will have
the following assumptions that need to be consolidated and converted into a risk
margin for the whole claims portfolio:

e CoVs in respect of independent risk for each valuation portfolio, separately for
outstanding claim and premium liabilities

e CoVs in respect of internal systemic risk for each valuation portfolio, separately
for outstanding claim and premium liabilities

e CoVs in respect of each potential external systemic risk category, separately for
outstanding claim and premium liabilities

e Correlation coefficients between each source of uncertainty, risk category,
valuation portfolio and outstanding claim/premium liability combination.

For practical purposes, we propose that a simple linear correlation dependency
structure be adopted to allow for the various correlation effects. Correlation matrices
are created for each of the three sources of uncertainty described in section 2.2 above.
As discussed above, independent risk, internal systemic risk and external systemic
risk are all assumed to be uncorrelated. As such, the contribution from each source of
uncertainty to the total CoV, after correlation effects, can be calculated individually
and then combined.

We consider a simple linear correlation dependency structure to be reasonable for the
assessment of risk margins associated with probabilities of adequacy of up to at least
90%. Where one is faced with requirements for extreme probabilities of adequacy,
e.g. for portfolios in run off or when parameterising reserve risk for DFA modelling
purposes, it is recommended that other dependency structures be considered.

An example of the consolidation and risk margin calculation for an example insurer,

Insurer ABC, which underwrites three classes of business, Motor, Home and CTP is
shown in Figure 3 below.
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Figure 3: Claims portfolio CoV and risk margin calculation for Insurer ABC

A: Proportion of insurance liabilities

Proportion of insurance liabilities

Outstanding

Class claims Premium liabilities
Motor 5% 25%
Home 5% 25%
CTP 30% 10%
Total 40% 60%

B: Independent risk

Outstanding

Class claims CoV__ Premium liabilities CoV _liabilities CoV
Motor 7.0% 5.0% 1.3%
Home 6.0% 5.0% 4.3%
CTP 6.0% 15.0% 5.9%
Total 4.6% 3.9% 3.0%
C: Internal systemic risk
e Internal systemicrisk Internal systemic risk correlation matrix
Outstanding Insurance M osC M PL H osCc H PL CTP OSC CTP PL
Class claims CoV__ Premium liabilities CoV_liabilites Cov | &+ ™ (? torotor ____________ ome ______________ (_) me _______________________________
Motor OSC 100% 75% 50% 50% 25% 25%
Motor 5.5% 5.0% 4.9% Motor PL 75% 100% 50% 50% 25% 25%
Home 5.5% 5.0% 4.9% Home OSC 50% 50% 100% 75% 25% 25%
CTP 9.5% 8.0% 8.7% Home PL 50% 50% 75% 100% 25% 25%
Total 7.6% 4.2% 4.9% CTP OSC 25% 25% 25% 25% 100% 75%
CTP PL 25% 25% 25% 25% 75% 100%
D: External systemic risk
External systemic risk - coefficients of variation by risk category
social, etc, Legislative, political ~ Claim process Latent claim : All risk
risk and claims inflation risk risk Expense risk Event risk risk Recowery risk i categories

Motor OSC 1.0% 0.5%
Motor PL | 2.0% 0.5%
Home OSC 1.0% 1.0%
Home PL 2.0% 1.0%
CTP OSC 3.0% 10.0%
CTP PL 4.0% 12.0%

2.0% 1.0%

2.0% 2.0% 3.0% 0.0% 5.0%
2.0% 1.0% 2.0% 0.5% 0.5%
2.0% 2.0% 15.0% 0.5% 1.0%
4.0% 2.0% 0.0% 0.5% 1.0%
4.0% 3.0% 1.0% 0.5% 2.0%

6.8%
3.4%
15.5%
P 11.4%
L 13.8%

External systemic risk - risk category correlations
Risk category

Correlations adopted

Economic, social and environmental risk
Legislative, political and claims inflation risk
Claim management process risk

Expense risk

Nil between CTP and other, 25% PL/25% OSC between motor and home, 50% between OSC and PL within classes
Nil between CTP and other, 25% PL/25% OSC between motor and home, 50% between OSC and PL within classes

25% between classes, 50% between OSC and PL within classes
25% between classes, 50% between OSC and PL within classes

Event risk Nil between CTP and other, 50% PL/25% OSC between motor and home, 50% between OSC and PL within classes
Latent claim risk Nil between classes, 50% between OSC and PL within classes
Recowery risk Nil between classes, 50% between OSC and PL within classes

__________________ External systemicrisk_

Outstanding Insurance

Class claims CoV__ Premium liabilities CoV _liabilities CoV
Motor 4.0% 6.8% 6.0%
Home 3.4% 15.5% 13.1%
CTP 11.4% 13.8% 10.7%
Total 8.6% 8.0% 6.5%

E: Consolidated CoVs

All sources of uncertainty

Outstanding

Class claims CoV__Premium liabilities CoV _liabilities CoV
Motor 9.8% 9.8% 7.9%
Home 8.8% 17.0% 14.6%
CTP 16.0% 21.9% 15.0%
Total 12.4% 9.9% 8.7%

F: Risk margins

Required probability of adequacy 75%

Outstanding Insurance } Outstanding Premium Insurance
Class claims Premium liabilities liabilities : claims CoV___liabilities CoV__liabilities CoV
Motor 6.6% 6.6% 5.3% : 6.3% 6.3% 5.1%
Home 5.9% 11.5% 9.9% 5.7% 10.5% 9.2%
CTP 10.8% 14.8% 10.1% : 9.9% 13.0% 9.4%
Total 8.4% 6.7% 5.8% 7.9% 6.3% 5.6%
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The following comments are made to help in the interpretation of the example in
Figure 3.

e The CoVs and correlation coefficients used and risk margins derived are
indicative only. The emphasis is on demonstrating how consolidation could work
in practice, rather than proposing appropriate risk margins or underlying
assumptions.

e Part A gives the percentage breakdown of the total net central estimate of
insurance liabilities by valuation portfolio and between outstanding claim and
premium liabilities. There is no need to use actual dollar amounts in the
calculation. The percentage breakdown (or weights) will suffice. For simplicity,
for this example all homogeneous claim groups have been combined within the
valuation classes.

e Part B shows the CoVs adopted in respect of independent risk for outstanding
claim and premium liabilities following a combination of quantitative modelling
and benchmarking. The insurance liability CoVs by valuation portfolio and the
insurance liability, outstanding claim liability and premium liability CoVs for all
valuation portfolios combined have been derived assuming independence (or nil
correlation) between valuation portfolios and between outstanding claims and
premium liabilities.

e Part C shows the CoVs and correlation coefficients (in correlation matrix form)
adopted for outstanding claim and premium liabilities in respect of internal
systemic risk. These CoVs and correlation coefficients have been derived
following a qualitative analysis of internal systemic risk using a balanced
scorecard approach. The insurance liability CoVs by valuation portfolio and the
insurance liability, outstanding claim liability and premium liability CoVs for all
valuation portfolios combined have been derived using the assumed correlations
between valuation portfolios and between outstanding claim and premium
liabilities. When creating any correlation matrix it is important to include a check
that the matrix is positive definite.

e The first table in Part D shows the CoVs adopted in respect of each external
systemic risk category. The second table summarises the adopted correlation
coefficients in respect of external systemic risk. The implementation of these
correlations is conducted using seven correlation matrices, one for each external
systemic risk category. Each of these matrices is 6x6, similar to the correlation
matrix shown in Part C for internal systemic risk. With an assumption of
independence between risk categories there is no need to create a larger 42x42
matrix with a row and column representing each risk category, valuation portfolio
and outstanding claim/premium liability combination. The CoVs and correlation
coefficients shown in these two tables have been derived following a qualitative
analysis of potential external systemic sources of risk. The third table in Part D
shows the aggregate CoVs in respect of external systemic risk, derived for each
valuation portfolio and for all valuation portfolios combined in respect of
outstanding claim liabilities, premium liabilities and insurance liabilities.

e Part E consolidates the CoVs from each of the three sources of uncertainty,
derived in Parts B to D. The key assumption underlying the derivation of
consolidated CoVs is that there is independence between each of the sources of
uncertainty.

e Part F converts the consolidated CoVs into risk margins assuming a required
probability of adequacy of 75%. Two statistical distributions have been adopted
as representative of the underlying distribution of insurance liabilities: the
Normal distribution and the LogNormal distribution. At lower probabilities of
adequacy, including 75%, the Normal distribution delivers a higher risk margin,
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irrespective of the consolidated CoV. At higher probabilities of adequacy,
including 90%, the LogNormal distribution can give a higher result, where the
consolidated CoV is not too high. For particularly high CoVs, the LogNormal
distribution can generate risk margins that appear unreasonable. For example, for
a 75% probability of adequacy the risk margin percentage does not increase much
above 25% and actually reduces as the CoV increases above 75%. Another way
of looking at this is that LogNormal risk margins can reduce quite significantly as
a percentage of the CoV as the latter increases whereas Normal risk margins
remain unchanged as a percentage of the CoV.

e Both distributions are used in practice by actuaries with the LogNormal
distribution more common for higher probabilities of adequacy and the Normal
distribution, for the reasons discussed above, often given consideration at the
75% probability of adequacy. The right-tailed nature of the distribution of
insurance liabilities perhaps lends itself more to a right-skewed distribution such
as LogNormal. However, it does have its practical issues at lower probabilities of
adequacy as discussed above. Considering the level of judgement required in the
application of the framework, spending a substantial amount of time deliberating
over the form of the distribution is unlikely to be of much value. An actuary
should adopt a distribution that is appropriate in the context of their own claims
portfolio, including the consolidated CoV assessed and probability of adequacy
required. One might not be so comfortable to adopt a LogNormal or Normal
distribution without further justification if the purpose of the analysis is to derive
risk margins with very high probabilities of adequacy (i.e. 99.5% for portfolios in
run off) or when parameterising reserve risk in a DFA modelling context.

e A spreadsheet tool has been created to do the calculation required for the
consolidation shown in Figure 3. This tool has been provided as an attachment to
this paper to help readers understand the key formulae underpinning the
consolidation.  Obviously, this tool may also be adapted for use in the
deployment of the framework discussed in this paper.

Additional analysis

There are a number of areas of additional analysis that may be conducted to give an
actuary further comfort regarding the outcomes from the deployment of the
framework described above. These include sensitivity analysis, scenario testing,
benchmarking and hindsight analysis, each of which is discussed below.

Sensitivity testing

The framework requires a substantial amount of actuarial judgement in its
application. Judgement is required in all aspects of the analysis, irrespective of
whether quantitative or qualitative methods have been used to assess the volatility
associated with a particular source of uncertainty.

Valuable insights into the sensitivity of the final outcomes to key assumptions can be
gained by varying each of the key assumptions. It is recommended that, as part of the
analysis, the CoVs and correlation coefficients adopted for independent risk, internal
systemic risk and each external systemic risk category be flexed and the impact on
the valuation class and claims portfolio risk margins examined.
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Following such an analysis, one might review certain key assumptions, particularly
those that have a substantial impact on the final outcome, with a view to gaining
additional comfort that the adopted assumptions are reasonable and justifiable.

As a demonstration of sensitivity testing in practice changes have been made to
certain key assumptions adopted for the example in Figure 3.

o If the independent risk CoVs by valuation portfolio for outstanding claim and
premium liabilities are reduced by 50%, the risk margin for the whole claims
portfolio (based on the LogNormal distribution) reduces from 5.6% to 5.4%.
Alternatively, doubling these CoVs increases the risk margin to 6.5%.

e If the internal systemic risk CoVs by valuation portfolio for outstanding claim
and premium liabilities are increased by 50%, the risk margin for the whole
claims portfolio increases from 5.6% to 6.6%. Alternatively, increasing the
correlation coefficients to give full correlation across all combinations increases
the risk margin to 6.3%.

e If the CoVs for the legislative, political and claims inflation systemic risk
category for CTP (outstanding claims and premium liabilities) are reduced by
50%, the risk margin for the whole claims portfolio reduces from 5.6% to 5.2%.
Doubling the CoV for the event systemic risk category for Home premium
liabilities increases the risk margin to 7.0%. Finally, assuming full correlation,
within all valuation classes and systemic risk categories, between outstanding
claim and premium liabilities increases the risk margin to 5.8%.

Scenario testing

It is often insightful to tie the risk margin outcomes back to a set of valuation
outcomes by strengthening some of the key assumptions adopted for central estimate
purposes to align the outstanding claim liabilities and premium liabilities with the
provisions assessed including risk margins. Various different assumption scenarios
may be tested and valuation outcomes, including projected ultimate claim
frequencies, average claim sizes, loss ratios, etc, compared for each scenario against
the central estimate basis.

These (risk margin inclusive) valuation outcomes can be considered in the context of
the emerging experience and what is known about the portfolio. Also, the basis
changes required to deliver these outcomes can be considered in the context of the
emerging experience.

Internal benchmarking

As part of the CoV selection process, the proposed CoVs should be subjected to a
range of internal checks. For each source of uncertainty individually the adopted
CoVs should be compared between valuation classes, particularly similar valuation
classes, for outstanding claim liabilities, premium liabilities and insurance liabilities.
Comparisons should also be made between outstanding claim and premium liability
CoVs within classes.

For independent risk, there are two main dimensions that should be considered in the
context of internal benchmarking: portfolio size and length of claim run off. The law
of large numbers implies that the larger the portfolio, the lower the volatility arising
from random effects. Also, the longer a portfolio takes to run off, the more time there
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is for random effects to have an impact. These considerations have a number of
implications for independent risk CoV selection, including:

e OQutstanding claim liability CoVs for short-tail portfolios are likely to be lower
than for similar sized long-tail portfolio and substantially lower than much
smaller long-tailed portfolios.

e Premium liability CoVs for long-tail portfolios would normally be higher than
outstanding claim liability CoVs for the same portfolios. This is due more to the
law of large numbers than any material differences in the length of the run off.
The extent of the difference will depend on the size of the premium liability and
outstanding claim liability with the difference being more for small portfolios
which will have higher independent risk components than for large portfolios
which will have smaller independent risk components.

e Premium liability CoVs for short-tail portfolios would normally be lower than
outstanding claim liability CoVs for the same portfolios, assuming the same
independent risk profile between outstanding claim and premium liabilities. This
is due mainly to the law of large numbers. The independent risk profiles may
not, however, be similar. Event risk, where material, is likely to mean that the
independent risk profile of premium liabilities and outstanding claim liabilities
are different. This is likely to offset the benefit that premium liabilities gain from
their greater size and in any event make benchmarking problematic.

For internal systemic risk, the CoVs can be compared in the context of each valuation
class. If template models are used for similar portfolios, particularly classes with
homogeneous claim groups, then one would expect CoVs to be similar between
classes. Also, the underlying process and the key drivers of this process are likely to
be more complicated in long-tail portfolios than most short-tail portfolios. If similar
valuation methodologies are applied for both short- and long-tail classes then one
would expect higher internal systemic risk CoVs for the long-tail portfolios.

The main sources of external systemic risk are likely to be much more significant for
long-tail portfolios with the exception of event risk for property and, to a lesser
extent, motor classes and liability risk for home classes.

External benchmarking

External benchmarking refers to the use of the Tillinghast and Trowbridge 2001
papers or APRA’s November 2008 General Insurance Risk Margins Industry Report
to benchmark CoVs and/or risk margins derived as part of a risk margins analysis.

APRA have indicated that a large number of actuaries rely, to varying extents, on the
analysis presented in the 2001 papers in the selection of their own risk margin
assumptions. This reliance ranges from those actuaries who conduct thorough
analyses on their own portfolios and then benchmark the adopted risk margins with
those derived from the 2001 papers to those actuaries that derive risk margins solely
from the 2001 papers with little or no consideration of the reasonableness of this
approach in the context of their own portfolios. The latter approach was certainly not
one of the original intentions of the authors of the 2001 papers. The former approach
is more consistent with the expectations of the authors.

It is not our intention to dismiss external benchmarking out of hand. Rather, we

consider that this form of benchmarking has some merit when combined with a
thorough analysis of a particular claims portfolio. Benchmarking will be of some
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benefit where there is little information available for analysis purposes, particularly
for the analysis of independent risk. More generally, the use of benchmarking should
be as a sanity check rather than as the entire basis of the risk margin assessment. In
any deployment of benchmarking, the differences between the benchmark portfolio(s)
and the claims portfolio being analysed must be considered and factored into the
analysis.

The use of the Tillinghast paper in the assessment of independent risk is discussed in
section 2.4 above. Before using the Tillinghast paper, however, an actuary needs to
be aware of the following issues:

e The assumptions required to derive the independent component of the CoV were
derived based on an analysis conducted during 2001. The independent CoVs
depend on the size of the outstanding claim or premium liabilities. Inflation
between 2001 and the effective date of the current valuation should be backed out
of the outstanding claim and premium liabilities before calculating the
independent CoV. If this is not done then the independent CoV will be
understated.

e The premium liability risk margin should be calculated by applying a multiple to
the outstanding claim risk margin for an outstanding claim liability that is the
same size as the premium liability, not for the actual outstanding claim liability,
irrespective of whether this is lower or higher than the premium liability.

Hindsight analysis

Hindsight analysis involves comparing past estimates of outstanding claim liabilities
and premium liabilities against the latest view of the equivalent liabilities.
Movements can be analysed and converted to a coefficient of variation reflective of
the actual volatility observed in the past. This volatility contains a combination of
past instances of independent risk, internal systemic risk and external systemic risk.
Care needs to be taken in the interpretation of any hindsight analysis as the models
may have changed (improved) since previous valuations were conducted. Also,
future external sources of systemic risk may differ materially from past such episodes
of systemic risk.

Hindsight analysis is particularly useful for short-tail valuations where there is little
serial correlation between consecutive valuations. Hindsight analysis is somewhat
less valuable for long-tail portfolios where there is usually significant serial
correlation between consecutive valuations.

The reader is referred to the 2005 paper An Empirical Approach to Insurance
Liability Prediction Error With Application to APRA Risk Margin Determination by
Andrew Houltram for a thorough discussion of the benefits and practicalities
associated with hindsight estimation.

Another form of hindsight analysis, which we will refer to as mechanical hindsight
analysis, is one that takes a mechanical approach to estimating the outstanding claims
and premium liabilities, systematically removing the most recent claims experience.
An example of such an approach is as follows:

e Apply a chain ladder method on a triangulation of cumulative claim payments
based on a triangulation of data at the valuation date.
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e The adopted payment development factors should be calculated using an
objective approach, e.g. the average of the actual experience over the last three
years.

e The outstanding claim payments derived using all data to the valuation date is
referred to as the ‘current’ estimate.

e Remove a diagonal of payment data one at a time and apply the same method
objectively to derive outstanding claim payments at past valuation dates.

e Compare each of the past estimates of outstanding claim payments with the
current estimate, for the equivalent accident periods and ensuring that relevant
payments made between valuation dates are added to the current estimate of
outstanding claim payments.

e The method can be extended to incorporate a mechanical projection of premium
liabilities at each valuation date. Premium liability volatility and past levels of
correlation between outstanding claim and premium liabilities can be examined.

Mechanical hindsight analysis may be used to analyse:

e independent risk, by focusing the analysis on periods where there was a degree of
stability in the experience with few or no systemic trends;

e internal systemic risk, by applying this technique using a range of actuarial
methods (preferably those used for central estimate valuation purpose) and
observing the differences in volatility outcomes; and

o all past sources of uncertainty, by applying the approach across all past periods.

The latter is a mechanical variant of the hindsight analysis described in the first three
paragraphs of this sub-section.

Documentation and regularity

Documentation

APRA have indicated that a wide range of approaches have been taken by actuaries in
the documentation of risk margins analysis. Documentation ranges from that which
provides a thorough discussion of approach and justification for the assumptions
underpinning the adopted risk margins to that which provides very little commentary
or justification.

Documentation of actuarial judgement is not necessarily an easy task. However, we
believe that the framework offers actuaries an opportunity to document their analysis
and key judgemental decisions in a complete and robust manner, aligned to the key
steps in the framework.

Regularity and review

A full application of each step of the framework is a substantial and comprehensive
undertaking. We do not consider that the framework need be applied in its entirety
each time an actuary conducts a central estimate valuation of insurance liabilities.

We consider a full application of the framework at less regular intervals to be

reasonable and appropriate. At the very least, however, a full application should be
applied every three years. These extensive reviews should incorporate all of the steps
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of the framework discussed above and summarised in Table 1. They will also involve
significant interaction with business unit management.

At more regular intervals, aligned to the times when central estimate valuations of
insurance liabilities are conducted, a less comprehensive review of the key
assumptions adopted as part of the previous full application will suffice. The key
assumptions should be examined in the context of:

e any emerging trends;
e emerging systemic risks; and
e changes to valuation methodologies.

Changes to key assumptions would only be considered where there is reasonable
justification for doing so, i.e. where the previous assumptions are no longer deemed
appropriate. Another way of thinking of these regular reviews are as monitoring
exercises where key assumptions derived from the previous full framework
application are monitored against emerging experience and developing knowledge
and adjusted where justified.

If new portfolios emerge in the period between full applications of the framework,
one should consider applying the key steps within the framework to those portfolios.

The successful deployment of this framework will require significant interaction with
business unit management. The process may benefit from a feedback and
communication loop, enabling the business to provide their views on the outcomes of
the analysis. This will reduce the possibility that lots of assumptions, which all make
sense individually, contribute to an overall outcome that does not make sense. This
communication loop may incorporate the demonstration of scenarios that would give
rise to the outcome assessed at the selected probability of adequacy.
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Independent risk assessment

Independent risk reflects the contribution to the uncertainty associated with the actual
claim cost outcome from random effects. This source of risk has two components:
the random component of parameter risk and the random component of process risk.
It is not normally particularly enlightening or beneficial to split independent risk
between these two components. Having said this, some quantitative modelling
techniques do allow the split to be assessed as part of their normal application.

There are a number of approaches that may be used to analyse independent sources of
risk, including::

Mack method:;

Bootstrapping;

Stochastic Chain Ladder;

Generalised Linear Modelling (GLM) techniques; and
Bayesian techniques

The bibliography includes references to a number of papers that describe these
techniques.

The techniques vary in their capacity to enable actuaries to identify past levels of
independent risk. In the application of most of these techniques, one is attempting to
fit a model to past systemic episodes and trends and to analyse the residual volatility
once these episodes and trends have been fitted away. The better the model fit is the
more likely that the residual volatility observed reflects random effects alone.

An actuary faced with the task of assessing independent risk will need to decide upon
which techniques to use for each of their valuation classes. This decision should
consider the extent to which the independent risk for a particular valuation class is
material to the overall claim portfolio risk margin, the contribution to uncertainty
from internal systemic risk and external systemic risk and the cost and effort
associated with applying the techniques. Where the cost and effort outweighs the
potential benefit then a simpler approach, perhaps incorporating benchmarking, may
be considered.

For some valuation portfolios, the data available may be too limited or volatile to
enable a credible split between past episodes of systemic risk and past independent
risk. In these cases, actuaries may consider using a model that does not attempt to fit
away the past systemic risk and supplement this analysis with additional allowances
for external systemic risk, to the extent that this is considered to differ from past
systemic risk, and internal systemic risk, which cannot be modelled using standard
guantitative modelling techniques.

Independent risk assessment for outstanding claim liabilities
Any of the techniques mentioned above can be used in the assessment of past
independent risk for outstanding claim purposes. Some of the techniques offer more
flexibility in terms of fitting to past systemic episodes and trends.
Consideration should be given to aligning the methodology adopted to analyse

uncertainty with that used for central estimate purposes. For example, if the PPCI
method plays an important role in the central estimate assessment and bootstrapping
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is the preferred approach to analysing uncertainty then the PPCI method should be
bootstrapped. This will ensure that past volatility is examined and conclusions drawn
in an environment that is internally consistent.

GLM techniques can be used to model individual claims or aggregate claims. These
techniques are used for reserving purposes to identify the key factors that have
contributed to past claim cost outcomes. Combined with a range of useful statistical
diagnostics, these techniques are well placed to support the analysis of independent
risk.

Bootstrapping techniques offer less flexibility than GLM techniques but can be
adapted to help in the assessment of random effects. For example, if past periods that
have been largely unaffected by systemic episodes can be identified then the
bootstrap residuals can be calculated for these stable periods and used as part of the
bootstrapping process. Plots of residuals by accident period, development period and
experience period can be used to identify periods that have been affected by past
systemic episodes.

Independent risk assessment for premium liabilities

The bootstrapping, GLM and Bayesian approaches may also be used for the purpose
of analysing the volatility in past claim experience for the purpose of assessing the
independent risk component for premium liabilities.

However, it is possible to use simpler techniques to analyse the past volatility of key
components of the premium liabilities. Consider a valuation class where the central
estimate of the claim cost component of the premium liabilities is assessed by
combining a projected claim frequency and average claim size. The adopted claim
frequency and average claim size has been selected following an analysis of output
from the outstanding claim valuation supplemented by portfolio level pricing
analysis.

For some valuation classes, it can be a relatively straightforward exercise to remove
the impact of past systemic episodes (including seasonality) from observed claim
frequencies and determine the claim frequency CoV in respect of past residual
volatility.  Similarly, past average claim sizes can be adjusted to remove past
inflation, including both standard and superimposed, and other past systemic episodes
(again including seasonality) and a CoV in respect of past residual volatility derived.

Where a loss ratio approach to projecting premium liabilities is used, allowance
should be made for systemic shifts in past premium levels as well as claim costs.

Often large claims are extracted for separate analysis. Again, observations can be
made as to the aspects of past experience that represent systemic episodes and those
that are purely random.

The process of identifying and isolating past systemic episodes can only be enhanced
if an actuary has a strong understanding of the possible systemic sources of risk for a
particular portfolio. The role that product and claim management can play in
improving this understanding should not be underestimated. This is discussed further
in section 4.
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Systemic risk assessment

Internal systemic risk

Internal systemic risk refers to the uncertainty arising from the actuarial valuation
models used being an imperfect representation of the insurance process as it pertains
to insurance liabilities.

As discussed in section 2.5, we consider there to be three main sources of internal
systemic risk. These are:

e Specification error - the error that can arise from an inability to build a model
that is fully representative of the underlying insurance process.

e Parameter selection error - the error that can arise because the model is unable to
measure all predictors of claim cost outcomes or trends in these predictors.

e Data error - the error that can arise due to poor data, unavailability of data and/or
inadequate knowledge of the portfolio being analysed.

When an actuary conducts an assessment of outstanding claim or premium liabilities,
there are a wide range and variety of approaches and methodologies that are
available. The merits of each approach will be considered in the context of the
valuation classes being assessed. The characteristics of each class and the level of
information available, including granularity of data, will all play a role in the decision
around which approach to use.

Although care will normally be taken to ensure that the approach adopted is
appropriate for the valuation class being assessed, models are likely to represent a
simplified view of the insurance process. Models also range in their capacity to
identify underlying trends in the claims experience. Standard triangulations methods
will normally analyse predictors (e.g. claim payments, reports, finalisations, case
estimates) that have been aggregated to a reasonably high level or lag rather than lead
the underlying drivers of the insurance process.

In light of this, any analysis of uncertainty would be incomplete without an objective
assessment of the adequacy of the modelling infrastructure and its ability to reflect
and predict the underlying insurance process. In this section of our paper, we propose
one approach, involving the development of a balanced scorecard, which may be used
as part of such an assessment.

One other point worth making before we walk through the balanced scorecard
approach in detail is that the assessment of internal systemic risk must be conducted
in the context of the actual approach used to assess the central estimate of outstanding
claim and premium liabilities. The strengths and weakness associated with that
approach will be considered and scored with a view to determining an appropriate
allowance in risk margins for internal systemic risk. Consistency between the central
estimate and risk margin assessments are one outcome of a robust assessment of
internal systemic risk.

The balanced scorecard was discussed in section 2.5 and presented diagrammatically
in Figure 2. In summary the approach involves:

e For each of the specification, parameter and data risk components, conduct a
qualitative assessment of the modelling infrastructure, considering a range of risk
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indicators and scoring these indicators on a scale of 1 to 5 (where 5 represents
best practice).

e Apply weights to each risk indicator, reflecting its relative importance to the
overall modelling infrastructure, and calculate a weighted average score
representing an objective view of the quality of the modelling infrastructure for
each valuation class.

o Calibrate the weighted average score derived to a CoV in respect of internal
systemic risk. The development of appropriate CoVs will likely involve a
substantial amount of judgement, perhaps supplemented by quantitative analysis.

In a paper entitled Asbestos Liabilities & the New Risk Margins Framework, prepared
by Brett Riley and Bruce Watson, the authors describe an alternative approach to
assessing the level of internal systemic risk. This approach specifies High and Low
scenarios that ‘represent the end points of what might be considered a reasonable
range of central estimates based on alternative interpretations of all available
information’. The approach advocated by Messrs Riley and Watson certainly has
merit and represents a reasonable alternative to the balanced scorecard approach
described in this paper. It also has the appeal of being simpler and, therefore, more
practical to apply.

Scoring the modelling infrastructure

We would encourage actuaries to develop a balanced scorecard approach that is
suited to the characteristics of the valuation classes within their own claims portfolio
including risk indicators that are most relevant in the context of these classes. Having
said this, we feel that it is useful if we outline potential risk indicators that actuaries
may wish to consider and develop for the purpose of their own analysis. Table 2
includes potential risk indicators and some suggested minimum requirements for a
high score for each of these indicators. The characteristics that represent a poor score
should be readily apparent.
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Table 2: Internal systemic risk - Potential risk indicators

Risk component Potential risk indicators Requirements for high score

Many different modelling approaches considered - each approach should add value by considering different dimensions of
claims experience

Extent to which models separately analyse different claim/payment types Relevant homogeneous claim or payment types modelled separately

Number of independent models used

Low variations between different models in terms of past performance - take care that comparisons are appropriate (e.g. PCE

Range of results produced by models vs PPCI for old accident periods for short-tail classes may not be appropriate)

Significant reasonableness checks conducted, including reconciliation of movement in liabilities, diagnostic checks on

Checks made on reasonableness of results . . . . o
valuation outcomes, acceptance of results by business, expert peer review, benchmarking against industry

Soecificati Confidence in assessment of model ‘goodness of fit' Actual vs Extected close, few difficulties in selecting parameters, relevant sensitivities yield small variances in results
pecification error o i o o ] ] ) )
Few subjective adjustments, relevant subjective factor sensitivites yield low variances and adjustments regularly monitored

Number and importance of subjective adjustments to factors .
and reviewed

Extent of monitoring and review of model and assumption performance Model and assumption performance monitored continuously and reviewed regularly

Ability to detect trends in key claim cost indicators Models have performed well in detecting trends in the past

Sophistication and performance of superimposed inflation analysis Detailed analysis of past sources of superimposed inflation and robust quantification of each past source

Lewel of expense analysis to support CHE assumptions Detailed expense analysis, including how expenses are incurred over the lifetime of claims relating to each claim type
Ability to model using more granular data, e.g. unit record data Unit record data is available and used to further analyse and better understand key predictors and trends in these predictors

Best predictors have been analysed and identified, including internal and external variables that show strong correlaton with

Best predictors have been identified, whether or not they are used . .
claims experience

Parameter . . . . - .
selection error Best predictors are stable over time or change due to process changes Predictors stable over time, stabilise quickly and respond well to process changes
Predictors are close to best predictors, lead (rather than lag) claim cost outcomes, modelled rather than subjectively allowed

Value of predictors used for and unimpaired by past systemic events

Knowledge of past processes affecting predictors Good and credible knowledge of past processes, including changes to processes

Regular, complete and pro-active two-way communication between valuation actuary and claims staff/portfolio managers who

Extent, timelin nsisten nd reliability of information from in . . . L
xtent, timeliness, consistency and refiability of information from business understand key valuation predictors and how changes may impact or invalidate these

Reconciliations against other sources are conducted for all data sources and types, checks are conducted throughout data

Data error Data subject of appropriate reconciliations and quality control processing steps, reconciliations against previous valuation conducted, data and differences well understood
Processes for obtaining and processing data are robust and replicable No past instances of poor data understanding, no or low potential for miscoding of claim type
Frequency and sewerity of past mis-estimation due to revision of data No past instances of data revision
Extent of current data issues and possible impact on predictors No known current data issues
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Each of the risk indicators should be considered in the context of both the outstanding
claim and premium liabilities. Additional indicators may be considered for premium
liabilities, for example whether the outstanding claim liabilities are used as an input
to the premium liability assessment or whether credible portfolio level pricing
analysis is used as an input to the premium liability assessment.

For certain short-tail portfolios, some risk indicators may not be as relevant for
premium liability purposes. A large variance in the outstanding claim liabilities,
which might only affect the most recent accident periods and have a relatively small
impact on the projected ultimate claim frequency or average claim size, may not be
material in the context of a premium liability assessment.

Table 3 shows the risk indicator scores which underpin the internal systemic risk
CoVs adopted for Insurer ABC in the example in Figure 3 in section 2.6, with a
particular focus on outstanding claim liabilities.

Table 3: Internal systemic risk — example balanced scorecard

Motor Motor Home Home CTP score CTP
Risk component Potential risk indicators score OSC  weight score OSC weight OSsC weight
Number of independent models used V 4 7 4 7 3 2
Extent to which models separately analyse different claim/payment types 3 3 4.5 5 2 7
Range of results produced by models 4 5 4 4 2 2
Checks made on reasonableness of results 5 5 5 5 4 5
Confidence in assessment of model ‘goodness of fit' 4 5 4 5 2 7
Specification error  Number and importance of subjective adjustments to factors 5 3 4 3 3 5
Extent of monitoring and review of model and assumption performance 4 5 4 5 5 8
Ability to detect trends in key claim cost indicators 4 4 3 4 3 6
Sophistication and performance of superimposed inflation analysis 0 0 4 10
Lewel of expense analysis to support CHE assumptions 4 4 4 4 2 2
Ability to model using more granular data, e.g. unit record data 2 2 2 2 5 2
Best predictors have been identified, whether or not they are used 4 3 4 5 3 7
:;z:rziaerenor Best predictors are stable over time or change due to process changes 5 5 4 5 2 6
Value of predictors used 4 5 4 5 3 5
Knowledge of past processes affecting predictors 4 8 4 8 4 8
Extent, timeliness, consistency and reliability of information from business 4 5 4 5 4 5
Data eror Data subject of appropriate reconciliations and quality control 4 7 4 7 4 8
Processes for obtaining and processing data are robust and replicable 5 3 5 3 5 3
Frequency and severity of past mis-estimation due to revision of data 5 3 3 3 5 5
Extent of current data issues and possible impact on predictors 4 3 5 3 5 3
Total weighted average score - outstanding claims (OSC) 4.1 4.0 35
Total weighted average score - premium liabilities 4.5 4.5 4.0

The scores and weights shown in Table 3 are for illustration only and should be taken
as a demonstration of concept than as a set of benchmarks that actuaries can use for
such portfolios in practice.

The weights allocated to each of the risk indicators are a measure of the importance
of that risk indicator, relative to the other risk indicators, in terms of its contribution
to overall internal systemic risk. The weights and hence relativities between risk
indicators should reflect the particular valuation infrastructure adopted for each
valuation class including the relative importance of each risk indicator in the context
of that valuation class.

Premium liabilities scored better than outstanding claims in this example due to the
extensive use in their assessment of outcomes from the valuation of outstanding
claims and independent and credible portfolio level pricing analyses conducted
recently.
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Calibrating scores to CoVs

Once a score representing an objective and qualitative view of the efficacy of the
modelling infrastructure has been derived, one needs to determine a CoV that is an
appropriate representation of the contribution to outstanding claim and premium
liability uncertainty from internal systemic risk. This step is likely to require a
significant amount of subjective judgement, supplemented by quantitative analysis.

We suggest that individual actuaries develop a CoV scale which represents their view
of the uncertainty associated with internal systemic risk for the full range of possible
balanced scorecard outcomes, ranging from worst practice to best practice (or
‘perfect’) modelling approaches. A large degree of judgement will be required to
derive a reasonable range in the context of a particular claims portfolio. The analysis
conducted to score the modelling infrastructure together with past model performance
should provide invaluable insights into the potential variability associated with a
particular modelling approach.

If more than one methodology has been deployed in the past then a hindsight analysis
of the actual past performance of each method can be used to assess the relative
performance of each method and the extent to which multiple models can improve the
performance of the whole modelling infrastructure.

Mechanical hindsight analysis (see section 2.7) may also be used to help in the
assessment of internal systemic risk. For example, a mechanical hindsight analysis
can be conducted using one method with all claim or payment types aggregated. A
further retrospective analysis can be conducted using multiple methods with claim or
payment types separated into individual homogeneous groups. The relative difference
in performance of the two modelling infrastructures over time may give some insights
into the additional uncertainty associated with poor modelling approaches compared
to fair or good modelling approaches.

Based on our experience, we would suggest that the minimum CoV associated with a
‘perfect’ model is unlikely to be much less than 5%. Even a ‘perfect’ model will not
be able to completely replicate the true underlying insurance process or identify every
possible predictor of claim cost outcomes.

If you consider a single, aggregated model with limited data or information available
to populate the model, significant subjective assumptions required and few identified
predictors, CoVs of 20% or above in respect of internal systemic risk are readily
justifiable. For such models, it is not infeasible that internal systemic risk could be
the main contributor to overall uncertainty.

Table 4 gives CoV scales used in the assessment of risk margins for Insurer ABC as
part of the example in Figure 3.
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Table 4: Internal systemic risk — example CoV scale

Score from
balanced scorecard
assessment Motor CoV  Home CoV  CTP CoV

1.0to 1.5 17.5% 17.5% 25.0%
1.5t02.0 13.0% 13.0% 20.5%
20t0 2.5 10.5% 10.5% 17.0%
2.5t03.0 8.5% 8.5% 14.0%
3.0t03.5 7.0% 7.0% 11.5%
3.5t04.0 6.0% 6.0% 9.5%
40t04.5 5.5% 5.5% 8.0%
4.5105.0 5.0% 5.0% 7.0%

The CoV scale shown in Table 4 is an example only. Actuaries should select CoV
scales that are appropriate in the context of their own valuation classes and the
modelling infrastructure adopted for each of those valuation classes. Any hindsight
analysis deployed to support the selection of appropriate CoVs should be designed to
align with the actual valuation methods adopted for the valuation classes being
analysed.

Further comments on the CoV scale as presented in Table 4 are:

e The scale is not linear reflecting our view that the marginal improvement in
outcomes between fair and good modelling infrastructures is less than the
marginal improvement between poor and fair modelling infrastructures.

e The CoVs for CTP, a long-tail portfolio, are higher than those for Motor and
Home, both short-tail portfolios. For long-tail portfolios, it is generally more
difficult to develop a modelling approach that is representative of the underlying
insurance process. Also, key predictors are often less stable for long-tail
portfolios and past episodes of systemic risk more likely to impair the ability to
fit a good model.

e The scale has been used for both outstanding claim and premium liability
purposes. A reasonable ‘a priori’ assumption is that similar scales can be used
for both. Arguments can be made for premium liabilities to have higher or lower
CoVs than those applying to outstanding claim liabilities, particularly for poor
modelling approaches. For example, the assessment of premium liabilities may
include additional uncertainty associated with the estimation of exposure or
premium relating to unclosed or contractually bound future business. If this is the
case then a loading on top of the outstanding claim liability CoVs may be
justifiable. On the other hand, for certain stable short-tail classes, the difference
between a simple loss ratio approach and a more thorough frequency/severity
approach may not be material in terms of performance in the assessment of
premium liabilities but the difference between a single aggregate model and
multiple disaggregated models could be material in terms of performance in the
assessment of outstanding claim liabilities.

External systemic risk

External systemic risk refers to the uncertainty arising from non-random risks
external to the actuarial modelling process. This uncertainty encapsulates systemic
episodes that have not yet occurred but may emerge in the future and those that are
emerging in the recent experience but where there is some uncertainty as to how they
will develop in future. The risk associated with the actuarial modelling infrastructure
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potentially being unable to identify emerging risks will be picked up as part of a
robust internal systemic risk assessment.

Certain stochastic quantitative approaches may be used to gain insights into past and
emerging sources of external systemic risk. These insights, together with those
gained from the central estimate analysis, will provide useful intelligence on the type
of risks that can emerge in each valuation portfolio, at least the ones that have
emerged in the past. However, one cannot readily assume that past experience is a
reasonable reflection of the future. A more rigorous approach should consider each
of the possible future sources of external systemic risk, using a number of sources of
information.

Communication with business experts

Typically actuaries will hold discussions with portfolio and claim management as part
of the valuation process. These discussions normally provide valuable insights into
emerging trends and possible future sources of external systemic risk. However, the
focus is normally on gaining an appropriate level of portfolio understanding to enable
an informed assessment of the central estimate of outstanding claim and premium
liabilities. Although the information gathered will play a role in the assessment of
risk margins, this tends to be more an afterthought than a key focus of discussions.

Discussions can be readily tailored to topics of relevance for both central estimate and
risk margin purposes and ensure an appropriate level of focus on both aspects of the
valuation process. Business management should be given time to prepare for these
meetings to ensure that the valuation actuary gains the maximum possible benefit
from them.

From a risk margins perspective, the focus of these meetings should be on the
identification of key potential sources of systemic risk, including those that have
begun to emerge and those that may emerge in future. Discussions should consider
all aspects of the portfolio management process, including underwriting and risk
selection, pricing, claims management, expense management, emerging portfolio
trends and the environment within which the portfolio operates. Once the key
sources of external systemic risk have been identified, they can be categorised for
analysis purposes. As well as identifying key risks, the quantification of risk should
be another key consideration for business management interactions.

Selection of assumptions

The selection of CoVs for each risk category will involve a combination of
guantitative analysis and qualitative judgement. Some risk categories will be more
open to quantitative analysis than others. For those categories where such analysis is
more difficult, sensitivity analysis, perhaps in conjunction with business
management, may shed some light on the range of possible outcomes.

In assessing CoVs in respect of each risk category, it is also important to consider the
shape of the entire distribution, to the extent possible. Some risks will demonstrate
characteristics that are reflective of a highly skewed distribution and, as such, may
not have a material bearing on a 75" percentile risk margin but may be more relevant
for higher probabilities of adequacy. An example of such a risk is latent risk where
the probability of such risk emerging is very low and certainly lower than 25%.
Certain sources of superimposed inflation may also be considered to belong to this
category.
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In focusing efforts, consideration may be given to ranking individual risks for each
valuation class in order of importance, separately for outstanding claim and premium
liabilities. For a number of valuation classes it is quite likely that such an exercise
will identify a small number of key risks and allow efforts to be focused accordingly.
This might also provide justification for excluding certain risk categories that are
deemed to be immaterial in terms of their contribution to the overall CoV. A scoring
system, developed in conjunction with business experts, may be introduced as a
convenient mechanism for ranking individual risks and checking that the
contributions from individual risks to the overall CoV for external systemic risk are
reasonable.

Each risk category will represent the amalgamation of a number of identified
potential sources of risk. In some cases, these individual risks will be correlated and
allowance will need to be made for this when combining the risks to determine a CoV
for the risk category as a whole. A simple approach, similar to that discussed in
section 2.5, may be used to allow for these intra-risk category correlation effects.

A key consideration when determining risk categories for a particular valuation class
is whether there is any correlation between categories. The consolidation of the
analysis of external systemic risk is substantially simplified if one can assume that
each of the risk categories is independent. Certain risk categories may have to be
combined to ensure that this assumption is valid.

In the balance of this section, we explore each of the risk categories discussed in
section 2.5 with a view to providing some insights into the types of risk that may be
included in each risk category and the analysis that may be conducted to estimate
appropriate CoVs for each category.

Economic and social risks

This risk category incorporates a number of potential sources of external systemic
risk. These sources include, but are not limited to, levels of standard inflation (AWE
and CPI), general economic conditions (unemployment rates, GDP growth, interest
rates, asset returns), fuel prices, driving patterns, etc.

Some of these risks can have a material impact on both outstanding claim and
premium liabilities. Others are material only for premium liabilities. For example,
economic conditions can have a material impact on outstanding claim and premium
liabilities for professional lines and builder’s warranty valuation classes. Uncertainty
around driving conditions, on the other hand is less relevant for motor outstanding
claims than it is for motor premium liabilities.

Uncertainty around AWE and/or CPI will impact all valuation classes. Due to the
longer term settlement for long tail classes, AWE uncertainty is somewhat more
material for these classes than for short tail valuation classes. Analysis of past levels
of AWE and CPI can shed some light on past systemic sources of volatility.
Economic commentators often provide insights into the potential sources of volatility.

Any analysis of past levels of inflation should consider the extent to which past
volatility is random and the extent to which it has been impacted by systemic events.
For the purpose of analysis of systemic sources of risk, we are only interested in the
latter. This applies to the analysis of past experience in respect of any systemic event
in any risk category.

Potential systemic shifts in claim frequency for short tail valuation portfolios should
be included in this risk category.
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Legislative, political and claims inflation risk

These risks have been combined, for convenience, into one risk category since they
are often correlated. For example, the risks associated with the legislative and
political environment are often correlated to the drivers of non-standard claims
inflation for long tail valuation classes.

This risk category is likely to be much more material for long tail valuation classes
than for short tail classes. For long tail classes, in particular, a number of potentially
material risks may be identified and allocated to this risk category. Some of these
risks will be correlated and, as such, quantification should make allowance for this
correlation.

The analysis conducted to quantify CoVs for this risk category can also be used to
justify superimposed inflation assumptions for central estimate valuation purposes.
After all, for long tail valuation classes, the risks in this category are normally
aggregated and referred to as superimposed inflation for insurance liability valuation
purposes. For each risk, one is aiming to form a view of the range of possible
impacts on claim cost outcomes. The average of this range, combined across all
risks, provides an estimate of superimposed inflation.

Individual actuaries will identify the key risks in this category in the context of their
own claims portfolio. As a general guide, for long tail classes, this category would be
expected to include some of the following sub-groups of risk:

e Impact of recent legislative amendments, including possibility of erosion of intent
of amendments through assessment and threshold erosion, changes in court
interpretation, etc.

Potential for future legislative amendments with retrospective impacts.
Precedent setting in courts, including impact of judicial decisions perhaps leading
to new heads of damage.

Changes to medical technology costs
e Changes to legal costs
e Systemic shifts in large claim frequency or severity

Typically, actuaries will have access to various forms of analysis relating to the
potential impact of a specific series of legislative amendments. This information may
include both external and internal analyses, the latter possibly tailored to the specifics
of a particular portfolio. When supplemented by discussions with product and claim
management, a sound understanding of the range of possible outcomes can be
obtained, including the likelihood and potential severity of a particular outcome
occurring.

For short tail classes, this risk category includes the risk that claim inflation will
increase at a level different from that adopted for central estimate purposes, in
addition to that arising from standard inflation (see above) or claim management
process risk (see below). Claim cost reduction initiatives would normally be
allocated to this category and information is sometimes available as to the range of
possible outcomes from such initiatives.

Claim management process change risk

Changes to the claim management process can impact all valuation classes.
Typically, however, such changes will have a more material impact on some
valuation classes than others. The key here is to work closely with claim managers to
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gain a sound understanding of the claim management philosophy and the process that
underpins that philosophy. Current or future potential changes to process should be
identified as part of such discussions.

Analysis of past experience will help identify past systemic episodes that may have
been impacted by the claim management process. Discussions with management
may help isolate the process changes that contributed to those systemic episodes.
Reporting patterns, payment patterns, finalisation and reopening rates and case
estimation processes should all be considered as part of these discussions.

Sensitivity testing of key valuation assumptions, which can be useful in the
assessment of CoVs for this risk category, is relatively straightforward using
traditional triangulation techniques. If such analysis is conducted, sensitivities
considered should be aligned with the potential sources of uncertainty identified
following discussions with claim management.

Claim management process risk is likely to be more relevant for outstanding claim
liabilities than for premium liabilities. For outstanding claim liabilities, particularly
for short tail valuation classes, this risk can be material since it impacts the pattern of
emergence of credible claim estimates. For premium liabilities, we are more
interested in the extent to which changes to claim management processes can impact
the magnitude of the claim cost. The impact on claim emergence is normally of
secondary importance.

Expense risk

One would generally expect this to be a small contributor to total external systemic
risk.

Ideally, one would spend time with product and claim management to understand the
key drivers of policy maintenance and claim handling expenses. Armed with a good
understanding of these drivers, a valuation actuary can identify the key sources of
possible variation relative to the central estimate assumptions. Sensitivity testing
around the key drivers, preferably conducted in association with informed business
and process experts, and analysis of past expense levels with a view to identifying
past systemic effects can be combined to help form a reasonable view as to the range
of possible claim cost outcomes. Such an analysis could be conducted in conjunction
with any expense analysis conducted for central estimate expense assumptions.

Event claims can have a material impact on the level of claim handling expenses.
The larger an event, the smaller the fixed component of the event management cost
will be as a percentage of the claim cost. In light of this, the analysis may benefit
from including claim handling expenses in respect of event claims with the analysis
of event risk itself.

Event risk

Event risk relates to single events which give rise to a large number of claims. This
risk is likely to be material for property and, to a lesser extent, motor valuation
classes but will be insignificant for most other valuation classes. Event risk also
arises in medical malpractice and builders’ warranty portfolios where a large number
and/or cost of claims can arise from one source, i.e. a single doctor or a single
builder.

The approach to assessing event risk will differ materially between outstanding claim
and premium liabilities. For outstanding claim liabilities, the approach will be
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defined by the extent to which there are material outstanding events. If there are, then
these should be analysed separately. Discussions with event claim management
should be held to understand their expectations as to claim cost outcomes and to
identify any specific issues that may influence outcomes. The range of development
patterns for previous events may also influence the view on uncertainty.

There is often a wealth of information available to help in the quantification of event
risk for premium liabilities, including:

e Past experience in respect of event claims. When analysing past experience, it is
important to allow for changes in portfolio size, geographical spread, inflation,
policy terms and conditions, reinsurance arrangements, etc. where these are
considered to be material. It is not particularly difficult, where sufficient credible
past experience is available, to build a relatively simple statistical model with key
frequency and severity assumptions based on appropriately adjusted past
experience. In fact, modelling of this nature may have been conducted by pricing
actuaries or as part of a reinsurance placement and can be adapted for event risk
analysis.

e Qutput from proprietary catastrophe modelling. A number of such models are
used in practice, including those developed by RMS, EQE, AIR and Risk
Frontiers. Insurers will normally have access to these models through their
reinsurance intermediaries who are well placed to provide advice on the range of
possible outcomes based on modelled events.

e Reinsurance intermediaries typically also have available models in respect of
natural perils, and some man-made perils, that can be used to model perils not
covered by proprietary catastrophe models. These, together with the proprietary
models, will normally be used by intermediaries in support of an insurer’s
catastrophe reinsurance program renewal and can be readily extended to provide
advice on the uncertainty associated with event risk.

Latent claim risk

Latent claim risk is negligible for most valuation classes. For some, primarily
workers compensation and liability classes, the risk can be considered to be material.
However, this is one of the most difficult risks to quantify. The probability of these
events is low but the impact should they occur could be substantial

Purely in the context of setting risk margins it is unlikely that analysis of latent claims
risk warrants a substantial commitment of resources given that it is such a low
probability event. However if such risk exposure is significant enough to be a formal
component of the central estimate or if the object of the exercise is modelling extreme
risks for capital adequacy purposes (using a DFA approach) then a thorough
examination of this risk driver is certainly warranted.

This risk is the one most likely to be quantified using a large degree of judgement.
Discussions with underwriters may help shed some light on some potential sources
and give a feel for their likelihood and potential impact. Also, casualty reinsurance
underwriters often have a more informed understanding of the potential sources of
latent risk claims from their dealings with a number of direct insurers globally. Using
all of the information collected, scenarios may be developed to reflect a possible
range of scenarios from which reasonable CoVs can be derived.

Recovery risk
This risk category encapsulates systemic uncertainty in relation to reinsurance and

non-reinsurance recoveries. This category is likely to be relatively insignificant for
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most portfolios. One possible exception is motor valuation classes where third party
recoveries are often a material consideration.

The focus here should be on systemic events that may lead to different recovery
outcomes from those adopted for central estimate purposes.

An analysis of past non-reinsurance recovery rates and patterns will inform on past
systemic events. Combined with discussions with claim management around current
trends in recovery management and any current or planned future initiatives that may
impact recovery levels, one can readily form a view as to the range of possible
systemic outcomes.

Reinsurance recoverability is another potential source of external systemic risk that
should be considered within this category. The extent to which this is material will
depend on the reinsurance arrangements themselves. A material shift in reinsurance
market conditions may significantly alter the ability to recover from reinsurers. For
example, one or more catastrophic events (on a global scale) or a downturn in asset
returns, or a combination of both, may substantially reduce the ability to recover from
reinsurers. The probability of such events occurring and materially impacting
recoveries is low but the severity, should they happen, could be high. Discussions
with reinsurance management are often enlightening and can help in the identification
of possible scenarios, the likelihood of them occurring and the quantitative impact
should they occur.
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The emergence of Bayesian Markov Chain Monte-Carlo (MCMC) models has provided
actuaries with an unprecedented flexibility in stochastic model development. Another
recent development has been the posting of a database on the CAS website that consists
of hundreds of loss development triangles with outcomes. This monograph begins by
first testing the performance of the Mack model on incurred data, and the Bootstrap
Overdispersed Poisson model on paid data. It then will identify features of some Bayesian
MCMC models that improve the performance over the above models. The features
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Foreword

This is the inaugural volume of the new CAS Monograph Series. A CAS monograph is
an authoritative, peer reviewed, in-depth work on an important topic broadly within
property and casualty actuarial practice.

In this monograph Glenn Meyers introduces a novel way of testing the predictive power
of two loss reserving methodologies. He first demonstrates that the method commonly
used for incurred losses tends to understate the range of possible outcomes. For paid losses,
both methods tend to overstate the range of expected outcomes. Then he proceeds to
apply Bayesian Markov Chain Monte-Carlo models (Bayesian MCMC) to improve the
predictive power by recognizing three different elements implicit in the data histories. He is
careful to note that the results are based on the histories contained in the CAS Database (of
loss development triangles), which prevents one from making broad unqualified statements
about the conclusions drawn in this work.

This monograph lays a solid foundation for future development and research in the
area of testing the predictive power of loss reserving methods generally and in the use
of Bayesian MCMC models to improve confidence in the selection of appropriate loss
reserving methods. Glenn Meyers manages to show the way for raising the performance
standard of what constitutes a reliable loss reserving methodology in any given situation.

C.K. “Stan” Khury
Chairperson
Monograph Editorial Board






1. Introduction

The recent attempts to apply enterprise risk management principles to insurance has
placed a high degree of importance on quantifying the uncertainty in the various
necessary estimates with stochastic models. For general insurers, the most important
liability is the reserve for unpaid losses. Over the years a number of stochastic models have
been developed to address this problem. Two of the more prominent nonproprietary
models are those of Mack (1993, 1994) and England and Verrall (2002).

While these, and other, models provide predictive distributions' of the outcomes,
very little work has been done to retrospectively test, or validate,? the performance of
these models in an organized fashion on a large number of insurers. Recently with the
permission of the National Association of Insurance Commissioners (NAIC), Peng
Shi and I, in Meyers and Shi (2011), were able to assemble a database consisting of a
large number of Schedule P triangles for six lines of insurance. These triangles came
from insurer NAIC Annual Statements reported in 1997. Using subsequent annual
statements we “‘completed the triangle” so that we could examine the outcomes and
validate, the predictive distribution for any proposed model.

Sections 3 and 4 attempt to validate the models of Mack (1993, 1994) and
England and Verrall (2002). As it turns out, these models do not accurately predict the
distribution of outcomes for the data included in the subject database. Explanation for
these results include the following.

* The insurance loss environment is too dynamic to be captured in a single stochastic
loss reserve model. I.e., there could be different “black swan” events that invalidate
any attempt to model loss reserves.?

* There could be other models that better fit the existing data.

* The data used to calibrate the model is missing crucial information needed to make
a reliable prediction. Examples of such changes could include changes in the way the
underlying business is conducted, such as changes in claim processes or changes in
the direct/ceded/assumed reinsurance composition of the claim values in triangles.

! In this monograph, the term “predictive distribution” will mean the distribution of a random variable, X, given
observed data x. By this definition the range of outcomes, X, could be quite wide. This, in contrast to the common
usage of the term “predict,” connotes an ability to foresee the future and, in the context of the subject matter of
this monograph, implies a fairly narrow range of expected outcomes.

2 An explanation of “validate” will be given in Section 3.

3 The term “black swan,” as popularized by Taleb [2007], has come to be an oft-used term representing a rare high-
impact event.
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Possible ways to rule out the first item above are to (1) find a better model; and/or
(2) find better data. This monograph examines a number of different models and data
sources that are available in Schedule P. The data in Schedule P includes net paid losses,
net incurred losses, and net premiums.

A characteristic of loss reserve models is that they are complex in the sense that
they have a relatively large number of parameters. A major difliculty in quantifying the
uncertainty in the parameters of a complex model has been that it takes a fair amount
of effort to derive a formula for the predictive distribution of outcomes. See Mack’s
(1993, 1994) papers and Bardis, Majidi and Murphy’s (2012) paper for examples of
analytic solutions. Taking advantage of the ever-increasing computer speed, England
and Verrall (2002) pass the work on to computers using a bootstrapping methodology
with the overdispersed Poisson distribution (ODP). Not too long ago, the Bayesian
models* were not practical for models of any complexity. But with the relatively recent
introduction of Bayesian Markov Chain Monte Carlo (MCMC) models, complex
Bayesian stochastic loss reserve models are now practical in the current computing
environment.

Although Markov chains have long been studied by probability theorists, it took a
while for their application to Bayesian statistics to be recognized. Starting in the 1930s,
physicists began using statistical sampling from Markov chains to solve some of the
more complex problems in nuclear physics. The names associated with these efforts
include Enrico Fermi, John von Neumann, Stanislaw Ulam and Nicolas Metropolis.
This led to the Metropolis algorithm for generating Markov chains. Later on, W. Keith
Hastings (1970) recognized the importance of Markov chains for mainstream statistics
and published a generalization of the Metropolis algorithm. That paper was largely
ignored by statisticians at the time as they were not accustomed to using simulations for
statistical inference. Gelfand and Smith (1990) provided the “aha” moment for Bayesian
statisticians. They pulled together a relevant set of existing ideas at a time when access
to fast computing was becoming widely available. In the words of McGrayne (2011,
Part V): “Almost instantaneously MCMC and Gibbs sampling changed statisticians’
entire method of attacking problems. In the words of Thomas Kuhn, it was a paradigm
shift. MCMC solved real problems, used computer algorithms instead of theorems,
and led statisticians and scientists into a world where ‘exact’ meant ‘simulated’ and
repetitive computer simulations replaced mathematical equations. It was a quantum
shift in statistics” (p. 225).

As was the case for the other social sciences, Bayesian MCMC should eventually
have a profound effect on actuarial science. And in fact, its effect has already begun.
Scollnik (2001) introduced actuaries to Bayesian MCMC models. De Alba (2002)
along with Ntzoufras and Dellaportas (2002) quickly followed by applying these
models to the loss reserving problem. Verrall (2007) applied them to the chain ladder
model. In the time since these papers were written, the algorithms implementing

4 By a “Bayesian model” I mean a model with its parameters having a prior distribution specified by the user.
By “Bayesian estimation” I mean the process of predicting the distribution of a “statistic of interest” from the
posterior distribution of a Bayesian model.
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Bayesian MCMC models have gotten more efficient, and the associated software has
gotten more user friendly.

Here is the situation we now face. First, we are able to construct a wide variety of
proposed models and predict their distribution of outcomes with the Bayesian MCMC
methodology. Second, we are able to validate a proposed stochastic loss reserve model
using a large number of insurers on the CAS Loss Reserve Database. If the insurance
loss environment is not dominated by a series of unique “black swan” events, it should
be possible to systematically search for models and data that successfully validate. This
monograph describes the results I have obtained to date in my pursuit of this goal.

While I believe I have made significant progress in identifying models that do
successfully validate on the data I selected from the CAS Loss Reserve Database, it
should be stressed that more work needs to be done to confirm or reject these results
for different data taken from different time periods.

The intended audience for this monograph consists of general insurance actuaries who
are familiar with the Mack (1993, 1994) and the England and Verrall (2002) models.
While I hope that most sections will be readable by a “generalist” actuary, those desiring a
deeper understanding should work with the companion scripts to this monograph.’

The computer scripts used to implement these models is written in the R programming
language. To implement the MCMC calculations the R script contains another script
that is written in JAGS. Like R, JAGS is an open source programming language one can
download for free. For readers who are not familiar with R and JAGS, here are some links
to help the reader get started.

*  htp://opensourcesoftware.casact.org/start This link goes to the home page of the

CAS Open Source Software Committee. This page gives several other links that help
one start using R and JAGS.

e hutp://r-project.org The home page of the R-Project.
*  hup://meme-jags.sourceforge.net/ A link to download JAGS.

e htp://www.rstudio.com/ A currently popular editor for R and JAGS script.

5 Scripts are available at www.casact.org/pubs/monographs/meyers/Monograph_Tables_and_Scripts.xlsx
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2. The CAS Loss Reserve Database

In order to validate a model, one need not only the data used to build the model, but
also the data with outcomes that the model was built to predict. Schedule P of the
NAIC Annual Statement contains insurer-level run-off triangles of aggregated losses
by line of insurance. Triangles for both paid and incurred losses (net of reinsurance)
are reported in Schedule P¢ To get the outcomes, one must look at subsequent Annual
Statements.

To illustrate the calculations in this monograph, I selected incurred and paid loss
triangles from a single insurer in the database, whose data are in Tables 1, 2 and 3.
The data in the loss triangles above the diagonal lines are available in the 1997 Annual
Statement. These data are used to build the models discussed below. The outcome data
below the diagonal lines were extracted, by row, from the Annual Statements listed in
the “Source” column. These data are used to validate the models.

The database, along with a complete description of how it was constructed and
how the insurers were selected, is available on the CAS website at http://www.casact.

org/research/index.cfm?fa=loss{uslreservesfus}data.

This monograph will fit various loss reserve models, and test the predictive
distributions, to a set of 200 insurer loss triangles taken from four Schedule P (50 from
each of Commercial Auto, Personal Auto, Workers Compensation and Other Liability)
lines of insurance. An underlying assumption of these models is that there have not
been any substantial changes in the insurer’s operation. In our real world, insurers
are always tinkering with their operations. Schedule P provides two hints of possible
insurer operational changes:

* Changes in the net premium from year-to-year
* Changes in the ratio of net to direct premium from year to year

The criteria for selecting the 200 insurer loss triangles rests mainly on controlling
for changes in the above two items. Appendix A gives the group codes for the selected
insurers by line of insurance and gives a detailed description of the selection algorithm.

¢ Paid losses are reported in Part 3 of Schedule P. Incurred losses are the losses reported in Part 2 minus those
reported in Part 4 of Schedule .
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Table 1. lllustrative Insurer Net Written Premium
AY 1 2 3 4 5 6 7 8 9 10
Premium 5812 4908 5454 5165 5214 5230 4992 5466 5226 4962

Table 2. lllustrative Insurer Incurred Losses Net of Reinsurance
AY/Lag 1 2 3 4 5 6 7 8 9 10 Source
1988 1722 3830 3603 3835 3873 3895 3918 3918 3917 3917 1997
1989 1581 2192 2528 2533 2528 2530 2534 2541 2538 | 2532 1998
1990 1834 3009 3488 4000 4105 4087 4112 4170 | 4271 4279 1999
1991 2305 3473 3713 4018 4295 4334 4343 | 4340 4342 4341 2000
1992 1832 2625 3086 3493 3521 3563 | 3642 3541 3541 3587 2001
1993 2289 3160 3154 3204 3190 | 3206 3351 3289 3267 3268 2002
1994 2881 4254 4841 5176 | 5551 5689 5683 5688 5684 5684 2003
1995 2489 2956 3382 | 3755 4148 4123 4126 4127 4128 4128 2004
1996 2541 3307 | 3789 3973 4031 4157 4143 4142 4144 4144 2005
1997 2203 | 2934 3608 3977 4040 4121 4147 4155 4183 4181 2006

Table 3. lllustrative Insurer Paid Losses Net of Reinsurance
AY/Lag 1 2 3 4 5 6 7 8 9 10 Source
1988 952 1529 2813 3647 3724 3832 3899 3907 391 3912 1997
1989 849 1564 2202 2432 2468 2487 2513 2526 2531 | 2527 1998
1990 983 2211 2830 3832 4039 4065 4102 4155 | 4268 4274 1999
1991 1657 2685 3169 3600 3900 4320 4332 | 4338 4341 4341 2000
1992 932 1940 2626 3332 3368 3491 | 3531 3540 3540 3583 2001
1993 1162 2402 2799 2996 3034 | 3042 3230 3238 3241 3268 2002
1994 1478 2980 3945 4714 | 5462 5680 5682 5683 5684 5684 2003
1995 1240 2080 2607 | 3080 3678 2004 4117 4125 4128 4128 1997
1996 1326 2412 | 3367 3843 3965 4127 4133 4141 4142 4144 2005
1997 1413 | 2683 3173 3674 3805 4005 4020 4095 4132 4139 2006
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3. Validating the Mack Model

Probably the two most popular nonproprietary stochastic loss reserve models are the
Mack (1993, 1994) chain-ladder model and the England and Verrall (2002) bootstrap
ODP model. This section describes an attempt to validate the Mack model on the
incurred loss data from several insurers that are included in the CAS database. Validating
the bootstrap ODP model will be addressed in the following section.

Let’s begin with the classic chain-ladder model. Let C,,, denote the accumulated loss
amount, either incurred or paid, for accident year, w, and development lag, &, for | Sw < K
and 1 <4< K. C,,is known for the “triangle” of data specified by w + 4 < K+ 1. The
goal of this model is to estimate the loss amounts in the last column of data, C, x for
w=2,...,K To use the chain-ladder model, one first calculates the age to age factors
given by

fi=2—— ford=1,...,K-1.

The chain-ladder estimate of C,x is the product of the latest reported loss, C,, g+ 1 - 4»
and the subsequent age-to-age factors fi 1, « - - - « fg_1. Putting this together, we have

Cw,K: Cw,](-f—lfw * fK+17w et fK*l

Taylor (1986, p. 40) discusses the origin of the chain-ladder model and concludes that
“Itappears that it probably originated in the accounting literature, and was subsequently
absorbed in to, or rediscovered in, the actuarial.” He goes on to say that “Of course,
one must bear in mind that both the chain-ladder model and estimation method are
fairly obvious and might have been derived several times in past literature.” Taylor
believes that the rather whimsical name of the model was first used by Professor R. E.
Beard as he championed the method in the early 1970s while working as a consultant
to the U.K. Department of Trade.

Mack (1993, 1994) turns the deterministic chain ladder model into a stochastic
model by first treating C,, as a random variable that represents the accumulated loss
amount in the (w, &) cell. He then makes three assumptions.”

7 Depending on the context, various quantities, such as C,,, will represent observations, estimates or random
variables. In situations where it might not be clear, let’s adopt the convention that for a quantity X, X will indicate
that X is being treated as a random, or simulated, variable, X will denote an estimate of X, and a bare X will be
treated as a fixed observation or parameter.
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. E[Con|Crs- s Cul=Crss £ )
2. For any given d, the random variables C,, and C,, are independent for v # w.

3. Var[C,un|Cos-. s Coy] = Chy - 022

The Mack estimate for E[(jw,(] forw=2,...,K is given by

A

A A
Cw,[(: Cw,](-%—lfw. f](+17w e f](*l

where

>

—d

R Z Cw,d+1

_ w=1
fi= T
Cw,d
w=1
Given his assumptions above, Mack then derives expressions for the standard deviations

SD[éw,K]and SD[Z;ZC:W)K]. Table 4 applies MacK’s expressions to the illustrative

insured data in Table 2 using the R “ChainLadder” package.

In addition to the loss statistics calculated by the Mack expressions, Table 4
contains the outcomes {Cw,lo} from Table 2. Following Mack’s suggestion, I calculated
the percentile of 3."" C,, assuming a lognormal distribution with matching the mean
and the standard deviation.

Taken by itself, an outcome falling in the 86th percentile gives us little information,
as that percentile is not unusually high. If the percentile was, say, above the 99.5th per-
centile, suspicion might be warranted. My intent here is to test the general applicability
of the Mack model on incurred loss triangles. To do this, I selected 200 incurred loss

Table 4. Mack Model Output for the lllustrative Insurer Incurred Losses

w Cu0 SD Ccv Cu10 Percentile
1 3917 0 0.000 3917

2 2538 0 0.000 2532

3 4167 3 0.001 4279

4 4367 37 0.009 4341

5 3597 34 0.010 3587

6 3236 40 0.012 3268

7 5358 146 0.027 5684

8 3765 225 0.060 4128

9 4013 412 0.103 4144

10 3955 878 0.222 4181

Total 38914 1057 0.027 40061 86.03
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triangles, 50 each from four different lines of insurance, and calculated the percentile
of the Y," C,,, outcome for each triangle. My criteria for “general applicability of the
model” is that these percentiles should be uniformly distributed. And for a sufficiently
large sample, uniformity is testable! Klugman, Panjer, and Willmot (2012, Section 16.3)
describe a variety of tests that can be applied in this case.

Probably the most visual test for uniformity is a plot of a histogram. If the percentiles
are uniformly distributed, we should expect the height of the bars to be equal. Unless
the sample size is very large, this will rarely be the case because of random fluctuations.
A visual test of uniformity that allows one to test for statistical significance is the
p—p plot combined with the Kolmogorov—Smirnov (K-S) test. Here is how it works.
Suppose one has a sample of 7 predicted percentiles ranging from 0 to 100 and sort
them into increasing order. The expected value of these percentiles is given by
{e,}=100-{1/(n+1),2/(n+1),...,n/(n+1)}. One then plots the expected per-
centiles on the horizontal axis against the sorted predicted percentiles on the vertical
axis. If the predicted percentiles are uniformly distributed, we expect this plot to lie
along a 45° line. According to the K-S test as described by Klugman, Panjer, and
Willmot (2012, p. 331), one can reject the hypothesis that a set of percentiles { p, } is
uniform at the 5% level if D = max| pi— f| is greater than its critical value, 136/ Jn
where { £} =100+{1/n2/n,...,n/n}. This is represented visually on a p—p plot by
drawing lines at a distance 136/ Jn above and below the 45° line.* We reject the
hypothesis of uniformity if the p—p plot lies outside the band defined by those lines.
For the purposes of this monograph, a model will be deemed “validated” if it passes the
K-S test at the 5% level.

Klugman, Panjer, and Willmot (2012, p. 332) also discusses a second test of uniformity
that is applicable in this situation. The Anderson—Darling (A-D) test is similar to the
Kolmogorov—Smirnov test, but it is more sensitive to the fit in the extreme values (near
the Oth and the 100th percentile) of the distribution. I applied the A—D test along with the
K-S test on the models described in this monograph with the result that almost all A-D
tests failed. If in the future someone develops a more refined model, we can raise the bar
to the more stringent A-D test. Until that happens, I think the K-S test is the best tool to
differentiate between models.

Figure 1 shows both histograms and p—p plots for simulated data with 7 =100. The
plots labeled “Uniform” illustrate the expected result. The K-S D statistic accompanies
each p—p plot. The “*” indicates that the D statistic is above its critical value.

Figure 1 also shows p—p plots for various departures from uniformity. For example,
if the predicted distribution is too light in the tails, there are more than expected high
and low percentiles in the predicted outcomes and we see a p—p plot that looks like a
slanted “S” curve. If the predicted distribution is too heavy in the tails, there are more
than expected middle percentiles in the predicted outcomes and we see a p—p plot that
looks like a slanted backward “S” curve. If the model predicts results that are in general
too high, predicted outcomes in the low percentiles will be more frequent.

8 This is an approximation as f; = ¢,.
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Figure 1. p-p Plots Test for Uniformity
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To validate the Mack model, I repeated the calculations for the 200 selected
incurred loss reserve triangles.

Figure 2 shows the p—p plots for the Mack model. The plots were first done
separately for the outcome percentiles in each line of insurance. Although the plots
fall inside the K-S band for three of the four lines, the plots for all four of the
lines resemble the slanted “S” curve that is characteristic of a light tailed predicted
distribution. When we combine the outcome percentiles of all four lines, the p—p plot
lies outside the K-S band and we conclude that the distribution predicted by the
Mack model is too light in the tails for these data. In all the validation plots below
the K-S critical values are 19.2 and 9.6 for the individual lines and all lines combined
respectively.
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Figure 2. p-p Plots for the Mack Model
on Incurred Loss Triangles
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4. Validating the Bootstrap ODP Model

This section does an analysis similar to that done in the last section for the bootstrap
ODP model as described by England and Verrall (2002) and implemented by the
R “ChainLadder” package. This model was designed to work with incremental losses, Z,,.4,
rather than the cumulative losses C,,;, where 7,,, = C,,, and 1,,,= C,,;,— C,,,_, ford> 1.

A key assumption made by this model is that the incremental losses are described
by the overdispersed Poisson distribution with

E[fw‘d]:ocw-ﬁd and Var[i‘,’”,]: db-a, B,

The parameters of the model can be estimated by a standard generalized linear model
(GLM) package.’ They then use a bootstrap resampling procedure to quantify the volatility
of the estimate.

England and Verrall point out that the using the ODP model on incremental losses
almostall but requires one to use paid, rather than incurred, losses since the overdispersed
Poisson model is defined only for nonnegative losses. Incurred losses include estimates
by claims adjusters that can (and frequently do) get adjusted downward. Negative
incremental paid losses occasionally occur because of salvage and subrogation, but a
feature of the GLM estimation procedure allows for negative incremental losses as long
as all column sums of the loss triangle remain positive.

Table 5 gives the estimates of the mean, the standard deviation for both the ODP
(with 10,000 bootstrap simulations) and Mack models on the data in Table 3. The
predicted percentiles of the 10,000 outcomes are also given for each model.

The validation p—p plots, similar to those done in the previous section, for both the
ODP and the Mack models on paid data, are in Figures 2 and 3. The results for both
models are quite similar. Neither model validates on the paid triangles. A comparison
of the p—p plots in Figures 3 and 4 with the illustrative plots in Figure 1 suggests that
the expected loss estimates of both models tend to be too high for these data.

Let’s now consider the results of this and the prior section. These sections show that
two popular models do not validate on outcomes of the 200 Schedule P triangles drawn
from the CAS Loss Reserve Database. These models do not validate in different ways
when we examine paid and incurred triangles. For incurred triangles, the distribution

% England and Verrall (2002) use a log link function in their GLM. They also note that the GLM for the ODP
maximizes the quasi-likelihood, allowing the model to work with continuous (non-integer) losses.

Casualty Actuarial Society 11



12

Table5. ODP and Mack Model Output for the lllustrative Insurer Paid Losses

ODP Mack Outcome

w Coro SD cv Coro SD cv Curo
1 3912 0 0 3912 0 0.0000 3912
2 2532 21 0.0083 2532 0 0.0000 2527
3 4163 51 0.0123 4162 3 0.0007 4274
4 4369 85 0.0195 4370 28 0.0064 4341
5 3554 96 0.027 3555 35 0.0098 3583
6 321 148 0.0461 3213 157 0.0489 3268
7 5161 240 0.0465 5167 251 0.0486 5684
8 3437 332 0.0966 3442 385 0.1119 4128
9 4220 572 0.1355 4210 750 0.1781 4144
10 4635 1048 0.2261 4616 957 0.2073 4139
Total 39193 1389 0.0354 39177 1442 0.0368 40000
Percentile 73.91 72.02
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Figure 3. p-p Plots for the Bootstrap
ODP Model on Paid Loss Triangles
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Figure 4. p-p Plots for the Mack Model
on Paid Loss Triangles
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predicted by the Mack model has a light tail. For paid triangles, the distributions
predicted by both the Mack and the bootstrap ODP models tend to produce expected loss

estimates that are too high. There are two plausible explanations for these observations:

1. The insurance loss environment has experienced changes that are not observable at the
current time.
2. There are other models that can be validated.

To disprove the first explanation, one can develop models that do validate. Failing to
develop a model that validates may give credence to, but does not necessarily confirm,
that the first explanation is true. This monograph now turns to describing some efforts

to find models that do validate.
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I will begin this section on Bayesian MCMC models by quoting the advice of Verrall
(2007). “For the readers for whom this is the first time they have encountered MCMC
methods, it is suggested that they simply accept that they are a neat way to get the
posterior distributions for Bayesian models and continue reading the paper. If they
like the ideas and would like to find out more . . .” they should read the introduction
in Appendix B. Keep in mind that the state of the art (e.g., faster multi-core personal
computers, more efficient algorithms and more user-friendly software) is still rapidly
advancing. Appendix C explains what I did with the current state of the art, as I perceived
it, at the time I was writing this monograph.

Now let’s get to the loss reserve models. As pointed out in Section 3, the Mack
model did not validate on the insurers listed in Appendix A using the loss data that are
in the CAS Loss Reserve Database. This section presents two Bayesian MCMC models
that were proposed in an attempt to find a model that does validate on these data.

The way the Mack model did not validate, i.e., it underestimated the variability of
the ultimate loss estimates, suggested a direction to go in order to fix it. Here are two
ways to improve the recognition of the inherent variability of the predictive distribution.

1. The Mack model multiplies the age-to-age factors by the last observed loss, C,,,_,.
One can think of the C

wl1-w

of the accident year as random will predict more risk.

s as fixed level parameters. A model that treats the level

2. The Mack model assumes that the loss amounts for different accident years are
independent. A model that allows for correlation between accident years could
. . . 10 =
increase the standard deviation of ), _ C, .

I propose two different models to address the underestimation of the variability of
the ultimate loss. The first model replaces the fixed level parameters, given by the last
observed accident year, in the Mack model with random level parameters. As we shall
see, this model improves the estimation of the variability, but does not go far enough. The
second, and more complicated model, considers correlation between the accident years.

The Leveled Chain Ladder (LCL) Model
Let:

Lop,,=o,+B,.

2. C,, hasalognormal distribution with log mean W,,,and log standard deviation 6,
subject to the constraint that 6, > G, > - - - > Oy,.
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To prevent overdetermining the model, set 3,, = 0. The parameters {a, }, {0, } and
the remaining {B, } are assigned relatively wide prior distributions as follows:

1. Each a, ~ normal(log(]’remz’umw)+logelr, V10 ) where the parameter logelr ~
uniform(-1, 0.5).1

2. Each B, ~ uniform(=5, 5) for 4 < 10.

3. EFacho,= 2,1-24 a, where a; ~ uniform(0, 1).

The hierarchical structure of the priors in (3) above assures that 6, >6,> . . . > Oy,.
The rationale behind this structure is that as  increases, there are fewer claims that are
open and subject to random outcomes.

The next model adds a between-year correlation feature."

The Correlated Chain-Ladder (CCL) Model
Let:

1. Each o, ~ normal(log(Premiumw )+ logelr, J10 ) where the parameter logelr ~
uniform(-1, 0.5).

2. uy=o,+pB,.

w,,=o,+ B,+p- (Iog(Cw,Ld)— l-lwfu) forw>1.

4. C,, hasalognormal distribution with log mean |,,, and log standard deviation 6,
subject to the constraint that 6, > 06, > ... > Gy

Note that the CCL model reduces to the LCL model when p = 0.
If the parameters {0, }, {B,}, and p are given, the parameter p is equal to the

b

coefhicient of correlation between log(C ,L,,,) and log(éw,d). To see this we first note

w

that unconditionally:

E(log(C..r)) = M

w—1d ) - I-'wal,d )

Il
R
g
+
=
u
+
e
—
Q
aQ
—_
l

Given C,_, ;,we have that:

E((log(Cus) = (0t +B,)) - (log(Cuors) = o))
= (uw,d - (Otw + Bd )) * (log(Cw—l,d ) - uw—l,d)
=p- (log(Cw—l,d ) 2 P )2

10 The JAGS expression for a normal distribution uses what it calls a “precision” parameter equal to the reciprocal
of the variance. The standard deviation, V10, corresponds to the rather low precision of 0.1.

" Some of the models I tried before getting to this one are described in my working paper Meyers (2012). Note
that what I call the LCL model in that paper is different from the LCL model above.
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Then the coefficient of correlation between C,, and C,_,, is given by:

log(é"”d ) ~ (OCW + Bd) . log(Cw—l,d)_ Wo1a

Ec | Ec. |Co-ra
G, o,

g, [RloplCon) R
o

To prevent overdetermining the model, set 3, = 0. The parameters {., }, {0, },p
and the remaining {B, } are assigned relatively wide prior distributions as follows:

1. Each o, ~ normal(log(Premiumw)+/ogelr, V10 ) where the parameter logelr ~
uniform(-1, 0.5).12

2. Each B, ~ uniform(-5, 5) for 4 < 10.

p ~ uniform(—1, 1)—The full permissible range for p.

4. Eacho,= z; a, where a; ~ uniform(0,1).

het

I deliberately chose rather diffuse’® prior distributions since I had no direct
knowledge of the claims environment other than the data that are reported in Schedule P.
While preparing annual statements, actuaries with more direct knowledge of the claims
environment normally attempt to reflect this knowledge in their unpaid loss estimates.
Bornhuetter and Ferguson (1972) describe a very popular method where one can reflect
knowledge of an insurer’s expected loss ratio in their estimates. With minor modifications
of the JAGS script, one can reflect this knowledge by specifying more restrictive priors for
{o, } parameters and the logelr parameter.

The predictive distribution of outcomes is a mixed distribution where the mixing is
specified by the posterior distribution of parameters. Here is what the script for the CCL
model does.

The predictive distribution for Yo Cuo is generated by a simulation. For each
parameter set {0, },{B,},{0,}and {p}, start with the given C, ;; and calculate the
mean, WL 0. Then simulate C, ,, from a lognormal distribution with log mean, W, ;o, and
log standard deviation, Gy. Similarly, use the result of this simulation to simulate
C~'m, . élo,m. Then form the sum C,,,+ 2;0:2 C~'w,10. The script generates 10,000
simulations that make up a sample from the predictive distribution from which one
can calculate various statistics such as the mean, standard deviation and the percentile
of the outcome. Here is a more detailed explanation of this process.

Given the group code for an insurer in the CAS Loss Reserve Database, the R script
for the CCL Model performs the following steps:

1. Reads in the data triangle {C,, } for the insurer identified by the group code.
2. Runsthe JAGS scriptand gets a sample of 10,000 parameter sets, {0, }, 1B, },10,}
and p from the posterior distribution of the CCL model.

12 The JAGS expression for a normal distribution uses what it calls a “precision” parameter equal to the reciprocal
of the variance. The standard deviation, corresponds to the rather low precision of 0.1.

3 One might also use a “noninformative” prior distribution. Noninformative prior distributions are usually
attached to a specific mathematical objective. See, for example, Section 3.3 of Berger (1985).
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Simulates 10,000 copies, one for each parameter set in (2) above, of {C~’
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simulation proceeds as follows.
Set W,y =0, + Byo. Recall that C 4 is given in the orjginal data.
Set L, ,=0,+PB,,+p- (log(CMO) — Uy ) Simulate C,, from a lognormal distri-

bution with log mean W, ,, and log standard deviation G.

For each w, calculate summary statistics C,,,= mean(Cw,m) and SD = standard

Set [y,=0,+B,,+p- (log(Cm) - },Lm). Simulate ém from a lognormal

w10

distribution with log mean [, ;, and log standard deviation G,.

};0:2. The

Set [l o=0ly+ B +p- (Iog(ém) - ﬂ%(,). Simulate C,,,, from a lognormal dis-

tribution with log mean [, and log standard deviation G,,.

deviation ((:’w,w ) Calculate similar statistics for the total C,,, + 2;0:2 éw,lo.
Calculate the percentile of the outcome by counting how many of the 10,000 instances

10 = 10
of X.,_,C.u are < the actual outcomes . C, ..

Table 6 gives the results from the first five MCMC samples produced by the script
for the CCL model applied to the losses for the illustrative insurer in Table 2. The top
31 rows of that table were generated in Step 2 of the simulation above. The remaining

rows were generated in Step 3.

Table 6. lllustrative MCMC Simulations
MCMC Sample Number
1 2 3 4 5
ol 8.2763 8.2452 8.2390 8.2591 8.2295
ol 7.8226 7.7812 7.8008 7.8048 7.7810
03 8.2625 8.3200 8.2929 8.2883 8.2642
Oy 8.3409 8.3286 8.3539 8.3622 8.3159
Ols 8.2326 8.1166 8.1093 8.1855 8.1523
Olg 8.1673 8.0307 8.0491 8.1727 8.0470
oy 8.6403 8.4776 8.4113 8.5815 8.4871
Olg 8.2177 8.2488 8.2708 8.0752 8.1763
Olg 8.3174 8.2007 8.2589 8.3744 8.2653
Oo 7.4101 8.0036 8.7584 8.4241 8.8420
B -0.5125 —-0.5180 -0.6504 —-0.4947 -0.7384
B —-0.2756 -0.1014 -0.1231 -0.2138 —-0.0844
B3 -0.1271 -0.0313 —-0.0622 —-0.0758 —-0.0498
Ba -0.1013 —-0.0090 0.0165 0.0439 0.0479
Bs 0.0518 —-0.0109 0.0060 0.0034 0.0610
Bs 0.0180 0.0885 0.0139 0.0175 0.0709
By 0.0105 0.0583 0.0205 0.0427 0.0362

(continued on next page)
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Table 6. Illlustrative MCMC Simulations(continued)

MCMC Sample Number

1 2 3 4 5
Bs 0.0400 -0.0090 0.0612 0.0444 0.0338
Bo 0.0005 0.0287 0.0419 0.0116 0.0333
Bro 0.0000 0.0000 0.0000 0.0000 0.0000
o 0.3152 0.2954 0.3164 0.1895 0.2791
s 0.2428 0.1982 0.2440 0.1858 0.1711
s 0.1607 0.1632 0.2078 0.1419 0.1089
A 0.1245 0.1133 0.0920 0.0842 0.0800
os 0.0871 0.0830 0.0694 0.0747 0.0794
s 0.0733 0.0649 0.0626 0.0508 0.0463
o, 0.0324 0.0281 0.0294 0.0368 0.0352
s 0.0279 0.0247 0.0172 0.0270 0.0330
Gy 0.0171 0.0239 0.0130 0.0267 0.0329
1o 0.0170 0.0237 0.0105 0.0241 0.0244
p 0.1828 0.4659 0.4817 0.1901 0.2155
11 10 8.2763 8.2452 8.2390 8.2591 8.2295
Cio 3917 3917 3917 3917 3917
fiz10 7.8221 7.7942 7.8172 7.8074 7.7904
Cono 2520 2468 2480 2432 2453
fiz10 8.2643 8.3278 8.2924 8.2862 8.2674
Csno 3893 4190 3939 4090 3802
fla 10 8.3414 8.3345 8.3474 8.3679 8.3107
Ciro 4229 4212 4233 4346 4075
fis 10 8.2341 8.1219 8.1109 8.1873 8.1527
G0 3761 3285 3269 3597 3676
fis 10 8.1670 8.0192 8.0400 8.1728 8.0593
Coro 3450 3127 3120 3552 3196
fiz10 8.6365 8.4910 8.4140 8.5819 8.4893
Coro 5488 4719 4441 5299 4765
fis 10 8.2129 8.2340 8.2634 8.0739 8.1720
Cso 3652 3847 3933 3295 3708
fis 10 8.3156 8.2106 8.2655 8.3794 8.2752
Coo 4112 3538 3949 4426 3914
.10 7.4112 7.9853 8.7659 8.4271 8.8414
Cio0 1613 3001 6511 4507 6763
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Table 7 CCL, LCL, and Mack Models on lllustrative Insurer Incurred Data

CCL LCL Mack Outcome

w Cu0 SD cv Cw0 SD Ccv Cw0 SD cv Cu0
1 3917 0 0.000 3917 0 0.000 3,917 0 0.000 3,917
2 2545 57 0.022 2544 59 0.023 2,538 0 0.000 2,532
3 4110 113 0.028 4110 106 0.026 4,167 3 0.001 4,279
4 4314 130 0.030 4307 122 0.028 4,367 37 0.009 4,341
5 3549 123 0.035 3545 115 0.032 3,697 34 0.010 3,687
6 3319 146 0.044 3317 132 0.040 3,236 40 0.012 3,268
7 5277 292 0.055 5315 265 0.050 5,358 146 0.027 5,684
8 3796 331 0.087 3775 301 0.080 3,765 225 0.060 4,128
9 4180 622 0.149 4203 561 0.134 4,013 412 0.103 4,144
10 4155 1471 0.354 4084 1157 0.283 3,955 878 0.222 4,181
Total 39161 1901 0.049 39116 1551 0.040 38,914 1,057 0.027 40,061
Percentile 73.72 76.38 86.03

Table 7 gives the estimates of the mean and standard deviation, by accident year and
in total, for the LCL, the CCL, and the Mack Models for the illustrative insurer. The
predicted percentiles of the 40,061 outcome are also given for each model. Note that
the standard deviations of the predicted outcomes were significantly higher for the CCL
and the LCL models than they were for the Mack Model. This is generally the case, as
can be seen in Figure 5. This figure plots the standard deviations (in the log scale) of
the CCL and LCL models against those of the Mack Model for the 200 loss triangles
listed in Appendix A. The higher standard deviations of the CCL model over the LCL
model can be attributed to the generally positive correlation parameters that are shown
in Figure 6 for the illustrative insurer. Generally this is the case for other insurers as can
be seen in Figure 7.

The validation p—p plots for the LCL and CCL models run on the selected 200
triangles are given in Figures 8 and 9. For the LCL model:

* The p—p plots combined lines of insurance lie within the Kolmogorov—Smrinov
bounds for Commercial Auto, Personal Auto and Workers Comp.

* All four lines have the slanted S pattern that characterizes models that are too thin
in the tails. This pattern is reinforced in the combined plot, and the resulting plot
does not lie within the Kolmogorov—Smirnov bounds. But the combined plot is an
improvement over the corresponding Mack p— plot.

For the CCL Model:

e The p—p plots for all four lines lie within the Kolmogorov—Smirnov bounds, but
just barely so for the Other Liability line.

e While the combined p—p plot lies within the Kolmogorov—Smirnov bounds, the
slanted S pattern indicates a mildly thin tail predicted by the model.
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Figure 5. Compare Standard
Deviation for CCL and LCL with Mack
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Figure 7. Posterior Mean of p for the 200
Incurred Loss Triangles
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Figure 8. p-p Plots for the LCL Model on the
Incurred Loss Triangles
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Figure 9. p-p Plots for the CCL Model on the
Incurred Loss Triangles
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6. Bayesian Models for Paid Loss Data

24

Given the improved validation of the CCL model on incurred loss data, it seems
appropriate to try it out on paid loss data. Table 8 shows the CCL and ODP estimates.
As should be expected given the results in Section 5, the standard deviation of the
outcomes produced by the CCL model are noticeably higher than those produced by
the ODP model.

The validation p—p plots for the CCL model applied to paid data are in Figure 10.
When comparing this plot with the validation p—p plots for the ODP model (Figure 3)
and the Mack model (Figure 4), we see that all three models show tend to produced
estimates that are too high for these loss triangles.

Given the improved validation of the CCL model with incurred loss data, it is
tempting to conclude that the incurred loss data contains crucial information that is
not present in the paid loss data. However, there is also the possibility that a model
other than the ODP or the CCL may be appropriate. A feature of such a model might
be that it has a trend along the payment year (= w + 4 — 1). Models with a payment
year trend have been proposed in the writings of Ben Zehnwirth over the years. See,
for example, Barnett and Zehnwirth (2000). The inclusion of a payment year trend in
a model has two important consequences.

1. 'The model should be based on incremental paid loss amounts rather than cumulative
paid loss amounts. Cumulative losses include settled claims which do not change
with time.

2. Incremental paid loss amounts tend to be skewed to the right and are occasionally
negative. We need a loss distribution that allows for these features.

One distribution that has these properties is the skew normal distribution. This
distribution is starting to be applied in actuarial settings. See, for example, Pigeon,
Antonio and Denuit (2013) Here is a description of this distribution taken from
Frithwirth-Schnatter and Pyne (2010). This distribution has three parameters.

1. u—the location parameter.
2. ®—the scale parameter, with ® > 0.
3. O—the shape parameter, with € (-1, 1).14

14 The reference calls the shape parameter o and then define & = OL/ V14 0. The parameter designation, o, was
already taken in this monograph.
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Table 8. CCL and ODP Models on lllustrative Insurer Paid Data

- ccL - obP Outcome

w Cu0 SD cv Cu0 SD cv Cuw10
1 3912 0 0 3912 0 0.0000 3912
2 2568 114 0.0444 2532 21 0.0083 2527
3 4157 199 0.0479 4163 51 0.0123 4274
4 4330 234 0.0540 4369 85 0.0195 4341
5 3574 212 0.0593 3554 96 0.0270 3583
6 3417 259 0.0758 3211 148 0.0461 3268
7 5235 465 0.0888 5161 240 0.0465 5684
8 3664 463 0.1264 3437 332 0.0966 4128
9 4444 870 0.1958 4220 572 0.1355 4144
10 5036 1961 0.3894 4635 1048 0.2261 4139
Total 40337 2692 0.0667 39193 1389 0.0354 40000
Percentile 49.18 73.91

The skew normal distribution is defined as the sum of two random variables

X~U4+0:8-Z+w®-/1-08"-¢

where Z ~ truncated normaly..) (0,1) and € ~ normal(0,1). This distribution can also
be expressed as a mixed truncated normal-normal distribution by setting

X~normal(u+0)-5-Z,O)-«/l—ﬁz).

In looking at either expression for the skew normal distribution one can see that when
0 = 0, the skew normal becomes a normal distribution. As & approaches one, the
distribution becomes more skewed and becomes a truncated normal distribution when
d=1. Figure 11 plots" the the density functions for L =0, ® = 15 and 0 close to one.'®

It should be apparent that the coefficient of skewness can never exceed the co-
efficient of skewness of the truncated normal distribution, which is equal to 0.995.
As it turns out, this constraint is important. I have fit models with the skew normal
distribution that otherwise are similar to what will be described below and found that
for most triangles, 8 is very close to its theoretical limit. This suggests that a distribution
with a higher coeflicient of skewness is needed.

@ »

15 Using the R “sn” package.

16 The parameters in Figures 11 and 12 are representative of what one could expect in the later settlement lags where
negative incremental losses frequently occur.
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Figure 10. p-p Plots for the CCL Model on Paid
Loss Triangles
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Figure 12. The Mixed Lognormal-
Normal Distribution
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The formulation of the skew normal distribution described by Frithwirth-Schnatter
and Pyne (2010) suggests an alternative. Simply replace the truncated normal distribution
with another skewed distribution, such as the lognormal distribution. Here is one way

to do that. Define

X ~normal(Z, §), where Z ~ lognormal (1, ).

Let’s call this distribution the mixed lognormal-normal (In-n) distribution with parameters
given by §, 1L and ©. Figure 12 plots the density functions for L = 2, 6 = 0.6, and two
different values of 0.

Now that we have a loss distribution with the desired features of skewness and a
domain that includes negative numbers, let’s describe a model for incremental paid
losses with a calendar-year trend.

The Correlated Incremental Trend (CIT) Model
Let:
L. w=0o,+B,+t-(w+d-1).
Z,,~lognormal(,,,, 6, ) subject to the constraint that 6,<G,<...< G,
T~ normal(ZM, 8).
I~ normal(ZW +p- (fw,hd - Zw,l,d) . e’,f)) for w >1.

Ll

When comparing the CIT model with the CCL model (as it might be applied to

incremental losses) there are some differences to note.

* The CCL model was applied to cumulative losses. One should expect 6, to decrease
as d increases as a greater proportion of claims are settled. In the CIT model, one
should expect that the smaller less volatile claims to be settled earlier. Consequently,
G, should increase as 4 increases.

* In the CCL model, the autocorrelation feature was applied to the logarithm of the
cumulative losses. Since there is the possibility of negative incremental losses, it
was necessary to apply the autocorrelation feature in Step 4 above after leaving the
“log” space. The hierarchical feature of the mixed lognormal-normal distribution
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provides the opportunity to do this. For a given set of parameters, p is the coefficient
of correlation between 7, ,,and 7, ,.

e The trend factor, 7T, is applied additively in the “log” space in Step 1 above. As
the autocorrelation feature in Step 4 above is applied outside of the “log” space,
it is necessary to trend the prior payment years difference by multiplying that
difference by €.

To prevent overdetermining the model, set B, = 0. The parameters {Q.,, },10,},p,
and the remaining {3, } are assigned prior distributions as follows:

1. Each o, ~ normal ([og(Premiumw) + logelr, J10 ) where Jogelr ~ uniform(=5,1).

2. Each B, ~ uniform(0, 10) for =1 to 4 and B, ~ uniform(0, B,_,) for 4 > 4. This
assures that 3, decreases for 4> 4.

3. p ~ uniform(-1, 1)—The full permissible range for p.

4. T~ normal(0, 0.0316)—corresponding to a precision parameter used by JAGS of
1000.

5. ©; ~ uniform (0,0.5), 67 ~ uniform(c;_,,0;_,+ 0.1).

6. O ~ uniform(0, Average Premium)

There are two deviations from the selection of diffuse prior distributions that are

in the CCL model.

e [ first tried a wider prior for T. In examining the MCMC output I noticed that
quite often, the value of T was less than —0.1, which I took to be unreasonably
low. This low value was usually compensated for by offsetting high values for the
o and/or B parameters. This could have a noticeable effect on the final result, so I
decided to restrict the volatility of T to what I considered to be a reasonable range
of payment year changes.

* In examining the MCMC output, I noticed that, occasionally, high values of 6,
would occur. This led to unreasonably high simulated losses in the output, so I
decided to limit how fast 6, could increase with 4.

The predictive distributions of the sum, Y. 7, for each w, and the overall sum,
> > I, are simulated 10,000 times with a Bayesian MCMC model. The details
are very similar to those described in Section 5 and will not be given here.

By setting the prior distribution of p equal to zero, we eliminate the between
accident year correlation. Following the naming convention of the last section, let’s call
this model the Leveled Incremental Trend (LIT) model.

Table 9 shows the estimates of for the illustrative insurer with the CIT and the LIT
model on paid data.

Before producing these distributions, I had no particular expectation of how p
would be distributed for paid data. However, I did expect T to be predominantly
negative since the p—p plots in Figures 3, 4 and 10 indicted that the all the other models
predicted results that were too high.

Let’s first examine the effects of between-year correlation in the CIT model.
Figure 13 gives the posterior distributions for p for the illustrative insurer. Figure 14
gives the histograms of the posterior means p for each insurer by line of business.
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Table 9. CIT and LIT Models on lllustrative Insurer Paid Data

- cr - LT Outcome

w Cu10 SD cv Cuo SD cv Cu10
2 2539 9 0.0035 2538 9 0.0035 2527
3 4183 21 0.0050 4185 20 0.0048 4274
4 4395 40 0.0091 4393 32 0.0073 4341
5 3553 42 0.0118 3566 32 0.0090 3583
6 3063 101 0.0330 3151 40 0.0127 3268
7 5062 123 0.0243 5065 111 0.0219 5684
8 3512 514 0.1464 3355 234 0.0697 4128
9 4025 707 0.1757 4138 594 0.1435 4144
10 4698 1482 0.3155 4703 1489 0.3166 4139
Total 38942 1803 0.0463 39006 1723 0.0442 40000
Percentile 79.04 79.69

As seen in Figure 14, the posterior means of p for the paid data were not as
overwhelmingly positive as we saw in the incurred data shown in Figure 7. Figure 15
shows a small but noticeable difference between the standard deviations of the CIT
and LIT models.

My efforts to rein in the correlation between the {a,}, the {B,}, and the
parameters were, at best, only partially successful, as Figure 16 indicates. The analogous
plot for the LIT model is very similar. With the given data, it is hard for the CIT and
the LIT models to sort out the effects of the level plus the development and the trend.

As seen in Figure 17, the posterior means of T were predominantly negative.
But as pointed out above, a negative might be offset by higher {a, }s and {B,}s.
Figure 18 shows only a handful of triangles where there was a noticeable decrease
in the final expected loss estimates. And most of those differences appeared in the
Other Liability line of business.

Figures 19 and 20 show the validation p—p plots for the CIT and the LIT models. As
do the Mack, ODP and CCL models on paid data indicate, the predictive distributions
for the CIT and LIT models tend to overstate the estimates of the expected loss.

Figure 13. Posterior Distribution of p
and for the lllustrative Insurer
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Figure 14. Posterior Mean of p by Line and
Insurer for Paid Loss Data
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Figure 16. Correlations Between Parameters
in the CIT Model for the lllustrative Insurer
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Figure 17. Posterior Mean of 7 by Line and
Insurer for Paid Loss Data (continued)
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Figure 19. p-p Plots for the CIT Model
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So, in spite of a serious attempt to improve on the results produced by the earlier
models on paid data, the CIT and LIT models did not achieve the desired improvement.
This result tends to support the idea that is generally accepted, that the incurred data

Figure 20. p-p Plots for the LIT Model
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reflects real information that is not in the paid data.

A reviewer of this monograph checked with some colleagues and found that claims
are “reported and settled faster today due to technology,” and suggested that the CIT
model might not fully reflect this change. A model that addresses the possibility of a

speedup of claim settlement is the following.

The Changing Settlement Rate (CSR) Model

Let:

1. Each o, ~ normal(log(Premiumw)+ logelr, J10 ) where the parameter /logelr ~

uniform(-1,0.5).

2. B,~ uniform(-5,5) ford=1,...,9,B,,=0.
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(w=1)

bt

W, =0, +B,(1=7)"" y~normal(0, 0.025).
Each o,= ZIE a;, where ; ~ uniform(0, 1).
5. C,has alognormal distribution with log mean ,,, and log standard deviation 6,

e

subject to the constraint that 6,>0,>...>0,,.

Since B = 0 and cumulative paid losses generally increase with the development
year, d, B, for d < 10 is usually negative. Then for each & < 10, a positive value of y will
cause B, + (1= )" to increase with wand thus indicate a speedup in claim settlement.
Similarly, a negative value of y will indicate a slowdown in claim settlement.

Table 10 shows the results for the CSR model on the illustrative insurer.

Figure 21 shows that the posterior distribution of 7y is predominantly positive.
This confirms the reviewer’s contention that the claim settlement rate is, in general,
increasing.

The validation p—p plots in Figure 22 shows that for three of the four lines of
insurance, the CSR model corrects the bias found in the earlier models. This model
also correctly predicts the spread of the predicted percentile of the outcomes for those
lines. While the CSR model still exhibits bias for the personal auto line of business, the
bias is significantly smaller than that of the other models.

It appears that the incurred loss data recognized the speedup in claim settlements.

Table 10. CIT and CSR Models on lllustrative Insurer Paid Data

- cr - CSR Outcome

w Cuw10 SD cv Cu0 SD cv Cu10
1 3912 0 0 3912 0 0 3912
2 2539 9 0.0035 2559 103 0.0403 2527
3 4183 21 0.0050 4135 173 0.0418 4274
4 4395 40 0.0091 4285 198 0.0462 4341
5 3553 42 0.0118 3513 180 0.0512 3583
6 3063 101 0.0330 3317 216 0.0651 3268
7 5062 123 0.0243 4967 404 0.0813 5684
8 3512 514 0.1464 3314 402 0.1213 4128
9 4025 707 0.1757 3750 734 0.1957 4144
10 4698 1482 0.3155 3753 1363 0.3632 4139
Total 38942 1803 0.0463 37506 2247 0.0599 40000
Percentile 79.04 87.62

Casualty Actuarial Society 35



Figure 21.

Insurer for Paid Loss Data
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7. Process Risk, Parameter Risk and Model Risk

Let us now address a topic that frequently comes up in stochastic modeling discussions —
process risk, parameter risk and model risk. One way to describe process and parameter
risk is to consider the relationship for a random variable X conditioned on a parameter 6.

Var[ X1= E[Var[ X|0]] + Var,[ ELX|0]].

Let’s call the left side of the above equation the “Total Risk.” Let’s call the first term of the

right side the “Process Risk” as it represents the average variance of the outcomes from

the expected result. Finally, let’s call the second term the “Parameter Risk” as it represents

the variance due to the many possible parameters in the posterior distribution. Another

often-used term that overlaps with parameter risk is the “range of reasonable estimates.”
For the CCL model, the parameter 0 is represented by the vector

(7P 7 NN s U o SN0 ) B

The MCMC sample simulates 10,000 parameters denoted by 0;. We then have the

illustrative insurer:

0
Total Risk = Var[z CW’IO:I =1901°.

w=1

The random variables ,,,, are derived from the posterior distribution of the o,. One
can then use the formula for the mean of a lognormal distribution to calculate:

Parameter Risk = Var, [E [z C o |9:|:| = Var|:2 & :| =1893"

w=1

For this example, the parameter risk is very close to the total risk, and hence there is
minimal process risk. I have repeated this calculation on several (including some very
large) insurers and I obtained the same result that process risk is minimal.

Model risk is the risk that one did not select the right model. If the possible models
fall into the class of “known unknowns” one can view model risk as parameter risk. It
is possible to formulate a model as a weighted average of the candidate models, with
the weights as parameters. If the posterior distribution of the weights assigned to each
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model has significant variability, this is an indication of model risk. Viewed in this
light, model risk is a special case of parameter risk.

As a thought experiment, one can consider what happens if we were to run this model
on a very large dataset. The parameter risk will shrink towards zero and any remaining
risk, such as model risk, will be interpreted as process risk.

This thought experiment is of largely academic interest since all aggregated loss
triangles one finds in practice are small datasets. But it does serve to illustrate some of the
theoretical difficulties that occur when one tries to work with the parameter/process/
model classifications of risk. My own preference is to focus on total risk, as that it is the
only risk that we can test by looking at actual outcomes.
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8. Summary and Conclusions

The central thrust of this monograph is twofold.

It implements the idea of large-scale retrospective testing of stochastic loss reserve
models on real data. The goal is not to comment on the reserves of individual
insurers. Instead the goal is to test the predictive accuracy of specific models.
As shortcomings in existing models are identified, it demonstrates that Bayesian
MCMC models can be developed to overcome some of these shortcomings.

The principle behind the retrospective testing is that a specific model is built with

data that we customarily observe. The model is used to predict a distribution of outcomes

that we will observe in the future. When we do observe outcomes for a large number of

predictions, we expect the percentiles of the outcomes to be uniformly distributed. If they

are not uniformly distributed, we look for a better model. We may or may not find one.

The data used in this study comes from the CAS Loss Reserve Database. It consists

of hundreds of paid and incurred loss triangles that Peng Shi and I obtained from a
proprietary database maintained by the NAIC. We are grateful that the NAIC allowed us
to make these data available to the public. The data I used to build the models came from
the 1997 NAIC Annual Statements. The outcomes came from subsequent statements.

Here is a high-level summary of the results obtained with these data.

For incurred data, the variability predicted by Mack model is understated. One of
its key assumptions is that the losses from different accident years are independent.
This monograph proposes the correlated chain ladder (CCL) model as an alternative.
This model allows for a particular form of dependency between accident years. It
finds that the CCL model predicts the distribution of outcome correctly within a
specified confidence level.

For paid data, the bootstrap ODP model, the Mack model and the CCL model
tend to give estimates of the expected ultimate loss that are high. This suggests that
there is a change in the loss environment that is not being captured in these models.
This monograph proposes three models, the Leveled Incremental Trend (LIT), the
Correlated Incremental Trend (CIT) model, and the Changing Settlement Rate
(CSR) as alternatives. The first two models allow for payment year trends. While
the introduction of a payment year trend seems plausible given the bias identified
in the earlier models, the performance of the LIT and CIT models are similar to
the earlier models in the validation p—p plots. The CSR model corrects the bias
identified in the previous models for three of the four lines of insurance, and has
significantly less bias on the fourth line of insurance.
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* Note that for the “Other Liability” line of insurance, the Mack and ODP models
validate better than any of the new models proposed in this monograph. While it
might be a small sample problem, the sample is not all that small. This suggests that
more study is needed. Note that these results are for a specific annual statement year—
1997. Studies such as this should be repeated on other annual statement years to see if
the above conclusions still hold.

In preparing this monograph I have made every effort to adhere to the “open source”
philosophy. The data is publicly available. The software is publicly available for free. The
R and JAGS scripts used in creating these models are to be made publicly available. I
have purposely restricted my methods to widely used software (R, JAGS and RStudio)
in order to make it easy for others to duplicate and improve on these results.

In building the Bayesian models I used prior distributions that were as diffuse
as I could make them. The restrictions I did make (for example, the restriction that
G,>0,>...>0, in the CCL model) reflected my experience over several years of
general model building. I did not have intimate knowledge of each insurer’s business
operations. Those with knowledge of an insurer’s business operation should be able to
incorporate this knowledge to obtain better results. As all probabilities are conditional,
the Bayesian methodology allows for one to incorporate additional information by
adjusting the prior distributions. I made every effort to code the models transparently
so that such adjustments are easy to make.

The models proposed in this monograph are offered as demonstrated improvements
over current models. I expect to see further improvements over time. The Bayesian MCMC
methodology offers a flexible framework with which one can make these improvements.
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Appendix A. The Data Selection Process

When selecting the loss triangles to use in this monograph my overriding consideration
was that the process should be mechanical and well defined. There are two potential
mistakes one can make in selecting the insurers to analyze.

* Ifonewere to take all the insurers in the database, or randomly select the insurers, there
could be some insurers who made significant changes in their business operations
that could violate the assumptions underlying the models.

* If one is too selective, one runs the risk of selecting only those data that best fit
a chosen model. For example, let’s suppose that I wanted the CCL model to fit
the incurred data even better than it does. As an extreme case, noting that CCL
model still appears to be a bit light in the tails, I could have replaced some of the
insurers that have outcomes in the tail with other insurers that have outcomes in

the middle.

While I did not have inside information on any changes in the business operations,
Schedule P provides some hints in their reporting of both net and direct earned
premium by accident year. Both of these data elements are in the CAS Loss Reserve
Database.

* If an insurer makes significant changes in its volume of business over the 10-year
period covered by Schedule P, a change in business operation could be inferred.
 If an insurer makes significant changes in its net to direct premium ratio over the

10-year period, a change in its reinsurance strategy could be inferred.

To carry out an analysis of this sort, I needed a large number of insurers. After
looking at the quality and consistency of the data available in the CAS Loss Reserve
Database, I decided to use 50 insurers in each of four major lines of insurance—
Commercial Auto, Personal Auto, Workers Compensation, and Other Liability. Early
on I concluded that there were an insufficient number of insurers in the Products
Liability and the Medical Malpractices lines to obtain an adequately sized selection.

To implement these considerations, I calculated the coefficients of variation for
the net earned premiums and the net to direct premium ratios over the ten available
years. By trial and error, I then set up limits on these coefficients (CV) of variation that
obtained the desired number of insurers. This procedure should have eliminated some
of the insurers that changed their business operations.

After some provisional testing, I eliminated insurer group 38997 from the Personal
Auto and Workers Comp lines, and insurer groups 16373, 44598 and 14885 from the
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Other Liability line because the R “ChainLadder” package produced “NA” results for
the Mack calculation of the standard deviation. I also eliminated insurer group 14451
from the Other Liability line because the MCMC algorithm took very long to converge
for paid losses. After eliminating these insurer groups I adjusted the CV limits to give
50 insurers for each line. The final CV limits are given in Table 11. The final list of the
selected insurer groups are in Table 12.

Table 11. CV Limits for Insurer Triangles

Commercial Auto

Personal Auto

Workers’ Comp

Other Liability

CV(Premium)

CV(Net/Direct)

<0.399
<0.125

<0.450
<0.125

<0.950
<0.200

<0.390
<0.125

Table 12. Group Codes for Selected Insurers

Commercia

| Auto

Personal Auto

Workers’ Comp

Other Liability

353
388
620
833
1066
1090
1538
1767
2135
2208
2623
2712
3240
3492
4839
5185
6408
6459
6947
7080
8427
10022
10308
11037
11118

13420
13439
13641
13889
14044
14176
14257
14320
14974
15199
18163
18767
19020
21270
25275
27022
27065
29440
31550
32301
34606
35483
37036
38733
44598

353
388
620
692
715
1066
1090
1538
1767
2003
2143
3240
4839
5185
6947
7080
8427
8559
10022
13420
13439
13501
13528
13587
13595

13641
13889
14044
14176
14257
14311
14443
15199
15393
15660
16373
16799
18163
18791
23574
25275
27022
27065
27499
27766
29440
31550
34509
34592
34606

86
337
353
388
671
715

1252
1538
1767
2135
2712
3034
3240
5185
6408
6807
7080
8559
8672
9466
10385
10699
11347
11703
13439

13528
14176
14320
14508
14974
15148
15199
15334
18309
18538
18767
18791
21172
23108
26433
27529
30589
32875
33499
34576
35408
37370
38687
38733
41300

620
669
671
683
715
833
1538
1767
2003
2135
2143
2208
3240
5185
5320
6459
6947
7625
10657
13501
13919
13994
14044
14176
14257

14370
14915
15113
15148
15210
15571
17043
17450
17493
18163
18686
24830
26797
27065
28550
30449
30651
32301
33049
36315
38733
41068
41580
42439
43354
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Appendix B. Introduction to Bayesian
MCMC Models

Since the recognition of Markov Chain Monte Carlo as a powerful tool for doing
Bayesian analyses in 1990, there have been many efforts to create software to aid in
these analyses. Progress in making the available software faster and more user friendly is
still being made. In spite of this progress, I believe that it is necessary for an actuary to
have a picture of what is happening inside the black box. The purpose of this appendix
is to provide a brief description of what is inside the black box.

A Markov chain is a random process where the transition to the next state depends
only on its current state, and not on prior states. Formally, a Markov chain, X,, for
r=1,2,...is asequence of vectors satisfying the property that

Pr(X,=xX=x,X,=x,..., X, =x)=Pr(X,=x|X =x).

The properties of Markov chains have been well studied by scholars. Those interested
in these studies can start with Chapter 4 of Jackman (2009). What actuaries need to
know about Markov chains in Bayesian MCMC analyses can be summarized as follows.

* There is a certain class of Markov chains, generally called “ergodic,” for which the
vectors, {X}, approaches a limiting distribution. That is to say that as 7 increases,
the distribution of {X} for all #> 7 approaches a unique limiting distribution.

* The Markov chains used in Bayesian MCMC analyses, such as the Metropolis
Hastings algorithm, are members of this class.

* Let x be a vector of observations and let y be a vector of parameters in a model.
In Bayesian MCMC analyses, the Markov chain is defined in terms of the prior
distribution, p(y), and the conditional distribution, f(x|y). The limiting distribution
is the posterior distribution, f(y|x). That is to say, if we let the chain run long
enough, the chain will randomly visit all states with a frequency that is proportional
to their posterior probabilities.

The operative phrase in the above is “long enough.” In practice we want to: (1) develop
an algorithm for obtaining a chain that is “long enough” as quickly as possible; and
(2) develop criteria for being “long enough.”

Here is how Bayesian MCMC analyses work in practice.

1. The user specifies the prior distribution, p(y), and the conditional distribution,

J(Ay).
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2. 'The user selects a starting vector, x;, and then, using a computer simulation, runs the
Markov chain through a sufficiently large number, #, of iterations. This first phase of
the simulation is called the “adaptive” phase, where the algorithm is automatically
modified to increase its efficiency.

3. 'The user then runs an additional # iterations. This phase is called the “burn-in” phase.
1, is selected to be high enough so that a sample taken from subsequent # periods
represents the posterior distribution.

4. 'The user then runs an additional #; iterations and then takes a sample, {x,}, from the
(1, + 1) step to the (2, + 1) step to represent the posterior distribution f{y|x).

5. From the sample, one then constructs various “statistics of interest” that are relevant
to the problem addressed by the analysis.

The most common algorithms for generating Bayesian Markov chains are variants
of the Metropolis-Hastings algorithm.

Given a prior distribution, p( y), and a conditional distribution, f(x|y), the Metropolis-
Hastings algorithm introduces a third distribution, /(y,/y,-1), called the “proposal”
or “jumping” distribution. Given a parameter vector, y,-;, the algorithm generates a

Markov chain by the following steps.

1. Select a candidate value, y*, at random from the proposal distribution, /(. y,-1).
2. Compute the ratio

R=Rx R = L) 20 T(5.15)
fxly) () T 90)

3. Select U at random from a uniform(0,1) distribution.

4. If U< R then set y, = y*. Otherwise set y, = y,_,.

The first part of the ratio, R, represents the ratio of the posterior probability of
the proposal, y*, to the posterior probability of y,_;. The higher the value of R, the
more likely will be accepted into the chain. Regardless of how the proposal density
distribution is chosen, the distribution of y, can be regarded as a sample from the
posterior distribution, after a suitable burn-in period.

To see the issues that can arise when implementing the Metropolis-Hastings
algorithm, let us examine the following made-up example.

Sample Claim Data

484 1407 2262 5015 6500
603 1565 2654 5354 6747
631 1894 2672 5464 9143
1189 2140 4019 5598 12782
1229 2244 4318 6060 18349

We want to model the losses using a lognormal distribution with unknown
parameter [ and known parameter 6 = 1.
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The prior distribution of [ is a normal distribution with mean 8 and standard
deviation 1. For the proposal distribution of (L,|W,;), I chose a normal distribution with
mean W,_; and standard deviation G,,. The starting value, [1;, was set equal to 7.00. For
this example, there is no adaptive phase and the burn-in phase was 1,000 iterations.

To illustrate the effect of the choice of the proposal distribution, I ran the
Metropolis-Hastings algorithm using the normal proposal distributions with 6,,, = 0.02
(low volatility), 6., = 20 (high volatility) and 6,,, = 0.4 (volatility just about right).
Figure 23 shows plots of the value of U, as the chain progresses for each choice of G5,,.
These plots are generally called trace plots in the MCMC literature.

Note that while the starting value 1, = 7 was outside of the high density region
of the posterior distribution of |, as t increases I, moves rather quickly into the high
density region for 6,, = 20 and 6,,, = 0.4. It takes a bit longer for 6, = 0.02, as the
differences between U* and [,_; tend to be small.

If 6p,, = 0.02, u* will be close to 1,; and the ratio in Step 2 of the Metropolis—
Hastings algorithm will be relatively high and thus W, will be close to W,;. In the first

Figure 23. Trace Plot 1: Metropolis—
Hastings Example
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trace plot of Figure 23 we see a high degree of autocorrelation between successive
iterations. If 6p,, = 20, W* could be quite far from W,_; and the ratio in Step 2 could
be relatively low and thus W, will equal W,_;. In the second trace plot of Figure 23 we
still see a high degree of autocorrelation. If 6,,, = 0.4, U* can be far enough away from
W,-; to reduce the autocorrelation, and close enough to avoid rejection and the setting
of W, = W,_;. Getting a good value for Gp,, is balancing act. The third trace plot in
Figure 23 shows a relatively low degree of autocorrelation and suggests that W, for
+=1001, ..., 11000 is a representative sample from the posterior distribution.

For a single parameter model, like the one in this example, it is relatively easy
to scale the proposal distribution by trial and error to minimize autocorrelation. For
models with many parameters, like the ones in the next section, such manual scaling is
not practical. This problem has been studied extensively and here is a short description
of the current state of the art.

A good statistic to look at when trying to minimize autocorrelation in the Metropolis-
Hastings algorithm is the acceptance rate of y* into the Markov chain. I have scanned
a number of sources, e.g., Chapter 5 in Jackman (2009), or Chapter 4 of Brooks et al.
(2011), that suggest that an acceptance rate of about 50% is near optimal for a one
parameter model. The optimal acceptance rate decreases to about 25% as we increase
the number of parameters in our model. Also, the researchers have developed methods
to automatically adjust the proposal density function in the Metropolis-Hastings
algorithm. Chapter 4 of Brooks et al. (2011) provides a recent description of the state
of the art. We shall see below that all this has been mechanized in JAGS. The phase of
generating the Markov chain where the proposal density function is optimized is called
the “adaptive” phase.

As models become more complex, adaptive MCMC may not be good enough to
eliminate the autocorrelation. While the theory on Markov chain convergence still
holds, there is no guarantee on how fast it will converge. So if one observes significant
autocorrelation after the best scaling effort, the next best practice is to increase #
until there are a sufficient number of ups and downs in the trace plot and then take a
sample of the #, + #, + 1 to #; + 1, + #; iterations. This process is known as “thinning.”
Figure 24 shows what happens when we increase # to 250,000 and record every 25th
observation.

Before leaving this example, let us examine how one might turn the posterior
distribution of W into something of interest to actuaries. One reason actuaries fit a
lognormal distribution to a set of claims is that they want to determine the cost of
an excess layer. Given the parameters [l and G of a lognormal distribution, there are
formulas in Appendix A of Klugman, Panjer, and Willmot (2012) that give the cost
of an excess layer of loss. The functions that calculate these formulas are included in
the R “actuar” package. As the posterior distribution of W reflects the parameter risk
in our model, it is also possible to reflect the parameter risk in the expected cost of a
layer by calculating the expected cost of the layer for each [ in the simulated posterior
distribution. Also, it is possible to simulate an actual outcome of a loss, X, in a layer
given each [ in the posterior distribution. The distribution of X calculated in this way
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Figure 24. Trace Plot 2: Metropolis—Hastings
Example with Thinning
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reflects both the parameter risk and the process risk in the model. Figure 25 shows the
predictive distribution of the expected cost of the layer between 10,000 and 25,000,
E[X], and the predicted outcome of losses X in that layer.

As statisticians and practitioners became aware of the potential for Bayesian
MCMC modeling in solving real-world problems, a general software initiative to

implement Bayesian MCMC analyses, called the BUGS project, began. BUGS is an

Figure 25. Predictive Distributions
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10,000 and 25,000
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acronym for Bayesian inference Using Gibbs Sampling.!” The project began in 1989 in
the MRC Biostatistics Unit, Cambridge, and led initially to the ‘Classic BUGS program,
and then onto the WinBUGS software developed jointly with the Imperial College
School of Medicine at St Mary’s, London. The project’s web site is at http://www.mrc-bsu.
cam.ac.uk/bugs/. The various software packages associated with the BUGS project have
captured many of the good techniques involved in Bayesian MCMC modeling.

On the advice of some colleagues I chose to use the JAGS (Just Another Gibbs
Sampler) package. It has the additional feature that it runs on a variety of platforms
(Window, Mac, Linux and several varieties of Unix). Like R, it can be downloaded for free.

I use JAGS with R. My typical MCMC program begins by reading in the data, calling
the JAGS script using the R package “runjags.” I then fetch the sample of the posterior
back into the R program where I calculate various “statistics of interest.”

While I realize that JAGS is doing something more sophisticated, I find it helpful to
“think” of JAGS as using a simple version of the Metropolis—Hasting algorithm similar
to that illustrated in the example above. Once a model is specified, there are three stages
in running a JAGS program:

1. Theadaptive stage where JAGS modifies the proposal distribution in the Metropolis-
Hastings algorithm. JAGS will issue a warning if it thinks that you haven't allowed
enough iterations for adapting. Let’s denote the number of iterations for scaling by #.

2. 'The burn-in stage runs until we have reached the limiting posterior distribution.
JAGS has diagnostics (described below) that indicate convergence. The burn-in
stage runs from iterations #; + 1 to # + .

3. 'The sampling stage that produces the sample of the posterior distribution. The
sampling stage runs from iterations #, + , + 1 to #, + 1, + ;.

JAGS has a number of convergence diagnostics that are best illustrated with an
example. We are given the total losses from a set of thirty insurance policies in the
following table.

Exposure  Loss  Exposure  Loss Exposure  Loss

51 23 226 273 368 410
66 138 231 275 374 482
119 53 254 259 377 500
125 88 255 200 381 424
131 80 258 123 392 242
152 136 268 275 444 431
196 165 279 327 449 337
197 136 295 509 478 399
225 328 340 457 484 458
225 347 364 317 495 553

17 Gibbs sampling is an MCMC algorithm that is a special case of the Metropolis Hastings algorithm. This is
demonstrated in Chapter 1 of Brooks ez /. (2011).
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Figure 26. Trace Plots Without Thinning—
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Our task is to use these data to estimate the expected cost of losses in excess of
1000 for an insurance policy with an exposure of 800. Note that in our data, there is
no insurance policy with an exposure as high as 800, and no loss over 1000.

Let’s use the collective risk model with a Poisson distribution for the claim count,
and a distribution for the claim severity. Here is the description of the model using the
notation in Klugman, Panjer, and Willmot (2012).'8

A = k- Exposure

n ~ Poisson(\)
Loss~T'(n-a, 0)

k ~ Uniform(0.05, 0.15)
o, ~ Uniform(0.1, 10)

0 ~ Uniform(5,200)

A N

In JAGS, the script looks pretty much like the model description above after a
change in notation for the distribution parameters. Lets first consider convergence
diagnostics. First of all, with JAGS one can run multiple independent chains. I first ran
this model with 1,000 iterations for the adaptive stage, 10,000 iterations for the burn-in
stage and then 2,500 iterations for the sampling stage. JAGS then produces trace plots
for all four chains, colored differently, superimposed on each other. A visual indication
of convergence is that all the chains bounce around in the same general area. Figure 26
shows the trace plots produced by JAGS for the three parameters in this example.

18 This particular version of the collective risk model is called a Tweedie distribution. See Meyers (2009).
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As we can see from the trace plots, the chains are very distinct, so we should
conclude that the chains have not converged.

A second diagnostic provided by JAGS is the Gelman-Rubin statistic for each
parameter. Here is a heuristic description of the statistic.'” First estimate the within
chain variability, W, and the between chain variability, B. Gelman and Rubin then
recommend that one use the statistic

Jae W+ B
=

The \/E is called the “potential scale reduction (or ‘shrink’) factor.” or PSRE This
statistic will approach one as the number of iterations increases, since the between
chain variability will approach zero. What we need to know is how long the chains have
to be before we can stop and get a representative sample of the posterior distribution.
Chapter 6 of Brooks et al. (2011) recommends that we accept convergence if the
PSREF is 1.1 or below for all parameters. The default for the “runjags” package is 1.05,
which is what I used in for the models in this monograph. The PSRFs for this JAGS
run were 1.87, 1.21 and 1.92 for the parameters @, # and 0, respectively.

Continuing the example, I reran the JAGs model with same parameters but thinned
the chains to take every 25th iteration. The results are in Figure 27. The PSRFs for this
JAGS run were 1.03, 1.02 and 1.01 for the parameters ., # and 0 respectively. So we can
accept that the run has converged.

JAGS then sent 10,000 parameter sets {0, 4,, 0} back to the R script. R then
simulated losses to the insurance policy as follows.

Fort=1 to 10,000.

1. SetA=F - 800.
2. Select 7, at random from a Poisson distribution with mean A.
3. Select Loss, at random from a I'(#, - o, 0,) distribution.?

Figure 28 shows a histogram of the ground up losses from the above simulation
and the expected cost of the layer in excess of 1,000.

The examples in this appendix illustrate the ideas behind Bayesian MCMC models,
those being the adaptive phase, the burn-in phase, the sampling phase, and convergence
testing. Understanding these concepts should enable one to start running these kinds
of models. When running these models one should keep in mind that the state of the
art is still evolving, so one should periodically check the current literature and software
developments on Bayesian MCMC modeling for recent developments.

19 See Jackman (2009, Section 6.2) or Hartman (2014) for a more detailed description of this statistic.
20 Tf each X has a I'(c, ©) distribution, then X; + - - - + X, has a I'( * o, 0) distribution.
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Figure 27. Trace Plots With Thinning—
CRM Example
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Figure 28. Output—CRM Example
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The state of the art and the software for Bayesian MCMC modeling is still evolving.
Since there may be upgrades by the time the reader sees this monograph, I think that it
is important for me to describe the computing environment in which I ran the models
in this monograph.

My computer was a Macbook Pro with a quad core processor. On this computer
I used R version 3.0.2 and JAGS version 3.3, implementing JAGS with the “runjags”
package. The main consideration in selecting the “runjags” package was that made
it easy to run the four chains in parallel with my quad core computer. Running the
chains in parallel made a significant improvement in the run time.

For the LCL, CCL, and CSR models I used 1,000 iterations for the adaptive phase,
and 10,000 iterations for the burn-in phase. I ran the model inside a loop, with the
sampling phase initially set at 10,000 iterations with a thinning parameter equal to four.
If the maximum PSREF for the parameters I monitored was greater than 1.05, I doubled
the number of iterations in the sampling phases and the thinning parameter and ran
the simulation again—continuing until the target PSRF target was achieved.

For most of the LCL and CCL models on incurred data, the initial run achieved the
PSREF target. The highest thinning parameter was 32. Convergence was somewhat slower
for the CCL and CSR models on the paid data. There was one triangle that required a
thinning parameter equal to 512.

For the CIT and LIT models on the paid data, I increased the burn-in to 50,000
iterations. Convergence was noticeably slower. Far fewer triangles met the PSRF target
with a thinning parameter set equal to four.

The R/JAGS scripts for all models are in a spreadsheet that will be distributed with
this monograph. For each model, I put these scripts inside a loop that ran all 200 triangles
while I was otherwise occupied. Summary statistics for all 200 triangles are also included
in the spreadsheet and because I fixed the random number seed, the scripts are able to
reproduce the summary statistics for any of the triangles.
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Claims Development by Layer: The Relationship between
Claims Development Patterns, Trend and Claim Size Models

Rajesh Sahasrabuddhe, FCAS, MAAA

The purpose of Chatles Cook’s 1970 paper Trend and Loss Development Factors was to address the “overlap fallacy.”
That is, the focus of that paper was to demonstrate that trend and claims development were mutually exclusive
adjustments. While this is certainly true, it should also be understood that there is a relationship between limited
claims development patterns and trend factors. The “connector” between claims development patterns and trend
is the claim size model. This relationship is critical to analyzing “real word” data which is rarely available on a
ground-up, unlimited basis and where the implicit assumption of trend in a single direction may not be
appropriate.

This paper presents a demonstration of that relationship and also provides an approach to adjust development
patterns for a particular claim size layer in order to calculate a development pattern for any other layer. As
importantly, the approach discussed is designed to produce models that are internally consistent with respect to
development patterns, trend factors and size of loss models (incteased / decreased limit factors).

Keywords development patterns, excess layer

1. INTRODUCTION

The purpose of this paper is to demonstrate the relationship between claims development, trend
and claim size factors. Those relationships are then explored in order to provide a practical approach
for adjusting a development pattern appropriate for any claim layer to produce a development
pattern for any other layer. The approach also allows for adjustments related to cost level
assumptions implicit in development patterns and ensures that assumptions related to claim size

models, claims development and trend are internally consistent.

The procedure may be applied to either paid claims or reported claims. Additionally, although we
use “claims” in the discussion, the procedure may also be applied to claims and allocated claim
adjustment expenses (or only allocated claim adjustment expenses) assuming that all parameters and

assumptions are defined consistently.

"A previous revision dated November 25, 2012 corrected minor typographical errors in Equations 2.3 and 3.6, and the
cross reference for the calculation of item D1 in Examples 1 and 2.

This January 2, 2013 revision includes exhibits that were inadvertently excluded from the November 25, 2013 version.
Those exhibits include a minor correction to Example 3.
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1.1 Research Context

The current approach for estimating excess layer development is based on Emanuel Pinto and
Daniel Gogol’s paper, “An Analysis of Excess Loss Development.” The focus of that paper is the fitting
of observed development factors as a function of retentions. The observed factors were developed
using an analysis of a large industry database. Pinto/Gogol then present an approach for calculating
excess layer development in Section 5 and this approach is explored further in George M. Levine’s
review. However, this approach requires that the actuary first calculate excess layer development

using their fitting approach.

Many actuaries would not have access to such industry data and as such the Pinto/Gogol
approach would not be practical. In addition to this issue, the methodology does not use the

inherent relationship of claims size models, trend and claims development patterns.

1.2 Scope and Objective

This paper includes comments related to assumptions implicit in the determination of
development patterns, trend and claim size distributions in practice. However, the development of
these actuarial models and their parameters is beyond the scope of this paper. The objective of this
paper is to provide a methodology to calculate development factors by layer once the actuary has
already determined his/her assumptions with respect to a “base” development pattern, trend and

claim size models.

1.3 Outline

The paper presents a discussion of a robust approach and then provides an example that
incorporates simplifying assumptions that are common in actuarial practice. The remainder of the
paper proceeds as follows. Section 2 will provide notation and define important algebraic definitions
of model factors. Section 3 provides the discussion of the inter-relationship between claims
development, trend and claim size models. Section 4 will provide implementation examples to the

oft-studied Mack triangle and a simpler approach that may be sufficient for many analyses.

2. BACKGROUND

We begin by examining the implicit and explicit assumptions of claims development, trend and

claim size models.

The discussion will assume that we are analyzing an #X7z claims triangle. We generalize our

discussion to allow for data that is truncated from below at 4 and censored from above at p. This is
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typical of data subject to deductibles and policy limits. Of course, if 4 = 0 and p = ©, then the claims

data is provided on a ground-up, unlimited (GUU) basis. The notation used in this paper is as

follows:
Cilfj = Cumulative claims in the layer L, for exposure period 7 as of the end of
development interval j
Ci"‘oo = Ultimate claims in the layer I, for exposure period 7 (f = )
L(d,p) = Claims layer truncated from below at 4 and censored from above at p where 0 <

d<p =0

Though it will be obvious that this is not a necessary assumption, in order to simplify notation,
we will assume claims layer L is consistent throughout the data triangle. Claims data is typically

organized as presented in Table 1.

TABLE 1
CUMULATIVE CLAIMS DATA
Development Interval ()
1 2 3 n

1 iy Clz Cis Ctn
RS 2 Cza CZ2 CZ3
» g
28 3 C3a Ciz Ci
ZM)
oA~

" Cia

Below we first discuss trend, claims size models and development patterns separately and then

discuss their relationships.

2.1 Trend Factors

Trend rates typically refer to the annual change in cost level for a particular claims layer. In
practice, trend rates often do not vary between accident periods. In addition, trend that acts in the
development period or calendar period direction is often not considered. Finally, the consideration

of the varying effects of trend applicable to different claims layer is often nonexistent.

Rather than using annual rates of change, we will use cost level indices, 7. Cost level indices are
determined so as to apply to cumulative claims for accident year 7 as of development maturity 7. The

indices are an accumulation of the incremental changes relative to a “base cost level.” Any accident
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year and maturity combination can be considered the “base.” In practice, the base cost level will

typically be defined as the cost level associated with ultimate claims for the oldest exposure period.

Our trend is explicitly defined to apply to the ground-up, unlimited claims layer. This is
consistent with approaches in practice where the trend assumption is based on external cost
information such as the Consumer Price Index. If trend is estimated from claims data that is subject
to policy limits or deductibles then we will first need to adjust the data to a ground-up, unlimited

basis using the claim size model.

Our model allows for trend that acts in multiple directions. We use the following notation for

cost level indices.

T;; Trend indices for cumulative GUU claims for exposure period 7 at the end of
development interval j
TABLE 2
COST LEVEL INDICES
Development Interval ()
1 2 3 n

1 Ti, Tip Ty Tin
5 2 T24 Tz Tp3
» °
g g 3 T3, T3, T3
ZHR
M~

" T

2.2 Claim Size Model

The claim size model describes the distribution of claim sizes. Though we do not restrict claim

size models with respect to complexity, for practicality we require the following:

® that claims size model parameters can be adjusted for the impact of inflation (includes

most common claim size models such as the lognormal and exponential)

® that limited expected values and unlimited means (first moments) can be calculated with

reasonable effort.
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2.2.1 Limit Adjustment Factors

The limit adjustment factors, S(a,b), represents the ratio of expectations of claims between layer
I, ,and L,

Siel Ly L) = {LEV(p; ®,,) - LEV(d,; ®,,)} / {LEV(p; ®,,) - LEV(d; @) } (2.1)
SilLy L) ={LEV(p; ®,) - LEV(d; ®,)} / {LEV(p; ®,) - LEV(d; ®,)} (2.2)
8L, L) = E[C#/ €21 2.3)

where LEE]” is the characteristic limited expected value function for the claim size model and @
represents the “name” (e.g. lognormal, Pareto, exponential) and parameters of the claim size model.
We also acknowledge that the parameters of the claims size model, @, will vary by exposure period 7

and development interval ;7 as a result of differences in cost level.

In later sections, we will use the notation LET(L; @) to refer to the limited expected value for

the layer I.(d, p). This is calculated as follows:
LEV(L; ®) = LEV(p; ®) — LEL(d;, ®) 2.4
2.2.2 Gross-up Factors

In the special case where p,= and 4,=0, $(4,b) simplifies to a factor to gross-up claims to a GUU
basis. We can then use the characteristic first moment (mean) function, M, in the numerator rather

than the limited expected value function.
G.(0) =M®@,.) / \LEV(p;®@,.) - LEV(d;®,.)} (24)
G () = M(®;) / {\LEV(p;®,) — LEV(d;®,) (2.5)
2.3 Claims Development

Claims development factors, F, represent the expected ratios of ultimate claims to claims at

maturities prior to ultimate. That is:

rly =kt / Cly) e

3. RESULTS AND DISCUSSION

We can now explore the relationships between claims development, trend, and claim size models.
The discussion assumes that we have been provided with unlimited claims trend factors and that we

have developed the cost level indices as presented in Table 2.
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3.1 Claim Size and Trend

As per the requirements of Section 2.2, for our selected claim size model, we can calculate model

parameters for prior or future exposure periods using the trend indices.

q)i,ij((bn,j' Ti,j'Tn,j) (31)

3.2 Claim Development Patterns, Claim Size and Trend

In practice, claims development patterns are estimated from unadjusted data and are applied to
claims for all exposure periods. We should acknowledge that this is not appropriate unless (i) claims
data are provided on a GUU basis and (ii) trend acts only in the accident year direction. Since this is
oftentimes not the case, we address these issues by adjusting the triangle of claims data prior to
analysis. Specifically, we adjust observed claim amounts for differences in cost level and limit using

the limited expected value function.

3.2.1 Development of Basic Limit Claims Development Pattern, Exposure Year n Cost Level

We first select a Basic Limit, B, which is the threshold at which we believe the data is sufficiently
credible for the purpose of estimating claims development patterns. Recall from Table 1 that L
represents the layer for which data is available. We then adjust each observation of cumulative

claims as follows™:
E[CB|CE] = CE x LEV(B; @, ;) /LEV (L; ®; ) (32)
We note that there is no restriction that B # L. We should recognize that if B = L, then we are

simply adjusting the data for differences due to the impact of trend in the layer. (Note the difference

between the first subscript of @ in the numerator and denominator of Equation 3.2).

We then analyze this adjusted data, C{f], in order to estimate development patterns at a common
(basic) limit and an exposure petriod 1=Nn cost level. This pattern is denoted F,E j and we have the

following relationship:

Frj = E[Ce/CR)] 3
As you review the following sections, keep in mind that this basic limit development pattern at
exposure year 7 cost level will now be used to calculate basic limit development for any other layer

and exposure period (cost level).

2 We presume that a triangle at the basic limit is not readily available.
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3.2.2 Calculation of Claims Development Pattern for Any Layer and Cost Level

Equation 3.2 also provides an important general relationship applicable to any layer Xif we have
data for layer L.
E[cXIcl] = ¢l x LEV(X; @, ;) /LEV(L; ®; ) (3-4)
Chix $,(X L) (3-5)
Using this general relationship, we can calculate basic limit development factors for any exposure

period for any layer X from the development factor for B at exposure year 7 cost levels:

B cE., LEV(X; ®;.)/LEV(B; @, ) (3.0)
[ l lCB LEV (X; ®;;)/LEV (B; ®,,;)
FX — BB LEV(X; ®;,)/LEV(B; @, .,) (3.7)
™" LEV(X; ®;;)/LEV (B; &, ;)
FX Z BB x ?,m (X, B) (3.8)
ij(X,B)

However, as we demonstrated in Equation 3.1, @; ; is a function of trend indices and @y, ;. So,

substituting Equation 3.1 into Equation 3.7, we have:

PX _ pB o LEV (X; T; 00, Tp,c0r Pr,00) /LEV (B; @1y, o) (3.9)
" LEV(X Tl]lTn]rq)nj)/LEV(B; ([)n’]-)

Equations 3.8 and 3.9 are the primary findings of this research: Development factors at
different cost levels and different layers are related to each other based on claim size models

and trend.

3.3 Other Practical Uses

Oftentimes, we are simply provided with a development pattern. Although we are typically aware

of the limits associated with the triangle and/or pattern, it is not stated at any patrticular cost level.

In Equation 3.9, we demonstrated that, for limited claims data, development patterns will vary
with cost level. However, this relationship is often ignored usually because it is presumed immaterial.

For convenience, we will simply assert that the cost level is that of the latest exposure period.

We also typically have a claim size model at ultimate (e.g. increased limit factors), but size models
by age are usually not available. Let us also assume that we are only concerned with estimating

development factors applicable to claims at the latest valuation date.

We can use a variation of Equation 3.6 to develop claims development patterns:
LEV(X; ®;)/LEV(B; ®, ) (3.10)

X _ B
iy = g X R; (X,B)
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The primary difference between Equations 3.8 and Equation 3.6 is that rather than using claim
size models by age in the denominator, we use a quantity, R; (X,B), that is simpler to estimate

approximately.

R; (X,B) is the ratio between limited expected values for layer X and B at the end of
development interval /. Rj (X, B) is only evaluated along a single diagonal since we typically have at
least one diagonal (usually the current diagonal) where we can observe ratios of claims at various
limits. It should be noted that R carries only one subscript, that for maturity. In using this latter
approach, we assume that differences in cost level are immaterial to the calculation of ratios of

claims by layer”.

For the moment, we will ignore the possibility of negative development and assume that
R; (X, B)<l1. The latter assumption indicates that we are trying to develop an estimate for a pattern
at a lower layer given a pattern at a higher layer. We should recognize that R will have the following
properties:

i.  R,> R, for a<b - At early maturities, there will be less development in the excess layer than
at later maturities.

i. R, = U, whete U =limg,, R, - We should recognize that U can be calculated as the
product of R and the ratio of ultimate claim development factors layer X and B. Until we
reach ultimate, the reported ratio will always be greater than ultimate ratio. This is because
the there is more development associated with the denominator of R (claims in layer B, the
higher limit) than the numerator of R (claims in layer X the lower limit) and at ultimate R =
U

iii.  If our base development pattern is provided on an unlimited basis (i.e. B=GUU), then the
maximum value for R may be calculated as U*Claims Development Factor. The derivation of

this maximum is presented in Appendix A.

It should be recognized that these conditions will be violated if there is negative development or
if we assume that an excess layer might develop more quickly than a working layer. These conditions
are not necessary for application of this approach. However, it is useful to review the results under
the typical considerations described above to provide a more intuitive understanding of the

dynamics of the calculation.

3 Note that we are not asserting that they are immaterial with respect to absolute limited expected values.
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In the third example presented in Section 4, we use a simpler approach to calculating R* which is
then used to calculate development factors for a layer other than the layer associated with the

development pattern provided.

3.4 Issues

Relative to common development method projections, the procedure described above requires
additional assumptions and calculations. The use of certain assumptions and calculations would not

appear to be overly onerous:

1. The procedure requires that the actuary select a basic limit. However, actuaries either
explicitly or implicitly select a basic limit in applying the development method. That is,
whenever a development triangle is analyzed there is an implicit assumption that the limit

associated with that triangle is sufficiently credible to produce development factors.

2. The procedure requires the use of a(n ultimate) claim size model in order to implement a
development method analysis. This may or may not result in an additional burden on the
actuary. Oftentimes, claim size information (such as increased limit factors) or a claim
size model is already available to the actuary. If not, we would submit that knowledge of
the distribution of claim sizes is important in understanding the dynamics of claims

development.

We should also recognize that we use the claim size model only to calculate relative
limited expected values near the deductible, basic limit, policy limit and limit underlying
the development data. Deductibles generally would not be an issue for the types of
exposures for which the actuary would be willing to invest the effort required of this
approach. As such, what is important is that our claim size model produces reasonable
ratios of limited expectations to unlimited means at higher values. It is less important that
the absolute limited expected values are accurate and therefore a simpler size of loss
model may be sufficient though we need to recognize its shortcomings and not use that

model out of context.

3. The procedure requires that the data triangle be adjusted to a basic limit and common
cost level. As demonstrated in Examples 1 & 2 of Section 4, given claim size and trend
information, the calculation and application of adjustment factors would not seem to

create a significant additional burden.

4 Simpler than calculating claim size models by age.
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There are however two sets of assumptions that could be perceived as resulting in a significant

additional burden.

1. Claim size models at maturities prior to ultimate are generally not available. In addition,
these models would have limited application outside of this context. However,
understanding changes in claims size models over time would be a significant benefit for

actuaries to understand excess layer development.

With an insurance company database or even a self-insured risk of sufficient size, we
believe that an algorithm could be reasonably programmed to calculate these claim size

models.

Although a robust claim size model is required for full implementation of this approach
(Examples 1 & 2), it should be recognized that only the ratio of expected values is
required to adjust development patterns from one layer to another. This is a significantly

reduced burden as will be demonstrated in Example 3 in the next section.

2. The procedure requires the calculation of a triangle of trend indices in order to
implement a development method analysis. We would expect that a trend assumption
exists in the analysis. The trend indices specify the cost level associated with cumulative

claim observations. This becomes somewhat difficult to conceptualize in two respects:
a. Trend typically acts on incremental activity.

b. The impact of trend on reported incurred claims and, more specifically, the timing

of the effect of trend on case basis reserves, is difficult to ascertain.

These difficulties are not an issue if we assume that development only acts in the
exposure period direction. Even if we have trend also acting across calendar periods, we
would submit that this will require the actuary to confront the assumption with respect to
the direction(s) in which trend acts or (more importantly) does not act. In addition
documenting this assumption produces greater transparency and better informs the

consumer of actuarial information.

4. EXAMPLES

We now present three examples that implement the concepts described in Section 3. The first

two examples are based on the oft-studied claims triangle included in the Distribution-Free Calenlation
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of the Standard Error of Chain Ladder Reserve Estimates by Thomas Mack. Example 1 and Example 2 are
identical except that in Example 1, the Basic Limit is well above the working claims layer; in
Example 2, the Basic Limit is within the working layer. The third example presents the approach
discussed in Section 3.3 where we adjust a development pattern provided to us to determine patterns

for other layers.

4.1 Example 1 & 2

For Examples 1 & 2, we provide the following additional (contrived) information about the Mack
triangle. This information is intended to be typical of that which might apply to actual data:

= We have selected a basic limit of $500 thousand

* The policy limit is $2 million

= The data in the triangle is for the ground-up layer to $1 million

® Trend acts at a rate of 2% each exposure period; but there was a one-time increase to 5%
between exposure period 6 and 7.

* Trend acts at a rate of 1% each calendar period; but there was a one-time decrease of 5%
between calendar period 2 and 3.

The calculations in the examples are presented as follows:

- In Section A, we present the claims data and relevant information. Both exposure periods
and development intervals are annual. However, since this is not a strict requirement of
our approach, we have retained the more generic labels: “Exposure Period” and

“Development Interval.”
- In Section B, we present the calculation of trend indices.

- In Section C, we present the claim size model. Section C1 provides the claim size model
at Exposure Period 10 cost level. We use an exponential model for simplicity of
presentation; however any model that meets the requirements of Section 2.2 could be

used.

In Section C2, we present the calculation of adjusted exponential parameters based on the

Exposure Year 10 parameters and trend indices.

In Sections C4 through C6, we present the calculation of limited expected values using

the characteristic function of the exponential model.

- In Section D1, we present the adjusted cumulative claims triangle. This triangle adjusts all

historical observations to the basic limit at Exposure Period 10 cost levels. The
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adjustments are based on ratios of limited expected values. In Sections D2 and D3, we

calculate the incremental and cumulative development patterns.

In Section E, we apply Equation 3.7 to calculate development factors for various layers at
appropriate exposure year cost levels. In Section E7, we present the differences between
factors calculated through examination of the (unadjusted) triangle in Section Al and the

factors resulting from our approach.

Factors for certain excess layers are presented as “very large.” This occurs since the

expectation of claim in the layer at early maturities is very small.

We note that the differences presented in Section of E7 of Example 1 are quite small.
The differences will grow with the expectation of claims in the layer between the basic
limit and layer under review. This is demonstrated in Example 2, where the resulting
differences are quite a bit greater. We should also recognize that layers that are excess
layers for an insurer (or self-insured) become working layers for reinsurers (excess

insurers).

It will also grow in situations where trend and/or development act over longer periods or

at higher rates.

4.2 Example 3

The third example presents the approach described in Section 3.3. This approach is intended to

provide a simpler application of the theory in Section 3. As presented in Example 1, if the basic limit

is sufficiently high and trend is contained, the impact of data adjustments is minimal.

The calculations in Example 3 are reasonably self-explanatory. However, readers should note the

following:

At ultimate, all claims development factors equal unity and the ratio at age (col. 9) equals

the ratio at ultimate (col. 8).

The x axis is labeled “maturity,” not exposure period. The observed pattern should be
viewed as one observation of a random process at a particular maturity and not viewed as

the ratio applicable to an exposure period.

We use an algorithm to select ratios by age. At the earliest maturity, we know that the

ratio should be “high.” That is because claims emergence in excess layers is still “low.”

Our selected ratios are calculated as follows:
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Selected Ratio = Ultimate Ratio + (1-Ultimate Ratio) * Decay Factor
This approach recognizes that we want to “keep” a portion of the distance between the
ultimate ratio and the maximum ratio (unity). This portion is determined through the use
of a decay model where we keep most of the difference at the earliest maturity and none

at ultimate.

In practice, assuming we are analyzing development patterns at limits at or above the
working layer, the ratios will be close to unity and the amount of error that could possibly

be created by this approach is minimal.

5. CONCLUSION

In this paper we have demonstrated that there is a relationship between claim development
patterns by layer and that that relationship is a function of trend and claim size models. This
relationship can be used to calculate development patterns for a claims layer from a development

pattern for any other claims layer.

These relationships also demonstrate that limited development factors are a function of not only
maturity but also cost level. Therefore, the same pattern of limited factors should not always be

applied to all exposure periods under review.

With short development patterns, low trend rates and limits above the working layer, the
adjustment is small and often immaterial. Not all exposures exhibit these characteristics and for
these exposures, the adjustments may be meaningful. For exposures where the adjustment may not

be meaningful, we provided an alternative simpler approach to adjust development patterns.
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Appendix A: Calculation of Maximum Ratios of Basic Limit to Unlimited Claims

The maximum ratio is represented by the limiting case where all development in the unlimited
layer occurs above the basic limit. The maximum ratio is calculated as follows:

Notation:

R = Ultimate ratio of basic limit to unlimited claims

A = Ratio of basic limit to unlimited claims prior to ultimate

D = Unlimited claim development factor

Claims

Prior to Ultimate At Ultimate
Limited to Basic Limit B, B,
Excess of Basic Limit X, X,
Unlimited C, C,

Identities:

I1: B, = B, (All development in excess layer; basic limit layer at ultimate)

12: R = B,/ C,

13: C, = C.*D

Then under maximum conditions:

A. = B/C

Aww = B,/ (C/D)  «perI3»

A = D*B,/C

A = D*B/C  «perll»

A.. = D*<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>