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Abstract

The intent of this paper is to show how to implement machine learning
(ML) algorithms in the framework of calculating Claim Liabilities.
Traditionally, in order to estimate future losses, actuaries have been using
methodologies based on aggregated data in the form of run-off triangles.
This paper outlines the limitations of such methodologies and proposes
more sophisticated tools and models based on ML algorithms that are ca-
pable of overcoming drawbacks of standard approaches, namely, accuracy
and timeliness of estimates.
We propose a new framework that could enhance traditional estimates in
providing an additional set of evaluations that could be used by actuaries
as another term of comparison.

Keywords. Run-off Triangles, Chain-ladder, GLM, GAM, MARS, KNN,
CART, Gradient Boosting, Neural Network, Classification, Regression,
Claim Liabilities, Ultimate Losses, IBNR, RBNS.

Introduction

Estimating future claim payments is a central task performed by actuaries on
a daily basis. Such estimates are of high value for the insurance companies
because they constitute one of the main entries of their balance sheet.
The accuracy of these figures is, therefore, of primary concern for all of the
stakeholders. Producing reliable numbers could really make the difference be-
tween a company operating in a safe and sound way or being put in receivership,
rehabilitation or liquidation status.
Unfortunately, real world data is subject to inherent fluctuations and system-
atic distortions that makes this process very complicated and, often, expert
judgment is needed. An additional layer of uncertainty is also introduced by
the delay between the actual occurrence of the claims, the notification to the
insurance company and the actual payment.
Ideally it is in the insurance company’s stakeholders’ interests to be able to
know, as soon as possible, the final claim losses in order to quantify the liabili-
ties and hence, take strategic decisions in a timely manner.
Traditional methods of estimating claim liabilities, such as the development
technique, all require stable pattern and company practices in order to produce
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reliable estimates; the major drawback is that a precise evaluation can only be
calculated when sufficient time has been allowed for the fluctuations to stabi-
lize.
Company management, however, needs to take decisions in a timely fashion.
Allowing time before acting could mean losing competitive advantages within
the market. This situation is also exacerbated by the fact that initial estimates
have to be reviewed and checked periodically in order to ensure they are still
valid.
It is also very difficult to compensate aggressive decisions, since insurance com-
panies are not allowed to charge future customers more to make up for past
losses. In fact, according to the CAS Statement of Principles Regarding Prop-
erty and Casualty Insurance Ratemaking, “A rate is an estimate of the expected
value of future cost.”
It is clear that this definition does not grant the rights to overcharge future
customers due to past choices that led to losses.
Traditional methodologies are based on run-off triangles - a nice and easy way
to aggregate claims that allows to gauge both the time and the materiality de-
velopment of the claims.
This, however, comes at a cost both in terms of accuracy and timeliness of re-
liable results. In order to overcome these disadvantages, this paper will show
how to address this problem in the context of ML techniques, comparing the
benefits and the difficulties of switching to such a framework.
This paper is set out as follows:
Section 1 will present the terminology and notations used throughout the pa-
per.
In Section 2, this paper will address in more detail how traditional method-
ologies work, providing context and efforts made to enhance results obtained
through this methodology.
Section 3 will provide a gentle introduction to the subject of ML algorithms,
describing the fundamental concepts behind the models used later on.
Section 4 will present a case study based on real data discussing the results
achieved, the issues encountered, and how to increase the quality of the esti-
mates.
In Section 5, there will be a comparison of results obtained alongside a descrip-
tion of the performance indicators used.
In Section 6, we will present some considerations and proposed methodologies
regarding the estimate of IBNYR.
In Section 7, we will state some conclusions.
All statistical analyses were performed using the free and open source statistical
software R.1

1R Core Team (2018). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
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Confidentiality

Due to data confidentiality constraint, sensitive quantitative information has
been intentionally hidden in the following study.
It is, however, possible to appreciate the value of the conclusions stated.
The focus of the paper is practical, and more emphasis will be given to the
implementation and practical aspects. The main attention, therefore, will be
on the algorithms themselves, rather than on the specific data.
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1 Terminology and Notation

This paper will make extensive use of special terminology and notation.
We will start with a description of the claim process and the relative technical
terms that describe each individual stage, then these concepts will be expressed
in mathematical form.
As already described, the full claim payment process takes time from the mo-
ment of the accident until the claim is paid and therefore closed.
Moreover, claims are not always paid in full at the moment they are reported,
but they can generate a series of small payments.
Once a claim is reported from the policyholder to the insurance company, the
claim is known, and a case outstanding is initially estimated.
The term “case outstanding” refers to the amount that the insurance company,
at any given time, expects to pay in addition to what has already been paid
for each specific claim. The sum of these two components is called “reported
claims.”2

In addition to known claims, the insurance company will have to pay claims
which have occurred but are not yet known. In fact, it can take some time be-
tween the time an accident actually happens and the moment the policyholder
reports it.
The amounts that the company expects to pay on these claims is called “esti-
mated pure IBNR” (incurred but not reported).3

The last component that the company needs to consider is the development on
known claims; the company, in fact, could end up paying more (or less) than
what it had previously anticipated.
This component is called IBNER, incurred but not enough reported. The sum
of pure IBNR and IBNER make up the broad definition of IBNR.
The IBNR, i.e. the sum of future outflows which are not yet known, is therefore
a random variable that needs to be estimated.
On the overall level, the sum of money that the company has to set aside to
meet future liabilities is called reserve and, as we have seen, it is made of several
components:4

• Case Outstanding on known claims

• IBNER

• IBNYR

The sum of these three components plus the payments already made is called
ultimate claims amount, and it refers to the total losses that the company ex-
periences.

2Sometimes it possible to find the term “incurred claims.” The two definitions indicate
the same concept.

3Other accepted definitions are INBYR, incurred but not yet reported, or more simplisti-
cally, IBNR.

4We are deliberating ignoring the expense component as we want to focus the discussion
purely on the claim perspective.
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The following mathematical notation will be used to identify the concepts ex-
plained:

• r(w, d): Reported claim amount at time w+d with respect to claims oc-
curred at time w.

• p(w, d): Amount paid at time w+d with respect to claims occurred at
time w.

• os(w, d): Case outstanding at time w+d with respect to claims occurred
at time w.

• R(w, d): Cumulative reported claim amount at time w+d with respect to
claims occurred at time w.

R(w, d̂) =
d=d̂∑
d=0

r(w, d)

• P (w, d): Cumulative paid claim amount at time w+d with respect to
claims occurred at time w.

P (w, d̂) =
d=d̂∑
d=0

p(w, d)

• It is possible to derive the following relation: R(w, d) = P (w, d)+os(w, d)
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2 Traditional Methodologies

The development technique, also known as the Chain Ladder technique, is one
of the most frequently used methodologies for estimating unpaid claims.
The main assumption behind this methodology is that future claims will develop
in a consistent way to previous claims already recorded.
Before explaining how such a technique works, it is fundamental to introduce
the concept of a run-off triangle.5

A development triangle is a table that shows the value of claims (paid, reported
or outstanding) of various cohorts over time.
It looks like the following:

w

d
0 1 2 3 4 5

0 R(0, 0) R(0, 1) R(0, 2) R(0, 3) R(0, 4) R(0, 5)
1 R(1, 0) R(1, 1) R(1, 2) R(1, 3) R(1, 4)
2 R(2, 0) R(2, 1) R(2, 2) R(2, 3)
3 R(3, 0) R(3, 1) R(3, 2)
4 R(4, 0) R(4, 1)
5 R(5, 0)

Table 1: Run-off Triangle

The objective of estimating future claim liabilities is, therefore, estimating
the lower part of the triangle shown in Table 1.
As already stated, the primary assumption of this technique is that future claims
will follow past developing patterns. In order to represent this concept from
a mathematical point of view the idea of development (age-to-age) factor is
introduced.
For every development year d ∈ (1, . . . , n), each development factor is defined
as:6

fd =

∑n−d
w=0R(w, d)∑n−d

w=0R(w, d− 1)

It is therefore possible to define the ultimate cost of claims for each Accident
Year w as:

R(w, d) = R(w, d− 1)
d∏

k=n−w+1

fd

5Also referred as Development triangle.
6Here the development factors are defined based on reported claims, however, they could

also be defined based on paid claims.
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It is possible to demonstrate that these definitions are subject to the follow-
ing assumptions:7

• E[R(w, d+ 1)|R(w, 1), . . . , R(w, d)] = R(w, d)fd

• V ar[R(w, d+1)|R(w, 1), . . . , R(w, d)] = R(w, d)α2
d with a proportionality constant α2

d

• {R(i, 1), . . . , R(i, d)} and {R(j, 1), . . . , R(j, d)} are independent

2.1 Development Technique Example

In this section, we present an example of such methodology.
We consider the following run off triangle for cumulative claim amounts:8

Origin

Development
0 1 2 3 4 5 6 7 8 9

1981 5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834
1982 106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704
1983 3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466
1984 5,655 11,555 15,766 21,266 23,425 26,083 27,067
1985 1,092 9,565 15,836 22,169 25,955 26,180
1986 1,513 6,445 11,702 12,935 15,852
1987 557 4,020 10,946 12,314
1988 1,351 6,947 13,112
1989 3,133 5,395
1990 2,063
fd 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009 1.000

Table 2: RAA Triangle

7We will not prove these equations here. For further details, please see [11].
8Historical Loss Development, Reinsurance Association of America (RAA), 1991, p.96.
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Using the previous equations we can obtain the following results:

AY Reported Ultimate IBNR
1981 18,834 18,834 0
1982 16,704 16,858 154
1983 23,466 24,083 617
1984 27,067 28,703 1,636
1985 26,180 28,927 2,747
1986 15,852 19,501 3,649
1987 12,314 17,749 5,435
1988 13,112 24,019 10,907
1989 5,395 16,045 10,650
1990 2,063 18,402 16,339
Total 160,987 213,122 52,135

Table 3: Development Technique Results

2.1.1 Advantages and Disadvantages

This technique has been proven to be a powerful methodology for actuaries and
it has been widely used and implemented. In fact, several reserving algorithms
are based on this approach.
It has the advantage of being of easy implementation and it does not involve
difficult calculations. Moreover, with the aid of some assumptions, it can be
used to implement stochastic approaches.9

Such procedures allow the estimate of uncertainty around the point estimate,
producing distributions of the IBNR (or reserve).
The main critique of this method is the compression of data and the subsequent
loss of information. In fact, compacting all the data from different years, and
possibly millions of different claims, into a relatively small triangle, a consider-
able amount of information is inevitably lost.
It would be more effective to make extensive use of all the information and data
that is available, in order to produce a more accurate projection of ultimate
claims.
Since all of the data is usually already recorded by the claim department, it
would be clever to actually use it, thus improving actuarial projections.
Another limitation of this methodology is regarding the timeframe in which the
estimates are calculated.
As it is possible to note from Table 3, the IBNR is greater for more recent years
as they are less developed.
This carries a higher level of uncertainty in the projections, and estimates need
to be revised as these accident years develop.

9Two of the most famous and used non-proprietary models are those of Mack [11] and
England and Verrall [6].
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Ultimate projections, when limited data is available, are greatly influenced by
the level of the first data points, and random fluctuations could severely distort
the ultimate claim estimates.
This aspect could carry greater implications as company executives need to take
decisions in a timely fashion. Allowing time before acting could mean losing
competitive advantages within the market.
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3 Machine Learning Techniques

Recent advances in computer power have paved the way for more sophisticated
algorithms that make more extensive use of data in a wide variety of areas.
Such algorithms can improve data and computational capabilities leading to
situations in which traditional actuarial tasks can be tackled with increasingly
sophisticated approaches.
In the remainder of this paper, we will focus on several algorithms and exploit
their capabilities in the area of individual claim reserving.

3.1 General Framework

The target of the exercise is to predict the ultimate cost of the claims when they
are initially reported. At this stage, when d = 0, there is no paid amount and
an initial case reserve is established.
These claims, usually called RBNS, Reported But Not Settled, can follow two
different paths.
In one case they will be paid and therefore, at d =∞, they will be fully settled
and there will be a paid amount R(w,∞) > 0. This is the amount that needs
to be estimated.
On the other hand, claims could be closed with no payment (CNP), and there-
fore, R(w,∞) = 0.
In order to model the previous relations we will build two different frameworks:
a classification and a regression structure.
First the probability of each claim to be closed with no payment will be com-
puted, and then, if this first process will have a negative outcome (i.e. the claim
will be paid), an amount will be calculated.
In addition, a third model will estimate the time that this process will take,
from the moment the claim is reported until it is closed, either with payment
or not.

3.2 Modeling Framework

In this section we present the various modeling techniques that have been used
to fit the data.
Each modeling framework is introduced and explained. Moreover, for further
details, all the necessary references are provided.

3.2.1 Generalized Additive Model (GAM)

A Generalized Additive Model is an additive linear model in which the target
variable depends linearly on some function of the predictor variables.
The basic idea is to replace

∑
xijβj , the linear component of the model, with

an additive component
∑
fj(xij).
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The mathematical specification of the model is as follows:

yi = Exponential(µi, θ)

g(µi) = β0 + f1(xi1) + f2(x21) + · · ·+ fj(xij)

GAMs, like GLMs, assume the random component of the outcome to follow an
exponential distribution.
In addition to standard GLMs, such a framework allows the addends of the
linear model to be any arbitrary functions of the predictors. These functions,
f1(·), f2(·), . . . , fj(·), will be splines,10 producing a smoothing effect on the pre-
dictors.

CNP Classification
As previously described, it is necessary to define a distribution that belongs to
the exponential family for the response variable.
The logistic regression is a universally accepted modeling framework for clas-
sification tasks. From a mathematical perspective, the model will predict the
probability that each claim will result in a payment. Therefore, the model will
return a number between 0 and 1.
This could be interpreted, for each claim, as:

Claim Status =

{
Claim CNP if p ≤ 0.5

Paid Claim if p > 0.5

Payment Amount
The response variable is assumed to be distributed according to a Gamma dis-
tribution.11

The corresponding probability density function is:

f(x;α, β) =
βαxα−1e−βx

Γ(α)
for x > 0 and α, β > 0

It is worth noting that the Gamma distribution is only defined for positive values
of x. In this context, x represents the paid amount, and therefore, we expect
these quantities to be always positive.12

Payment Lag
The Payment Lag represents the number of days between the moment the claim
has been reported and the moment it has been closed either with or without
payment.
This quantity can therefore be greater than or equal to zero (if the claim has
been closed the same day as received), and it will always be an integer.

10Splines are defined piecewise by polinomials. For further details, please see [7].
11Other choices of this distribution could also be possible, e.g. log-normal or inverse gaus-

sian.
12For simplicity purposes, we are excluding the case of salvage and subrogation.
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A Poisson distribution could be used to fit the data.13 The probability of closing
a claim in n days is, therefore, given by the equation:

P (n) = e−λ
λn

n!

3.2.2 Multivariate Adaptive Regression Spline (MARS)

Another GLM variant that allows to handle non-linearity natively is called Mul-
tivariate Adaptive Regression Splines, or MARS.14

Instead of fitting smooth functions, as the GAM discussed in the previous sec-
tion, MARS models incorporate piecewise linear functions, or hinge functions,
into a regular GLM.
Moreover such models allow to model significant interactions between the pre-
dictors, as well as interactions among the piecewise linear functions.
The response variables chosen would be the same as the ones described in the
previous sections, i.e. binomial, gamma and poisson.

3.2.3 K Nearest Neighbor

K Nearest Neighbor (KNN) is perhaps the most straightforward algorithm
among all machine learning techniques. The mechanism is very simple, ex-
amples are classified based on the nearest neighbors.
In KNN classification, the output is a class. An object is classified according to
its neighbors, with the object being assigned to the class most common among
its k nearest neighbors.
In KNN regression, the output is a value. This value is the average of the values
of its k nearest neighbors.
Let us assume that we have a training data set X made up of xi, 1 < i < N
training examples.
The examples are described by a set of features F. Each training example is
classified with a class yi, 1 < i < N . The objective is to classify an unknown
sample k.
For each xi ∈ N it is possible to calculate the distance between k and xi as
follows:

d(k, xi) =
∑
f∈F

wfδ(kf , xif )

where wf is the weight assigned to the feature f and δ is the chosen distance
metric.
The k nearest neighbors are selected based on this distance metric.

3.2.4 Gradient Boosting

Boosting is one of the most powerful learning methodologies in the field of
statistical learning. It was originally introduced in classification tasks, but it

13Another choice could also be the negative binomial distribution.
14For further details, please see [9].
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can be nicely extended to regression problems as well.
The basic idea is to combine a set of weak learners to produce a powerful model.
A weak learner is a model whose error is only slightly better than random
guessing.
The purpose of boosting is to sequentially apply the weak learners to repeatedly
modified versions of the data.
The final prediction is then produced, combining all of the weak learners.
In the remainder of this paper, such algorithms have been applied considering
classification and regression trees (CART).

Regression and Classification Trees (CART)
The basic idea behind trees is that they produce disjoint regions of the space,
Ri, as represented by the terminal nodes of the tree.

x1 < k1

x2 < k2 x3 < k3

x4 < k4

R1 R2 R3

R4 R5

Figure 1: Classification Tree diagram

In classification tasks, the regions Ri would represent the class which the
sample xi belongs to. For our purposes, two classes have been identified, Claim
CNP or Paid Claim.
In regression tasks, the regions Ri would represent the average value for each
region of the target value. For our purposes, two models have been built: one
modeling the claim amount and one modeling the closing lag.

Boosting Trees
The procedure of boosting consists in iteratively fitting trees to the data in order
to produce a powerful learner.
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At each stage, n (1 < n < N), it can be assumed that a weak model (i.e. simple
mean), Tn, has been estimated from the data.
The algorithm then improves the previous estimates by introducing a new model
f that yields better results, Tn+1(x) = Tn(x) + f(x).
The optimal model f, would, therefore, be the one that satisfies the following
equation:

Tn+1(x) = Tn(x) + f(x) = y

which yields:
f(x) = y − Tn(x)

The gradient boosting algorithm, therefore, will fit a new model on the residu-
als from the previous model. This means that each tree, Tn+1, will correct the
output of the previous tree Tn.
In order to mathematically implement the algorithm it is also necessary to define
a loss function that allows the computation of the gradient in order to optimize
the model parameters; this makes the gradient boosting model a gradient de-
scent algorithm15.

3.2.5 Artificial Neural Network

Artificial neural networks represent a very powerful class of machine learning
models, inspired by the brain structure. Each net is made up of several inter-
connected neurons, organized in layers, that compute mathematical functions.
Artificial neural networks have been proven to be very effective in bot classifi-
cation and regression tasks.

15Further information available at [8].
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Figure 2: Neural Network structure

The figure above represents a neural network which takes three input fea-
tures, it has one hidden layer with four units (neurons), and two output units.
Neural networks with several hidden layers are defined as deep networks, as
opposed to shallow networks, which don’t have very many hidden layers.
The main idea behind this structure is that each neuron applies a linear trans-
formation to the output of a previous unit and computes a function, defined
activation function, before passing the result to the next layer.
If we assume that x is a feature of the data set, a single neuron, will compute
the following transformation:

f(Wx+ b)

Where f represents the activation function (e.g. sigmoid or ReLU), W and b are
respectively the weights and the biases of the model that needs to be optimized.
In order to find the best parameter, an optimization algorithm based on stochas-
tic gradient descent could be implemented.16

For our modeling framework, three different neural networks with different tasks
have been fitted.
One network is responsible for the Payment/No Payment classification, one net-
work is responsible for the paid amount estimate, and one for the closing lag.

16Further information at [14].
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4 Case Study

In order to compare the different algorithms we have selected a series of claims
that have been fully closed, either with payment or not, and we will compare
the actual observed values with the predicted values from the models.
The previously described modeling frameworks have been applied to the data:
results and comparisons will be discussed and analyzed in the next session.

4.1 Database Description and Pre-processing

The database is made of about 800,000 physical liability damage closed claims
from standard Personal Auto Policies with Accident Year ranging from 2008 to
2018.
The variables used as target variables are the following:

• CNP Indicator : This variable indicates if the claim has been paid or closed
with no payment.

• Payment Lag : Time between the reporting date and the payment date.

• Paid Amount : Claim amount paid to the insured.

The variables used as predictors are listed below (in alphabetical order):

• Accident Month: Accident month of occurrence.

• Accident Location: Where the accident has occurred.

• Age: Age of the insured driver.

• Attorney : Whether or not the insured has an attorney.

• Authorities Intervention: Whether or not any authorities have intervened.

• BAC : Blood Alcohol Concentration of the insured.

• City : City of occurrence.

• Fraud Indicator : Whether or not the claim has been flagged as fraud.

• Garage Location: Where the car is usually parked overnight.

• Gender : Gender of the Insured.

• Reported Amount : Reported amount at t = 0.

• Reporting Lag : Time difference between the accident date and the report-
ing date.

• Reporting Method : How the accident has been reported, eg. phone, email.

• Reporting Month: Reporting month to the insurer.

• Vehicle Manufacturer : Insured’s vehicle manufacturer.

• Witnesses: Presence of witnesses to the accident.
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4.1.1 Accident Year Considerations and On Leveling of Claims

The Accident Year has been purposely removed from the predictor variables
because the main intent of the modeling exercises is to build models that will
work on any claims, possibly also on future claims, rather than only on ones
which have already happened or on a specific accident year.
In doing this, the actuarial department can build a model that, once put into
production, can estimate the ultimate cost of claims in an automated way as
they are reported.
Since the claim database goes back to 2008, it was necessary to put all of the
claims on level in order to take into account inflation, court awards, or change
in legislation.
This allows to treat each claim as it happened in the same period and under
the same condition or regulatory framework.

4.1.2 Train and Test Split

The database has been split into train and test set, according to an 80% and
20% proportion. All the models have been trained on the train set and evaluated
on the test set.
This gives the opportunity to check and evaluate the performance of the models
on data never seen before, essentially replicating a real word scenario.
More precisely, once the model has been built and evaluated it can been used
on new claims as they are reported to the insurer.
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5 Results Comparison

In this section we will present the results obtained alongside a description of the
performance indicators used.
We start by introducing the main metrics implemented to assess the models.

5.1 Regression Performance

As far as regression is concerned, we evaluate the goodness of fit using the
Normalized Root Mean Square Error (NRMSE ).
This metric can be calculated as follows:

NRMSE =
RMSE

ymax − ymin

where the RMSE is the so-called Root Mean Square Error:

RMSE =

√∑T
t=1(ŷt − yt)2

T

Here we report a summary table of the regression performances for each model-
ing approach implemented for both the target variables: claim cost and closing
lag.

NRMSE GAM MARS KNN GB NN
Claim Cost 0.1383 0.1380 0.2228 0.1337 0.1291
Closing Lag 0.0988 0.1018 0.1014 0.0793 0.0990

Table 4: NRMSE Results

Here are the violin plots and the comparisons of the distributions for both
the claim cost and the payment lag.

(a) Violin Plot (b) Distribution Comparison

Figure 3: Claim Cost Estimates
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(a) Violin Plot (b) Distribution Comparison

Figure 4: Closing Lag Estimates

As it is possible to observe, the Neural Network approach and the Gradient
Boosting approach yield the best results for, respectively, Claim Cost and Clos-
ing Lag.
As far as the estimation of the claim costs is concerned GAM, MARS and GB
lead to very similar results, only slightly worse than the NN performance. In a
situation in which computing power would be limited, going for such estimates
could be perfectly reasonable.
Performances of the models estimating the closing lag are all very close to each
other, apart from the Gradient Boosting approach, which is deemed to be the
best model for the task.

5.2 Classification Performance

The performance of a classification task could be evaluated according to the
area under the Receiver Operating Characteristic curve (ROC curve) and the
Precision-Recall F measure.
A confusion matrix is the starting point to evaluate the performance of a binary
classifier. This matrix has the following notation:
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Table 5: Confusion Matrix

For each cutoff point, all of these metrics can be evaluated and plotted on
a graph. The ROC is created by plotting the true positive rate (TPR) against
the false positive rate (FPR).
The Area Under the Curve (AUC) is equal to the probability that the classifier
will rank a randomly chosen positive instance higher than a randomly chosen
negative one.
AUC ranges in value from 0 to 1. A model whose predictions are all wrong has
an AUC of 0; one whose predictions are always correct has an AUC of 1.
It follows that the greater the area, the better the classifier.
The next graph plots this curve for all the classification algorithms implemented:
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Figure 5: ROC

And the relative AUC Values:

AUC GAM MARS KNN GB NN
Paid/CNP 0.8661 0.8748 0.8457 0.9311 0.9273

Table 6: AUC

Based on the previous metrics it is possible to calculate, for each value of
the cutoff point, the so called F1 score.
If we define the Precision as:

Precision =
True Positive

True Positive + False Positive

The F1 score could be computed as:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

Where the Recall is defined in the same way as the True Positive Rate.
The F1 score could be interpreted as a measure of accuracy. Here are the values
(at the optimal cutoff points) for all the models implemented:
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F1 Score GAM MARS KNN GB NN
Paid/CNP 0.7140 0.7387 0.7060 0.8074 0.7963

Table 7: F1 Score

From the evidence previously presented, we can deduce that the best clas-
sification model is the Gradient Boosting approach. However, Artificial Neural
Networks, also lead to good performances.
It is possible to observe how these two algorithms are notably better than all the
other methodologies implemented, at least as far as classification is concerned.

5.3 Overall Performance

Finally, bringing everything together, we have evaluated the results considering
all of the three modeling steps together.
The model works in a sequence fashion as described below:

1. The first algorithm estimates the probability of whether a claim will be
paid or not, and it classifies accordingly.

2. Claims classified as being paid are fed into the second model which esti-
mates the ultimate cost.

3. The third and last model will estimate, for each claim, the closing lag.

Following the framework previously described, it is possible to treat each claim
individually as they are reported, and then aggregate amounts, in order to pro-
duce outflows.
This process has the advantage of producing, for each term, the expected ag-
gregate claim amounts, allowing the calculation of discounted liabilities, if per-
mitted by the regulatory framework.
Similarly to the previous sections, we present a summary comparison between
observed and estimated outflows.
Here is a summary table with the respective NRMSE values:

NRMSE GAM MARS KNN GB NN
Outflows 0.0478 0.0558 0.0557 0.0194 0.0213

Table 8: Comprehensive NRMSE Results

We continue the analysis presenting a graph that compares the outflows for
each payment quarter:
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Figure 6: Outflows Comparison

Another visual tool that can help compare the model estimates is the plot
that parallels the payment patterns (cumulative and incremental) produced by
each approach:

(a) Cumulative Payment Pattern (b) Incremental Payment Pattern

Figure 7: Payment Pattern Comparison

Observing the previous results, it is possible to appreciate that the model
that produces the estimates that most closely match the actual experience is the
Gradient Boosting. Neural Networks, however, perform in a very satisfactory
way as well, and they can also be a viable option.
The choice of the model, nonetheless, depends also on several other factors such
as availability of data and computing power.
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6 IBNYR Considerations

The estimations performed up to this point have allowed us to compute the
values of the ultimate cost for reported but not settled claims (RBNS).
The objective of this first analysis was, in fact, to predict the level of the IB-
NER. However, this is only one component of the total amount of future claim
liabilities.
Total IBNR is, indeed, the sum of two factors: IBNER and IBNYR.
IBNYR is defined as the sum of claims that have occurred but are not yet
known. It follows from this definition that it cannot be determined from pre-
dictive models applied to known claims, as in the previous exercise.
At this point it is also necessary to understand that the level of IBNYR depends
on the evaluation date. This is because the more an Accident Year is developed,
the lesser IBNYR is expected.
For example, if we are evaluating a given accident year at two different evalu-
ation dates, the level of IBNYR at the later evaluation date will be less than
the IBNYR level at the previous evaluation date; this depends on the fact that
more time has been allowed and therefore more claims have been reported.
If we assume we are performing a reserve estimation at the end of year N, the
IBNYR (with respect to year N only) will be equal to the sum of all the claims
occurred during year N but that will be reported from year N +1 onward.

6.1 Case Study

In order to evaluate the level of IBNYR for our case study we followed a simple
but effective methodology. Let’s consider that the evaluation date is December
31, N.

1. We have considered the observed ultimate value of all the claims occurred
in all the previous years and reported by year end.

2. We have considered the observed ultimate value of all the claims occurred
in all the previous years and reported after year end.

3. Computing the ratios of these quantities, IBNYR/(RBNS + IBNER), we
can have a time series that gives us the proportion of IBNYR at year end,
compared to the ultimate value of claims reported by year end.

4. If we compute such ratios for all the years up to year N-1 and estimate
a value for year N, we could, then, multiply this estimate by the level of
ultimate amounts predicted using the methodology already described to
obtain an estimated value for the IBNYR.

The only drawback encountered in carrying out this algorithm is that we didn’t
have older accident years that were developed enough to have statistically stable
data.
In order to overcome this issue, we have simulated a large amount of claims
using the Neural Network already trained to enlarge the dataset.
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Of course, in a context where more data is available, it would not be necessary
to simulate claim amounts.
Here are the ratios obtained:

Accident
Year Ratios
2008 0.0654
2009 0.0642
2010 0.0698
2011 0.0711
2012 0.0575
2013 0.0562
2014 0.0557
2015 0.0614
2016 0.0519
2017 0.0668

Table 9: Ratio Series

At this point it is sufficient to estimate the value for the following year, and
then estimate the level of the IBNYR.
This can be done with various techniques such as Local Polynomial Regression
or Spline Interpolation.
We present the output of the implementation of such techniques:

Figure 8: Ratios estimation

Having selected a sensible ratio for the following year, it is possible to mul-
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tiply this figure by the amount of ultimate claim amounts estimated following
the procedure described previously.
Once again, since the most recent year is not fully developed, we compared the
estimates with the claim level obtained from the simulation exercise.
These are the results in terms of percentage deviation for each of the three
possible estimation techniques presented:

2018 IBNYR LOESS, span = .75 LOESS, span = 1 Cubic Spline
% Error 2.677% 2.646% 2.475%

Table 10: 2018 IBNYR Estimation Error

As it is possible to observe from the previous table, we obtained fairly accu-
rate estimates.
It is, however, important to keep in mind that such comparisons have been
produced against simulated data and not real observed paid claims.
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7 Conclusions

In this paper we have presented how machine learning methodologies could be
implemented in the context of estimating claim liabilities.
This workflow is based on the construction of subsequent models with different
targets in order to capture the main features of insurance claims.
Moreover the full analysis is divided into two steps: first we have projected
RBNS claims, and then we predicted the level of IBNYR to produce the full
level of ultimate claims for any given year.
The results produced carry a high level of accuracy and they also have the
advantage of an early evaluation, i.e., it is not necessary to wait for claim de-
velopment as it is in standard techniques, e.g. Chain Ladder.
The framework presented also has the benefit of not completely relying on the
accuracy of individual point estimates.
This is because, even if we allow small errors on the individual claim evalua-
tions, we are mainly interested in the reserve amount on the aggregate level.
In this scenario, small discrepancies on individual claims can easily compensate
each other and still produce an accurate and precise aggregate claim reserve.
A prompt claim reserve estimate, also, has the valuable advantage of allowing
early decisions from the management, such as investment strategy, mix of busi-
ness, market expansion, or mergers and acquisitions. There are, however, some
inconveniences to consider before implementing a similar framework.
One of the main difficulties is the availability of data; complex machine learning
methodologies, to be properly trained, require a considerable amount of data.
Another complication that may arise is related to the technological infrastruc-
ture. Computational power is one of the keys to success in the field of Machine
Learning.
Whereas this research is focused on estimating the ultimate amount of claims,
future studies could explore the possibilities of applying machine learning algo-
rithms to predict individual claim development.
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