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Extensions of Morse-Smale Regression with Application to Actuarial Science 

By Colleen M.Farrelly 

Abstract: 

The problem of subgroups is ubiquitous in scientific research (ex. disease heterogeneity, spatial 
distributions in ecology…), and piecewise regression is one way to deal with this phenomenon. 
Morse-Smale regression offers a way to partition the regression function based on level sets of a 
defined function and that function’s basins of attraction. This topologically-based piecewise 
regression algorithm has shown promise in its initial applications, but the current 
implementation in the literature has been limited to elastic net and generalized linear 
regression. It is possible that nonparametric methods, such as random forest or conditional 
inference trees, may provide better prediction and insight through modeling interaction terms 
and other nonlinear relationships between predictors and a given outcome. 

This study explores the use of several machine learning algorithms within a Morse-Smale 
piecewise regression framework, including boosted regression with linear baselearners, 
interaction-term homotopy-based LASSO, conditional inference trees, random forest, and a 
wide neural network framework called extreme learning machines. Simulations on Tweedie 
regression problems with varying Tweedie parameter and dispersion suggest that many 
machine learning approaches to Morse-Smale piecewise regression improve the original 
algorithm’s performance, particularly for outcomes with lower dispersion and linear or a mix of 
linear and nonlinear predictor relationships. On a real actuarial problem, several of these new 
algorithms perform as good as or better than the original Morse-Smale regression algorithm, 
and most provide information on the nature of predictor relationships within each partition to 
provide insight into differences between dataset partitions. 

Key words: piecewise regression, Morse-Smale regression, machine learning, Tweedie 
regression, topological data analysis 

Introduction 

Piecewise regression has offered a good solution for problems involving subpopulations and spatially-
based data (McZgee & Carleton, 1970); applications include engineering (Boys et al., 2016; Ryan, Porth, 
& Troendle, 2002), ecology (Toms & Lesperance, 2003), criminology (Stalans & Seng, 2007), actuarial 
science (Apte et al., 1999; De John & Heller, 2008; DeWeerdt & Dercon, 2006; Farrelly, 2017; Panjer & 
Willmot, 1992), and medicine (Chassin, Pitts, & Prost, 2002; Compston et al., 1980; Farrelly et al., 2013; 
Kehagia, Barker, & Robbins, 2010; McClellan & King, 2010; Tomoda et al., 2016). One recent 
development involving the partitioning of a dataset based on Morse-Smale clustering from the field of 
topology has shown some promise in analyzing and visualizing data (Gerber et al., 2013); however, it is 
largely limited to regression models involving only main effects terms. Multivariate methods that can 
capture interaction terms, such as random forest, have shown promise on many regression and 
classification problems (Fernandez-Delgado et al., 2014), suggesting that these methods may be able to 
improve Morse-Smale regression performance and predictive capability. 
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Several recent machine learning extensions of generalized linear regression exist and have shown 
promise in regression problems, including neural network models, tree-based models, boosted 
ensembles, and bagged ensembles (Fernandez-Delgado et al., 2014). Ensemble methods build robust 
models through combining weak baselearner models, either through a series of bootstrapped models or 
through iterative averaging of models grown on the error of previous models (Breiman, 2001; Friedman, 
2001); random forest and boosted regression both show good performance on a wide variety of 
problems. Despite this success, some single tree models also show fairly good performance, though 
different data samples can produce different trees. Conditional inference trees are fairly robust, as they 
employ statistical testing methods at each split (Hothon, Hornik, & Pascucci, 2006). 

Neural networks, particularly extreme learning machines (ELMs) with proven universal approximation 
properties, have also performed well on a variety of regression problems (Huang, Zhu, & Siew, 2004). 
ELMs randomly map data space to a series of hidden nodes; this allows for the use of least squares 
methods (based on Moore-Penrose inverses) rather than the usual backpropagation to fit the network, 
increasing computational speed dramatically (Huang, Zhu, & Siew, 2004).  

This paper explores the use of Morse-Smale regression with several machine learning methods to 
compute the regression piece, comparing performance of the piecewise regressions with the 
performance of the original algorithm utilizing main effects elastic net models. Simulations include a 
wide variety of Tweedie-distributed outcomes, covering many types of regression problems; significant 
improvements are found with several of the proposed algorithms, particularly for linear or mixed 
models with low to moderate dispersion. These algorithms are then applied to an insurance dataset, 
predicting 1977 claims payouts for a Swedish 3rd party motor insurance company. Most Morse-Smale-
based regression methods perform relatively well, particularly ensemble-based methods and the 
original algorithm. 

 

Methods 

1) Tweedie regression overview 

Tweedie distributions belong to the exponential family, where links are defined to generalize linear 
regression to non-normal outcomes, which are called generalized linear models (Tweedie, 1984); 
Tweedie distributions focus on the variance function and its relationship to the mean. Many common 
exponential family distributions converge to Tweedie distributions and can be formulated through 
Tweedie distributions, including normal distributions, Poisson distributions, gamma distributions, and 
compound Poisson-gamma distributions (Tweedie, 1984). Formally, the mean and variance of a Tweedie 
distribution are given by: 

𝐸𝐸(𝑌𝑌) = µ 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝜑𝜑µ𝜉𝜉  

where 𝜑𝜑 is the dispersion parameter, and 𝜉𝜉is the Tweedie parameter (or shape parameter). 

2) Morse-Smale regression overview 
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Topological approaches to data analysis have had many recent success, including clustering (Nicolau, 
Levine, & Carlsson, 2011), data comparison (Chen, Genovese, & Wasserman, 2017), and data 
visualization/summarization (Wasserman, 2016; Zomorodian, 2012; Zomorodian & Carlsson, 2005). This 
field, called topological data analysis, has been applied to problems in medicine (Nicolau, Levine, & 
Carlsson, 2011; Alagappan et al., 2016), actuarial science (Farrelly, 2017), psychometrics (Farrelly et al., 
2017), medical imaging (Lee et al., 2012), time series mining (Pereira & de Mello, 2015), and network 
analysis (Lee et al., 2012). Morse-Smale regression, a supervised learning algorithm in topological data 
analysis, is a piecewise elastic net model, where pieces are defined though decomposing the model 
space defined by KNN-based local neighborhoods though differential topology (Gerber et al., 2013). 
Morse functions, a special type of continuous function analogous to the height function used in 
topography (Forman, 2002; Mischaikow & Nanda, 2013), are used to identify nondegenerate critical 
points of a data manifold and their basins of attraction (technically intersections of descending and 
ascending manifolds that form the Morse-Smale complex). These basins of attraction—which are based 
on the Hessian matrix—partition the data manifold into discrete pieces that share local minima and 
maxima (Chen et al., 2017); regression models are then fit to these pieces (Gerber et al., 2013).  

An intuitive analogy of how the algorithm explores a low-dimensional space to identify local minima and 
maxima, as well as basins of attraction that partition that space, is a soccer player dribbling a soccer ball 
(Figure 1). When he reaches a local maximum and kicks the ball, it will roll towards a local minimum, 
defining a gradient descent flow in the field. Continuing this strategy, he eventually explores the entire 
field, defining the descending manifolds; dribbling up the hills in a similar manner defines the ascending 
manifolds. Taken together, these pieces for the Morse-Smale complex, partitioning the field into pieces 
of similar gradients and local optima.  

 

Figure 1: Morse-Smale Complex Analogy 

Of models yielding interpretable insight into predictor-outcome relationships, Morse-Smale regression 
performs well compared to state-of-the-art machine learning algorithms (Farrelly, 2017).  

 

3) Proposed algorithms overview 

3.1) Random forest 
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The random forest algorithm is a well-known and widely-used bagging algorithm in which trees are 
grown from bootstrap samples, generally drawing 1/3 of the predictor variables in one bootstrap 
sample, and then aggregated the collection of fully-grown trees into a final model (Breiman, 2001). 
Given a training dataset, D, with an outcome, Y, and a collection of predictors, X, over n observations:    

𝐷𝐷𝑛𝑛 = {(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)}𝑖𝑖=1𝑛𝑛      

the random forests model with M trees yields an estimate of the outcome class or measurement, Tm(X), 
modeling Y based on the collection of weights, Wim, taken across all trees and observations from 
bootstrap samples of predictor variables, X:  

𝐹𝐹(𝑋𝑋) =
1
𝑀𝑀
� 𝑇𝑇𝑚𝑚(𝑋𝑋)
𝑀𝑀

𝑚𝑚=1

=
1
𝑀𝑀
� �𝑊𝑊𝑖𝑖𝑚𝑚

𝑛𝑛

𝑖𝑖=1

(𝑋𝑋)𝑌𝑌𝑖𝑖

𝑀𝑀

𝑚𝑚=1

 

with each individual tree in the forest contributing its model, specified by  

𝑇𝑇𝑚𝑚(𝑋𝑋) = �𝑊𝑊𝑖𝑖𝑚𝑚

𝑛𝑛

𝑖𝑖=1

(𝑋𝑋)𝑌𝑌𝑖𝑖 

Variables across all trees in this model are then ranked by importance, which can be obtained through 
permutation testing of the jth predictor entered into the model. The jth predictor is randomly permuted 
within the dataset, and the change in prediction error is calculated from the left-out portion of data 
within bootstrap iterations (Breiman, 2001). 

Intuitively, this is like compiling a full book report on a long novel, such as East of Eden, by randomly 
assigning students in a literature course chapters of the book to read and summarize. With enough 
chapters assigned per student and enough students in the course, the set of summaries will capture 
most chapters and provide a good overview of the book (though likely a bit disjointed in this case). 

 

3.2) Boosted regression 

Gradient boosting methods model an outcome with an iteratively updated link function, Fm(x), 
composed of a weighted sum of base learner functions, hi(x), and their weights, γ i, 
  

𝐹𝐹(𝑥𝑥) = �γ𝑖𝑖ℎ𝑖𝑖(𝑥𝑥) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐
𝑀𝑀

𝑖𝑖=1

 

 
updated in a greedy fashion with respect to minimizing the expected value of a certain loss function 
such that model components with large errors in a given iteration are given preferential weighting in the 
subsequent iteration to correct the model error (Friedman, 2001). An analogy for this type of algorithm 
is deducing the main parts of a puzzle from key pieces that are iteratively added to form a clearer and 
clearer image of the full scene. 
 
Because this problem of adaptively adding model base learners is computationally difficult, steepest 
descent methods based on gradient calculation are used to update the boosted model (Friedman, 2001), 
similar to a climber deciding upon the quickest route of down the mountain and represented as:  
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𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝐹𝐹𝑚𝑚−1(𝑥𝑥) − γ𝑚𝑚�∇(L�γ𝑖𝑖 ,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖)�)
𝑛𝑛

𝑖𝑖=1

 

  
where the weight given to baselearners at a particular iteration is given as: 
  

γ𝑚𝑚 = arg𝑚𝑚𝑚𝑚𝑐𝑐
γ

�|𝒚𝒚 − 𝑿𝑿𝑿𝑿|�� L�γ𝑖𝑖 ,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖) − γ
𝜕𝜕𝜕𝜕(γ𝑖𝑖 ,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖))
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in which L(yi, Fm-1(xi)) is a pre-specified loss function, such as ℓ1 loss or Huber loss. Optimizing weights in 
the model through a line search gives: 
 

γ𝑚𝑚 = arg𝑚𝑚𝑚𝑚𝑐𝑐
γ

� L(γ𝑖𝑖 ,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖) + γℎ𝑚𝑚(𝑥𝑥𝑖𝑖))
𝑚𝑚

𝑖𝑖=1

 

 
where the update is based upon minimization of the loss function through gradient descent. The result 
of this process creates a stable, strong final model after m iterations (which is either user-specified by a 
minimum change in loss function or a set maximum number of iterations): 
 
   𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝐹𝐹𝑚𝑚−1(𝑥𝑥) + 𝛾𝛾𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)   
 
As such, boosting offers a stable and flexible solution to the logistic regression problem and can handle 
situations in which predictors outnumber observations or predictors do not have strictly linear relation 
to outcome (Friedman, 2001).  
 

3.3) Homotopy LASSO and Penalized Regression Models 

Penalized methods, such as elastic net and LASSO, extend generalized linear regression to samples in 
which predictors may outnumber observations by imposing penalties to the least squares estimator: 
 

min
𝛽𝛽
�|𝒚𝒚 − 𝑿𝑿𝑿𝑿|�  s.t. ||𝑿𝑿||1 = ∑ |𝛽𝛽𝑗𝑗| ≤ 𝑐𝑐𝑝𝑝

𝑗𝑗=1  

 
where p is the number of predictors and t is the regularization parameter, such that predictors with an 
estimated coefficient less than t are set to 0 (Osborne, Presnell, & Turlach, 2000). Geometrically, this can 
be thought of as a cowboy standing at the origin casting his lasso of a given length to capture and bag 
for removal any predictors that fall within the radius of his cast. 
 
The elastic net method used in the original Morse-Smale regression algorithm extends this form of ℓ1 
norm penalty to ℓ1and ℓ2 penalties (Gerber et al., 2013), such that the equation becomes: 
 

min
𝛽𝛽
�|𝒚𝒚 − 𝑿𝑿𝑿𝑿|�  s.t. 𝑱𝑱 ≤ 𝑐𝑐 

 
where 
 

𝑱𝑱(𝑿𝑿) = 𝛼𝛼||𝑿𝑿||2 + (1 − 𝛼𝛼) ||𝑿𝑿||1 
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Thus, elastic net can create a sparse model (from the ℓ1 penalty) that also has a unique minimum (from 
the ℓ2 penalty creating a convex penalty search area). Essentially, elastic net combines a LASSO 
shrinkage with a ridge regression model for robust performance with shrinkage of terms; this allows the 
algorithm to handle situations where predictors outnumber observations, as well as situations where 
predictors are correlated with each other or exhibit deviations from linearity. This is analogous to 
cleaning up the area around the cowboy such that obstacles (posts, trees…) are removed from his field 
of vision for easier roping of variables that get too close to his position at the origin. 
 
An extant LASSO extension, homotopy LASSO (Osborne, Presnell, & Turlach, 2000), includes a 
topologically-based search of model coefficients. This method leverages properties of the Lagrange 
multiplier associated with the ℓ1 penalty, which yields an ordinary differential equation (ODE) solution 
that is piecewise linear at all points where the constraint is differentiable. ODEs with piecewise linearity 
have a known solution involving the deformation of paths from a known equation’s solution to a target 
equation solution that is unknown or difficult to solve. This is known as the homotopy method (Osborne, 
Presnell, & Turlach).  
 
Homotopy is an intrinsic property related to the equivalence of paths between points, in which paths 
are equivalent if they can be continuously deformed to one another (Figure 2). In Figure 2, all paths on 
the sphere can be continuously deformed to each other; on the torus (the donut-shaped space), some 
paths are hindered by the hole and cannot be continuously deformed to each other. Thus, homotopy 
search for regression parameters can search for easy predictor paths and then deform them according 
to the data, avoiding geometric pitfalls that may exist in the parameter/data spaces that can trap other 
algorithms. By analogy, this method is like a blindfolded person trying to reach a target from which he is 
connected by a rope through a field of obstacles; without a rope to guide him around the obstacles, he 
may be temporarily or permanently unable to get around them to the final target. 

 
Figure 2: Homotopy Path Example 

 

3.4) Conditional Inference Tree 

Trees are nonparametric models built by recursively splitting a dataset’s space according to a rule that 
will minimize heterogeneity with each subdivision until a stopping criterion is met (Breiman, 2001). At 
each split, a set of predictor variables is assessed according to these criteria, and the variable producing 
the best split is chosen to maximize model fit (Breiman, 2001). Typically, this evaluation rule involves 
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measuring the model prediction error or mean square error for each potential splitting variable. 
Regardless of split criteria measure chosen, this process stops either when a set of conditions is met 
(such as minimum node size or a threshold of splitting criterion change) or when a certain iteration 
number is reached (Breiman, 2001). Geometrically, this amounts to a recursive partitioning of 
hyperspace into regions with progressively more homogenous data points.  

Conditional inference trees are based on statistically testing whether these partitions of hyperspace 
involve covariates that are independently distributed with respect to the outcome or if the covariates 
are conditionally distributed with respect to the outcome (Hothorn, Hornik, & Zeileis, 2006). This 
induces recursive partitioning of space into conditionally-dependent regions. Geometrically, this is 
equivalent to finding overlapping regions of space, which create nonempty sets intersections (Figure 3). 

 

Figure 3: Conditional and Independent Subspaces 

 

3.5) ELM 

Neural networks rely on a series of topological mappings to process the data and seek to minimize error 
between those mappings given an outcome (Huang, Zhu, & Siew, 2004). Extreme learning machines 
(ELMs) employ a single, wide layer of hidden nodes with random mapping of features to hidden nodes. 
This random mapping allows for the use of least squares methods to optimize weights between the 
hidden layer and output (as opposed to costly algorithms like gradient descent techniques). Technically, 
ELMs seek a solution to: 

‖𝑯𝑯𝑿𝑿ℎ𝑎𝑎𝑎𝑎 − 𝑻𝑻‖ = min
𝛽𝛽
�|𝑯𝑯𝑿𝑿 − 𝑻𝑻|� 

which yields a solutions of: 

𝑿𝑿ℎ𝑎𝑎𝑎𝑎 = 𝑯𝑯†𝑻𝑻 

where 𝑯𝑯† is the Moore-Penrose inverse, 𝑯𝑯 is the hidden node parameters, and 𝑻𝑻 is the training 
outcome (Huang, Zhu, & Siew, 2004). This method has shown promise on regression problems 



 8  
The CAS is not responsible for statements or opinions expressed in this working paper. This paper has not been peer reviewed by any CAS Committee. 

(Fernandez-Delgado et al., 2014), and given its universal approximation property, extreme learning 
machines can model a wide variety of regression models.  

 

3.6) Morse-Smale Extension Set-Up 

The general approach to extending Morse-Smale regression to multivariate regression models involved 
3 steps: partitioning the data via Morse-Smale complexes, fitting the multivariate models to each 
partition using the training dataset, and evaluating the performance on the test dataset (Figure 4). This 
set-up decreases computational cost, as the partitions are created upfront, but limits the applicability of 
this particular implementation for online or batch algorithms. 

 

Figure 4: Morse-Smale Regression Algorithm Construction and Testing Steps 

All code was written in R using the msr package for Morse-Smale complex computations and regression, 
ranger for random forest, mboost for boosted regression, partykit for conditional inference trees, lasso2 
for homotopy LASSO, and elmNN for ELMs. Custom code used to create each hybrid algorithms is 
available upon request. 

4) Simulation Set-Up 

Simulations were used to test algorithm performance across a wide variety of problems with known 
truths. All simulations involved 4 true predictors and 11 noise variables and a Tweedie-distributed 
outcome. Sample size was set to 10000, as potentially small complex sizes complicates convergence of 
machine learning algorithms; at 10000, most complexes involved >150 individuals. Trials involved 
varying the nature of predictor to outcome relationship (all linear, all nonlinear, or a mix of linear and 
nonlinear), Tweedie parameter (1 for Poisson, 1.5 for compound Poisson-gamma, and 2 for gamma), 
and dispersion (1 for normal dispersion, 2 for moderate overdispersion, 4 for more overdispersion). Data 
was split 70/30 to create a training set and a test set upon which to evaluate algorithm performance. 
Each trial was run 10 times, and mean square error (MSE) was averaged across the 10 trials. 

Algorithms tested included the original Morse-Smale regression algorithm with elastic net model (MSR), 
conditional inference tree (TR) and its Morse-Smale model (MSTR), random forest (RF) and its Morse-
Smale model (MSRF), extreme learning machine (ELM) and its Morse-Smale model (MSELM), main-
effect+interaction-term boosted regression (BR) and its Morse-Smale model (MSBR), and homotopy 
LASSO (LH) and its Morse-Smale model (MSLH). 

5) Swedish Motor Insurance Trial 

The Swedish 3rd party motor insurance dataset is an actuarial dataset 
from http://www.statsci.org/data/glm.html, which consists of predicting the value of 1977 payouts from 

http://www.statsci.org/data/glm.html
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insurance policies. Its 6 predictors include kilometers traveled a year, geographical zone, bonus, car 
model make, number of years insured, and total number of claims; this dataset contains 2182 
observations. Again, data was split into train and test sets with a 70/30 split. Models were compared 
with mean model and original Morse-Smale regression through MSE. 

Results 

1) Simulation 

In general, results suggest that using multivariate models with Morse-Smale piecewise regression 
framework outperform the original algorithm (Figures 5, 6, and 7). This is particularly true for trials 
involving linear or mixed predictor relationships and trials with lower dispersion. Some Morse-Smale 
algorithms outperformed their non-piecewise counterparts; other times, the non-piecewise models 
outperformed the Morse-Smale-based ones. However, piecewise models allow for comparison of 
predictor relationships within population subgroups and visualization of groups by predictors and 
outcome, which may be useful in data modeling projects. 

 

Figure 5: Dispersion=1 Trials 

 

Figure 6: Dispersion=2 Trials 

 

Figure 7: Dispersion=4 Trials 

For instance, on a gamma regression trial with no overdispersion, partitions yielded groups with 569, 
9278, and 153 individuals; random forest regressions yielded different variable importance scores and 
rankings. These differences are captured in both the importance graphs (Figure 8 upper) and the low-
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dimensional representation of the data in the associated Morse-Smale plot, where differences between 
variables in the data space represented on a series of axes (Figure 8 lower). The Morse-Smale plot 
highlights the very different multivariate composition of these groups with respect to the outcome of 
interest; the random forest plot summarizes this in a more typical chart of differences that might be 
more useful in the communication of results. This is a key advantage of piecewise models, particularly 
those based on Morse-Smale complexes, which come with visualization software components to explore 
group differences.  

 

Figure 8: Deep Dive of Dispersion=1, Tweedie=2 Simulation with Morse-Smale Random Forest Regression 

2) Swedish Motor Insurance Trial 

Most models performed well on the Swedish Motor Insurance dataset, with Morse-Smale-based 
random forest achieving the best overall performance (Figure 9). This suggests that many machine 
learning methods can perform well on this dataset, particularly the ensemble methods and Morse-
Smale-based methods. Dramatic improvements in the homotopy LASSO algorithm using the piecewise 
approach suggest that this approach may fix singularities or troublesome geometric characteristics that 
can trip up least squares algorithms.  
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Figure 9: Swedish Motor Insurance Results (MSE) 

Again, group differences emerge (Figure 10), and the dataset is split into a large group (N=2039) and 2 
smaller groups (N=52, N=91). Morse-Smale plots show some differences among the groups with respect 
to kilometers, zone, bonus, and make; the random forest partition importance graph shows one group 
with relatively small importance on insured, with another group showing no effect for the kilometers or 
zone predictors. This gives a good overview of group differences and how multivariate importance can 
differ across subpopulations; piecewise regression, particularly those based on Morse-Smale complexes, 
allows for visual exploration of these differences while providing good predictive capabilities. 

 

Figure 10: Swedish Motor Insurance Results by Partition 
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Discussion 

Morse-Smale regression as originally formulated can be applied to a wide variety of regression tasks 
(any involving continuous outcomes); extensions of this method to nonparametric regression algorithms 
within Morse-Smale partitions provide better prediction and multivariate insight into group differences. 
This is particularly true on problems with extant linear relationships within the dataset and low-to-
moderate dispersion. 

One advantage of these new algorithms is the ability to visualize results and draw inference on 
subpopulations. Morse-Smale partitions allow for the visualization of predictor relationships across 
groups, and saved regression models from each partition can provide visual diagrams and rankings of 
predictor importance for each partition. This can add important information about the nature of the 
predictor relationships and classification of subpopulations based on these relationships that may be 
useful in stratifying risk models or creating heuristic policy rules. While other methods perform better 
on Tweedie regression problems—such as KNN regression ensembles—they lack the inherent 
interpretability of relationships between predictors and the outcome of interest (Farrelly, 2017). 

A limitation of this study is the reliance on Morse-Smale complexes in the partitioning of the piecewise 
models. Other methods of partitioning may result in better data splits, reducing overall error. In 
addition, the coding used to create these models does not allow for adaptive addition of samples, such 
that new data can be assigned into an extant partition. This precludes the use of this particular 
implementation in online applications or batch sets; however, it is possible to extend the R code 
developed to create this type based on the original Morse-Smale regression package. 

Another limitation is the fixed sample size; while this examines behavior of the algorithms after 
convergence, it does not shed light on algorithm performance on small datasets. Future studies may 
want to examine under what conditions convergence is reached to guide application to smaller datasets. 
This is particularly important with small partitions, as sample sizes may be too small to obtain good 
prediction from certain methods like ELMs and other neural networks. 

In all, this paper demonstrates the efficacy of multivariate models within piecewise regression 
frameworks, with particular emphasis on insurance data and actuarial applications. 
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