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CHAPTER SIX 

INVESTMENT-EQUIVALENT REINSURANCE PRICING 

By Rodney Kreps, FCAS, MAAA, PhD 

SUMMARY 

Reinsurance pricing is usually described as market-driven. In order to have a more 
theoretical (and practica¡) basis for pricing, some description of the economic origin of 
reinsurance risk load needs to be given. A special-case algorithm is presented here which 
allows any investment criteria of retum and risk to be applied to a combination of the 
reinsurance contract and financia1 techniques. The inputs are the investment criteria, the 
loss distributions, and a criterion describing a reinsurer’s underwriting conservatism. The 
outputs are the risk load and the time-zero assets allocated to the contract when it is 
priced as a stand-alone deal. Since most reinsurers already have a book of business and 
hence contracts mutually support each other, the risk load here can be regarded as a 
reasonable maximum. The algorithm predicts the existence of minimum premiums for 
rare event contracts, and generally suggests reduction in risk load for pooling across 
contracts an&or years. Three major applications are (1) pricing individual contracts, (2) 
packaging a reinsurance contract with financia1 techniques to create an investment 
vehicle, and (3) providing a tool for whole book management using risk and retum to 
relate investment capital, underwriting, and pricing. 

1. INTRODUCTION 

There has been an evolution over the last few years toward looking at an insurance or 
reinsurance enterprise as a whole, rather than seeing underwriting, investments, dividend 
policy, and so forth as a set of disjoint pieces. Whereas in modem financia1 theory 
various approaches to the interaction of risk and reward are reasonably well developed, 
for reinsurance in particular the very measurement of risk has been (and arguably still is) 
more of an art than a science. It is generally agreed that surplus creates capacity and 
writing business uses up surplus-but there is no agreement on how that happens. 

This paper proposes a possible model for the special case where the contract is priced on 
a stand-alone basis, i.e., it is the reinsurer’s only business. The risk loads (and hence 
pricing) derived here are maximal because reinsurers generally have an ongoing book of 
business. This book is mutually supporting, in that usually not al1 of it goes bad at the 
same time. Pricing on a stand-alone basis is equivalent to assuming that the whole book 
is fully correlated. In some sense, stand-alone pricing will in general result in larger risk 
loads than are actually needed. 

Although the give and take of the market will in the end determine what prices are 
actually charged for contracts, both insurer and reinsurer can use an economic pricing 
model to help decide whether to write the contract, since for the insurer the decision not 
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to reinsure extemally is the decision to self-reinsure. The intent of this paper is to present 
a paradigm that will allow the combination of a reinsurance arrangement and suitable 
financia1 techniques to be thought of as an investment altemative. This allows a tirm’s 
investment criteria to be applied. 

What will actualiy be done is to assume investment criteria in the form of a target 
mean return and risk measure thereon, and to obtain from the paradigm the 
necessary risk load and putatively allocated assets for the reinsurance arrangement. 

The paradigm is as follows: when the reinsurer accepts a contract, it arranges to 
have available at every time of loss sufftcient liquifiable assets to cover possible 
losses up to some safety level. These assets arise from premium and assets allocated 
from surplus, both of which are invested in appropriate financia1 instruments. The 
reinsurer wishes to have at least as favorable return and risk over the period of the 
contract as it would when doing its target investment with the underlying allocated 
assets. 

Note that this is not-at least to the author’s knowledge-how reinsurers currently do 
their pricing, nor is it advocated (except in special circumstances) as an operating 
procedure for reinsurers. It is meant as a way of deriving risk loads by relating them to 
investment criteria. At the same time, it is grounded in notions which make intuitive 
sense. Certainly in the real world reinsurers had better plan to have assets available to 
pay losses; otherwise they are planning for bankruptcy. This paradigm essentially 
looks at risk load as an opportunity cost and represents it as a (partially offset) cost 
of liquidity. This is not to say that this is the only way of looking at risk loads-but it is 
a simple and intuitive one. 

The Ioss safety leve1 is essentially a measure of reinsurer company conservatism. Again, 
it is intuitive that some measure of company conservatism must be present in a risk load 
paradigm. The more conservative the company, the higher the safety leve1 and the less 
probable it is that the safety leve1 will be exceeded. Higher safety levels will typically 
result in more expensive contracts. 

A mundane example of a safety leve1 occurs when a person decides to build a house in 
snow country. The question is, how strong to build the roof for snow load? If it is a 
cabin for only a few years, perhaps building to survive the 10 year storm will be enough. 
If it is meant for the grandchildren, perhaps the 200 year storm is more appropriate. It is, 
of course, more expensive to build it stronger. In any case some leve1 & chosen 
depending on the builder’s criteria. 

The safety leve1 used in the examples here will be the amount of loss associated with a 
previously chosen probability, such as the 99.9% level, Le., the loss associated with a one 
thousand year retum time. In some circumstances (see Section 11.3) the ful1 amount of 
the contract may be the appropriate safety level. There are, of course, other possibilities 
than a probability level. One such would be to choose a safety leve1 of loss high enough 
such that the average value of the excess loss over that leve1 is an acceptably small 
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fraction of the mean loss. Another is that the average excess over the safety leve1 times 
the probability of hitting the safety leve1 is below some value. Whereas it would be 
interesting to examine various choices in the context of different management styles, for 
the present purposes the essential remark is that any quantifiable measure can be used. 

Clearly, a risk load paradigm must involve the cost of capital-and more specifically 
measures of investment return and risk for comparison to the capital markets. A 
reductio ad absurdum shows the argument: if capital were free and freely available, 
insurance, much less reinsurance, would be unnecessary since a firm in temporary trouble 
would simply borrow to overcome difficulties. The measure of investment risk used here 
will be the standard deviation (or variance). Equally possible would be to use one of the 
more sophisticated strictly downside measures, such as a semi-variance or the average 
value of the (negative) excess of retum below some trigger point such as the risk-free 
rate. Especially in the cases here where very large losses may generate negative results, 
such a downside risk measure may be desirable. These measures do not give pretty 
fonnulae, but are easily used numerically. Again, any quantifiable measure is feasible. 

There are hvo types of financia1 techniques that will be considered. Please note that 
other techniques are possible; these are just two of the simplest. The first is where the 
reinsurer takes the capital that it would have put into the target investment (which could 
be, for example, corporate bonds), and puts it into a risk-free instrument such as 
govemment securities. This will be referred to as a swap. Even though such 
terminology is not technically correct, it carries the right flavor. The cost associated with 
this is basically the loss of investment income, but there is also a gain in that risk is 
reduced. 

This technique will result in simple formulae’, but in various examples it often tums out 
to create a higher risk load, and hence to be more expensive (to the cedent ) and therefore 
less competitive than the second type of technique: buying “put” options. These 
options are the right to se11 the underlying target investment at a predetermined strike 
price at maturity (we only consider European options). Here the strike price will be what 
investment in risk-free securities would have brought, so that the reinsurer is buying the 
right to se11 the target investment at a retum not less than the risk-free rate. 

The Black-Scholes2 formula is used to price the option. The distribution of investment 
retums underlying this formula is assumed for the reinsurer’s target investment. The cost 
of these options will contribute to the risk load, but this is partly offset because the 
options both increase the retum and decrease the variance of the target investment. 

This treatment will not include the effects of reinsurer expenses, nor of taxes. However 
these could be put in, especially in the simulation models described in the latter part of 

‘For the variance measure of investment risk. As remarked earlier, other measures will in general 
not give simple formulae. 

*See the discussion of Black-Scholes in, e.g., the CAS Part 5 reading, “Principles of Corporate 
Finance - 4th Edition” by Brealey and Myers (McGraw-Hill, 199 1) page 502 ff.. 
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the paper. For the taxes, one would have to make some assumptions as to whether the 
contract would affect any possible Altemative Minimum Tax situation. Probably this 
could best be treated by looking at the reinsurer’s whole underwriting book and 
investment structure with and without the contract of interest. This is a can of worms 
which the author prefers not to open in this paper. 

In Section II, the paper will first discuss the case of a single loss payment at the end of 
one year. In Section 11.1, the swap is treated and in Section 11.2, the option. These 
simple discussions will illustrate the general principies, so that they will hopefully not be 
obfuscated by the details of the subsequent development. For readability of the paper, 
technical details are relegated to appendices. In Section II.3 the limiting case of a high 
excess layer is presented, where it is shown that a minimum premium results. This is in 
accord with actual market behavior. In Section III the single payment case is extended to 
arbitrary known time of loss. Section III.1 is a numerical example, and Section III.2 is 
some general remarks on pooling and other subjects. The principal remark here is that 
whereas this paradigm may be used in the pricing, it is probably not either necessary or 
desirable that the reinsurer actually can-y out the actions modeled by the paradigm for an 
individual contract. 

The multiple payment case is illustrated in Section IV with a spreadsheet example. In 
this case, there are no longer simple formulae available, and simulation modeling must be 
explicitly used. Section IV.1 discusses the extension of the loss safety constraint. 
Section IV.2 describes the spreadsheet at average values-the analog of taking the mean 
of the stochastic equation, as was done in Section II. Section IV.3 gives an example and 
discussion of a ful1 stochastic tun. Section IV.4 has various comments on the 
spreadsheet. Section V contains some general remarks, principal among which is that the 
risk loads considered here are extreme: actual book pricing should be less. 

II. SINGLE PAYMENT AT ONE YEAR 

The principal determinants of interest here are 

s = the dollar safety leve1 associated with the loss distribution. 
L = the amount of the loss. 
pLL = the mean value of the loss. 
o, = the standard deviation of the loss. 

5 = the risk-free rate. 

y = the yield rate of the target investment. 
crJ = the standard deviation of the investment yield rate. 

P = the premium net to the reinsurer after expenses. 

Quantities derived from the above are 

A = the assets allocated by the reinsurer. 
F = the funds initially invested: premium and assets less option cost, if applicable. 
R = the risk load in the premium: the premium less the discounted expected loss. 
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The premium in al1 cases is the risk load plus the expected loss discounted at the risk-free 
rate. Note that this premium does not include any reinsurer expenses. For a single 
payment at one year, 

The constraints of the paradigm may now be stated as (1) the investment result from F as 
input must be at least s, and (2) the standard deviation of the overa11 result must be no 
larger than o., . 

Although the fundamental cash flow relations are stochastic, it is possible in this section 
to obtain explicit formulae for the mean and variances involved, and hence get explicit 
forms for the risk load. In Section IV, the mean is easily obtained, but the variance of the 
final result of the fundamental cash flow will have to be determined by simulation. 

11.1 SWAP CASE 

At time zero the reinsurer has an inflow of P and an outflow of 

(2) F=(P+A). 

Since the investment is in risk-free securities, at the end of the year the reinsurer has an 
inflow of (1 + Y/ )F and an outflow of the loss L. The interna1 rate of retum (ZRR) on 

these cash flows is defmed by the fundamental stochastic relation 

(3) (I+IRR)A =(l+rj)f-4 

where both L and IRR are stochastic variables. Taking the mean value of this equation 
and asking that the mean value of the IRR be the yield rate y gives 

(4) (l-t]+4 = (l+r/)F-/.$ 

which may be expressed as3 

RE (’ --f) 
(l+Q 

A. 

3For readability, derivations of more than one line are done in Appendix 3. 



82 ACTUARIAL CONSIDERATIONSREGARDINGR.ISKANDRETURN 

Another equation is needed to solve the system, and there are two other constraints that 
must be satisfied, a loss safety constraint and an investment variance constraint. In 
general, it is clear that by making the asset base large enough the fractional variability of 
results can be made as small as desired and the funds available as large as desired. Hence 
there is always a solution. Both constraints may be phrased as placing lower limits on the 
allocated assets, so satisfying the more restrictive will satisfy both. 

For the safety constraint, requiring the funds available at the year end to be greater than 
or equal to the safety leve1 gives 

(6) (l+~,.)FLs. 

Combining Eqs. (4) and (6) to eliminate F 

(7) 
AZ (S-Pd 

l+Y 

and consequently from Eqs. (5) and (7) the risk load at the equality is 

(8) RE (’ 7-yf)(s-PJ 
(l+y,N+Y) 

and from Eq. (1) the premium before expenses is 

(9) p=R+A 
l+?-, ’ 

This is the result for the safety constraint. 

For the variance constraint. since there is no variability in the investment retum (because 
it is risk-free) the standard deviation of the IRR is given from Eq. (3) as 

Ao,R, = Cr, . 

The investment constraint is that the IRR should have variance less than or equal to that 
of the target investment, which gives 

(11) 

and using Eq. (5) again 
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Given typical values for the loss distribution and the target investment. the latter is likely 
to be the more stringent constraint. This will be true when 

(13) 

For a one in a thousand safety leve1 and a normal distribution, the number on the left is 
around 3. For more positively skewed distributions, it will be larger; but in the work of 
the author it is seldom as large as 5 for typical reinsurance layers. However. in the 
example used later of an unlimited cover on a lognormal with coefficient of variation 2. 
the ratio on the leí? is over 10. The unlimited cover is a mathematical conveniente for 
illustration rather a realistic contract, at least since pollution losses became noticeable. 
Plausible values for the ratio on the right are easily up around 12 for bonds and higher 
than 5 for equities. 

II.2 OPTION CASE 

At time zero the reinsurer will receive the premium, but keep the initial assets invested in 
the target investment. It will also buy an option to se11 the target investment at the end of 
the year for the value that the risk-free technique would have achieved. By doing so it 
has obtained an instrument that eliminates that portion of the investment retum 
distribution which lies below the risk-free rate. This will have the effect both of 
increasing the mean retum from the investment and decreasing its standard deviation. 

Let 

i’ = the rate (cost per dollar of investment protected) of a put option. 
I = investment retum 
i = mean investment retum (determined in Appendix 2). 

The value of Y depends upon the underlying investment parameter CT, which is determined 
by y and o, and defined in Appendix 1. For small values of the ratio of cr, to (1 +y), it is 
approximately true that 

(14) 
0 

fJ=A 
(l+v) 

and 

(15) 
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However, the examples below use the exact formula from Appendix 1. At time zero the 
reinsurer has an inflow of P and an outflow of (P + A) . However, the funds available for 
investment have decreased by the cost of the option. Specifícally, Eq. (2) becomes 

(16) F= P+A-rF 

so 

(17) 
F=(P+A) 

(l+r) . 

Since the investment is now in risky securities (hedged at the bottom end to not drop 
below the risk-free rate), at the end of the year the reinsurer has an inflow of (l+ I)F 
and an outflow of the loss, L. The interna1 rate of retum on these cash flows is defined by 
a fundamental stochastic relation similar to Eq. (3): 

WI (l+IRR)A= (l+I)F-L. 

Again, requiring that the mean value of IRR be the target yield rate gives 

(19) (l+ v)A= (I+i)F-p,. 

This does not simplify easily, but fundamentally we have two unknowns-R and A-and 
this is one equation relating them. The other equation will come from whichever is the 
more restrictive constraint, as before. 

The loss safety constraint on the funds available is again 

(6) (l+q)Frs. 

It should be noted that the actual funds available are likely to be larger than this, since Y, 

represents the minimum value of the realizable investment retum, thanks to the option. 
Combining Eqs. (6) and (19) to eliminate F. the allocated assets are 

(20) 

This is larger than in the swap case since i > y > rf . 
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The expression for the risk load at equality is 

R= (l+r ~(i+V)[~{(l+Y)(l+r)-(l+i)}-~L(?~-r;)]. 
I - 

8S 

For i = r/ and Y = 0 the results of the previous section are, of course. obtained in the 

above two formulae. 

In order to express the investment variance constraint it is necessary to decide the 
correlation between the loss and the investment retum. The linkage by inflation suggests 
that there may be a negative correlation-if inflation rises, typically claims costs rise and 
bond values fall. In the interest of simplicity the assumption will be made that the 
correlation is zero, although there is no essential complication induced by taking a non- 
zero value. The standard deviation of the investment retum is derived in Appendix 2 and 
written as cr,. When the variance of the IRR is required to be that of the target investment. 
there results 

(22) (A-J’ = (Fa,)’ + (q)’ . 

The value of the initial fund F from the equation for the mean may be substituted into 
this, resulting5 in a quadratic equation for A of the form 

(23) -aA’+2bA+c= 0 

with 

(24) a = aJ’(l+i)2 -a,‘(l+~!)’ 

(25) b = L(1 +,v)q’ 

(26) c = L-0,’ + oj(l + i)’ 

Al1 three coefficients are positive, the last two because of their explicit construction and 
the first because the option both decreases the variance and increases the mean of the 
investment retum compared to the target values. 

The positive solution is 

‘See Appendix 3. 

‘See Appendix 3. The forms corresponding to a non-zero correlation are also given there. 
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(27) 

and6 

P-9 
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b+&-i 
A= 

a 

R = A(l+w+Y)-(l+i) +L l+r 1 
[ 1 
--- 

l+i l+i l+cf ’ 

In the lirnit as oj + 0 the solution for A goes back to the ratio of standard deviations; 
with i = rf and Y = 0 the risk load retums to the earlier form found in the swap case, as it 

should. 

II.3 HIGH EXCESS LAYER AND MINIMUM PREMIUM 

An interesting application of these formulae is in the case of a high excess layer or any 
similar finite rare event cover. A non-zero rate on line (ratio of premium to limit) is 
predicted even for cases where the loss probability goes to zero. 

For simplicity, take the loss distribution to be binomial: There is a probability, p, of 
hitting the layer, and if it does get hit it is a total loss. The safety level, S, is taken to be 
the limit (total amount payable) of the layer. Note that the 99.9% leve1 is not an 
appropriate way to get the safety leve1 (especially for p <O.OOl), but there is still in fact 
an intuitive value. 

The mean loss pL is ps and the variance of the loss is p(l- p)s’. As the probability p 
gets smaller, corresponding to higher and higher layers. in both the swap and option cases 
the variance constraint gives A and R both going to zero as &. However, the safety 

constraint in both cases is linear in p with a non-zero intercept. In the option case, the 
rate on line7 (ROL) in the limit asp goes to zero is 

(29) 
ROL = (1 + YN + 4 - (1 + i) 

(l+q)(l+y) * 

This is obtained by setting L = 0 in Eq. (2 1) and recognizing ROL as the ratio of R to S. 

As usual, the swap version may be obtained by letting r = 0 and i = ri , which results in 

’ See Appendix 3. 

’ That is, the ratio of premium to limit. 
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(30) 
1 ROL+--= Y-f 

f l+.Y U+r,)(l+y)' 

The latter form suggests that the minimum ROL is of the order of the real target retum- 
i.e. the excess of the retum over the risk-fiee rate. However, obten the option from Eq. 
(29) will produce a smaller number. For the investment values such as are used below it 
is typically on the order of half as large. As the investment standard deviation gets small 
the swap ROL stays the same (of course) and the option ROL gets small because the 
option cost gets small and the mean investment return approaches the target yield. It is 
important to remember that this is all in the limit where the p = 0, so that the variance 
constraint is always satisfíed. For small but currently reinsured probabilities-say in the 
range from 1% to 0.1 O/ó--as the target standard deviation of investment is made small the 
variance constraint will eventually become dominant. 

In the market, a minimum rate on line is generally justified by underwriters as a charge 
for using surplus. This approach is consistent with that view, and also allows quantifica- 
tion of the charge. 

III S~~TGLE PAYMENT AT ARBITRARY TIME 

If al1 the retums in the preceding are interpreted as total retum up to time t, then the 
formulae hold without modification. When we wish to express the retums in terrns of the 
equivalent annualized retums, the results hold after the following replacements are made: 

(31) (l+ i) * (l+ i)’ 

(32) 

(33) 

(1-b v> + (1 + y)’ 

(l+Q-+ (l+r/)’ 

The forms for the option rate and the standard deviations given in Appendix 2 contain the 
time dependence. 

III. 1 NUMERICAL EXAMPLE 

For any one-payment situation, the recommended procedure is as follows: 

1. Calculate the four risk loads and allocated assets - safety and variance constraints for 
the option and swap cases. 

2. Find for each financia1 technique which constraint has the larger allocated assets- 
this is the dominant one. 
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3. Compare the dominant risk loads for different techniques and choose the smaller- 
this is the preferred’ solution. 

This whole calculation is easily put on a spreadsheet. For the specific example, the 
following annualized values have been taken: yield rate JJ = 5.3%; standard deviation of 
the yield rate o, = 8.4%; risk-free rate Y,= 3.6%. The loss distribution is taken 

lognorrnal with mean of $lM (million) and a standard deviation of S2M. The safety leve1 
of loss is taken as the 99.9% level, $22,548,702. Parenthetically, for a one-year interval 
this makes the left-hand side of Eq. (13) 10.8, while the right-hand side is 12.5. 
suggesting that variance will be the dominant constraint for the swap. For a two-year 
interval, the right-hand side changes to 8.9 and safety is dominant in the swap. The large 
value of the left-hand side is due to the fact that this is an unlimited contract. 

As an example of the recommended procedure, the following results can be derived from 
the forrnulae in the preceding sections for a time of two years, and are incorporated in 
Table 1 below: 

SWAP OPTIOh’ 

constraint variance safety variance safety 
assets $15,963,1 ll $19,434,097 $23,024,033 $20,737.42 1 

risk load S528.1 X4 S613.03 1 S3 16.332 SZX32IS 

For the swap, the safety is dominant; for the option the variance is dominant. Of the two. 
the option risk load is smaller, and hence preferred. 

TABLE 1 

VALUES FOR THE OPTION TECHNIQUE 

Time 
Option rate 
Risk load 
Risk-loaded premium 
Total premium 
Allocated assets 
Initial investment 
Deterrnining constraint 
Safety value 
Annualized stdtarget std 

1 2 3 4 
3.18% 4.49% 5.50% 6.35% 

S 235,225 $ 316,332 $ 399,548 $ 502,444 
$ 1,200,476 S 1.248,042 $ 1,298,882 $ 1,3 70,526 
$ 1,379,857 s 1,434,53 1 $ 1,492,967 $ 1575,317 

$ 32,522,839 $23,024,033 $ 20,095,065 $ 19,446,192 
$ 32,685,050 $23,228,830 $20,278,80 1 $ 19,574,132 

variance variance safety safety 
3,087 years 1,309 years 1,000 years 1,000 years 

100% 100% 97% 93% 

* Preferred from the point of view of the cedent, and preferred from the point of view of offering 
competitive advantage to the reinsurer - less charge for the same retum and risk. On the other 
hand, the reinsurer may prefer to charge more if the market will bear it. Of course, a higher 
market rate can always be recast as a more profitable target investment return. 
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For example, in the second column of the table, time is taken as two years. Following the 

formula? and notation of the appendices, the investment 2~ = 9.69% and CJ& = 11.26% 
at two years. The target investrnent mean and standard deviation are 10.88% and 12.53% 
as calculated fiom the lognormal formulae. The option rate is 4.49%. The mean and 
standard deviation of the option-protected investment are 14.21% and 8.95%. 
respectively, higher and lower than the target, as previously advertised. The investment 
minimum value is 7.33%, the risk-free cumulative retum. 

The calculated risk loads and asset values are given above for both the option and the 
swap, and the option variance is chosen. 

Please note again that any form of loss distribution could have been used, including 
underwriter’s intuition or simulation result. Al1 that is needed for this choice of risk load 
is the mean, standard deviation, and safety level. Reinsurer expenses, needed to calculate 
total premium from risk loaded premium, are taken as 13% of the total. 

The table also lists the safety leve1 implied by the chosen asset allocation, and the ratio of 
the standard deviations of the annualized yield to the target standard deviation. 
Whichever is not the determining constraint is, or course, more than satisfied. It is 
noteworthy that as the contract period becomes longer, the safety constraint becomes the 
more restrictive. In numerical explorations this seems generally to be true. 

III.2 POOLING AND OTHER REMARKS 

It is an intuitive expectation that the total risk load may be reduced by pooling. Pooling 
over contracts will be considered here; over years afier the multiple payments section. 
The one-year contract from Table 1 has a risk load of $235,225. If there are two 
contracts combined into a single contract then the fíxed percentage safety leve1 used here 
on the combined contract is certainly less than the sum of the individual safety levels, 
unless the contracts are fully correlated’. Specifically, taking the approximation that the 
sum of two uncorrelated lognorrnals may for these purposes be represented by a 
lognormal, the safety leve1 for the combined contract is $29,455,245, which is only 
65.3% of the sum. 

The risk load for the combined contract over one year is $331,156, which is 70.4% of the 
sum of the individual risk loads. This risk load results from the option variance 
constraint. However, one may question whether some other investment risk measure 
might have given a different result. The author knows of no general theorem, but 
experimentation has given consistent pooling. 

More intuitively, both the safety levels and investment risk measures will be primarily 
sensitive to the tail of the loss distribution. When two contracts are imperfectly 
correlated, the bulk of the tail results from one or the other of the contracts going bad, 

’ Or effectively taken as such, as in the high excess example. 
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and not both. The effect generally is to shorten the tail relative to the mean, making 
measures which depend on extreme values take on less dangerous significance. 

In what sense is the combination of reinsurance contract and swap/option is priced as an 
equivalent investment? A glance at the values in Table 1 shows that it is possible that if 
the loss is very bad, say at the 0.001% level, then the final result at the end of the time 
period will be negative. That is, the reinsurer will lose al1 the premium and allocated 
assets, and still have to put in more money to fulfill the contract. At the very least, this 
result cannot be from a lognormal distribution. 

Nevertheless, it is convenient to express the mean and standard deviation of the result in 
terms of those of a geometric Brownian motion investment that gives the same final 
values. This allows a direct comparison with the original investment possibility. 

To the extent that whatever investment risk measure is used is valid for general 
distributions, a comparison can always be made. 

Should a reinsurer actually follow through on the indicated financia1 technique for 
each contract? Almost surely not, unless it is very conservative or this is the only 
contract. The latter could be the case for a specialty reinsurer set up for a single contract; 
for example, for a large catastrophe contract. In general, a method relating investment 
criteria to reinsurance contracts could be useful when specitically engineered deals are 
made to connect reinsureds and investors looking for new opportunities. Considering the 
hunger of capital for uncorrelated risks, this kind of bundling would seem natural. 

This procedure takes as input the financia1 targets and safety criterion and produces as 
output the risk load and the allocated assets. It is also possible to take the financia1 
targets and allocated assets as input (more the financia1 point of view). The two 
constraints then become requirements on the loss distribution. The corresponding risk 
loads will emerge. Knowing the desired loss characteristics and the necessary risk loads, 
market knowledge can be used to do selective underwriting and keep the overa11 
distribution within acceptable risk levels at the target rate of retum. This point of view is 
really more applicable to the book as a whole, and requires a treatment of multiple 
payments. 

IV MULTIPLE~AYMENTS 

When there are multiple loss payments possible, the same basic paradigm is used but 
needs a more complex formulation. In the single payment case, simultaneously enforcing 
the rate of retum (through the mean value of the stochastic equation) and the safety 
constraint gave an easy solution. This will also be done here. In contrast to the single 
payment case, the variance constraint cannot be conveniently calculated. However, for 
any given leve1 of allocated assets the variance constraint can be evaluated. If it is not 
satisfied, the leve1 of allocated assets can be increased until it is, since general 
considerations have shown that this is always possible. 
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The general procedure will be: (1) Express the fundamental stochastic process on a 
spreadsheet. It is now more than a simple equation because of the interaction of the fund 
levels at different times, but it is still easily expressed. (2) Define the safety levels. (3) 
Use those to define what funds are needed and what options need to be bought. The swap 
case will not be shown in the example, but is an easier problem and follows the same 
procedure. (4) Find the risk load corresponding to the target retum for the indicated 
safety constraint by putting al1 the stochastic variables at their mean values. (5) Simulate 
to see if the variance constraint is satisfied. (6) If it is not, then add “excess capital” and 
simulate again. (7) Repeat step (6) until both constraints are satisfied. 

The procedure will be illustrated by a two-year example. The same investment 
parameters are used as before and the loss has mean $2M spread over two years, in a 50- 
50 ratio. 

IV. 1 Loss SAFETY CONSTRAINT 

A procedure for the safety constraint will be illustrated by referente to Table 2 below. 

TABLE 2 

DEVELOPMENT OF SAFETY CONSTRMNT 

Time 1 
Loss mean $ 1 .ooo,ooo 
Discounted loss mean $965,25 1 
Loss std $2,000,000 
Loss mu 13.0108 
Loss sigma 1.2686 
Individual safety leve1 $22,548,702 
Cumulative mean $ 1 ,ooo,ooo 
Cumulative std s 2,000,000 
Cumulative sigma 1.2686 
Cumulative safety $ 22,548,702 
Discounted safety $21,765,156 
Initial investments $21,765,156 
Cumulative option rate 3.20% 
Option cost on initial investment $ 691,386 

2 
$ 1 ,ooo,ooo 

$93 1,709 
$2,000,000 

13.0108 
1.2686 

$ 22,548,702 
$ 2,036,OOO 
$ 2,879,789 

1.0482 
$29,99 1.527 
$27,943,389 

$6,178,233 
4.49% 

$ 277,474 

The first is the mean of each loss, taken to happen at year-end. The next line is the mean 
value discounted back to time zero at the risk-free rate. The next line is the standard 
deviation of each loss. For ease of replicability, the partial payment distributions here are 
taken as lognormal with the coefficient of variation = 2, as before. The “mu” and 
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“sigma” parameters for the lognormals are in the next two lines. The corresponding 
thousand-year levels are shown subsequently. 

The years are also taken as uncorrelated with each other.” There is, however, a slight 
twist in this calculation: The dedicated reader will have noticed that the mean of the 
cumulative distribution for year two is not just the sum of the individual years one and 
two. The time value of money for the loss in year one must be accounted for with an 
appropriate rate to be comparable to a loss in year two, and to be able to add them. Since 
the reinsurer can think of this as borrowing from itself, the rate taken is the risk-free rate. 
In the swap case, this is obvious, since the securities held are risk-fiee. In the option case 
this still seems appropriate, since the lower limit which will be realized is the risk-free 
rate. Similarly, the standard deviation is also inflated to give the cumulative value. 

In this example, for the purpose of estimating safety levels the cumulative loss 
distributions, which are the sum of lognormal distributions, are assumed themselves 
lognormal and the parameters calculated. Simulation runs show that the resulting safety 
levels are close enough to use. 

The cumulative safety levels, however arrived at, are discounted back to zero at the risk- 
free rate. Thinking in terms of the swap, one could just take the largest” of these 
numbers as the initial fund required. This will fulfill the guarantee to have the safety 
leve1 liquid at al1 times. It will also mean that much of the time there will be (expensive) 
excess liquidity available. 

For the option case it will be useful to think of different parts of the initial investment as 
relaring to different time periods. Consider the year two cumulative safety level. Part of 
it will come from the year one level, increased by investment income at the risk-free rate. 
The next row, “initial investments”, shows the amounts to be invested at time zero in 
order to have their cumulative value be the safety levels at different times. In the 
example here the second entry is just the difference between the discounted safety levels. 

Options are considered to be purchased separately at time zero on each part of the total at, 
of course, different costs. The next row “cumulative option rate” shows the rates” for 
options out to the various times, and the last row is the dollar costs of these options. 

Io This is only a conveniente. The mean and standard deviations of these cumulative loss 
distributions are easily calculated with correlation. 

” In the current example, the largest discounted cumulative safety leve1 is the last. However. in 
the next table and example is given where it is the first. 

‘* These are the same rates as in Table 1. 



IN~E~TMENT-EQ~IVALENT REIN~URANCE Ptucr~ci 93 

lt is useful to look also at another example, which is only changed by having the losses 
come in at 95% and 5% in the first and second year respectively. This is shown in Table 
2A below: 

TABLE 2~ 

DEVELOPMENT OF SAFETY CONSTRMNT 

Time 1 
Loss mean $ 1,900,000 
Discounted loss mean $ 1,833,977 
Loss std $3,800,000 
Loss mu 13.6526 
Loss sigma 1.2686 
Individual safety leve1 $42,842,533 
Cumulative mean $ 1,900,000 
Cumulative std $3,800,000 
Cumulative sigma 1.2686 
Cumulative safety $42,842,533 
Discounted safety $41,353,796 
Initial investments $41,353,796 
Cumulative option rate 3.20% 
Option cost on initial investments $ 1,3 13,633 

IV.2 STOCHASTIC SPREADSHEET AT AVERAGE VALUES 

2 
s 100,000 

s 93,171 
$200.000 

10.7082 
1.2686 

$2.254,870 
$2,068,400 
$3,941,877 

1.2381 
$44,098,350 
$4 1,086,848 

$0 
4.49% 

$0 

With the preceding as preparation, Table 3 can be constructed, which describes the 
spreadsheet with all stochastic variables at average values. The two-period hedged 
investment retum is 14.21%. The risk load is obtained by asking13 that it be an amount 
such that when al1 the stochastic processes are at their average values the desired target 
results. 

l3 This can be done by u-ial and error, but is more easily done by “Goal Seek” or its equivalent in 
the spreadsheet. 
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TABLE 3 

STOCHASTIC PROCESSES AT THEIR AVERAGE VALUES 

time 
assets 
excess investment 
risk load 
premium 
option cost 
invested 
Fund 01 
Fund 02 
loss 1 
funds available 
desired Fund 12 
actual Fund 12 
option rate 1 to 2 
Fund 12 option cost 
funds released 
loss 2 
result 

0 
$27,172,116 

$0 
$329,782 

$2,226,742 
$984,364 

$28,414,494 
$22,236,261 

%6,178,233 

1 2 
$28,612,238 $30,128,686 

$23,978,898 
#NIA $7,056,055 

$1 ,ooo,ooo 
$22,978,898 
$15,364,507 
$15,364,507 $16,568,610 

3.177% 
$488,065 

$7,126,326 $7,504,021 
$1 ,ooo,ooo 

$30,128,686 

The assets allocated are given at the top. The method to get them is described below. 
The target investment value given the assets at time 0 is $30,128,686. The lirst row 
shows what would have happened on average if the assets had simply been invested. 

The “excess investment” is the amount above that required for the safety constraint. At 
the moment. it is zero. 

The “premium” is the sum of the discounted mean losses plus the risk load. The option 
cost is the cost of options on the investment. It is the sum of the costs shown in Table 2, 
plus a piece to be described later in this section. “Invested” is assets plus premium less 
the option cost. It is also the sum of “FundOl” and “Fund02”. The Fundo1 is the 
investment at time 0 to be used at time 1; similarly for Fund02. 

In order to discuss FundOl, it is necessary to describe the process envisioned and the 
options which will be bought at different times. At time zero, the safety levels are 
evaluated and their option costs determined as in Table 2. There are two different 
options: one assures the initial investment needed for the cumulative safety leve1 at time 1 
will reach it at time 1. The other assures that the difference of the discounted cumulative 
safety levels will reach its desired value at time 2. There is nothing yet to assure that the 
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funds invested to reach the cumulative safety leve1 at time one will actually grow at the 
risk-free rate from time 1 to time 2. 

Let “desired Fund12” be the amount at time 1 which when hedged will grow from time 1 
to time 2 so that the sum of it and the mature Fundo2 will be the cumulative safety leve1 
at time 2 evaluated at time 1, as seen from time zero. Specifically for the example. at 
time I loss 1 has already come in so only loss 2 is relevant. The safety leve1 desired is 
the individual safety leve1 of $22,548,702. The $6178,233 invested will mature to 
$6,63 1,072, so the difference is $15,917,629. Discounted back one period. the desired 
Fundl2 is $15,364,507. The projected option cost of desired Fund12 is S488.065, 
which is paid at time 1. The option cost discounted to time zero is $471,105. 

Thus, Fundo1 contains both the initial investment for the safety leve1 at time 1 of 
$21,765,156 and the Fund12 option cost of $471,105. The cost of the one year option 
bought to cover Fundo1 is then $691,386 from Table 2 plus the option cosí on $47 1 ,105. 
The latter is the extra piece of the option cost referred to earlier. 

At this point, Fundo2 only contains the entry from Table 2 for the difference in the 
discounted cumulative safety levels. This is everything at time zero. 

At time 1, Fundo1 has grown to $23,978,898 and loss 1 has come in at $l,OOO,OOO. After 
paying the loss, the “funds available” of $22,978,898 exceed the desired Fundl2 of 
$15,364,507 so the “actual Fund12” can be equal to the desired. The “Fund12 option 
cost”, paid at this time, to take it to time 2 is the aforementioned $488.065. The funds 
available less actual Fund12 less its option cost is $7,126,326, which is the “funds 
released” to the unhedged target investment. 

At time 2, the mature Fundo2 is available. It will on average’” have grown faster than the 
risk-free rate, as will the actual Fundl2, so that their sum here will exceed the safety leve1 
of $22,548,702. Summing to the bottom (subtracting loss 2) the final result of the 
contracts is seen. As mentioned earlier, at the average values used here the risk load is 
chosen so that this final result is the same as if the assets had simply been invested, 
shown in the top line. 

l4 It is to be noted that the two year average hedged investment will be at a larger rate than the 
compounded one year average, because of the possibility of very low retums one year being 
offset by high retums the next. 
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IV.3 STOCHASTICSPREADSHEETANDVARIANCE 

When the stochastic variables are not at their average values, the general flow is the 
same. Table 4 below shows a fairly atypical sample simulation, in that only 5.8% of the 
time will the available funds be less than the desired Fund12. 

TABLEO 

time 
assets 
excess investment 
risk load 
premium 
option cost 
invested 
Fund 0 1 
Fund 02 
loss 1 
funds available 
desired Fund 12 
actual Fund 12 
option rate 1 to 2 
Fund 12 option cost 
funds released 
loss 2 
result 

0 
$27,172,116 

$0 
$329,782 

%2,226,742 
$984,364 

$28,414,494 
%22,236,261 

%6,178,233 

1 2 
$32,968.038 $35,108.232 

$26,979,345 
#N/A $7,982.699 

$15149,162 
SI 1,830,183 
$15,364,507 
$11,465,959 $12,2 10,298 

3.177% 
S364.225 

$0 so 
SI,1 18,584 

$19,074,4 13 

The values in the table that do not change over different simulations are shown in bold, 
such as the assets at time 0. In this particular simulation, the investments did ver-y well. 
The first row shows what would have happened if the assets had simply been invested. 
However, the good investment retums were not able to offset the large loss at time 1 
completely, so that the final result is well under the target value of $30,128,686. 

The actual Fund12 needs more discussion. The simplest way to do the actual Fundl2 
would be to make it equal to the desired Fund12. In this case, that would mean re- 
allocating investments from elsewhere. However, the whole spirit here has been to 
allocate the investments up front, and not put more in until they were exhausted. The 
usetülness of a safety leve1 is that is makes explicit, at least indirectly, the minimum 
funds to be allocated. Unless the safety leve1 is lOO%, there is always the possibility 
(which will occur in some simulations) that more will be required, but the intent is to r-un 
with what was allocated as long as possible. 
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Hence, the rule followed in this spreadsheet is that the actual Fundl2 is the desired 
Fundl2 if there are enough tinds available at time 1, or whatever positive fund can be 
generated from the fimds available (which is the case here). In most simulations, there 
will be more than enough funds available to generate the desired Fundl2, and funds will 
be released back to the reinsurer to be invested in the target investment. In some 
simulations, there will be positive funds available, and they are used to create Fundl2 and 
pay for the option; but no fi.mds are released. 

In a few simulations (about 0.6% in the example) with rather large losses, there will be 
negative funds available. In this situation Fund12 will be zero and the funds released will 
be negative. The interpretation is that the reinsurer will have to supply fi.mds frqm the 
target investment. It is assumed that the Fundo2 will not be available until time 2; but in 
any case it is eaming on average more than the target anyway and it would not be 
profitable to cash it in. 

With the spreadsheet defined, it is now possible to r-un simulations and evaluate the risk 
measure-here the standard deviation. With the example parameters the variance of the 
final result is 13.28%. This corresponds for a lognormal investment to a standard 
deviation of 8.9 1%“. 

If the standard deviation is smaller than the target value, then the safety constraint is the 
more restrictive. If not, then adding excess investment over the ful1 time horizon will 
reduce the variance while still satisfying the safety constraint. Here, the target is 8.4%, 
so some “excess investrnent” must be added to reduce the variance. A first 
approximation can be obtained by noting that the standard deviation must be reduced 
about 6% which suggests increasing the investments by 6%. Accordingly, the excess 
investment was set to $1,800,000. The risk load that corresponds is a slight increase to 
$342.5 13. In the fund development, this excess investment lives in Fund02. and is option 
protected. The revised spreadsheet gives an investment-equivalent standard deviation of 
8.3 1%. Since this is below the target, it is acceptablei6. 

IV.4 COMMENTS ON THE SPREADSHEET 

There are other possible ways of setting up the spreadsheet. A general rule that should 
be satisfied is if the payment stream is essentially zero except at one time, the results 
for the risk load and the allocated assets should reduce to the single-payment case. 

A corollary is that funds must be able to be released: consider the case of a ten year 
contract with 99.9% of the payments in the first year. If the cumulative safety leve1 as 

” On 200,000 simulations. The values for 10.000 and 40,000 simulations were 8.16% and 
9.00%. The size of this variation indicated the need for many more simulations. 

” In order to go further, as the difference from the target gets smaller a much larger number of 
simulations needs to be done. The simulation uncertainty must be smaller than the difference 
between the result and the target. Preferably much smaller. 
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seen at time 0 were maintained for the ful1 ten years, then when the first year loss is not at 
an extreme value the safety leve1 maintained would be far too high-and therefore too 
expensive to maintain. The safety leve1 must be revisited after each loss, and funds 
released when appropriate. On the other hand, if the first year loss is near an extreme 
value to take the subsequent safety levels at the values they would have had for a small 
first-year loss is to allow for a much more stringent safety condition than was originally 
intended. 

It is for these reasons that the procedure was defined as above and the actual Fundl2 is 
not always the desired Fund12 as defíned. A more sophisticated version for the case 
where the safety leve1 is done on straight probability levels for loss would be to use 
conditional probabilities and take into account how much probability of the 99.9% leve1 
the first loss had used up, followed by the second, and so on. However, the current 
version is relatively simple and probably accurate enough, especially given the parameter 
uncertainty inherent in the various aspects of the problem. 

There is a difficulty with the current approach to the actual Fund12. It is that when we 
take average value of the stochastic inputs to the spreadsheet, it does not give average 
values to the spreadsheet and the resulting risk load is slightly low. The reason is that the 
average value of actual Fund 12 is slightly below the desired Fund 12, and not at it which 
is the result seen in Table 3. This diffículty can be overcome either by going to the 
simple version of the actual Fund12 treatment or by using the simulation results on the 
rate to readjust the risk load. 

The above procedure for the two-period case may be extended to multiple periods, each 
with its own loss distribution. The desired funds are the results of the original safety 
criterion as seen at each period in time. Thus, for a four year problem there will be 
successively FundsOl,O2,03,04; desired Funds 12,13,14; actual Funds 12,13,14; desired 
Funds23,24; actual Funds23,24; desired Fund34; and actual Fund34. The discounted 
option costs for the desired FundNM is in FundON and any excess investment is in 
Fund04. 

V GENERALREMARKS 

Generalizations: For conveniente the losses are taken to happen at the end of each year, 
although there is no essential diffículty in generalizing to arbitrary times. Also, since 
simulations are being run any measures of risk and retum which can be defíned on 
individual results can be used. 

A few words about IRR and future value: In the single payment case the IRR was used 
because it is unequivocally defmed, and provides a natural way of talking about retums. 
It was not actually necessary to look at the IRR and only the end result need have been 
considered. In the multiple payment case the IRR may not even be defmable as a real 
number. This is particularly obvious when the final value is negative because of large 
losses, but can also happen otherwise. In order to consider the end value (future value of 
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the cash flows) it is necessary to set up some description of the investment policy on the 
released funds. The target investment is the obvious choice. 

An inessential simplifícation used here is to ignore the fact that the spot rates for risk- 
free investment depend upon the length of time considered, usually rising with time. For 
example, incrementa1 losses could be discounted back to time zero using the different 
spot rates. Here only one single risk-free rate is assumed to apply, for al1 times of the 
contract. However, if a reinsurer so desires, then the calculations can be straight- 
forwardly reformulated to include the current spot rates and the view of what the future 
values of the spot rates are likely to be over the contract period. 

It is intuitive that there should be a reduction tìom pooling over years, even allowing for 
the increased cost of liquidity of the later contract. The example in Tables 3 and 4 is two 
uncorrelated contracts, and the risk load of $342,513 is less than the twice the single 
contract value of $235,225 and comparable to the $33 1,156 for a two simultaneous 
contracts. Again, the author knows of no general theorem, but experimentation seems to 
indicate that pooling over time is usually present for uncorrelated contracts. 

In real-world scenarios, however, the individual years of multi-year contracts may well 
have some correlation simply because they are from the same firm or exposures. In the 
simulation environment, there is no difficulty evaluating the overa11 contract if one has 
some idea of the correlation. 

The pricing here is extreme pricing in that each contract is priced as a stand-alone entity, 
whereas in reality each contract is supported by the whole surplus of the reinsurer. A 
more accurate treatment of the actual risk load needed to satisfy investment criteria 
would be to consider the whole book with and without the proposed contract. Perhaps a 
satisfactory compromise would be to scale the extreme risk load contemplated here by 
the ratio of the overa11 portfolio risk charge to the sum of the extreme risk loads. 

Many thanks are due to Gary Venter, the reviewer, and Mike Steel for valuable input and 
discussions. 
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APPENDICES 

Appendix 1 

The fotm of the Black-Scholes formula for the price of a European cal1 option on a 
security is” 

cal1 price = @(A.,>P, - @(A,)F’V(E) 

where PV( E) = present value of the exercise price discounted at the risk-free rate, 

Po = price of the security at time zero, 

A1 = + 
2 

A2 = A, -oJ7 

where o is a parameter of the distribution of the underlying security and is O(X) the 
cumulative distribution function for the normal distribution, that is 

-1 / 

qx>= pgdz. 
--z 

This function is available in at least one standard spreadsheet program. 

The option is the right to buy the underlying security at the exercise price at the time t. 
The logarithm of the value of the security is assumed to follow a normal distribution with 
parameters pt and 04 for the mean and standard deviation, respectively”. Given the 
expected annual yield rate y and its standard deviation o,,, then 

i( ) 
2 O\ cr*=In 1+ - 

l+Y 

“Brealey and Myers, op. cit., page 502 

18This is known as a geometric Wiener process or geometric Brownian motion process. See the 
development of Black-Scholes in “Stochastic Methods is Economics and Finance” by Malliaris 
and Brock (North-Holland, 1982) on pages 220-223, and the discussion of the Brownian 
motion on pages 36-38, especially equation (7.13) and the development leading to it. 
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and 

p = ln(l+y)-$ 

The price for a put option, which is actually what is of interest here, is given by put-cal1 
parity as 

put price = cal1 price +PV( E) - P, 

In the case of interest here PY(E) = Po since we want the exercise price to be the growth 
at the risk-free rate. Hence the put price is equal to the cal1 price, and for either option 
the 

option cost = e$f$)-P@(-$1 

so the 

option rate = cf> [+ppg 

The exponential may be expanded to first order in a Taylor series to get the 
approximation quoted, which is actually rather good for the order of magnitude of 
numbers used here. 

AppendUc 2 

As stated in appendix 1, the probability density function for the investment value (which 
is l+retum) is lognormal with parameters pt and a&. That is, 
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The investment hedged with the option to time t has the characteristics (fis the risk-free 
rate) 

investment = x for x 2(1+f)’ 

=(1+-f)’ for x <(l+J)” 

What is needed are the moments of the investment; in particular its mean and standard 
deviation. 

Define 

(‘+f)’ 

where 

In general, 

moment( n) = Jinvestment “f (x)dx 
0 

(I+f)’ 
= (1+ f’)” 1 f(x>dx + jx”f(x)dx 

0 (‘+/ 1’ 

Using the results for F’, above, the moment of order n of the investment is 

moment(n) = (1 + , )“’ Fo + exp( npt + n’o*t/2) - F, 

=(wl”’ (4) ( 0 + exp npt + n2a2t/2)[ 1 - @(i - no&)] 

The mean value is just moment( 1) and the variance of the investment is (moment(2) - 
moment( 1)’ ) . 
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APPENDIX 3 

Derivation of Eo. (5): Substitute for pL and F in Eq. (4): 

103 

Eq. (1) may be solved for pL as 

(A.1) PL = Cl+ q)V - R) 

Substitute F fiom Eq. (2) and L from Eq. (A.l) into Eq. (4): 

U+y)A =(l+r,)(P+A)-(l+Q(P-R) 
(4) = (l+r,)A+(l+r,)R 

Solving for R gives Eq. (5). 

Derivation of Eq. (2 1): 

Eq. (17) can be written 

(l+r)F=P+A=A+&+R 
f 

from Eq. (1). Rearranging to solve for R, and subsequently using Eq. (6) for F and Eq. 
(20) for A, 

Derivation of Eqs. (23)-(26): 

Eq. (19) can be written 
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F= (l+YM+P, 

1+-i 

Substituting for F in Eq. (22) gives 

Multiplying through by the denominator and collecting terms, 

0 = FP[(l +y)‘g -al(l+i)2]+2A~L(1+Y)~,2+~1~~ +o:(l+i)2 

This is Eqs. (23)-(26). If there is a correlation P,~ between investment and loss. then this 
equation becomes 

0 = A2[(1+ y)zcr,z -c$l+i)~]+2A(1+y)o,[~LO;+cr;L(l+i)] 

+ p;a; + &l + i)’ + 2jJLc7iOL(1 + i)p,, 

Derivation of Ea. (28): 

By substituting for F from Eq. (17) into Eq. (19) 

P+A -- U+M=U+i) l+r pL 

Multiplying through by the denominator and using Eq. (1) for P, 

A(l+y)(l+r)=(l+z) R+ ‘( $+A)-li,(l+d 

Rearranging terms, 

(l+v) = A[(l+y(l +r)-(l+i)]+p, (1 [ +r,-$1 

Eq. (28) for R results immediately. 



Errata for “Investment-Equivalent Reinsurance Pricing” 
Actuarial Considerations Regarding Risk and  

Return In Property-Casualty Insurance Pricing, Chapter 6 

—— April 2007 —— 
 
 
Many of the errata result from an early version where the mean value of the loss was 
denoted L, and then subsequently changed to μL when L became the random variable. 
 
 
Page 85: Equation (25) reads  

( ) 21 iiLb σ+=  
It should read 

( ) 21 iL ib σμ +=  
 
 
Page 85: Equation (26) reads  

( )2222 1 iLc Li ++= σσ  
It should read 

( )2222 1 ic LiL ++= σσμ  
 
 
Page 85: the line after Equation (29) reads 

“This is obtained by setting L = 0 in Eq. (2 1) and recognizing ROL as the ratio of R to 
S.” 

It should read 
“This is obtained by setting μL = 0 in Eq. (2 1) and recognizing ROL as the ratio of R to 

s.” 
 
 
Page 86: Equation (28) reads  
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It should read 
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Page 87:  Equation (30) reads 
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It should read 
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Page 103: The sentence after Equation (A.1) begins 

Substitute F from Eq. (2) and L from Eq. (A.l) … 
It should read 

Substitute F from Eq. (2) and μL from Eq. (A.l) … 
 
 
Page 104:  The last equation of appendix C, which reads 
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It should read 
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