LOSS PREDICTION BY GENERALIZED LEAST SQUARES

LEIGH J. HALLIWELL
Abstract

The prediction of losses, whether for ratemaking or
for reserving, is the quintessential activity of the actu-
ary. The time-honored technique of loss development is
the basis for the chain ladder and Bornhuetter—Ferguson
methods. These methods, particularly the chain-ladder,
have been subject to a great deal of statistical analy-
sis since the mid-1980s. It is now thought by many that
development factors obtained by least squares regres-
sion are unbiased. But this paper will argue that the
linear modeling and the least squares estimation found
in the literature to date have overlooked an important
condition of the linear model. In particular, the mod-
els for development factors regress random variables
against other random variables. Stochastic regressors
violate the standard linear model. Moreover, the model
assumes that the errors are uncorrelated, but stochastic
regressors violate this assumption as well. This paper
will show that what actuaries are really seeking is found
in a general linear model; i.e., a model with nonstochas-
tic regressors but with an error matrix that allows for

- correlation. An example will be presented.

1. A SIMPLE ILLUSTRATION OF LOSS ESTIMATION

Consider how actuaries might approach a simple loss reserv-
ing problem. Take an exposure period now at a certain age. Based
upon our best knowledge heretofore, we have believed that $100
of losses would ultimately be paid for this period. We know that
$60 has been paid to date. We have also looked into our records
and have found that, on similar exposures at the same age, 50%
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of the ultimate losses have been paid. How does this new infor-
mation affect our prior estimate of $100 of losses?

First, we could rely on the statistic that 50% of the losses
should have been paid by this time, which implies that we should
revise our estimate of ultimate loss to $120. Actuaries would
normally say that the development factor from this age to wlti-
mate is 2.0. So, our paid losses should develop from $60 dollars
to $60 x 2.0 = $120. This is often called the chain ladder (CL)
method of loss development.

Second, we could rely on the prior hypothesis that the ultimate
loss will be $100, and assume that the accelerated payment of
$60 to date will be countered by a decelerated payment of $40
henceforth.

As is so often the case, there is a third approach which me-
diates between the CL and the prior hypothesis methods. The
CL method disregards the prior hypothesis, and sticking to the
prior hypothesis disregards the payout statistic. Why not assume
that the amount yet to be paid is half of the prior hypothesis
estimate, or $50? This, plus the $60 already paid, makes for an
ultimate loss of $110. This appealing solution is known as the
Bornhuetter—Ferguson (BF) method, and has several variants.!

2. THE UPWARD BIAS OF THE CHAIN LADDER METHOD UNDER
PLAUSIBLE CONDITIONS

James Stanard [10] simulated thousands of loss triangles, and
developed these losses according to four methods, one of which
was the CL. He concluded that the CL. method was biased in
the direction of overestimating ultimate losses. In his Appendix

1See Bornhuetter and Ferguson [2]. James Stanard [10, pp. 130f.] describes four loss
development methods, the second of which is a2 “modified” BF method. His third method,
called the “Cape Cod” method, is equivalent to what Gary Patrik [9, pp. 352-354] calls
the Stanard-Buhlmann (SB) method, under the assumption that all accident years have
the same prior expected losses. The SB method is a variant of the BF.
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A, he shows why this method should be biased, but not whether
the bias should be upward (overestimation) or downward (under-
estimnation). In this section, we will show that under reasonable
conditions, the bias i1s upward.

We have normal random varnables X, ~ [u,,af] and X, ~
[1,02]. The correlation coefficient between the two is p. Let
Y, = €Xi and Y, = €X2. ¥, will represent the losses (whether paid
or incurred) as of the earlier age; ¥, as of the later. The assump-
tion that losses are distributed lognormally is convenient for this
demonstration, as well as frequently realistic. X, — X, is normally
distributed as [p, — p ,a% + of —2po,0,].

The development factor is an estimate of E[Y, /Y;]. As Stanard
shows in his appendix, the bias of the CL. method depends on the
relation between E[Y]] x E[Y;/Y,] and E[Y,]. Given the lognormal

assumption, Y, /Y; = eX2=%1 is lognormal. Therefore,

E(] = e*73/2,  and

B IE 2] = e rif2gmmrcdfzsctizme,
1

= e/‘z""’%/z'”’]z_/"’l"z

= E[Y,]e°i 1%,

So whether the CL method is biased downward, unbiased, or
biased upward depends on whether €°1=71%2 s less than, equal
to, or greater than one. And this depends on whether o, is less
than, equal to, or greater than po,. Since p is less than one (p = 1
is unrealistic), o, is greater than po, unless o, is larger than o,.
This means that the CL method is biased upward unless o, is
sufficiently larger than o,. The closer p is to zero, the less likely
o, will be sufficiently large; it is impossible when p is less than
or equal to zero. Therefore, the CL method works best, or has
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the least upward bias, when the loss at the later time is highly
positively correlated with the loss at the earlier time.

Furthermore, one very plausible assumption is that as a loss
ages, its standard deviation remains proportional to its mean, or
equivalently, that its coefficient of variation (CV) remains con-
stant. Given the lognormal assumption, this means that:

CViY] = Vel - 1=V —1 = CVIR,

which is true if and only if o, = 0,. But if 0 = 0,, then o, is
not sufficiently large, and the CL method will be biased upward.
Thus, we have some assumptions regarding lognormality and the
coefficient of variation, having verisimilitude singly and together,
under which the CL. method must be biased upward.

3. AN ATTEMPT TO REHABILITATE THE CHAIN LADDER METHOD

Stanard’s findings have disconcerted actuaries, who are very
fond of using the CL method for estimating ultimate losses. The
CL logic is simple and appealing. For example, “If half the losses
should have been paid by now, and $60 have indeed been paid,
then $120 should ultimately be paid.” Moreover, the CL method
makes no use of a prior hypothesis, so it seems to have the
benefit of parsimony.? As for an upward bias, many actuaries
would consider this to be a windfall since, if true, it would add
an extra bit of conservatism to their estimates.>

2Recall Ockham’s razor.

31t is ironic that although in theory and in simulation the CL method should be biased
upward, in practice it frequently seems to be biased downward. Several years ago, while
employed by NCCI, the author conducted a study of how accurately losses were devel-
oped in NCCI ratemaking. He found that the development was usually underestimated
by five to ten percent. Of course, this is not really an indictment against our belief that
the CL method is biased upward. Rather, it is reflective of the runaway conditions of
workers compensation in the late 1980s; i.c., of the worsening conditions not reflected
in projections of ultimate losses. It is assumed throughout this paper that all the rows
of a loss triangle are commensurate (akin to one another), and that we are cognizant
of, and can adjust for, the important exogenous effects on the losses. Doing justice to
this assumption involves the hardest work of the actuary, and is more actuarial art than

science.
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However, most actuaries desire unbiased estimates—not just
because of statistical purity, but also because of competitive pres-
sures in business. If loss estimates need to be conservative, then
the conservatism should be a deliberate and measured addition
to an unbiased estimate. Therefore, Stanard’s findings have been
one impetus in the search for a better approach.

Daniel Murphy [8] has sought to extract unbiased loss de-
velopment factors from loss triangles by the application of lin-
ear regression techniques. His model is Y = Ja + Prev(Y)( + e,
where o and ( are the regression coefficients to be estimated
and Y, J, Prev(Y), and e are (¢ x 1) vectors. Prev(Y) and Y are
adjacent matching columns in the loss triangle, and J is a vector
of ones, or an intercept vector. As for Var[e], a (¢ x t) matrix, it
is assumed to be diagonal; i.e., Cov[e; e;] = o? fori=j, but 0
otherwise.

Murphy [8, p. 187] appeals to the Gauss—Markov theorem in
affirming that the least-squares estimates of the regression coef-
ficients are best linear unbiased estimates (BLUE). From there,
he fills in the loss triangle with supposedly unbiased estimates,
and constructs a confidence interval for the aggregate incurred
loss. However, it appears that Murphy has overlooked one of the
conditions of the Gauss—Markov theorem, thus invalidating his
claim of unbiasedness.

First, Murphy shows in his appendix that the familiar simple-
average and weighted-average development factors fall out from
a regression model with no intercept (a = 0), given appropriate
assumptions as to the o? elements. This in itself should raise
doubt: if a special case of the linear regression model reduces
to the CL method which is biased, then how can the regression
estimates be unbiased? One might be tempted to answer that
the special case is biased, whereas the model with the intercept
(nonzero «) is unbiased. However, the Gauss—Markov theorem,
starting from the assumption that the linear model Y = X3 + e is
well specified, where Var[e] = ®, proves (X'®'X)"!(X'®~1Y)
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to be the best linear unbiased estimator of 3, irrespective of
whether the regressor matrix X has a column of ones to serve as
an intercept.*

The flaw in Murphy’s claim of achieving unbiasedness is
that his regressor matrix, the (¢ x k) matrix X in the model Y =
X3 + e, contains stochastic regressors; viz., one of its columns
is Prev(Y), which is stochastic. George Judge [5, Ch. 13] dis-
cusses the ramifications of stochastic regressors at some length.
In short, if the stochastic regressors are independent of the error
vector, then the least-squares estimator is still unbiased. How-
ever, even in this case, the usual formulas for Var[[i'] and for &2
do not include the variation inherent in the fact that other values
of the stochastic regressors could have been realized.

More to the point, Murphy’s model is an example of what
Judge [5, pp. 574-576] calls “partially independent stochastic re-
gressors.” Here Prev(Y) is not independent of all the error terms,
and the most that can be said is that, under certain conditions,
the least-squares estimator is consistent; i.e., asymptotically un-
biased. This is the fundamental problem with the CL method.
Rather than try to rehabilitate it, this paper introduces a differ-
ent model that honors all the conditions of the Gauss—Markov
theorem. '

4. THE NECESSITY OF CONSIDERING EXPOSURE

Consider the conclusions of Stanard and Murphy as to their
loss-development simulations:

The common age-to-age factor approach (Method 1)
1s clearly inferior to the other three methods [Standard
10, p. 134].

The performance of the incurred loss development
technique based on the more general least squares

4For a proof of the Gauss—Markov theorem, see Appendix A.
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estimator may approach that of the Bornhuetter—
Ferguson (BF) and Stanard-Buhlmann (SB) tech-
niques in some situations [Murphy 8, p. 185].

What Murphy calls the BF and SB techniques correspond to
Stanard’s second and third methods. Stanard himself favors his
fourth method, the additive model [10, pp. 131, 135]: “In fact,
Method 4 may be completely unbiased.” The SB and additive
models can be considered variants of the BF.

The obvious question is this: If it is so hard to beat the BF
method and its variants, then why continue to refine the CL
method? Of course, loss development factors are used in some
BF variants, as Murphy notes [8, p. 207]:

The average bias of the BF and SB methods should be
greater than zero as well because the LDFs on which
they rely are themselves overstated more often than
not.

But what is unique to the BF variants to give them a performance
advantage over the CL method? The answer is that the BF vari-
ants incorporate prior knowledge, whether it be a prior estimate
of incurred losses or a knowledge of exposure relativities.

I suspect that the desire to avoid relying on prior knowledge
is one motive for actuaries to try to perfect the CL method, as if
reliance on such knowledge would be tantamount to circular rea-
soning. However, what could be more axiomatic than a statement
such as “Twice the exposure should produce twice the expected
loss, all else being equal?” Nevertheless, this information is un-
known to the CL method. But is it unknown, or just ignored?
If there is enough information in the form of a loss triangle to
produce development factors, then there must also be substantial
knowledge of the underlying exposures. Otherwise, how would
the actuary know that the rows of the triangle were commensu-
rate, or that they represented the same process of development?
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Substantialvpn'or knowledge is implied in John Robertson’s com-
ment [11, p. 149]:

Previous literature on reserving techniques generally
has concentrated on overcoming the effects of changes
in the underlying mix of business, changes in the
individual claim reserving and settling policies, and
changes in claims reporting systems. Most of this prior
literature assumes that once the changes are-accounted
for and the data has been restated so as to have rela-
tively constant underlying conditions, then any number
of Joss development methods can be applied to obtain
valid forecasts.

Even Murphy, who has worked diligently to further the CL
method, resorts to a knowledge of exposures in his argument
for a non-zero intercept term [8, p. 204]:

From Equation 2 one can see that the slope factor b,,
does not depend on the exposure (N) but only on the
reporting pattern, and that the constant a, is propor-
tional to the exposure. An increase in exposure from
one accident year to the next will cause an upward,
parallel shift in the development regression line.

The extent to which his simulated regression results outperform
the BF method may be due not only to the extra parameter a,,,
but also to a BF-like use of exposure.’

It is time to introduce a method that gives exposure its proper
place.

3In his Section 5 [8, p. 204], Murphy considers the model ¥ = Ea + Prev(Y)3 + e, where
E contains exposures for each row. It is unclear to the author whether he ever used this
model in his simulations. Of course, if his simulated triangles had equal exposures in all
rows, as did Stanard’s, then the “J” and “E” models are equivalent. In the auto liability
incurred loss and ALAE example (Figure 1A), exposures are obviously unequal, and the
“J” model is used to produce estimates of a; ; = $374 and b, ;; = 2.027 for the 12 : 24
development [8, p. 190].
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5. LOSS COVARIANCE VERSUS LOSS DEVELOPMENT

There is a distinction between loss covariance and loss devel-
opment. To an actuary, loss development connotes the estimation
of a loss as of time ¢; |, X(¢;, ), from the loss as of earlier times.
In other words, there is some estimation function, f, such that
X(t1) = f(X(t),X(t,),....X(t,_1), X(t;)) + €;, ;- Actuaries also
simplify the functional form to X(#,,) = f(X(;)) +¢;,;. This
simplification assumes that the most recent value of the loss is
all-determinative of its future development; i.e., that the path the
loss took in getting to X (¢;) is irrelevant. Thomas Mack [7, p. 108]
points out that this simplification may be inappropriate; however,
without it, the functional forms could easily become overspeci-
fied. In any case, X (¢;,1) = f(X(#)),X(8),.... X (t;_1), X)) + €; 4,
expresses the familiar and appealing concept of loss develop-
ment. It is appealing because actuaries feel that earlier values of
X should affect the later values. However, as was pointed out in
Section 3, this entails estimation with stochastic regressors.

Loss covariance involves the following idea: Let X be an
(n x 1) vector,

L X,

where x; is the incremental loss, whether paid or incurred, dur-
ing the ith time interval. Through research, we believe that we
have a good idea of the mean and variance of X, which depends
on our knowledge of exposure, inflation, etc. Then, as x;s
become known, the x;s still unknown can be considered ele-
ments of a conditional random vector. They are affected by the
known elements in a Bayesian sense, through the variance
matrix.
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As an example, consider a two-part loss -

X:[x1]~N<[M ’[011 012})’
X3 25 031 022

which means that X is distributed as a bivariate normal random
variable with the mu vector as its mean and the sigma matrix
as its variance. The variance matrix must be symmetric, because
o;; = Cov(x;,x;) = Cov(x;,x;) = 0j;. Hence, 05 = 015. The distri-
bution of x, conditional on x; is:®

Knowledge of x; affects our expectation of x,, and even lessens
the variance of x,. Since ¢y, =o0? and o, = poy0,, We can
rewrite the conditional expectation as:

X — p
Elx, | x1] = py + poy (%“_l)
1

Thus,

Elx; | X)) — =p(x1—N1>

%) g1

Consider what this means: the conditional mean E[x, | x;]1 will
differ from the unconditional mean p, in terms of standard devi-
ation units (o,) by some proportion (p) of the standardized error
of x;. This is the essence of the loss covariance approach: that
the known losses affect the unknown not through their absolute
levels, but rather through a combination both of their relative de-
parture from their expected values and of the covariance of the
known with the unknown. The covariance defines the persistency
of this departure.

SFor a general proof, see Appendix B. Johnson [4, p. 138] has another proof. The author’s
thinking was helped by Julien McKee’s presentation at the 1994 Casualty Loss Reserve

Seminar [6].
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We do not yet have a linear model for loss prediction; nev-
ertheless, we have uncovered a fundamental truth, a truth that
has been missed in loss development methodology. Covariance
is the link from one random variable to another. When actuaries
seek to predict losses, they must consider how the known losses
affect the unknown—and that involves covariance. Actuaries do
not have to know how, or even whether, the known “causes” the
unknown; the question of causality is academic. Prediction is a
matter of covariance, which informs how one random variable
1s expected to differ from its mean, given the departure of an-
other random variable from its mean. So covariance requires the
estimation of means, which are functions of exogenous, known
quantities such as exposures and price indices.

~ Letus solve for a and 3 in the equation Y = o + X + e, where
Cov[X,e] =0, and E[e] = 0. Applying the expectation operator,
we have E[Y] = a + BE[X]. Also, Cov[Y,X] = BVar[X]. There-
fore, 8 = Cov[Y,X]/Var[X], and o« = E[Y] — BE[X]. Moreover,
Y —E[Y] = B(X -E[X])+e = {Cov[Y,X]/Var[X]}(X — E[X])
+ e. What then is the function of the intercept a? Is it not to sup-
ply the proper combination of the mean values of the dependent
and independent random variables? But the real relation is be-
tween the departures of the random variables from their means.
In a well-constructed linear model, the intercept is replaced with
. expressions for mean values based on outside information. This
amplifies the reason for the abolition of intercept terms advanced
by Gregory Alff [1, p. 89], that “a constant does nothing to de-
scribe the underlying contributory causes of change in the de-
pendent variable.”

Though not a model, the example above encompasses the
three approaches to loss reserving discussed in Section 1. Let
us also treat o, and o, as equal. When p is positive, a greater
than expected x, will raise E[x, | x;]. This is in keeping with
the first approach, the CL. method. When p is negative, a greater
than expected x; will lower the conditional expectation. At the
extreme, when p = —1, E[x, | x;] = py — (x; — p;). In this case,
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x; + E[xy | x;]1 = py + pp. All this keeps with the second ap-
proach, that of sticking to the prior hypothesis. When p is zero,
E[x, | x;] is unaffected, which keeps with the third approach, the
BF method. A theory becomes very attractive when it unifies
partial explanations. Such is the case with loss covariance. CL,
prior hypothesis, or BF—which to choose? The answer will lie in
a conti;nuum dependent on the variance matrix of the incremental
losses.

6. A LINEAR MODEL OF LOSS COVARIANCE

The idea of loss covariance introduced in the previous section
needs to be expanded before we consider a real-life example. Ac-
tuaries typically attempt to fill in a “loss rectangle” when all that
is known is a triangular portion. The usual case is to have n ob-
servations of the earliest accident (or policy) time period, n — 1
of the next, and so on until the latest time period, for which
there is one observation. So thereare 1 +2 +---+n=n(n+ 1)/2
known cells, and n(n — 1)/2 unknown cells in the (n x n) rectan-
gle. In this discussion we are not concerned about extrapolating
beyond the nth interval® The (ij)th cell in the rectangle will

7Two more points in closing this section: A suitable variance matrix can make a condi-
tional mean dependent on more than just the latest known loss, thus recognizing Thomas
Mack’s caveat mentioned earlier in this sec¢tion. And second, Stanard’s fourth model, the
additive, which he claims to have performed best in his simulations [10, pp. 131, 135],
is the method closest to the covariance method.

8So too Murphy: The model does not attempt to predict “beyond the triangle” [8, p. 205].
At this writing, the author is expecting the publication of a paper, “Statistical and Fi-
nancial Aspects of Self-Insurance Funding,” in the 1996 Discussion Paper Program. In
Section 3 of that paper the author estimates losses from the 84th month (seventh report)
to ultimate. Since the risk treated there had no loss history beyond 84 months, bureau
data was invoked, according to which ninety percent of the losses were paid by the 84th
month. One might interpret this to mean that there is a development factor from 84th
to ultimate of 1.00/0.90 = 1.111, and that the CL method with its bias resurfaces. Even
if this were true, at least the use of the CL method would be restricted to a hopefully
small role. However, in the paper just mentioned, cumulative predictions as of 84 months
were not multiplied by 1.111. Rather, the pure premium for payments up to 84 months,
for which an estimate had been derived, was divided by nine to arrive at an estimate of
the pure premium for payments after 84 months. The payments after 84 months were
then predicted as the product of exposures and the latter pure premium. Assumptions
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contain ¥;;, the incremental loss of the ith accident period during
the jth interval from the beginning of that accident period. The
(ij) subscript is a link to much information about the distribution
of ¥;;; e.g., information about the premium or exposure in the ith

ij
period, or inflation trends in absolute time (which is represented

by i + j).

Now imagine the transpose of the ith row of the rectangle.
This is an (n x 1) vector, the first (n + 1 — i) elements of which
are known. Take the known elements of each vector, stack them
into an (n[n + 1]/2 x 1) vector, and call it Y;. Similarly, stack the
unknown elements into an (n[n — 1]/2 x 1) vector, and call it Y,.
Finally, stack Y; on top of Y,, creating the partitioned (n2 x 1)
vector Y. Each element of this Y was originally some Y, ; in the
rectangle.

We can form the linear model Y1) = X upyBpx1) + €4y 1)
where ¢ = n? and Var[e] = ,,). X is the design matrix, each
row of which contains pertinent information affixed to the (ij)th
location implicit in the same row of Y. The variance, X, deter-
mines how errors will influence one another. There is no reason
why there cannot be correlations between errors of different ac-
cident periods (e.g., calendar-year effects), although it will not
be considered in the following example. ¥ has to be estimated
with a minimum of parameters, so it is best to start with only
correlation within accident periods.

The objectives are to estimate 8 and to predict the mean and
the variance of Y, conditional on Y,, which are done by the
method of generalized least squares. The formulas for these ob-
jectives are derived in Appendix C. The model outlined here
and treated in Appendix C is more general than the idea of the
previous section in that (1) it provides for the estimation of un-
known parameters, (2) it does not require that error terms be

were specified as to the covariance of these payments with payments prior to 84 months,
so that the payments to ultimate could be affected by the departures of the observations

from their predicted values.




LOSS PREDICTION BY GENERALIZED LEAST SQUARES 449

normally distributed, and (3) it allows for correlation between,
as well as within, accident periods.

7. AN EXAMPLE

Exhibit 1 shows paid workers compensation indemnity losses
for eight accident quarters at quarterly evaluations. The num-
bers above and to the left of the dotted line are actual observa-
tions; those below and to the right are projections based on the
loss development factors in the bottom row. The development
factors are weighted-averages between matched columns; e.g.,
1.114 = (756,879 + 2,327,141) /(701,411 + 2,067,233). This is a
typical example of the chain ladder method. Notice that the total
penultimate (at 24 months) loss, 45,377,646, is obtained without
any knowledge of exposures.

Exhibit 2 is an example of Stanard’s additive model [10,
p. 131]. Incremental losses are related to an exposure base, which
in this case is on-level premium. For example; based on two
observations, between eighteen and twenty-one months the in-
demnity payout of an accident quarter will be 0.69% of premium,
(55,468 + 259,908)/(11,631,592 + 33,995,192). The incremental
payments below and to the right of the dotted line can be pro-
jected, and a cumulative table can be constructed. The ultimate
losses of the additive model are lower than those of the CL
method for every accident quarter.

We will use the linear model Y, = X3 + e;, where Y, and X,
are shown in Exhibit 3. We will assume, as is frequently done,
that the variance of an observation is proportional to its exposure
[Venter 12, p. 445]. The values in the column entitled “Scale A ;”
are the square roots of the respective premiums in X;. If we
dlagonahze Scale A; and call it A, then Var[e;] =02A2 =
o?®,,, where ¥, is defined as A?. The generahzed least—
squares estimator for 8, (X} ¥ 'X,)" l(X’ 1'Y)), turns out to
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be:
7(0.00997

0.0196
0.0142
0.0123
0.0108
0.0096
0.0069
10.0061

w»
I

It should come as no surprise that these are the same coefficients
as were obtained in Exhibit 2. The linear model with such a
proportional variance produces weighted averages [7, pp. 111f].
The formula for the sample variance [5, p. 332] is: % =

(Y — Y)"I’ LY - Y)/(36 8), which is 176.3242.

Exhibit 4 contams results from the regressmn Y is the same

as Y, in Exhibit 3; Y is the fitted vector, or XI,B andé=Y-Y.

Appendix D derives the formula for Var[e]. The square roots of
the diagonal elements of this matrix are contained in the column
Std(e). € divided by these numbers forms the column Student(é).
If the model is homoskedastic, these studentized residuals should
show no increase or decrease by accident quarter age. However, it
appears from the graph in Figure 1 that the studentized residuals
decrease by age. This is obvious from the following table of
sample variances of the studentized residuals by age:

Age Count Variance Y = Ln(Var) Y cxp(&)
3 8 1.759 0.565 0.297 1.345
6 7 1.495 0.402 0.181 1.198
9 6 0.482 -0.729 0.065 1.067

12 5 1.226 0.204 —0.051 0.950
15 4 0.719 -0.329 -0.167 0.846
18 3 0.767 -0.265 -0.283 0.753
21 2 0.813 —-0.206 -0.399 0.671
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FIGURE 1
ACCIDENT QUARTER RESIDUALS

Studentized Residual

The table also shows that an exponential regression explains well
the tapering off of the variance. Moreover, the variance can be
predicted for age 24 months, which is 0.597. We now can re-
model the variance of an observation as proportional not only
to the premium, but also to the fitted or predicted sample vari-
ances. The square roots of these new variances are found in the
column Scale B of Exhibit 3. For example, for AQ.Age 1.03, the
standard deviation of the error is proportional to the square root
of the product of 11,631,592 and 1.345, or 3,955.31.

The regression reweighted with Scale B, diagonalized as A,
produces new standardized residuals that are homoskedastic. The
estimate for 3 changes negligibly (no change within the first ten
decimal places). The results of this regression are not shown;
however, Figure 2 contains some of the studentized residuals.
This exhibit shows that there is a relation between one studen-
tized residual and the next; viz., that the next studentized resid-
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FIGURE 2
CORRELATION OF RESIDUALS
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ual tends to be 59.31% of the previous. Since we are dealing with
studentized, homoskedastic residuals, whose variances should all
be unity, the slope coefficient p should be a correlation coefficient
(S, pp. 391f.].

Thus, we will use as our final model one whose error vari-
ance matrix is first-order autocorrelated within accident quarters.
Exhibit 6 shows partitions of the correlation matrix P, where p
has been estimated to be 0.5931. It is not necessary to show P;,,
since it is the transpose of P,;. For an explanation as to how first-
order correlation produces correlation matrices such as these, see
Judge [5, pp. 384-388]. Letting A; and A, be diagonalizations
of Scale B, and Scale B, respectively, we can express the error
variance matrix as:

5= {211 212} _ 2 [Al } [Pu PIZJ [AI }
Yy X Ay [Py Py A,
_ 52 [A1P11A1 A1P12A2J _ o2 [‘1’11 ‘1’12}
APy 1A A PjpA, ¥, ¥y
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Therefore, we can estimate ﬁ as (X’I\III‘IIXI)-‘I(X’l ‘Ill‘llYl), OT:

-0.0099-
0.0199
0.0145
0.0125
0.0108
0.0100
0.0079
10.0078

>
]

Also, the estimate for &2 =(Y,-X,8)%¥ Y, -X, X,3)/
(36 — 8 —2) is 149.9509. The denominator has two less degrees
of freedom because two parameters were estimated in creating
the correlation matrix; viz., the decay factor in the exponentially
fitted variances and the correlation coefficient p. The predlcted
values of Y, are calculated according to the formula derived in

Appendlx C: E[Y2 IY]] = Xzﬁ + 221211 (Y] X ,3)

Exhibit 7 contains selected values from this final regression.
The observed and predicted Ys are carried over to the incre-
mental table of Exhibit 8. The cumulative table follows, and
shows at age 24 the expected values of quarters 2 through 8.
It can be seen that the estimates at age 24 for this method are
higher than those of the additive method (Exhibit 2). They are
lower than those of the CL. method (Exhibit 1), except for quar-
ters 2 and 3 (and even here the losses are only about 0.1 percent
higher). Thus it seems that this “covariance method” mediates
between a BF variant and the CL method.

Exhibit 9 is like Exhibit 8 except that it displays the X,,B and
Xzﬂ columns of Exhibit 7. These are predictions of Y, and Y,
prior to any observation (of course, we needed observations in
order to obtain B) Exhibit 9 helps us to see that the covariance
is working in Exhibit 8. For example, the prediction of incre-
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mental AQ.Age 2.24 is 261,487. Ignoring observations of 2.03
through 2.21, the prediction would have been 266,326. Why is
the a posteriori prediction less than the a priori? It is because
the actual 2.21 observation of 259,908 is less than the a pri-
ori prediction of 268,555. So the covariance is carrying over to
the prediction. AQ 8 is observed to commence with a payment
higher than expected, and this excess is perpetuated in forecasts
8.06 through 8.24. However, the excess dampens over time, as
expected.

A better but more complicated model would recognize a trend
in the observed payments. By comparing Exhibits 2 and 9, one
can see that the model tends to overestimate the payments of the
first three accident quarters, and to underestimate those of the
last five. So perhaps it is no surprise that for quarters 2 and 3 the
model gives higher results than does the CL method. Building
trend into the model, by applying some sort of inflation index to
the exposures would probably lessen the estimate of p, and make
better use of the error variance matrix. As it is now, it seems that
the variance matrix is trying to chase the trend, as well as to
capture covariance.

It should be noticed that the column totals of Exhibit 8 are
identical to those of Exhibit 9. The author did not expect this,
and checked the programming for errors (the work was done
both on an Excel spreadsheet and in a SAS program,’ and the
results were the same). It is also of interest that the column rates
are identical to the estimate of 3. The author thinks of these

9 After the body of this paper was written, the author learned of a procedure in SAS, Proc
Mixed, which has the ability to estimate simultaneously, by the method of maximum like-
lihood, both the regression coefficients and any parameters in the variance matrix. SAS
users who will be using generalized least squares would do well to study the following
SAS publications on Proc Mixed: SAS Institute Inc,, SAS® Technical Report P-229,
SAS/STAT® Software: Changes and Enhancements, Release 6.07, Cary, NC: SAS Institute
Inc., 1992, ch. 16, and SAS Institute Inc., Introduction to the MIXED Procedure Course
Notes, Cary, NC: SAS Institute Inc., 1995.

At the end of Chapter 16 of the Technical Report is an extensive bibliography of
the literature devoted to the subject of mixed models, of which generalized least squares
is a subset.
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somewhat appealing qualities as “balance properties.” Appendix
E gives a demonstration of these properties, a demonstration that
relies on the peculiarities of this example and so cannot be gen-
eralized.

Another interesting property, perhaps related to the column
balance just described, is that within an accident quarter, the pre-
dictions depend only on the last observation of that quarter. Re-
call the prediction formula: E[Y, | Y] =X,8+%,, 21—11 X, -X;8).
The matrix 22121‘11 i1s zero only where P2,P1‘11 is zero, since
the ¥s are Ps times diagonal scaling matrices. Exhibit 6 shows
P,,P;}. (For details about the inverse of a first-order autocorre-
lation matrix see Judge [5, p. 389].) From this it can be seen that
the prediction adjustment of any AQ.Age is proportional to the
proper power of p times the error of the last observation for that
AQ. The errors of earlier ages, though correlated with the pre-
dictions, in the first-order autocorrelation model are impounded
within, or built into, the error of the latest observation. This has
a bearing on Mack’s remark about path dependence [7, p. 108],
discussed earlier in Section 5. If there is path independence in
the first-order autocorrelation model, which is the most basic of
generalized linear models, then perhaps actuaries have not been
too remiss in developing losses from the last observation only.

The last column of the cumulative table of Exhibit 8 contains
the standard deviations of the cumulative paid predictions at 24
months. Appendix C derives the formula for the variance of the
predictions:

Var[Y, | Y1 = (X, — Z,, ' X)) Var[B1(X, — =, 27X, )
+ (S — Ty B Bp)- |
This is a (28 x 28) matrix, too large to print, but whose row
and column headings would be the same as those of P,, in Ex-
hibit 6. The variance of the prediction of AQ 4 at 24 months,

for example, is the variance of the sum of the predictions of
4.18, 4.21, and 4.24. This would be the sum of the nine vari-
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ances and covariances which occupy the square whose diagonal
is from (4.18,4.18) to (4.24,4.24). The square root of this num-
ber, 293,083, is found in the last column of Exhibit 8. The Total
row contains the square root of the sum of all 784 elements of
Var[Y, | Y,], which is the standard deviation of the sum of all
the predictions.

If the errors were normally distributed, then the total predicted
would be z-distributed with twenty-six degrees of freedom, with
a mean of 41,778,516 and a standard deviation of 1,598,047.
So, for example, the 95% upper bound for the total predicted
would be 41,778,516 + 1,598,047 x 1.706 = 44,504,784. How-
ever, as stated in the appendices, the errors need not be normally
distributed. We could just as easily assume that the total pre-
dicted is lognormal (41,778,516, 1,598,047). This is equivalent
to eNlu=17.54716,02=0.001462] The normal random variable has a
95th percentile at 17.54716 + (0.001462)1/2 x 1.645 = 17.61006.
Therefore, the 95% upper bound with a lognormal distribution

is 44,457,985.
8. CONCLUSION

Generalized least squares is a better method of loss predic-
tion than the chain ladder method and the other loss develop-
ment methods. Even when linear models are imposed on loss de-
velopment methods, they incorporate stochastic regressors, and
the estimates are not guaranteed to be either best or unbiased.
The confidence intervals derived therefrom are not trustworthy.
The fault lies in trying to make the level of one variable affect the
level of the next, whereas the statistical idea is that the departure
~ of one variable from its mean affects the departure of the next
from its mean. This is the idea of covariance, and it is accommo-
dated in the general linear model and generalized least squares
estimation. It may not be easy to determine a good structure for
the error variance matrix; but then again, the prediction of losses
in itself is no easy feat.
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EXHIBIT 4
FIRST REGRESSION

-

AQ  Age Y Y € Std(e)  Student(é)
Qtr 1 3 87,248 115,371 —28,123 44,694 —-0.629
Qtrl 6 187,878 227,840  —39,962 44,595 —0.896
Qtr 1 9 118,385 165,669  —47,284 44,437 —1.064
Qrl 12 99,109 143,246 —44,137 44,183 —-0.999
Qurl 15 112,877 125,925 —13,048 43,697 -0.299
Qr1l 18 95,914 111,822  —15,908 42,552 -0.374
Qurl 21 55,468 80,398 24,930 39,091 —0.638
Qi1 24 70,742 70,742 0 0 0
Qtr 2 3 189,320 337,190 —147,870 74,420 —1.987
Qr2 6 523,517 665,898 —142,381 73,910 —1.926
Qr2 9 444,265 484,194 39,929 73,093 ~0.546
Qrr2 12 339,841 418,658  —78,817 71,765 —1.098
Qw2 15 289,189 368,035  -78,846 69,178 —-1.140
Qur2 18 281,101 326,817  —45,716 62,786 -0.728
Q2 21 259,908 234,978 24,930 39,091 0.638
Qtr 3 3 392,599 532,380 —139,781 91,257 ~1.532
Qtr3 6 1,064,822 1,051,368 13,454 90,218 0.149
Qtr 3 9 725,532 764,480 38,948 88,543 —~0.440
Qr3 12 657,399 661,009 -3,610 85,792 —-0.042
Qr3 15 599,727 581,081 18,646 80,320 0.232
Qur3 18 577,625 516,002 61,623 65,943 0.934
Qtr 4 3 675,634 687,419  —11,785 101,616 —-0.116
Qrd 6 1,538,669 1,357,547 181,122 100,057 1.810
Qr4 9 1,067,807 987,112 80,695 97,530 0.827
Qr4 12 1,007,805 853,507 154,298 93,341 1.653
Qr4 15 823,550 750,303 73,247 84,836 0.863
Qtr 5 3 720,152 722,542 —2,390 103,690 —-0.023
Qtr s 6 1,332,582 1,426,910  -94,328 102,001 -0.925
Qrs 9 1,081,918 1,037,548 44,370 99,261 0.447
Qrs5 12 869,382 897,116  —27,734 94,707 —-0.293
Qr6 3 746,772 707,090 39,682 102,789 0.386
Qtr 6 6 1413910 1,396,394 17,516 101,157 0.173
Qré6 9 1,016454 1,015,359 1,095 98,512 0.011
Qtr 7 3 769,063 701,146 67,917 102,438 0.663
Qtr 7 6 1449235 1,384,656 64,579 100,828 0.640
Qtr 8 3 853,758 631,408 222,350 98,114 2.266
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EXHIBIT 5
AUTOCORRELATION (p)

AQ Age X = Student(é) Y = Next(é) Y=Xp
Qtr 1 3 —0.577 ~-0.871 —0.342
Qtr 1 6 —0.871 ~1.097 -0.517
Qtr 1 9 —1.097 ~1.091 —0.650
Qtr 1 12 ~1.091 -0.346 —0.647
Qtr 1 15 ~0.346 —0.458 -0.205
Qtr 1 18 —0.458 —0.829 -0.272
Qtr 2 3 ~1.823 ~1.873 —1.081
Qtr 2 6 —1.873 —0.563 ~1.111
Qtr 2 9 ~0.563 ~1.199 ~0.334
Qtr 2 12 ~1.199 -1.319 -0.711
Qtr 2 15 —1.319 —0.893 -0.782
Qtr 2 18 -0.893 0.829 ~0.530
Qtr 3 3 —1.406 0.145 —0.834
Qu 3 6 0.145 -0.453 0.086
Q-3 9 -0.453 —0.046 ~0.269
Qtr 3 12 ~0.046 0.269 —0.027
Qtr 3 15 0.269 1.146 0.159
Qtr 4 3 ~0.106 1.760 -0.063
Qtra 6 1.760 0.853 1.044
Qtr 4 9 0.853 1.805 0.506
Qtr 4 12 1.805 0.999 1.071
Qtrs 3 —0.021 ~0.899 —0.013
Qtr 5 6 —0.899 0.461 ~0.533
Qtr 5 9 0.461 -0.320 0.273
Qtr 6 3 0.354 0.168 0.210
Qtr 6 6 0.168 0.011 0.100
Qtr 7 3 0.608 0.623 0.361
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EXHIBIT 6

PART 1
P,, CORRELATION MATRICES
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EXHIBIT 6

PART 2
P,, CORRELATION MATRICES
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EXHIBIT 6

PART 3
P,, CORRELATION MATRICES
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EXHIBIT 6

PART 4
P,,P7' CORRELATION MATRICES

‘. ‘n ‘n v,
0, 0,9, 7%

‘. ‘- ‘- " E “'
. W e e N -

~

0.9 D0V OO




470 LOSS PREDICTION BY GENERALIZED LEAST SQUARES

EXHIBIT 7
SELECTED VALUES

AQ.Age X,8 Y, AQ.Age X,B8 E[Y, |Y,]
1.03 115,371 87,248 224 266,326 261,487
1.06 231,615 187,878 3.21 424,014 446,060
1.09 169,126 118,385 3.24 420,496 432,834
1.12 145,210 99,109 4.18 694,978 735,877
1.15 125,953 112,877 4.21 547,495 570,385
1.18 116,639 95914 424 542,952 555,763
1.21 91,887 55,468 5.15 788,818 766,410
1.24 91,125 70,742 5.18 730,487 717,947
2.03 337,190 189,320 5.21 575,468 568,450
2.06 676,931 523,517 5.24 570,694 566,766
2.09 494,297 444265 6.12 889,970 878,725
2.12 424,399 339,841 6.15 771,948 765,655
2.15 368,119 289,189 6.18 714,865 711,343
2.18 340,897 281,101 6.21 563,162 561,190
2.21 268,555 259,908 6.24 558,489 557,386
3.03 532,380 392,599 7.09 1,027,833 1,051,136
3.06 1,068,788 1,064,822 7.12 882,489 895,531
3.09 780,433 725,532 7.15 765,459 772,758
3.12 670,073 657,399 7.18 708,856 712,941
3.15 581,212 599,727 7.21 558,428 560,714
3.18 538,234 577,625 724 553,794 555,074
4.03 687,419 675,634 8.06 1,267,593 1,392,036
4.06 1,380,040 1,538,669 8.09 925,601 995,248
4.09 1,007,710 1,067,807 8.12 794,713 833,692
4.12 865,211 1,007,805 8.15 689,324 711,139
4.15 750,473 823,550 8.18 638,351 650,560
5.03 722,542 720,152 8.21 502,884 509,718
5.06 1,450,552 1,332,582 8.24 498,712 502,536
5.09 1,059,198 1,081,918
5.12 909,418 869,382
6.03 707,090 746,772
6.06 1,419,531 1,413,910
6.09 1,036,546 1,016,454
7.03 701,146 769,063
7.06 1,407,598 1,449,235

8.03 631,408 853,758
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APPENDIX A

THE GAUSS—-MARKOV THEOREM

This proof is an extension of the proof found in Judge [5,
pp. 202-205]. Some matrix theory assumed here can be stud-
ied from that text, especially from its Appendix A. One princi-
ple merely stated here is that if Z is an (n x 1) random vector,
distributed as [p,X], and A is a nonstochastic (m x n) matrix,
then AZ ~ [Au,AXA’]. The distribution does not have to be

normal.

We have a model Y = X3 + e, where e ~ [0,®], Y and e are
(tx1), Xis (t xk), and B is (k x 1). e does not have to be nor-
mally distributed. The rank of X is k, and ® is positive definite.
These are standard and nonrestrictive conditions. The last two
conditions guarantee that (X'® 1X)~! exists, and that there is a
nonsingular (¢ x £) matrix W such that WW’ = &, (See Appendix
C regarding the Cholesky procedure.)

The generalized least-squares estimator is:

B =X& 'X) |(X'sY)
= X2 'X)"'X'®'XB8) + X'®'X)"'(X'® )
=B+ Xe X)) I(X'® e
~[B,X'®'X)" ' (X'® ) Var[e](@ I X)(X'®1X) "]
~[B,X® X)X He@ ' X)(X'd X))
~[B,Xe ' X)X I X)X'® X))

~[B,X'®1X)7 1.
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Now consider some alternative estimator:

B =AY
= AX[3 + Ae
~ [AX3,A Var[e]A’]
~ [AX3,APA].

Both estimators are linear functions of Y. The first is unbiased;
the second is unbiased, whatever 3 may be, if and only if AX is
the (k x k) identity matrix I,. Hence, AX = I;.

So far we have two linear unbiased estimators of 3; we have
the “LUE” of “BLUE.” We show that the first estimator is better
(or best of all) by showing that the difference of the variance
matrices is nonnegative definite:

Var(B) — Var(3)
= ADA - (X'27'X)"!
=APA —(X'®'X)' - X 'X)" ! + (X IX)!
= A®A - AXX'27'X)! - (X'e7'X)"IXA
+Xe ') IXe ' X)Xe'x)”!
= AWWA' - AWW I X(X'®"'X) !
~ X' X)X (W YWA'
+ X' X)X W hyw Ixxe 'x)-!
= {AW - X'~ X)X’ (WY}
x {WA - W IX(X'e~'x)~'}
= {AW — X'~ X))~ X' (WY}
x {AW — (X'~ ' X))~ Ix'(w=yy
> 0.
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The last line means that the matrix in the previous line is non-
negative definite, which indeed it is since it is the product of a
matrix and its transpose. Therefore, 8 = (X'®~'1X)"(X'®~'Y)
is BLUE.
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APPENDIX B

THE CONDITIONAL MULTIVARIATE NORMAL DISTRIBUTION

We start with X ~ N(u,3), where X and p are (n x 1), and
¥ (n x n) is symmetric and positive definite. Then we partition X
into p known elements and g unknown (p + g = n):

<ol (] 5 52))

X, Hyj |y oy
where X, and p, are (p x 1), X; and p, are (g x 1), X, is (p X p),
X, is (px q), Xy is (g x p), and X,; is (g x q). Because X is
symmetric, ;; and X,, are symmetric, and X,, = X{,. More-
over, because X is positive definite, ¥;; and X,, are positive
definite. Furthermorc, 211 — 2122{21 221 and 222 — 22121'11212
are symmetric and positive definite. Every positive definite ma-
trix has an inverse. The probability density function for X is
[Johnson 4, p. 128]:

~(1/DX—-p)Y " X—p)

1
o e~/ DX—pyEX—p)

Let
Apup) = (11— 1225, )

and
Digy = S —ZnE' )7

A and D must exist because they are inverses of positive defi-
nite matrices. They are. also symmetric. An important equation
is $7'%,,D = A%, %5, which is proven as follows:
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T ZD- A%,
= AA-'3;S,, - 2,55D D
= A2 - 225 15 By
— 21255 B — 21 21, S, ))D
= A2 — 223 £ 51, o)
—[B12 ~ 1255, £, 51, 11D
= A0)D
=0.

And let B, = ~Z]'S;D = —AZ, 55, so B = —55,|%, A
It can be shown, from multiplying 3 by the following matrix
and obtaining the identity matrix, that:

-1
2 B, B D|
Therefore,
X-p)s1(X-p
b X—p)
D H
A B||(X;—uy)
= (X; — p) AKX — p) + Xy — 1) BX, — @)
+(X; — Hz)IB’(Xl — )+ (X — I-l'z)’D(Xz — ).
If X, is given, then (X; — p{)A(X; — ;) is constant, so:

Ix,x, (X2)
x e—( 1 /2)[(X2’_l"z)ID(Xz“/-"z)+(x2_I‘z),B'(xl —H) )+(X1 —H )IB(Xz_I‘z)] .

= (X )'A
=X—-p B’

= [X; —pp) Xy3— )] [
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Now, because D 1s symmetric and positive definite, there ex-
ists a nonsingular W, ., such that W'W = D. Therefore,

(X5 — ) DX, — py) + (X; — ) B' (X — 2y)

+ (X — o)V BX; — )

= (Xz - uz)’W'W(Xz — M)
+ Xy — ) WWHIB'(X, — )
+ (X, — ) YBW'W(X, — )

= [(X; — ) W + (X; — 1, YBW™!]
X [W(X; — pp) + (W)T'B' (X, — )]
~ (X — 1 YBW I (W) 1B/ (X, — ).

This expression goes into the exponent of the probability distri-
bution. When X, is given, the term after the minus sign in the
last equation is constant. Therefore, dropping this term does not
change the proportionality of the conditional distribution. So we
continue:

[(X; — p)W + (X; — ) YBW )

x [W(X, — 1) + (W)™ 'B'(X; — )]

= [(X; — p) +(X; — ) BWH (W)™ TW'W
x [(Xy — po) + WHW)IB/(X, — )]

= [(X3 — po) + (X; — ) BIWW) 'ITW'W
x (X5 — 1) + WW) B/ (X — )]

= [(Xy — pp) + (X; — pt;)BD'ID
x (X5 — po) + DB/ (X — )]

= [(X; — po) + D7'B'(X; — V(D!
x [(Xy — 1) + D'B(X, = ).
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Therefore,

Jx,x, (X2)
oc e~ VDX, =p)+D B X, —p VD) (X, ~ ) +D™ B (X, — g1, i
This form is multivariate normal with the following characteris-

tics:
X, | X, ~N(u, - D7IB'(X; — p)),D71).

But D! =%, - %, %{{'%), and D™!'B' =D~!(-Dx%,,;5;}!) =
—3y 3, 11. Therefore,
Xo | Xy~ N(py + 2 20 Xy — 1), 305 — 25, 211 ).
Finally, notice that:
Var[Xp] — Var[X; | X1 =2y — (25 — 5,5, 2('5),)
=TT,
>0,

because 22121‘11212 is nonnegative definite. Therefore, the con-
ditional variance of X, is less than or equal to the unconditional
variance.
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APPENDIX C

THE LEAST SQUARES PREDICTOR

This appendix relies much upon Appendix B, and is similar
to the derivation by Judge (5, pp. 343-346]. We start with the
standard linear model Y = X3 + e, where Y and e are (¢ x 1),
X is (¢ xk), and B is (k x 1). e~ [0,X], not necessarily normal,
where ¥ is symmetric and positive definite. However, the first p
rows of Y have been observed; the last g =t — p rows are to be
predicted. So the partitioned model is:

MR

e P p
Var[l}z[ 1 lzJ_
€ X Xy
The four submatrices of 3 have all the properties described in

Appendix B. Note that the known matrices are Y;, X;, X,, and 2.
Y, is known by observation, and X usually has to be estimated.

where

It is a theorem of matrix algebra that given a symmetric and
positive definite 3, there exists a nonsingular, lower-triangular
matrix W, such that WEW’ = L. Equivalently, ! = WW. A
suitable matrix W can be found by the Cholesky procedure
[Healy, 3, pp. 54f]. W can be partitioned as:

[A(,,x,,) 0(pxq)
C(q xp) I)(qxq)

b

where A and D are nonsingular and lower-triangular. Choose A
such that AX;;A’ = I,, and D such that D(Z,, — £, X' Z,,)D/
=1,. The existence of suitable matrices A and D is guaran-

teed, since X;; and ¥,, — 3,3 11212 are both symmetric and
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positive definite. And let C = -DX,, X!, Partitioned matrix
multiplication will show:

wsw = | Awxp) 0(pxq)} [211 212} [Aipx,,) szq)]
(Caxp Digxppl 10 Zna] [0gup)  Digyq

[

¥ 0.

0 1,

The matrix W provides a convenient linear one-to-one transfor-
mation of the original model WY = WX + We, where We ~
[0, WEW'] ~ [0,L]. In partitioned matrices, we have:

‘A 0][Y,] [A 0][X, A 0][e]
= B+ , and
_C D Yz_ _C D X2 C D ezJ

[ AYI ] [ Axlﬁ + Ael
CY, +DY,| [(CX;+DX,)3| |[Ce, +De,|

Since Y, is unknown, 8 must be estimated from the first p rows.
And since A is nonsingular, the model for estimating 3 may be
reduced to Y, = X3 + e;, where ¢, ~[0,%,,]. Therefore, the
best linear unbiased estimator is (see Appendix A):

B = X\ =X X 2'Y)
=B+ X=X (X S ey)
~ 8, X=X,
Now, instead of considering the predictor of Y,, let us con-
sider the predictor of CY, +DY,. This is easier because its
error term, Ce; + De,, is uncorrelated with the error term

of the AY,, which is Ae;. This is the reason for finding W
such that WEW’ = 1. Therefore, Cov[Ae;,Ce, + De,] = 0, .

Moreover, premultiplying both sides of this equation by A~!
yields Cov[A~'Ae;,Ce; + De,] = Cov[e;,Ce; + De,] = 0, .

And since ,23 is a linear combination of e, this implies that
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Cov[B,Cel + De,] = 0. Hence:
CYl + DY2 = (CX] + DX2),3 + (Cel + Dez)

= (CX, + DX,)3 — (CX, + DX,)(3 — B) + (Ce, + De,)
= (CX, +DX,)3 +h,

where h = —(CX + DXz)(,fi -B)+ (CeL + De,) is the total error
term. E[h] = O(qxl). And, because Cov[3,Ce; + De,] =0,

Var[h] = Var[(CX, + DX,)3] + Var[Ce, + De,]
= (CX, + DX,)Var[3](CX, + DX,)’ +1,,
where, of course, Var[8] = (X|=1'X,)~".
When Y, is observed, ﬁ is determined; and we have:
DY, | Y, = (CX, +DX,)3-CY, +h
Y,|Y, =D (CX, +DX,)3—-D"!CY, +D'h
=D™'CX,8+X,8-D"!CY, +D'h
=X,3-D'C(Y,-X,8)+D'h
~[X,8—-D"'C(Y, - X,8),D"! Var[h]D'" 1.
But D-!C =D !(-DZ,, =) = -%,,=;'. And
D! var[h]D'~!
= D~H{(CX, + DX,)Var[B](CX, + DX,) + I }D/~"!
= D~ (CX, + DX,)Var[3](CX, + DX,YD'"! + D~'D'~!
= (D' CX, + X,)Var[BI(D~'CX, + X,) + (D'D)"!
= (=2, 21X, + Xp)Var[BI(-2,, =X, + X,) + (D'D)"!
= (X, — 35, 51 X)Var[B1(X, ~ £, 21,'X,)’
+(Zo — T Tho).
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Therefore, per the Gauss—Markov theorem, E[Y, | Y,] = Xzﬁ +

DI7SD I (Yl 1,3) is the best linear unbiased predictor. Leaving
aside the meaning of the square root of a variance matrix (i.e., a
standard deviation matrix), we will write this as:

O3(EY, | Y ] - X,8) = {075, S0 HE05(Y, - X, 8)).

The terms on the ends of the equation look like standardized
random vectors, and the middle term looks like a correlation
matrix. This is a matrix generalization of the bivariate conditional
expectation of Section 5 and Appendix B.
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APPENDIX D

THE VARIANCE OF THE RESIDUALS

In Section 7, residuals were studentized; i.e., divided by the
square root of the diagonal elements of a variance matrix. In
this appendix, the expression for the variance of the residuals is
derived.

We have the usual model Y = X3 + e, where e ~ [0, ®]. ® is
symmetric and positive definite, and the rank of X, is k. These

conditions guarantee that (X’®~1X)~! exists. We have shown in
Appendix A:

B=8+Xe® X)) Xd le)~ [3,X'® X))
By definition,

~

e=Y-Y
= X3 +e—Xp3
=e—X(B-P)

=e— XX X)) |(X'®le)

= (- XX& 'X) X' )e.
Therefore,

Var[e]
=1, - XX'® 'X)"X'®d ) Varfe]l(I, - X(X'®1X)"IX'® 1Y
= (I, - X(X'®~'X)"'X'd ), - 2 X(X'®'1X)"1X')
= (® - XX 1 X)"1 X1, - 271 XX'®1X)"'X))
=(®-XX& 'X)"IX) - XXe X)X - XX'®'X)"'X)
=& -XX'& X)" !X,

If instead of ® we have o2&, with 02 unknown, we use the
estimate for o2.
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APPENDIX E

THE BALANCE PROPERTIES OF SECTION 7

The a priori predictions are expressed as a (64 x 1) partitioned

vector ~
)
X,

Let E; be a (36 x 36) diagonal matrix whose diagonal elements
are the exposures (or premiums) in X,. In other words, E is
Scale A; (Exhibit 3) diagonalized and squared. Since the expo-
sure must be positive, E, is nonsingular. Let J; = E7'X;. J; has
ones where X, has positive numbers, and like X, is zero ev-
erywhere else. Let E, (28 x 28) be similarly defined, but with
respect to X,. And let J, = E;lXZ.

The column totals of the a priori predictions are represented
by the (8 x 1) matrix
X, . .
J7 X2l [ IA] =1X,8 + 1X,8.
X,8
Similarly, the column totals of the a posteriori predictions are

Y,
J T =J\Y, + LE[Y, | Y,].
[J; J3l [E[Y2|Y1]J 1Y, +HE[Y, | Y,]

The first balance property to be demonstrated is that these two
vectors are equal, or that their difference is Og,):

0=1J,Y, + BEY, | Y,]1-1X,8-1X,0
= J,(Y, - X,8) + JH(E[Y, | Y;1- X, )
= J\(Y, - X, B) + Jy(Ep (Y, — X, 8))
= I + B, =Y, - X, B)
= Sy + 1 5)ERN(Y, - X, 8).
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But, since 8 = (X, Z'X)" (X, ='Y)),
X=X )8 =X =Y.

Hence,
0=X,=(Y, - X,5).

Therefore, if we can show that (J13;; + J,X,,) can be factored
as the product of some matrix and X', then we will have proved
the first balance property.

We need to define some more notation. Let L; be the (36 x 36)
diagonal matrix of the variance relativities that were introduced
into the weighted regression to remove heteroskedasticity. In
other words, E;L, is Scale B, (Exhibit 3) diagonalized and
squared. Of course, since both E| and L, are diagonal, E|L, =
L,E;.

Therefore, X, = L{E{ P, E{L9. (To be more accurate,
we should introduce the proportionality constant ¢2. However,
the same constant would apply to 33,,, and the balance property
is unaffected.) P,; is shown in Exhibit 6, and it is easy to see
that P;, and E; commute. Therefore, £, = L9°P| Ly times
E,, where E| can be inserted anywhere after the equals sign. Py
and L, do not commute, so the two factors of L?-S cannot be

combined. So, J| 2, = J|E,LOSP,;, L5 = X/ LO5P, LS.

Moreover, ,; = LISE) P, E9SLY, where L, (28 x 28) is
similar to L, in that E,L, is Scale B, (Exhibit 3) diagonal-
ized and squared. P,, is also shown in Exhibit 6, and it is
not hard to see that E;P,; = E3°P, E{> = P, E,. Of course, the
Es and the Ls commute. Therefore, J,3,; = J,E,LIP,, L) =
X,L95P,, LY.

Let L without any subscript be the (8 x 8) diagonal ma-
trix whose elements are the eight homoskedasticizing relativi-
ties. Again, it is not too hard to see that LX| = X|L,, and that
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LX) = X, L,. Therefore,
(12 + 155 = XL P LY + X5L9°P, LY
= LOSX| P, LY + LOSX, P, L0%
- =LYX|Py; + X3Py )L)?
= L(J\E(Py; + JE, P LY
= L%(J1Py E + J5Py ELY?
= L%(J1Py; + J5Py)ELY>.

We will show that (J1P; + J,P,,) can be factored as QJ for
some Q. Then

F1Zy +155,) = LY QU E LY
— LOSQXIl L(I)S
— LO'SQLO'SX’I )

As we saw earlier, this will amount to a proof of the first
balance property. The considerable maneuvering to this point is
to show that the result is independent of exposure and variance
relativity, as long as exposure is constant by accident period and
variance relativity is constant by age.

The remainder of the proof relies on the fact that the error
correlation matrix is first-order autoregressive by accident pe-
riod. The (36 x 8) matrix J; can be considered as a left-justified
stack of identity matrices:

_18-
I;
Jy = . = Left(Ig,I;,....I)).

T,
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This notation can be made formal. The gaps to the right side
caused by the decreasing dimensions of the identity matrices are
filled with zeroes. Therefore,

J,l = [18 17 s Il] = TOP(Is,I-,,...,Il).

We can write P, as Diag(Vg,V5,..., V), where V; is (i x i). As
an example,

—pO pl p2 p3-
V. = pl ,DO ,01 p2
4=t 2 1 0 1
pe P P p
L 2 ot O

According to the rules of multiplying partitioned matrices,
J1P1 = Top(Vg,Vy,....V)).

Similarly, J, = Right(I;,I,,...,I;). However, this is a (28 x 7)
matrix. But we need to make it a (28 x 8) matrix by padding it
with an extra leftmost column of zeroes. So we will say that J,
= 0(28X1) “ Right(ll,lz,. oo ,17). And JIZ = 0(1X28) //Bottom(ll,lz,
.. I7).

It is not so easy to see how J,P,, works. However, just as pre-
multiplying P;; by Jj had the effect of elevating the submatrices
of P,; to the top of an (8 x 36) matrix, so too a little thought will
convince the reader that premultiplying P,, by J, has the effect
of dropping the submatrices of P,; to the bottom of an (8 x 36)
matrix.

The sparse, or zero, areas of J| P, and J,P,, are complements
of each other. The first eight columns of J| P, + J;P,; contain
V3. The next seven columns contain Vg without its last column.
The next six columns contain Vg without its last two columns.
The pattern continues down to the last column, which contains
the first column of V. But this is also the result of multiplying
Vg by Top(g,I;,...,I;). Therefore,

JiPyy + 5Py = Vg Top(Ig,I7,....Iy)
- QJ,.
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This is the factorization that we sought, so the proof is com-
plete. Notice that even though we proved the property for eight
accident periods, the proof can easily be generalized to any num-
ber of periods greater than or equal to two.

The second property can be treated succinctly.

’ ’ 1
5 g,

represents the column totals of the a posteriori predictions. Each
column total needs to be divided by the total exposure. As an
(8 x 8) matrix, this is

1 / Xl 7 /
[J7 J21 X =11 X, + 1 X,.
2

One can verify that this is an (8 x 8) diagonal matrix, each diago-
nal element of which is the sum of all accident period exposures.
So the column weighted averages are

SR 3] B o orl N
R b & L2 EIY, | Y))

= J X, + LX) 1Y, + BLE[Y, | YD
= 3 X, + 1,X) '3 X, B + 1,X,06)

= X, + 1X) (X, + BX,)B

_ 5.




