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THE COMPUTATION OF AGGREGATE LOSS DISTRIBUTIONS
JOHN P. ROBERTSON

Abstract

Paul R. Halmos recently hailed the fast Fourier transform
as one of the 22 most significant developments in mathematics
in the last 75 years. This paper provides an application of this
tool to the computation of aggregate loss distributions from
arbitrary frequency and severity distributions. All necessary
mathematics is developed in the paper, complete algorithms
are given, and examples are provided. Sufficient details are
given to allow implementation in any computer language, and
sample APL computer language routines are given. The final
section includes a discussion of excess loss distributions where
computation is not limited to the fast Fourier transform based
algorithm.

I thank Walter R. Stromquist, Joseph L. (“Joth”) Tupper, Gary G. Venter,
and the Committee on Review of Papers for their help with and suggestions
regarding this paper.

1. INTRODUCTION

According to Halmos [1], the fast Fourier transform is one of this
century’s most significant mathematical developments. This paper pre-
sents an algorithm for computing aggregate loss distributions using this
device. The algorithm assumes that one knows the claim count distribu-
tion, T (the probability distribution of the number of claims that will
occur), and the severity distribution of a single claim, §=§,=5,=... (the
distribution of the amount of a single claim). The algorithm computes the
aggregate loss distribution,

AGG =8+ 85, +...+5¢
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(the distribution of the total amount of claims). The algorithm applies to
arbitrary frequency and severity distributions.

As an example, claim counts might be expected to follow a Poisson
distribution with mean 10, and severity might be cxpected to follow some
distribution with mean $10,000. This implies that the mean of the aggre-
gate distribution is $100,000 (10 times $10,000). In any given year, the
total amount of claims might vary from $100,000 because the actual
number of claims might differ from 10, and because individual claims
will vary from the $10,000 mean. The aggregate distribution expresses
the probabilities of the possible total amounts of claims in the same way
the severity distribution expresses the probabilities of the amounts of a
single claim.

The algorithm given here is less of a “black box™ than some other
algorithms presented in these Proceedings in the following way. The
algorithm, as a matter of course, computes the distribution for the sum of
n claims, where n is any number of claims with nonzero probability in the
claim count distribution. While the computer routines presented herein do
not save these distributions, only trivial programming changes are needed
to capture and save these distributions for later usc. Capturing these dis-
tributions can be useful when the resulting aggregate distribution has
unexpected properties and one wants to check that it is being correctly
computed, or for other reasons.

The method presented here should be considered to be approximate.
Technically, it is an exact method, but it is generally necessary to use an
approximation of the severity distribution as input, and this makes the
output approximate. The running time for the algorithm is roughly pro-
portional to the number of claims expected. For small numbers of claims,
this method seems to be faster than other methods (e.g., Heckman and
Meyers [2]), but this advantage disappears as the number of claims
grows. The algorithm presented here explicitly computes the entire aggre-
gate distribution up to a specified limit, making it easy to derive any
statistics of the aggregate distribution.

A quick overview of the algorithm is as follows. Everything in this
summary will be described fully below, as it is not possible to give brief
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rigorous definitions of all the concepts used. The severity distribution will
be given a discrete representation; that is, the severity distribution will be
represented by a vector. The n-fold (discrete) convolutions of this vector
with itself are computed. The result of these convolutions is very nearly
the vector representation of the n-fold sum of the severity distribution
with itself. The precise representation of an »-fold sum will be obtained
by computing the convolution of this result with another vector (de-
scribed later) to “spread out” the result a bit more. This representation of
the density function for the n-fold sum of claims is multiplied by the
probability of there being exactly n claims, and these products are added
to get the vector representation of the aggregate distribution.

The discrete Fourier transform is used to compute the convolutions,
and the fast Fourier transform is used for rapid computation of the dis-
crete Fourier transform. Convolutions, discrete Fourier transforms, and
fast Fourier transforms are defined and discussed in Section 2. The pur-
pose of this discussion is to introduce these items and to give examples so
the main structure of the algorithm will be clear. The technical details are
in the appendices. Additionally, Section 2 discusses the vector used to
“spread out” the n-fold convolutions of the vector representing the sever-
ity distribution. Two tactics used to speed the overall computations are
also covered.

Section 3 of the paper walks through the full algorithm. Section 4
gives examples and discusses use of the algorithm. Sufficient details are
given throughout the paper that it shouid be possible to implement the
algorithm in any computer language. As an example, various appendices
show routines implementing the algorithm in the APL computer language.

2. CONVOLUTIONS AND THE FAST FOURIER TRANSFORM

Convolutions

The distribution of the sum of two random variables is given by the
convolution of their respective distributions. Heckman and Meyers [2, p.
32] discuss convolutions for the case of continuous random variables. In
this case, if X, and X, are independent continuous random variables with
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density functions f and g, then the density of the sum of these two vari-
ables, i.e., the density of the random variable X, + X,, is given by the
convolution of fand g, f+g, defined as:

(fg) (v) =j Fy gx—1)dr.

0

For the algorithm presented here, the probability distributions for the
severity of a single claim and for the sum of n claims will be given certain
discrete representations; that is, they will be represented by certain vec-
tors. It will be necessary to compute the convolutions of these vectors.
The definition of the convolution of vectors is similar to the above defini-
tion of the convolution of continuous functions. Let U = (u,, u,, ..., i, )
and V=(v,, v,..., v,_,) be two vectors of the same length, n. Their dis-
crete convolution, W = U#V . is a vector of length 5 defined by:

n—1

w; .y

i
=0

where 0 </ <n— 1 and the indices of the terms v;_; are taken modulo n.
For example, if U = (1,2, 3)and V = (4, 5, 6) , then

U#V = (1x4 +2x6 + 3x5, IX5 + 2x4 + 3x6, 1x6 + 2x5 + 3x4)
=(31, 31, 28).

This definition of convolution is not exactly what is needed here. The
no-wrap convolution of U with V is defined to have the following compo-
nents:

i
M‘l'z Z ll/’ \'('_" .
=0

That is:
Wo = Uy Vo

W, =1 vy Y,



AGGREGATE LOSS DISTRIBUTIONS 61

Wy =ty Vo + Uy V) G Y,

Wn—lzu(i‘!n—]‘l_ul \’r|—2+" '+un—l‘,()'

The no-wrap convolution of (1,2,3) with (4,5,6) is
(1x4, 1x5 +2x4, 1x6 +2x5 + 3x4) or (4, 13, 28).

The no-wrap convolution can be visualized, as below, by taking one
vector, reversing it, and placing it so that its first element is directly below
the first element of the other vector. Then successively shift the vectors
together, multiply elements in the same column, and add the products.
Repeat this until the vectors are completely aligned.

No-wrap Convolution

1 2 3 1 2 3 I 2 3
6 5 4 6 5 4 6 5 4
1 x4 I x5+2x4 I x6+2x5+3x%x4

In contrast, for regular convolutions, the bottom vector i1s wrapped
around as shown below:

Regular Convolution
1 2 3 1 2 3 I 2 3
4 6 5 5 4 6 6 5 4
Il x4+2x6+3X5 I X5+2%x4+3x%x6 I Xx6+2%x5+3x%x4

The analogy of the definition of no-wrap convolution for discrete
vectors to the definition of convolution in the continuous case should be
clear.

One can obtain the no-wrap convolution of two vectors from a routine
that computes (regular) convolutions by padding each of the two vectors
to the right with enough zeroes to double the length of each vector,
performing the regular convolution with these longer vectors, and then
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taking just the left half of the result. For example. the first three compo-
nents of the convolution of U= (u,. u,.u,, 0,00 with
V={(vy, v. V5, 0,0, 0) are:

wo=ty vy + i x0 + 1,x0 + 0x0 + Oxv, + Oxy
=y Vo

W=ty v, + uypvy + X0+ 0x0 + 0x0 + 0x,

Uy V) + Uy vy
Wy=1, Vs + v + a5 v, + Ox 0 + 0x0 + 0x0

=V, b UV T U Yy

The first definition of convolution will always be used (unless other-
wise noted), but generally zeroes will be added to the vectors being
convolved so as to achieve a no-wrap convolution.

Observe that the definition of convolution is vahd when the vector
elements are complex numbers.

A note on notation is needed. The vector U has components u,,, iy, i,
etc., sometimes denoted U[O], U]1]. U|2], ete. In particular, the indices of
vector elements start at zero.

The Discrete Fourier Transform

Complex numbers and complex roots of unity are used extensively in
e 1 . .
what follows. The primitive i roots of unity are

cos(2ra/ny + i sin(2ma/ n).

where « and n are relatively prime and 7 is V—1. The properties of com-
plex numbers needed here are reviewed in Appendix A. and arc also
given in Baase [3, p. 279] and Aho. Hopcraft, and Ullman [4, p. 252].

Given a complex (or real) vector U, the discrete Fourier transform of
U is a complex vector of the same length. As in Baase [3. p. 269], for
nz1, let @ be a primitive 1™ root of unity, and let F be the n x n matrix
with entries f; ; = ©'/ where 0 < i, Jj < n— 1. The discrete Fourier transform
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(DFT) of the n-vector U = (uy, it,, ..., u,_,) is the product FU (with U
treated as a column vector). This is a vector of length » with components:

0 () 0 0
(1)“()"'(1)“1 +...+(!)ll”42+(l)ll”_) N

(} 1 n—2 n—1
(x)ll“+(,l)l(1+...+(1) u,,_2+w "y, s

'uy + 0w, + ...+ @

| ﬁ+(0(”71)(”-”[l

n-—-2

0y + 0" w4+ Din=2),

n—1-
(Note that the DFT of U depends on the o chosen.)

Let FU be the DFT of U. Given FU, U is recovered (i.e., the inverse
DFT is applied to ¥U}) as easily as FU is computed from U. To obtain U
from FU, compute the DFT of FU, divide each resulting term by #, and
reverse the order of the last 7 — 1 elements of this result.

Using the DFT to Compute Convolutions

The DFT helps compute convolutions because
DFT(U+V) = DFT(U) x DFT(V) , or
U=V = INVDFT(DFT(U) x DFT(V)),

where INVDFT is the inverse DFT.

Thus, to compute the convolution of two vectors, one can compute the
DFT of each vector. multiply the DFTs together pointwise, and compute
the inverse DFT. This is known as the convolution theorem, proofs of
which are given in Baase (3, p. 278} and Aho, Hopcraft, and Ullman [4, p.
255].

For example, let U be (1, 2, 3), let V be (4, 5, 6), and let
0=-0.5+0.866/, a primitive third root of unity. Then FU is
(6, ~1.5 - 0.866i, 1.5 + 0.866i), FV is (15, -1.5 — 0.866/, —1.5 + 0.866(),
and the pointwise product, FU X FV, is (90, 1.5 +2.598i, 1.5 — 2.598/).
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To compute the inverse DFT of this last vector, first apply the (forward)
DFT to obtain (93, 84, 93). Then divide cach element by 3 and reverse the
order of the last two elements, giving (31, 31, 28). This matches the pre-
vious computation.

A more thorough example showing the convolution of two vectors
representing severity distributions is given in Appendix B. This appendix
also discusses the inverse DFT.

The Fast Fourier Transform

The fust Fourier transform (FFT) is a particularly fast method for
computing the DFT (and the inverse DFT) for long vectors. Appendix C
gives Baase’s |3, p. 273] version of the complete fast Fourier transform
and inverse FFT. Appendix D gives an APL implementation of these
algorithms.

Why use such a complicated method to compute convolutions (i.e.,
using the convolution theorem and FFTs)? This method is used because,
for long vectors, it’s much faster than more straightforward methods
{such as computing directly from the definition of convolution). Knuth [5,
Vol. 2, p. 651] discusses the number of calculations necded to compute
the fast Fourier transform. Using the FFT to convolve vectors of length
1.024 (2'"") gives a gain in speed by a factor of about 60 compared to the
“naitve method™ of convolution. The time needed by the naive method for
computing convolutions of vectors of length 1 is proportional to #°. More
precisely,1 it is O(n”). The time needed by the method using the convolu-
tion theorem and the fast Fourier transform is proportional to
aln(n)(O(nin(n))), where n is the length of the vectors convolved. For
large n. nIn(n) increases more slowly than ",

In the literature there are several different definitions of the DFT and
FFT that accomplish the same goals but differ in certain details. Be care-
ful before trying to use the algorithms presented here in conjunction with
algorithms that appear in other sources or are available in libraries of
" That the number of computations is O{f (n)) means that there is a constant ¢ such that the

number of computations is less than ¢ x f(n) tor all » greater than some n,.. See Knuth
15.Vol. 1, p. 104].
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computer routines. For example, using the forward FFT from another
source with the inverse FFT given here could produce erroneous results.
Other routines for the DFT and FFT can certainly be used, as long as all
the routines used are consistent among themselves.

In addition to Baase [3, p. 268], the fast Fourier transform is discussed
from several different viewpoints in Knuth [5, Vol. 2], Press, Flannery,
Teukolsky, and Vetterling [6, p. 390], Preparata [7, p. 207], and Aho,
Hopcraft, and Ullman [4, p. 257]. Each of these discusses the theory
behind the FFT, thereby explaining what the FFT is doing and showing
why the FFT is so efficient. Chiu [8] gives an introduction to the fast
Fourier transform motivated by the problem of exact multiplication of
large integers. A detailed implementation of the fast Fourier transform
suitable for Fortran and similar languages is given in Monro [9, p. 153].
Convolution is discussed in Hogg and Klugman [10, p. 42], Feller [11, p.
6], and many other statistics books.

Other methods that use the fast Fourier transform to compute aggre-
gate loss distributions are given by 1. J. Good in Borch [12, p. 298] and by
Bertram [13, p. 175]. The method presented in the latter is summarized in
Bithlmann [14, p. 116].

3. THE ALGORITHM

The Basic Algorithm

The collective risk model will be used to model the claims process.
That is, the aggregate loss distribution is the distribution:

AGG =S, +S,+ ... +5,

where 7 is a random variable for the number of claims and each §; is a
random variable for severity. It is assumed that the §; are identically dis-
tributed and are pairwise independent and that the S, are independent of 7.
This definition of aggregate loss distribution is the same as that given by
Algorithm 3.2 in Heckman and Meyers [2, p. 30]. This model is discussed
in Bithlmann [15, p. 54], Beard, Pentikdinen, and Pesonen [16, p. 50],
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Patrik and John [17, p. 412], and Mayerson, Jones, and Bowers [ 18, p.
177].

There are three inputs to the algorithm. The first, denoted M, is the
smallest number of claims that has nonzero probability in the claim count
distribution. The second, P, is a vector giving the probability density
function of the claim count distribution. P(/) is the probability that there
are exactly i + M claims for 7 2 0.

The third input, 8. is a vector representing the severity distribution as a
piecewise uniform distribution. Due to technicat considerations involving
the fast Fourier transtorm, the length. 2. of S will be an integral power of
two; i.e.. n = 2" for some positive integer k. Let L. be the maximum size of
claim considered. Then each element s, ol § represents the probability
(i+1)

7

. o i .
that a given claim is at least ”L but less than L. The probability

distribution is uniform across each such interval. In other words, the
probability density function, f{v), of the claim size distribution is:

L L -+
s,—+(”]. iorlLS_\'<[”]l‘. 0<i<n-1:
. n
)=
0, forv<Qorxv2L.

As an example, if L is $16.000 and S is (0.50, (.30, 0.15, 0.05). then
there is a 50% probability that any given claim is between $0 and $4,000,
a 309% probability that the claim is between $4,000 and $8.000, etc. The
density function is uniform over the interval $0 to $4,000 at
000125 (= 0.50 = 4,000). Similarly, the density function is uniformly
000075: 1.e., (0.30 + 4,000) over the interval $4.000 to $8.000, and so on.
This is graphed in Figure |. Note that this specification of the severity
distribution is the same as that in Heckman and Meyers |2] but restricted
to uniform intervals.

Define S' inductively as follows. Let S' be the vector of length 2n
obtained by catenating n zeroes onto S. That is,

O s f0<i<n- L
T, ifn<i<2n—1.
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FIGURE 1
DENSITY FUNCTION REPRESENTED BY §
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Let S"=8"+S ~'fori>2.

Let S’ be the same as ™ for the first n elements and be O for subse-

quent elements. Then the first n elements of §' are the first n elements of
the no-wrap convolution of § with itself i times.

Everything will be defined in greater detail below, but the algorithm is

simply summarized as computing:

N . .
2 P(i —~ M) x A'*S',
i=M

where

M is the smallest number of claims with nonzero probability; N is
the largest number,
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P(i — M) is the probability of exactly / claims.,

A’ is a vector of “spreads”™ to be defined later, but, for example,
A= (Y% % %.0.0.0, ... 0).

* is the discrete convolution operator, and

S is the vector that is the no-wrap convolution of the severity distri-
bution, 8, with itself i times.

Very roughly speaking, S' is the density function of the sum of the
original severity distribution, S, with itself 7 times. However, it needs to
be “spread out”™ (in a way that will be made precise below). Certain
vectors of coefficients. A'. to be defined shortly, will be used to “spread
out” the §'. ‘The distribution of exactly 7 claims is given by A"+ S’ More
precisely, A" = §'[j} forO<j<n—~1is

N L ,.'.
F’[(/-Fl)” ]—F [/i ]

where F/(v) is the distribution function for the sum of the severity distri-
bution with itself / times, For 2 < j < 2n — | the values of A" # 8'[/] are not
meaningful.

To see why the A" are needed, let S be a uniform distribution on the
interval 0 to 1. Let n and L be 4. Then S = (1, (. 0. 0). Doing the convolu-
tions gives S =8"=(1,0.0,0.0.0.0.0) for all i. But the distribution
function of the sum of the uniform distribution on [0, 1] with itself should
have nonzero probability not only between () and 1. but also between |
and 2. In fact, this distribution should be (!4, V2, 0.0, 0, 0,0, 0). Simi-
larly, the sum of this distribution with itself three times should be
(V. 73, Y6, 0.0, 0, 0, 0), which has three nonzero terms. A” %S will be
(YA, 15.0,0,0,0,0.0). and A" = $" will be (Y6, 3. Yo, 0. 0. 0. 0. 0).

If § were a discrete distribution, instead of the piccewise uniform

distribution used here. the A’ would not be necessary. (That § = (s, 5. ... )

is discrete means that if v is L, for some i {from O to n— 1, then the
n
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probability that a claim equals x is s;; for other x, the probability is 0. An
example is given in Appendix B.)

Use of a piecewise uniform severity distribution roughly doubles the
running time of the algorithm compared to the time required for a similar
algorithm using a discrete severity distribution. The use of a piecewise
uniform distribution is suggested because the author believes that fre-
quently a piecewise uniform approximation with n vector elements gives
a better approximation to the severity distribution than does a discrete
approximation with 2n vector elements. If the severity distribution is
more accurately approximated, then the resulting aggregate loss distribu-
tion is more accurately approximated. Also, due to memory limitations in
many computers, it is often possible to compute the aggregate distribution
using the piecewise uniform approximation with n vector elements, but it
is not possible (easily) to compute the aggregate distribution using a
discrete approximation with 2n vector elements.

In the next subsection the coefficients A’ are defined so they will
provide the needed spread. Then, the following two subsections cover
two special tactics that substantially speed the running of the algorithm,
Then, the full algorithm is discussed.

The Coefficients Al
Define a} by:
ah=1/1'  forix>1,

a}:O forj>1,
aj’z[: ][ (1'—j)q;::+(/'+l)aj’:_' } fori22,7=1.

Table 1 gives the first few values of a}. For example,

1 1 26 1 57
6_ 1 5 sY_ 1] <0 FLI N
“4‘6(2“3+5“4 )‘ 6[2 1203 120 ] 720
A'is the vector of length 2n whose first # elements are given by the d.,
and  whose last n elements are zero. For example,
A' = (Vag 1oy 1 144.0,0, ..., 0).
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TABLE 1

VALUES OF d!

i 0 1 2 3 4 5
1 1 0 0 0 0 0
2 172 1/2 0 0 0 0
3 1/6 4/6 16 0 0 0
4 124 11724 11724 1724 0 0
5 /120 267120 667120 26/120 17120 0
6 1,720 57/720 302/720 302/720 ST/7200 1/720

The probability that the sum of / unit rectangular distributions is be-
tween jand j+ 1 fori>1and ;>0 is u} . This is the reason these coetfi-
cients provide the needed spread. Appendix E shows this and gives a
more detailed explanation of the reasons these coefticients are needed.

The numerators of the «}, i.e., ila; . are known as Eulerian numbers
and are discussed in Graham, Knuth, and Patashnik [19, pp. 253-258].
Feller [11, pp. 26-29] gives formulae useful tn working with Eulerian
numbers, although he does not mention them by name.

Packing and Unpacking

Two special tactics are applied to make the algorithm run faster. One
is to “pack” the severity distribution into a vector, so that the computation
of the discrete Fourier transform of a given real vector of length 2n is
accomplished, instead, by the computation of the discrete Fourier trans-
form of a related complex vector of length ». This tactic roughly doubles
the speed of the algorithm (with no effect on accuracy because the DFT
of the original vector of length 2# is still what is finally computed), and is
discussed in this sub-section. The second tactic is to compute the M-fold
convolution of the severity distribution with itself using a method which,
for M greater than 3, is faster than the naive method that computes M — 1
convolutions. This tactic is discussed in the next subsection.
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The fast Fourier transform operates on vectors of complex numbers,
but here it is used only to transform vectors of real numbers. As such, half
of the place values are not really being used, because the imaginary parts
of the elements of the input vector are all zero. Clever use of certain
symmetry properties of discrete Fourier transforms of purely real vectors
and purely imaginary vectors, as discussed in Press, et al. [6, p. 398],
allows the following.

To transform the length 2n vector V = (v, v|, ..., v5,,_ ), Where each v;
is a real number, rewrite V as PV = (vy+iv|, vo+ iva, ..., Vo _ 2+ Vo, ),
where 7 is V-1. This is now a complex vector of length n. PV is referred to
as the packed untransformed vector (it is packed because it is written in a
more compact form; it is untransformed because the discrete Fourier
transformation has not yet been applied). Compute the discrete Fourier
transform of PV, and call it FPV. FPV is the packed transformed vector.
Some simple computations on FPV, called unpacking, yield FV, the (un-
packed) discrete Fourier transform of V. While FV is a vector of length
2n, if the first n + 1 elements of FV are known, then the remaining # — |
elements can be deduced using a formula from Appendix F. Similarly, one
can pack the transformed vector in such a way that when the inverse
discrete Fourier transform is applied, the untransformed vector appears in
the form of PV. Note, in particular, that to apply the convolution theorem
to real vectors of length 2n, one can instead work with complex vectors
whose lengths never exceed n + 1.

Packing and unpacking the untransformed vectors is trivial. Depend-
ing on how one represents real and complex vectors this might be a
simple rearrangement, or just a redefinition of the meaning of each ele-
ment of an array. Usually no calculations are needed. Packing and un-
packing the transformed vectors does involve some calculation, but not a
great amount. Details of the algorithms to pack and unpack are given in
Appendix F, and an APL implementation is given in the functions PACK
and UNPACK in Appendix G.

Table 2 shows the steps involved in computing the convolution of two
real vectors when one packs the vectors.
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TABLE 2
CONVOLUTION USING PACKED VECTORS
Real or Trunst or Packed or
Vector(s) Step Complex Length Untransf Unpacked
V.W Start Real 2n Untransf Unpacked
4
PV, PW Pack Complex " Untransf Packed
!/
FPV, FPW Apply DFT Complex " Transt Pucked
U
FV,FW Unpack Complex n+l Transt Unpacked
i
FU=FVXFW Multiply Complex n+l Transt Unpacked
U
FPU Pack Complex " Transf Packed
4
PU Inv DFT Complex n Untranst Packed
4
U Unpack Real 2n Untransf Unpacked

While packing and unpacking add four steps to the above, the time
saved by transforming vectors of length n instead of 2n is more than
offsetting. In practice, the untransformed vectors are usually kept packed,
thus further reducing the number of steps.

Binary Exponentiation

Before discussing the second special tactic directly, consider an analo-
gous question: how many multiplications are needed to compute
2'" One way to compute 2" is (0 start with 2, and then repeatedly
multiply by 2, doing 99 multiplications. Another way is to use the follow-
ing formula:

2][)(! - ((((( 22 % 2 )3)2)2 x 2)2)3 .

Each operation of squaring is one multiplication and twice an interme-
diate result is multiplied by 2, so this computes 2'"" with only eight
multiplications.
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In general, to compute &” for n > 1, one can apply the following algo-
rithm. Express # as a binary number, /., and drop the left-most digit
(which is always 1). Set z equal to «. Loop: if there are no digits left in b,
then stop; z is . If there is at least one digit remaining in b, square z. If
the current left-most digit of b is 1, then multiply z by a. Drop the left-
most digit from b. Go back to the step labeled “l.oop.”

The binary representation of 100 is 1100100. Dropping the first digit
gives 100100. Following the steps above, set = to 2, then square, multiply
by 2, square, square, square, multiply by 2, square, and square.

This is called a left-to-right binary method for exponentiation and is
discussed in Knuth [5, Vol. 2, p. 441] (along with even faster methods).

This is used as follows. For some applications of the overall algo-
rithm, the smallest number of claims with nonzero probability, M, will be
greater than one. In these cases, this method is used to compute
SM=8= 8% .. xS§ (with M factors of S, here the * is the Nno-wrap convo-
lution). That is, M is written as a binary number, and the left-to-right
binary method is applied, with no-wrap convolution at each step instead
of multiplication. Since convolution is associative, SY is well defined, and
this is a correct way to compute S™.

The Full Algorithm

Now the full algorithm can be described. Figure 2 outlines the algo-
rithm using a flowchart. The notation used is described in the presentation
of the complete algorithm, below. A summary of the meaning of each
variable is given in Table 3.

The complete algorithm is as follows.

Algorithm for Aggregate Loss Distribution: Let M be the smallest
number of claims with nonzero probability, let N be the largest number of
such claims (V= 1and N >2M), let P be the vector of probabilities of
M. M+1,M+2, ... N claims, and let § be the vector representing the
density function of the claim severity distribution. The length of § is
n =2* for some positive integer k. All vectors are indexed starting at 0, so
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FIGURE 2
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FLOWCHART FOR COMPUTATION OF
AGGREGATE LOSS DISTRIBUTION

Step 1
Start

Step 2
Branch depending
on value of M.

- - [
M 0 ;———————————J l M 1 4} M > 1
Step 3 Step 4 Step 5
Set PZERO = P[0]. Set PSI = PS2, Set AGG=0, i=M.
Drop first s AT = (.5, .5), Compute PSI
element of P. AGG = P[0]xPS1, using binary
Reset M = 1. and 1 = 2. tactic. Compute
AI.
Steps 6, 7, 8
Compute PY = PSIxAI.
¥
Step 9
Add P[i-M]xPY to AGG.
Main
Loop l
i>N Step 12
Step 10 Done Reformat
Reset i=i+l1. See if i>N. AGG into
a real
vector.
i s N
Not done

Step 11
Compute next PSI, AI.

Exit
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TABLE 3

VARIABLES USED IN THE MAIN ALGORITHM

INPUT VARIABLES:

n

M

z

Length of vectors which will be subjects of the FFT or inverse FFT.
n=2" for some positive integer k.

Smallest number of claims with nonzero probability.
Largest number of claims with nonzero probability.

Probabilities of M through N claims (po = probability of M claims,
p1 = probability of M + 1 claims, ...).

Severity distribution. S is a real vector of length n.
S =050, 81, e, Sn—1)

MAIJOR VARIABLES:

i
PS1

FS1
PsI
SI1
FSI
Al
AGG

Index giving the current number of claims.

Packed severity distribution,
(sp+isy, 82 +183, . Sp-2+i5,-1,0,0, ..., 0). (Here i is V=1 .)

Transformed (unpacked) severity distribution.

Packed severity distribution convolved with self i times.

Severity distribution convolved with self i times. (Unpacked PSI.)
Transformed severity distribution convolved with self i times.
Vector of spread coefficients, (af)‘ a'i. )= A

Aggregate distribution,

MINOR VARIABLES:

PZERO
BIN

FSIFLAG
X

i)

Y

PY

Fal

FY

Probability of zero claims.

Initialized to the binary representation of M, and used in the binary
exponentiation tactic.

Flag to determine whether FSI has been computed for the current /.
Unpacked PSI.

Index used in Step 7.

Becomes AI*X.

Packed Y.

Transformed AL

Transformed ¥ = FSI x FAI
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the indices tfor S run from 0 to n— 1. The result will be AGG. a vector
representing the aggregate distribution.

1.

2

5.1

5.3.

[Some initializations.] Set AGG 10 be a complex vector of length 1
all of whose elements are zero. Pack § into the complex vector PS1
of length # so:

PSI = ( Sotis; s+ s Ly, s, 0,00 ()).

Here i is V-1. Set PZERO. the probability of exactly 0 claims. 10 0.

|Branch depending on the value of M.] It M 15 0, goto Step 3. It M
is 1, go to Step 4. If M is greater than 1, goto Step 5.

{Initialize (t M = 0.] Let PZERO be P1O]. Drop the first element
from P. Let M be 1.

[Initialize if M =0or |.] Let AGG be P[O] times PSI. If Nis 1, go
to Step 10. Let £S17 be the unpacked DFT of PSI. Let PSI be the in-
verse DFT of the packed pointwise product of FST with itsclf. Set
the last 11/2 elements of PST to 0. Let AT be the two-clement vector
(0.5,0.5). Let i be 2. Go to Step 6.

[Begin procedure if M > [.] Let BIN be the binary representation of
M. Drop the first (left-most) digit [rom BIN. Let FSI and FS51 be
the unpacked DFT of PSI.

[Convolve PSI with itself or PST with itself.] Let FSI be FSI times

itself. Let PST be the inverse DFT of the packed FSI. Sct the last
n/2 etements of PSI to (). If the first digit of BIN is 0, go to Step 5.3.

2. |Convolve PSI with PS1.] Let FSI be the unpacked DFT of PSI.

Let FSI be FSI times FS1. Let PSI be the inverse DFT of the
packed FSI. Set the last /2 clements of PSI to ().

[Check whether finished.] Drop the first digit from BIN. If there are
no digits left, go to Step 5.4 Otherwise, let FSI be the unpacked
DFT of PSI. Go to Step 5.1.
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{Initialize AI in the case M > 1.] Use the formula:
dy=1/it  forix>1,

q}z() forj=1,
; | Cow o . - . .
a}:[ij[(z—j)a}:+(‘1+1)a_; '] fori=2, j>1

to compute Al = A" = (af,” ay,..ay_, ) Let i/ equal M.

[Start main loop.] (When this step is reached for the first time, FS1
has been computed, PSI and Al have been computed for some 7 at
least 2, and AGG has been initialized.) Let FSIFLAG be 0 (will be
used later to determine whether FSI has been computed). If i is
greater than or equal to 100 go to Step 8.

[Convolve AT and ST without using DFTs. (SI is the severity distri-
bution convolved with itself i times.)] Unpack PSI and let X be the
first n elements of the result. Let / be 0 and Y be a (real) vector of
length n with all elements O.

[Loop.] Let Y be ¥ plus Al[j] times X. Add 1 toj. If j is greater than
i minus 1 go to Step 7.2. Drop the last element of X and add a 0 as
the first element. Return to the start of this Step (7.1).

[Exit Step 7.1.] Add n zeroes to the end of Y, pack and call the re-
sult PY. Go to Step 9.

[Convolve AI and ST using FFTs.| If AT is of length less than n, add
zeroes until a vector of length 2# is achieved; otherwise take the
first n elements of AI and append » zeroes. Pack this vector, com-
pute the DFT, unpack the result and assign it to FAI. Compute the
DFT of PSI, unpack, and assign the result to FSI. Set FSIFLAG to
1. Let FY be FSI times FAI. Pack FY, apply the inverse DFT, and
assign the result to PY. Set the last #/2 (complex) elements of PY to
0.

[Add new packed AI = SI ( =PY) to AGG.] Let AGG be AGG plus
P[i— M | times PY.
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10. [Increment /] Setitoiplus I.If /is greater than N, go to Step 12.

11. [Compute next AI, PSI.] If FSIFLAG is 0, compute the DFT of
PSI. unpack, and assign the result to FSI. (If FSIFLAG is 1, itis be-
cause FSI was computed in Step 8.) Let FSI be FSI times FS1.
Pack FSI, compute the inverse DFT, and assign this to PSI. Let the
last n/2 elements of PSI be (). Compute the next A7 using the for-
mula in Step 5.4. Go to Step 6.

12. [The end.] Let AGG be the first n elements of AGG unpacked. Add
PZERO to AGG|0).

The first two steps do some initializations and branch depending on
the value of M. If M is O, the algorithm essentially converts to the case
where M is 1. If M is 1 (or 0) the first steps set AGG to be PSI, compute
FS1, and compute PSI and Al for/ = 2. Then comes the main loop. If M
is greater than 1, the binary exponentiation tactic is used to compute PSI
for i =M. Al is also computed for i =M.

The main loop repeatedly computes the convolution of AI with SI,
multiplies this by P|i - M|, and adds the result to AGG (actually, the
untransformed packed result is added to AGG). Note that the convolution
of AI with SI is the distribution of exactly / claims. If / is less than or
equal to N the next PSI and AT are computed and one continues with the
main loop. (Note that each PSI is computed trom the PST for the previous
i) If [ is greater than N, one exits the main loop, reformats AGG, and
folds in PZERQ. Observe that FSI is always recomputed from a current
PSI which has had its “tail” (the last #/2 elements) set to zero. This gives
the no-wrap convolutions that are needed, instead of regular convolutions,

Sometimes the algorithm computes the convolution of AI with PSI
through use of the convolution theorem and FFTs, and sometimes it per-
forms this computation directly. For “short™ A, implicitly defined above
as having 100 or fewer nonzero terms, it is faster to compute the convolu-
tion directly. Once Al becomes “long,” it is faster to use the convolution
theorem. In another implementation (using different hardware or soft-
ware), it might be more efficient to set this cut-oft of 100 to a higher or
lower number.
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Note that if there are fewer than » nonzero terms in Al only the
nonzero terms are kept, and one pads to the right with zeroes when a
vector of length » is needed. This differs slightly from definitions of Af
given earlier.

APL functions implementing the complete algorithm are given in Ap-
pendix H.

4. EXAMPLES AND ADDITIONAL DISCUSSION

This section will give some examples of the use of the algorithm,
show how parameter uncertainty can be reflected in the aggregate distri-
bution, and discuss the computation of aggregate excess distributions.
Comments in the first two areas are specific to this fast Fourier transform
algorithm, but comments on the third topic apply generally.

Examples

Three examples of use of this algorithm will be given. The first is
simple and is intended to be easy to reproduce in order to test an actual
implementation. It is not meant to be realistic. The second example is
more typical of actual distributions that arise in practice. The third exam-
ple is reasonably realistic, but is really meant to illustrate the flexibility of
the algorithm.

The first example will compute the distribution of exactly five claims,
with each claim following a uniform severity distribution. Let k = 5, so
n = 32. (That k = 5 has nothing to do with the fact that the distribution of
five claims is being computed; this is a coincidence.) The claim count
distribution is defined by setting M = 5, and making P be a vector with
one element, (1). The severity distribution, S, is a vector of length 32 (=
n), and L is set to 6.4, so each element of S covers a range of 0.2 (=
6.4/32). Letting S be the uniform distribution on [0,1], gives:

$=(02,02,02,02,02,0,0,..,0).

The output is a vector of length 32, AGG, a complete listing of which
is given in Table 4. Since the sum of five claims, each no greater than 1,
cannot exceed 5, only the first 25 elements of the output are nonzero. It is
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TABLE 4
AGGREGATE DISTRIBUTION FOR EXAMPLE |

Index Range AGG|i) Cumulative Distribution
0 00-02 0.000003 0.000003
1 02-04 0.000082 £.00008S
2 0.4-0.6 0.000563 0.00064%
3 0.6-0.8 0.0020%3 0.002731
4 0.8-1.0 0.005603 (LO0N8333
5 1.0-1.2 0.01238y 0.020723
6 1.2-1.4 0.023660 0.044392
7 1.4-1.6 0.039749 0.084141
8 1.6-1X 0.059669 0143811
Y 1.8-2.0 0.081189 0.225000

1 20-22 0100816 0.325%16
11 22-24 0114496 0440312
12 24-206 0.119376 (1.559688%
13 26-28 (114496 0.674184
14 28-3.0 0100816 0.775000
15 3.0-32 0.081189 0.856189
16 32-34 0.059669 0.9158359
17 34-36 0.039749 0.955608
1% 3.6-38 0.023609 0.979277
19 38-34.0 0.012389 0.9910667
20 40-42 0.005603 0997269
21 42-44 (LOO2083 (1.H99352
22 44-4.6 (1,000563 0).999915
23 4.6-48 0.000083 0.999997
24 48-50 (1L.00000 3 1.OOO0GO
25 5.0-52 0.000000 1000000
26 52-54 0.000000 1000000
27 54-56 0.000000 1.000000
o8 56-5.8 0.000000 100000
29 58-6.0 0.000000 1.000000
30 6.0-6.2 0.000000 1.000000

3] 6.2-64 0.000000 1000000
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straightforward to check that the result is the sum of five uniform distri-
butions. (Recall that the A’ summarize the sums of uniform distributions.)
For example, the sum of the first five elements of the result is .008335,
which (up to rounding error) is 1/120, and this agrees with the theoretical
sum. Similarly, the sums of the second through fifth sets of five elements
are 26/120, 66/120, 26/120, and 1/120. (Ambitious readers can check that
the intermediate values are also correct. Feller [11, p. 27] gives the
needed formulae.)

The second example is more in line with distributions that arise in
practice. In this example, & = 10, so n = 1,024. The claim count distribu-
tion is negative binomial with mean 10 and variance 12. For input, M
equals 0 and P is a vector of length 42, giving the probabilities of 0
through 41 claims. Actually, for the probability of 41 claims the probabil-
ity of 41 or more claims is used, so the total of the elements of P is
exactly 1.0. The probability of there being 42 or more claims is less than
10", 0 including this in the probability of there being exactly 41 claims
is not significant. The values of P are shown in Table 5. This distribution
is shown in detail for the benefit of readers who want to reproduce this
example.

The severity distribution is a two-parameter Weibull distribution with
mean $10,000 and coefficient of variation 8 (standard deviation divided
by mean). The mean and coefficient of variation completely define the
Weibull distribution. For the interested reader, note that the parameteriza-
tion of the Weibull distribution used has distribution function

F() = 1 — ™" with b= 454.82609 and ¢ = 0.25371. Any other severity
distribution could be used in place of the Weibull, including lognormal,
Pareto, or an empirical fit to data. Losses are capped at $250,000 per loss.
An L of $1,000,000 is chosen to be large enough to cover the highest
values needed in the aggregate distribution. S is then a vector of length
1,024 with each element covering a range of $1,000,000/1,024, or about
$977. As losses are capped at $250,000, only the first 256 elements of S
will be nonzero.

To determine the values of §, a variant of a method of Venter (20, p.
21] is used. S is to be a piecewise uniform approximation to the Weibull
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TABLE S

CLAIM COUNT DISTRIBUTION FOR EXAMPLE 2

Number of Claims
0

e SRS Be T AT SRS SV

L X A s~ T O

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
EN]
36
37
33
39
40
41

Probability of Given
Number of Claims
1LOOKRSE-4
GASTOTE4
0.00389175
0.01124284
0.02482795
(104469031
0.06827686
000103581
(L1OR10503
011611281
011417760
0.10379781
(LORT7YIYR]
Q.0699008%
0.05242566
0.03728047
0.02524198
0.01633305
001013254
0.00604397
0.00347528
(L.00193071
000103849
S.41821E-4
2.74673E-4
1.35505E-4
6.51468E-5
3.05627E-5
1.40079E-5
6.27940E-6
2.75596E-6
1.18536E-6
5.00074E-7
2.07101E-7
8.42617E-%
337047E-8
1.32634E-8
SA3ARIE-Y
1 9606E-Y
7.373E-10
2.734E-10
L.560E-10

Cumulative Distribution
LOYKESE-4
1.O2S59E-3
0.00491735
001616019
0.040988 14
0.08567845
0.15395531
(0.24499112
035309615
0.46Y20896
(1.58338650
0.68718437
0.77512418
(.84502506
0.89745072
093473119
.95997317
(L97630622
0.98643876
099248273
0.99595801
0.99788%73
,99892722
(.99946904
0.99974371
(.99987422
0.999944 36
0.99997492
0.99998893
0.99999521
0.99999797
(19999991 5
0.99999965
0.999999%6
0.99999994
.99999948
01.999999499
100000000
100000000
1.OOOGONG0
1.00000000
100000000
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distribution. To achieve this, pairs of consecutive elements (s,;, 55; ;) of S
are chosen subject to two constraints:

+ over each interval {21’ né (2i + 2)-né the integral of S and the inte-
gral of the Weibull density are the same, and

» over the same intervals the integral of the first moment distribution of
S and the first moment distribution of the Weibull are the same.

If RR and S§S are the integral of the density function and the integral of
the first moment distribution of the Weibull (or whatever distribution is
being approximated) over the above interval then

$y = ( 2i + 2 ) RR - QSL”

$2i41=RR =5y,

No properties of the Weibull are used in the formulae above; they
apply to any distribution, including empirical distributions.

When this method is applied in this particular case, the second element
of § becomes negative. Thus, some additional fiddling is done on the first
12 elements of S so that the two constraints are satisfied for these 12
elements taken together, but not pair-wise. Selected values for S (includ-
ing the first 12 elements) are shown in Table 6. Note in particular that the
value of .007072 is the probability of the severity being in the interval
$249,023 to $250,000 plus the probability of the severity being over
$250,000. This latter probability has been spread over the interval.

Selected values of the resulting aggregate distribution are shown in
Table 7. Column (3) is selected elements of the vector AGG output by the
algorithm. Each element, ¢, of AGG is the (exact) integral of the density

function for the aggregate distribution over the interval

{zf; (i+1)- 1’; . For the purpose of interpolating values between inte-

gral multiples of L + n it is assumed that the density at each point in an

interval is t,+[%]. Column (4) is the distribution function,
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TABLE 6

DISTRIBUTION OF SEVERITY OF SINGIL.E CLAIM FOR EXAMPLE 2
Probability Distribution of a Single Claim

Index High End of Range* St/ Distribution
0 $977 0.716463 0.716463
1 1,953 0.114281 0.830745
2 2,930 0.015000 0.845745
3 3.906 0.015000 0.860745
4 4.883 0.010000 0.870745
5 5.859 (.005000 (.875745
6 6.836 0.005000 0.8807445
7 7.813 0.005000 (0.885745
8 8,789 0.003000 0.888745
9 9,766 (0.003000 (1.891745
10 10,742 0.003000 0.894745
11 11.719 0.003000 0.897745
12 12.695 0.004750 0.902494
13 13,672 0.004140 0.906634
14 14,648 0.003384 0.910518
15 15,625 0.003441 0.913959
74 73,242 0.000331 (0.973485
75 74219 0.000321 0.973806
76 75.195 0.000316 0.974122
77 76,172 0.000307 0.974429
78 77.148 0.000302 0.974732
101 99,609 0.000194 0.980249
102 100.586 0.000192 0.980440
103 101,563 0.000187 0.980628%
123 121,094 0.000137 0.983819
124 122,070 0.000136 0.983955
125 123.047 0.000133 0.984088
235 230.469 0.00004 1 0.992213
236 231,445 0.000041 0.992254
237 232422 0.000040 0.992294
253 248,047 0.000035 0.992893
254 249,023 0.000035 0.992928
255 250,000 0.007072 1.000000
256 250,977 0.000000 1.000000
1,023 1.000,000 0.000000 1.000000

*Each range has width of about 977.
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TABLE 7

DISTRIBUTION OF AGGREGATE LOSS AND FIRST MOMENT
DISTRIBUTION FOR EXAMPLE 2

Aggregate Loss Distribution First Moment Distribution
High End of
Index Range* AGG|i] Distribution Density** Distribution**
() (2) (3) (4 (5) (6)

0 $977 0.002812 0.002812 1.373 1.373
I 1,953 0.010576 0.013387 15.492 16.865
2 2,930 0.021673 0.035061 52913 69.778
3 3,906 0.031214 0.066275 106.689 176.467
4 4 883 0.036124 (.102399 158.750 335.217
5 5,859 0.036358 0).138758 195.284 530.501
6 6.836 0.033510 0.172268 212712 743213
7 7.813 0.029312 (1.201580 214.687 957.900
12 12,695 0.013517 0.294650 165.005 1,884.273
13 13,672 0.012153 0.306802 160.216 2,044,489
14 14,648 0.011327 0.318129 160.388 2,204.877
15 15,625 0.010936 0.329065 165.539 2,370.416
74 73.242 0.003134 0.691222 228.013 16,154.978
75 74.219 0.003082 0.694304 227.219 16,382,197
76 75,195 0.003031 0.697335 226.418 16,608.615
77 76,172 0.002981 0.700316 225.611 16,834.226
78 77,148 0.002932 0.703248 224.797 17,059.023
123 121,094 0.001553 0.798766 187.309 26,306,223
124 122,070 0.001534 0.800300 186.519 26,492.741
125 123,047 0.001515 0.801816 185.732 26.678.473
150 147,461 0.001138 0.834470 167.189 31.076.113
151 148,438 0.001125 0.835595 166.494 31,242.606
152 149414 0.001113 0.836709 165.802 31.408.408
153 150.391] 0.001101 0.837810 165.114 31,573.522
154 151.367 0.001090 0.838900 164.429 31,737.951
235 230,469 0.000520 0.899889 119.608 43,086.466
236 231,445 0.000516 0.900405 119.168 43.205.634
237 232,422 0.000512 0.900916 118.731 43,324,364
253 248,047 0.000453 0.908589 112.035 45.166.396
254 249023 0.000449 0.909038 111.635 45,278.031
255 250,000 0.000507 0.909546 126.564 45,404.595
256 250,977 0.000830 0.910376 207.973 45,612.569
283 277,344 0.000836 0.949716 231.421 55.893.081
284 278,320 0.000813 0.950530 225.980 56,119.061
285 279,297 0.000792 0.951322 220.846 56,339.908
419 410,156 0.000097 (1.Y89983 39.907 68,828.765
420 411,133 0.000096 (.990080 39.546 68,868.312
1,022 999,023 0.000000 0.999996 0.052 73.804.421
1,023 1,000,000 0.000000 0.999996 0.058 73.804.479

* Each range has width of about 977.
*% These columns have been multiplied by the aggregate mean. This table gives selected vatues of the distributions.,
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fott, + ...+ ¢, ie., the cumulative sum of Column (3). Column(4) readily
gives the dollar amounts (frequently calied confidence levels in the con-
text of aggregate loss distributions) associated with given probability lev-
els, and vice versa. For instance, the probability that aggregate losses will
be less than or equal to $250,000 is 91.0%. By simple interpolation, it is
seen that $75,000 corresponds to the 69.7% confidence level. Again
through interpolation, the 80% confidence level is $121,879.

The expected dollars of loss above and below given aggregate limits
can be quickly determined. Suppose. for example. an insurer has pur-
chased reinsurance that covers all loss amounts beyond a total of
$250,000. That is, the insurer pays the first $250,000 of losses (which
could be one claim or a number of claims), and the reinsurer pays any
losses after the first $250,000. The insurer’s expected loss is:

250,000 o
[ x £ () de +250.000 £y d
0 250.000)

where f(x) is the density function of the aggregate distribution. As Col-
umns (5) and (6) in Table 7 will help calculate this integral, these col-
umns are described next.

Each entry in Column (5) is J..\'f(.\') dv over its interval. For instance,
under the above assumption that the density, function is a constant
0.036358 + 976.5625 across the fifth interval, | v/ (1) dv over the fifth
interval is

(5,859.375)" - (4.882.8125)" _0.036358
2 976.5625

or 195.282. (This is slightly different from 195.284 shown in Column (5)
because the Column (3) entry of 0.036358 is used in the above calcula-
tion, while more significant digits were used in the calculation of Table
7.) Column (6) is the cumulative sum of Column (5). Thus, Column (6)
gives
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(1'+l}1:
i

j-x () dx

0
where [ is the index of the interval.

Returning to the original question, if losses are capped at an aggregate
of $250,000, Columns (6) and (4) show that expected losses are
45,405 + 250,000 x |1 — 0.909546], or $68.019.

The reinsurer is taking both occurrence and aggregate excess of
$250,000, and total expected losses are $100,000 (10 expected claims
times $10,000 expected loss per claim), so the reinsurer’s expected losses
are $31,981 (100,000 - 68,019).

Generally, to compute expected losses for an insurer that retains a
given amount per occurrence and retains a given aggregate, use a severity
distribution capped at the per occurrence limit, compute the aggregate
distribution, and compute the expected retained losses up to the aggregate
limit as was just done above.

The third example is a variation on the second example. The main
purpose is to show how easy it is to use an arbitrary frequency distribu-
tion in the algorithm. For this example, the above frequency distribution
is modified to assume that there is a 90% probability that claims will
follow the distribution in example 2, and an additional 10% probability
there will be exactly 20 claims. The same S as above is used. The modi-
fied P is shown in Table 8, and some of the output is given in Table 9.

Note that the severity distribution, S, used in examples 2 and 3 is only
an approximation to the Weibull distribution. Essentially, having to find a
piecewise uniform function to approximate the true severity distribution,
with each interval being the same size, L + n, means that S is not going to
be precisely the same as the original continuous function. Since § is an
approximation to the true severity distribution, the output is an approxi-
mation to the true aggregate distribution. Comparisons of aggregate loss
distributions computed using this algorithm to aggregate loss distributions
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TABLE ¥

CLAIM COUNT DISTRIBUTION FOR EXAMPLE 3

Number of
Claims
0

~D A e e e —

19
20
21
22
23
24
25
26
27
28
29
30
31
32
23
34
35
36
37
38
39
40
41

Probability of Given
9BRYHIE-S
8.24136E-4
0.00350254%
001011856
0.02234515
0.04022128
0.06144917
008193223
009729453
0.10450153
0.102759%4
0.09341803
0.07914583
0.06291079
0.04718309
0.03355242
0.02271779
0.01469974
0.00911929
0.00543957
010312775
0.00173704
9346414
4.87639E-4
2.47206E-4
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1.2607 {E-5
5.65140E-6
2 ARO30E-0
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TABLE9

DISTRIBUTION OF AGGREGATE LOSSES FOR EXAMPLE 3
Probability Distribution of Aggregate Losses

Index _ High End of Range* __AGG(i] Distribution
0 $977 0.002530 0.002530
1 1,953 0.009518 0.012049
2 2,930 0.019506 0.031555
3 3,906 0.028093 0.059647
4 4,883 0.032512 0.092159
82 81,055 0.002900 0.684594
83 82,031 0.002857 0.687451
84 83,008 0.002815 0.690266
85 83,984 0.002773 0.693039
86 84,961 0.002733 0.695772
87 85,938 0.002694 0.698466
88 86,914 0.002655 0.701121
89 87,891 0.002617 0.703738
138 135,742 0.001420 0.797823
139 136,719 0.001405 0.799228
140 137,695 0.001390 0.800617
141 138,672 0.001375 0.801992
142 139,648 0.001360 0.803352
256 250,977 0.000847 0.898052
257 251,953 0.001418 0.899470
258 252,930 0.002059 0.901529
259 253,906 0.002517 0.904046
260 254,883 0.002688 0.906734
297 291,016 0.000691 0.948843
298 291,992 0.000679 0.949521
299 292,969 0.000666 0.950187
300 293,945 0.000654 0.950841
301 294,921 0.000642 0.951482
451 441,406 0.000091 0.989829
452 442 383 0.000090 0.989919
453 443,359 0.000089 0.990009
454 444,336 0.000088 0.990097
455 445313 0.000087 0.990185
1,021 998,047 0.000000 0.999991
1,022 999,023 0.000000 0.999991
1,023 1,000,000 0.000000 0.999991

* Each range has a width of about 977. This table gives selected values of the aggregate
distribution.
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computed using other methods indicate that the algorithm presented here
gives very accurate answers.

Apart from the need to use a severity distribution that is an approxima-
tion to the true distribution, the algorithm here is precise in the following
sense. Each element of the aggregate loss vector is the exact difference of
the distribution function for the exact aggregate loss distribution over the
interval that corresponds to the element. In particular, this algorithm is not
subject to the convergence difficulties sometimes encountered in certain
characteristic function methods when the probability of a maximum loss
is high. Of course, there is some potential for rounding error, but most
computer languages have a provision for doing calculations to at least 17
decimal place accuracy, and as each element of the result (for n = 1,024;
20 expected claims) is affected by about 100,000 calculations, the result
should be accurate to at least 12 places.

Note also, once Column (3) of Table 7 has been calculated, how
simple and fast it is to calculate Columns (4). (5), and (6). Once AGG has
been computed, there is very little computation time needed to determine
confidence levels, expected losses subject to an aggregate, or expected
losses excess of an aggregate. Also. since the entire aggregate loss distri-
bution (up to some limit) is computed, the computation of any quantity
that is related to the aggregate distribution (e.g., expected sliding scale
commission for a reinsurance contract) is straightforward and fast.

Computational Considerations

The computational time for this algorithm seems to be roughly propor-
tional to the number of elements in the vector P that gives the probabili-
ties of the claim counts. The minimum number of claims for which there
is 4 nonzero probability also has some effect on the computing time. But,
due to the binary exponentiation tactic, the added computing time in-
creases only as the logarithm to the base 2 of the minimum claim count.

Using APL 9 on a 386SX computer with 2 megabytes of RAM, this
algorithm will run with & as high as 10. This makes the maximum length
of certain vectors 2”, or 2,048. Using APL 9, adding memory will not
allow higher values of k because all arrays active at any given moment
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must fit in the workspace available in the first 640K of memory (and this
is about 400K because the APL system occupies about 200K).

It is likely that, compared to the computer programs presented in the
appendices, the computations can be made more efficient in terms of the
amount of memory used. References discuss computing the fast Fourier
transform “in-place,” which would use less memory than the programs
given in the appendices. APL I, or other languages, might allow higher
values of k due to better use of memory above the first 640K.

Increasing & by 1 roughly doubles the amount of memory needed,
because the longest vectors double in length. Computational time is domi-
nated by the time to compute the fast Fourier transforms, and this time
increases by a factor of a bit more than 2 when £ is increased by 1. See
any of the references given above on the fast Fourier transform for a more
precise discussion of the relationship between £ and the time of computa-
tion.

To capture the distribution of the sum of i/ claims for any i with
nonzero probability in the claim count distribution, just capture the PY for
that / from Step 9 of the main algorithm, given above. When using the
same severity distribution but differing claim count distributions to com-
pute several aggregate distributions, the following method might save
some time. Capture all the distributions of the sum of exactly i claims that
will be needed (the PYs above), and then just apply the probabilities
given by the several claim count distributions and add. This can be much
faster than recomputing each aggregate distribution from scratch.

Parameter Uncertainty

Patrik and John [17] distinguish process risk from parameter risk in
estimating the distribution of final actual results relative to the estimated
results. Essentially, if the frequency and severity distributions used are the
best estimates of these distributions, then the calculated aggregate distri-
bution reflects the inherent process risk or process uncertainty.

The extent to which the correct frequency and severity distributions are
not known is termed parameter risk or parameter uncertainty. Some au-
thors add specification error to the list of sources of potential difference
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between actual and expected results. Specification error refers to the fact
that the model being used might not be appropriate. For instance, if it is
known that the claim count distribution is Poisson, but the parameter of
the Poisson distribution is not known exactly, then estimates of the aggre-
gate distribution are subject to parameter uncertainty. If it is not known
whether the claim count distribution is Poisson or some other distribution,
then estimates are subject to specification error. Heckman and Meyers [2]
discuss incorporation of parameter uncertainty into cstimates of aggregate
loss distributions.

Parameter Uncertainty for the Claim Count Distribution

To reflect parameter uncertainty in the claim count distribution, one
could proceed as follows. First, identify all claim count distributions that
might apply, and assign to each claim count distribution the probability
that it is the correct distribution. Then, for each claim count distribution
{and using some severity distribution), compute the aggregate distribu-
tion. Finally, take the weighted average of all these aggregate distribu-
tions, according to the probabilities of the claim count distributions. The
resulting aggregate distribution reflects the various claim count distribu-
tions and the probabilities of those distributions.

For example, one might estimate there is a 20% probability that the
claim count distribution is Poisson with mean 10; there is a 50% probabil-
ity that the claim count distribution is Poisson with mean 20; and there is
a 30% probability that the claim count distribution is negative binomial
with mean 15 and variance 30. (This is not necessarily a realistic exam-
ple.) Then, for instance, the probability of total losses being less than $X
in the combined aggregate distribution would be 20% of the probability
of losses being less than $X in the aggregate distribution generated by the
Poisson claim count distribution with mean 10, plus 50% of the corre-
sponding probability resulting from the Poisson distribution with mean
20, plus 30% of the corresponding probability from the negative binomial
distribution with mean 15 and variance 30.

Fortunately, there is a shortcut that makes it possible to compute the
aggregate distribution that reflects the uncertainty regarding the claim
count distribution without computing a great number of aggregate distri-
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butions. Simply compute the weighted average of the claim count distri-
butions, and then use this distribution in the computation of the aggregate
loss distribution. For instance, using the above example, in the claim
count distribution used as input to the main algorithm, the probability of i
claims would be 0.2x f(i) + 0.5% g(i) + 0.3x h{i), where f, g, and h are the
probability density functions for the Poisson distribution with mean 10,
the Poisson distribution with mean 20, and the negative binomial distribu-
tion with mean [5 and variance 30. This combined distribution would be
used as the claim count distribution in the algorithm to compute the
aggregate loss distribution.

Generally, one will select a family of claim count distributions, and
associated probabilities, so that the mean of the combined claim count
distribution will be the expected number of claims. The variance of the
combined claim count distribution usually will be greater than the vari-
ance of the best estimate claim count distribution. The effect of the com-
bined claim count distribution on the variance of the new aggregate
distribution can be computed by using the formula for the variance of the
aggregate distribution:

2,2 2
My O5 + ls Oy

Here |, and G5 are the mean and variance of the claim count distribu-
tion and p and G§ are the mean and variance of the severity distribution
(Mayerson, Jones, and Bowers [18, p. 179]).

A particularly simple situation results if it assumed that the possible
claim count distributions are Poisson and that the parameters of these
Poisson distributions are distributed according to a gamma distribution
with mean A and variance °. In this case, the resulting overall claim
count distribution will be negative binomial with mean A and variance
A+ . This is discussed in Beard, Pentikiinen, and Pesonen [16, p. 40]
and in Heckman and Meyers [2].

As a practical matter, one frequently has a binomial, Poisson, or nega-
tive binomial distribution as the best estimate of the claim count distribu-
tion, To reflect parameter uncertainty in the claim count distribution used
as input to the aggregate loss distribution algorithm, one might, where
appropriate, simply use a claim count distribution with the same mean
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and a larger variance than the best estimate distribution. For instance, if
one’s best estimate of the claim count distribution is Poisson with param-
eter A then, to reflect parameter uncertainty, one might use a negative
binomial distribution with mean A and variance larger than A.

The three families of claim count distributions mentioned above are
related. For the Poisson distribution, the variance and the mean are the
same. The negative binomial has variance greater than the mean. The
binomial has variance less than the mean. The Poisson is a limiting case
of the negative binomial in that, as the variance of the negative binomial
approaches the mean, the negative binomial approaches the Poisson. The
Poisson is also a limiting case of the binomial.

In conclusion, parameter uncertainty for the claim count distribution
can often be reflected in the computed aggregate loss distribution by
choosing an appropriate claim count distribution with the same me¢an and
larger variance than the best estimate distribution. This allows one to
reflect parameter uncertainty while computing only onc aggregate loss
distribution.

Parameter Uncertainty for the Severity Distribution

To reflect parameter uncertainty for the severity distribution, one can
proceed in the manner first discussed for the claim count distribution.
That is, delineate all the severity distributions that might apply: assign to
each a probability: compute the aggregate distribution using cach severity
distribution; and combine all of thesc aggregate distributions according to
the probabilities of the severity distributions.

Unfortunately, when estimating the effect on aggregate distributions of
parameter uncertainty in the severity distribution there is no shortcut quite
as efficient as the one for claim count distributions. That is, to reflect pa-
rameter uncertainty for the severity distribution. it is not sufficient to use
a severity distribution that is the combination ol the various severity dis-
tributions in the same way that it is possible to use a claim count distribu-
tion that is the combination of the several claim count distributions. Later,
it will be shown why this last statement is true, but methods of reflecting
parameter uncertainty for the severity distribution will be covered first.
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Some simplification in the reflection of parameter uncertainty for the
severity distribution results if all the possible severity distributions are (or
are assumed to be) multiples of some base distribution. More precisely,
this assumption is that if F, is the distribution function of the base sever-
ity distribution, B, and if F, is the distribution function of any other
severity distribution in the family, Y, then there is a constant, ¢, such that
Fy(ex)=F, (v). Normally, this is written B=cY; it follows that
E(Y)=(1/¢) E(B), and Var (Y) = (1/¢) Var (B). Let the constants ¢ be
distributed according to a probability distribution with distribution func-
tion H and density function A.

Let F, be the distribution function of the aggregate distribution com-
puted using the base severity distribution B (corresponding to F,). Then
the aggregate distribution reflecting parameter uncertainty, 7, is given by

T(x)= J F(cx) h(c) dc.
4
If & has a form such that A(z) and th(r) are easily integrated over
arbitrary intervals, and if F, is piecewise linear, then T, above, is easily
computed. For ¢ in the interval [/}, ;] let F () = a; + b;it. Then

I . [ u;/x
f Fy(ex) h(c) de = Z ] (a; + bicx) h(c) de
0 i=0| I /x
- [ i; /s /X
=S\ [ ne) de + b [ ehe) de
i=n| L /x I /x

As a practical matter, the sums above are not taken to infinity, but
rather to a high enough value that sufficient accuracy is achieved. It 4 has
been chosen so that the integrals are easy to compute, T is also easy to
compute.

Next is the demonstration, promised above, that to reflect the effect of
parameter uncertainty in the severity distribution, it is not sufficient to
simply use a severity distribution with a larger variance. To see this,
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consider one way a simulation model could be used to estimate the aggre-
gate distribution. Choose a claim count, n. at random from the claim
count distribution, N. Then # times draw a random claim severity, s;, from
the severity distribution, §. Compute 5, + s, + ... + 5,. This sum gives one
“draw” from the aggregate distribution; that is. it gives one observation
selected at random from the aggregate distribution. Repeat this process,
i.e., make draws from the aggregatc distribution, until the statistics of
interest for the aggregate distribution are known with sufficient accuracy.

There are two methods one might use to retlect parameter uncertainty
for the severity distribution when performing the above simulation. The
first method is to choose a severity distribution at random each time a
severity is needed. Within a given draw, s, , , would potentially be drawn
from a ditferent distribution than the preceding s;. A sccond method is to
fix a severity distribution each time an # is chosen from N. This one
severity distribution is used for all s; in the sum s, + s, + ... + s, corre-
sponding to one draw. Then another # is selected from N, and another
severity distribution, possibly different from the severity distribution used
in the previous draw, is used, and the process continues.

It is the second method that best reflects parameter uncertainty for the
severity distribution. Under this method, only one severity distribution is
used for each draw from the aggregate distribution. In contrast, under the
first method, in many of the draws from the aggregate distribution, some
claim amounts will come from severity distributions with larger-than-av-
erage means and some claim amounts will come from severity distribu-
tions with smaller-than-average means. The effects of severity
distributions with larger-than-average means and severity distributions
with smaller-than-average means will tend to cancel each other to some
degree. Thus, the first method will tend to produce an aggregate distribu-
tion with a smaller variance than is correct. Under the second method,
each draw is influenced by only one severity distribution.

The first simulation method corresponds 1o using a severity distribu-
tion that is the composite of the family of severity distributions being
used to reflect parameter uncertainty. It is the second simulation method,
where cach draw is influenced by only one severity distribution, that
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corresponds to the methods discussed above for reflecting parameter un-
certainty for the severity distribution.

The first and second methods differ fundamentally in the indepen-
dence assumptions among samples from the severity distribution. A more
mathematical discussion of the differences between the two methods,
including a more precise discussion of the difference in independence
assumptions, is given in Appendix I.

Capped Severity Distributions and Parameter Uncertainty

If a capped severity distribution is being used, e.g., losses are capped
at $250,000 per claim, and if parameter uncertainty for the severity distri-
bution is reflected using the method that assumes that all distributions are
multiples of each other, then the loss cap becomes variable. In some
cases, €.g., where the aggregate distribution of a self-insurance program
with a given retention is being computed, it may not be appropriate to
allow the loss cap to vary. There does not scem to be a simple way to
reflect parameter uncertainty for the severity distribution in such a case.

One approach is to increase the degree of parameter uncertainty re-
flected in the claim count distribution to a level above that which would
otherwise be used, and to not reflect parameter uncertainty in the severity
distribution. This approach is not theoretically correct, but, as a practical
matter, might be sufficiently accurate. Another approach is to let the cap
be essentially variable, and perform tests to determine whether this signif-
icantly distorts the results. Finally, and with the greatest accuracy, one can
compute a number of aggregate distributions, each using a different se-
verity distribution with the correct cap, and take the weighted average.

Excess Loss Distributions

The results of this subsection apply to all methods used to calculate
aggregate loss distributions, not to just the algorithm presented herein.
The main results of this subsection appear to be well known, but have not
previously appeared directly in actuarial literature. Schumi {21, 22] has
presented material similar to this result. Bear and Nemlick [23] present
the result in terms of the negative binomial distribution.
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Suppose a claim count distribution, a severity distribution, and the
corresponding aggregate distribution are specified. In regard to the sever-
ity distribution, suppose further that the probability of any given claim
being excess of a given attachment point A is &. Suppose it is desired to
compute the aggregate distribution for claims cxcess of A (this A has
nothing to do with the vector of spreads A used previously). For example,
the aggregate distribution might be based on a Poisson claim count distri-
bution with parameter 1,000 (i.e., the number of expected claims is 1,000)
and a Weibull severity distribution with mean $10.000 and coefficient of
variation 8. If A is $100,000 then o is 0.0197.

One way to compute the excess aggregate distribution (the aggregate
distribution for the amount of claims excess of A per claim) is to keep the
same claim count distribution (e.g., Poisson with parameter 1,000 in the
example) and adjust the severity distribution so that claims less than A
become 0 and claims, x, greater than or equal to A become v— A. This
gives a severity distribution that generally assighs a large probability,
namely | — o, to claims being exactly 0.

Another way is to work directly with the excess claim count and
severity distributions. The excess claim count distribution is the distribu-
tion of the number of excess claims (the distribution of the number of
claims exceeding A). The excess severity distribution is the claim severity
distribution for the amount of individual claims excess of A, given that a
claim is excess.

The main purpose of this subsection is to note that, for certain claim
count distributions, the excess claim count distribution is easily deter-
mined. Assume the claim count distribution is binomial, Poisson, or nega-
tive binomial, respectively, with mean A and variance . Suppose the
probability of a given claim being excess of the attachment point A is .
Then the excess claim count distribution is binomial, Poisson, or negative
binomial, respectively, with mean od and variance oA + o (o” = A).

The excess severity distribution is ¢asy to determine if the total distri-
bution and the attachment point are known. Supposc the severity distribu-
tion has distribution function F, and the attachment point for excess
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claims is A. Then the excess severity distribution has distribution func-
tion, H, defined by:

_Flx+A) - F(A)

H) | — F(A)

, forx=20.

That is, the portion of the severity distribution function below A is elimi-
nated, and the remaining distribution is rescaled so that H(0) is 0 and H(x)
has limit | as x tends to infinity.

In the example, the excess claim count distribution is Poisson with
parameter 19.7 (= 0.0197 x 1,000). The excess severity distribution is the
above Weibull distribution restricted to claims exceeding $100,000. In
particular, the probability of a claim being 0 is 0 (not ().9803).

It should be clear that the excess severity distribution is as claimed
above. Appendix J has a proof that the excess claim count distribution is
as claimed. An interesting open problem is to find other claim count
distributions for which the excess claim count distribution is of the same
form as the original claim count distribution, or the excess claim count
distribution is otherwise easy to compute.

For readers familiar with the notation in Heckman and Meyers, recall
that they parameterize claim count distributions with A and ¢. In their
method, the parameters for the excess claim count distribution are
oA and c.

The above formulae for the mean and variance of the excess claim
count distribution hold only if the parameters of the severity distribution
are known with certainty. Venter provided the following formulas for the
mean and variance of the excess claim count distribution N when o is
uncertainly known:

E(N) = AE(q) ,
Var (N) = AE(o) + (6% = ME(o)® + (6> + A2 — M) Var (a) .
Proofs are as follows:

ENIa) =, so E(N) = E(E(NV | o)) = AE().
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Var (Nl o) =0A+ 0(0"—A) . s0
Var (N) =E(Var (Nl o))+ Var (E(N | o))

= AE(a) + (6 - ME(a’) + A™Var (o)
= AE(@) + (07 — M| Var (o) + E(@)’] + A*Var ()
= AE(0) + (07 — AM)E()” + (67 + A7 — A)Var (o) .
These formulae are useful either if o varies from one claim to the next
(for example, if the excess distribution is for & set of reinsurance contracts
with attachment points that vary by contract), or if it is desired to reflect
parameter uncertainty with regard to o.
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APPENDIX A
COMPLEX NUMBERS

This is a brief summary of the properties of complex numbers used
earlier. More extensive treatments are in Baase [3, p.279], and Aho, Hop-
craft, and Ullman [4, p. 252].

In this Appendix, / is V-1. Given two complex numbers, a + bi and
¢ + di, their sum, difference, product, and quotient are given as:

(a+biy+(c+dy=(a+c)+(b+d)i
(a+biy—(c+diy={(a—c)+(b—d)i
(a+ bi) X (¢ + di) = (ac ~ bd) + (ad + bc)i

+d?
The complex conjugate of a+ bi is a-bi, sometimes denoted
Wk
(a + bi) .
A number o is a primitive n” root of unity if @"=1and o # 1 for any
positive j less than n. If @ is a primitive n™ root of unity, then:

(a+bi)+(c+di)= (7L* }[(ac + bd) — (ad ~bc)i ]
¢

o”=1+wn’

nz—: [ (@) = {0 for j not a multiple of n

= n for j a multiple of n

Let F be the n X n matrix with entries F, = w’*. This matrix F plays a

key role in the discrete Fourier transform (DFT). Fis:

(2 00...00)
000 On
000 no
00n 00
10r0...00]




104 AGGREGATE 1.OSS DISTRIBUTIONS

Appendix B shows why this makes the inverse of the DFT so simple.
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APPENDIX B
CONVOLUTION EXAMPLE

This Appendix provides an example of the use of the convolution
theorem to compute the sum of two severity distributions. Two vectors
are used to represent severity distributions, and the convolution of these
vectors represents the sum of the two severity distributions.

Example

The first severity distribution, U, has probability 45 of a claim amount
of $0, probability V1o of a claim amount of $100, probability Y50 of a
claim amount of $200, and probability 20 of a claim amount of $300.
The second severity distribution, V, has probability ¥ of a claim amount
of $0, probability Y5 of a claim amount of $100, probability “i0 of a claim
amount of $200, and probability Y10 of a claim amount of $300. These
are represented as vectors as follows:

U = [%, Y0, Y0, Y50, 0, 0, 0, 0],
V =%, 5, V0, V10,0,0,0,0] .

These representations have been padded with zeroes to the right so
that no-wrap convolutions can be computed. (They are not what is used in
the body of the paper for the main algorithm. These representations are
being used only to give an example of the use of the convolution theo-
rem.)

As U and V are vectors of length 8, ® must be a primitive eighth root
of unity. Let @ be cos(n/4)+ isin (n/4). This ® can also be written

\jg + \fi or, approximately, 0.7071067810 + 0.7071067810i. (Here i is

V-1.) The matrix F, with entries o* for j, k from O to 7, is:
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o n

1 1 1 1 1 1 1

1 %t @ %2 -1 %3 —i %4

I i-1 -t i-l

I %2 ~1 %1 -1 %4 | %3

1 -1 1 -1t 1 -1 1 -~

1 %3 @ %4 -1 %l —i %2

I ==t i 1 -1 i

LD %4 — %3 -1 %2 i %1 |

where %1 is \2E+\[25i , %2is—\£2 +\/2§i . %3 is—\f~\§i , and
%4 1s 22 - ;i.These are , ®', 0", and ©, respectively.

The convolution theorem states that
U=V = INVDFT(DFT(U) x DFT(V) }

where DFT is the discrete Fourier transform, and INVDFT is the inverse
DFT.

The discrete Fourier transform of U is the matrix product F-U where
U is treated as a column vector. Thus DFT(U), or F-U | is approximately:

[1.0,.8353553391 +.1560660172/, .7500000000 + .05000000000/,
7646446610 + .05606601720:, .7000000000. .7646446610 — 056066017201,
7500000000 — .05000000000:, .8353553391 — .1560660172/] .

Similarly, DFT(V), or F-V | is approximately:

{1.0,.6707106781 + 31213203431, .5000000000 + . 1000000000,
5292893219 + .1121320343,, .4000000000, .5292893219 -.1121320343i,
.5000000000 - .1000000000i, .6707106781 - .3121320343/].
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DFT(U) x DET(V) is

[1.0,.5115685425 +.3654163056:, .3700000000 + .1000000000i,
3984314575 + .1154163056/, .2800000000, .3984314575 -.1154163056i,
3700000000 - .1000000000i, .5115685425 - .36541630564].

For example, the second element of the vector just above is .5115685425
+.3654163056/, which is

(.8353553391 +.1560660172i) x (.6707106781 +.3121320343/).

To compute the inverse DFT of DFT(U) x DFT(V), one first computes
the DFT of DFT(U) x DFT(VY); divides each term of the result by 8; and
inverts the order of the last seven terms. The DFT of DFT(U) x DFT(V),
or F- (DFT(U) x DFT(V) ), is

{3.840000000, 0.0, .0400000000, .0800000000, 2000000000,
1.040000000, 1.040000000, 1.760000000].

Dividing by 8 gives

[0.480, 0.0, 0.005, 0.010, 0.025, 0.130, 0.130, 0.220].
Reversing the order of the last 7 terms gives

[0.480, 0.220, 0.130, 0.130, 0.025, 0.010, 0.005, 0.0].

Thus, for the sum of the distributions U and V there is a probability of
0.480 of a total claim amount of $0, a probability of 0.220 of a total claim
amount of $100, a probability of 0.130 of a total claim amount of $200,
etc. This can be readily verified by direct computation of these probabili-
ties.

The Inverse DFT

This subsection will justify the method used above to compute the
inverse DFT. Suppose we have computed DFT(W), which is F-W, for
some vector W. Then DFT(DFT(W)) is F- (F-W). Matrix multiplication is
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associative, so this is the same as (F- F)- Wor F*- W. But F° (for the
example above) is

80000000
00000008
00000080
00000800
00008000
00080000
00800000
08000000 ]

This is just 8 times the matrix R:

10000000
00000001
00000010
00000100
00001000
00010000
00100000
01000000 ]

This matrix reverses the order of the last seven clements of any vector
to which it is applied.

Thus F>- W is just 8 times W with the last seven terms reversed.
Dividing by 8 and reversing the last seven terms restores W,

1

Alternatively, F 7 is just (/8) X R X F., where R is the matrix of 1s and

0s above.
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APPENDIX C
THE FAST FOURIER TRANSFORM AND INVERSE

The fast Fourier transform is presented by Baase [3, p. 273] as fol-
lows?. Using a language similar to Modula-2 and Pascal:
Input: The n-vector P =(p,, p|, .... p,, ;). Where n = 2k
for some k > 0.

Output: transform, the discrete Fourier transform of P.

Comment: We assume that omega is an array containing the nth
rootsof ' 0", , ..., ® n/2=1 g ¢ I$ a permutation on
10,1, ..., n — 1! (described below).

procedure FFT (P: RealArray; n: integer;
var rransform: Complex Array);

var l:integer;  {the level number)
num: integer,; {the number of values to be computed at
each node at level / }

t:integer;  {the index in transform for the first of
these values for a particular node )

J:ointeger;  {counts off the pairs of values to be
computed for that node )

m: integer; {used to pick out the correct entry from

omega |
begin
forr:=0ton—-2by2do
transform [t] : = p[r ()] + plr(t + D];
transform (t + 1] : = p[ry(N] — plr(t + 1)]
end {fort };

{ The main computation}
m = nf2; num = 2;

{Begin triply-nested loop}

for/:=k-2t00by-1do

2 Reprinted with permission of the publisher.



110 AGGREGATE [.OSS DISTRIBUTIONS

m = m/f2; num = 2*num;
for r:=0to (2' ~ 1)aum by num do
for j := 0 to (num/2)-1 do
xPOdd := omega|mj|*transformlt+num/2+j}.
transform{t + num/2 + j1.= transform{t + j| — xPOdd,
transform(t + j| .= transform|t + j] + \POdd.
end { for; |}
end | fort}
{end of body of outer for loop }
end { for/}
end { FFT }

Now, what is m;? Let ¢ be an integer between () and n— 1, where
n=2% Then f can be represented in binary by [b, b,...b; _ ], where each b,
is 0 or 1. Let rev, (r) be the number represented by these bits in reverse
order, i.e., by [b;_,..b by. Then m,(1)=rev,(1). (As an example,
7, (3) = 6 because 011 reversed is 110.)

The inverse fast Fourier transform is computed as follows. Apply the
regular (forward) fast Fourier transform to the vector. Divide each ele-
ment of the result by n. Reverse the order of the last » — | elements (i.e.,
the first element stays in place and the order of the other elements is
reversed).

Baase gives further discussion of the fast Fourier transform, including
some analysis of the number of computations needed.
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APPENDIX D
APL PROGRAMS FOR FFT AND INVFFT ALGORITHMS

This Appendix contains the functions FFT and INVFFT. Before run-
ning these, INIT must be run to initialize certain global variables. FFT
and INVFFT do not modify these global variables, so INIT needs to be
run only when the global variables have to be changed. INIT calls
INITOMEGA and INITPIK, also listed here.

All the APL functions presented in this paper assume [110 has been
set to zero.

Complex vectors of length n are represented as two-by-n arrays; e.g.,
the vector (a + bhi, ¢ + di, ...) is represented by:

b

[0] R«FFT P;Z;INDX;INDXP1;T1;T2;M;NUM;L;
OMIND

A REFERENCE SARA BAASE, COMPUTER
ALGORITHMS, P 273 FF

A ASSUMES YOU HAVE RUN INIT

A INPUT IS P PER BAASE, N PER BAASE IS
GLOBAL VARIABLE

A OUTPUT IS TRANSFORM PER BAASE

R«INITR

R[; INDXE]«P[; PIK[ INDXE] ]+P[ ; PIK[ INDXO] ]

R{ ; INDXO]+«P[ ; PIK[ INDXE] ]-P[ ; PIK[ INDXO] ]

A NOW HAVE INITIALIZED R (= TRANSFORM)

MeL0.54N+2 © NUM«2 ¢ L+K-2

LLOOP:M«L0.5+M=2 © NUM«L0.5+2xNUM

T2¢,8( LNUM+2) o . +NUMxLN+NUM

T1eT2+NUM+2

OMINDe (N+2 ) pMx1N+2xM

2e(2,N+2)p(,~#OMEGA[ ;OMIND xR ;T1]),
,+#OMEGA[ ; OMIND } xeR[ ; T1]

R[;T1]«R[;T2]-2 © R[;T2]«R[;T2]+2

LeL-1

- (L20)pLLOOP

FFT:

pm—
[
—

o EWNHRHOWONVUD & wN
o e b o et A b e e e )

e et b P b b ot e T ey ey gy oy
e St bt

——— e ey gy ey

INVFFT:

] ReINVFFT X

1 ReFFT X

1 R[;INVINDX]«OR[;INVINDX] A REVERSE
ORDER OF LAST N-1 ELEMENTS

] ReR:N

o —

0
1
2
[3



AGGREGATE LOSS DISTRIBUTIONS

INIT:

INIT KK

K«KK
NeL0.5+2+K
010«0
INITOMEGA K
INITPIK K
INITR«(2,N)p0
INDXE«2XLN+2
INDXO«INDXE+1
INVINDX+1+1N-1
TAILe{N+2)+1N+2

VOO PLWNHO 3

et e ey e ot ey ) P
et e b el e bl b e e e

—

INITOMEGA:

INITOMEGA K

Nel0.5+2«K
OMEGA«(2,N+2}p0(LN+2)x2+N
OMEGA[0Q; ]«200MEGA([0; ]
OMEGA({ 1; ]« 100MEGA[1; ]
OMEGAZ2¢ (2,N+1)p0O (LN+1)x2+
OMEGA2[0; ]+200MEGA2[0; ]
OMEGA2[1; J<100MEGA2{1;]

Py et e i e
NN W= O
et e et et Y b e

INITPIK:

{0] INITPIK K;N
[1] NeL0.5+2#K
[2] PIK«<21e((Kp2)TLN)
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APPENDIX E
PROOF THAT A' * §' IS THE DISTRIBUTION OF i CLAIMS

This Appendix gives a proof sketch that A' * §' is the probability dis-
tribution of the sum of exactly / claims. More precisely, it shows that if
A',S". n, and L are defined as in the main body of this paper, and X is the
probability distribution of exactly / claims, then the probability that X is
between /x[ Jdnd g+ x( JIS (A= 8 [j].

n

Consider first the case where L=n and S =(1, 0, 0, ..., 0). This makes
S a uniform distribution on the unit interval [0, 1]. In this case the first n
terms of A’ = §' are:
i

PP
ay, dy, @y, ... 4y .

Let F' be the distribution function for the sum of / mutually indepen-
dent random variables uniformly dlstnbuted over [0, 1]. Let
h' F'(j+ 1) = F' (j). It needs to shown that aj= h'

Combining equation 9.1 and Theorem 1 of Section 1.9 of Feller [11, p.
27],

b’:Ff(j+1)—Ff(j)—l'i [if,lj(”l"")i*’

where X, is X' if x 2 0 and ¥, is zero if x < 0. This yields:

b= '2( 1y (i1 )G+ -
’ v=0
because if j <i + 1 then (j+ 1 —v), is zero for terms with v>j , and if

j>i+lthen(f+l}iszeroforv>i+1.
v
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It is easy to see that a(,—b“— 17t fori> 1. and g; —hl =0forj=1.
To complete the proof that a = b; it suffices to show that the b satisfy the
recursion relation used to defme thc a

To this end, fori > 1 andj > 0 consider:
::( )[(r—/)b' TG+ ]

It needs to be shown that = equals h This is done by plugging into the
above formula the expression for A as a sum, and rearranging terms:

Hz=(=f) =BT G+ D) =D b!

=1

L i), - : ! i, i~ 1
:(1-])2(—[) [r](_/—r) +(j+l)2(—l) (“](4[+1—\')

=0 v=90

J
:(i—j)Z(—l)""[‘_fl](ij L-vy ™'+

=9

(j+1)§5<1)[ ](,+1 yy o
v=0
=+ MM G+ T+

J
. . i . i I\ Y
Z[( D@ 1)(“_l)+(‘/+l)(\_ﬂ( D'G+1-v)

=1

=(~1)"("B' )(/+1—0)"+

J . .
G=Dv G+DE+1-v) (i+1)! IR
Z[ i+ i+ ][\.g(,-ﬂ_‘,)!]( DY G+ 1-v)

v=1
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J
=<—n"["; ‘ ]<j+ -0+ (j+1 —v)[“; 1j<—l>"<j+ 1-v'"!

v=|

J
=Z(—1)"["+,’ ](j+1—v)".

y=A1
Thus, z = b; . This establishes the main result for this case.

For the general case, consider the positive “quadrant” of R, i.e, the
points (xy, X, ..., x;_ ) such that each .; is greater than or equal to zero.
Divide this space into cubes with edge length L + n in the obvious way.

Assign a density to each cube as follows. If the cube’s

o L L L . .
vertex closest to the origin is Vo, 0 Vi e Viey, |- assigna density of
i
)+ L) where the s,, are elements of the vector rep-
n

resenting the severity distribution if v, <n—1, and 5, =0if vy 2n. As

( Svg Sy Suy ooe S,

i
the volume of every cube is L\, the integral of this density over the

n

S, 8 s Now consider the integral of these densities

cube is s R N

Yo
between the parallel (i — 1)-planes:

L
Xptx +...+x,_,=k—, and
n

Xotx, + ..+ x_ =+ 1),1,;

This integral is the probability that the sum of / claims will have a

value between kﬂé and (k+ 1) né
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This is also the #" term of A’ # §'. as will now be shown. The m"
element of § is the sum of all 55, X 8, % .5 osuch that

Jo¥ji + ..+ ji_, =m . Forinstance. if i is 3. 51 is:

I hl
$38080 F 53280 F S8a8y 818850+ 8 S8 s s, = 3sps + 358

Each of the cubes associated with the m™ element of §' (under the inverse
of the above association of cubes with densities) has its vertex closest to

. L .
the origin on the plane x,+ ...+ x; |, =m, . Each cube also has its vertex

farthest from the origin on the plane (m + 1), - The planes “m.” " + 1,

...r 01+ {7 divide each of these cubes into the proportions given by the A
Getting back to the planes “A” and “A+1", considering all the cubes that
have some portion between these two planes, the integral of the density
between these two planes is (A"% S") [k] . The probability that the sum of
the 7 distributions will be between & and & +1 is given by the same inte-
gral. This establishes the overall result.
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APPENDIX F
PACKING AND UNPACKING

This Appendix provides the formulag for packing and unpacking
transformed vectors. This treatment essentially follows that of Press,
Flannery, Teukolsky, and Vetterling [6, p. 398]. APL programs to imple-
ment these routines are in Appendix G.

Unpacking a transformed vector is discussed first. Assume that one
starts with a real (untransformed) vector, U, of length 2 and packs it into
a complex vector, PU, of length », as discussed in the main body of the
paper. Then the FFT is applied to PU to obtain a vector PH that is the
packed transformation of PU. The next step is to unpack PH to obtain the
FFTof U.

The result of unpacking PH will be a complex vector of length n + 1.
One might think the result would be a complex vector of length 2n since
the goal is to obtain the FFT of U which is of length 2x. If R is the (length
2n for the moment) FFT of U, then:

)'2,,_'/:)?7 for 1<j<un,

where * denotes complex conjugation. Thus, from the first n + 1 terms (0
to #) it is easy to derive the remaining terms of R.

Append to the end of PH the first element of PH, making PH a
complex vector of length # + 1. Let PH2 be the complex conjugate of the
“reverse” of PH; i.e., PH2(j| =PH[n - j| for0<j<n . Define PH3 by:

PH3(j] = ~i(PH[j) - PH2|j]) X ®’,

where i is V-1and  is a 2n™ root of unity (such that @’ is the n'" root of
unity used in the FFT). Finally, R is half the sum of PH, PH2, and PH3.
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The steps for packing a transformed vector R (of length n+1), to ready
it for application of the inverse FFT, arc almost the same steps as for
unpacking. Let R2 be the complex conjugate of the “reverse” of R. De-
fine R3 by:

R3jI=i{(R[j| - R2[[H x® 7,

where 7 and ® are as immediately above, The final result is the first n
terms of half the sum of R, R2, and R3.
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APPENDIX G
APL ROUTINES FOR PACKING AND UNPACKING

UNPACK:

0] ReUNPACK H;H2;H3
] & UNPACKS TRANSFORMED DATA. ASSUMES X

IS THE RESULT OF

A APPLYING THE FFT TO A LENGTH 2N REAL
VECTOR WHICH HAD BEEN

@ PACKED INTO A 2xN COMPLEX ARRAY.

A RESULT IS A 2 x N+1 ARRAY

HeH,H[ ;0]

H2«0H

H2[1;]e~H2[1;]

H3~H-H2

H3«(2,N+1)p(,-#H3XOMEGA2), ,+#H3x00OMEGA2

H3«<eH3

H3[1;}e~-H3[1;]

R<0.5xH+H2+H3

p——

—
—

o

o ————

9] Fb o P ey ey ey gy ey ey
N—FOVLDNOAUAW N -
e e e o b i

WONOUTARWNHO IR
e et e et i et e b e s

R«PACK X;X2;X3

A PACKS TRANSFORMED VARIABLE

X2«0X

X2(1;1-X2{1;1

X3«X-X2

X3«(2,N+1})p(,+#X3XOMEGA2), ,~#OMEGA2xeX3
X3«eX3

X3[0;]e~-X3[0;]

Re0.5xX+X2+X3

R« 0 71 IR

o e oy ey gy iy oy g, o Py

OMEGA?2 (the 2n™ roots of unity) is generated by INIT and
INITOMEGA in Appendix D.
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APPENDIX H
APL FUNCTIONS FOR THE COMPLETE ALGORITHM

This Appendix gives an APL function, AGGDISTR, that implements
the full algorithm. AGGDISTR calls a number of subroutines. The sub-
routines FFT and INVFFT are listed in Appendix D. and the subroutines
PACK and UNPACK are listed in Appendix G. The only other subroutine
needed is MULT, listed below. Before running AGGDISTR it is necessary
to run INIT, which sets certain global variables. INIT calls INITOMEGA
and INITPIK; these three programs are given in Appendix D.

AGGDISTR:
{0)] AGGDISTR;M;M2;P;S;PS1;PSI;PZERO;FS1;
FSI;AI;I;BIN;FSIFLAG;X;J;Y;PY;FAI;FY
[1] 0I0«0
[2] A ----
[3] ‘'Input the smallest number of claims
with non-zero probability,
[4) 'M:?
[5] ’ I
[6]1 Me«O
[7] ’ 14
[8] ~((M20)A(M=L0.5+M))pSKIP1 A M must be a
non-negative integer.
[9] 'M, ’,(%M),’ is not a non-negative
integer. Stopped.-"
[10] -0
[11] SKIP1l:’
[12] ‘Input densities of claim frequency
distribution. These shoulg’
[13] 'be the probabilities of M, M+1, M+2,
... claims.’
[14] ’ ’
[15] Pe,O
[16] -(((pP)#1)v(P[0]#0))pSKIP2 ¢ A IF ONLY
ONE NUMBER IS INPUT AND IT IS ZERO,
THEN EXIT.
{171 ‘Only one number was input, and it is ~’
,(8P),’. Stopped.’
(18] -0
[19] SKIP2:’
(20} ‘Input vector for severity distribu-
tion. Must be of length ', (3N),’.’
[21] ’ ’
[22] S«,D



[23]
(24]

—
o8]
(%,

— s

—r— e e e —
ww WWRNON

~ oYU WA OO 00 IO

————
W ww
A bt ek e

e e e bt e b et e e et s

—_———r— — r——— pomm =y P e e—— e e e
e e e e bt

— e

NN [ =R} JdJonn W [ =} O ONOAVMBAEWNRHROW®
[Ty

OO [=aWe R0, ] [S RO R T, [, N E, N8, (S, 0%,] B B R R B R PR R B W W
et e et el e s

p— o — —
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>((0S)=N)eSKIP3 ¢ a IF S IS
LENGTH N, THEN EXIT.

‘Length of S is ', (%pS),’.
,(%N),’. Stopped.’

-

SKIP3:’ *

A =———

AGG«(2,N)p0

NOT OF
Should be

PS1<&(N,2)pS, (Np0) © A ‘PACK’ S.

S«0 ¢ a FREE UP SPACE

PZERO«0 ¢ a INITIALIZE - WILL BE RESET

IF M=0.
< J——

’

@ THREE CASES ARE CONSIDERED, M=0, M=1,

OR M>1.
- (M=0) oMEQO
»(M=1)pMEQ1
- (M>1)pMGT1

MEQO:PZERO«P[0] © P+,1iP © Mcl

A CONVERT TO CASE M=1
MEQ1 :M2¢pP
AGG<P[0]xPS1
-(M2=1)pENDIT
FS1<UNPACK FFT PS1
PSI<INVFFT PACK FS1 MULT FS1
PSI[;TAIL]«0
AT« 0.5 0.5 ¢ I«2 O PS1l<0
-MAINLOOP

A =-——-

A
MGT1: A START BINARY POWER TRICK.

BIN¢,14((1+L28M)p2)TM Ao EXPRESS M AS
BINARY VECTOR, DROP FIRST TERM

FSI<FS1<UNPACK FFT PSl

BINLOOP:FSI+FSI MULT FSI ¢ PSI«INVFFT

PACK FSI ¢ PSI[;TAIL]«0
*BINLOOP ‘, (3BIN),’ ‘,s0TS
+((11BIN)=0)pSKIP

FSI<UNPACK FFT PSI ¢ FSI<«FSI MULT FS1 ©
PSI<INVFFT PACK FSI ¢ PSI[;TAIL]«0

SKIP:BIN«,1lBIN © -(0=pgBIN)p
FSI<UNPACK FFT PSI
-BINLOOP

EXIT

EXIT: A THIS IS THE EXIT FROM THE

BINARY POWER TRICK.

A ==

AI+,1 ¢ I«1l A SET AI, INDEX

ALOOP:I¢I+1 © AI¢(1+I)x(OAT)+AL«(1411)x

AI,O
- (I<M)pALOOP
M2« "1+M+(pP) © PS1¢0
A —=———
A =-——-
MAINLOOP: ‘MAINLOOP ‘, (3I),°’
FSIFLAG«0

*, 0TS
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A ==

+(I2100)pBETA

A IF HERE, WANT TO CONVOLUTE AI WITH
PSI WITHOUT FFT'S

X<NT,8PSI

Je0 © Y0

LOOPB: Y<Y+AI[J]xX

JeJ+1 © »((J>I-1)v(I>N-1))eENDLOOPB

X<0, 11X A DROP LAST ELEMENT OF X, ADD
A ZERO TO THE FRONT.

-LOOPB

ENDLOOPB:PY«&(N,2)pY,No0 ¢ XeYeO

-~GAMMA

A —=—=—

BETA:FAI<UNPACK FFT&(N,2)po (NTAI,NpO),
Np0

FSIFLAG+1

FSI<UNPACK FFT PSI

FY«FSI MULT FAI

PY<INVFFT PACK FY

PY[;TAIL]<0 ¢ FY«0

A —e——-

GAMMA : AGG-AGG+P[I-M]xPY © PY«(0

IeI+l © -(I>M2)pENDIT

A ==

> (FSIFLAG=1) oSKIP4

FSI«UNPACK FFT PSI

SKIP4:FSI«FSI MULT FS1

PSI<INVFFT PACK FSI

PSI[;TAIL]<0

A ————

ATe(1+I)x(GAT)+ATe(1+LI)xAI,0

-“MAINLOQOP

ENDIT:0T7S ¢ AGG«NTt,&AGG

AGG[ 0] +~AGG[0]+PZERO

'«%x* REMEMBER, RESULT IS IN AGG. ##x’

’ ’

Z«X MULT Y
Z<(oX)o (,—#XXY), , +FKxeY
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APPENDIX 1
PARAMETER UNCERTAINTY FOR THE SEVERITY DISTRIBUTION

We will show mathematically that it is fundamentally impossible to
reflect parameter uncertainty for the severity distribution by computing
the aggregate distribution using a severity distribution with a larger vari-
ance than the best-estimate severity distribution. This discussion is based
on suggestions by Venter.

Parameter uncertainty for the severity distribution is reflected by
choosing a distribution ¢ with mean 1 and variance greater than 0, and
computing the aggregate distribution:

AGG =aS,+aS,+...+aSt.

Here AGG, §;, and T are the aggregate distribution, the severity distri-
bution, and the claim count distribution, defined earlier. The above equa-
tion is written to indicate that one sample from 7 is associated with one
sample from @ and multiple samples from S. The above equation could
also be written

AGG:a(Sl +SQ+...+ST) .

A general fact about variance (for arbitrary/independent distributions
X and Y) that will be used is:

Var(XY) = Var(X) Var(Y) + (E(X))2 Var(Y) + (E(Y))2 Var(X). (1.1)
Also, recall that
Var (S, + S, + ... + §7) = Uy6¢° + pg'or (1.2)

Here p; and pg are the means of the claim count and severity distribu-
tions, and 67 and &3 are the variances of the respective distributions.

Set
X:a, Y:S1+S2+...+ST, and XY=AGG

and substitute in equation 1.1 above. This gives
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Var(AGG) = Var(a) Var (5, + S, + .. + 570 +
(E(@))* Var (S, + S, + ... $;) +(E(S, + S, + ... + S,))* Var(a).

Denote Var(a) by 6. , note that E(S, + S, + ... + §,) is ML , recall that
E(a) is 1, and substitute using equation 1.2 to obtain

Var(AGG) :( 1 +0, )( I, Os + 11} O )+ ( 1, Oy ) G,
Dividing by ( ;- pg )* gives a formula for the square of the coefficient
of variation for the aggregate distribution:

+0 . (1.3)

o

R hi
Var(AGG ) o5  Or
varl 2)=(l+0’;) s3 ;
(Hy ) rHs Uy
Now consider what happens as the mean of the claim count distribu-
tion, i.e., the expected number of claims, increases towards infinity. For
the moment, assume there is no parameter uncertainty for the claim count

8
distribution. The term - 9—2 tends to zero as [y increases. If the claim
My M
count distribution is Poisson, or is negative binomial with a fixed *“proba-

-

o
bility of success™ parameter, then the term ; also tends to zero. (If the
Wy

negative binomial is parameterized so the density function is

fly=| Y+ I P (1=p)ywithy>0and 0 <p <1, then p is the proba-
X

bility of success parameter.)

Thus, for any fixed severity distribution, the limit of the square of the
coefficient of variation of the aggregate distribution, as W, goes to infinity,
is equal to o.. In a practical sense, this means that, as the expected
number of claims becomes large, the effect of the claim count distribution
and the severity distribution on the coefficient of variation of the aggre-
gate distribution becomes minimal. The coefficient of variation of the
aggregate distribution is determined by the parameter uncertainty for the
severity distribution.
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In particular, this shows that there is a fundamental difference between
the effect on the aggregate distribution of parameter uncertainty in the
severity distribution and the effect of using a severity distribution with a
greater variance. If a severity distribution, §’, with a larger variance is
substituted for the Dbest-estimate severity distribution, S, and
AGG =8+ 55+ ...+ 5, is computed (this is the same as setting @ to a
constant 1), then as i, goes to infinity, the coefficient of variation of the
aggregate distribution tends to zero, and not to some positive value as
above.

The two approaches differ in the independence assumptions regarding
the samples from the severity distribution. If the severity distribution is
diffused, then each draw from the severity distribution is a combination of
an independent draw from the best-estimate severity distribution and an
independent draw from the distribution used to reflect parameter uncer-
tainty for the severity distribution. Under the correct method of reflecting
parameter uncertainty, each draw is still an independent draw from the
severity distribution, but there is only one draw from the distribution
reflecting parameter uncertainty for each draw from the claim count dis-
tribution.

Equation 1.3 shows that diffusing the severity distribution is not an
adequate method for the recognition of parameter uncertainty for the
severity distribution. Equation 1.3 can also show the effect of parameter
uncertainty for the claim count distribution, and the remainder of this
appendix gives a brief discussion of that effect.

Apart from one quick comment at the end, only one method of repre-
senting parameter uncertainty for the claim count distribution will be
considered here. It will be assumed that the best-estimate claim count
distribution is Poisson with parameter A. That is, the best-estimate claim
count distribution, N, has probability density function

X

P(Nzx!)»)z%;e‘?‘.

Parameter uncertainty is incorporated by assuming that A follows a
gamma distribution, denoted A, with probability function
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(Aby et
P(A=M) = bI(c)

Above, I' is the gamma function and b and ¢ are parameters. The distribu-

tion A has mean hc and variance b”c. The parameter b is the scale param-

eter because changing b by some factor has the effect of multiplying the

distribution uniformly by that same factor. The parameter ¢ is the shape

parameter.

Straightforward computations show that the claim count distribution,
T, that results from compounding the Poisson distribution with the
gamma distribution is a negative binomial distribution with probability
function:

!

_a_[tte—1 LY b
HT’”‘[ ; Hh+|][h+1}‘

Here b and ¢ are the parameters from the gamma distribution. This nega-
tive binomial distribution has mean hc¢ and variance (bc)(b+1). Thus

o7/l is (1[ [ +}]; ]

One way to reflect a constant degree of parameter uncertainty in the
claim count distribution while increasing the mean is to allow b to in-
crease but to hold ¢ constant. This maintains a constant percentage of
uncertainty regarding the mean of the claim count distribution. In the

P

Equation 1.3, the term - - 112 tends to zero as [, increases (as it did above).
Moy
But now the term © tends to a positive limit, namely 1/c. Thus, Equation
Hy
1.3 shows that the coefficient of variation of the aggregate distribution has
a component due to the parameter uncertainty in the claim count distribu-
tion that does not drop below a certain minimum no matter how large the

mean of the claim count distribution becomes.
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A little more generally, as i, goes to infinity, the limit of the square of
the coefficient of variation of the aggregate distribution is

The severity distribution and the best-estimate claim count distribution
have no effect on this limit. This limit depends only on the amount of pa-
rameter uncertainty reflected in each of these distributions.
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APPENDIX J

PROOFS OF FORMULAE FOR EXCESS CLAIM COUNT
DISTRIBUTIONS

This appendix proves that if a claim count distribution is binomial,
Poisson, or negative binomial, with mean A and variance o, and the
probability of a claim being excess of some attachment point is ¢, then
the excess claim count distribution is binomial, Poisson, or negative bino-
mial, respectively, with mean oA and variance oA + a°(G” — A). For each
of the three types of claim count distributions, it is shown that the selec-
tion of claim counts from the given distribution with mean A and variance
o, followed by selection of excess claims with probability o (under a
binomial process) gives a distribution of the same type with mean oA and
variance oA + o’(G° — A).

The Poisson case is considered first. Here A=6 . so 6 will not
appear. The total distribution will be T and the excess distribution will be
X. For the total distribution:

H

P(T=1) :i‘, et

Given ¢ claims in the total distribution, the distribution of excess claims
1s:

P(X:,\'IT=!):( ! ]0(‘(] )
AY

P(X = x)isthe sumoveralltof P(T=nxP(X=x1T=1)1ie.,

oo ! R
PX=1)=Y i‘, e"‘[f_]a‘(l —ay .

=X

Letting i =1 — x so = x + i this becomes:

o0 R :
- ) = . S I B PR
P(x_.\)_z(x“)!c ( ! )a (1 —a).
=0
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This is a “ground up” computation of the claim count distribution for
aggregate claims. The starting point was the distribution of total claims,
T, and then excess claims were selected according to a binomial process
to get the distribution of excess claims,

. , (o'
It is necessary to show that this sum is ( ‘_'—) Pl

But:

o hihoh ok AMl-m e M-y
ok g Ak _ o A a):elz¥(,i )
i!
i=0

a A —OA - (‘+1) i
= z(\-H)H| " X! o (1 -
i=0

(00») oo o S I i
= z’(\+1)’ [ﬂ\_:l )(x (-

i=0
as was to be shown.

Now much the same is done for the negative binomial. According to
Hastings and Peacock {24, p. 92], the negative binomial has density func-
tion:

P(Y=y)= [‘ Ty ! Jﬁ"cf"

where x and p are parameters and ¢ = 1 — p. This distribution has mean
xq/p and variance xq/p°. If parameters x and p result in a mean of A and a
variance of 6%, then parameters of x and p/(p + o — op) result in mean oA
and variance oA + o*(6> — A). Let T be the total claim count distribution,
and let Y be the excess claim count distribution. Then:

P(T=1)= [x+;— l)p-rqr
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P(Yz_vlT:t)z[ t Ja-“(l —o)
.“

P(Y =) z(‘“ ]p‘q’[’ja‘u—a)’ '
- _\‘

P(Y:_\*):2(~"+.‘f+i_1 p‘q'*‘[’f." ]on‘ (1—o)
J .

h i+y
F=0 i

where / + v was substituted for r to get from the next-to-last equation to
the last equation.

It is necessary to show that the right-hand side of this equation is equal

to:
v 1
x+v-=1 .. P o —op
¥ p+o—ap pHo—op
which is the density function for the negative binomial with the parame-
ters for the excess distribution.

Now note that the Maclaurin series for 1/(1 — 2)? is given by:

)

Substitute a=x4+y and Z=(l-p}l-wW=¢(l-a) to get
l-z=p+a-op and:
Xy o ¢
L :25_\~+_\-ﬂ—1 40—y
pt+a—op i:nk i

Multiply the left-hand side of the above equation by:
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_pogr+y=D!
k= (x=Dy

Pl
(i+y!

uy v
x+y—1 — P oo
v p+a—op p+o—op
i[\+\+1 Jp“'qi+-"[i+-"]a~"(l—-a)i,
. 1+y y

as was to be shown.

and multiply the right-hand side by K rearrange, and obtain:

Finally, consider the binomial. According to Hastings and Peacock
24, p. 36], the binomial has density function:

P(X = X) = [ "1 ]p'\- C[n - "‘,

where n and p are parameters and g = | — p. This distribution has mean np
and variance npgq. If parameters » and p result in a mean of A and a vari-
ance of 6%, then parameters of n and op result in mean o and variance
oA+ ’(6” — X). As above, let T be the total claim count distribution, and
let X be the excess claim count distribution. Then:

KT =1 =( )P' q"

P(X—\IT—I)—( ]a (l-o) ™",

n
P(X=x)= ('{'jp'q"“’(ija"(l—Ot)'#'r.
r=x ’
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Letr=x+/, so:

= . K . R .
P(X:,\‘):Z(\-’j_i )p’w'q"_“ o (";H )(x‘ (1-o)

i=0\’

It is necessary to show that the right-hand side of the above equation is
equal to:

[” J(Otp)" (I—ap)" .
X

Begin with an equality due to the binomial thcorem:

Now let = = p(ll _:), so -+ 1= ]]* o Substituting gives:
- 4

1-ap o n—x || pl-a) I‘
(I*P] Z{ )[ = ]

(l _ap)u—\ ri\ [?i(l —O()I(l _p)nf.l
(n—x)! S (11—_\‘—i)!(l~;2)"'
. S '
Multiply the left side by K= npo and the right side by K- (vt 1.)' and
p A 8 YR iy

rearrange to get:

!

\'(" )'pa (1 —op)'™

n—x n! . v (D! j
(\'+I>)'(II—\—l')'p\‘l)’(] oy e
a ) ' o

=

or:
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(};} )(ap)“'(l _ap)n—,\’z ”21( n ‘ )p.\'+fqn—.\'—i[ x+1i )(1'\-(1 _a)i
( X

. X+
=0

which completes the proof.



