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1. INTRODUCTION 

This paper is another valuable contribution by Glenn Meyers to the actuarial 
literature [ 11. In it, the author analyzes mauy aspects of experience rating 
formulas. Mr. Meyers’s paper contains a remarkable amount of material. 

It can be divided into four parts, each of which would have been a useful 
paper on its own. His first two sections give an introduction to experience rating. 
His third section examines private passenger automobile merit rating data, 
illustrating a general result in credibility theory with important practical impli- 
cations. Meyers’s fourth, fifth, and sixth sections examine commercial lines 
experience rating in terms of a useful general concept which Meyers has called 
efficiency. His seventh section gives a generally applicable method of applying 
statistical tests to choose the most appropriate form of an experience rating plan. 

Although I will concentrate my discussion on certain portions of Mr. Mey- 
ers’s paper, this in no way reflects upon the importance of the other portions of 
this paper. Rather, it reflects the large amount of significant material Mr. Meyers 
has presented, and the inability of this author to analyze it all thoroughly in a 
single discussion of tractable length. 

Section 2 of this discussion concerns Meyers’s discussion of the Bailey- 
Simon results [2]. Meyers proposes an explanation for the observed credibilities 
based on parameter uncertainty. I also discuss two other similar phenomena- 
risk heterogeneity and shifting parameters over time. Section 3 of this discussion 
presents simple examples of the phenomena discussed in Section 2. 

Section 4 of this discussion summarizes Meyers’s fourth section on the 
efficiency criterion. 
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Section 5 of this discussion presents the Btihlmann credibility result for a 
split experience rating plan. i It gives the general formulas to use to assign 
credibility to the primary and excess losses so as to maximize efficiency. 

In Section 6 of this discussion, the formulas derived in Section 5 are used 
to analyze Meyers’s General Liability example. Among the important points 
discussed is the use of credibilities other than the optimal credibilities from 
Section 5. 

Section 7 of this discussion continues that analysis in more detail. The loss 
in efficiency due to the use of other than the optimal credibilities is shown to 
be small for this example. Also, the effects of the choices of different loss 
limits is explored. 

Section 8 of this discussion points out that under certain circumstances it is 
theoretically valid to have a self-rating point. 

Section 9 of this discussion contains the conclusions I draw from my analysis 
of Meyers’s General Liability example. 

Section 10 of this discussion analyzes Meyers’s Workers’ Compensation 
example. The analysis of the multi-split plan parallels that of the General 
Liability single split plan. In addition, the multi-split plan is compared to a 
single split plan, and is found not to perform significantly better for this example. 

Section 11 of this discussion summarizes Meyers’s seventh section, which 
gives a generally applicable method of testing experience rating plans. 

Section 12 of this discussion gives my conclusions. I believe that some of 
Mr. Meyers’s conclusions do not follow from the work he presents even though 
they may well turn out to apply in many specific cases encountered in real world 
applications. 

Following the main body of this discussion, there are ten appendices which 
provide the mathematical support. Appendix A contains two results for covar- 
iances which should be more widely known among actuaries. Appendix J 
contains an interesting example with continuous mixing functions. The other 
appendices should be of interest to those with a serious interest in credibility 
theory. 

* The mathematical derivation is in Appendix F. 
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2. FORMULAS FOR THE CREDIBILITY 

In the third section of his paper, Mr. Meyers discusses two formulas for the 
credibility. The first, Meyers’s formula 3.2, is the usual Bayesian credibility 
formula 

Z=N 
NfK’ 

K 2 0. 

The second is Meyers’s formula 3.3 

Z=N 
JN+K’ 

JZ 1,KZO. 

(2.1) 

(2.2) 

which the author derives assuming parameter uncertainty. (See Appendix B for 
a further discussion of this formula.) 

2.1 Parameter Uncertainty and the Bailey-Simon Data 

He goes on to see how well the two formulas fit data from the classic paper 
by Bailey and Simon on the credibility of a single private passenger car [2].2 
He estimates values of J and K from the credibility for one and two years of 
data. He finds that formula 2.2 does a better job of fitting the credibility observed 
for three years. In itself, this should not be surprising since formula 2.1 is a 
special case of formula 2.2, and the extra choice of parameter available should 
allow a better fit for formula 2.2. Nevertheless, the resulting fit for Classes 1 
and 2 is quite impressive.3 Even for the other classes the fit is a substantial 
improvement over that for formula 2.1. It should be noted that Class 1, with 3 
million car years, has over ten times the data in any of the other classes. 

There is an explanation for the poor fit of formula 2.2 to the Bailey-Simon 
data for Class 4; this same explanation applies, to a lesser extent, to Class 5. 
The key point is that one cannot have three clean years of experience unless 
one has been licensed for at least three years. Class 4 includes many drivers 
who have less than three years of driving experience. Those risks with one year 
of experience go into Merit Rating Class Y (clean for one year) if they are 
clean, and Merit Rating Class B (clean for less than one year) if they are not, 

2 This section of Mr. Meyers’s paper constitutes a discussion of this remarkable paper by Bailey 
and Simon written over a quarter of a century ago. 

3 The definitions of the classes are given in the Bailey-Simon paper. Class 1 is Pleasure-No Male 
Operator under 25. Class 2 is Pleasure-Non-principal Male Operator under 25. Class 3 is Business 
Use. Class 4 is Unmarried Owner or Principal Operator under 25. Class 5 is Married Owner or 
Principal Operator under 25. 
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as explained in Wittick [3]. Both Merit Rating Class A (clean for three years) 
and Merit Rating Class X (clean for two years) contain no risks with only one 
year of experience. We expect drivers with only one year of experience to be 
worse than the average for Class 4. Thus Merit Rating Class A (clean for three 
years) for driving Class 4, will have a lower frequency than the average for 
driving Class 4, merely because all of its drivers have at least three years of 
experience. Thus when we compare it to the remainder of driving Class 4, the 
resulting Bailey-Simon credibility for three years of data is overstated. The 
same is true to a lesser extent for the Bailey-Simon credibility for two years of 
data.4 

2.2 Practical Implications of Parameter Uncertainty 

As noted by the author, formula 2.2 has a maximum credibility of l/J. 
Based on the fit to the Bailey-Simon data, this implies maximum credibilities 
between 7% and 13%.s This implies that no private passenger automobile merit 
rating scheme can ever attain extremely large credits regardless of how many 
years of data are used. More generally, when parameter uncertainty is present 
(J>l), then the maximum credibility is less than 100%. 

If formula 2.2 holds, the law of diminishing returns sets in very quickly. 
Using Mr. Meyers’s parameters, roughly two-third@ of the theoretical maximum 
credibility has been achieved using three years of data. 

2.3 Shifting Parameters Over Time 

An important conceptual distinction should be made between adding up 
separate units during the same time period (e.g., a large commercial risk) and 
adding up different years of experience (e.g., a private passenger automobile 
merit rating plan). While similar formulas might fit the observations in both 
cases, they do not have exactly the same meaning. 

4 This problem, which applies to an analysis of many merit rating plans, could have been avoided 
if it were possible to remove from the data all risks for which the insured and/or principal operator 
has been licensed for less than three years. 

5 If a more refined class plan were used, the credibilities would be lower. If the number of accidents 
rather than just the number of years since the last accident were taken into account, the credibilities 
would differ. If severity were taken into account, the credibilities would differ. The credibilities 
will differ depending on whether just accidents or accidents and convictions are taken into account. 

6 The value differs by class. It is 62% for Class 1, and 75% or greater for the other classes. 
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There are other similar phenomenon which, when important, cause formula 
2.1 to no longer apply. One phenomenon is the shifting of parameters over 
time, which is discussed briefly by both Bailey-Simon and Meyers. Bailey and 
Simon put this forward as one possible explanation for the observation that extra 
years of data add relatively little credibility. “It can be fully accounted for only 
if an individual insured’s chance for an accident changes from time to time 
within a year and from one year to the next, or if the risk distribution of 
individual insureds has a marked skewness reflecting varying degrees of accident 
proneness.“7*8 

In Appendix C, a formula is derived for the credibility when the parameters 
shift over time.9 The exact solution is complicated for N 2 3. However, the 
following formula is approximate for N = 3, and exact for N = 1 or N = 2. 
(For N Z 3 this formula produces credibilities slightly too high.) 

z= N 

( > lz pi-’ + K 
(2.3) 

where p I 1 is the covariance between the risk processes one year aparti and 
A is the time between the mid-point of the last year of experience used in the 
rating and the mid-point of the policy year to which the rating will be applied.” 

’ Bailey and Simon explain in their subsequent paper [4] that what they meant by “marked skewness” 
leads to formula 2.1. 

* Bailey and Simon also put forward as a partial explanation the fact that risks enter and leave the 
various classes. In addition, their use of a premium basis for frequency does not completely eliminate 
the maldistribution that would result from the use of an imperfect exposure base, as pointed out in 
the discussion by Hazam [5]. Finally, the Bailey-Simon credibilities are estimated by only looking 
at the indicated claims-free discounts. In contrast, the optimal credibility is a least squares fit to 
the Bayesian result for all the observed levels of claims. 

9 A simple assumption is made to quantify the impact of the shift. Other assumptions could be 
made which lead to other formulas. However, the basic idea remains, if the parameters shift over 
time, then data from far in the past can be of minimal value in predicting the future. 

ia p would capture some aspects that might be considered to be due to parameter uncertainty. 

‘1 Typically, A = 2 for workers’ compensation, and A = 1 for private passenger automobile merit 
rating. 
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We see that the 2 pi-’ 5 N has replaced N in formula 2.1. Also, there 
i=l 

is a maximum credibility of 

P4 
1 + K(l - p) (2.4) 

For p considerably less than one, adding more years of data quickly reaches 
the point of having no practical advantage. 

Using the Bailey-Simon credibilities for one and two years of data, we can 
solve for the parameters in formula 2.3 (A = 1). The results are 

TABLE 2.1 
Three Year Credibility 

Class K P Predicted Observed - 

1 10.9 .55 8.0% 8.0% 
2 7.7 .39 6.5% 6.8% 
3 6.9 .40 7.4% 8.0% 
4 3.0 .28 8.7% 9.9% 
5 8.6 .37 5.5% 5.9% 

Formula 2.3 produces a good fit for Class 1, a fair fit to Classes 2, 3, and 
5, but it is unacceptable for Class 4. Formula 2.2 does considerably better for 
Classes 2 and 3. As has already been explained, we do not expect a good fit 
for Classes 4 and 5. The maximum credibilities indicated range from 8% to 
13%, roughly the same range as indicated by formula 2.2. 

One can use all three years of data in an attempt to estimate the parameters 
in either formula 2.2 or formula 2.3. Using a least squares fit, the results for 
formula 2.2 are given in Table 2.2 and for formula 2.3 in Table 2.3. We note 
that overall the fits of the formulas to the Bailey-Simon data, which is reproduced 
for convenience in Table 2.4, are as good as can be expected given the nature 
of the data. While the assumptions behind formula 2.3 seem more applicable 
to the situation here, formula 2.2 does at least as good a job of fitting the 
observed data. We note that the indicated maximum credibilities (N = 00) are 
consistently lower for formula 2.3 than for formula 2.2. 
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TABLE 2.2 

FORMULA 2.2 FIT TO THE DATA IN TABLE 2.4 

Class J K N= 1 N=2 N=3 N=co 
- ~ 

1 7.88 13.78 4.62% 6.77% 8.02% 12.7% 
2 10.96 11.30 4.49 6.02 6.79 9.1 
3 9.00 10.85 5.04 6.93 7.93 11.1 
4 8.30 6.06 6.96 8.83 9.69 12.0 
5 12.37 14.33 3.75 5.12 5.83 8.1 

TABLE 2.3 

FORMULA 2.3 (A = 1) FIT TO THE DATA IN TABLE 2.4 

Class J P N= 1 N=2 N=3 N=m 

1 11.14 .557 4.59% 6.83% 8.00% 9.4% 
2 8.61 ,428 4.45 6.09 6.75 7.2 
3 8.47 .473 4.99 7.01 7.89 8.7 
4 4.51 .381 6.91 8.93 9.63 10.0 
5 11.09 .448 3.71 5.17 5.80 6.3 

TABLE 2.4 

EMPIRICAL CREDIBILITIES FROM BAILEY-SIMON 
PAPER 

Class N=l N=2 N=3 

1 4.6% 6.8% 8.0% 
2 4.5 6.0 6.8 
3 5.1 6.8 8.0 
4 7.1 8.5 9.9 
5 3.8 5.0 5.9 
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The extent to which parameters actually shift over time for any given line 
of insurance is an important empirical question worthy of further investigation. 
One would examine the correlations between years of data separated from each 
other by different time spans. One would also examine the empirical credibility 
of one year of data being used to predict some later year of data, for different 
separations between the two years. 

The results of such an investigation should be quite useful in the design of 
experience rating plans. It would help to decide how many years of data should 
go into the plan. Also, it would help decide whether it is worthwhile, i.e. 
produces a significant increase in efficiency (as defined by Meyers), to give 
more weight to the more recent years of data. I2 It would also help in deciding 
what those relative weights should be. 

2.4 Risk Heterogeneity 

Another phenomenon is risk heterogeneity. In other words, a large risk may 
be made up of smaller risks. If we treat the smaller risks within a single large 
risk as independent observations from the same distribution we get the usual 
Bayesian formula 2.1. However, if smaller risks were grouped together in a 
totally random fashion to give larger risks, then there would be no increase in 
credibility between a small risk and a large risk. The actual situation is generally 
somewhere between those two extremes. 

As shown in Appendix D, this would lead to a formula for credibility of 
the form 

N+I 
Z=- 

N+K’ 
QSIdK. (2.5) 

It should be noted that the value of K in formula 2.5 differs from that in 
formula 2.1. Formula 2.5 does not fit the Bailey-Simon data. 

Formula 2.5 was derived for large risks. It would not apply for small risks, 
i.e., those too small to have separate and distinct subunits.r3 Specifically, no 
conclusion should be drawn from the fact that formula 2.5 has a minimum 
credibility of IIK. 

‘* For example, the Massachusetts Private Passenger Automobile Safe Driver Insurance Plan cur- 
rently gives less weight to older incidents via a so-called aging process. 

I3 It should be noted that generally experience rating plans have an eligibility requirement which 
excludes very small risks. 
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If both parameter uncertainty and risk heterogeneity are important, as shown 
in Appendix D, the formula for credibility takes the form 

z= N+I 

JNfK’ 
OSIIK,JZl. (2.6) 

Formula 2.6 can be fit to the Bailey-Simon data. However, using three years 
of data to fit three parameters I, J, and K leaves no way to test the predictions. 

Let M be a measure of the (average) size of the risk in each year. Let N be 
the number of years of data used for experience rating. Then if all three 
phenomena are taking place, we get the following formula in Appendix E:i4 

PA ,sj Pi-’ CM + I) ( > 
Z= 

( > ,i2 pi-’ (A4 + I) + JM + K 

For p = 1, formula 2.7 reduces to 

NW + I) 
’ = (N--l)@4 + Z) + JM + K ’ 

(2.7) 

(2.8) 

For N = 1, formula 2.8 reduces to formula 2.6, as it should. 

2.5 Conclusions 

I suspect that each of the three phenomena discussed is taking place to some 
extent. It would be worthwhile to obtain a more current set of private passenger 
automobile data that followed a risk for more than three years. Then one could 
determine the relative importance of the three phenomena. It would also be 
worthwhile to investigate the effects of these phenomena on other lines of 
insurance. For example, parameter uncertainty and risk heterogeneity would be 
expected to be particularly important for large commercial risks. 

More generally, it would be worthwhile to determine empirically the cred- 
ibility associated with each size of risk .I5 For such an investigation, identifying 

I4 As stated previously, p captures certain aspects that might be. labeled parameter uncertainty. Here 
J captures only those aspects of parameter uncertainty that relate to adding up subunits at the same 
point in time. 

I5 The National Council on Compensation Insurance is currently doing so for workers’ compensa- 
tion. 
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the underlying causes would be helpful but not necessary. However, the above 
reasoning leads to useful candidates to check against the observed behavior with 
size of risk.16 

3. AN EXAMPLE ILLUSTRATING PARAMETER UNCERTAINTY, 

SHIFTING PARAMETERS OVER TIME, AND RISK HETEROGENEITY 

This example will try to illustrate what is meant by the three related but 
somewhat different concepts of parameter uncertainty, shifting parameters over 
time, and risk heterogeneity. The mathematics are developed and discussed in 
Appendices B, C, D, and E. 

Assume we have the legendary little old lady from Pasadena who only uses 
her car to drive back and forth to church on Sundays. Let us ignore any seasonal 
variations in driving conditions. Further assume she always travels at the same 
time of day and always uses the same route. 

One year actually consists of 52 observations of her claims process. If we 
treat these as 52 independent observations from the same distribution then we 
would get formula 2.1 for the credibility. 

3 .I Parameter Uncertainty 

However, we note that there are factors outside of her risk process that will 
vary her loss potential randomly, i.e., change the parameters of her risk process 
on any given day. To take one example, whether or not it is raining would 
affect her risk process. 

Assume that there is a higher chance of an accident when it rains. Further, 
assume whether or not it rains during her trip is a random variable. Then we 
have a risk process such as described by Mr. Meyers’s algorithm A. 1 (ignoring, 
for simplicity, claim severity). This is an example of parameter uncertainty. 

There is a kernel of uncertainty in the number of accidents she has in a year 
due to the variability caused by the different possible states of the universe, 
Extra observations will not reduce the effect of this kernel of uncertainty. This 
is why we get the lower credibilities indicated by formula 2.2. This is also why 
the maximum credibility is less than one. 

3.2 Shifting Parameters Over Time 

Let us change the example to illustrate risk parameters shifting over time. 

I6 The table at the end of Appendix G gives a good list of such candidates. 
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(They shift in a definite direction, but we cannot predict beforehand in which 
direction.) Assume that the little old lady changes churches, and that her trip is 
significantly different (e.g., longer or shorter). Then her accident potential is 
different. Experience based on old data when she was driving to her old church 
is less useful for predicting her expected future claims experience driving to her 
new church. Thus the credibility assigned to it would be lower. The credibility 
would be given by formula 2.3. Once again, the maximum credibility is less 
than one. Many observations in a single year will not take this shift into account, 
and observations over a longer period of time include, of necessity, “stale” data. 

3.3 Risk Heterogeneity 

Finally, let us change the example to illustrate risk heterogeneity. Let us 
assume we have a classification of risks which is made up solely of cars which 
are only driven by little old ladies, who only use them to drive to church on 
Sundays.17 Further, let us assume that in each case the car is jointly owned by 
two little old ladies. Finally, assume that they take turns driving, each one 
driving every other Sunday. In this case, the average process variance per car 
for the class remains the same as the case where each car was driven by one 
little old lady.‘* 

However, since the distribution of the loss potential of cars has become 
more concentrated toward the mean, the variance between the cars making up 
the class would be less than in the case where each car was driven by one little 
old lady.ig Thus, the claims data for a car is less credible than the similar 
situation where we had only one driver of each car. It would be even less 
credible if they alternated churches each Sunday, as well as drivers. 

The formula for credibility when there were heterogeneous risks was given 
by formula 2.5. Another simple but illustrative example is given in Appendix 
D of this discussion. 

1’ While this is clearly unrealistic, many class plans for private passenger automobiles do have a 
senior citizens class. 

‘* This would not be the case if they flipped a coin in order to decide who did the driving each 
Sunday. In that case, the process variance would be greater. This can be usefully thought of as a 
case of parameter uncertainty. 

I9 This would not be the case if for each pair of little old ladies who jointly own a car, the two 
drivers in each pair have the exact same loss potential as each other. 
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3.4 Conclusions 

It should be noted that part of the difficulty in assigning credibilities to one 
car year of exposure is that a car year can mean considerably different things 
depending on how the car is used, how far it is driven, and how many drivers 
it has. Part of the purpose of experience rating is to make up for any such 
inadequacies in the exposure base or risk classification system. 

The interested reader would probably find it useful to construct a similar 
example of his own for a large commercial risk. One could take a workers’ 
compensation insured consisting of ten separate locations of equal size, and 
give examples of each of the three phenomena. 

4. THE EFFICIENCY CRITERION 

In Section 4 of his paper, Mr. Meyers defines the efficiency of an experience 
rating plan as the reduction in the expected squared error. (See formula 5.2 
below.) The higher the efficiency, the more accurate the experience rating plan. 

The author defines the efficiency so that it is never more than 1OO%.2o The 
efficiency can only reach 100% if all the risks in the class have the same mean. 
Since classes are usually not perfectly homogeneous, the efficiency obtainable 
by any estimator is usually less than 100%. The author shows that the maximum 
efficiency using credibility is achieved when the credibility is equal to the 
Biihlmann (i.e., Bayesian credibility) result. For this case, the efficiency equals 
the credibility. 

The author also shows that the efficiency as a function of the credibility is 
a parabola. Thus, even if the credibility used is not quite the Btihlmann result, 
there is still a substantial improvement in accuracy due to the use of credibility.*’ 
In the next section of his paper, the author shows how this general principle 
applies to the use of a self-rating point. 

5. MAXIMIZING EFFICIENCY, PRIMARY AND EXCESS LOSSES 

It is possible to generalize the Btihlmann result to the cases Meyers exam- 
ines. Assume we have an experience rating plan, and our estimate of the mean 

20 The efficiency can be negative for a particularly poor choice of estimator. 

21 This pleasant and useful property of credibility estimates is explored in more detail in Mahler 
161. 
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F is given by 

F = (1 - Z,) Ep + Zfi, + (1 - 2,) E, + ZJ, . 

The subscripts p and e will stand for primary and excess; however, for now 
they can be treated as any two well defined portions of the total losses. Ep and 
E, are the expected losses of each type. A, and A, are the actual losses of each 
type. Z, and Z, will be thought of as the credibilities assigned to each portion 
of the losses; however, for now they can be treated as just numbers to be 
determined. 

In accordance with Meyers, define the efficiency of F by the expression 

1 _ E[(F - 1-0~1 
E[(M - vJ21 ’ 

Where M is the grand mean, and p, is the mean for individual risks. In this 
case, M = Ep f E,. 

In order to maximize the efficiency, one must minimize E[(F - p)‘]. In 
Appendix F, Z, and Z, are determined so as to maximize the efficiency. Let: 

a = total variance of the primary losses 
b = total variance of the excess losses 
c = variance of the hypothetical means of the primary losses 
d = variance of the hypothetical means of the excess losses 
r = total covariance of the primary and excess losses 
s = covariance of hypothetical means of the primary and excess losses. 

Then the optimum Z, and Z, are 

z 

P 

= Cc + 4b - Cd + $1~ , and 

ab - r2 

z = (d + s)a - (c + s)r 
e ab - r2 

It is interesting to note that if we set the primary losses equal to the total 
losses and thus the excess losses equal to zero, then the solution to the equations 
becomes 

z, zz c 
a’ 

which is the usual expression for credibility, as in Meyers’s equation 3.1. 
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However, unlike the usual case for credibilities, formulas 5.3 and 5.4 do 
not have the property of restricting Z,, or Z, to the closed interval between zero 
and one. Thus, although it may merely be a matter of semantics, some caution 
is required before labelling Z, and Z, as credibilities. For simplicity of exposi- 
tion, I will refer to them as credibilities, but perhaps a more precise term to 
apply would be weights. 

The maximum efficiency that results from the optimal values of Z, and Z, 
given by formulas 5.3 and 5.4 is 

Maximum Efficiency = 
Z,(c + s) + Z,(d + s) 

c+d+2s . (5.5) 

Thus, the maximum efficiency is a weighted average of the two credibilities 
that produce this maximum.22 

In Appendix G, the dependence of the credibilities and efficiency on the 
size of risk is explored. One does not get the familiar formula 2.1 that we had 
for the no-split situation.23 

6. SINGLE SPLIT PLANS 

In Section 5 of his paper, Mr. Meyers illustrates the advantage of having a 
loss limit as per the General Liability single split plan. He does this by means 
of an example in which he assumes four types of risks.24 It is useful to think 
of these risks as excellent, good, bad, and terrible. While this choice simplifies 
the computations, it still captures the essence of experience rating, which is to 
distinguish between risks to the extent that they are otherwise not distinguished 
by the class plan. 

The claim count distribution is chosen as a binomial with N trials. N is used 
as a measure of the size of the insured. Once again this simplifies the compu- 
tations, but captures the essential features. There are high and low frequency 
risks and the process variance increases linearly with N. 

22 The denominator is the variance of the hypothetical means of the total losses (primary plus 
excess). 

23 Of course as discussed above, one can make alternative assumptions, and get alternative formulas 
for the no-split situation, as for example formulas 2.2, 2.3, and 2.5. 

24 In Appendix J, an example is given of a continuous distribution of types of risks. 
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The severity distribution is chosen as a discrete version of the Shifted 
Pareto.25 The use of the discrete version again simplifies the computations while 
maintaining the essential features. There are high and low severity risks. Most 
of the claims are small; however, the large claims contribute a large part of the 
mean and most of the variance.26 

Mr. Meyers employs the Panjer algorithm to derive the aggregate loss 
distribution from the assumed frequency and severity distributions.27 The reader 
should note that, for these simple examples, it is relatively simple to calculate 
the aggregate distributions directly via convolutions. Also, all of the calculations 
necessary to explore the behavior of the credibility results can be done from the 
separate frequency and severity distribution without first obtaining the aggregate 
loss distribution.28 

6.1 Frequency versus Severity 

Mr. Meyers looks at three different examples. In his first example, which 
is displayed in his Table 5.2, only the frequency distributions vary between the 
risks. In his second example, which is displayed in his Table 5.3, only the 
severity distributions vary between risks. In his third example, which is dis- 
played in his Table 5.4, both the frequency and severity distributions vary 
between risks. In actual applications, which example is a better approximation 
to reality will depend on the relative importance of the variance between risks 
of the frequency and the variance between risks of the severity. For each 
example, Mr. Meyers displays the results of using Bayes Theorem as well as 
credibility. I will only discuss the results of using credibility. 

Mr. Meyers points out the conflicting roles of the frequency and severity 
variances between risks in the choice of a loss limit. If only the frequency 
distributions vary, then the loss limit should be low. The assumption in Meyers’s 

25 While the Pareto has been extensively used as a size of loss distribution for a group of risks, it 
is unclear whether or not the Pareto is an appropriate size of loss distribution for individual risks. 

26 In fact, for Mr. Meyers’s choice of parameters, 4 = 1.25, the unlimited Pareto has an infinite 
variance. 

27 The Panjer algorithm is explained in Venter [7]. It is simpler than the Heckman-Meyers algorithm 
and designed to handle the case where one has a discrete severity distribution. The Heckman- 
Meyers algorithm is explained in Heckman and Meyers [S]. 

28 In fact, they need only be done completely for N = 1, with the results for other values of N 
following from the results in Appendix G. Mr. Meyers’s results for the use of Bayes Theorem do 
require that the aggregate loss distributions be calculated. 
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first example is that the size of a claim is completely random and does nothing 
to distinguish good and bad risks. On the other hand, if only the severity 
distributions vary, we want a higher loss limit. In Meyers’s second example, 
we want to capture as much of the valuable information contained in the size 
of claim as is useful. When both the severity and frequency distributions vary, 
the optimal loss limit is somewhere between the results for the first two cases. 

In,his third example, Mr. Meyers takes the frequency and severity as highly 
correlated.29 Those risks with a high mean frequency also have a high mean 
severity. Thus, although frequency and severity are assumed to be independent 
for a given risk, they cannot be treated as independent when looking at all risks 
combined. 

This high correlation chosen by Mr. Meyers, as well as the particular choice 
of parameters, affects the particular results obtained. Thus, when attempting to 
apply Mr. Meyers’s method of analysis to a particular real world situation, it is 
important to carefully choose those assumptions which most closely match that 
situation. With this caveat, the method of analysis should be widely applicable. 
I will analyze Meyers’s third example extensively below in Section 7. 

6.2 Basic Limits versus Total Limits 

Sometimes the question that is asked is as important as the answer. Mr. 
Meyers poses the question in Section 5 of his paper as trying to maximize the 
efficiency, where only the error in predicting basic limits losses is considered 
in the efficiency. A useful extension might be to consider the error in predicting 
total limits losses,30 which would produce different results, If you assume that 
each of these risks would receive the same increased limits factor, then one 
could explore the behavior of the efficiency for various total limits using the 
methods discussed below. 

6.3 Primary and Excess Credibilities 

Formulas 5.3 and 5.4 give the primary and excess credibilities which will 
maximize the efficiency. (However, these “credibilities” do not necessarily lie 
between zero and one.) It is possible to use other values for the credibility, but, 
of course, the efficiencies will be lower. 

w In Meyers’s Section 6, when examining the Workers’ Compensation Experience Rating Plan, 
frequency and severity are taken as independent of each other. 

3o In the next section, Mr. Meyers deals with unlimited losses while exploring the features of the 
Workers’ Compensation Experience Rating Plan. 
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As shown in Appendix F, if the excess variance is relatively large, as it is 
for this example, then it is a good approximation to the optimal credibilities to 
take 

zp = 
C-tS 
- , and 

a (6.1) 

z, = 0. 
In fact, the General Liability Plan sets Z, = 0. Subject to that constraint, 

formula 6.1 gives the maximum efficiency. As shown in Appendix F, this is 
equivalent in the General Liability Plan to taking 

z=W(g%J (6.2) 

In actual application, formula 6.2 can lead to values greater than one. Thus, 
it might be more practical to employ 

z = MIN [l, (?) (&-)I . 

In his tests, Mr. Meyers uses 

z=c. 
a 

(6.31 

The ratio of the credibility given by formula 6.2 to that given by formula 
6.4 is 

(1 + :) + (1 + 2). 
For the assumptions used here, this is independent of N. For the Meyers 

example, this expression is greater than one, so that the credibilities given by 
formula 6.2 are larger than those given by formula 6.4. 

In Appendix F, a formula is given for the loss in efficiency due to using 
formula 6.4 rather than formula 6.2. 31 As will be seen below for the cases 
explored by Mr. Meyers, the loss in efficiency is relatively small. Nevertheless, 
for certain applications, it may be significant. 

31 The relative loss in efficiency turns out to be independent of N. 
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7. MEYERS’S GENERAL LIABILITY EXAMPLE IN MORE DETAIL 

Meyers displayed in more detail in Exhibit 5.1 the case of varying frequen- 
cies and severities when N = 4 with a loss limit of 4.32 For this case we have 
a = 4.744, b = 29.740, c = 1.026, d = .753, r = 4.752, ands = .874. 

Using formulas 5.3 and 5.4 gives Z, = 41.2%, and Z, = -l.l%, with a 
resulting efficiency of 2 1.7%. 

Using formula 6.2 results in 2 = 26.3% and an efficiency of 21.6%.33 In 
this case Z S 1, so formula 6.3 gives the same result as formula 6.2. 

Formula 6.4 (used by Meyers) gives Z = 21.6% and an efficiency of 20.9%, 
which matches Meyers’s result.34 

The behavior observed by Mr. Meyers for credibilities in Table 5.4 can be 
explained in terms of formula 6.4 being an approximation to formula 6.3, which 
is in turn an approximation to formula 6.2, which in turn is an approximation 
to formulas 5.3 and 5.4, the true optimal credibility result.35 

7.1 Results of the Various Formulas for Credibility 

In Tables 7.1 to 7.4, I have calculated the equivalent of Meyers’s Table 5.4 
(frequency and severity both vary) for these various different credibility for- 
mulas. I have extended the tables to cover more values of N and loss limits. 

32 There are four prior distributions given equal weight. They have binomial parameters p of .2, 
.3, .4, and .5 respectively. They have first parameters of the Pareto, which Meyers calls 6, of .25, 
SO, .75, and 1 .OO respectively. They all have the second parameter of the Pareto, which Meyers 
calls 4, equal to 1.25. 

33 Note that this is approximately equal to the Biihlmann credibility from formula 6.4 given below. 
Why this is the case is explained in Appendix H. 

34 The efficiency is not equal to the credibility as one might expect from Meyers’s Appendix B, 
since we are measuring the error in predicting the basic limits losses rather than just the primary 
portion of the basic limits losses. 

35 Which is in mm a linear approximation to the optimal Bayesian result. 
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TABLE 7.1 

EFFICIENCIES 
(COUNT AND SEVERITY DISTRIBUTIONS VARY AS PER MEYERS’S TABLE 5.4) 

PRIMARY AND EXCESS CREDIBILITIES AS PER FORMULAS 5.3 AND 5.4 

Loss 
Limit 

($1000) 

1 
2 
2.5 
3 
4 
6 
8 

12 
16 

N=4 N=8 - - 

19.9% 33.1% 
22.7 37.0 
22.8 37.1 
22.5 36.7 
21.7 35.6 
20.0 33.3 
18.5 31.3 
16.4 28.2 
15.0 26.1 

N= 16 N = 32 N=64 N= 128 N = 256 N=m 

49.6% 66.2% 79.4% 88.2% 93.4% 100.0% 
53.9 69.9 82.1 90.0 94.5 100.0 
54.1 70.1 82.2 90.1 94.6 100.0 
53.6 69.7 82.0 90.0 94.6 100.0 
52.5 68.8 81.4 89.6 94.4 100.0 
49.9 66.5 79.9 88.7 93.9 100.0 
47.6 64.5 78.4 87.8 93.5 100.0 
44.0 61.1 75.9 86.2 92.6 100.0 
41.4 58.5 73.8 84.9 91.8 100.0 

TABLE 7.2 

EFFICIENCIES 
(COUNT AND SEVERITY DISTRIBUTIONS VARY AS PER MEYERS’S TABLE 5.4) 

CREDIBILITY AS PER FORMULA 6.2 

Loss 
Limit 

($1000) N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = c-~ ----- - ~ ___ - 

1 18.6% 31.4% 47.6% 64.3% 77.9% 87.1% 92.6% 98.8% 
2 22.6 36.9 53.8 69.8 82.0 89.9 94.4 99.4 
2.5 22.8 37.1 54.0 70.0 82.2 90.0 94.5 99.5 
3 22.5 36.7 53.6 69.7 82.0 90.0 94.5 99.6 
4 21.6 35.5 52.3 68.7 81.3 89.6 94.4 99.7 
6 19.6 32.8 49.4 66.1 79.5 88.5 93.9 99.9 
8 18.0 30.5 46.7 63.7 77.8 87.5 93.3 99.9 

12 15.5 26.9 42.4 59.5 74.6 85.4 92.1 100.0 
16 13.8 24.3 39.1 56.2 71.9 83.7 91.1 100.0 
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TABLE 7.3 

EFFICIENCIES 

(COUNT AND SEVERITY DISTRIBUTIONS VARY AS PER MEYERS'S TABLE 5.4) 
CREDIBILITY AS PER FORMULA 6.3 

Loss 
Limit 

Glow N=4 N=8 N= 16 N = 32 N=64 N= 128 N = 256 ,‘,J=w 

1 18.6% 31.4% 47.6% 63.8% 73.2% 77.9% 80.3% 82.7% 
2 22.6 36.9 53.8 69.8 80.8 86.3 89.1 91.9 
2.5 22.8 37.1 54.0 70.0 81.6 87.7 90.7 93.7 
3 22.5 36.7 53.6 69.7 81.8 88.9 91.7 95.0 
4 21.6 35.5 52.3 68.7 81.3 89.0 92.8 96.6 
6 19.6 32.8 49.4 66.1 79.5 88.5 93.3 98.1 
8 18.0 30.5 46.7 63.7 77.8 87.5 93.1 98.8 

12 15.5 26.9 42.4 59.5 74.6 85.4 92.1 99.4 
16 13.8 24.3 39.1 56.2 71.9 83.7 91.1 99.7 

TABLE 7.4 

EFFICIENCIES 
(COUNT AND SEVERITY DISTRIBUTIONS VARY AS PER MEYERS'S TABLE 5.4) 

CREDIBILITY AS PER FORMULA 6.4, I.E. SHOULD MATCH MEYERS’S TABLE 5.4 

Loss 
Limit 

($1000) N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = m ---- ~ ___ - 

1 15.6% 26.2% 39.8% 53.8% 65.2% 72.9% 77.5% 82.7% 
2 20.9 34.1 49.7 64.5 75.8 83.1 87.2 91.9 
2.5 21.5 34.9 50.9 65.9 77.4 84.7 89.0 93.7 
3 21.4 35.0 51.1 66.5 78.2 85.8 90.2 95.0 
4 20.9 34.4 50.7 66.5 78.8 86.8 91.4 96.6 
6 19.3 32.2 48.5 64.9 78.1 87.0 92.2 98.1 
8 17.8 30.1 46.2 62.9 76.9 86.5 92.2 98.8 

12 15.4 26.7 42.1 59.2 74.2 85.0 91.6 99.4 
16 13.8 24.2 38.9 56.0 71.7 83.4 90.8 99.7 
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7.2 Eficiency as a Function of Loss Limit 

Table 7.4 here should match Meyers’s Table 5.4.36 We see the same behavior 
noted by Mr. Meyers. Taking larger loss limits gives higher efficiency only up 
to a point; then it decreases. The optimal loss limit increases with size of risk, 
as was noted by Mr. Meyers. Table 7.1, using primary and excess credibilities, 
shares the former feature, but not the latter feature. 

The fact that, for fixed N, the efficiencies in Table 7.1 have a maximum 
somewhere in between L = 0 and L = 50 (the limit for basic limit losses in 
Meyers’s example) is not surprising. If L = 50, then all of the losses are 
primary. If L = 0, then all of the losses are excess. In each case, the solution 
reduces to that of the no-split plan. Thus, the two endpoints have the same 
efficiency. For 0 < L < 50, the special case where we restrain 2, = Z, reduces 
to that of the no-split plan. Thus we know that the split plan allowing Z, and 
Z, to vary independently so as to get the maximum efficiency does at least as 
well as the no-split plan, which is just a special case. 

Thus 0 < L < 50 does at least as well as L = 0 or L = 50. In fact, it does 
better. The efficiency peaks somewhere between the endpoints and decreases as 
L approaches the two extremes. This behavior carries over to Tables 7.2, 7.3, 
and 7.4 which can be thought of as successive approximations getting further 
and further from the optimal results in Table 7.1 

In Table 7.1, the optimal loss limit is about 2.5, independent of N.37 This 
behavior carries over to Table 7.2. In Table 7.3, the optimal loss limit increases 
slowly with N, after N = 32. The reason is that we have restricted Z S 1;38 if 
formula 6.2 would indicate Z > 1, we set Z = 1 instead. Thus we are giving 

36 In fact, it does not for a loss limit of $1000. Apparently, Mr. Meyers mistakenly set these 
efficiencies equal to those from his Table 5.2 where only the claim count distributions vary. The 
efficiencies here should be lower, even though the two cases are very similar. It is true that since 
the severity distributions are discrete in units of $1000, choosing a loss limit of $1000 means that 
all limited claims are of size $1000. In other words, the experience rating plan ignores the size of 
claim in both cases for a loss limit of $1000. In each case, the experience rating plan is explaining 
the same amount of variation, based solely on the observed difference in claim counts. However, 
in the case here, the total observed variation in losses is greater than when only the claim count 
distributions vary, since here the severity distributions also vary. Thus, a smaller proportion of the 
total observed variation is explained here. Therefore, the efficiency is lower here. 

37 The reason this is so for Table 7.2 is explained in Appendix H. 

38 This becomes applicable in the upper righthand comer of the table. For example, for N = 64 
and a loss limit of 2.5, the credibility indicated by formula 6.2 is 109.1%. 
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less than the optimum weight to the primary losses. We can afford to raise the 
loss limit somewhat (staying within the range where formula 6.2 would indicate 
2 2 1, thus formula 6.3 indicates Z = 1) so as to make the mean primary loss 
larger, in order to make up for the lessened weight that is being applied to the 
primary losses. 

Finally, Table 7.4 has the optimum loss limit increase faster with N than 
does Table 7.3. This is so since formula 6.4 is close to formula 6.3, but in 
Meyers’s example yields lower credibilities. Thus, once again, we raise the loss 
limit to make up for a too low weight applied to the primary losses. 

In Table 7.3, we notice that, for a given loss limitation, after a certain point 
there is little increase in efficiency with increasing size of risk. This is explained 
in Appendix F. 

8. SELF-RATING POINT 

Formulas 6.2 and 6.3 for credibility illustrate the theoretical validity of a 
self-rating point. One can have Z 2 1. In fact, this is the case for Meyers’s 
third example. 

It makes sense to define the self-rating point as the smallest size risk such 
that Z = 1 at the optimum loss limit. Using formula 6.2 this means that 

whereas in Appendix G we let: 

n s 
s = 7 , and 

N 

f = tlN = (a - c)lN. 

Formula 8.1 can be solved for 

N = f G + Eel 
s^ Ep - E E, 

(8-l) 

In the Meyers example, we saw in Table 7.2 that the optimum loss limit is 
about 2.5. For this loss limit we have c^ = .041, s^ = .054, I = .548, Ep = 
.495, and E, = .375. Thus, formula 8.2 gives N = 42. 
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Thus, in this example, the self-rating point would be 42.39 When using 
formula 6.3, we expect the optimum loss limit to increase above this self-rating 
point. This is confirmed by Table 7.3 where the optimum loss limit began to 
increase for N 2 64 after remaining constant for N 5 32. 

9. CONCLUSIONS FROM MEYERS’S GENERAL LIABILITY EXAMPLE 

Those features and assumptions of Meyers’s third example that are probably 
true for most applications are: 

(1) Both the frequency and severity distributions vary between risks (al- 
though perhaps not in the same relative importance as in this example). 

(2) Frequency and severity are somewhat correlated (although probably not 
to the extent they are in the example). 

(3) The excess losses have a much higher coefficient of variation than do 
the primary losses. 

(4) The primary severity and excess severity are highly correlated. 

Based on the above analysis of Meyers’s example, when the general as- 
sumptions of his example hold, the behavior we expect to see for a single split 
experience rating plan is as follows: 

(1) The optimum loss limit increases slowly as the size of risk gets larger 
up to the self-rating point. 4o (It shall be shown when examining Meyers’s 
next example that the optimum loss limit remains virtually constant here 
because of the particular choice of parameters for this example.) 

(2) The optimum loss limit increases more rapidly as the size of risk in- 
creases beyond the self-rating point. 

(3) The more important the differences in severity, the higher the optimum 
loss limit. The more important the differences in frequency, the lower 
the optimum loss limit. 

(4) The efficiency is very close to optimal for loss limits close to optimal. 
(5) The optimal credibilities will not be of the form N/(N + K), although 

such a formula will give efficiencies close to optimal. (This will not be 
true if any of the phenomena discussed in Sections 2 and 3 of this 
discussion are significant.) 

39 This corresponds in this example to expected basic limits losses of about $37,000, or about 26 
claims on average. 

4o In certain cases it may not be appropriate to have a self-rating point. For example, this will be 
the case if the phenomena discussed in Sections 2 and 3 of this discussion significantly reduce the 
credibilities. 
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10. MULTI-SPLIT PLAN 

In Section 6 of his paper, Mr. Meyers constructs an example to illustrate 
the behavior of a multi-split plan such as that currently used for workers’ 
compensation. As in his Section 5, the risks are divided into a small number 
of possible types.41 

He uses a Poisson distribution to model the claim counts. He uses a (con- 
tinuous) Weibull distribution to model claim severity. The frequency and se- 
verity are treated as independent.42 

No overall limit is applied by the author to the losses. In actual application 
of the Experience Rating Plan, a per claim accident limit is applied.43 The value 
differs considerably by state, but I will use $100,000 here for illustrative 
purposes. If the severity distribution has a large tail, this accident limitation can 
add to the efficiency of the plan. 

10.1 The Current Workers’ Compensation Experience Rating Plan 

Mr. Meyers examines whether the current Workers’ Compensation Experi- 
ence Rating Plan or his formula 6.1 works better, i.e., which produces higher 
efficiency. Mr. Meyers concludes that his formula 6.1, which gives no credibility 
to the excess losses, outperforms the current Workers’ Compensation plan. 

The first thing to note is that the current workers’ compensation formula 
can be written as the new estimate of expected losses equals the old estimate 
of expected losses times the experience modification, 

10. 
F=A,+WA,+(l-W)E,+(l-W)KE 

E+(l-W)K 

Then, following Snader [9], let 

( 1) 

z, = E 
E + Kp ’ 

(10.2) 

z,=E= 
E+K, wz~7 (10.3) 

Kp = (1 - W)K = B, and (10.4) 

4* In Appendix J, an example is given of a continuous distribution of risks. 

42 In Section 5 of his paper, Mr. Meyers’s example had the frequency and severity highly correlated. 

43 For accidents involving multiple claims, the limitation is twice that for single claim accidents. 
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K = Cl- wm + 0 e w . (10.5) 

Then formula 10.1 can be written as 

F = Ep (1 - Z,) + A$-, + E, (1 - Z,) + A&. . (10.6) 

Formula 10.6 is the form of F that has been previously discussed. As was 
shown previously, the solution for the optimal Z, and Z, given in formulas 5.3 
and 5.4 do not have the form of formulas 10.2 and 10.3, even if Kp and K, 
were constants with size of risk. In the current workers’ compensation plan, 
1 - W and thus Kp decreases with increasing size of risk until it is zero for 
self-rated risks. Below a certain value, W = 0 and thus Z, = 0. Above that 
value, W increases to 1 with increasing size of risk, and K, decreases with 
increasing size of risk until it reaches zero for self-rated risks. Values of Kp, 
Kc, Z,, and Z, are displayed in Table 10.1 for a typical choice of parameters.& 

Mr. Meyers makes the excellent point that there is no theoretical framework 
in which the standard workers’ compensation formula (with this particular 
variation of Kp and K, with size of risk) is optimal.45 

10.2 Meyers’s Alternative, Zero Excess Credibility 

Meyers’s formula 6.1 can be written as 

F=G{l - (1 + 2) &)} 

+A,(1 + 2) (& +E,. 

which is a special case of formula 5.1 with 

Z, = (1 + 2) (&) , and 

ze = 0 

44 These are the values currently in use in Massachusetts. 

45 It is also of interest to note that Z, increases very quickly with the size of risk. 

(10.7) 

(10.8) 
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TABLE 10.1 

WORKERS’ COMPENSATION EXPERIENCE RATING 
CURRENT PLAN 

EXAMPLE FOR TYPICAL VALUES* 

Expected 
Losses 

Credibility 
Parameters K (00) 

Primary Excess 

5 200 Infinite 
10 200 Infinite 
1.5 200 Infinite 
20 200 Infinite 
25 200 Infinite 
30 198 49500 
35 196 26950 
40 194 19400 
45 194 21017 
50 192 16800 
60 188 12533 
70 184 10350 
80 182 10111 
90 178 8900 

100 174 803 1 
120 168 7350 
140 162 682 1 
160 154 6026 
180 148 5692 
200 140 5133 
225 132 4756 
250 124 4405 
275 116 4074 
300 106 3609 
325 98 3315 
350 90 3027 
375 82 2745 
400 72 2363 
425 64 2094 
450 56 1828 
475 48 1563 
500 38 1220 
525 30 962 
550 22 704 
575 14 448 
600 6 192 
625 0 0 

Credibilities 
(Percent) 

Primary Excess 

20 0 
33 0 
43 0 
50 0 
56 0 
60 I 
64 1 
67 2 
70 2 
72 3 
76 5 
79 6 
81 7 
83 9 
85 11 
88 14 
90 17 
91 21 
92 24 
93 28 
94 32 
95 36 
96 40 
97 45 
97 50 
97 54 
98 58 
98 63 
99 67 
99 71 
99 75 
99 80 
99 85 

100 89 
100 93 
100 97 
100 100 

* Self-Rating Point varies by state. Self-Rating Point taken as S = 9615,000. 
Q = $25,000. K = $20,000. See Snader [9]. 
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As we saw in the discussion of Meyers’s Section 5, the use of the credibilities 
in formula 10.8 results in less efficiency than the use of the theoretically optimal 
credibilities, but for many applications the loss in efficiency may be acceptable. 

10.3 A Modijcation of Meyers’s Example 

The loss in efficiency will be examined for the example in Meyers’s section 
6. In order to simplify the calculations, a discrete version of the Weibull will 
be used.46 In order to better match the current plan, an accident limitation will 
be used. The accident limitation will be chosen at $100,000. The probability, 
F(x), that a claim will be less than or equal to x is given by:47 

lqx) = 1 - e-(x’w x = $100, $200, . :. $100,000 (10.9) 

The remaining probability will be at the accident limitation $100,000. 

The primary portion of each loss will be determined by the multi-split 
formula 

X, xSB 

xp = (B + C) x 
x+c ’ 

xlB. 

(10.10) 

The current plan has C = 4B and B = $2,000. 

The frequency will be Poisson as per Mr. Meyers; however, we will take 
the parameter A equal to N times 4, 7, 10, 13, and 16. Thus N represents the 
size of risk, with N = 10 in Meyers’s example.48 

Appendix I shows how to calculate the quantities that enter formulas 5.3 
and 5.4, when the frequency and severity are independent. 

The results for this example with N = 10 are a = 86961, b = 349814, 
c = 65952, d = 101857, r = 123788, and s = 77843, Z, = 185.8%, 
Z, = - 14.4%, and Efficiency = 74.6%. 

46 The use of the discrete version changes some of the actual values, but the essence of the example 
is preserved. It should be noted that the continuous Weibull usually does not fit the observed size 
of loss distribution for small claims. For example, with b = 50 and c = .25, 31% of the losses 
will be one dollar! 

Q Meyers takes c = .25. He lets b = 30, 40, 50, 60, and 70 with equal probability. 

48 It should be noted that really small risks are currently not eligible for experience rating. The 
eligibility level for a risk with three years of experience eligible for experience rating is generally 
set so that for each state it approximates the average premium of a risk with 10 full time employees. 
(For example, in one state, this is currently $3500 in premium per year.) 
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Using formula 6.2 would result in Z = 81.4% and an efficiency of 73.5%. 
This is quite close to optimal. 

Using formula 6.4 would result in Z = c/a = 75.8% and an efficiency of 
73.2%. This is still quite close to optimal. Thus, as we saw in Section 7 of this 
discussion, the use of formula 6.4, as suggested by Mr. Meyers, results in a 
relatively small loss in efficiency compared to optimal. 

10.4 Results of Using the Various Formulas for Credibilities 

Table 10.2 gives, for various sizes of risks and various choices of B (as per 
formula lO.lO), the efficiencies for this example using formulas 5.3 and 5.4 
for credibility. We notice that for smaller risks, the optimal choice of B is much 
lower than the current value of $2000.4g The optimal B rises with size of risk. 
For the largest risks it reaches $2000. 

Table 10.3 is similar to Table 10.2, except that the credibilities are calculated 
using formula 6.2. There is a similar pattern to Table 10.2. The loss in efficiency 
is relatively small compared to Table 10.2. Table 10.4 uses formula 6.3 in order 
to calculate the credibilities. It is virtually identical to Table 10.3. 

Table 10.5 is similar to the preceding tables, except that the credibilities are 
calculated using formula 6.4, as recommended by Meyers. The pattern is again 
very similar, and the losses in efficiency are probably sufficiently small to be 
acceptable for most practical applications. Thus, at least for this example, there 
is little disadvantage to setting the excess credibility equal to zero. 

Table 10.6 is similar to Table 10.2, except that a single split plan has been 
used instead of a multi-split plan. The loss in efficiency is relatively small. 
Thus, at least for this example, there is little disadvantage to the use of the 
simpler single split plan. 

Table 10.7 is similar to Table 10.2, except that an accident limitation of 
$200,000 rather than $100,000 has been used. The pattern is similar to that in 
Table 10.2. As expected, the optimal value of B is (slightly) higher, since the 
tail of the severity distribution is relatively more important. The efficiencies in 
Table 10.2 are lower than those in Table 10.7, but it is inappropriate to compare 

+ This result depends on Meyers’s choice in this example of the relative importance of variation 
of frequency and variation of severity as well as the use of the Weibull distribution even for small 
sizes of claims. 
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them directly. Table 10.7 is the result of attempting to estimate losses capped 
at $200,000. This is a more difficult task than trying to estimate losses capped 
at $100,000 as in Table 10.2.50 

TABLE 10.2 

EFFICIENCIES 

MULTI-SPLIT PLAN, FORMULAS 5.3 AND 5.4 

B N= 1 N=3 N = 10 N = 30 N= 100 

$100 45.8% 65.5% 78.4% 85.9% 92.7% 
$200 41.4 63.6 79.1 86.9 93.1 
$500 34.6 58.9 78.5 87.8 93.7 

$1,000 29.6 54.3 77.0 88.0 94.0 
$2,000 25.2 49.4 74.6 87.7 94.3 
$5,000 20.3 42.9 70.5 86.5 94.3 

$10,000 17.2 38.3 66.8 85.0 94.1 

TABLE 10.3 

EFFICIENCIES 

MULTI-SPLIT PLAN, FORMULA 6.2 

B 

$100 
$200 
$500 

$1,000 
$2,000 
$5,000 

$10,000 

N=l N=3 N = 10 N = 30 

45.8% 65.5% 77.1% 81.2% 
41.0 63.5 78.7 84.4 
33.6 58.3 78.5 87.1 
28.2 53.0 76.7 87.9 
23.2 47.0 73.5 87.6 
17.4 38.7 67.3 85.4 
13.9 32.7 61.7 82.6 

N= 100 

82.7% 
86.6 
90.6 
92.7 
93.9 
94.3 
93.7 

5o One could put the two tables on a comparable basis by adjusting the efficiencies in Table 10.2 
to what they would have been if one measures efficiency in terms of the variation of the losses 
capped at $200,000. However, this is beyond the scope of this discussion. 
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TABLE 10.4 

EFFICIENCIES 
MULTI-SPLIT PLAN, FORMULA 6.3 

B 

$100 
$200 
$500 

$1,000 
$2,000 
$5,000 

$10,000 

B 

$100 
$200 
$500 

$1,000 
$2,000 
$5,000 

$10,000 

N=l N=3 N= 10 N = 30 

45.8% 65.5% 77.1% 81.1% 
41.0 63.5 78.7 84.3 
33.6 58.3 78.5 87.1 
28.2 53.0 76.7 87.9 
23.2 47.0 73.5 87.6 
17.4 38.7 67.3 85.4 
13.9 32.7 61.7 82.6 

TABLE 10.5 

EFFICIENCIES 
MULTI-SPLIT PLAN, FORMULA 6.4 

N=l N=3 N= 10 N= i0 

45.6% 65.3% 76.8% 80.9% 
40.8 63.2 78.3 84.0 
33.4 58.0 78.1 86.6 
28.0 52.7 76.3 87.4 
23.0 46.8 73.2 87.2 
17.4 38.6 67.1 85.2 
13.9 32.6 61.6 82.5 

N= 100 

82.6% 
86.3 
90.3 
92.4 
93.8 
94.3 
93.7 

N= 100 

82.5% 
86.2 
90.1 
92.2 
93.5 
94.1 
93.6 
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TABLE 10.6 

EFFICIENCIES 
SINGLE SPLIT PLAN, FORMULAS 5.3 AND 5.4 

B N= 1 N=3 N = 10 N = 30 N = 100 

$100 47.8% 63.8% 74.8% 83.4% 91.9% 
$200 48.2 65.4 76.8 84.6 92.3 
$500 44.1 64.7 78.6 86.2 92.8 

$1,000 38.8 61.9 78.9 87.2 93.3 
$2,000 33.0 57.5 78.1 87.9 93.8 
$5,000 25.6 49.9 74.9 87.7 94.3 

$10,000 20.6 43.5 70.9 86.6 94.4 
$20,000 16.4 36.9 65.6 84.4 94.0 

B 

$100 
$200 
$500 

$1,000 
$2,000 
$5,000 

$10,000 

TABLE 10.7 

EFFICIENCIES 
MULTI-SPLIT PLAN, FORMULAS 5.3 AND 5.4 

$200,000 ACCIDENT LIMITATION 

N=l N=3 N= 10 N = 30 

44.7% 64.0% 76.6% 83.9% 
40.4 62.2 77.5 85.3 
33.7 57.7 77.3 86.6 
28.7 53.1 75.8 87.0 
24.2 48.0 73.4 86.7 
19.1 41.1 68.8 85.4 
16.0 36.1 64.7 83.7 

N = 100 

91.1% 
91.7 
92.5 
93.1 
93.5 
93.7 
93.5 
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11. TESTING AN EXPERIENCE RATING PLAN ON ACTUAL DATA 

In Section 7 of his paper, Mr. Meyers gives a generally applicable method 
of testing experience rating plans. It is a more modem and statistically sophis- 
ticated version of the method presented by Dorweiler. The author uses this 
method on actual data to test which formula for credibilities performed best, as 
well as to test which values of parameters worked best given a particular 
formula. 

Meyers looked at formulas 2.1 and 2.2, and found that formula 2.2, which 
assumes parameter uncertainty, performed better. It would be interesting to 
perform the same test on other candidates, such as formula 2.5. In fact, given 
the other features of the plan, one can find by trial and error a relation of 
credibility with size of risk that works well. 

Given the appropriate data, the general method presented by the author 
should be able to answer the following questions which were not tested in the 
paper. 

1. What is the best loss limit to use? 
2. Does a loss limit which increases with the size of risk significantly 

improve the performance of the plan? 
3. Does a multi-split plan perform significantly better than a single split 

plan? 
4. Does assigning non-zero credibility to the excess losses perform signif- 

icantly better than assigning zero credibility to the excess losses? 

Mr. Meyers is able to use the method in this section not only to get a point 
estimate of the credibility parameter K, but also to get a confidence interval for 
K. It is interesting to note that the best estimate of K is not at the center of the 
confidence interval. Rather, the best estimate is nearer the low end of the 
confidence interval. This is at least partially explained by the fact that it is the 
ratio of different estimates of K rather than their difference which is important.51 

51 This feature of estimates of K is discussed in Mahler [6]. For example, if one either doubles or 
halves K, the resulting maximum changes in credibility are the same. The connection to the result 
here was pointed out to this author by Mr. Meyers. 
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12. CONCLUSIONS AND SUMMARY 

While Mr. Meyers’s paper is an excellent contribution to the actuarial 
literature which opens up many areas for further investigation, I think the author 
goes a little too far in drawing conclusions from his work. I will arrange my 
conclusions in a manner parallel to the author’s, in order to allow ready com- 
parison. 

MEYERS 

1. A loss limit can be an effective tool la. A loss limit can be an effective 
for increasing the accuracy of an tool for increasing the accuracy of 
experience rating formula. Loss an experience rating formula.s2 
limits are particularly helpful when lb. If the differences between risks 
there are differences in claim fre- 
quency. Even if the only differ- 
ences among the insureds are in 
claim severity, little accuracy will 
be lost with a loss limit. 

lc. 

within rating classes are mainly 
due to differences in frequency, 
then a lower loss limit is optimal. 
If they are mainly due to severity, 
then a higher loss limit is optimal. 
The efficiency is relatively insen- 
sitive to the choice of the loss 
limit. If your chosen loss limit is 
close to optimal, and assuming 
you choose credibilities close to 
optimal, then your efficiency will 
be very close to optimal. 

Id. The larger the maximum loss that 
can occur,s3 and the thicker the 
tail of the size of loss distribu- 
tion,54 the more important it is to 
have a loss limit. 

*2 Appendix J gives an example where there is no practical advantage to the use of a loss limit. 

53 Here we mean the largest loss considered by the plan, that is $50,000 in the Meyers’s general 
liability example and $100,000 in my version of Meyers’s workers’ compensation example. 

54 The Pareto has a very thick tail. The Weibull has a thick tail for Meyers’s c < 1, but not quite 
as thick as the Pareto. See Hogg and Klugman [IO]. 
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MAHLER 

le. The optimal loss limit increases 
slowly or remains virtually con- 
stant up to a large size of risk. For 
very large risks, the optimal loss 
limit increases more quickly. 

If. The optimal credibilities depend 
on the loss limit chosen. 

lg. Under certain conditions, there is 
a theoretical as well as a practical 
justification for having a self-rat- 
ing point. 

2. The current formula in the Work- 2a. The current formula used in the 
ers’ Compensation Experience Rat- Workers’ Compensation Experi- 
ing Plan, which has a separate ence Rating Plan can be im- 
treatment of primary and excess proved. 
losses, is less accurate than a for- 2b. The current manner in which the 
mula which uses only primary credibilities in the Workers’ Com- 
losses. pensation Plan vary with size of 

risk has no theoretical justifica- 
tion. Empirical studies should be 
done to come up with more ap- 
propriate relationships. 

2c. The gain in efficiency from the 
use of a multi-split rather than a 
single split plan may not be large 
enough to justify the use of the 
more complicated multi-split 
plan. 

2d. The excess credibilities are ex- 
pected to be relatively small. The 
gain in efficiency may not be large 
enough to justify the use of the 
excess losses. 

2e. The per claim limitation in the 
Workers’ Compensation Plan 
serves a useful purpose. 
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MEYERS 

3. There are some very plausible sit- 
uations when the standard credibil- 
ity formula Z = EI(E + K) is not 
appropriate. These include param- 
eter uncertainty over time and loss 
limit which increases with the size 
of the insured. Failure to recognize 
this will result in overstating cred- 
ibilities for larger insureds. 

MAHLER 

3a. The traditional formula for credi- 
bility, formula 2.1, applies in only 
limited special situations. 

3b. Three specific phenomena are ex- 
amined: parameter uncertainty, 
shifting parameters over time, and 
risk heterogeneity. Each of these 
will tend to lower credibilities for 
large risks compared to those 
from the traditional formula. (For- 
mulas for each are presented.) 
One or more of them are expected 
to be important in many situa- 
tions. 

3c. Under certain conditions, the op- 
timal credibility will remain sub- 
stantially less than one, regardless 
of how large the risk gets or how 
many years of data are used. 

3d. Under certain circumstances, 
older years of data should be 
given substantially less credibility 
than more recent years of data. 
There may be only a minimal gain 
in efficiency from using additional 
years of data. 

3e. If the loss limit changes, the op- 
timal credibilities also change. 
This is another reason why for- 
mula 2.1 may not apply. 

3f. The efficiencies are relatively in- 
sensitive to the choice of the cred- 
ibilities. The credibilities, in turn, 
are relatively insensitive to the 
choice of parameters entering the 
formula. 
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MEYERS MAHLER 

4. The author would recommend an 4. Any reasonable experience rating 
experience rating formula based on plan is expected to achieve a sub- 
the credibility formula 2.2 stantial increase in efficiency. 

Z = EI(JE + K>. 
However, theoretical and empiri- 
cal studies should allow a signif- 

A loss limit that does not vary by 
size of insured should be a part of 
the plan. Excess losses should not 
be a part of the plan. This formula 
is less complicated than current for- 
mulas and should be easier to ad- 
minister. 

icant improvement in the effi- 
ciency of most plans. 

Mr. Meyers’s paper has already stimulated work on experience rating plans 
which should lead to substantial improvements in the design of these plans in 
the near future. The paper also examines some interesting features of credibility 
which should have implications outside the area of experience rating plans. 
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APPENDIX A 

TWO RESULTS FOR COVARIANCES 

In this appendix will be established two useful results involving covariances. 
The first result is: 

Total covariance = expected value of the process covariance 
+ parameter covariance 

where the parameter covariance is another term for the covariance of the hy- 
pothetical means. It should be noted that the similar result involving variances 
is just a special case of this result.55 

If 8 represents the set of parameters, this result can be written as follows 

Theorem: COV[X,y1 = & [COV[X,YlWj] + COVe [E[X\tl], E[flfj]] 

Proof: COV[X, yl = E[XYJ - E[X] E[Yj 
= Ee LE[XYIBlI - EetXjtU EetY(‘31 
= Ee [EQY(‘311 - Ee [E[X(Ol E[Y(Oll 

+ -51 [ELXlOl E[YjOll - Ee [X\Q Ee W101 
= Ee [E[XY(B] - E[X(8] E[YlO]] 

+ Ee LJWlOl E[YjOll - EetX~Ol EdYl81 
= Ee [COV[X,Yl0]] + COVe [E[XlO], E[Yj9]] 

The second result puts the covariance of the primary losses and excess losses 
in terms of the means, variances, and covariance of the primary and excess 
severity and the frequency. The familiar result for the variance of the losses in 
terms of frequency and severity is a special case of this result.56 

Theorem: Assume a claims process in which frequency and severity are inde- 
pendent of each other, and the claim sizes are mutually independent 
random variables with a common distribution. Then let each claim 
be divided into two pieces in a well-defined manner not dependent 
on the number of claims. For convenience, we refer to these two 
pieces as primary and excess. 

55 Both results are familiar to statisticians. See, for example, Snedecor and Co&ran [ll]. However, 
the result for variances seems more familiar to actuaries. 

56 The proof given here parallels that for the more familiar result given in Appendix 2 of Venter 
IW. 
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Let: 
Tp = Primary Losses 
T, = Excess Losses 
X, = Primary Severity 
X, = Excess Severity 
N = Frequency 

Then: 
COV [Tp, Tel = ED7 COV [X, ,X,1 + VAR[Nl EIX,] E[X,I 

Proof Tp is the sum of the individual primary portions of claims X,(i), where 
i runs from 1 to N, the number of claims. Similarly, T, is a sum of 
X,(i). Since N is a random variable, both frequency and severity 
contribute to the covariance of Tp and T,. 

To compute the covariance of T, and T,, begin by calculating 

E[T,TejN=nl, 

fix the number of claims n and find 

Expanding the product yields n* terms of the form X,(i) X,(i). 
When i = j the expected value of the term is 

E[X,(i) X,(i)1 = COV IX,,Xel + E[X,l E[XeI 

from the definition of covariance. Otherwise it is E[X,] E[X,], since 
then X,(i) and XJj) are independent. Thus 

E [& x,(i)) (2 X49)] = n COV [X,,XJ + n* E[X,l E[Xel. 

NOW, by general considerations of conditional expectations, 

E [TpT,] = E,, [E[T,Te ( N = nll. 

Thus, taking the expected value of the above equation with respect 
to N gives 

E [TpTe] = E[N] COV [X,,X,] + E[N2] E[X,l E[X,l, and 
COV [T, ,Te] = E[TpTe] - E[T,l EF”eI 

= E[N] COV[X,,X,] + (VARW + E2[N9 E[X,l EtXel 
- EWI E[Xpl EWI E[XeI 

= E[N] COV[X,,X,l + VAR[Nl E[XpI EL&I . 
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APPENDIX B 

PARAMETER UNCERTAINTY 

In this appendix, the effect of parameter uncertainty on the formula for 
credibility is discussed. This discussion is intended to aid in the understanding 
of both Meyers’s result for this phenomenon and the results obtained here in 
the later appendices for the two other similar phenomena, risk heterogeneity 
and shifting parameters over time. 

As explained in Mr. Meyers’s Appendix A, when there is parameter uncer- 
tainty, the credibility as a size of risk no longer follows formula 2.1, but rather 
follows formula 2.2. 

The important point is the behavior of the expected variance within classes, 
which Meyers labels S2. 

a2 = E [(A - /J,)*] 

This is normally thought of as the expected value of the process variance. 
If for each risk the parameters of the risk process themselves vary randomly,57 
then a2 really is made up of two pieces. 58 The first piece of g2 is due to the 
variance of the parameters due to different states of the universe.5g The second 
piece of S2 is due to the process variance, given a specific state of the universe. 
The first piece is expected to be proportional to N2, just as was the variance 
between risks due to different parameters. 6o The second piece is expected to be 
proportional to N as usual. 

In other words, we can write S2 as 

6* = N’ ix2 + N X2. 

57 An example is given in Section 3 of this discussion. 

5* This is a special case of the first result in Appendix A 

59 In the example in Section 3, there were for simplicity two states, determined by whether it was 
raining or not. 

6o Thus somewhat paradoxically, S2, which is usually thought of as “process variance” actually 
includes a piece of “parameter variance,” albeit of a very special variety. 
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The “good” piece of s2 goes up only as N, while the “bad” piece goes up 
as N*. This bad piece of 6’ was introduced due to the assumed different possible 
states of the universe. Unlike the good piece of 6*, this piece of 6* increases 
as quickly as the variation between risks (Meyers’s r2), which also increases as 
N”. 

Thus taking more observations will not get rid of the effect due to the 
variation inherent in the universe.61 

If 

72 = N2 p’. 

then 

z= T2 N 
m= N(l + o?@*) + x2/p’ ’ 

which is of the form 

which is equation 2.2. 

G1 The same idea has applications to risk assessment efficiency and class homogeneity. See 
Wall [13]. 
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APPENDIX C 

RISK CHARACTERISTICS CHANGING OVER TIME 

In this appendix, the effect of shifting parameters over time on the formula 
for credibility is discussed. A general formula is derived and the results are 
applied for a reasonable special case. It is this special case that results in formula 
2.3 in the main text. 

Assume that the parameters that describe the loss process of a risk are not 
constant over time.62 Then the theoretical true mean for each risk is a function 
of time. For example, the shift might be due to a change in the attitude of 
management with regard to safety or due to a change in the upkeep of the roads 
on which the insured usually drives his car. We are not including shifts that are 
expected to affect all risks in the same manner, for example, claim cost trend. 

Assume we have an experience rating plan, and we use N years of data, 
such that our estimate of the mean F we expect in year N + A is given by: 

F = (I- 2 2;) EN+& + g ZAi 

where Ai is the actual losses observed for year i, (brought up to the expected 
level of year N + A), 63 Zi is the credibility assigned to that year losses, and 
EN+& is the expected losses for year N + A.64 

We assume that the individual years of data are generated by the same size 
of risk (or same number of risks). Thus except for the assumed shifting param- 
eters over time, we would assign each of the years equal weight, 

General Case 

We wish to find Z, for i = 1 to N, such that the efficiency is maximized. 
In order to proceed, we will assume a covariance structure. We will assume 
that the correlation expected between two years of data separated in time by i 

62 We assume that while individual risk parameters shift, the overall distribution of risks remains 
the same. Also, we assume there is no way to predict the shift of an individual risk, and that the 
class plan doesn’t pick up the shift. 

63 Thus we assume Ei = E, = E 

@ Typically N = 3. For workers’ compensation usually A = 2. For private passenger auto usually 
A =I. 
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years, is a function of i, l(i). It is assumed that the expected correlation decreases 
(or stays the same) as the years get further apart. Specifically, we assume: 

I(0) = 1 

l(i) 2 l(i -I- 1). 

The covariance structure assumed is: 

E[(Ai - E)(Aj - E)] = 6’ Q(i - j() + 6ijX2 

6.. = 0 i #j 
13 

i 1 i=j 

where for different years, i # j, we get the variation of the hypothetical means, 
p2, times a factor equal to a correlation I((i - jl) 5 1, dependent on the number 
of years of difference. For i = j, we get the variation of the hypothetical means 
f3*, plus the expected value of the process variance x2. The closer 1(1i - j() is 
to 1, the less shifting of parameters there is over time. 

Efficiency = 1 - 
E [(F - /hv+a>*1 
E [(E - ~-~+a)*1 

Substituting our expression for F, letting K = x*/p* and simplifying we get: 

5 EZj Zj {l(li - jl) -t K6ii) - ztiZi l(lN + A - iJ> js, j=] 
Efficiency = 

E[(E - ~~+a)*1 

We get the maximum efficiency by setting each of the partial derivatives 
with respect to the different credibilities equal to zero. This gives the following 
set of N linear equations in N unknowns. 

i Zj {/(Ii - jl) + i&K} = 1(/N + A - ji) j= 1,2,. . ,N 
i=1 

These equations can be solved simply by using the usual matrix methods. 
However, for N > 2 the expressions for the solutions are complicated to actually 
write out. For N = 2 remembering that I(0) = 1, we get: 

z 
1 

= (1 + m &A + 1) - 41) KA> 
(1 + K,? - z(l)* 

z 
2 

= (1 + m l(A) - &l) 0 + 1) 
(1 + z# - E(1)2 
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The ratio of Zr to Z2 is given by: 

Zl 
z,= 

(1 + K) l(A + 1) - Z(1) 1(A) 
(1 + K) I(A) - I(l)(A + 1) 

For the usual case where Z(A + 1) < 1(A), this ratio is less than one, and 
thus Z1 < Z2. As expected the more recent data (year 2) is given more credibility 
than the less recent data (year 1). 

z 
1 

+ z 
2 

= (1 + K) - UNKA + 1) + KA.)) 
(1 + m2 - Z(1)2 

= 4A + 1) + W 
1 + Z(1) + K 

For Z(i) = 1 for all i, this reduces to the familiar 242 + K). 

For N > 2, one can approximate the exact solution as follows. 

Adding up the N linear equations gives after rearranging the order of sum- 
mation: 

2 zi { [ 2 z()i - jl)] + K] = j 4/N + A - jl) 
i=l ,=l 

The term Xg, Z(\i - j\) depends on the value of i. For i = 1 and i = N it 
is equal to $$r Z(i). For values of i between 1 and N, smaller values of 
(i - ‘1 J are u tea e m t d pl’ t d . h e sum, while larger values of Ii - j\ no longer enter 
it.65 Thus since we have assumed that Z is a decreasing function, we have 

5 Z(li - 4 2 I$ K./I j=l 
Thus if we substitute zc<’ Z(j) into our previous equation wherever 

I$‘LI Z([i - j\) appeared we get: 

(2 Zt) {(I! “j)) + K} d i KtN + A - A) 

This suggests the following approximation, which gives lower credibilities 
than the exact solution. 

65 For example, if N = 5 and i = 2, then the sum is 1(l) + 1(O) + 1(l) + l(2) + l(3) 
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N-l 

The sum of the Zi is the credibility assigned to the data for all the separate 
years combined. In the main text this is called Z. 

For Z(i) = 1 for all i, this reduces to the familiar 2 = N/(N + K). 

If the covariance structure has the basic property assumed here, that the 
correlation between individual years of data is smaller the longer the time span 
between the years, then the credibilities will have the following properties. The 
credibility assigned to a more recent year of data should be higher than that 
assigned to a more distant year of data.66 If the correlation between distant years 
of data is significantly lower, i.e., I (i) gets small relatively quickly, then beyond 
a certain point using more recent years of data will lead to little improvement 
in the estimate of the mean. If the individual years of data are given the same 
weight, then using more years of data will eventually lead to a worse estimate 
of the mean, since the very old data provides a poor estimate of the future mean. 
Finally, the smaller A is, i.e., the less the delay is in getting and using the data, 
the higher the credibilities and the better the resulting estimate of the future 
mean.67 

Special Case 

Let us take a special case of the general covariance structure that has been 
assumed. Let l(i) = pi, p 5 1. Then: 

E[(Ai - E)(A. - E)] = P’P’~-” J + SijX” 

Thus for two different years of data, their covariance is proportional to a 
constant p taken to the power equal to the number of years separating them. 
For p < 1, the covariance decreases the larger the separation, and goes to zero 
rather quickly. 

66 This concept of giving more recent data more weight than less recent data is a familiar one to 
actuaries. See for example, “Homeowners Insurance Ratemaking” by Walters [ 141. However, when 
estimating values at ultimate, it might be appropriate in certain circumstances to assign less weight 
to more recent but immature data. 

6’ For experience rating generally A 2 1 
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While for illustrative purposes this is not an unreasonable assumption for 
the structure of covariances, it is far from the only assumption that could be 
made. The actual covariance structure for a particular real world application 
would have to be determined empirically. 

For this special case, we have for N = 2: 

z1 = PAPK 
(1 + m2 - p* 

A 

Zz = (1 + &2 _ p2 (1 + K - ~‘1 

PAi\(l + PI 
z1 + ” = (1 + p) + K 

For p = 1, Zr + Z2 reduces to the familiar 2/(2 + K). 

As discussed above, one can approximate the exact solution by? 

This is formula 2.3. For p = 1, this reduces to the familiar N/(N + K). 

68 The exact solution gives lower credibilities. 
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APPENDIX D 

RISK HETEROGENEITY 

In this appendix, the effect of risk heterogeneity on the formula for credibility 
for large risks is discussed. In addition, the combined effect of risk heterogeneity 
and parameter uncertainty is discussed. 

In general, a large risk is made up of smaller risks. For example, a large 
commercial risk might consist of a grouping of separate factories. Assume our 
different risks consist in each case of grouping together N factories of the same 
size.69 Then how does the variance between different risks, E [(E - l-r,)‘], which 
Meyers calls r2, depend on the size of risk N?‘O 

A Simple Example 

To illustrate the point, let us examine a very simple example. Assume that 
half the factories are “good” and half are “bad.” The good factories have an 
expected mean of one, while the bad factories each have an expected mean of 
two. Depending on how the factories are grouped together to form risks, r2 has 
a different dependence on N. 

Case I 

Assume that the risks consist solely of good factories or bad factories, but 
never a mixture. Then the risks of size N have an expected mean of either N 
or 2N, with equal frequency. Thus 7’ is N214. 

Case 2 

Assume that the risks consist of good and bad factories grouped together 
totally at random. A risk of size N, is merely a random sample of size N from 
the set of all factories. Thus in this case, 72 is N times the variance between 
individual factories. r2 = N/4. 

Case 3 

Assume that half the risks are “superior” and half “inferior”. Each factory 
in a superior risk has a 213 chance to be good and a l/3 chance to be bad. The 
situation is reversed for inferior risks. Then the expected means of the superior 

69 In certain cases, a factory could be usefully broken up into smaller subunits. We are merely 
presenting a simple example here. 

To ? measures how homogeneous the classes are. The smaller ?, the less the separation between 
the risks and the more homogeneous the class. 
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risks of size N extend from N to 2N, with the probabilities given by the binomial 
distribution with p = l/3. The inferior risks also have expected means from N 
to 2N, but with the probabilities given by the binomial distribution with 
p = 213.71 

One can compute the variance r2 for specific values of N in the usual 
straightforward manner. 72 However, T* can be broken up into two pieces.73 The 
first piece is the variation among different superior risks or the variation among 
different inferior risks. This is just 2N/9, since the variance of the binomial 
distribution is just Np( 1 - p). The second piece of r* is the variance between 
the grand mean of superior risks and the grand mean of the inferior risks. Since 
these grand means are 4Nl3 and 5N/3 respectively, this piece of 72 is just 
N2f36. Adding the two pieces together, one gets: 

72 = 2Ni9 f N’l36. 

Generalizing the Simple Example 

In Case 1, it was assumed that the risks are homogeneous. Each of the 
factories making up a risk has the same expected mean. In this case, r2 is 
proportional to N2, since the expected mean for each risk just gets multiplied 
by N. This special case is the one that is usually dealt with. 

On the other hand, in Case 2, we have assumed the other extreme, that the 
factories are grouped together totally at random.74 Each risk is merely a sample 
of size N from the overall set of factories, and thus 72 is N times the variance 
between the individual factories. In this special case r* is proportional to N. 

Thus in the two extreme cases, we have either 72 proportional to N or r2 
proportional to N’. We expect most real world situations to be in the intermediate 
situation, such as Case 3, where bad factories are more likely to be grouped 

” The use of the terms superior and inferior could be thought of in terms of some underwriting 
criterion. While the average superior risk has a lower expected mean than the average inferior risk, 
there are inferior risks with low means and vice versa. 

72 For example, for N = 3, the risks will have expected means of 3, 4, 5, and 6 with probabilities 
of I/6, l/3, 113, l/6. Thus T’ = 11112. The reader can verify that this matches the formula for ? 
given below. 

73 This is a special case of the first result given in Appendix A. 

74 As demonstrated in Hewitt [15], for loss ratio distribution purposes, the sum of two $50,000 
risks doesn’t act the same as a single $100,000 risk. Thus, Case 2 is not a good model of the 
reality; it is an extreme case chosen for illustrative purposes. 
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together with bad factories, but a single risk can be made up of both good and 
bad factories. For this intermediate case 7’ had the form 

72 = Nrr2 + N2p2 

This form for 72 follows from breaking the variance into two pieces. The 
first piece is the variation among risks of similar type.75 This piece of T* is 
proportional to N. The second piece is the variance between the grand means 
of different types of risks. This piece of T* is proportional to N’. 

In order to get the credibility we must combine T* with S2. As explained in 
Appendix B, without parameter uncertainty it makes sense to assume 

a2 = Nx2, 

2 N + n2/p2 

x2f2r2’ N+ 

P 

which can be written in the form 

which is formula 2.5 in the main text. 

While it at first appears that I > 0 (i.e. risk heterogeneity) leads to higher 
credibilities than formula 2.1 (Z = 0), that is not the case. One must remember 
that the K in formula 2.5 is not equal to the K in formula 2.1. The K here has 
an additional term of n2/p2 compared to the K in formula 2.1. Thus since risk 
heterogeneity affects both I and K, a more careful analysis is required. 

Formula 2.5 can be rewritten in the form 

X2 
’ = ’ - x2 + N(p2 + r2) - (N - 1)~~ ’ 

The variance between single units (for example, between individual facto- 
ries) is p” + &. Keeping p” + r2 constant, we can see from the above 
equation, that as 7~~ increases, Z decreases (for N > 1). In other words, the 

75 Thus somewhat paradoxically T’, which can be thought of as the “between variance,” actually 
includes a piece of “within variance,” albeit of a very special variety. In Appendix B, a similar but 
reversed situation was explained for 6’, when there is parameter uncertainty. 



168 EXPERIENCE RATING 

greater the risk heterogeneity that is present, the lower the credibility, all other 
things being equal. Looked at another way, the more risk heterogeneity, the 
smaller -r2 is, all other things being equal (for N > 1). Therefore, the more risk 
heterogeneity, the smaller the credibility. 

Risk Heterogeneity and Parametric Uncertainty 

If both risk heterogeneity and parameter uncertainty (see Appendix B) are 
important then we have: 

s2 = N2ci2 + Nx2 
,r2 = NT~ + N2p2 

Thus: 

z= T2 yyg= 
N + m21p2 

This can be written in the form 

N-t1 
Z=- 

NJ-tK’ 
OSISK,JZl 

which is equation 2.6. 
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APPENDIX E 

PARAMETER UNCERTAINTY, SHIFTING RISK PARAMETERS 

AND RISK HETEROGENEITY 

In this appendix, all three phenomena discussed in Appendices B, C, and 
D will be assumed to be of importance. The resulting formula for the sum of 
the credibilities will be a combination of the features of those in the prior 
appendices.76 The notation from the previous appendices will be used. 

Let M be a measure of the (average) size of the risk in each year. Let N be 
the number of years of data used for experience rating. 

Assume the following covariance structure: 

E [(Aj - E)(Aj - E)] = P’+~’ (M2p2 + M7r2) + &j (M2a2 + A4x2) 

E [(pi - E)(pj - E)] = pli-” (M2p2 f MT’) 

Then proceeding as in the previous appendices we get the following set of 
linear equations for the optimal credibilities Z,, m = 1, . . . , N. 

,$ Zi {(M2p2 + MT2) piipm + 6j, (M*a” + MX*)} = pA+N-m 

This set of equations can be solved by matrix methods. As in Appendix C, 
we can get an approximate solution that is exact for N < 3. (I, J, and K are 
defined in the previous appendices.) 

This is formula 2.7. 

76 The formulas from the prior appendices are special cases of the formula presented here. 
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APPENDIX F 

EFFICIENCY AND CREDIBILITIES FOR SPLIT EXPERIENCE RATING PLANS 

In this appendix, the optimal primary and excess credibilities for a split 
experience rating plan are derived. The solution, equations 5.3 and 5.4 in the 
main text, is a generalization of the familiar Btihlmann result for the no-split 
situation. ,The second part of this appendix explores the results of using credi- 
bilities other than the optimal ones. 

Assume we have an experience rating plan, and our estimate of the mean F 
is given by 

F = (1 - Z,) EP + ZAP + (1 - Z,) E, + Z,A, 

The subscripts p and e will stand for primary and excess; however, for now 
they can be treated as any two well-defined portions of the total losses. EP and 
E, are the expected losses of each type. A, and A, are the actual losses of each 
type. Z, and Z, will be thought of as the credibilities assigned to each portion 
of the losses; however, for now they can be treated as just numbers to be 
determined. 

ESJiciency 

In accordance with Meyers, define the efficiency of F by 

Efficiency = 1 - E[(F - 14~1 
E[(Ep + Ee - 14~1 ’ 

where k is the theoretical true mean for each risk. Let pP and p,, be the excess 
and primary pieces of p. l.i, = bP + kc. P is a function of the parameters that 
describe each risk. 

(F - p)2 = Z; (AP - E,)’ + Z; (A= - EJ2 + (EP + E, - p)’ 
+ 2Zp.C 6% - Ep) (Ae - Eel + 2Zp (Ap - E,) (Ep - kp) 
+ 2-G 6% - E,) 6% - 1-4 + 2.C 6% - Ee) (Ee - pe) 
+ 22, (A - EJ (E, - F,,) 

6% + Ee - N2 = 6% - Q2 + 6% - t-G2 + 26% - pp) (E, - ke) 
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Let: 

a = total variance of the primary losses; 
b = total variance of the excess losses; 
c = variance of the hypothetical means of the primary losses; 
d = variance of the hypothetical means of the excess losses; 
r = total covariance of the primary and excess losses; and, 
s = covariance of hypothetical means of the primary and excess losses. 

Remembering that F is only a function of the set of parameters $, p is 
subject to parameter variance but not process variance. The actual observed 
losses AP and A, are subject to both parameter and process variance. EP and E, 
are the overall grand means and are subject to neither kind of variance. 

Then we have 

E[(A, - EJ2] = a; 
E[(Ae - Ee)2] = b; 
E[(A, - E&p - 441 = E[olp - 4N-+ - 44 = c; 
RCA, - E&e - EdI = d; 
E[(Ae - Ep>& - .&)I = r; 
EL@, - Ep)(pe - Ed = E[(pp - -4J& - E41 = s; and, 
El& - Ee)(r~,, - 44 = EL& - &)(I+ - E,>l = .s. 

Substituting these values back in the definition of efficiency, we get 

Efficiency = 
2Z,(c + s) f 2Z,(d + s) - Zsa - Zzb - 2Z&r 

c+d+2s 

Optimal Credibilities 

The optimal credibilities are given by the least squares solution, which 
results in the maximum efficiency. In order to maximize the efficiency, we set 
the partial derivatives with respect to Z, and Z, equal to zero. This gives 

aZ,, + rZ, = c + s, and 
rZ, + bZ, = d + s. 

The solution of this simple set of two equations in two unknowns is 

z 
P 

= Cc + s)b - Cd + Sk , md 
ab - r2 

z = (d + s)a - (c + s>r 
e ab - r2 ’ 
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This is the desired result, which is equations 5.3 and 5.4 in the main text. 

If we substitute these values of Z, = Z,,, and Z, = Ze,,,, into the formula 
for efficiency and simplify we get 

Maximum Efficiency = 
zP,m(C + s) + Z,,,(d + s) 

(c + d + 2s) ’ 

Thus, the maximum efficiency is a weighted average of the two credibilities 
that produce this maximum. This is similar to Meyers’s result in his Appendix 
B, where the maximum efficiency was equal to the credibility that produces the 
maximum. 

Zero Excess Credibility 

Now we will explore the results of using credibilities other than the optimal 
ones. Let us take a special case when the variance of the excess losses is very 
large; in other words, b + 03. Then 

z, = 
CfS 
- , and 

a 

In fact, if we set Z, = 0, then the formula for efficiency becomes 

Efficiency = 
2Z,(c + s) - Zga 

c+d+2s ’ 

For this case, the value of Z, such that the efficiency is maximized is given 
by 

cfs 
z, = - 

a ’ 

This is equation 6.1 in the main text. 

The credibility obtained by applying the Btihlmann method to the primary 
losses alone is c/a. The credibility here is larger (for s > 0) since we have 
taken into account the positive correlation between the primary and excess 
severities. 
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CfS 
When Z, = a - and Z, = 0 we get 

(c + sy 
Efficiency = (c + d + 2s)a 8 

If we let our estimate of the losses be given as in the General Liability 
Experience Rating Plan, using credibility Z as described by Meyers then 

This is a special case of the previous case, with 

z,=z1++. ( ! P 

Thus, we know the maximum efficiency occurs when 

Z 1 + $ = Z, = +, or 
( > 

z=(g-q(&). 

This is equation 6.2 in the main text. 

Meyers’s Case 

Meyers instead uses 2 = c/a. Putting the corresponding value of Z, into the 
formula for efficiency gives, after simplifying terms 

(s + c)’ - (s - c 2) 

Meyers’s Efficiency = 
’ (c + d + 2s) a 

Comparing this efficiency to that obtained when Z = Fe) C&J ’ 

we get: 

Meyers’s Efficiency = 1 _ 
Maximum Efficiency (s + cy . 
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So, using the usual value of Z in accordance with Meyers leads to a loss of 
efficiency. However, the loss will be small whenever the second term is small. 
This is the case for all the examples tested in Meyers’s Tables 5.2, 5.3, and 
5.4. 

Credibility Equal to One 

Another useful special case is when in formula 6.3 in the main text for large 
N we take Z = 1 and thus 

Z, = 1 + $ , and Z, = 0 
P 

Then the efficiency is given by 

Efficiency = 
c+d+2s 

Using the notation of Appendix G, this becomes 

Efficiency = 1 - 

which has a limit as N gets large of: 

Efficiency = 1 - 
e+;i+2s^ 

Thus using formula 6.3 for a fixed loss limit, the maximum efficiency is 
less than lOO%, and we expect to get relatively little improvement in efficiency 
beyond the point where Z = 1. This is the behavior observed in Table 7.3. 
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APPENDIX G 

DEPENDENCE ON SIZE OF RISK 

In this appendix, the variation of credibility with size of risk is explored for 
the cases examined in Meyers’s Sections 5 and 6. Also tables of the specific 
values of the parameters entering the credibility formulas are given for two 
specific cases from Meyers’s Sections 5 and 6. Finally, the general behavior of 
N(l - Z)/Z with size of risk is examined. In the examples in Meyers’s Sections 
5 and 6 there is no parameter uncertainty, the individual risks are homogeneous, 
and the parameters for an individual do not change over time. Then, as discussed 
by Meyers in his Section 3, the factors that go into formulas 5.3 and 5.4 for 
Z, and Z, vary as follows with the size of risk N. 

Increase as N 

a - c = t = process variance 
of primary losses 

Increase as N’ 

C 

b - d = u = process variance 
of excess losses 

d 

r - s = v = process covariance of 
primary and excess losses 

s 

c”=c 
N’ 

with similar definitions, for the other quantities, such that we obtain new 
quantities which are independent of N. 

Then substituting into formula 5.3 we get: 

Z, = N 
N(& - s”) + tfi + 6 - & - 99 

N2(& - S2) + N(M + & - 23) + Eif - 9’ 

Substituting into formula 5.4 would give a similar complicated formula for 
Z,. If we set the primary losses equal to the total losses, and set the excess 
losses equal to zero, then 
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which is the familiar expression for credibility, given in Meyers’s formula 3.2. 
However, we notice that in the more general expression, we do not have the 
familiar simple function of N. Instead we have: 

N + K3 

zp = N N’ + NK1 -k K2 
where K, = 

Similarly 

N + K4 
Z,=N N’ + NK1 + K2 
where 

For large N, if K1 > K3 we have Z, < 1, but if K3 > K1, we have Z, > 
1.77 In the latter case, it makes sense to refer to risks such that Z, L 1 as self- 
rated. Notice, the difference from the usual result, formula 2.1 in the main text, 
where Z remains strictly less than one, but gets so close to one so as to make 
no practical difference in the resulting efficiencies. As N -+ CO we do have 
Zp4 1 andZ,+ 1.78 

We can write formula 5.5 for the maximum efficiency as: 

Maximum Efficiency = z,(f + f) + ze(a + s^) 
f+a+2f 

” For the example as per Meyers’s Table 5.4, the table below uses a loss limit of 2500, K, = 
8,308, KZ = 110,847, & = 19,119 and & = 76. For the example as per Meyers’s Section 6, the 
table below uses B = 2000, K1 = 169, Kz = 461, K, = 407, and Kq = -42. 

78 Thus, this is a different phenomenon than discussed in Meyers’s Section 3, where N + M, 
z+ l/J 5 1. 
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The dependence of the maximum efficiency on N is solely contained in Z, and 
Z, themselves. The weights are independent of N. As N + ~0, we have 
Z, 4 1, Z, * 1, Maximum Efficiency -j 1, 

EXAMPLE AS PER MEYERS’S TABLE 5.4 

Loss 
Limit N=l 

1 .013 .129 .338 .040 .215 9.303 .299 .350 .520 
2 .033 .084 .626 .052 .441 8.525 .574 .463 .407 
2.5 ,041 ,072 .752 .054 .548 8.171 .698 .495 .375 
3 .050 .061 .848 .055 .684 7.846 .793 .528 .343 
4 .064 .047 1.024 .055 .930 7.247 .970 .572 .299 
6 .087 .031 1.287 .051 1.418 6.225 1.236 .631 .240 
8 .104 .022 1.470 .047 1.897 5.374 1.422 .670 .200 

12 .130 .012 1.678 .039 2.817 4.020 1.639 .722 .149 
16 .148 .007 1.749 .033 3.694 2.987 1.717 .756 .115 

B 
($000’s) 

.l 

.2 

.5 
1 
2 
5 

10 

EXAMPLE AS PER MEYERS’S SECTION 679 

N=l 

2 d P s^ t^ 12 P Ep E, - - - - - - - 

50 2550 784 317 41 35110 467 1.65 9.38 
92 2305 1278 419 105 34263 859 2.23 9.26 

209 1864 2394 581 365 32094 1813 3.30 8.19 
380 1454 3698 700 901 29190 2998 4.37 7.12 
660 1019 5373 778 2101 24796 4595 5.65 5.84 

1234 499 7580 751 5751 16676 6829 7.53 3.95 
1803 221 8218 605 11057 9803 7612 8.93 2.56 

79 Meyers’s example corresponds to N = 10, B = $2000, except that here a claim limitation of 
$100,000 has been used, and the Weibull distribution has been approximated by a discrete analog. 
See Section 10 of this discussion. 
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When doing empirical studies it is sometimes useful to focus on the following 
quantity as a function of size of risk, rather than the credibilities themselves. 
Define K = N(l - Z)/Z. Then for the usual simple case, formula 2.1 in the 
main text, K = K. With parameter uncertainty, formula 2.2 in the main text, 
K = (.I - l)N + K. For the split plan case handled previously in this appendix, 
KP = [N(Kr - &) + &]I(JV + KS). One can take other cases and derive the 
expected behavior of K as a function of N, the size of risk. For some cases, 
this requires combining the results of this appendix with those in Appendices 
B, D, and F. Note that for the case of a split plan, the same general functional 
form applies to K~ and K,, even though the specific coefficients may make the 
specific curves look very different. The following table presents the results for 
the different cases. 

K= 
NC1 -z> 

Z 
as a function of N, the size of risk 

No-Split Plan 

No Parameter Uncertainty 
No Risk Heterogeneity 

Constant 

With Parameter Uncertainty 
No Risk Heterogeneity 

Linear 

No Parameter Uncertainty N 
With Risk Heterogeneity Linear 

With Parameter Uncertainty 
With Risk Heterogeneity 

N Linear 
Linear 

Split Plan 
(Primary vs. Excess) 

Linear 
Linear 

Quadratic 
Linear 

Linear 
N Quadratic 

N Quadratic 
Quadratic 
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APPENDIX H 

MAXIMUM EFFICIENCY AS A FUNCTION OF LOSS LIMIT AND SIZE OF RISK 

In this appendix, the behavior of the maximum efficiency with changing 
loss limit and size of risk is explored. The observed behavior for the examples 
in Meyers’s Sections 5 and 6 is explained in terms of the underlying mathematics 
and the specific choices of parameters for those examples. Which example is a 
better approximation to a real world application of experience rating will deter- 
mine whether the loss limit used should increase significantly for large risks. 

Using the credibilities from formula 6.2 in the main text, and the notation 
of Appendix G, the maximum efficiency is given by 

Maximum Efficiency = 
(c + ig2 (e + s^y N” 

(c + d + 2s)a = (3 + a + 23) N’ (t&V + tN*) 

1 N 

N-t! 
E 

The first term is independent of NSso It can be rewritten as 

I 
(2 + q2 1 Cl- ta - St 

2~8 + a + 29 e(t + a + 23) 

We expect s” to be close to 62, since we expect the hypothetical mean 
primary losses to be highly correlated with the hypothetical mean excess losses. 
(If they were perfectly correlated then P = ?a.> Thus we expect the first term 
in the expression for the maximum efficiency to be close to one. In fact, for 
the examples here, that is the case, as shown in the table below. 

The second term in the expression for the maximum efficiency is the Btihl- 
mann credibility used by Meyers. It varies with the loss limit only in so far as 
K = Dlc^ does. The smaller K, the larger the second term. However, in general, 
we do not expect the second term to be extremely sensitive to K. 

Thus neither term is expected to be extremely sensitive to the loss limit 
chosen. In fact, the observed optimal efficiencies for fixed N are relatively 
insensitive to the loss limit. 

80 In fact, t + ci + 23, which is part of the denominator, is the variation of the hypothetical means 
of the total losses, and is thus independent of the loss limit chosen. 
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For the examples in Meyers’s Table 5.4, the variation of the second term 
with loss limit is more important than that of the first term. Thus, selecting the 
smallest K will produce the largest efficiency regardless of N. As shown in the 
table below, a loss limit of 2.5 gives the smallest K. As was seen in Table 7.2 
the largest efficiency was indeed obtained by taking a loss limit of 2.5 regardless 
of N, the size of the risk. 

In the example in Meyers’s Section 6, the first term increases significantly 
with the loss limit. Thus in order to get the largest efficiency, we have a conflict 
between choosing a smaller value of K (low loss limit) and a larger value of 
the first term (high loss limit). For larger N, the second term depends less on 
K, thus the first term is relatively more important. Thus we expect the optimal 
loss limit to increase significantly with size of risk. This was indeed the behavior 
observed in Table 10.1. 

EXAMPLE AS PER MEYERS’S TABLE 5.4 

Limit (c^ + s”) 2 

($000’s) e (c^ + d + 23) 
K=j 

1 .988 17.2 
2 .994 13.6 
2.5 .995 13.5 
3 .996 13.7 
4 .997 14.5 
6 .999 16.3 
8 .999 18.2 

12 1.000 21.7 
16 1 .ooo 24.9 
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EXAMPLE AS PER MEYERS’S SECTION 6*’ 

B (c” + s^>* 
($000’s) e (c^ + a + 2ij 

.l .834 

.2 .876 

.5 .922 
1 .949 
2 .969 
5 .987 

10 .995 

K=j 

.82 
1.14 
1.74 
2.37 
3.19 
4.66 
6.13 

81 Meyers’s example corresponds to N = 10, B = $2000, except that here a claim limitation of 
$100,000 has been used, and the Weibull distribution has been approximated by a discrete analog. 
See Section 10 of this discussion. 



182 EXPERIENCE RATING 

APPENDIX I 

CALCULATION OF THE QUANTITIES ENTERING THE CREDIBILITY FORMULA 

In this appendix, expressions for the parameters entering the formulas for 
credibility will be derived. The results are summarized at the end of the appen- 
dix. We will assume that the frequency and severity are independent and that 
the individual claims are taken independently from a size of loss distribution.82 

Let + be a set of parameter(s) that describes the claims process.83 

We assume that C$ may take on different values, with probability density 
function fl+); f is commonly referred to as the mixing distribution. 

Let 0 be the parameter(s) which specify the severity distribution. Assume 8 
takes on different values, with probability density function g(0). Similarly, let 
$ be the parameter(s) which specify the frequency distribution. Assume + takes 
on different values, with probability density function h($). 

Since frequency and severity have been assumed to be independent we have: 

X4) = m W) 
Let 

EP = expected value of the primary losses taken over all values of 4. 
E,(4) = expected value of the primary losses given a specific set of 

parameters 4. 
Use a similar definition of the corresponding symbols for excess losses. 

DeJnitions 

Define the following quantities, which will be useful: 

ii = average frequency 
mp = average primary portion of a claim 

= Ep + Ti = primary severity 

82 This assumption is made by Meyers in his Algorithm 6.1. For real risks, this may not be true. 
In Meyers’s Section 5, although for a given risk the frequency and severity are independent, the 
frequency and severity between risks are not independent, thus the formulas in this appendix do 
not all apply to that situation. 

83 Following Meyers’s Algorithm 3.2, 9 is assumed constant over time for an individual risk, but 
may be different for different risks. In fact, for real risks I$ varies over time, as noted by Meyers 
in his discussion of the Bailey and Simon results on the credibility of a single private passenger 
CX. 
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me = average excess portion of a claim 
= E, + 7i = excess severity 

af = parameter variance of the frequency 
cl, = parameter variance of the primary severity 

= variance of the hypothetical mean primary severities 
a = parameter variance of the excess severity 
& = expected value of the process variance of the frequency 
pp = expected value of the process variance of the primary severity 
Pe = expected value of the process variance of the excess severity 
Y = covariance of hypothetical mean primary severity and excess severity 
5 = expected value of the process covariance of the primary severity and 

excess severity 
Also let 

m,(e) = expected value of primary severity 
for a specific set of parameters 8 

= E,(O) + Z 
m&3) = Ee(0) + 7i 

Derivation of Results 
Let c = variance of the hypothetical means of the primary losses. 

= S E&t4 A+> d+ - E; 
= J- ii2 (6) /z(G) d+ J m;(9) g(O) de - iz2m; 
= (elf + Z2)(ap + ng) - n2m; 

= oLpcy.fS ap?i2 + afm; 

Similarly, let d = variance of the hypothetical means of the excess losses. 
d = ol,clf + (Y,Fz’ + olfmt 

Let a = total variance of the primary losses. By a well-known result used 
by Meyers,84 total variance equals parameter variance plus expected value of 
the process variance. 

Thus 

a = c + expected value of the process variance of the primary losses. 

84 This result is a special case of a result derived for covariances in Appendix A of this discussion. 
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The process variance of the primary losses can be put in terms of the frequency 
and severity in the usual manner.85 

a = c + &[&B) (process variance of frequency) + 
$6)) (process variance of primary severity)] 

= c + -53[&@ pr + @,I 
= c + (ap + m;) pf + npp 
= (cxp + m&if + pr> + n%!p + Tip, 

Similarly, let b = total variance of the excess losses. 

b = (01, + m:)(af + pf) + Z*a, + Tif3e 

Let s = covariance of the hypothetical means of the primary and excess losses 
s = J- EA+) Ed+> .f+ d+ - We 

= S m,(e) meW d+) 4 S ~*NJ> MN 4~ - ~*m,m 
= (y + m,m,)(ctf + E2) - Ti2mpm, 
= ycxf + yii* + Olrm,m, 

Let r = total covariance of the primary and excess losses 

The total covariance can be split into two pieces in a manner similar to that 
for the variance.*6 

Total covariance = parameter covariance + 
expected value of the process covariance. 

Thus, r = s + expected value of the process covariance. 

The process covariance can be written in terms of the frequency and severity 
in a manner similar to the usual formula for the process variance.@j Given a set 
of parameters 4: 

process covariance of the primary and excess losses = (process covariance 
of the frequency) (mean primary severity) (mean excess severity) + (mean 
frequency) (process covariance of the primary and excess severity) 

= VAR[~bbl m,(W m&9 + +JJ> WV 

85 This result is also a special case of a result derived for covariances in Appendix A. 

86 This result is derived in Appendix A. 
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Taking the expected value over all values of the parameters gives the expected 
value of the process covariance of the primary and excess losses equal to 

Pfer + ?Jme> + a 

Thus 

r = s + pf(y + mpme) + ii5 
r = (cdf + pf)(y + mpme) + n2y + ii5 

For the special case of a single split plan*’ 5 has a relatively simple form. 

Let the probability density function of the severity be n(x$). For a fixed 
value of 8, the process covariance is 

c(O) = Jo” MIN[.x,L] MAX[O,x - L] n(x$) dx - m,(O)m,(0) 
= s; 0 d.x + J: L(x - L) n(x$) dx - m,(~)m,(~) 
= Lm,(B) - m,(6>m,(O) 

Thus, the expected value of the process covariance is: 

t; = Lm, - (Y + %me> 

= m,(L - mp) - y. 

Thus, for a single split plan we have 

r = (cxf + &)(y + mpm,) + ?i26 + E(m,(L - mp) - y). 

Summary of Results 

a = (CY~ + m$(q + Pf) + E2cfp + ?& 
b = (a, + mS)(q + Pf) + 2~2, + EPe 
c = cxpcxf + cQi* + olfmz 
d = cx,q + (Y,?? + qrnz 
r = (cif + p&c2 + mpme) + E2y + % 
s = yaf + y7iz + afm,m, 

*’ Those dollars below L are primary; those above are excess. The current Workers’ Compensation 
Experience Rating Plan is a multi-split plan. The difference is discussed in Snader [9]. 



186 EXPERIENCE RATING 

APPENDIX J 

GAMMA-POISSON, GAMMA-EXPONENTIAL PROCESS 

In this appendix, the results of Appendix I are carried forward for a specific 
choice of distributions. In addition, the resulting efficiencies are shown for a 
specific choice of parameters. 

We assume a single split rating plan with a loss limit of L. We assume no 
overall limitation on claims. ** The frequency is given by a Gamma-Poisson 
process.89 The frequency for an individual risk is Poisson, with parameter 9: 

w(n; +I) = e -* Jr . 
n! ’ 

mean $, variance +. 

In turn, the parameter $ has a mixing distribution which is Gamma, with 
parameters of -q and E: 

The severity is given by a Gamma-Exponential process.90 The severity for 
an individual risk is exponential, with parameter 0: 

lT(x; e) = ee-ex; mean l/8, variance MY. 

In turn, the parameter 8 has a mixing distribution which is Gamma, with 
parameters 5 and V: 

VE -we c-1. 
g(e) = r(5> e 0 , 

e 

mean 1, ’ 

5 variance T _ 
V 

We assume 5 > 2 so that the resulting Pareto has finite variance. If 
2 > .$ > 1 the means are finite, but the excess variances are infinite, and the 
following formulas are not valid.91 

** The mathematics are only slightly more complicated for an overall limitation. However, an overall 
limitation applied in both Sections 7 and 10 of this discussion. 

*9 The resulting overall frequency distribution is a negative binomial 

9o The resulting overall severity distribution is a Pareto. The exponential distribution is a special 
case of the Gamma. The more general Gamma-Gamma process results in a Generalized Pareto 
Distribution; see Hogg and Klugman [lo]. While the Gamma-Gamma is probably a better model 
of reality, the mathematics here would be much more complicated. 

91 With an overall limitation on losses, the variances would be finite 
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Quantities Entering the Credibility Formulas 

= -q/E 
= expected value of the process variance of the frequency 
= Ti = T-j/E 
= variance of the hypothetical mean frequencies 
= v-)/E2 

-BL 

m,(8) = + - ?--- 
0 

m,(e) = $ 

= variance of the hypothetical mean primary severity 
2 2v2(1 + LIu)2-C v2(1 + 2Llv)2-~ 

- (5 - 11;(5 - 2) - (5 - l)([ - 2) + (5 - l>(C$ - 2) - mi 

= variance of the hypothetical mean excess severity 

= v2(1 + 2L/v)2-~ 
(5 - l)(< - 2) - m,2 

= covariance of the hypothetical mean primary and excess severity 

= u2(1 + LIu)2-c u2(1 + 2Llp 
(5 - l)(‘$ - 2) - (5 - l)(.$ - 2) - mpme 

Process Variance of the Primary Severity (0) = 

1 xe-OL e-eL 

-i-- 
0 8 

-2 
8 

Process Variance of the Excess Severity (0) = 

2e -BL 
e 

-2OL 

2 
e 

-2 
0 
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Process Covariance of the Primary and Excess Severity (0) = 

Le -OL -20L --BL 
e 

--- 

8 
+ eg2 82 

pp = Expected Value of the Process Variance of the Primary Severity 
2 

= (5 - lK, - 2) - 
2Lu(l + L/v)‘-’ v2(1 + 2L)2-c 

(5-l) - (5 - 1M - 2) 

Pe = Expected Value of the Process Variance of the Excess Severity 

= 2v2(1 + L/u)2-e v2(1 + 2Llv)2-k 

(5 - 1>(5 - 2) - (5 - 1x5 - 2) 

5 = Expected Value of the Process Variance of the Excess Severity 

= Lv(1 + L/vyt + v2(1 + 2Llv)2-” v2(1 + L/v)2-C 

(5 - 1) (5 - 1>(5 - 2) - (5 - 1x5 - 2) 

A Specific Example 

In the Gamma distribution the first parameter controls the shape92, while the 
second parameter basically determines the scale once the first parameter is 
chosen. 

The mixing distribution of the frequency is Gamma, with parameters q and 
E. Let n = 4 and E = 4/N. Thus since Z = T/E, N is the mean number of 
claims. 

The mixing distribution of the severity is Gamma, with parameters 5 and u. 
Let 5 = 2.5 and v = 4500. Thus, since m = m, + m, = vl(e - l), the average 
size of claim is 4500/1.5 = 3000. 

Then the resulting efficiencies are as follows: 

92 For parameters T and E, the skewness of the Gamma is two over the square root of 9. For q = 
1, the Gamma is the exponential distribution. For -q large, the Gamma approaches the normal 
distribution. 
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EFFICIENCIES 

L N=l N= 10 N = 100 

0 31.43% 82.09% 97.86% 
100 32.11 82.25 97.87 

1000 32.01 82.23 97.87 
10000 31.67 82.14 97.87 

co 31.43 82.09 97.86 

We note that for this example, the efficiencies are almost independent of 
the loss limit L. In fact, the single split plan has no practical advantage over 
the no split plan (L = 0 or L = to). 


