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CLASSICAL PARTIAL CREDIBILITY WITH APPLICATION TO TREND 

GARY G. VENTER 

Abstract 

Even with the recent advances in Bayesian credibility theory, there remain 
situations in which some may prefer the classical approach. Such situations 
may include dutu limitutions, the failure of Bayesian model assumptions, the 
desire to incorporate a broader class of auxiliary information, ease of calcu- 

lation und explanation, or just the force of tradition. 

This paper discusses a probabilistic interpretation of the classical square 
root rule which provides some rationale for its use. The same rationale applied 
to trend projections leads to a similar rule, which utilizes the relative goodness 
of fit of the trend line. 

While classical credibility for pure premiums is calculated from the volume 
of dutu used, the importunce of volume is only in determining certain confidence 
intervals, which in turn determine credibility. In the trend model, the relative 
goodness of jt determines the conjidence intervals. Using these confidence 
intervuls in the same manner as in the pure premium case yields classical 
credibilities for the trend. 

Volume is importunt here only to the extent that the stability it imparts 
contributes to the goodness offit. As there may be other influences affecting the 
fit, volume alone does not guarantee high credibility in the trend cuse. 

Credibility requirements under the Normal Power approximation also are 
revietcved. For these a partial credibility method dtferent from the square root 
formulu is indicated. 

Partial credibility in the “classical” approach (Longley-Cook [5]) has often 
been presented in a somewhat ad hoc fashion, not particularly related to the 
statistical development of the full credibility standard. 

An exception is provided by the “limited fluctuation” development (De- 
Vylder [2] and Hossack, Pollard, and Zehnwirth [4]), which shows that the 
square root rule can be given a reasonable probabilistic interpretation when the 
full credibility standard is developed from a normal approximation to aggregate 
losses. The limited fluctuation concept is similar to an interpretation of credi- 
bility theory found in the 1932 PCAS (Perryman [8]). 
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The present paper outlines the limited fluctuation interpretation of credibility 
and uses it to develop a classical credibility approach to trend. As a further 
illustration, this method is extended to the computation of partial credibilities 
when the normal power approximation to aggregate losses is used to develop a 
full credibility standard (Mayerson. Jones, and Bowers 161). To present this 
method clearly, a review of the standard credibility procedure is in order. 

ELEMENTARY CREDIBILITY FROM AN ADVANCED STANDPOINT 

The primary focus in classical credibility is the establishment of a full 
credibility standard. This is viewed as the expected number of claims needed 
to meet a predefined standard of stability of the aggregate losses. (“Aggregate 
losses” refers to the total dollar amount of the claims.) The standard is expressed 
in terms of confidence intervals. A typical standard would be that there be a 
90% probability of observed aggregate losses for a year being within ?5% of 
the expected aggregate losses. 

The limited fluctuation approach to partial credibility proceeds by establish- 
ing a confidence interval of the same precision and width as desired for full 
credibility, but centered at the credibility weighted estimate rather than at the 
observed mean. Some rationale for this method will be discussed below. This 
approach turns out to yield the square root rule for partial credibility in the case 
that aggregate losses are adequately approximated by a normal probability 
distribution. This distribution may not be a very good approximation in practice, 
but it is useful to illustrate the development of the theory. The development of 
the full credibility standard under this assumption proceeds as follows. 

Since the normal distribution is symmetric about its mean, a 90% probability 
of the aggregate losses T being within ?kE(T) of E(T) corresponds to a 95% 
probability of T being below E(T)( 1 + k). In general, a probability p of T being 
within *kE(7) of E(7) translates to a probability of .S( I + p) of T being below 
E(T)( 1 + k). For notational convenience, then. let d = .5( I + p) and yd denote 
the dth quantile of the standard normal distribution, i.e., there is a probability 
d that a standard normal variate is less than y,,. For example, v V5 = 1.645. 

Thus, to meet the standard of T being within *kE(T) of E(7) wi 
p, kE(T) must equal yd standard deviations of T, i.e., kE(T) = ?d 
express this standard in terms of the number of claims requires an expression 
for the variance of T in terms of the moments of N, the number of claims, and 
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X, the claim size. This expression, derived in Appendix 2, is 

Var(7) = Var(X)E(N) + Var(N) E(X)2. 

Thus, the full credibility requirement is 

k2E(X)2E(N)2 = yi (Var(X)E(N) + Var(N)E(X)*) 
or 

E(N) = hik)2((Var(X)lE(x)2) + WarOVYE(N))). 

Now, this is supposed to be an equation for E(N), but.E(N) also occurs on 
the right side. However, the ratio Var(N)IE(N) can often be treated as a constant 
of the frequency distribution. In fact for a Poisson frequency, this constant is 
1.0. The negative binomial distribution with parameters x and p has E(N) = 
x( 1 - p)/p and Var (N) = x (1 - p)/p2, so the ratio of variance to mean is 
l/p. As long as p does not change, the expected number of claims can increase 
or decrease due to the x parameter without influencing the variance to mean 
ratio. 

For any frequency distribution, increasing E(N) by adding independent iden- 
tically distributed exposure units does not change this ratio, because Var(N) will 
increase proportionally. (For independent risks, E(N + M) = E(M) + E(N) and 
Var(N+M) = Var(N)+Var (M). From this it follows that if Var(N)IE(N) = r = 

Var(M)IE(M), then also Var(N + M)IE(N + M) = r.) In more sophisticated 
models, large risks or portfolios are not assumed to behave as aggregations of 
independently distributed exposure units, and then this ratio is not a constant 
(Meyers and Schenker [7]). However, this constancy will be assumed here. 
Thus, the full credibility standard can be written as 

where c = (Var(X)/E(X)2) + (Var(N)IE(N)) is a constant of the distribution. 
The first term of c can be denoted as CV’ with CV the severity coefficient of 
variation. For example, with a Poisson frequency, c = 1 + CV2. 

A standard example (Longley-Cook [5]) is given by a Poisson frequency 
and a severity distribution with CV = 0 (constant severity) and thus c = 1. 
Taking yd = 1.645 and k = .05 then yields E(N) = 1082.4. This might be a 
reasonable standard for claim frequency, or for aggregate losses with constant 
severity. To achieve the same confidence intervals, still with a Poisson fre- 
quency, this standard would have to be multiplied by 1 + CV2 to account for 
severity variation. In Longley-Cook [5], this factor is referred to as 1 + 
Sf/Mf and in Hossack [4] as 1 + (alm)2. 



It is of interest to note that c is also invariant under scale changes in severity, 
since Var(X)/E(X)’ has this invariance. A scale change is a transformation that 
affects every claim by a uniform factor, such as simple monetary inflation 
(Venter [ I I]). Real world inflation may affect different claim sizes differently, 
however (Rosenberg and Halpert [9]). Var(X)/E(X)’ is invariant in this sense 
because numerator and denominator both change by r’ under a scale change of 
r. Thus. for given constants p and k. the credibility standard will not change 
due to growth of the business (i.e., addition of independent identically distrib- 
uted exposure units) or uniform inflation. 

In practical applications, E(N) is often estimated by the number of claims 
arising. Thus, for example, if 1,082 expected claims is the full credibility 
standard, a body of experience with 1,082 claims may be deemed fully credible. 
The model, however, specifies a standard in terms of the exact expected number 
of claims. Using an estimate of this expected number changes the confidence 
intervals. Expected claims of 1,000 or of 1,164, for example, could occasionally 
produce 1,082 claims. Using k = !,,1,‘&E(N) yields k’s of .OS2 and .048 for 
these two expected values. Thus, the confdence interval widths arising in 
practice may be slightly different than those contemplated by the theory. This 
problem seems to be minor, given the degree of judgment used to select k 
originally. 

PARTIAL. CREDIBILI’I‘Y 

When E(N) is less than the full credibility standard, a weighting scheme is 
used to estimate E(7). The estimate, u. is a weighted average of the observed 
aggregate claims T with 1’. a previous estimate of E(n. The previous estimate 
r can be regarded as the best available estimate of E(T) without the observation 
T. Thus 

u = zT + (I - :)I 

Under the limited fluctuation partial credibility approach. the weight z is 
calculated so that there will be a probability 11 of II being within kE(7) of 
=E(n + (1 - 2)~‘. where p and k are the detining constants of the full credibility 
standard. Thus the credibility estimate [I is. with probability p, within the 
originally desired distance X-E(T) of a weighted avcragc of E(7J and the previous 
estimate r. 

For u to meet this criterion, :T must be within kE(T) of -E(T) with probability 
p. as can be seen from the definition of II. This is equivalent to requiring T to 
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be within (k/z)E(T) of E(T) with probability p. But this is just the full credibility 
requirement with k replaced by k/z. Thus, under the above assumpdons, the 
expected number of claims needed for credibility 2 is 

E(N) = c(y<,/(k/z))‘. 

Comparing the resulting expected number of claims NZ needed for a credibility 
of z to the full credibility standard Nf yields that 

N; = zzN, 

or 

That is, the credibility factor z for an expected number of claims Ni is just the 
square root of the ratio of NZ to the full credibility standard N,, with a maximum 
ofz = 1. 

Also, since (k/z)E(T) is the width of thep confidence interval when E(N) = 
NI, then z is just the ratio of the target p confidence interval kE(T) to the wider 
p confidence interval around E(T), (k/z) E(T), that arises for E(m = N,. As a 
result, the p confidence interval around zE(n is of the targeted width kE(T), 
and thus there is a probability p of the credibility estimate u being within this 
target width of zE(T) + (I - z)v. 

This gives a reasonable probabilistic interpretation to the square root rule 
for partial credibilities. It does not, however, rule out other possible partial 
credibility rules which also may be reasonable. The classical approach is essen- 
tially pragmatic, and does not claim optimality. 

For an example, again assume Poisson frequency and constant severity, so 
c = 1. Suppose 683 claims are observed, and this is taken as the estimate of 
E(N). Using k = ?;,I&@@ = ,063, a 90% confidence interval of 683 ( 1 2 
,063) = 683 * 43 is computed. However, suppose an interval half width of 
(.05) (683) = 34 is desired, which is smaller than the actual by the ratio of 
.050/.063 = .79. The 90% confidence interval around .79N = (.79) (683) is 
of the desired half width 34 = (.79) (43). Adding the constant (1 - .79) v does 
not change this half width. Thus, taking z = .79 meets the limited fluctuation 
criterion, and this z can be simply calculated as the square root of the ratio 
683/1082. 
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It is sometimes claimed in casual conversation that the classical credibility 
criterion is biased against downward estimates. There are two lines of reasoning 
used for this. The first notes that a portfolio with a smaller expected number of 
claims has a smaller confidence interval radius than one with more expected 
claims, and thus asserts that it is unfair to give it lower credibility. 

This argument in effect questions the use of a target confidence interval 
expressed as a percentage of the expected losses, and favors an absolute con- 
fidence interval. There are good reasons for using a relative confidence interval, 
however. For instance, the resources to absorb adverse fluctuations are usually 
available in approximate proportion to expected losses. These resources may 
include surplus, investment income, and a profit/contingency provision in the 
rates. It should also be noted that a criterion based on absolute confidence 
intervals would give the greatest weight to the smallest volumes of data, which 
is just the opposite of what is intended by credibility. 

The other argument for bias applies when the actual rather than the expected 
number of claims is used for credibility. The model assumes random fluctuations 
occur equally on either side of the expected value. However, downward fluc- 
tuations get lower credibility than upward ones. giving the whole procedure a 
slight upward bias. 

To illustrate this, consider a case where the full credibility standard is 
1089 = 33* claims, and E(N) = 1000. Assume also that the previous estimate 
v = 1000. The credibility should be .9.58 based on E(N) = 1000. However, if 
credibility is based on the actual number of claims it will usually differ somewhat 
from this value. The credibility z and credibility estimate u are shown below 
for several n’s that could arise. 

n Z u n z U 

1023 .969 1022 977 ,947 978 
1063 .98X 1062 937 ,928 942 
1088 1.000 1088 912 ,915 919 

1047.6 954.8 

As can be seen, the fluctuations above the expected value do produce slightly 
larger indicated changes than do those below the mean. In fact the average 
estimate produced is 1001, so there is a 0.1% expected upward bias in this 
case. The weights used for each row to compute this average are .4679, .3607, 
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and .1713. These and the n’s selected derive from the 6 point Gaussian quad- 
rature integration procedure for the interval (905, lO!Z), which under the normal 
approximation contains about 99Y4% of the values of n that could arise. 

The 0.1% expected bias in this case comes about because the practice departs 
from the theory, i.e., the credibility is calculated based on the latest observed 
rather than the expected number of claims. This problem need not occur in 
other applications of the limited fluctuation theory which use some other estimate 
for expected claims. 

To summarize classical normal approximation credibility, then, a full cred- 
ibility standard is first established, based on a specified high probability of the 
data being within a specified narrow band around the expected value being 
estimated. Partial credibility standards are then derived by requiring that the 
credibility weighted estimate be within just as narrow a confidence band, but 
this confidence band is now centered at the credibility estimate. The partial 
credibility z then turns out to be the ratio of the width of the target full credibility 
confidence interval to the corresponding confidence interval produced by the 
actual data. 

Does classical credibility theory make sense in this form, and if so, under 
what circumstances‘? 

Assumptions for aggregate losses (e.g., approximately normally distributed) 
that lead to the confidence interval properties of the credibility estimator have 
been given, but the relationship between the observed aggregate losses, those 
being estimated, and the previous estimate need to be clarified in order to 
evaluate the methodology. 

Without formulating a specific model, the credibility estimate seems useful 
when a situation like the following is involved. 

Things (i.e, the underlying processes) tend to be fairly stable over time, but 
occasionally they change, and these changes are of varying degrees and direc- 
tions. Observations fluctuate randomly around the underlying processes, and 
the degree of this latter fluctuation is fairly well known. Rates should respond 
to fundamental changes but not to fluctuations. 

Under such a scenario, it seems reasonable to set up a target confidence 
criterion with respect to the random fluctuations so that the latest year’s indi- 
cation will be used at face value if the confidence interval this experience 
produces is tight enough, in reference to selected constants p and k. This would 
delimit the degree of random fluctuation that would be deemed acceptable. 
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At the other extreme, if no observation can be made. the previous estimate 
will continue to be used. Between these extremes, a weighted average of the 
observation and the previous estimate seems like a reasonable and appropriate 
choice. What should be the weights? One possibility is to attribute just enough 
weight to the last observation so that that observation gives the resulting 
weighted average only the degree of random fluctuation that has already been 
deemed acceptable. As the above analysis has demonstrated, this is the result 
the classical credibility procedure produces. given the assumptions involved. 

Thus, although no claims about optimality are advanced, the classical pro- 
cedure can at least be seen to have a reasonable probabilistic interpretation. It 
may be particularly useful when the premises of Bayesian credibility, such as 
homogenity over time, cannot be assumed to hold. when the data is not available 
to do a full Bayesian credibility analysis, and when the auxiliary data to be 
incorporated comes from a different source. such as broader economic indices. 

In the next section, the above procedure will be used to develop a classical 
credibility standard for trend projections. In Appendix 1, it is used to produce 
partial credibility when the normal power approximation to aggregate losses is 
employed. 

CREDIBILITY FOK A I‘IME WEND 

To apply classical credibility to a trend projection. a full credibility standard 
relative to p and k must first be determined. In the classical spirit. this can be 
specified as follows: a projected point will be deemed fully credible relative to 
p and k if there is a probability of at least p that the actual value being projected 
will fall within 1 + k of the projected point. 

Note that this standard is more restrictive than in the aggregate loss credi- 
bility framework in that it requires the realiration of the random variable. not 
just its expected value, to be in the interval. Accordingly, a larger value of k 
may be deemed appropriate for a given /, in this situation than for aggregate 
losses. There may be other ways to specify a reasonable full credibility standard, 
but the above definition will be used herein. As in the classical approach, the 
target confidence interval is expressed as a percentage of the estimate. which 
seems appropriate for most of the reasons advanced above. 

There are standard statistical formulas. in texts covering regression, for 
calculating confidence intervals around a trended point. In general. these utilize 
the number of points in the experience period. the number of points forward 
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the projection is carried. and the goodness of tit of the least squares line. Let 
us suppose, then, that the line is based on rt equally spaced observed points and 
the projection of interest is rn points beyond the midpoint of the observations. 
Goodness of tit will be measured by s. where 01 - 2)s’ = SSR, the sum of the 
squares of the residuals, i.e., the sum of the squared differences between the 
observed and titted points. The n - 2 is an adjustment for degrees of freedom. 
because 2 parameters are required for titting a line. 

Under normal least squares assumptions, to be discussed further below. the 
usual formulas yield that the standard deviation of the projected point is 

svT+ (l/n) + 1~2rn?,7$ 

and the p confidence interval measures 

t(d.n - 2)sdl + (l/n) + 12rn?$YI) (1) 

on each side of the projected point, where r(d,n - 2) is the 100&h percentile 
of the f distribution with II - 2 degrees of freedom, and, as before, d = .5( 1 + 
p). Formulas that reduce to these for a time trend can be found in many 
regression texts. The confidence interval incorporates both the variance of the 
subsequent point from its expected value on the line and the uncertainty as to 
where the line really is. since its parameters are estimated. 

To use this contidence interval for credibility. it is tirst necessary to select 
p and k. For example, a 90% confidence interval of k 10% of the projected 
value might be chosen as the full credibility standard. Then the actual p conf- 
dence interval is measured for the data at hand. Suppose, for example. the 90% 
confidence interval around the projected point is found in fact to be 2 12.5% 
of the projected value. Then, following the principles of classical credibility, 
the partial credibility for the particular case at hand would be the ratio of the 
full credibility interval to the actual interval. In this case the ratio is IO/. 125 = 
.X0, and thus the trend projection receives 80% credibility. 

Applying a credibility factor in this manner limits the possible random 
deviation of the credibility weighted estimate to the targeted amount. i.e., to 
*k of the projected point. However, the resulting contidence band, while of 
the desired width, is not centered on the value being estimated, but rather on 
the weighted average of this value with a previous estimate V. This is precisely 
what the classical procedure does in the aggregate loss case as well. 

In other words, the credibility estimate is z times the projected point plus 
1 - 2 times the prior expectation. The !, confidence band around this estimate 
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has been shrunk by a factor of z, which is chosen to give the resulting confidence 
band a width of k times the projected point. Then p expresses the probability 
that the credibility weighted average of the actual value being projected and the 
prior expectation will be within the given interval around the credibility estimate. 

The theory does not specify what the prior estimate v should be, but it seems 
reasonable to stipulate that v is the best estimate available prior to the current 
projection. Possibilities may include a previous projection; a projection based 
on a wider population, e.g., countrywide data; or a projection based on a 
broader economic perspective. e.g., pure inflationary considerations. 

An example of this method is given in Appendix 3, for a loss ratio trend. 
A loss ratio of .647 at current rate level is projected, with a 90% confidence 
interval of *. 159. If the full credibility standard is taken to be a 90% confidence 
interval of 2.0647, a credibility of z = .0647/.159 = .41 results. Thus I - 
z = .59 will apply to the prior estimate. Suppose the prior estimate is v = ,620. 
Then the credibility estimate is u = (.59)(.620) + (.41)(.647) = ,631. 

The probabilistic interpretation of this procedure is then as follows. There 
is a 90% probability that the expected loss ratio E being estimated is within 
.I59 of ,647. Thus, there is also a 90% probability that .41E is within 
(.41)(.159) = .065 of (.41)(.647) = ,265. Adding .59~ = ,366 to this shows 
that there is then a 90% probability that the credibility estimate u = .265 + 
,591~ is within ,065 of .41E + .59\*. 

PROS AND CONS OF THE METHOD 

The confidence interval approach to credibility for trend has several advan- 
tages and some disadvantages, as enumerated below. Some features of the 
method have positive and negative aspects, and thus are listed under both. 

Advantages 

I. The method is derived explicitly from a statistical model. Thus, it is 
possible to describe the estimate in probabilistic terms. It is not based 
on analogy or ad hoc reasoning. 

2. Credibility bears a direct relationship to the goodness of tit of the trend 
line. 

3. Since the model is simple, the concepts are relatively easy to explain 
and the estimation is not difficult to carry out. 
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4. The method leaves room for the informed judgment of trained experts, 
both in the selection of the full credibility standard and in the choice of 
the prior estimate. This makes the method responsive to the needs of 
different constituencies, which may have different evaluations of the 
applicability of the various sources of prior data, such as countrywide 
data or broader economic trends. 

Disadvantages 

I. The method does not optimize anything. This is in contrast to the modem 
least squares credibility approach, which does optimize a specific error 
function. 

2. Subjective judgment is required. This is again in contrast to the least 
squares approach, in which all estimates are produced strictly from the 
data with no input from subjective probabilities called for. While in- 
formed judgment can truly be an advantage over purely data driven 
methods, judgment can be inconsistent over time and circumstances, and 
poor judgment can be a disadvantage. 

3. The model requirements, while simple, are restrictive. The usual regres- 
sion assumptions, for example, include normality of the residuals. This 
assumption can be tested, however, as is discussed further in Appendix 
4. If normality is not found, it still may be possible to estimate confidence 
intervals by other means. 

In summary, classical credibility, which can be thought of as a ratio of 
confidence intervals, can be extended directly to apply to trend. This has several 
advantages, including flexibility and ease of application and exposition. It is a 
pragmatic approach with a probabilistic interpretation, but is not derived as a 
statistical optimization. This leaves open the possibility that, under further 
assumptions about the statistical relationship between the data and a specific 
prior estimate, a different credibility procedure can be derived that optimizes a 
specified error measure. 

LEAST SQUARES ASSUMPTIONS 

The normal least squares assumptions provide that the various years’ obser- 
vations T, are normally distributed random variables, each with the same vari- 
ance, and with the expected value for each given as a linear function of time, 
i.e., E(TJ = a + bi. 
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In application, these assumptions may only hold as approximations. In some 
cases, for instance, the expected values may move as a non-linear function of 
time. Also, the data is often adjusted to remove systematic influences. e.g.. 
rate changes and benefit changes. before the linear model is fit. 

Further, nothing in the model assumptions requires the variance to be due 
to frequency and severity distributions alone. Price levels, the level of economic 
activity. and reserving changes could all contribute to the variance of the 
individual results from their expected values on the line. Thus the volume of 
experience underlying each point is not the xolc determinant of the variance. 
and in fact may be overshadowed by other. factors. 

DEVELOPING A WORKING FORMUI,A 

A projected point is fully credible p,X if the I> confidence interval around 
the projected point has radius no more than k times that point. By ( 1) and the 
definition of s. this criterion will be fulfilled if 

k PRO = t(d,n - 2)L ‘{l + (l/n) + Il,m’!(r~‘ir~)).SSRi(rl ~~ 2). (2) 

Here PRO denotes the projected pomt. Also. for credibility :. a contidence 
interval of (k/z) PRO is required. by the limited fluctuation principle. This can 
be expressed by substitution (k/z) for k in (3-j. 

Rearranging terms then leads to 

SSRJPRO’ = k’(n ~ 2)/[:‘t(d.r1 - ?)‘f 1 + (1,~ + 12r,r’i(rr’ - /r))] (3) 

where SSR, is associated with credibility :. Thus 

SSRIIPRO’ = k’(n - ?)llt(d.tl - ’ ?)-(I + (Iill) t I’ttl.‘:(tlq - n))] (4) 

gives the full credibility standard relative sum of squared residuals in terms of 
p and k. the selected criteria; n, the number of points used IO tit the line: and 
m, the number of points projected beyond the midpoint of the tl original points,. 

Full credibility is expressed by a relative SSR. not an absolute SSR. because 
the target confidence interval is specified as a percentage of the projected value. 
As with credibility for aggregate losses. a smaller absolute confidence interval 
can lead to lower credibility if that interval is wider relative to the value being 
estimated. and again this appears to be entirely appropriate. 
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From (4). the full credibility relative %X’s are given for various increasingly 
specitic assumptions below. First, take p = .90, so d = .95. and assume 5 
points are used to fit the line so II = 5. Then t(d,tz - 2) = 2.353 and: 

SSR,iPR02 = 5.418 k’i( 12 + m’) 

If k = .06, this becomes 

SSRJPRO’ = .0195/(12 + m’). 

A typical projection may be to point 7.5, so m = 4.5 points beyond the 
midpoint of the data. This yields 

SSR,IPRO’ = .0006 

This full credibility standard for the relative SSR only coincidentally is .Olk. 
For k = .05, the standard is .0004. and for k = .07 it is .0008. 

For a given PRO, (4) can be divided by (3) to yield 

z = L%??ISSR;, 

which is the square root rule for partial credibility for trend. Here SSR, is the 
actual SSR for the fitted line, and SSR, is the target relative SSR multiplied by 
PRO’. 

MAKINCi THE JUDGMtNTS 

Given the above working formulas, choosing p and k can be replaced by 
selecting a target full credibility relative SSR. This is perhaps a more reasonable 
judgment to make. Instead of picking p’s and k’s in advance. experienced 
actuaries, having a feel for the ratemaking process as a whole, and also for 
their corporate goals, may prefer to review a collection of fitted lines and select 
those which can be regarded as fully credible for ratemaking use. However, the 
resulting p’s and k’s may be a useful part of this review. 

Such a process is also advantageous in that it is less tied to the normal 
distribution assumption of the model. The selection of the full credibility relative 
SSR can be made with recognition that the residuals may not be normally 
distributed. and that the confidence intervals involved might actually be wider 
than the model would predict for that relative SSR. 

A judgment could also be made that a wider contidence interval may be 
acceptable when a longer projection is necessary, in recognition of the inherently 
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greater uncertainty involved with a longer projection. One way to reflect this is 
to keep the target relative SSR constant under various projection periods. 

Under these circumstances, the Actuarial Committee of the National Council 
on Compensation Insurance adopted a target relative SSR of .OOO6 for a five- 
year fitted trend line. As noted above. this results in k = ,060, that is, a 90% 
confidence interval radius of 6.0% of the projected value when rn = 4.5. which 
corresponds to a 2.5year projection. For this relative SSR and ITI = 5.5. a 3.5. 
year projection, k = .06X, that is, there is a 90% confidence interval radius of 
6.8% of the projected value. Normally. workers’ compensation ratemaking uses 
a projection period of 2.5 to 3.5 years. 

The more general target relative SSR of .0195/( 12 + m’) can be used for 
other projection periods. This maintains the target relative 90% confidence 
interval radius at 6.0%’ regardless of the length of the projection. 

The Committee also noted that the above formula for the confidence interval 
around a projected point allows for random fluctuation of the projected loss 
ratio as well as for uncertainty about the parameters of the regression line. It 
only the latter were to be considered. the resulting confidence interval would 
actually be tighter than the formulas indicate. 

This indication of a tighter interval may in part be counterbalanced by the 
possibility that residuals are not normally distributed. Although that distribution 
was not rejected by standard tests, the tests are not detinitive in this context. 
To the extent that the residuals are from a skewed distribution, the target 
confidence interval may be wider than the formulas suggest. 

Practical considerations such as these support the approach of selecting a 
target relative SSR based on informed judgment which considers. but is not 
strictly limited by. the implications of the statistical model. 

The complement of credibility in this framework should apply to the best 
estimate of the trended point available prior to the projection that is being 
weighted. Logical candidates for this are projections based on the countrywide 
trend. the previous trend in the state. or broader economic indices. The as- 
sumption of no trend would not be appropriate unless there is an a priori reason 
to believe the trend is in fact flat. There may be, for example, good reason to 
believe this for the ratio of workers’ compensation indemnity losses to payroll. 
However, as medical costs have been increasing faster than payroll in the 
economy at large, the ratio of medical losses to payroll could not be expected 
a priori to show no trend. 
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As medical benefits are quite similar across states, and are subject to similar 
inflationary influences, the latest available countrywide trend factor was selected 
as the prior estimate to be used with the complement of credibility for the 
medical pure premium trend. For indemnity trend, this was felt to be inappro- 
priate, due to widely differing benefit laws. Zero trend was chosen as the prior 
estimate because of its a priori reasonableness. 
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APPENDIX 1 

CREDIBII.l~I~Y \h’l FH I Ht NP APPROXIMA-IION 

Mayerson. Jones. and Bowers [6] note that the normal approximation is 
inappropriate for casualty insurance aggregate claims distributions because these 
are almost always positively skewed. They suggest using the NP (normal power) 
approximation instead. although they never USC’ that term. The NP adjusts the 
normal approximation for skewness. If f,r is the tlth quantile of T. i.e.. 
Pr (T 5 f,,) = d. and y,/ is the rlth quantile of the standard normal distribution, 
then the NP approximation is 

t,/ = E(7-)( 1 + c&v,/ + .s/ (v<< ~ I )/6)). (5) 

where for any random variable X. c 4 is the coefficient of variation (ratio of 
standard deviation to mean) and .y4 is the coefficient of skewness (ratio of third 
central moment to the cube of the standard deviation). In this notation, the 
normal approximation is 

t,i = E(T)(I + ~I:\‘<I). 

which is the NP with zero skewness 

The NP approximation arises from the first few terms of the Cornish-Fisher 
expansion. an infinite series expansion which expresses the percentiles of a 
distribution in terms of its moments. ‘This is an alternating series expansion and 
is not necessarily convergent. Thus, adding more terms may or may not signif- 
icantly improve the accuracy of this approximation. See Beard. Pentikainen, 
and Pesonen [ I ] for further discussion of this approximation. 

As with the normal approximation. the starting point for credibility is to 
find a full credibility standard such that T is within ikE(T) of E(T) with 
probability p. The NP does not in general provide a symmetric distribution 
of T around E(T); however. requiring 7‘ to be below (I + k)E(T) with proba- 
bility d = (I + p)/2 is generally assumed to be sufficient for T to be within 
E(n +kE(n with probability p for positively skewed aggregate claim distri- 
butions. This will be assumed for now, but it is discussed further below. With 
this assumption. the full credibility requirement gives the equation 
E(n( I + k) = r,,. which must be solved for E(N) to get the full credibility 
standard. E(N) does not appear in this equation. but it is an element of both 
sides. 
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Employing the NP approximation (5) at this point and solving for k yields 

k - c&y<, + ST (J; - I )/6). 

To solve for E(N), cr and So must be expressed in terms of N and X, i.e., 
frequency and severity. The methods of Appendix 2 provide the following 
formulas for the coefficients of variation and skewness of aggregate losses 

cg = (ct + n2)/E(N), and 
sr = (.s,(. + 3n7(.f + n+c;E(N)‘, 

where 11, is defined by E(N)n, = E(N - E(N))‘. For example, n2 is the frequency 
ratio of variance to mean. For the Poisson, n2 = n3 = 1. 

Introducing further notation for the numerators of the aggregate moments 
will simplify these expressions. Let 

MI = cf + n2, and 
M.3 = s,c: + 3nzcf + n3. 

M2 and MJ are shape descriptors for the aggregate loss distribution. For example, 
MzIE(N) is the square of the coefficient of variation of aggregate claims, and, 
in fact, Mr is the adjustment factor c referred to above in the discussion of the 
normal approximation credibility formulas. Mj is a third moment measure for 
aggregate losses, and comes up frequently in calculations. With this notation 
the formula for k becomes 

k = ?;,,k/M%(N) + (MdM,)(y: - l)/6E(N). 

This equation can be solved in general for the full credibility standard. 
Considering it to be a quadratic equation in a gives 

2k m = ?;I%& + fl&;p+‘kT;:mL l)Mj/3Mz. 

The resulting value of E(N) is the full credibility standard based on the NP 
approximation. Setting the last term under the square root to zero gives the 
formula for the normal approximation full credibility standard. Thus, that term 
is the end result of the NP adjustment. 

Purtial Credihilities 

The limited fluctuation method can be used to calculate partial credibilities 
under the NP approximation. Following the development in the text, for an 
E(N) less than N,, the partial credibility z represents a scaling factor that scales 



the 1’ confidence interval that would arise for that number of claims down to 
the target p contidencc interval of kl$V). The number of claims that generates 
a credibility of :. i.e. N,. can be developed from the above full credibility 
formula by replacing k with k,z. Thi4 allows l’or the calculation of credibility 
tables. but no simple relationship. such as the square root rule of the normal 
approximation. is evident. 

An example would probably bc useful at this point. Consider a case with a 
Poisson frequency distribution and a lognormal severity with a coefficient of 
variation of 7.0. For the Poisson. 11~ - II{ = I. Thus .zrl- = SO. For the 
lognormal generally. s, = c,’ + 3(,,. so in this case .s, = 364. Thus M3 = 
125.000. Take a 90%’ confidence interval. so j’Ci = I ,645. Then 2k tm = 
I I.632 + V’J35.3 + 2843k. Ifk = .05, E(N) = 80,026 is then the full credibility 
standard. Replacing k by k/z gives the following standards N. for partial credi- 
bility z 

.15 :: .so .7s 
N,: 9,103 25.786 49.468 

?N,: 5 .OO I 20,007 4s ,()I 5 

The square root rule partial credibility criteria z;‘N, for this N, are consistently 
lower. 

The high credibility requirements in this example derive in part from the 
large severity CV assumed. For high limits of insurance or unlimited coverage, 
CV’s of this magnitude have been reported by actuaries involved in various 
lines of commercial property and liability insurance (LeRoy Simon in his review 
[IO] of the Mayerson, Jones. and Bowers paper). 

Instead of the Poisson. a negative binomial frequency can be assumed. The 
negative binomial can be described by means of two parameters. .\ and p, so 
that Pr(N = n) = (’ ’ :: I) p’( I ~ p)“. with moments E(N) = .r( I - p)/p, nz = 
Iif, n3 = (2 - p)/p’. This illustrates that !I~ and 11~ can be considered funda- 
mental measures of the shape of the frequency distribution. in that they are 
functions of p only, while the mean can be changed by moving x. Dropkin [3] 
found that nz = I 184 in an automobile insurance study. This implies p = .8446 
and so n3 = I .620. In the above example. this increases M1 to 50. I84 and M 
to 125,027.668. Thus, 2kbjm = I I.653 + I”l35.8 + 2834k. For k = .05 
this yields E(N) = 80, I53 expected claims for full credibility. Thus. in this 
case. the full credibility standard is not significantly changed by going to the 
negative binomial assumption. 
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Another example of a negative binomial frequency distribution is provided 
by Meyers and Schenker [7]. They discuss a workers’ compensation setting in 
which the compound process of picking a risk at random from a class and 
observing its number of claims can be described by a negative binomial distri- 
bution. In their case each risk has a Poisson claim count distribution, and the 
risks’ Poisson parameters are gamma distributed across the class. The resulting 
negative binomial distribution with mean E(N) is estimated to have n, = I + 
.037E(N). Since n? is increasing with risk size, very large values can arise for 
large risks. In this model, a portion of the uncertainty about a risk’s claim count 
comes from the distribution of risks in the class, and this portion is not reduced 
by increasing the risk size. Essentially II, is no longer a fundamental frequency 
constant, but depends on E(N). 

Ignoring the context, however, suppose a negative binomial distribution is 
given with a constant but large n2, say n2 = 51. Then p = l/51, and n3 = 
5 151. In the above example these values give Mz = 100 and Mg = 137,500. 
Thus 2km = 16.45 + v2--1564k, and k = .05 gives E(N) = 
123.385. Thus the negative binomial model does make a considerable difference 
when nz is large. 

The lognormal assumption increases the skewness in these examples over 
what some other distributions would provide. A Weibull distribution with a CV 
of 7 has a shape parameter of .2678046 and thus skewness of 44.44. In the 
Poisson case above this reduces M to 15,391. Thus 2km = 11.632 + 
V’%%? 350. I k, or, for k = .05, E(N) = 57,568. 

One-und Twwsided Intervuls for Skewed Distributions 

Previously it was stated that the NP approach to credibility usually assumes 
that if T has a probability of d = (1 + p)/2 of being below (1 + k)E(7J, then 
T will be within *ItE(T) of E(T) with probability at least p. That this is not 
necessarily true for positively skewed distributions is shown in the following 
example. 

Assume T is Pareto distributed with distribution function F(t) = 1 - (I + 
t/2.5~p3.s. Then E(T) = I .O and F( I .O) = .6920. Take p = .5, so a 50% 
symmetric confidence interval around 1 .O is sought. This interval is 1.0 5 
.6898ascanbeverifiedusingF(t). Sincep = .5,d = .75,andsinceF(1.215) = 
.75. tl = I.2 15. However, the probability of T being in the interval 1 .O 2 ,215 
is less than 50%; in fact it is only 13.45%. 
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This arises because E(7J is well above the median of the distribution, so 
going only a small distance above E(T) reaches the IOOdth percentile for this 
d. For this distribution. this situation holds up to a p = 71.13% confidence 
interval around the mean. i.e. up to I .O ? .XYOS. For thih interval. the proba- 
bility d of T being less than E(T)( I + k) is given by (/J + I )/2 = 86.07% 
exactly. For higher p. the desired relationship doe\ hold, i.e.. being below the 
(1 + p)/Z quantile is enough to guarantee that the corresponding symmetric 
interval contains at least p in probability. 

Since it is higher confidence intervals that are of interest in credibility. the 
assumed relationship would be fultilled in this case. However. a more highly 
skewed distribution would place the mean at an even higher percentile. which 
would aggravate this problem. However. most loss distributions for which this 
credibility procedure is intended arc not so highly skewed that this would be 
likely to occur. In fact the NP ithclf is of questionable accuracy for highlq 
skewed distributions. 

Applicabili& of’ the NP to Skrnwl Distr-ihtrtiorts 

To investigate this. the percentiles of the scvcral distributions are calculated 
directly and by the NP approximation. The Pareto distribution F(t) = I ~ 
(I + t/b)-’ has moments defined by 

E(T’) = fi ib/(.s - i). 

Using these with the above values (h = 2.5. .s = 3.S) yields. after some algebra. 
cf = 713 and c v I. I = 18. Thus the NP approximation becomes 

This is compared to the actual values 01‘ t,/ for this distribution hclow 

d: .I0 .25 .so .7s (90 .95 
I,/ NP: ,969s - I.665 2.000 .3YS7 4.885 X.630 

t,/ Actual: .0764 .?I42 .5375 I .?lS 1.327 3.383 

The NP approximation is clearly not appropriate for this distribution. From 
the table, the NP might bc rea\onabl! accurate for a mall range of values 
somewhere in between the 75th and YOth percentiles. For the right hand tail, it 
clearly overstates the percentiles. The problem here apparently is the high 
skewness. 
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Distributions of this great a skewness are not likely for large portfolios of 
risks, for which the NP was originally developed. The aggregate claim distri- 
bution for a small portfolio or a single risk could easily be this highly skewed, 
however, and use of the NP could lead to large errors in such a case. 

For less skewed distributions (e.g., skewness below I .O) the NP can be 
fairly accurate. Two distributions, the gamma and the Weibull, are compared 
below to their NP estimates. Both of these distributions are assumed to have 
mean 1 and standard deviation 113, which tixes their parameters. The gamma 
then has skewness of 213, while that for the Weibull is approximately ,077. The 
percentiles are shown below. 

d: .Ol .05 .25 ..50 .75 .95 .99 

t,l Gamma: ,390 .522 ,760 .963 1.200 1.604 1.934 
I,/ NP: ,388 .515 ,755 .963 I.205 1.61 I I.939 

t,/ Weibull: ,277 .454 .765 ,998 I.231 I.554 1.770 
I,/ NP: ,243 ,459 ,773 ,996 1.223 I .556 I .794 

The NP approximation is reasonably close for both distributions, although at 
the extremes it is better for the gamma than for the Weibull. 
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API+,Nl)lX ? 

1;OKMLIIA FOK \‘,\K( I I 

T is the sum of the individual claims A’,. whcrc i runs from I to N. the 
number of claims. Since N is a random \,ariable. both frequency and severit! 
contribute to the variance of T. It is gcncrallq a~umcd that all claims have the 
same distribution. and that individual claim G/es arc indepcndcnt of each other 
and of N. 

To compute the variance of T under these assumptions, begin by calculating 
E(7”/N = n), i.e., fix the number of claims-at II and tind E((Xr + + X,,)‘). 

Expanding the square yields ,I’ terms of the form X,X,. When i = ,i the 7 
expected value of the term is E(X-). Otherwise. it is E(X)‘, Gnce then X, and 
X, are independent. Thus 

E((X, + + X,,)‘) = rzE(X2) + (rr‘ ~I)E(XI’ 
= rlVar(X) + ~r’l<,(X)~. 

Now, by general considerations of conditional expectations, E(7“) = 
E(E(T’/N = II)). Thus. taking the expected value of the above equation with 
respect to N gives 

E(p) = E(N)Var(X) + E(N’)E(X)’ 
= E(N)Var(X) + Var(N)E(X)’ + E(N)‘EtX)‘. 

The last term is just E(T)‘. Subtracting it from both sides then yields 

Var(71 = E(N)Var(X) + Var(N)E(X)’ 
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APPENDIX 3 

LOSS RATIO ‘TREND EXAMPLE 

The points labeled “Line” below were computed from the formula Line = 
.96X4 - .042X Year. and represent tht: least squares fit to “Data”. 

Year Data Line 

1 ,909 ,926 
2 ,929 ,883 
3 ,819 .840 
4 ,767 .797 
5 .776 ,754 

The point for year 7.5 is projected to be ,647. and the 90% confidence 
interval around this point is sought. The sum of the squared residuals is .00423, 
so s = .03755. since 3s’ = .00423. For year 7.5, M = 7.5 - 3 = 4.5. so 1 + 
l/n + 1 3m~l(nJ ~ II) = 3.275 = 1.796’. Also, r(.95,3) = 2.353. Thus, the 
90% confidence interval is .647 -t (2.353)(.03755)(1.796) = ,647 2 ,159. 



APPENDIX 4 
TESTING RESlDUAI S FOR NORMALITY 

As mentioned in the text, the confidence interval calculation relies on the 
assumption of normally distributed residuals. To some extent this assumption 
is testable, but for a trend based on a small number of data points. the tests are 
not particularly conclusive. 

The SAS package provided a test of normality for small samples, namely 
the Shapiro-Wilk W statistic. W is the ratio of two estimates of the variance of 
the residuals, one (the numerator) based on order statistics, and the other the 
usual sample variance approach. This ratio is between 0 and I. and small values 
lead to the rejection of normality. 

For example, in Appendix 3, W = .88l was calculated by SAS. From the 
critical values provided by Shapiro and Wilk, the probability of a lower value 
of W arising from a sample of 5 from a truly normal population is 35%. This 
is not a low enough value to reject normality. 

Since tests like this are not conclusive for small samples, one may want to 
appeal to general principles. In the case at hand. loss ratios are usually believed 
to have positively skewed distributions, so it may seem inappropriate to assume 
a normal distribution. 

Three comments are in order, however: 

I. In some cases the skewness may be small enough that the normal ap- 
proximation is reasonable. 

2. In some cases the deviations of the expected loss ratios for each year 
from the trend line may follow a normal distribution. and the deviation of the 
actual loss ratio from the expected for the year a positively skewed distribution. 
If the deviations of the expected from the line have a greater magnitude than 
the deviations of the actual from the expected. the normal approximation may 
not be too bad overall. 

3. Confdence intervals using a skewness correction could possibly be de- 
veloped in cases where a positive skewness is significant. In light of the role 
of informed judgment in selecting the full credibility standard, however. an 
explicit calculation of this type may not be required for moderately skewed 
distributions. 
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ADDRESS TO NEW MEMBERS--MAY 12. IOX6 

IN I RC)DL’(‘I ION 

it is a genuine pleasure for mc to address the new members of the Casualty 
Actuarial Society today. While my remarks are primarily intended for the new 
Fellows and Associates. I hasten to recognize the role that your partners. spouses 
or otherwise. have played in the achievement which has .just been recognized. 
So. my remarks are also addressed to those. here today, who have sacrificed in 
order that the person sitting next to you may’ now append the letters FCAS or 
ACAS to her name or his name. 

Incidentally, for you spouses and partners of new Fellows. the old alibi. 
“But I have to study for exams” is no longer \#alid. Back to changing diapers 
and all the other joys of conjugal life. 

When Phil Ben-Zvi called me to ask if I would accept this assignment I was 
particularly delighted for a very personal reason. One of the new Fellows is a 
young lady whom I recruited for the profession. Next to being a parent and 
enjoying the achievements of one’s children, there is no greater satisfaction than 
participating in the success of someone for whom you have opened the door. 
The young lady knows who she is and I’m not going to embarrass her by 
identifying her publicly. But I do want to say to her, “Rhonda, you did it on 
your own and I’m very proud to be here today to participate in this important 
moment in your life!” 

My remarks will be brief. I intend to cover three general areas which I will 
label COMMUNICATION, ACTUARY. and SPAN. The reason for this rather 
awkward choice of labels will become apparent later, although some of you 
may see through this selection of titles. 

COMMUNI(‘A I ION 

Actuaries, as a class, are literal-minded people. They, too often, assume 
that words speak for themselves, thus ignoring the importance that tone of voice 
plays in oral communication, or that it is necessary to lay groundwork and 



provide emphasis in all forms of communication. They should be aware of 
“body language” as a means of understanding what others are trying to com- 
municate. It took me thirty years of marriage to realize that my wife listened 
more closely to my tone of voice than to my words. It took me somewhat less 
time to understand that when she took out her emery boards and began working 
on her finger nails with a vigor that would have cut through solid oak, she was 
upset about something, but was not yet ready to discuss it. 

In thinking about methods of communication, I am reminded of the story 
of the Irish priest whose sermons were constantly filled with vilification of the 
English. Word of this reached his bishop and the latter decided to attend mass 
on Palm Sunday and listen to the priest’s sermon. As usual. the Irish priest 
managed to lambaste the English to a fare-thee-well. After mass the bishop 
took the priest aside. “My son,” he said, “You do preach a good sermon. but 
do you really think it’s proper to bring your political feelings into discussions 
of the Lord’s work‘? Now, I would suggest that in the future you omit any 
reference to the English even though it’s obvious your feelings on this subject 
are very strong.” The following Sunday, Easter, the priest declared that his topic 
was to be the Last Supper. He described how Christ announced that one of his 
disciples had betrayed him, and how Christ proceeded to go around the supper 
table, one disciple at a time, asking who it was. “And each disciple answered 
firmly ‘Not I. Lord’ until Jesus came to Judas Iscariot. And, Jesus asked, ‘Was 
it you, Judas. that betrayed me ?’ And, Judas replied, ‘Blimey, guv’ner, it wasn’t 
me! “’ 

Actuaries have a terrible time making themselves understood by people who 
are not actuaries! That bald statement of self-criticism is worth repeating. Yes, 
ACTUARIES HAVE A TERRIBLE TIME MAKING THEMSELVES UNDER- 
STOOD BY PEOPLE WHO ARE NOT ACTUARIES! Ask any senior member 
of our organization who is currently in an administrative position which factor 
most influences him or her when employing or promoting an otherwise qualified 
actuary, and he or she will readily identify the ability to explain ideas and 
results to others as paramount. Check our own Proceedings and find the number 
of times that presidential addresses take up this same issue. 

To me, communication begins with putting oneself into the position of the 
person with whom you are communicating. What does that person expect to 
hear? Does the person have a lot of time or are they in a hurry? What analogies 
would be most readily appreciated? If you have an idea or set of facts that are 
worthy of being passed on, then, for heaven’s sake, make the additional effort 
to pass them on properly. We all know the old philosophers’ question, “If a 



tree falls in the forest and there is no one to hear it. is there any sound’?” If you 
wish to pass on a thought or report something important. it may be lost if no 
one can understand you or if you can’t make them want to listen. 

What does it mean to be an actuary’? It means that you. and sometimes only 
you. will take the long-range point of view. Managers are here today and gone 
tomorrow, and most frequently look only for the short-tern1 advantage that will 
further their own careers. Being an actuary means integrity: it means standing 
firm when you’re in the right. not thinking any less of those who disagree with 
you, but trying to use facts and reason to overcome objections vvrongfully come 
by. 

Many of you will ultimately find yourselves in positions where very little 
of your day-to-day work is actuarial. Thumb through the CAS Yearbook and 
see how many of our members are in non-actuarial assignments. But as long as 
you bear the designation which you have studied so hard to achieve, and have 
received today. remember that other people think of you and respect you as an 
actuary. Others will continue to come to you for your actuarial advice or opinion. 

Being an actuary is not unlike being a weather man. People will make snide 
remarks about you and your profession. Nevertheless, you will find that you 
have earned their respect for objectivity and honesty. Avoid the trap of telling 
people only what they want to hear. Learn to recognize the pros and cons in a 
decision; think them through and then hc prepared to discuss both sides of an 
issue. 

Speaking about being an actuary at all times, I came across the following 
statement which appeared recently in the NCJM~ York Titus Sundq Ma,qxim~ in 
an article seriously questioning the need for liability insurance rate increases: 

The context in which this statement is contained is clearly intended to make the 
layman feel that there is something called the ‘median’ which has a significant 
bearing on whether or not liability insurance rates should go up or down. 
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(For our guests, here today, who are not actuaries, let me say that the 
‘median’ is simply the middle number in a string of numbers which have been 
arranged in order from smallest to largest or vice versa.) 

To illustrate, come with me on a shopping trip to the supermarket. I’ll try 
to be semi-realistic and yet keep my example simple. We buy a loaf of bread 
for 80 cents, a quart of milk for 70 cents, and a pound of coffee for $3.50. The 
median price of 70 cents, 80 cents and $3.50 is the middle amount-80 cents. 
Let’s add up the bill. Ignoring sales tax, we’ll expect to pay 70 cents plus 80 
cents plus $3.50. That’s $5. 

Next week we’ll go to the store and buy three loaves of bread at 80 cents 
per loaf, three quarts of milk at 70 cents, and three pounds of coffee at $3.50 
per pound. The amounts, by item, are 70 cents, 70 cents, 70 cents, 80 cents, 
80 cents, etc. Clearly the median price is still 80 cents. Would we expect the 
supermarket to charge $5, the same as last week‘? 

Alternatively. suppose that bread and milk had stayed the same price but 
coffee had jumped to $4.50 a pound because of a freeze in Brazil. Then, if, 
next week, we bought the same items, but only one of each, would we expect 
the same total at the register, since the median price is still only 80 cents? 

If the median liability award ‘hovers’ around $20,000, but the number of 
awards, or claims, doubles or triples, should we expect our bill for liability 
insurance to remain the same‘? If this median remains relatively constant but the 
larger awards get bigger and bigger, should we expect the cost of liability 
insurance to stay constant’? Finally, if it’s the large awards that are the major 
problem, should the cost of excess liability covers ignore this fact and not 
change? 

The author of the Ne)t’ York Times article from which I quoted is a member 
of this Society. Unfortunately, this person would seem to have forgotten what 
it means to be an actuary. Now. I don’t want my remarks to be misinterpreted 
as saying that you should never espouse a position that is unpopular with the 
majority of your actuarial brethren. Far from it; some of the older members will 
remember that Charlie Hewitt has been on the unpopular side of more than one 
issue. What I am saying is: get your facts straight and then interpret them 
objectively, i.e., actuarially. 



Cl’\ \ 

When congratulating new Fellows, rn) 4toch inqnirq has always been, “Now 
what are you going to do with all your free time?” Recently. I received the 
reply. -‘Well. I’m certainly not going 10 read an) more papers by Valcrius!” 
Naively I responded. “You knou I hncw Valerius.” NOLV. it should be explained 
that Nels Valerius is a fine old gentleman. and at last report was still living in 
Cheshire. Connecticut. He received his Fellowship in ISlX. 

The group of younger members bvith whom I wa\ conversing looked aghast. 
One of them said. in disbelief. “You knew Valeriux!‘!” When I nodded assent. 
the young member blurted out. “Boy. you’re a real link with the past!” Now I 
must confess that 1 even knew Dorwcller---and he was the man who hired 
Valerius. 

The point I’d like to make with you is that our careers as actuaries will span 
a considerable period of time: our lives will span an even longer period of time. 
Most of us focus, with the greatest intensity, on the present. and pay decreasing 
amounts of attention to either the past or the future. Picture a Normal curve 
with no beginning and no end, and with time as the x-axis. The present moment 
in time is the mode (median and mean, also). The height of this curve at any 
point in time can represent the effect that other times in our careers (or our 
lives) have upon our present actions and decisions. What we did or thought 
yesterday. or expect to do or think tomorrow will usually affect today’s thought 
and actions far more than those things did one year ago or will do one year 
from now. 

As you grow older you will appreciate that looking upon the full span of a 
career (or a life) will give a better perspective as to the importance of what’s 
happening right now, or what happened yesterday, or what might happen to- 
morrow. Try to live your life and your careers without the perspective that 
today’s deeds are all-important. Realize that what took place in the past has 
some importance, but with an ever-lessening intensity as we go backward in 
time. Similarly. although tomorrow seems awfully important and will be even 
more important when it becomes today, the other tomorrows further off must 
be acknowledged as having bearing on our actions and thoughts today. 



ADDRESS TO NtW MEMBERS 57 

COMMUNICATION, ACTUARY, SPAN-by now some of you may have 
perceived that the initial letters of these awkwardly chosen titles for my subjects 
spell C A S-for Casualty Actuarial Society. Once again, I’m reminded of a 
story; this time about the late Herman Hickman of whom 1 suspect most of you 
have never heard. 

Herman was a 300-pound college and professional football player and some- 
time professional wrestler and durin g a brief period a notably unsuccessful 
football coach at Yale University. During this tenure as Yale’s football coach, 
he told the story that during a halftime intermission he gave his team a pep talk 
in which he chose to use the letters of Yale-Y A I!, E-as the theme around 
which he would inspire his players to better deeds in the second half of the 
game. 

“Y,” said Herman, “is for You. You must get out there and tight, fight, 
fight. A is for All. All of us must give every ounce of our ability to win this 
football game. L is for Loyalty. It’s our loyalty to dear old Yale that will enable 
us to go on to victory. E is for Each and Every one of us who must give his 
all to insure that we walk off the field today triumphant. Y A L E; those letters 
spell victory.” Newly inspired, the Yale team charged out of the locker room. 
Trailing behind the rest of the team were two substitutes who had not played 
in the first half and had little prospect of playing at all. Unaware that the coach 
was immediately behind them, one sub turned to the other and said, “What did 
you think of the coach’s pep talk‘?” The other replied, “All I can say is thank 
heavens we don’t go to California Polytechnic University at San Luis Obispo.” 

It has been a pleasure and a privilege to address the new members of the 
Casualty Actuarial Society. You have my congratulations and my best wishes 
for both long and successful careers in whatever line of endeavor you may 
choose. Thank you. 


