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Abstract 

This paper discusses aggregate loss distributions from the perspective of 
collective risk theory. An accurate, efficient and practical algorithm is given for 
calculating cumulative probabilities and excess pure premiums. The input re- 
quired is the claim severity and claim count distributions. 

One of the main drawbacks of the collective risk model is the uncertainty 
of the parameters of the claim severity and claim count distributions. Modifi- 
cations of the collective risk model are proposed to deal with these problems. 
These modifications are incorporated into the algorithm. 

Examples are given illustrating the use of this algorithm. They include (1) 
calculating the pure premium for a policy with an aggregate limit; (2) calculating 
the pure premium of an aggregate stop-loss policy for group life insurance; and 
(3) calculating the insurance charge for a multi-line retrospective rating plan, 
including a line which is itself subject to an aggregate limit. 

1. INTRODUCTION 

This paper discusses aggregate loss distributions from the perspective of 
collective risk theory. Our objective is to provide an efficient algorithm for 
calculating the cumulative probabilities and excess pure premium ratios for 
aggregate loss distributions in terms of the claim severity and claim count 
distributions. Examples illustrating the use of this algorithm will be given. 

Aggregate loss distributions are playing an increasingly important role in 
the pricing of insurance coverages. .The insurance buying public is becoming 
more sophisticated and is recognizing that it is to their advantage to absorb as 
much of their losses as they possibly can and to purchase excess insurance to 
cover the catastrophic losses. With the degree of competition that exists in the 
insurance marketplace, it is extremely important to obtain accurate estimates of 
the losses that could arise from such an insurance contract. 



AGGREGATE DlSTRlBUTlONS 23 

Aggregate loss distributions have been widely discussed in the insurance 
literature. Members of the Casualty Actuarial Society are familiar with the 
papers of Dorweiler [I], Valerius [2], Simon [3] and Hewitt [4]. The aggregate 
loss distributions in these papers are based on observed aggregate loss data of 
individual insureds. A problem with this approach is that to get a sufficient 
volume of data, one must combine the experience of insureds for which one 
would expect different aggregate loss distributions. 

The use of collective risk theory provides an alternative to the above ap- 
proach. Aggregate loss distributions are calculated in terms of the underlying 
claim severity and claim count distributions. Empirical data on claim severity 
and claim count distributions are, in many cases, readily available. Many feel 
that this approach is superior to observing actual aggregate losses because it 
makes more efficient use of available data. Much relevant detail is buried when 
one observes only aggregate loss data. 

However, the collective risk model does have some drawbacks. There are 
problems involved in fitting a distribution to the claim count. For a given insured 
we get one measurement of the claim count per year. During the years that we 
get the measurements, the exposure of the insured is most likely changing. In 
addition, observations are clouded by the fact that we must estimate the number 
of claims which have been incurred but not reported. Because of these problems 
it is difficult to fit a distribution to the claim count. Often, we must assume a 
distribution (usually Binomial, Poisson or Negative Binomial) with the param- 
eters selected by judgment. 

While empirical claim severity distributions are readily available, there are 
still some formidable problems that must be solved. There is no consensus as 
to how claim severity distributions should be adjusted for inflation. If we try to 
minimize this problem by choosing a relatively recent claim severity distribution, 
we will understate the variance of the ultimate claim severity distribution. To 
see this, consider the following equation. 

Var (Z) = &(Var (ZIR)) + VarR (E(ZIR)) 
Z = Ultimate Loss 
R = Case Reserve 

When case estimates are set at the expected value of the ultimate payment, the 
variance of the immature distribution will be Var,@(ZIR)). The variance of the 
ultimate claim severity distribution will be greater! Great care must be exercised 
in selecting the ultimate loss distribution. Methods of solving this problem can 
be found in the literature. [5][6]. 
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Another problem with the collective risk model is that the calculation of the 
aggregate loss distribution has been very difficult. A great deal has been written 
about the various methods of solving this problem. We shall attempt to sum- 
marize these methods. 

One general approach has been to calculate the moments of the aggregate 
loss distribution in terms of the moments of the claim severity distribution and 
the claim count distribution. One can then match the moments of the aggregate 
loss distribution with an assumed distribution. Probably the best known example 
of this approach is the Normal Power approximation 171. However, the condi- 
tions required to insure the accuracy of this method can be very restrictive. 
Gary Venter uses the transformed Gamma distribution and obtains better results 
[S]. While it is easy to compute the results using these methods, one runs the 
risk of inaccuracies because the assumed distribution is not the same as that 
implied by the collective risk model. 

A very popular method of calculating the aggregate loss distribution is by 
Monte Carlo simulation. Glenn Meyers has written an article illustrating this 
approach 191. This method is easy to understand and can be very accurate. 
However, it currently requires a great deal of computer time. 

A third method of calculating the aggregate loss distribution involves in- 
verting its characteristic function. A recent article illustrating this approach was 
written by Dr. Shaw Mong [IO]. This method requires that we have an explicit 
‘representation of the characteristic function of the claim severity distribution. 
Mong uses a shifted Gamma distribution to describe the claim severity distri- 
bution. Mong gives formulas for approximating other claim severity distributions 
with the shifted Gamma by matching the first three moments. The accuracy of 
this method depends upon how well the shifted Gamma distribution approxi- 
mates the desired claim severity distribution. 

A fourth method is the so-called “recursive method.” This method assumes 
a discrete claim severity distribution. By choosing a large enough number of 
points for the claim severity distribution, one can obtain any desired degree of 
accuracy. For this reason, it has been called an “exact” method. This method 
requires far less computer time than Monte Carlo simulation. The recursive 
method is derived in papers by Ethan Stroh [l l] and James Tilley [12] by 
inverting the Laplace transform of the aggregate loss distribution. Much of the 
mathematics involved is similar to that used in the characteristic function in- 
version method. Harry Panjer gives a derivation of the recursive method which 
does not involve inverting the Laplace transform [13]. 
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The method described in this paper inverts the characteristic function of the 
aggregate loss distribution. Like the recursive method, it ‘is an exact method. 
Its application goes beyond the recursive method in the following ways. 

1. This method allows one to combine the aggregate loss distributions of 
several different lines into a composite aggregate loss distribution. This 
is necessary if one is to apply the results of the collective risk model to 
multi-line retrospective rating plans. 

2. This method allows for parameter uncertainty in, both the claim severity 
distribution and the claim count distribution. Glenn Meyers and Nathaniel 
Schenker have shown that allowing for parameter uncertainty signifi- 
cantly improves the fit of the collective risk model to empirical data [ 141. 
It should be noted that Gary Venter’s method of Reference [8] also 
allows for parameter uncertainty. 

3. Philip Heckman and Phillip Norton have used the results of this paper 
to derive a method of selecting the specific and aggregate policy limits 
that minimize the variance of the retained losses while holding the cost 
of coverage constant [ 1.51. 

In short, this method is applicable to a wide variety of insurance pricing 
problems. We include several examples which illustrate this. 

The input required for this algorithm will be the claim count distribution 
and the claim severity distribution for each exposure class covered by the 
insurance contract. The claim count distribution can be either Binomial, Poisson 
or Negative Binomial. The cumulative claim severity distribution is assumed to 
be piecewise linear. We also allow the highest possible claim amount to occur 
with some non-zero probability. Figure 1 shows a cumulative distribution func- 
tion that might typically be considered. Since most claim severity distributions 
applicable to the insurance business can be approximated to any desired degree 
of accuracy by a piecewise linear cumulative distribution, we feel we have a 
completely general method of performing these calculations. 

It should be noted that these calculations will require a computer. With the 
nearly universal availability of computers, we do not consider this a drawback. 
We will warn the reader that the calculations are very complex, but, at the risk 
of being repetitious, we will stress the underlying concepts at every opportunity. 
This method is far more efficient than the more easily understood process of 
Monte Carlo simulation. Having fulfilled our duty to warn the reader, let us 
now proceed. 
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2. SUMMARY 

We begin by giving a full description of the aggregate loss model. We will 
show how this distribution can be expressed empirically in terms of Monte 
Carlo simulation or analytically in terms of convolutions. 

After reviewing some basic properties of complex numbers, we will .intro- 
duce the characteristic function of a probability distribution. One of the re- 
markable properties of this complex-valued function is that the characteristic 
function of the convolution of two probability distributions is equal to the 
product of the characteristic functions of the two individual probability distri- 
butions. It is this property of characteristic functions that makes this method 
work. It is easier to multiply characteristic functions than it is to calculate 
convolutions by Monte Carlo simulation. 

The next section will express the characteristic function of the aggregate 
loss distribution in terms of the claim count distribution and the characteristic 
function of the claim severity distribution. We will then derive formulas for the 
cumulative probabilities and the excess pure premiums for the aggregate loss 
distribution in terms of its characteristic function. These formulas involve im- 
proper integrals which can be evaluated using a Gaussian quadrature formula. 

We then provide an analysis of the errors made in numerically evaluating 
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the improper integrals. In some cases, the aggregate loss distribution is known. 
We test this algorithm by comparing the calculated results with known results. 
We also provide a comparison of the calculated results with results produced 
by Monte Carlo simulation. 

Four examples illustrating the use of this algorithm will be given: (1) 
calculating the pure premium of a policy with aggregate limits; (2) calculating 
the pure premium of an aggregate stop-loss policy for group life insurance; (3) 
calculating the insurance charge for a retrospective rating plan involving two 
policies, one of which is subject to an aggregate limit; and (4) an example 
similar to (3) except that there is parameter uncertainty for the claim severity 
distribution. 

3. THE COLLECTIVE RISK MODEL 

Collective risk theory started by considering the generalized Poisson distri- 
bution. However, it soon became apparent that the assumptions of this distri- 
bution are violated for many applications. In this section we will discuss the 
assumptions of the generalized Poisson distribution and indicate some common 
violations of these assumptions. We will then state a version of the collective 
risk model that can deal with certain violations of these assumptions. 

We start by considering the Poisson distribution. The assumptions underlying 
this distribution are as follows [16]. 

1. Claims occurring in two disjoint time intervals are independent. 
2. The expected number of claims in a time interval (tl, tz) is dependent 

only on the length of the interval and not on the initial value tl. 
3. No more than one claim can occur at a given time. 

There are situations when these assumptions are violated. We give three 
examples. 

I. Positive Contagion 
A manufacturer can be held liable for defects in its products which, in 
many cases, are mass produced. A successful claim against the manu- 
facturer may result in several other claims against the manufacturer. The 
notion that a higher than expected number of claims in an earlier period 
can increase the expected number.of claims in a future period is what is 
called positive contagion. 
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2. Negative Contagion 
Consider a group life insurance policy. A death in an earlier period will 
reduce the expected number of deaths in a later period. One does not 
die twice. The notion that a higher than expected number of claims in 
an earlier period can decrease the expected number of claims in a future 
period is called negative contagion. 

3. Parameter Uncertainty 
There are many cases when one feels that a Poisson distribution is 
appropriate, but one does not know the expected number of claims. Two 
options are available under these circumstances. The first option is to 
estimate the expected number of claims using historical experience. 
Parameter uncertainty can come from sample error. A second option is 
to use the average number of claims for a group of insureds that are 
similar to the insured under consideration. Parameter uncertainty arises 
if each member of the group expects to have a different number of 
claims. 

The effect of parameter uncertainty is similar to that of positive 
contagion. We give a heuristic argument for this which appeals to modem 
credibility theory. Suppose one observes n claims during a certain time 
period. Then one can estimate the number of claims, X, in a future period 
of equal length using the following formula. 

x=Z*n+(l -Z)*E 

where E = Prior estimate 
Z = Credibility factor. 

Note that if the estimate of the expected number of claims is precise or 
the group of insureds is homogeneous, the credibility factor will be 0. 

If n is greater than expected, the number of claims expected in the 
future will be greater than the prior estimate for non-zero values of 
credibility. 

It should be emphasized that we are not arguing that claims in an 
earlier period will cause claims in a later period, as in the positive 
contagion case. We are stating only that the claim count distributions 
observed under the conditions of parameter uncertainty and positive 
contagion should be similar. 

We now turn to specifying the claim count distributions we shall use for 
each of the above situations. We shall adopt the following notation. 
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n - A random variable denoting the number of claims 
A - The expected number of claims (A = E(n)) 
x - A random variable with E(X) = 1 and Var (x) = c 

Parameter uncertainty can be modeled by the following algorithm. 

Algorithm 3. I 

1. Select x at random from the assumed distribution. 
2. Select the number of claims, n, at random from a Poisson distribution 

with parameter xh. 

We have the following relationships. 

E(n) = E(nlx) * E(X) = X 

Var (n) = &War (nix)) + Var, MnlxN 
= E,(xA) + Var, (xh) 
= A + cA*. 

(3.1) 

(3.2) 

If x has a Gamma distribution, the claim count distribution described by 
Algorithm 3.1 is the Negative Binomial distribution [17]. We shall use the 
Negative Binomial distribution to model both the positive contagion and the 
parameter uncertainty cases. 

We shall call the paramter c the contagion parameter for the claim count 
distribution. We should note that c has also been called the contamination 
parameter by some authors [ 181. It should be noted that if c = 0, Algorithm 
3.1 yields the Poisson distribution. 

We shall use the Binomial distribution to model the negative contagion case. 
If m is the number of trials and p is the probability of success, we can formally 
define the contagion parameter to be equal to -l/m. Substituting this into 
Equation 3.2 yields the correct Binomial variance. 

Var(n) = A - X*/m = mp - m2p2/m = mp( 1 - p) 

While a negative contagion parameter makes no sense in terms of Algorithm 
3.1, we shall see below that this is a very appropriate definition. 

We now adopt the following notation. 

z-A random variable denoting the amount of a claim 
S(z)-The cumulative distribution function of z 

x-A random variable denoting the aggregate loss for an insured 
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Aggregate losses can be generated by the following algorithm. 

Algorithm 3.2 

1. Select the number of claims, n, at random from the assumed claim count 
distribution. 

2. Do the following n times. 
2. I Select the claim amount, z, at random from the assumed claim 

severity distribution. 
3. The aggregate loss amount, X, is the sum of all claim amounts, z, selected 

in step 2.1. 

Let F(x) denote the cumulative distribution function for the aggregate losses 
generated by Algorithm 3.2. We now give expressions for the mean and the 
variance of this distribution. 

E(x) = E(n) * E(z) = A * E(z) (3.3) 

Var (n) = E,,(Var (xln)) + Var,, (E(xln)) 
= E,,(n . Var (z)) + Var,, (n * E(z)) 
= A . Var (z) + (A + CA’) * E* (z) 
= A . E(z*) + CA* . E* (z) (3.4) 

Implicit in the use of Algorithm 3.2 is the assumption that the claim severity 
distribution, S(z), is known. In practice this distribution must be estimated from 
historical observations, or it must be simply assumed. Parameter uncertainty of 
the claim severity distribution can significantly affect the predictions of the 
collective risk model, and it should not be ignored. Our response to this problem 
is to make the simplifying (and we think reasonable) assumption that the shape 
of the distribution is known but there is uncertainty in the scale of the distri- 
bution. 

More precisely, we specify parameter uncertainty of the claim severity 
distribution in the following manner. Let p be a random variable satisfying the 
conditions E(lIP) = 1 and Var (I/p) = b. We then model aggregate losses by 
the following algorithm. 

Algorithm 3.3 

1. Select the number of claims, n, at random from the assumed claim count 
distribution. 

2. Select the scaling parameter, p, at random from the assumed distribution. 
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3. Do the following n times. 
3.1 Select the claim amount, z, at random from the assumed claim 

severity distribution. 
4. The aggregate loss amount, X, is the sum of all claim amounts, z, divided 

by the scaling parameter, B. 

Let 9(x) denote the cumulative distribution function for the aggregate losses 
generated by Algorithm 3.3. Let U(B) be the cumulative distribution function 
for the scaling parameter, B. Then the relationship between B(X) and F(x) is 
given by the following equation. 

x 
S(x) = 

I 
~~P&wP) (3.5) 

0 

We now give formulas for the mean and the variance for the aggregate 
losses generated by Algorithm 3.3. 

E(x) = E&WlPN 
= Ep(A . E(z)@) 
= A . E(z) . E(lIB) 
= A . E(z) (3.6) 

Var (4 = .&War CUP>> + Varp (E(xlP)) 

= Ea[(A * E(z*) + CA* * E*(z))@*] + Varp (A . E(z)@) 

= (A . E(z*) + CA* . E*(z)) * E(l/B2) + A* . E*(z) . Var (l/B) 

= (A . E(z*) + CA* . E*(z)) . (I+b) + A2 . E*(z) . b 

= A . E(z’) (l+b) + A* . E2(z) . (b+c+bc) (3.7) 

In this paper, we shall assume that B has a Gamma distribution. We shall 
call b the mixing parameter. The mixing parameter is a measure of parameter 
uncertainty for the claim severity distribution. 

It should be noted that we have chosen mathematically convenient distri- 
butions to model contagion and parameter uncertainty. We do not want to imply 
that these distributions are in any way the “correct” ones. Since parameter 
uncertainty is not directly observable, it is difficult to discover what the proper 
distribution should be. It should be noted that it is possible to infer the variance 
of the parameter uncertainty through the use of Equations 3.4 and 3.7 [ 141. But 
until statistical methodology has advanced to the point where the proper distri- 
bution can be determined, it should be acceptable to use ones which are math- 
ematically convenient. 
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4. CONVOLUTIONS 

The above discussion provides a complete description of the aggregate loss 
model we use in this paper. Algorithms 3.2 and 3.3 provide the means to 
calculate the cumulative distribution by Monte Carlo simulation. Unfortunately 
this is a long and expensive process. We now begin to develop the mathematical 
tools necessary to derive a more efficient process. 

Initially we will be concerned with the cumulative distribution function F(x) 
which is described by Algorithm 3.2. We will then make use of Equation 3.5 
to derive the cumulative distribution function B(X) described by Algorithm 3.3. 

Let x be a random variable which has a distribution function F(x). Similarly, 
let y be a random variable which has distribution function G(y). Let z = x + 
y. Then the convolution of F and G, denoted by F * G is the distribution 
function for z. We can express this analytically by the equation 

(F * G)(z) = 1’ F(z-y)dGCy). 
0 

Let S(z) be a claim severity distribution. Define 

so’(z) = { ‘: ;: f ; ; 

S”‘(z) = (P”’ * S)(z). 

One can see that S”‘(z) is the distribution of the total amount of exactly n claims. 

Algorithm 3.2 can be expressed in the following manner. 

Algorithm 4. I 

1. Select the claim count, n, at random. 
2. Select the aggregate loss amount, X, from the distribution 5”‘. 

We now give an analytical expression for this process. Let F(x) denote the 
distribution function for the aggregate loss distribution. Let P(n) denote the 
probability of exactly n claims. We then have 

F(x) = n$o P(n) . S”‘(x). (4.1) 
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5. CHARACTERISTIC FUNCTIONS 

It may be helpful at this point to review some properties of complex numbers. 
A complex number, z, is one which can be written in the form 

z = a + bi, (5.1) 

where a and b are real numbers and i = m. The number a is called the real 
part of z and b is called the imaginary part of z. Alternatively, z can be written 
in the form 

z = t-e”, (5.2) 

where r is a nonnegative real number and 0 is any real number; r is called the 
modulus of z, and 8 is called the argument of z. 

The equivalence of Equations 5. I and 5.2 can be seen by using Euler’s 
formula. 

e io = cos (0) + i * sin (0) (5.3) 

Using this formula it is not difficult to show that the following relationships 
hold. 

r=VTT? (5.4) 

1 

arctan (b/a) if a > 0 
7~ + arctan (b/a) if a < 0 and b 1 0 

0= arctan (b/a) - n if a < 0 and b 5 0 (5.5) 
~12 if a = 0 and b > 0 
- ~12 if a = 0 and b -C 0 

a = r cos (0) (5.6) 
b = r sin (0) (5.7) 

Having given a brief discussion of complex numbers, we define the char- 
acteristic function (or Fourier transform) of a cumulative distribution function 
F. 

&(t) = E(e’“) = Lm e”‘dF(x) (5.8) 

Let F and G be two cumulative distribution functions. 

&p&t) = E(e’“) = 6 e’“d(F * G) , 
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Since z is the sum of x and y, and x and y are independent, we have 

&-dt) = Ede”‘) = .&de i’(r+r)) = &(e’“) E,(e’“‘) = +F(t)$G(f). 

Thus we have proved the following well known result. 

+w*G)w = +4t) 4kw (5.9) 

As a consequence of this equation we have the following. 

4?dO = (~SWS’ (5.10) 

Combining Equations 4. I and 5.10 we get the following expression for the 
characteristic function of an aggregate loss distribution, F. 

4+(t) = ,go m)(4&))” (5.11) 

As stated above, we assume that the claim severity distribution is piecewise 
linear. We now specify the mathematical form of the claim severity distribution, 
S(z). 

1. Let n be a nonnegative integer. 
2. Let 0 I 01 < . . . < a,, < a,,+!. 
3. Let pk denote the probability that an individual loss is between ak and 

ak+ I. 
4. For up < z < u~+~, the probability density of z is given by 

dk = pkl(an+, - ak). 
5. The probability that a claim is equal to a,,+1 is given by 

1 - i pk. 
k=l 

This allows us to describe the accumulation of claim values at the policy 
limit (a,,+ I). 

We now calculate the characteristic function of S(z). 

+s(t) = [ e’“d.S(z) 

dk . ei”dz + ( 1 - i, pk) eirr”‘-’ 
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Using Euler’s formula (Equation 5.3) we continue. 

35 

$s(t) = $ kg, dk(Sh (1 uk+,) - sin (tak)) + 1 - i p, cos (tan+ I) 
( k=, k) 

+ i $ k$, dk (COS (tak) - COS (tak+,)) + i (I - $, pk) sin (r&+1) 

Let h(t) and f(t) denote the real and imaginary parts of +s(t) respectively. 

h(f) = ; $, dk (Sin (tan+,) - Sin (t&c)) + 
( ,, ) 

1 - z pk COS (tan,,) (5.12) 

sin (ta,,+ ,) (5.13) 

We now turn to the problem of calculating the characteristic function of the 
aggregate loss distribution. Our main tool will be Equation 5.1 I. 

Case I Binomial Distribution P(n) = 

$F(Z) = 2 (“) 
n=o n 

p”( 1 -p>‘“-“(+s(t))” 

W) = ,io (;) (phs(t))” - (1 -pyz 

cbM = (P440+ 1 -p) 
,” 

&o) = ( 1 + p (W)- I))“’ 

If we make a change of notation and let A = mp and c = - I/m, we get 

$F(r) = (1 - A(+&) -I))-“‘. (5.14) 
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e- AX” Case 2 Poisson Distribution F(n) = 7 
. 

(PM = ,zo $ (4sW 

(Pp.(t) = go e-“(A ;*!4@)” 

(b&) = e-A 5 (A * pw)” 

n=o 

,$&) = e-Ae”‘msc” 

4~0) = e 
A.(+s(o- I ) 

Case 3 Negative Binomial Distribution 

Qn)=(n’l~-f)(I +cA)-“‘.(A- 

4F(0 = iii ,,=o(n+1~-1)il+cA)“‘(~~(4s(t))” 

4FW = 5 n=o(n+ I;- I)(] +cA)-“C(+$!&)” 

4FW = Ii nzo(n+I;-l)(l +cA)-‘l’(e)” 

4sw 
where ’ = 1 - cA(+s(t) - 1) 

&(t) = (I + CA)- I/c (I + cX)“c 

&(t) = (I - cA(+s(t) - I))-“C 

(5.15) 

(5.16) : 

Note that Equations 5.14 and 5. I6 are identical except for the different I 
interpretation of the contagion parameter c. It should also be noted that the 
expression in Equations 5.14 and 5. I6 approaches the expression in Equation 
5. I5 as c approaches 0. 
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In the computer program described below, we set c = IO-’ whenever Ic( < 
IO-‘. Thus the same computer code handles all three cases. 

6. THE AGGREGATE LOSS DISTRIBUTION 

In the preceding section we derived the characteristic function for the ag- 
gregate loss distribution for a single coverage or exposure class. In this section 
we use the above results to derive formulas for the cumulative probabilities and 
the excess pure premiums for multiple coverages or exposure classes. 

For the sake of convenience, we make the following definitions. 

F(x) = Cumulative distribution function of the aggregate losses for all cov- 
erages combined 

p = Mean of aggregate loss distribution 
cr = Standard deviation of aggregate loss distribution 

At) = modulus (4~(tla>) 
g(t) = argument (+F(t/a)) 

For each coverage, j, we define the following. 

hi(t) = hj(tlU) - I (6.1) 

kj(t) = ij(t/U) (6.2) 

where hj and /?j are given in Equations 5.12 and 5.13. 

Note the F(x) is the convolution of the aggregate loss distributions for each 
individual coverage. Using Equations 5.4, 5.5, 5.9 and 5.12-5.16 we have the 
following. 

f(t) = n modulus (I - cjAj(+s,(tlo) - l))-“” 
j 

f(t) = n modulus (1 - cjAj(hj(t) + ikj(t)))-I”’ 
i 

At) = I-J ((I - cjAjhj(t))* + (cjAjkj(t))2)-“2”’ 
j 

g(t) = 2 argument (I - cjAj(+s,(t/o) - I))-“” 
i 

g(r) = z argument (I - cjAj(hj(t) + ik,{t)))-““j 
i 

(6.3) 

(6.4) 
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Once the modulus and the argument of the aggregate characteristic have 
been determined, it is possible to calculate the cumulative probabilities by use 
of the following formula. 

(txlu - g(t)) dr (6.5) 

The excess pure premium can be obtained from the cumulative distribution 
function by the following formula. 

EP(x) = 
i 
r (u - xMF(u) 

Applying this to Equation 6.5 we get the following formula. 

7 (cos (g(t)) - cos (txlu - g(t)))dr (6.6) 

The excess pure premium ratio is defined by the following formula. 

Ef?(x) = EP(x)Ipa 

We now introduce parameter uncertainty of the severity distributions. 

s(x) =; +; in”ly (] + (LJ)-““” 

sin ((I + r) arctan ($)- g(t)) dr (6.7) 

= At> %9(x) = f-l - 5 + ; o 7 cos (g(r)) - 
I [ 

(1 + ($)‘)-“‘cos (r . arctan ($) - g(r))] dr 

In the above two formulas. r = 1 + l/b. 

(6.8) 
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Equations 6.5-6.8 are derived in Appendix A. It should be noted that 
Equation 6.5 is the limit of Equation 6.7 as b approaches 0. Similarly Equation 
6.6 is the limit of Equation 6.8 as b approaches 0. In our program we set b = 
IO-’ whenever b < IO-’ and thus the same computer code handles both 
situations. 

Equations 6.7 and 6.8 are set up so that the parameter uncertainty of claim 
severity affects all coverages in the same way. This may be realistic if one 
believes that uncertainty in claim severity is due to inflation and that inflation 
affects all coverages in the same way. If one wants parameter uncertainty of 
claim severity for each coverage to be independent, several runs of the program 
will be required. An example showing how to do this will be given below. 

7. NUMERICAL INTEGRATION 

We now turn to the problem of evaluating the integrals given in Equations 
6.7 and 6.8. It should also be noted that our program is written in FORTRAN 
to run on a large (IBM 370) computer. In this environment, it gets nearly 
instantaneous response at the computer terminal. The same algorithm has also 
been coded in BASIC to run on a TRS80 Model III microcomputer where it 
reproduces the mainframe results though with substantially greater running time. 
The actual FORTRAN code is included as Exhibit IX. 

We now outline our algorithm. Explanation for the steps will be given 
below. 

Step 
1. Enter the parameters for the claim severity and the claim count distri- 

butions. 
2. Calculate the aggregate mean, )I, and standard deviation, cr. 
3. Enter the loss amounts, x. 
4. Calculate basic interval length, h. 

12 = 2rru /(maximum loss amount) 
5. In order to apply the Gaussian quadrature formulas, we must evaluate 

the integrands at specified points. We evaluate the functions f(f) and 
g(t) at the appropriate points in each of the following intervals. 
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Interval Number Interval 

I (0, h/16) 
2 (h/16, h/8) 
3 (h/8, h/4) 
4 (h/4, h/2) 
5 (h/2, h) 
6 (h, 2h) 

j+4 (0’ - l)h, jh) 

j is determined so that At)t < .00002 for all values of t evaluated in the 
interval ((j - I)h, jh). 

6. For each loss amount, x, evaluate 9(x) and %9(x) by summing the results 
of the Gaussian quadrature formulas over each of the intervals given in 
Step 5. 

We now give a more detailed explanation of the above steps 

Step I 

The parameters for each claim severity distribution are the claim severities 
a,, ; . . , a,,+ I and the associated probabilities PI, . . .p,,. 

The parameters for each claim count distribution are the expected number 
of claims and the contagion parameter, c. Note that if ICI < IO-‘, we substitute 
c = lo-‘. 

We must also enter the mixing parameter, b. If b < IO-’ we substitute 
b = IO-‘. 

Step 2 

For each coverage we calculate the aggregate mean and variance according 
to Equations 3.6 and 3.7. The aggregate mean and variance are the sums of the 
individual means and variances for each coverage. 

Step 4 

Evaluating a typical g(t) showed that g(t) changes slowly. See Figure 2. 
Also, r * arctan (xtlru) is an increasing function of t which is bounded by xtl 
u. Thus by choosing h = 2nu/(maximum loss amount) we assure that the 
interval of integration will contain no more than one oscillation of the integrand. 
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FIGURE 2 

Step 5 

The evaluation off(t) and g(t) is the most time consuming operation of this 
entire algorithm. Thus f(t) and g(t) should only be evaluated once for any given 
value of t, and the number of points, I, at which these functions are evaluated 
should be as few as possible. Inspection of the integrands of Equations 6.7 and 
6.8 revealed that they changed most rapidly in the interval (0, h). See Figures 
3 and 4. Thus it was felt that the intervals used in the numerical integration 
should be relatively short in the interval (0, h). 

By a change of variables, each interval of integration was transformed from 
the given interval to the interval (- 1, I). The Gaussian 5-point formula is then 
applied. The points, tj, where fit) and g(r) must be evaluated are as follows. 

11 = (-0.90617985 (b - u) + (b + a)) /2 
t2 = (-0.53846931 (b - a) + (b + u)) /2 
t3 = (b + a) /2 
t.q = (0.53846931 (b - u) + (b + a)) 12 
t5 = (0.90617985 (b - a) + (b + a)) /2 

Here a is the left endpoint of the interval, and b is the right endpoint of the 
interval under consideration. If f(<j) / Ij < .00002 for j = 1, . . . , 5 or the 
number of intervals equals 256, no more intervals are used. 
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FIGURE 3 

FIGURE 4 
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Step 6 

Now that f(t) and g(t) are evaluated and stored in an array, it becomes an 
easy task to evaluate B(X) and %9(.x). For each interval of integration we use 
the following rule to evaluate the integral. 

. (interval length/2) 

where P(t) = fct, 
t 

(interval lengthl2) 

1 + (zr)-““‘“sin ((1 + r) arctan (5) - g(r)) 

Q(t) = $? [ ( cos (g(t)) - (1 + ( $r)+2cos (r . arctan (z) - g(t))] 

W, = Ws = 0.23692689 
W2 = W4 = 0.47862867 
W3 = 0.56888889. 

Then 3(x) = .5 + (Sum of all the f,,‘s) 1~ and 
%9(x) = p, - x/2 + (Sum of all the IE’s) u/r. 

8. ERROR ANALYSIS 

There are three sources of error in the above calculations. 

Roundoff Error 

We use double precision arithmetic at every stage of our calculation. Double 
precision numbers are accurate to 16 significant digits on IBM equipment. Even 
though the calculations leading to a particular output value could number in the 
hundreds, it is doubtful that accumulated roundoff error could be an important 
factor in our calculations. 

Discretizution Error 

The discretization error for the Gaussian 5-point formula is given by the 
expression 
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f’“‘(S) 73 52 38 = 8.08 x 11 2 lo-‘O * *f’“’ (EJ, 5 in (-l,l). . . . 

Since the integrands are reasonably smooth (see Figures 3 and 4) the bound on 
f’“’ should be reasonable. Thus the discretization error should not be significant. 

Truncation Error 

The most significant source of error in these calculations is the truncation 
error, or the error made by substituting an integral with finite limits of integration 
for an integral with infinite limits of integration. We now turn to analyzing this 
truncation error. 

The truncation error, ET, for the excess pure premium is given by 

(1 + (s)‘)-d2cos (r * arctan (2) - g(tJ)]df 

where a is the limit of the finite integral. 

Now IET/ I ; j-- ‘3 (1 + 1)dt 

= % - max (f(t)) * i . 
120 

NowAt) = 1 6 e”“dF(x) / I [ 1 eirx 1 dF(x) = I. 

(8.1) 

(8.2) 
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The bound on the truncation error given by Equation 8.2 is extremely 
conservative because, as we show in Appendix B, maxrZ,Ar) will be signifi- 
cantly less than one for most cases of interest. In fact, if each (piecewise linear) 
claim severity distribution function is continuous, f(t) approaches the probability 
of zero claims as t approaches infinity. For example, when the claim count 
distribution is Poisson with a mean of 10 claims, f(t) will be close to e-” or 
0.0000454 for large t. 

The bound on the truncation error given by Equation 8.1 is also conservative 
because the integrand repeatedly changes sign. 

In our program, a is usually chosen so that max,,, (f(t)) * I/a < .00002. 
Thus we would expect the truncation error for the excess pure premium ratio 
to be bounded by .000013 * alp,. 

The truncation error for the cumulative probabilities does not permit an 
analysis similar to the above because the denominator of the integrand contains 
t instead of t’. The examples in the next section will show that cumulative 
probabilities calculated by this algorithm seem to be accurate. But they are 
somewhat less accurate than the excess pure premium. 

9. NUMERICAL TESTS OF THE ALGORITHM 

There are cases when the algorithm can be compared with known results. 
We consider two such cases. 

If the contagion parameter, c, is equal to - 1, then 4&r) = 4&r). The 
choice of c = - I corresponds to the Binomial distribution with m = p = I. 

For our first example, consider the following. 

F(x) = S(x) = x for 0 I x 5 I 

ER(x) = ; 
I 

I 

(I - F(u))du = (I - x)~ 
I 

Table 9. I compares computed to actual results. 
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X 

.lO .lOOO 

.20 .2000 

.30 .3000 

.40 .4000 

.50 .5000 

.60 .6000 

.70 .7000 

.80 .8000 

.90 .9000 
1.00 1 .oooo 
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TABLE 9.1 

F(x) F(x) 
Actual Computed 

Wx) 
Actual 

.lOOO .8100 .8100 

.2000 .6400 .6400 

.3000 .4900 .4900 

.4000 .3600 .3600 

.5000 .2500 .2500 

.6000 .1600 .1600 

.7000 .0900 .0900 

.8000 .0400 .0400 

.9000 .OlOO .OlOO 

.9995 . 0000 . 0000 

ER tx) 
Comuuted 

For our next example, consider the following. 

F(x) = S(x) = x12 for 0 % x < 1 
F(1) = S(1) = I 

ER(x) = L 
1' p .I 

(1 - F(u))& = (3 - x)(1 - x)/3 

For reasons described in Section 7 above, the program required 256 intervals 
for the numerical integration. The value off(t)lt for the largest value of t was 
equal to .OOl. Using Equation 8.2 we obtained an estimate of .00027 as a 
bound on the truncation error for ER(x). Table 9.2 compares computed to actual 
results. 

These examples would seem to indicate that the calculation of ER(x) is more 
accurate than that of F(x). If F(x) is continuous, the error appears to be small, 
but, if F(x) is not continuous, the errors may not be so small near the points of 
discontinuity. 

We now turn to a more realistic example. Exhibit II shows an actual run of 
our program. Details concerning the input will be given in the discussion of 
aggregate increased limits factors which follows. Here we provide a comparison 
between the results of our program and a Monte Carlo simulation. One should 
not expect exact agreement between expected and observed results due to 
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TABLE 9.2 

x 
F(x) 

Actual 

.lO .0500 .0501 .8700 .8700 

.20 .lOOO .lOOl .7467 .7467 

.30 .1500 .1502 .6300 .6300 

.40 .2000 .2002 .5200 .5200 

.50 .2500 .2502 .4167 .4167 

.60 .3000 .3003 .3200 .3200 

.70 .3500 .3504 .2300 .2300 

.80 .4000 .4005 .1467 .1467 

.90 .4500 .4511 .0700 .0700 

.99 .4950 .4869 .0067 .0067 
1.00 1.0000 .7499 .oooo .OOOl 
1.01 1.0000 1.0081 . 0000 .oooo 
1.05 1.0000 .9979 .oooo .oooo 

F(x) Wx) 
Computed Actual 

J-(X) 
Computed 

simulation error. For this reason we performed a Chi-Square test on the results 
to see if the difference could be explained by random fluctuations. The results 
are in Table 9.3. 

The expected number of claims in each cell was obtained from Exhibit II. 
The observed number of claims in each cell was obtained by a Monte Carlo 
simulation using exactly the same input parameters as those in Exhibit II. Ten 
thousand trials were used. 

If the differences between observed and expected values are due solely to 
random fluctuations, one should expect a Chi-Square value of 25. In this case 
we get a slightly higher value of Chi-Square. We have performed similar tests 
on many occasions and have gotten similar results. The algorithm works. 

10. AGGREGATE LIMITS 

We now consider how this algorithm can be used to calculate the premium 
for a policy that is subject to an aggregate limit. 

Underwriters have long felt that lines of insurance such as Products Liability 
and Medical Malpractice present a severe catastrophe potential. For example, 
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TABLE 9.3 

CHI-SQUARE TEST FOR AGGREGATE Loss DISTRIBUTIONS 

Upper Cell Boundary Observed Expected 

50,000 51 52 
100,000 273 268 
150,000 432 435 
200,000 546 540 
250,000 589 587 
300,000 632 628 
350,000 736 737 
400,000 782 782 
450,000 789 769 
500,000 721 720 
550,000 641 662 
600,000 625 622 
650,000 597 561 
700,000 506 491 
750,000 402 416 
800,000 353 349 
850,000 269 294 
900,000 227 241 
950,000 201 195 

1 ,ooo,ooo 135 154 
1,050,000 93 121 
1,100,000 102 94 
1,150,OOO 73 73 
1,200,000 46 55 
1,250,OOO 39 42 

Over 1,250,OOO 140 112 

Chi-Square = 26.0 
Degrees of Freedom = 25 
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the publicity given a Products Liability lawsuit may well provoke several ad- 
ditional lawsuits by others who have purchased the same product. Thus under- 
writers have justifiably sought to limit the total amount of losses that can be 
paid out under a single policy. 

The price for a policy with an aggregate limit (ignoring expense consider- 
ations) will be the price of a similar policy with no aggregate limit less the 
excess pure premium for the aggregate limit. Below, we will give several 
examples of such calculations using Exhibits II to V. But, before we do this, 
let us discuss the input parameters. 

The claim severity distribution chosen is typical for Products Liability cov- 
erages. We will not discuss selection of the claim severity distribution here. 
Instead we will refer the interested reader to the literature [ 191 [20]. 

The claim severity distribution will be subject to a $250,000 occurrence 
limit. 

The mean of the claim count distribution was calculated by dividing total 
expected losses by the severity mean ($18,198). In Exhibits II, IV and V a 
contagion parameter of zero was chosen. This choice gives the Poisson distri- 
bution. In Exhibit III we chose a contagion parameter of .25. In light of the 
catastrophe potential for Products Liability that was discussed above, a more 
highly skewed claim count distribution would indeed seem justified. 

A mixing parameter of 0 is used in this example. 

Tables 10.1 and 10.2 show the discounts expressed as a proportion of the 
total expected loss. 

While a more highly skewed claim count distribution may be justified for 
Products Liability, it does not give a conservative price for a policy with an 
aggregate limit. Thus we would recommend using a Poisson distribution for the 
claim count unless one has definite evidence that a more skewed distribution is 
appropriate. 

Notice that the discounts depend upon the expected loss. Present tables of 
increased limits factors do not reflect this dependence. We admit that there is a 
practical problem involved in publishing increased limits factors that vary by 
expected loss. However, the “practical” solution of not considering the expected 
loss can produce embarrassing examples such as the following. This method is 
identical to that given in I.S.O. rating manuals. 
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TABLE 10.1 

DISCOUNTS FOR AGGREGATE LIMITS 

Expected Loss = $500,000 

Contagion 
Parameter 

Aggregate Limit 0.00 0.25 

$ 600,000 .I394 .2132 
800,000 .0516 .1125 

1 ,ooo,ooo .0165 .0570 
1,200,000 .0046 .0279 
1,400,000 .0012 .0133 

TABLE 10.2 

DISCOUNTS FOR AGGREGATE LIMITS 

Contagion Parameter = 0.0 

Expected Loss 

Aggregate Limit $250,000 $500,000 $1 ,ooo,oOO 

$ 600,000 .0296 .1394 .4202 
$ 800,000 .0060 .0516 .2665 
$1 ,ooo,ooo .OOlO .Ol65 .1528 
$1,200,000 .0002 .0046 .0791 
$1,400,000 - .OOl2 .0371 

Basic Limits - $25,000 per occurrence and $75,000 aggregate 
Base Rate - $1 .OO per unit of exposure 
Exposure - I ,OOO,OOO units 

If an insured bought a policy for the basic limits, he would pay $1 ,OOO,OOO and 
the most he could recover in losses is $75,000! While it is unlikely that such a 
policy has ever been sold, significant errors could be quite common. 
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We propose the following as a remedy to this situation. 

1. Publish increased limits tables for occurrence limits only. 
2. Do not give discounts for aggregate limits. Instead, publish a table of 

aggregate limits which are appropriate for a given expected loss. The 
aggregate limits should be sufficiently high so that the indicated discount 
is less than a nominal amount, say 0.5%. 

Using Exhibits II, IV and V we can derive the appropriate aggregate limits. 

Expected Loss Aggregate Limit 

$ 250,000 $ 825,000 
500,000 1,200,000 

1 ,ooo,ooo 1,900,000 

11. GROUP LIFE AGGREGATE EXCESS INSURANCE 

We now give the solution to a problem that was proposed to us by a life 
actuary of our company. 

A large employer wanted to self insure his group life insurance. To protect 
against a catastrophe, he wanted to purchase aggregate excess insurance to cover 
losses in excess of 1.25 times the expected loss. The following data were 
provided to us. 

Group Age Range Number of Lives Expected Loss 

1 29 and Under 2,073 47,086 
2 30-34 1,135 36,342 
3 35-39 1,044 35,380 
4 40-44 822 54,938 
5 45-49 1,004 136,126 
6 50-54 1,193 270,050 
7 55-59 975 395,47 1 
8 60-64 546 258,525 
9 65 and Over 25 13,247 

The expected loss was computed using a mortality table and the average 
amount of insurance in each group. 

It was felt that the claim count distribution should be binomial. Thus we 
chose a contagion parameter of - l/(number of lives) for each group. We were 
not given a distribution of insurance amounts for each group. Assuming that all 
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insureds had the average amount of insurance in each group would understate 
the excess pure premium. For this reason we requested rough estimates for 
those distributions. 

The mixing parameter selected was 0.0. 

It should be noted that the assumptions of the collective risk model are 
violated in this example. When a person dies, the amount of his insurance 
policy is removed from the claim severity distribution. However the turnover 
of group members should keep the claim severity distribution approximately the 
same. Thus we feel that the collective risk model will be a good approximation 
of the true situation. 

Exhibit VI gives the computer run for the problem. The pure premium for 
this coverage was calculated to be 1.53% of the expected loss. 

12. RETROSPECTIVE RATING; NESTED AGGREGATES 

A retrospective rating plan is a rating plan in which the final premium is 
determined after the policy period has expired [21]. While these plans have 
many features, we will limit this discussion to plans where the insurer is liable 
for all losses above an agreed upon amount. 

Retrospective rating plans can cover several different policies under a single 
plan. Here we provide a simple example showing how to calculate the pure 
premium, or insurance charge, for such a rating plan. Our example will consist 
of two coverages, Workers’ Compensation and Products Liability. 

The Workers’ Compensation policy has an expected loss of $500,000. The 
claim severity distribution is given in Exhibit I. The contagion parameter is .05. 
The mixing parameter is 0.0. 

The Products Liability policy has an expected loss of $500,000 before 
application of the aggregate limit. The claim severity distribution is given in 
Exhibit 1. The contagion parameter is .25. The policy that is written under the 
retrospective rating plan is subject to a $1 ,OOO,OOO aggregate limit. The mixing 
parameter is 0.0. 

The presence of a policy subject to an aggregate limit in the retrospective 
rating plan makes it necessary to run the program twice to determine the 
insurance charges. Exhibit III will serve as the first run of the program. For the 
second run we treat the Workers’ Compensation parameters in the usual manner. 
For the Products Liability, we substitute the aggregate loss distribution in Exhibit 
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III for the claim severity distribution. We, of course, limit the aggregate losses 
to $1 ,OOO,OOO. The contagion parameter is - 1. This corresponds to a binomial 
claim count distribution with m = p = 1. The results of the second run are 
shown in Exhibit VII. It can be seen, for example, that the insurance charge 
for a plan which covers losses in excess of $1,500,000 is $21,894. 

We now consider parameter uncertainty for the scale of the claim severity 
distribution. 

Misestimation of the claim severity distribution can occur because of limited 
information on the individual coverage. In this case one would expect the scale 
uncertainty for each coverage to be independent. Misestimation of future infla- 
tion can also cause scale uncertainty. In this case one could expect the scale 
uncertainty to affect each coverage in the same way. The following example 
shows how to handle both of these cases. It will be necessary to run the program 
once for each individual coverage. A final run is then required to combine the 
individual coverages. 

The Workers’ Compensation policy has the same parameters that were 
specified in the above example with the exception that the mixing parameter is 
set equal to .05. This reflects uncertainty in the scale of the claim severity 
distribution for Workers’ Compensation. The aggregate loss distribution for this 
coverage is given in Exhibit VIIIA. 

The Products Liability policy has the same parameters that were specified 
in the above example with the exception that the mixing parameter is set equal 
to .05. This reflects uncertainty in the scale of the claim severity distribution 
for Products Liability. The aggregate loss distribution is given in Exhibit VIIIB. 
It should be noted that this aggregate loss model adjusts the policy limit with 
the scaling parameter, while in the real world the policy limit remains fixed. 
However this should not significantly affect the final results. 

The aggregate loss distributions for Workers’ Compensation and Products 
Liability are then combined to get the aggregate loss distribution for the total 
losses of the two coverages. Here the aggregate loss distribution for each 
coverage is treated as the claim severity distribution for the final run of the 
program. The Products Liability loss is limited to $l,OOO,OOO. The contagion 
parameter for each coverage is set equal to - 1. The mixing parameter is set 
equal to .05. This reflects uncertainty in the scale of the aggregate loss distri- 
bution. For a given year the scale parameter is identical for both coverages. It 
should be noted that, as we do above, this aggregate loss model adjusts the 
aggregate limit with the scaling factor. 
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The results of the third run are shown in Exhibit VIIIC. It can be seen, for 
example, that the insurance charge for a plan which covers losses in excess of 
$1,500,000 is $46,424. Here one can see that that parameter uncertainty can 
significantly affect the required insurance charge. 

13. CONCLUSION 

We have described an efficient and accurate algorithm which calculates the 
cumulative probabilities and excess pure premiums for the collective risk model. 

The program and related programs have been used at our company in 
applications described above and many others. These include the analysis of 
profit sharing plans, large account pricing, aggregate deductibles and sliding 
scale dividend plans. Also, we are currently exploring applications involving 
the optimization of reinsurance retentions [IS] and designing a retrospective 
rating plan which properly accounts for the “overlap” problem [22]. In short, 
this is a very useful program. 

Our exposure to these applications has led us to believe that further work 
needs to be done with the collective risk model. In particular, we need to test 
the predictions of the collective risk model against actual aggregate loss data. 
We also need to test the sensitivity of the collective risk model to violations of 
the assumptions underlying it. 
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APPENDIX A 

DERIVATION OF EQUATIONS 6.5-6.8 

The purpose of this appendix is to derive Equations 6.5-6.8. We will first 
derive expressions for the cumulative probability and the excess pure premium 
in terms of c@(f) and U(p). Equations 6.5-6.8 will then be special cases of 
these expressions. 

The following formula is given by Kendall and Stuart [23]. 

F(Px) = f + & [ Pr’ * 44-O ; e-ip.r’ . 4%(0 dt 

From Equation 3.5 we have the following. 

= ++k I [ Ox ; +F(-r) . +u(xt) - +FO) . Wij dt (A. 1) 

Thus we have the following. 

Yw(x) = 
I 
,,; (v - x)dS(v) = 

= 1; [ j-,= dWv)] du = 1; (1 - B(u)@ 

= Jz (1 - B(v))dv - I’ (1 - S(v))dv 
0 0 
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$F( - t) * &/(vt) - c/%(t) * +U(-vf) 
it 

Mt) [ &A- VOdv] dt 

Note: $(r) = f(t)e”“‘; At) =A-t) and g(-t) = -g(t). 

Case1 U(p)=Oforp<landU(P)= lforprl. 

+u(t) = err 
+u(xt) = e’I’ 
+o(-xt) = e-“’ 

64.2) 

(A.3) 
(A.4) 

I ox +u(vt)dv = = 
it 

(A.5) 

I ; +u( -vt)dv = ’ -,‘-lX’ (A.61 , 
Equation 6.5 is obtained by substituting Equations A.3 and A.4 into Equation 

A. 1. and replacing t with t/a. Equation 6.6 is obtained by substituting Equations 
A.5 and A.6 into A.2 and replacing t with tla. 

We first show that U(p) satisfies the conditions stated for Algorithm 3.3. 

i 

I 

=- 

rir) 0 (+) ‘- ‘em@@ 

= 1 
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r 
I 

x r =- 
r - 1 r(r - 1) o 

(rp)‘-2e-‘Pd@ 

r =- 
r- 1 

If r = 1 + lib we have that Var (l/p) = (r/(r - 1)) - 1 = 6. 

57 

[( y-L II I - 

I ,,’ cjju(-vt)dv = ; [I - (I + :)-‘I 

(A.91 

(A. 10) 

Equation 6.7 is obtained by substituting Equations A.7 and A.8 into Equation 
A. 1 and replacing t with t/u. Equation 6.8 is obtained by substituting Equations 
A.9 and A.10 into A.2 and replacing t with r/a. 
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APPENDIX B 
ASYMPTOTIC BEHAVIOR OFJI) 

In the error analysis of Section 8 we indicated that max,z, f(r) could be 
significantly less than one for large a. We now give a demonstration of this 
fact. It will be sufficient to consider a single coverage or class of business. 

We will adopt the following notation for use in this appendix. 

D=l-iPa 
k-l 

A = a,,+, 

As t + 30, we have the following. 

h(t) + D cos (At) 
k(t) --;, D sin (At) 
+~(t) + D(cos (At) + i sin (At)) 

Case I Binomial Distribution 

OF(f) = [1 + p f&(C) - 1)l”’ 

As t + ~0, we have the following. 

At> + [(l - p + D p cos (At))’ + (D p sin (Af))2]““2 
f(t) + [( 1 - p)’ + 2 D p cos (At) + (D p)2]‘n’2 

If D = O,f(t) + (1 - p)“’ which is equal to the probability of having no claims. 
If D > 0,flt) does not approach a limit, but the asymptotic upper bound off(r) 
can be obtained by setting cos (At) = 1. 

max,,, f(t) + [( 1 - p)’ + 2 D p + (D P)~]““~ 

As an example, consider the case when m = 100, p = .l and D = .I : 

max j(t) + .0000905. 
12” 
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Case 2 Poisson Distribution 

+&) = e h(+sw - I) 

As t + m,At) + emA * eW ‘OS (A’). If D = O,flt) + emA, which is equal to the 
probability of having no claims. If D > 0, f(t) does not approach a limit, but 
the asymptotic upper bound off(t) can be obtained by setting cos (At) = 1. 

max f(t) + e-‘(‘+) 
12=(1 

As an example, consider the case when A = 10 and D = .I: 

max fit) + ep9 = .0001234. 
fZCl 

Case 3 Negative Binomial Distribution 

W) = [I - cA(+s(o - 111 --I/c 

As t --+ w, we have the following. 

fit) + [(I + CA + CA D cos (At))2 + (CA D sin (At))2]-“2c 
At) ---, [(l + cA)~ + 2(1 + CA) 1 CA D cos (At) + (CA D)‘]-I”’ 

If D = 0, f(t) --j (1 + CA)-“‘, which is the probability of having no claims. If 
D > 0, f(t) does not approach a limit, but the asymptotic upper bound of f(t) 
can be obtained by setting cos (At) = 1. 

max fit) + [(I + cA)~ - 2( 1 + cA)(cAD) + (cAD)~]-“~“ 
,Z=O 

As an, example, consider the case when A = 10, D = .I and c = .I : 

maxflt) * .001631. 
G=cI 
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NOTE 

The exhibits associated with the paper “The Calculation of Aggre- 
gate LOSS Distributions from Claim Severity and Claim Count Dis- 
tributions” by Philip E. Heckman and Glenn G. Meyers (PCAS 
LXX, 1983) appear in the subsequent volume of the Proceedings 
(PCAS LXXI, 1984). 


