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Much attention has recently been directed towards the subject of risk assess-
ment in private passenger automobile insurance.

In 1975, SRI International, a research organization, was commissioned to do a
major study of insurance classification, or risk assessment. They defined a mea-
sure of its efficiency and developed a procedure to utilize this measure for automo-
bile accident frequencies based on the assumption that individual accident experi-
ence was Poisson distributed. Based on this analysis they concluded that current
pricing and selection practices in automobile insurance did a poor job of creating
homogeneous groups of risks [1].

Shortly after the release of the SRI Report, the Massachusetts State Rating Bu-
reau (SRB) addressed the same subject and concluded that current automobile risk
assessment practices were not only ineffective but that their use generated side ef-
fects that were detrimental to society. They recommended that traditional actuarial
rates, based on expected costs, should be modified on the basis of subjective judg-
ments about what was ‘“‘fair”” or what would contribute to the welfare of society

(2].

Even more recently, changing social values and arguments like those above
helped to create a situation where an NAIC task force condemned present automo-
bile risk assessment practices and concluded that:

‘e

. . sex and marital status are seriously lacking in justification and
are subject to strong public opposition, and should therefore be pro-
hibited as classification factors.” [3]

The fact that such an essential aspect of insurance has come into question indi-
cates a need for more knowledge and a better understanding of how we can mea-
sure class homogeneity. It is the contention of this paper that the SRI procedure is
based on an oversimplified model of reality and will understate the effectiveness of
any risk assessment system because it assumes that no random or stochastic ele-
ments affect an individual’s exposure to loss. An alternative model of the loss gen-
erating process is suggested and a more general measure of class homogeneity is
developed which makes use of individual risk experience and the findings of credi-
bility theory.
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RISK ASSESSMENT MODELS

The purpose of risk assessment is to partition a risk population into groups
whose members have a similar expectation of loss. This requires the assumption
that such groups exist and that it is possible to distinguish them.

The best indication that these assumptions are reasonable is the fact that per-
sistent classification differentials do exist and form the basis for present risk as-
sessment systems. This attests to the fact that insureds differ from each other in
consistent and predictable ways.

In order to study risk assessment, it is necessary to focus on the loss generating
process. In this paper, the analysis will concentrate on that process as it affects the
frequency of automobile accidents.

INDIVIDUAL RISK MODEL

We begin by assuming that the probability of loss for an individual within any
period of time is determined by the nature and quality of that individual’s driving
experience. We will call the expected number of accidents resulting from any set of
circumstances, exposure, and will use ¢, to denote the exposure for an individual
i associated with a particular set of circumstances. We consider ¢, to be a func-
tion of driving environment, amount of driving, and driver characteristics.

More formally, we designate the function:
$;=W(E,A.C)
where:

(1) E=Driving environment
(2) A=Amount of driving
(3) C=Driver characteristics

Since the value of ¢, is determined by individual circumstances which, in
turn, are affected by all the uncertainties of daily life, we consider ¢, itself to be
the result of a stochastic process which is independent with respect to time.

We assume further that the actual number of accidents arising from a particular
value of ¢; is determined by a Poisson process with a parameter equal to ¢; [4].
This means that the conditional distribution of claims for the ith individual is:

(¢i)Xi —d)i
gX\| ;) = X7 e



[

86 RISK ASSESSMENT

where X; is a random variable denoting the actual number of accidents, given a
particular value of .¢;, and g(X;| @) is the conditional probability density function
(pdf) of X, given ¢,. If we denote the distribution function of ¢, as V(¢,), we can
write the uncondmonal pdf of X, as:

_ (¢, ) X i - d)i
8(X,) = f (Y
¢

It can be seen, given these assumptions, that the actual distribution of accidents
for the ith individual is compound-Poisson with moments which can be expressed
in terms of the exposure function as follows [5]:

E(X) =E(¢y) t))
Var(X,) =E(¢;) + Var(d;) (2)

Since the exposure function is independent in time, it is also possible to express

the mean and variance of ¢; for different time intervals as follows:
E(¢i) =1t X E(d) 3)
Var (¢;) = ¢ X Var (&) “4)

where ¢ represents the ratio of the time interval of interest to that used to define ¢;.
The mean and variance of X, for such a time interval are thus:

E (X)) =1t X E(di) (3)
Var,(X;) = t X [E(¢;) + Var ()] (6)
GROUP RISK PROéESS

When we consider a group of individuals, we are interested in the uncondi-
tional distribution of X which can be thought of as the actual number of accidents
happening to an individual selected at random from the group. This requires
knowledge about the individual risk process,.and the distribution of individual
expected losses, the distribution of E(X),

We begin by using the random variable M to denote the distribution of ex-
pected losses between individuals and define its distribution function as U(m). The
function U(m) has been designated the “structure” function and can be thought of
as a description of the structure of expected loss differences throughout the given
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population {6]. It should be evident that the value of M for a particular individual is
equal to E(¢;), the expectation of the individual’s exposure function. That is:

M = E(¢;)

In this context the distribution of X, the accident frequency for the i th risk, is
conditional on the value of M and we denote its pdf as follows:

h(X|m;) = g(X;)
The unconditional pdf of X is thus:
nX) = f h(X|m) dU(m)
m
The mean of this distribution is equal to E(M) and the variance is equal to the

variance of the expected accident frequencies, Var(M), plus the expected value of
the variance for each individual, E(Var(X|m,)) [7]. Thus:

E(X) = E(M) N

Var (X) = Var (M) + E(Var(X|m;)) (8)
= Var (M) + E[E(¢;) + Var($;)]

= Var(M) + E(M) + E[Var(¢;)] 9)

Thus the unconditional variance of X is equal to the sum of the mean and variance
of the structure function plus the average variance of the individual exposure
Jfunctions.

We can observe the effect of time on the moments of the accident distribution
by noting first that it acts as a scaling factor with respect to the moments of the
expected loss distribution [8]. That is:

E (M)
Var, (M)

t X E(M) (10)
12 X Var(M) (1

When we consider the moments of X, the distribution of actual accident frequen-
cies for different time intervals, we get the following:

E (X) = E (M) (12)

Var,(X) = Var,(M) + E[Var, (X|m;)] (13)
=2 X Var (M) + t X E[E (¢;) + Var(¢d;)]

2 X Var (M) + t X [E(M) + E(Var (¢;)] (14)
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Thus the variance of accident frequencies for a group of individuals is a quad-
ratic function of time with respect to the structure function variance and a linear
function of time with respect to the expected variance of individual accident fre-
quencies!

EFRFICIENCY STANDARDS
Crraicitive ¥ o NUAKRLS

fat)

In 1960, R.A. Bailey introduced the idea of evaluating risk assessment sys-
tems by comparing the coefficient of variation for classification relativities to the
coefficient of variation of the distribution of individual expected losses |9]. L.H.
Roberts suggested, in turn, that a ratio of variances resulting in what he called a
“coefficient of determination.” rather than a ratio of coefficients of variation,
might be preferable [10]. Both Bailey and Roberts were interested in what is now
termed ‘‘class plan efficiency” from the viewpoint of competition.

Sixteen years later, SRI International suggested using the variance measure
proposed by Roberts as a way of measuring what percentage of what is ultimately
possible has been achieved [11]. It is a measure of how well the system does rela-
tive to the ideal situation where the value of M for each individual is known.

It is important to realize that risk assessment represents a partition of the struc-
ture function and that the variance of M can be separated into two components
related to such a partition:

(a) Between cell variance = BVAR,,

(b) Within cell variance = WVAR,,

Thus:
Var (M) = BVAR,, + WVAR

" "

In these terms, the SRI measure can be expressed as:

Efficiency = BVAR,, = !
" . BVAR, + WVAR,, WVAR,, (15)
BVAR,,

SRI International uses the variance produced by the risk assessment system parti-
tion to estimate BVAR,,. To estimate Var(M ), they assume that the distribution of
claims for an individual risk, g(X;) is Poisson and that U(m) is gamma distrib-
uted. This in turn leads to the conclusion that:

Var(M) = Var(X) — E(X)
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Thus the SRI procedure consists of measuring classification variance and dividing
it by the difference between the estimated mean and variance of the actual claims
distribution [12].

Note that the terms BVAR,, and WVAR,, at this point refer to partitions within
the structure function. The within class variance term, WVAR,,, refers to the av-
erage variance of M within the cells of the partition produced by-the risk assess-
ment system, while the between class variance term, BVAR,,, refers to the vari-
ance of expected loss frequencies between the cells. They refer to the variance of
expected loss, not actual loss.

The SRI measure is not the only one which can be used for this purpose.
Millicent Treloar, a statistical research analyst with the NAII, has noted:

“If efficiency were expressed as:

BVAR,,
WVAR,,

we would have a measure which increases as the spread of class relativities and
class homogeneity increase. We would also have a quantity of known distribu-
tion (an F distribution) by which we could make inferences about the extent of
spread of class relativities (and homogeneity). Further, this quantity is that
which is employed in classic statistics applications to classification problems
dating back to R. Fisher (1936).

“It is most desirable to utilize a measure of efficiency which has a known dis-
tribution when one desires to make statements of confidence about a particu-
lar value.” [13]

MEASURING RISK ASSESSMENT EFFICIENCY-AN EXAMPLE

Before proceeding further with this exposition, a simple example may help to
clarify what is meant by risk assessment efficiency. Suppose we have a risk popu-
lation with the following structure function:

_§ 10m m=.01,.02,.03,.....10
U(m) "l 0  otherwise

E(M) in this case is .055 and Var (M) is .000825.
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We can illustrate this structure as follows:

Group
12 3 4 5 6 7 8 9 10
Accident Frequency: 01 02 03 .04 05 06 .07 .08 .09 .10

Suppose that we decide to partition this population into two classes and that our
first attempt to do so assigns groups 1, 3, 5, 7, and 9 to the first class and the re-
mainder to the other class. The two classes would look as follows:

Group

Class 1 1 3 5 7 9
Class 2 2 4 6 8 10

This is not a very impressive partition, and the statistics show it

Variance
Weight Mean Within Group Between Group Eff.
Class 1 5 .050 .000800 XX XX
Class 2 .5 .060 .000800 XX XX
Total 1.0 .055 .000800 .000025 3%

We learn more about our population, and succeed in producing a better parti-
tion:
Group

Class | 1 2 5 7 8
Class 2 3 4 6 9 10

The statistics for this group verify the fact that it is better:

Variance
Weight Mean Within Group Between Group Eff.
Class 1 5 .046 .000744 XX XX
Class 2 5 .064 .000744 XX XX
Total 1.0 .055 .000744 .000081 10%

Continuing our efforts, we come up with a further improvement:

Group

Class 1 1 2 3 5 7
Class 2 4 6 8 g 10
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The statistics on this partition are as follows:

Variance
Weight Mean Within Group Between Group Eff.
Class 1 5 .036 .000464 XX XX
Class 2 .5 .074 .000464 XX XX
Total 1.0 .055 .000464 .000361 44%

Finally, one more plan is produced which divides the risk population as fol-
lows:
Group

Class | 1 2 3 4 S
Class 2 6 7 8 9 10

The statistics for this two partition set are quite impressive:

. . Variance

Weight Mean Within Group Between Group Eff.
Class 1 .5 .030 .000200 XX XX
Class 2 5 .080 .000200 XX XX
Total 1.0 .055 .000200 .000625 76%

This set of partitions provides a qualitative idea of what risk assessment
efficiency means. It shows that greater efficiency, given the same number of parti-
tions, generally means a greater spread of expected class relativities. This can be
seen if one observes the class relativities which result from the partitions just pre-
sented:

Partition
1 2 3 4
Lower Class 91 .84 .65 .55
Higher Class 1.09 1.16 1.35 1.45
USING RELATIVITIES

In many situations, the variance of expected loss relativities produced by a par-
ticular risk assessment partition is more convenient to calculate than the variance
of the actual expected loss estimates themselves. It would be convenient to express
Var (M) in terms of relativities as well, so that direct comparisons can be made."
Expected loss relativities are calculated by dividing the value of the random varia-
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ble M by E(M) and will be denoted by the symbol R. We can express the variance
of R in terms of the variance of M as follows:

Var(R) = va,( M = VarMm)
E(M) (E(M))?

We can determine the efficiency of any risk assessment partition by calculating
the variance of the cell relativities produced by that system and then dividing by
Var (R). This, in turn is the same as multiplying by the squared mean of M divided
by the variance of M. This quantity will henceforth be designated by the symbol
BK such that:

I (EM)P B x (EM)P L EMP e
Var (R) Var (M) t2 X Var (M) Var, (M)

BK =

Thus BK is independent of time. It can also be seen that:

Var (M) = (E(MM))F an
BK

It should be noted that BK is the inverse of the normalized variance of the struc-
ture function. Since we define homogeneity as the degree of similarity in expected
losses for the members of any group, BK is a direct measure of the homogeneity of
such a group. A high value of BK indicates a homogeneous group while a low
value of BK indicates a relatively heterogeneous group.

It is easy to calculate the efficiency of the different partitions shown in the ex-
ample above when we know BK. Since we know that E(M) = .055 and
Var (M) = .000825, we have:

Bk = _(055)2 - 367
-000825

Since BK is 3.67, we can determine the efficiency of these partitions by calculating
the variance of the class relativities that they produce and multiplying the result by
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3.67. Shown below are the efficiency estimates for each of these partitions calcu-
lated in this manner.

Partition
1 2 3 4
(1) Class Relativities
Lower Class 91 .84 .65 .55
Higher Class 1.09 1.16 1.35 1.45
(2) Variance of (1) .0081 10268 .1193 2066
(3) Efficiency
(2)x 3.67x 100 3% 10% 44% 76%

The value of BK can also be calculated within each class wherein it measures
the variance between individuals within that class. In this case, it is a direct mea-
sure of class homogeneity!

We can observe the improvements in class homogeneity in the example by cal-
culating the average value of BK for each class within each partition. It should be
noted that since the average value of BX is the inverse of the average of the normal-
ized variance for each class, one first obtains the normalized variance for each
class by taking the inverse of BK. These values are then averaged and the inverse
of the result is then taken. This point becomes more intuitive if one notes that if any
single class were perfectly homogeneous, the variance in expected losses for mem-
bers of that class would be zero and BK would be infinite. Clearly, a direct average
of BK itself could lead to absurd results.

Shown below are the average BK values for each partition; these values are
calculated in the appropriate manner:

Partition
Population 1 2 3 4
BK Value 3.67 3.69 3.75 4.52 7.89
Efficiency 0% 3% 10% 44% 76%

We can see that more efficient partitions produce more homogeneous class cells.

THE SRI MEASURE OF RISK ASSESSMENT EFFICIENCY

In the example given above, the structure function, U(m), was known. In real-
ity, U(m) cannot be observed and must be estimated. Only the mean and variance
of M, however, are necessary for measuring risk assessment efficiency and class
homogeneity.
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It is possible to estimate the moments of X, the actual claims distribution, by -
observing actual data. These estimates are of use in estimating the moments of M.
It was shown earlier in formula (12) that:

E(X) = E(M)
Var,(X) = E,(M) + Var,(M) + t X E[Var(¢;))
Thus:
Var (M) = Var (X) — E,(X) — t X E[Var (¢;)] (18)

Both the SRI Report and the Massachusetts Rating Bureau studies assumed
that the distribution of X; was Poisson and thus Var (X;) = E(X;) = E(d;). Since
Var (X;) is also equal to £(¢;} + Var (¢;), this necessarily implies that Var (¢;) is
equal to zero in all cases. In other words, these models assume that there are
no elements of chance affecting exposure to loss. This assumption makes it possi-
ble to simplify the formula for Var (M) given above, since E[Var ¢;)] is also equal
to zero.

Thus:
Var, (M) = Var (X) — E (X)

We can express this result in terms of BK:

Var, (M) = (—E—'B—(KM = Var, (X) — E (X)
= Var, (X) — E, (M)
Thus:
Var,(x) = E,m) + ELBE

If we look at the SRI terminology, we see that they write Var, (X) as
follows:
Var, (X) = mt + (m1)”

K

where mt = E, (M). It can be seen that in this case, BK and K are equal [14].
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K can be expressed in all cases (not just the Poisson case) as a function of
‘‘excess’’ variance, the difference between the mean and variance of X, as
follows:

(E (X))
Var, (X) — E, (X) (19)

since E, (M) = E, (X).

Given these assumptions, the SRI procedure for assessing the efficiency of
a risk assessment system is to calculate the observed mean and variance of the
distribution of actual losses for the risk population, Var, (X), and then to es-
timate the variance of expected losses, the variance of the structure function,
by subtracting the population mean from the population variance:

Var,(M) = OV - OM

where OM and OV are the observed mean and variance of the actual claim
distribution.

The SRI method thus *‘solves’ the problem of measuring Var, (M) by as-
suming that EfVar, (le,-)] = E (M) = E, (X) and thus that all of the ‘“‘ex-
cess variance’’ is due to the variance of expected losses. That is:

Var, (M) = Var, (X) — E[Var (X|m;)]
Var, (X) — E, (X)

If, in fact, E[Var, (X|m,)] is not equal to E, (X) then the SRI method will not
work!

MASSACHUSSETTS DEVELOPMENTS

In 1977, the State Rating Bureau disregarded the preliminary nature of the
SRI conclusions and made them the basis for a severe indictment of current
risk assessment practices. They declared that pricing groups of risks according
to their expected loss costs was improper and should be prohibited [15]. In
doing so they relied heavily on the SRI conclusions about the efficiency of the
risk assessment process:

*“current risk assessment schemes in automobile insurance resolve only a small
fraction of the uncertainty about individual expected losses.” [16]
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They pointed out, further, that the SRI study claimed that the *‘fraction ex-
plained” was about 30% and observed that:

“with so much of the difference in expected loss among individuals unresolved,
heterogeneous classes are unavoidable.” [17]

Finally, they threw cold water on the idea that the way to improve the sit-
uation is to improve the class plan. They did this on both practical grounds and
because they felt that using certain kinds of information in risk assessment
might be socially undesirable [18].

A significant part of the SRB’s effort in 1977 was a study of Massachusetts
data in order to gain some idea of the expected loss variance in each rating
class. Daia pertaining to collision coverages was published in a paper on merit
rating and is included in this paper as Exhibit I [19].

This data is more suitable than the data used by the SRI to examine the
process of risk assessment in insurance because:

(1) It is insurance data.
(2) It represents a complete cross section of insurance business.
(3) It shows differences in homogeneity by class.

MERIT RATING

The intent of the exhibit published by the SRB was to show that class and
territorial relativities in Massachussetts should be modified because of the im-
pact of merit rating. In making this point, merit rating data had to be generated
through a simulation process since no actual data about individual risk experi-
ence existed in Massachussetts at that time. 1 generated the same data through
a computer simulation of the following formula:

P(X=x) = fm g(x|m) dU(m)

where U(m) is a gamma distribution function and g(x|m,) is the Poisson prob-
ability of having X claims given the parameter m,. See the Appendix for a fur-
ther description of the simulation process.
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It is worth noting that the pdf:

[ Pox=ximy) du (m,)
PM=mlx) = =
[ Pex=sdm) dv(m)

m

where x is a discrete number of claims, represents the accident likelihood dis-
tribution for risks which have had x claims and is also a gamma distribution.
This fact has been pointed out by several commentators including the SRI [20].

It is particularly important to note that the ratio:

EMlx) . [ m P(M=m|x) d(m)
E(M|0) T fm P(M=m‘0) d(m)

or the ratio of expected loss frequencies for risks who have had x losses and
those who have had none, given the assumption that the structure function is
gamma, is:

alx)ia(0) = | + xIK (20

where a(x) is the expected mean for those risks with x claims. In particular, the
ratio of expected means for risks with one claim during this interval of time,
and those with none, is:

aflyaf0) = 1 + 1K (1)

which is dependent only upon the coefficient of variation of expected losses for
the subpopulation under consideration.

Exhibit Il shows a grid of data by class by merit rating category generated
by the simulation process mentioned above. Part 3 of Exhibit Il shows the ratio
of expected means for risks with X claims divided by the expected mean for
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risks with O claims. The following table reproduces these ratios for risks with

one claim:

Class

00
10
12
15
20
22
24
26
30
31
40
42
50

afl)a(0)

1.98
1.57
1.46
1.48
1.54
1.54
1.58
1.37
1.35
2.76
1.37
1.29
1.44

Using these ratios, it is easy to compute BK values for each class using the

formula:
Bk = — 0

afl) — «af0)

2)

The following table shows the BK values estimated in this manner compared
to those underlying the simulation:

Class

00
10
12
15
20
22
24
26
30
31
40
42
50

BK
1.03
1.75
2.15
2.06
"~ 1.96
1.95
1.77
2.72
2.83
0.58
2.76
3.51
2.28

Estimate

1.03
1.75
2.16
2.06
1.91
1.90
1.75
2.72
2.83
0.58
2.74
3.51
2.27
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These results show that it is possible to use accident history data rather
than the SRI assumptions to estimate class homogeneity.

AN ALTERNATIVE RISK ASSESSMENT MODEL

The SRI method for estimating class plan efficiencies carries with it the
implication that the purpose of risk assessment is to determine each risk’s exact
exposure to loss.

If one considers the nature of the events that determine exposure to loss, it
seems more reasonable to assume that exposure is only determinable in a sto-
chastic sense. It was stated earlier that exposure to automobile accidents is de-
termined by the following elements:

(1) Driving environment
(2) Amount of driving
(3) Driver characteristics

Each of these elements is affected by the uncertainties of daily life and
should be regarded as random in nature. There are differences in exposure ex-
pectations between risks—the success of the current risk assessment system is
ample evidence of that—but it seems clear that Var (¢,), the variance of the
exposure function of the individual risk, is likely to be significantly greater
than zero and thus the variance of the individual accident distribution,
Var (Xi|¢,.), has to be greater than its mean. This follows from formula (2), the
formula for the variance of the individual claims distribution given earlier:

VAR(X) = E(¢;) + Var(d,)

In order to estimate the impact that exposure variance might have on the
SRI method for estimating risk assessment efficiency, a comparative set of es-
timates will be calculated, assuming:

(1) Var(¢;) = 0
(2) Var(¢;) = .0625 X (E(¢;))

For each case, we can calculate the moments of X given these assumptions
about Var (¢,) and the facts about the structure function used in the example
given earlier in this paper. In the example, E(M) was .055 and Var (M) was
.000825.



100 RISK ASSESSMENT

In the first case, using formula (8):

Var(X) = Var (M) + E{Var(X|m,)]
= Var(M) + E(M) + E[Var(¢)]
= .000825 + 055 + 0
= .055825
Using the SRI method:

Var(M) = Var(X) — E(X)
055825 — .055 = .000825

and:
E(M)?
BK Var(M)

0552 + .000825 = 3.67

We can estimate the efficiency of the various partitions in the example, given
the SRI assumptions, by multiplying the variance of the class relativities they
produce by 3.67.

In the second case, we have:

Var(X) = Var(M) + E[Var(X|m,)]
Var(M) + E(M) + E[Var(¢,)]
Since Var(¢,) = .0625 X (E(¢,))? and E(¢,) = M we have:
E[Var(¢)] = .0625 x E(M?)
= 0625 X [VarM) + (E(M))2]
= .0625 X (.000825 + .0557%)

Thus:

Var(X) 000825 + .055 + .00024!

.056066

Again applying the SRI method, we calculate Var (M) and BK:

Var(M) = .056066 — .055 = .001066
BK = .055* + .001066 = 2.84

Since Var (M) is really .000825 and BK is really 3.67, it can be seen that the
use of the SRI method does not provide an accurate picture of the effectiveness
of risk assessment. If we were to use the BK estimate of 2.84 to evaluate the
efficiency of the partitions used in the example, we would be 23% too low!
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The fact is that the SRI method is not really an estimate of risk assessment
efficiency at all. It is, in fact, an estimate of the lower bound of that efficiency.
If Var (¢,) for any risk is greater than zero, then the SRI estimate will be too
low.

It is not the SRI measure that fails, but the assumption that it is possible to
estimate the variance of expected losses, Var, (M), by subtracting the mean of
the actual loss distribution, E, (X), from its variance, Var, (X). What is needed
is some other method for estimating Var, (M).

Since the structure function itself cannot be directly observed, any infer-
ences that can be made about its characteristics must come from observation of
actual claims experience. We know that for any group:

Var, (X) = Var, (M) + E[Var, (X|m)]

or, since we have a partition of the risk population achieved by the expected
losses for each member:

TVAR, = BVAR, + WVAR,

where BVAR_ is the variance between risks and WVAR, is the expected value
of the within risk variance.

It is particularly important to avoid confusing the concepts of between var-
iance and within variance as used here with their use in the SRI efficiency
measure. The total variance term used above refers to the variance of actual
losses, Var, (X), while the total variance term used in the SRI measure refers
to the variance of expected losses, Var, (M). The within variance term used
above refers to the variance of individual losses while the within variance term
used in the SRI measure is the variance in expected losses remaining within
each partition created by a risk assessment system. It is interesting to note that
BVAR, taken with respect to the distribution of actual losses is identical to
TVAR,, taken with respect to the distribution of expected losses. That is:

BVAR, = TVAR, = Var, (M)

Since BVAR, = Var, (M), it can also be expressed in terms of BK by us-
ing formula (17) as follows:

BVAR, = (E;_,_/l‘g_))z (23)
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and can continue to express the variance of X, or TVAR,, in terms of ‘‘excess

variance,” as follows:

TVAR, = Var,(x) = E () + SO0 (24)

See formula (19) for the definition of K as a function of ‘‘excess variance.’’

We know that Var, (X,) for any individual is either equal to or greater than
E, (X;). Thus we also know that WVAR , or EfVar, (X))], is greater than or
equal to E, (M) since:

E{Var,(X,)] = E[E (X)] = E, (M)

We can, therefore, express WVAR_ in terms of ‘‘excess variance’” as well, us-
ing the quantity WK as the index of the degree to which WVAR, exceeds
E(M):

- (E (M))?
WK = WVAR, — E, (M)
and thus:
WVAR, = E, (M) + E[Var(¢)] = E (M) + (Fv%)) (25)

We can now write:

TVAR, = WVAR, + BVAR,

(E, (M))? _ (E, (M)) (E, (M)
and thus:

R B
X~ WK BK
K = WK X BK
T WK + BK

BK X K

WK = BK — K
BK = WK X K

WK — K
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These formulae provide insight into the limits of both BK and WK. We know
that K, WK and BK must all be positive (since we have concluded that
Var,(X,) = E,(X,) and Var, (X) = E, (X)) and we see that as either WK or BK ap-
proaches K, the other increases without bound. Thus we conclude that X is a lower
bound for both variables, and there is no upper bound. It is interesting to note that
when WK increases without bound, WVAR  becomes equal to E, (M), and BVAR  to:

(E (M)
K

When these conditions obtain, g, (X,) becomes a Poisson distribution.

We see, therefore, that the Poisson case is a limiting case of the class of
all compound-Poisson individual risk distributions.

Since WVAR, is at a minimum when the simple Poisson case obtains,
BVAR_ is at a maximum, BK is at a minimum, and estimates of risk assessment
efficiency are minimized. When WK possesses a finite value, estimates based
on the simple Poisson assumption will invariably be understated.

A GAMMA-NEGATIVE BINOMIAL SIMULATION

It was found in studying the Massachussetts data under the Poisson as-
sumptions that claims history data gave a good estimate of BK, the index of
" population or subpopulation homogeneity. A simulation was run under the as-
sumption that Var (¢,) was not equal to zero in order to find out whether it was
still possible to use the ratio method to get a good estimate of BK and thus of
the variance of expected losses. In the simulation, g, (X,) was assumed to be
negative binomial with a variance equal to:

E(¢d,
Var, [X|E()] = {1 X E(¢)} + {(z_xm«ﬂ}
Thus:
Var,(d)i) = -(-t—-)%d)—')f

The results of this simulation are shown in Exhibit HI. The value 10 was cho-
sen for the denominator of the second term in the above equation because it
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seemed to provide results that were reasonably similar to those achieved in the
Poisson simulation but which differed enough to provide a reasonable picture
of how exposure variance might affect the observable characteristics of the risk
population.

The results of this simulation compared with the gamma-Poisson case are
as follows:

(1) The number of risks with 0, 1, 2, . . . claims in a three year period
is virtually the same in both instances! Part 2 for both Exhibits Il and
Il shows this distribution within each class for both cases. Shown be-
low are the statewide claims distributions for each case along with neg-
ative binomial distributions possessing the same mean and variance.

Compound Distributions

Gamma/Poisson Gamma/Neg. Bin.
Number of
Claims Actual Neg. Binomial Actual Neg. Binomial

0 .652 .652 .653 .652
1 247 .246 .249 .246
2 .074 074 .073 .074
3 .020 .020 : .020 .020
4 .005 .005 .005 .005
5 .001 .001 .001 .001

(2) The ratio of expected losses for groups having x accidents. in a three
year period, o(x), to those having none, a(0), is substantially lower in
the negative binomial case than it is in the Poisson case. Part | of Ex-
hibits 11 and Il shows the values of a(x) within each class for the two
simulations, while Part 3 shows their relativity to the O accident class.
Part 4 shows the relativities to the class mean frequency. It is interesting
to note that in both cases the frequency of claims in classes 20 and 22
is so high that even risks with one claim are better than the average for
the class and should be charged a rate below the class average!
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Shown below are the statewide expected frequencies and their relativi-
ties to the expected frequency of the group with zero accidents:

Compound Distributions

Number of Gamma/Poisson Gamma/Neg. Bin.
Claims Frequency Relativity Frequency Relativity
X a(X) a(X)a(0) a(X) a(X)/a(0)
0 126 1.00 135 1.00
1 .199 1.58 191 1.42
2 274 2.16 247 1.83
3 351 2.78 .304 2.26
4 433 3.43 .363 2.69
5 .522 4.13 425 3.15

These results can be explained by the fact that the expected loss distri-
bution underlying the negative binomial case has less variance than that
underlying the Poisson case. This is consistent with a model which as-
sumes that more of the total population variance is explained by the var-
iance of the individual risk processes, and less by the variance between
risks. This is also evident in the K and BK values resulting from each
case. Column 1 from Part 1 of Exhibits II and IIl shows the BK values
underlying the class expected loss distributions in each case, while col-
umn 2 shows the K value underlying the actual distribution of claim fre-
quencies. These two columns should be identical in Exhibit I, the Pois-
son case, but the limitations of the simulation process resulted in slight
differences.

In Exhibit 111, the value BK of the expected loss distribution over the
entire state is 2.22 while the value K of the claim frequency distribution
is 1.68. Thus it can be seen that if the negative binomial assumption
used in the example is a better picture of reality than the Poisson as-
sumption, a given class plan will actually be 32% more efficient than
the SRI methodology would indicate. This difference in class plan effi-
ciency estimates can be observed when we test the efficiency of rates
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based on the claim frequencies shown in the SRB exhibit (Exhibit I).
Shown below are the class relativities and their variance:

Class Relativity Distribution Variance
(R) (Prob (R;))

00 1.067 3.5% XX
10 0.938 58.0 XX
12 0.889 10.2 XX
15 0.726 9.3 XX
20 2.213 0.1 XX
22 2.192 0.2 XX
24 1.514 1.0 XX
26 1.313 7.4 XX
30 1.067 2.8 XX
31 0.807 1.3 XX
40 1.621 1.9 XX
42 1.800 29 XX
50 1.319 1.3 XX

Total 1.000 100.0% .053

From the formula given earlier for estimating the efficiency of a risk
assessment system:

Efficiency = BK X Z [(R, — 1)?Prob(R,)]
we see that this class plan would be 8.9% efficient if BK were equal to

1.68, (the Poisson case), and 11.8% efficient if BK were equal to 2.22
(the negative-binomial case).

(3) The efficiency of a merit rating plan is reduced in the negative binomial

case, compared with the Poisson case. The total efficiency of rates
based on the indicated frequencies shown in Exhibit III Part 1 is 26.4%,
while it would be 28.9% if rates were based on Exhibit II Part 1, gen-
erated from the gamma-Poisson model. This is all the more surprising
since the class plan by itself (without claims history) is more effective
in the negative binomial case. This effect is due, of course, to the re-
duced variance underlying the accident likelihood distribution shown in
Exhibit HI. The efficiency contribution of the claims history portion of
such a rating plan is 14.6% in the negative binomial case and 20.0% in
the Poisson case!
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(4) The ratio of expected frequencies for risks with one claim in three years to
those with none is still a good indicator of class homogeneity, but not
quite as good as in the Poisson case. Shown below are the ratios for each
class, the indicators of class BK values based on them, and the actual BK
values underlying the simulation:

Class aofl)/af0) BK (Est) BK (Actual)
00 1.770 1.30 1.25
10 1.410 2.44 2.33
12 1.317 3.15 3.02
15 1.338 2.96 2.85
20 1.378 2.65 2.48
22 1.380 2.63 2.47
24 1.412 2.43 2.30
26 1.230 4.35 4.09
30 1.219 4.57 4.34
31 2.462 0.68 0.66
40 1.227 4.40 4.12
4?2 1.158 6.34 5.88
50 1.294 3.41 3.22

Total 1.419 2.39 2.22

These ratios give a reasonably good estimate of the BK values underly-
ing the accident likelihood distribution, but are definitely biased.

CREDIBILITY THEORY AND RISK ASSESSMENT

It seems evident that dividing risks into groups according to the number of
claims they have experienced over a particular period of time and then observing
the results over a subsequent period can provide insight into class homogeneity and
the efficiency of risk assessment.

There is a need, however, for a better understanding of the way that indi-
vidual experience and expected loss distributions relate to each other.

It has long been recognized that in many instances greater rate accuracy can
be gained by utilizing both group information and individual risk experience.
Credibility theory was developed, in part, as a tool for combining these two
sources of information.

In Mathematical Models in Risk Theory H. Bilihlmann discussed Bayesian
methods for estimating the expected losses for an individual risk given its ac-
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tual losses. He pointed out that most such methods require knowledge of the
parametric distributions of the individual risk processes and of the structure
function. Since such knowledge is lacking in most practical applications,
Bithmann suggested the use of formulae based on linear approximations of the
theoretically correct quantities. In effect, he suggested that the theoretically
correct quantities could be approximated by a straight line fitted to the regres-
sion of expected losses over actual losses, using the method of least squares.

We can represent such a line as follows:
E(Mlx) = a + bx

where the linear expression on the right side of the equation represents the line
of best fit of the regression of expected losses over actual losses [21].

It is well known that the slope of such an equation is equal to the covari-
ance of the dependent and independent variables divided by the variance of the
independent variable [22].

Thus:
b = Cov (M, X)
T Var(X)
In turn:
CoviM, X) = E(M,X) — E(M)E((X) (26)

= E(M, X) — (EM))

since E(X) = E(M). (See formula (7).) Furthermore:

EM. X) = | S mx, P, x) am 27)

j=0

Mi X, P(M) P(X|M) dM

j=0

M P(M) E(X|M) dM

1
Sl Clmmyy S ©

M? P(M) dM

= EM-)
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since E(X|m) = m. (Note that m = E(¢,), and see formula (1).) Thus: -~

Cov (M, X) = EM?) — (E(M))? C(28)
= Var (M)
and the slope of the credibility equation is:
_ Var (M) 29
Var (X)

Since the constant in a least squares regression line is equal to the mean of
the dependent variable minus the slope of the line times the mean of the inde-
pendent variable, we can express the constant in this case as (see note [22)):

a = EX) — b X E(X)

_ _ Var (M)

= EX) E(x) Var (X)

_ ‘ _ Var M)

= EX) x {1 Var (X) ; (30)

Thus the linear Bayesian formula for estimating expected losses for an individ-
ual risk, EL, given its actual experience, X, is the familiar credibility equation:

EL =EX)X(1-Z)+ XXZ a3
where X is the observed experience for the risk and:
_ Var (M)
= Var (X) (32)

If we interchange the order of integration and summation in formula (27), we
can express £ (M, X) as follows:

E (M, X) —EJ’X M P(X, M) dM
j=0%

i P(X)fMP(M)X) dM

j=0

= 2 X, P(X;) EM|X) (33)

8

B
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The importance of this last expression lies in the fact that all of its com-
ponents can be estimated from observable data. The quantity P(X) can be esti-
mated from the number of risks having X; losses during any given observation
period, while £ (M|Xj) can be estimated by observing those risks with X; losses
during a subsequent observation period. It should also be noted that since
Cov(M, X) = Var (M):

Var (M) = E(M.X) — E(M)E(X)
{3.X, P(X) EMX) } — (E(X))? (34)

i=0

Thus Var (M) can be estimated by making two observations of a risk popula-
tion, estimating P(X) for all j from the first observation, E(M \X ;) from the sec-
ond, summing over all j, and then subtracting the square of the population
mean. It should be noted that since the second observation is being used to
estimate conditions prevailing during the first period, adjustments should be
made to reflect any changes in conditions between the first and second periods,
such as differences in the underlying population mean {23].

At this point we will define new terms which are helpful in estimating
Var (M) using the covariance method:

afX;) = E(MlXj)
and:
r(afX);)) = P(X))

We further define the term ¢ as the adjustment factor reflecting those differ-
ences between the observation periods which affect the group as a whole.
Using these identities, we can estimate Var (M) as follows:
Var (M) EM,X) — EM)E(X)

{3 X, r(a(X)) (alX,,) +1) Y= (E(X)) - 35)
i=0

J

where (X)) is calculated from a subsequent observation period and is adjusted
to conditions prevailing during the first. Note that:

EX) =Y X raX,)

j=0

Var (X) = {3, X2 rea(X)) } — (E(X)
j=0
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C. Hewitt provided a useful example of a loss generating process and its
relationship to Bayesian credibility theory which will be used to illustrate
the relationships just discussed (24]. Mr. Hewitt’s example used a die and
spinner to create a population with four loss processes, all equally represented
in the population. The following matrix shows the joint probability of each
process and its outcome [25]:

Outcome
State 0 2 14
A,B, .83333 .13889 .02778
A B, .83333 .08333 .08333
A,B, .50000 41667 .08333
A,B, .50000 .25000 .25000

Suppose that we have been able to observe this population for three repeti-
tions of this process (three ‘‘years’’) and wish to estimate the variance of ex-
pected losses by comparing the last repetition to the first two. We obtain the
following matrix of joint probabilities:

Joint Probabilities of Loss—(P(X,X,))

3rd Year 2 Year Losses (X,)
Losses (X,) 0 2 4 14 16 28
0 35185 .16049 .03498 .08025 .02881 .01029
2 .08025 .06996 02281 02881 .01560 .00480
14 .04012 02881 .00780 .02058 .00960 .00420
r(a(X;) 47222 .25926 .06559 .12963 .05401 .01929
aX;) 1.5294  2.0953 2.3608 2.6667 3.0667  3.5467

where the subscripts refer to observations made from the first and second pe-
riods respectively.

We can use this information to compute the mean, variance, and covariance
of these outcomes and can estimate Var (M) by recognizing that the mean for
the group during the second observation period will be only half of that during
the first, since only one period of time is utilized for the second observation
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while two are utilized-for the first. Thus ¢, in this case, will be .50 and using
formula (35) we have:

1. E(X) 4.000
2. Var(X) 40.444
3.1t .500
4. EMM.X) 22.222
5. Var(M) 6.222
6. Z 154
7. BK 2.571

We can compare the estimates of E(M[X_,) generated by formula (31), the
credibility equation,

EM|X) = {4.000 x (I — .154)} + X, x .154

to the results obtained using Bayes theorem (since we have the necessary in-

formation in this simulation).

EM|X,)

X; Bayesian Credibility Difference
0 3.0588 3.3846 0.3258

2 4.1906 3.6922 —0.4984

4 4.7216 4.0000 —0.7216
14 5.3334 5.5384 0.2050
16 6.1334 5.8460 —0.2874
28 7.0934 7.6922 0.5988
Total 4.0000 4.0000 0.0000

Hewitt made several observations about the nature of the credibility esti-
mate compared to the true, or Bayesian, estimate; which are particulary cogent
at this point. He observed that: ‘

1. Credibility does not (necessarily) produce the optimum estimate while
the Bayesian estimate is optimum.

2. Credibility does produce the ‘“‘least-squares™ fit to the optimum (Bayes-
ian) estimates for all possible outcomes weighted by the respective
probabilities of those outcomes.

3. Both estimates—credibility and Bayesian—are ‘‘in-balance’” for all
possible outcomes (26].
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It can be seen from this example how these points apply. The credibility
estimates are quite biased in most cases and thus are not optimum. They are in
balance, however, since the expectation of the credibility estimates is equal to
E(X)!

It is clear, therefore, that Var (M) can be estimated using observable data
as long as at least two observations of the risk population can be made. These
estimates are unbiased and do not require any assumptions about the nature
of the loss processes for individual risks, or about the distribution of expected
losses!

RATIO ESTIMATES

It was pointed out earlier in the paper that a reasonably accurate estimate
of BK, and thus Var (M), was obtained by the simple ratio of merit rating fre-
quencies for risks with one accident to that for risks who were claim free. That is
(see formula (22)):

_ o(0)
BK = a(l) - a0)

The credibility estimate for a(n) is:

afn) = {EX) X (1-Z)} + {Z x n}

Thus: .
a(0) E(X) x (1-2) . 1-Z E(X)
and:
afl) — af0) - Var (M)
a(0) E(X) x {E(X) + E[Var ()]}
_ Var (M)
T (E(X))} + E(X)XE[Var($)]
_ E(X)
~ BK x {E(X) + E[Var(¢,)]}
Thus:
afl) _ L E(X)
«0 - U X e T Eee!
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Since the Poisson assumption is only valid when EfVar (¢,)] is equal to zero,
this simplifies to:

o) _ ;4 L

a(0) BK
It can be seen that this ratio test does produce unbiased estimates of BK when
the Poisson assumptions hold. It is interesting to note that the ratio test ts exact
in the gamma-Poisson case, since it was shown earlier (see formula (20)) that
the ratio of af/) to a(0) was equal to one plus the inverse of BK (since in the
Poisson case, K is equal to BK).

If the individual risk process is not Poisson, the ratio test will be biased by
the amount:

E(X) + E[Var($)]
E(X)

This explains why the results were biased when this test was applied to the
negative binomial simulation where E[Var (¢,;)] was greater than zero.

CLAIM FREE DISCOUNT

If the regression of expected losses over actual losses is reasonably linear,
which it usually is when only accident frequencies are involved, there is an-
other convenient way to estimate Var (M) using merit rating data.

To begin with, we note that:

af0) = E(X) x (I = Z)

Therefore:

E(X) X Var (M)
Var (X)

E(X) - of0) =

and:

Var (M) = Var (X) X {I — %
The quantity a(0) +~ E(X) represents the ratio of expected losses for risks with
claim free experience to the ratio of losses for all risks and thus the quantity in
braces represents the claim free discount. We can see, therefore, that the vari-
ance of expected losses can be estimated by multiplying the variance of actual

losses, Var (X)/by the claim free discount!
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NORTH CAROLINA EXPERIENCE

The methods outlined above can be applied to actual data by assuming that
the observed frequency of the events, X, and X, are unbiased estimators of the
true joint probabilities of these events. The following table shows the experi-
ence of North Carolina drivers over a four year period, split between the first
three years and the fourth year [27].

Number of Losses
Second First Period (X,)
Period
(X,) 0 1 2 3 4 5 6 7
0 2002577 295414 45203 7666 1441 300 82 25
1 104048 26776 6255 1577 375 83 20 4
2 5931 2362 811 247 80 30 13 7
3 438 231 102 34 11 10 0 3
4 30 16 12 2 3 1 0 1
5 5 9 3 2 0 0 0 0
r(a(X;)) .8445 .1298 .0209 .0038 .0008 .0002 .0000 .0000
(X)) 0555 .0994 .1574 .2300 .3037 4175 .4000 .7750
We note the following facts:
1. First period mean .1874
2. Second period mean .0643
3. Var(X) 2316
4.1 {Quotient of means for two periods} .3432
5. EM.X) 0688
6. Var(M) .0337
7. Claim Free Discount {1.0 — (.0555+(2)} .1369
8. Var(M) from Claim Free Discount {(hH x 3)} .0317
9.7 {6) = (3)} . 1455
10. BK {from covariance formula} 1.0421
11. K .8656

We see therefore, that we have been able to estimate the homogeneity of
the North Carolina driving population without having to make any estimates
about a gamma-Poisson process. We note further that there is a significant dif-
ference between the two estimates of BK (since K is the SRI estimate of BK)
and thus there is a clear indication that the SRI method does not accurately
measure the homogeneity of the North Carolina population!
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The following table shows merit rating relativities from actual experience,
the credibility indicated relativities, and the relativities indicated by the Pois-
son. model (using the four year K value of .8656 [28]):

Merit Rating Relativities

X r(a(X;)) Actual Credibility Poisson
0 .845 .864 .855 .822
| 130 1.546 1.630 1.772
2 .021 2.448 2.406 2.722
3 .004 3.576 3.182 3.672
4 .001 4.722 3.958 4.622
5 .000 6.492 4.733 5.571
6 .000 6.220 5.509 6.521
Total 1.000 1.000 1.000 1.000

It can be seen that a merit rating procedure based on the Poisson assumptions
would undercharge the 84.5% of the population who were claim free dnd
would substantially overcharge the 15.1% with one or two claims.

The actual data also shows a noticeable departure from linearity for those
groups with three or more claims, which suggests that the gamma distribution
may not be an appropriate description of -the structure of the distribution of
expected losses for the North Carolina driving population!

MEASURING HETEROGENEITY

Various ways of estimating the variance of expected losses within an in-
surance population or subpopulation have been explored in this paper. In all
cases, attention has been focused on estimating the variance of the structure
function, Var (M), since it is the measure of how much heterogeneity there
actually is in the population. If one can measure Var (M) for any given group,
one has a direct measure of the homogeneity of that group.

The first measure explored was that used by the SRI study which consisted
of estimating Var (M) by substracting the mean of the actual loss experience,
E(X), from its variance. This measure can be thought of as the ‘‘excess vari-
ance’’ method. It has been shown that the use of this method requires the as-
sumption that there are no random or stochastic elements affecting exposure to
loss, &,. If, in fact, this assumption is invalid then any conclusions about the
effectiveness of current risk assessment practices based on this measure are
not appropriate.
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The second measure consisted of estimating BK (and thus Var (M) indi-
rectly) by calculating the ratio of merit rating experience for risks with one
accident and zero accidents respectively. This method was termed the ‘‘ratio
method’’ and proved reasonably effective even when the Poisson assumption
was not made. It was shown, however, that it would be biased by the ratio of
the average within risk variance to the population mean:

E(X) + E[Var(¢)] _ E[E($)] + E[ Var (¢,)]
E(X) E(E(d;)]

A third method for estimating Var (M) is to multiply the indicated claim
free discount by the variance of the claims experience. That is:

Var (M) = CFD X Var(X)

where CFD is the claim free discount. This measure was shown to be inde-
pendent of the Poisson assumption, but it is dependent on the linearity of the
regression of expected loss over actual loss. It gives reasonable results if the
departure from linearity is not too great but can give poor results as in the
Hewitt example where the difference between the actual and linear estimate of
the claim free discount is approximately 10%. This situation is likely to exist
in most pure premium applications.

The fourth method uses the relationship
EM, X) = Y, X P(X) EM|X)

i=0

and the fact that the expression on the right can be estimated from observable
data taken over to successive periods of time to estimate Var (M).

This measure is unbiased, is not affected by the linearity of the regression
of expected losses over actual losses, and requires no assumptions about the
distribution of losses for individual risks or the distribution of expected loss
between members of the risk population. It is, however, subject to sampling
variance and the possibility that the characteristics of groups selected on the
basis of their loss experience may change with respect to the rest of the popu-
lation from one period to the next. This would occur, for instance, if individual
risk experience were not independent over time.

This method also provides a measure of heterogeneity of the distribution of
expected losses over the entire period observed. If each observation period is
two years, then the measure estimates Var (M) where M = E (¢,) is the ex-
pected loss for the ith risk over the entire four year period.
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CONCLUSIONS

This paper has explored questions of risk assessment efficiency and class

homogeneity. It has been shown that:

1. The SRI efficiency measure itself is an intuitively reasonable way to

gain an overall idea of the effect of risk assessment on the variance
within and between classes.

. Since it is impossible to observe the structure function directly, it is nec-

essary to make inferences about its nature using data which can be
observed.

. SRI International and the SRB ‘‘solve’” the problem of estimating

Var (M) by making use of the following relationship:
Var, (M) = Var (X) — E (X) — t X E{fVar(¢,)]

(see formuia (18)). They assume that there are no random, or stochastic,
elements affecting exposure to loss and thus conclude that EfVar (¢,)]
is equal to zero. This conclusion makes it possible to use the ‘‘excess
variance’’ method of determining Var (M) which consists of subtracting
the observed mean of the actual loss experience from the variance. That

is:
Var (M) = OV — OM

If there are, in fact, random elements associated with exposure, esti-
mates using the ‘‘excess variance’’ method will be biased and
misleading.

. It is possible to estimate Var (M} without making arbitrary assumptions

about the variance of exposure, ¢,, or the nature of the loss process and
the shape of the structure function by observing actual experience over
more than one period of time and utilizing the fact that:

Var (M) = {3 X, r(a(X)) (a(X)+=1)} — (E(X))
j=0
where ¢ represents the ratio of the average loss frequency for the first
observation to that of the second observation, r(a(Xj)) represents the
probability that a risk will have X; losses, and a(X;) represents the ex-
pected losses of that group as estimated from a second observation
period. :
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The purpose of risk assessment is to create homogeneous groups of in-
sureds. The covariance method provides a readily available tool to measure
group homogeneity directly, as long as credible subgroups are the object of
measurement, and thus provides a way of measuring and monitoring the effec-
tiveness of risk assessment. It provides an objective methodology for defining
partitions of the insurance population and also builds in a mechanism for re-
sponding to changes in circumstances which might indicate a need for a differ-
ent type of partitioning system.

The consequences of a lack of class homogeneity were pointed out by the
Massachusetts State Rating Bureau:

“If . . . classes are homogeneous, then each such class average is indeed typ-
ical of the expected loss associated with all policies in that class.

“But when classes are heterogeneous, the mean expected loss for each
class—however accurately it is estimated—is not at all typical of what each
policy is expected to cost.”’[29]

In the future, actuaries will no longer be allowed to focus their attention
exclusively on mean class rates without explicit concern about the types of
classes that they are defining and working with. There is valid public concern
about the possibility that\‘\‘good” risks may be paying more than they should
for their insurance, while ““bad’ risks are paying less. There is no evidence
whatsoever that this is taking place, but our past inability to demonstrate that
our classes are relatively homogeneous has troubled many reasonable people.
Actuaries can hope to provide this reassurance only by developing objective
measures and standards for class homogeneity. The methods and analyses pre-
sented in this paper should provide the basis for such objective measures and
standards, and it is up to practicing actuaries to determine how they may be
developed and applied.
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APPENDIX
SIMULATING PRIVATE PASSENGER AUTOMOBILE EXPERIENCE RATING
FREQUENCIES

The purpose of these simulations was to produce annual expected loss fre-
quencies for groups of risks partitioned on the basis of the number of losses
experienced during the prior three years. This can also be thought of as a way
of generating the actual loss frequency expected during a fourth year, in which
case it represents a simulation of the results of two observations of the popu-
lation of interest.

The simulation procedure consists of the following steps:

1. Create a discretized structure function for the group or subgroup being
analyzed.
In this paper, gamma distributions were generated on the computer for
each class shown on Exhibit I. The means of these gamma distributions
were set equal to the means of the various classes. In the Poisson sim-
ulation, the variance of the gamma distributions was set equal to:

2
m;

K

where the subscript refers to the class. In the negative-binomial simu-
lation, the variance of X for each class was set equal to the variance of
X in the Poisson simulation, so the variance of the gamma structure
function was set equal to the following:

m: (10 — K )
x = 11

This adjustment reflects the fact that for each class:

Var (¢,) = (t X _E(d)) fo(‘bi))z

as shown on page 103 of the text.

The result of this procedure for each simulation was a 62 by 13 matrix.
The rows represent a partition of the domain of the structure function and
the columns represent the 13 classes. Exhibit IV shows selected values
from these matrices for each simulation. It can be seen, for example, that
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that members of Class 10 had a 4.7% probability of having expected
losses, E (¢;), between .05 and .06. Note that in terms of the distribu-
tions discussed in the paper, each column of the matrix represents the
discrete density function of the structure function, U(m,).

2. Calculate for each discrete value of /n, the Poisson and negative binom-
ial conditional probabilities of X losses given X m,. This results in a 62
by 6 matrix where the rows represent the discrete values of m;, as be-
fore, and the columns represent the values of X, X = 0, / . . ., 5.
The values in this matrix represent the probability of X accidents in
three years, given an annual frequency rate, E (¢,), equal to m,. These
values are shown in Exhibit V. If one refers to Exhibit V, Part 2, it can
be seen that the negative binomial probability of being claim free for
three years, given an annual expected frequency of .055, is 84.9%,
while the Poisson probability for the same event shown on Part | of Ex-
hibit V is 84.8%.

3. Calculate the matrix of r(a(X)) values as follows (using matrix notation):

crfaX)) = U X H

where H is the matrix of conditional probabilities of X accidents given
m; and h(X| m;), and U’ is the transpose of the structure function ma-
trix, U.

4. Calculate the matrix of afX) values by first defining the matrix W as
being the product of the ith row of U and the scalar m, + r(a(X,))
and then taking the matrix product:

aX) = W X H
Clearly a(X) represents the following expectation:
aX) = E(m|X)

where X represents the accident experience during the prior three years.

Part | of Exhibits Il and I1I shows the matrix of a(X) values while Part 2
+shows the matrix of values of r(a(X)). Shown below for illustrative purposes is
.data which can be used to generate values of a(X) and r(a(X)) for the structure

function provided in the partitioning example used in the paper. It will be re-
called that the only possible values of m, were .01, .02, .03, . . . ,.10 and that
the third partition was 44% efficient. The probability of any particular value of
m, within each partition was .2. Thus we have the matrix U reflecting the struc-
|ture function within each class and within the overall population, as follows:
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Structure Function: (U)

Class Popuiation

3

.0l
.02
.03
.04
.05
.06
.07
.08
.09
.10

Total

C coonmOoNMONNN
S NN ONONDSOO

1
1
1
1
1
N
A
|
1
|
.0

—_—

Assuming that g(x;) is negative binomial with an exposure variance equal to:
0625 % (E(¢,))

as discussed earlier (see page 99), the conditional probability matrix, H, assum-
ing an initial three year observation period, is as follows:

Probability of X claims given m,: (H)
Number of Claims (X)

m, 0 1 2 3 4 5

.01 .97045 .02910 .00045 .00000 .00000 .00000
.02 .94180 .05644 .00173 .00004 .00000 .00000
.03 91401 .08211 .00376 00012 .00000 .00000
.04 .88705 .10618 .00649 .00027 .00001 .00000
.05 .86091 .12873 .00983 .00051 .00002 .00000
.06 .83555 .14984 01371 .00085 .00004 .00000
.07 .81096 .16956 01810 .00131 .00007 .00000
.08 .78710 .18796 102291 .00190 .00012 .00001
.09 .76396 20511 .02811 .00262 .00019 .0000t
.10 .74151 22107 .03364 .00348 .00028 .00002
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With this information, we begin by calculating the matrix of values of a(X):

alX)

Class 0 1 2 3 4 5

1 .03463 .04762 05641 06144 .06433 06610

2 .07260 07911 .08401 .08745 .08985 09156
Total .05254 .06813 07727 .08281 .08647 .08905
Next we calculate the matrix of values of r(a(X)):

r(a(X))

Class 0 1 2 . 3 4 5

1 .89963 .09319 00677 .00040 .00002 .00000

2 .80303 .17403 .02097 .00183 .00013 .00001
Total .85133 .13361 .01387 00111 .00007 .00000

From these two matrices it is now possible to make the following series of

calculations:

E(X,)
E(X,)

t

EM.X)
Cov(iM X)
Var(M)
Var, (X)

. E[Var($)]

0N R =

Class

1
.10800
.03600
.33333
.00528
.00139
.00046
11250
.00011

2

.22200
.07400
.33333
.01782
.00139
.00046
22728
.00037

The value of E[Var (¢,)] is calculated using the following formula:
EfVar(¢)] = {Var,(X) — [E (X} + Var,(M)] } /1t

Total

.16500
.05500
33333
01155
.00247
.00082
17314
.00024

In the above table, E(X,) is equal to E, (X}, and the three year variance of the
structure function, Var, (M), is nine times the one year variance (see pages
85—88). The details on how the values of a(X) and r(a(X)) are put to use can
be found on pages 107—116.
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NOTES AND REFERENCES

SRI International, The Role of Risk Classification in Property and Cas-
ualty Insurance: A Study of the Risk Assessment Process. (1976). (Note
that there were three volumes issued as a part of this project: an Executive
Summary, the Final Report, and a Supplement to the Final Report.)

The most important discussion of the SRI Report findings on class homo-
geneity and risk assessment efficiency is found on pp. 81-82. of the Final
Report: *‘within each group there remains a wide range of accident like-
lihoods. The risk assessment process is still imprecise for individual in-
sureds . . . "’

The attitude of the Massachusetts Division of Insurance, of which the
State Rating Bureau was a part, was expressed most strongly in *‘Insur-
ance Rates and Social Policy.”’ This paper was presented at the 1977 hear-
ings on 1978 Massachusetts Auto Rates conducted by Commissioner
Stone.

The SRB recommendations about departing from actuarial rates are found
in another paper presented at the 1977 hearings: ‘‘Identifying Equitable
Insurance Premiums for Risk Classes: An Alternative to the Classical Ap-
proach™ by Dr. J. Ferreira, Jr. found as Chapter IV of Automobile Insur-
ance Risk Classification: Equity and Accuracy issued in 1978 by the Mas-
sachusetts Divison of Insurance.

“‘Report of the Rates and Rating Procedures Task Force of the Automo-
bile Insurance (D3) Subcommittee,” November 1978, p. 6.

A brief description of the assumptions underlying the use of the Poisson
process is provided on pp. 175-176 and 212-213 of the Supplement to the
SRI Report. Another discussion of the importance of the compound-Pois-
son process in risk theory is given in Mathematical Methods in Risk The-
ory by H. Bithimann (Springer-Verlag, 1970). Dr. Bithimann discusses
what he calls “infinitely divisible” probability distributions and makes the
statement that for distributions defined on the non-negative integers, every
infinitely divisible characteristic function is compound-Poisson! (See pp.
69-73)

Intuitive support for the Poisson assumption can be derived by considera-
tion of the fact that the limit of a binomial process taken over shorter and
shorter time intervals is Poisson.
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[5] The moments of the compound-Poisson process can be derived from the
fact that the unconditional expectation of a random variable can be ex-
pressed in terms of conditional expectations. If we let w, represent the con-
ditional mean of the ith state, we can express the unconditional variance
of such a random variable, X, as:

Var (X) = E{EXIu)} — { E[E(X|n)] ¥

E{Var (X|n) + [ EXlw)P? } — { EIE(X|n)] ¥
E [Var (X|w)] + E(p) — (E(w))?

E [Var(X|p)] +

Var ()

since E(X|p,) = p;. In the compound-Poisson distribution, the mean and
variance of the conditional Poisson process are both equal to the parameter
of the process, ¢,, and thus:

Var (X) = E(¢) + Var(d,)
[6]/Biihlmann, p- 65.
(7] See note [5]. In this case the conditional mean is m,.

[8) If m, represents the average losses for the ith risk during a single period
of time, then t X m, will represent the average losses for 7 units of time.
If Var (M) represents the variance of the structure function for a single
period of time, then Var (tXM) will represent that variance for ¢ units
time. Thus:

Var, (M) = £ X Var (M)

[91 R.A. Bailey, ‘‘Any Room Left for Skimming the Cream?’’ PCAS XLVII
(1960), p. 30.

{10] See discussion by L.H. Roberts of Bailey, op. cit. p. 213.

[11] SRI Final Report pp. 46-55, and Supplement pp. 200-203.

[12] The SRI procedure is discussed further on pages 93—95 of this paper.
[13] Private letter from M. Treloar to R.G. Woll, June 1978.

[14] The mean and variance of the accident distribution are defined in the SRI
Supplement, p. 177.
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[15] Ferreira, p. 110. Dr. Ferreira states: ‘*. . . it is recommended that the fac-
tors other than class means be considered in setting 1978 auto insurance
rates in Massachusetts. It is further recommended that consideration be
given to the homogeneity of such classes and that either the method incor-
porated in this paper or an approach incorporating its basic principles be
used in place of the traditional actuarial method for determining class and
territorial differentials.” (Emphasis added)

(16] Ibid. p. 85.
[17] Ibid.
(18] Ibid. p. 86.

[19] J. Ferreira, Jr. ‘*‘Merit Rating and Automobile Insurance,”” Automobile
Insurance Classification: Equity and Accuracy, Chapter 11, p. 69.

[20] SRI Supplement, pp. 205-206.
[21] Bithimann, pp. 100-103.

1 [22] For example, see Hoel, Port, and Stone, Introduction to Statistical The-
ory, (Houghton Mifflin, 1971), p. 115. They show that if we write the
regression equation as:

Y=a+ b(X - X)

then:

~|

a =
and:

_ 5y

b = pi

where s, and s, are the standard deviations of Y and X respectively, and p
is the correlation coefficient of Y and X. Thus:

Cov (Y, X) VVar (Y)
= X
VVar (Y) Var (X)  VVar (X)

Cov(Y ,X)
Var (X)

Note that the constant term becomes:

Cov (Y, X) —

azy———Var(X) X X
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In other words, the constant term is equal to the mean of the dependent
variable minus the mean of the independent variable times the slope of the
regression line.

[23] I am indebted to Dr. D. Rosenfield of Arthur D. Little (ADL) who helped
me realize how the covariance of M and X could be utilized to estimate
Var (M).

[24] C.C. Hewitt, Jr., ‘“‘Credibility for Severity,”” PCAS LVII (1968),
pp. 148-171.

[25] Ibid. p. 150.

[26] Ibid. p. 152. The probabilities shown in the table are taken from the de-
scription of the die and spinner probabilities assuming independence.

[27] R. Stewart and R.J. Campbell, ‘“The Statistical Association between Past
and Future Accidents and Violations,”’ (1970). This study is very useful
for analyzing the concepts discussed in this paper, since it contains the
data used in this paper along with other combinations of observation pe-
riods and driver groups. It is not insurance data, and it is hard to know
how indicative results based on such data might be of actual insurance
results.

[28] This value of K was calculated by estimating the values of r(a(X,)) from
four year North Carolina data. First, values of E(X) and Var (X) were

calculated:
EX) =3, X,r (a(X)
j=0
Var (X) = {3, X} (X))} — (E(X))?
j=0

and then K was set equal to the following:

(E(X))?
Var (X) — E(X)

25172
3249 — 2517
.8656

K =

[29] J. Ferreira, Jr. ‘‘ldentifying Equitable Insurance Premiums for Risk
Classes: An Alternative to the Classical Approach,” p. 82.



EFFECT OF MERIT RATING ON CLASS RELATIVITIES*

Observed Predicted
1975 Observed Driver-Class
Average 1975 Relativity
1975 Claim Driver-Class (after 3 years Percent
Driver Exposure Frequency k** Relativity of Merit Change
Class % (X 100) Value (before) Rating) (6)—(5)x 100
) 2 3 4) (5) (6) )]
00 3.55 17.31 1.025 1.067 1.016 - 4.8%
10 58.11 15.21 1.752 .938 952 + 1.5%
12 10.27 14.42 2.160 .889 924 + 3.9%
15 9.34 11.78 2.066 726 .780 + 7.4%
20 .07 35.90 1.902 2.213 1.770 -20.0%
22 .24 35.56 1.894 2.192 1.759 -19.8%
24 1.00 24.55 1.747 1.514 1.362 - 10.0%
26 7.37 21.30 2.720 1.313 1.272 - 3.1%
30 2.77 17.31 2.842 1.067 1.085 + 1.7%
31 1.28 13.09 0.570 .807 .745 - 1.7%
40 1.92 26.30 2.739 1.621 1.480™ - 8.3%
42 2.94 29.19 3.493 1.800 1.650 - 8.3%
50 1.33 21.40 2.272 1.319 1.262 - 43%
State
-wide
Average 100.0 16.22 1.969%** 1.00 1.00 0.0%

*Reproduced by permission of Massachusetts State Rating Bureau.

**The value of k is an estimate of class homogeneity. (The square root of the reciprocal of k is the coefficient of variation of
the claim frequency distribution underlying the class.) '

***The actual statewide value of k is 1.685 (See Exhibit 11, Part 1).
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EXHIBIT Ii
MASSACHUSETTS: POISSON SIMULATION

PART |
Expected Claim Frequencies: a(X)

afX)

BK K E(X) 0 1 2 3 4 5
1.022 1.025 .173 .11§ .227 .340 451 .563 .675
1.753  1.752  .152 .121 .190 .258 327 .396 .464
2,162 2.160 .144 120 176 .231 .287 .343 .398
2.068 2.066 .118 .101 .149 198 247 296 .345
1.872 1904 359 227 .349 471 592 .7i4 837
1.865 1.895 356 .225 347 468 .589 711 .833
1.739  1.747 245 172 272 371 469 .568 .667
2722 2,720 213 173 236 299 363 426 488
2,845 2842 173 146 .198 .249 301 .352 404
0.568 0.570 .131 .077 214 .350 .486 .622 .758
2.734 2739  .263 204 279 354 428 502 .576
3488 3493 292 233 300 .367 .434 500 .567
2271 2272 214 (167 240 314 387 460 .533
1.684 1.685 .162 .126 .199 .274 351 433 522

PART 2
Distribution within Class and Merit Rating Category: r(a(X))
r(a(X))

0 1 2 3 4 5 Weight
.657 .226 077 .026 .009 .003 .035
.667 241 .069 .018 | .004 .001 .580
.674 .243 .064 .QIS .003 .001 .102
722 218 .049 .010 .002 .000 .093
428 292 .153 .072 .032 .014 .001
431 291 152 071 .031 .013 .002
.542 .280 114 .042 .015 .005 .010
.563 292 .103 .031 .008 .002 .074 -
621 273 .081 028 005 .00l 028
742 172 .055 .019 .007 .003 .013
.500 .306 128 .045 .015 .004 .019
.458 .320 .144 .053 .017 .005 .029
.568 .284 .103 .032 .009 .003 .013
.652 247 .074 .020 .005 .001 1.000

129
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EXHIBIT 11
MASSACHUSETTS: POISSON SIMULATION

PART 3
Merit Rating Relativities to Claim Free Rate: a(X) + a(0)

aX) = of0)

Class 0 1 2 3 4 5
00 1.000 1.982 2.963 3.936 4.908 5.887
10 1.000 1.571 2.141 2.711 3.279 3.844
12 1.000 1.462 1.925 2.388 2.850 3.309
15 1.000 1.483 1.966 2.451 2.937 3.425
20 1.000 1.540 2.076 2.610 3.147 3.691
22 1.000 1.542 2.080 2.616 3.156 3.701
24 1.000 1.579 2.154 2.726 3.297 3.873
26 1.000 1.368 1.735 2.102 2.467 2.831
30 1.000 1.351 1.702 2.054 2.406 2.756
31 1.000 2.758 4.526 6.278 8.028 9.793
40 1.000 1.368 1.734 2.098 2.460 2.823
42 1.000 1.288 1.575 1.859 2.143 2.430
50 1.000 1.441 1.882 2.320 2.756 3.193

Total 1.000 1.576 2.164 2.777 3.425 4.125

PART 4
Merit Rating Relativities to Class Mean: a(X)+ E(X)
a(X) + E(X)

Class 0 1 2 3 4 5
00 0.663 1.313 1.963 2.608 3.252 3.901
10 0.793 1.246 1.699 2.151 2.601 3.050
12 0.833 1.219 1.604 1.990 2.375 2.757
15 0.854 1.267 1.679 2.093 2.508 2.925
20 0.634 0.976 1.315 1.654 1.995 2.339
22 0.635 0.979 1.321 1.661 2.004 2.350
24 0.702 1.108 1.512 1.913 2.314 2.719
26 0.810 1.108 1.405 1.702 1.997 2.293
30 0.846 1.143 1.440 1.737 2.035 2.331
31 0.591 1.631 2.676 3.712 4.747 5.791
40 0.776 1.061 1.345 1.627 1.908 2.189
42 0.799 1.029 1.258 1.486 1.713 1.941
50 0.779 1.123 1.467 1.809 2.148 2.489

Total 0.779 1.228 1.686 2.164 2.669 3.214
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EX

HIBIT Il

MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION

PART 1

Expected Claim Frequencies: a(X)

a(X)

BK K EX) 0 1 2 3 4 5
1.245 1.017 .173 124 220 312 400 485 .568
2,331  1.748 152 (128 .181 .232 283 .332 .380
3.019 2153 .144 127 167 207 .245 284 321
2.853 2.059 .118 105 .141 176 210 .244 277
2473 1.836 .359 257 .354 447 536 .622 .707
2.462 1.830 .356 .255 .351 .444 533 619 .704
2299 1.729 245 189 267 .342 415 485 553
4.094 2.712 213 .186 .229 .27t 312 .353 .393
4344 2.831 .173 156 .190 .223 256 .289 .322
0.658 0.565 .131 .084 207 325 437 545 .650
4.125 2727 263 224 274 324 372 420 .465
5.888 3.487 .292 257 298 .337 376 415 452
3221 2265 .214 180 .233 285 .336 .385 .433
2219 1.679 .162 135 191 .247 304 363 .425

PART 2
Distribution within Class and Merit Rating Category: r(a(X))
r(a(X))

0 1 2 3 4 5 Weight
.656 229 .076 .025 .009 .003 .035
.666 .243 .068 017 .004 .001 .580
.674 .244 .063 .015 .003 .001 102
721 219 .048 .010 .002 .000 .093
.426 297 .153 .070 .031 .031 .001
429 .296 .152 .070 .030 .013 .002
.540 .283 113 041 .015 .005 .010
.562 294 102 .030 .008 .002 .074
.620 274 .080 .020 .005 .001 .028
.740 175 .055 .019 .007 .003 .013
.498 .309 127 .045 .014 .004 .019
.456 323 144 .052 .017 .005 .029
.567 .287 102 .032 .009 .003 .013
.651 .249 073 .020 .00s .001 1.000
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EXHIBIT Il
MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION

PART 3
Merit Rating Relativities to Claim Free Rate: o(X) + a(0)

alX) + af0)

Class 0 1 2 3 4 5
00 1.000 1.770 2.510 3.221 3.906 4.569
10 1.000 1.410 1.811 2.203 2.586 2.959
12 1.000 1.317 1.628 1.934 2.235 2.531
15 1.000 1.338 1.669 1.996 2.317 2.635
20 1.000 1.378 1.740 2.087 2.525 2.756
22 1.000 1.380 1.743 2.092 -2.432 2.764
24 1.000 1.412 1.809 2.193 2.563 2.923
26 1.000 1.230 1.456 1.678 1.896 2.112
30 1.000 1.219 1.434 1.646 1.858 2.070
31 1.000 2.462 3.868 5.209 6.497 7.744
40 1.000 1.227 1.449 1.666 1.876 2.081
42 1.000 1.158 1.313 1.464 1.613 1.757
50 1.000 1.294 1.580 1.860 2.133 2.398

Total 1.000 1.419 1.834 2.256 2.691 3.150

PART 4
Merit Rating Relativities to Class Mean: a(X) = E(X)
afX) + E(X)

Class 0 1 2 3 4 5
00 0.718 1.272 1.803 2.314 2.806 3.283
10 0.843 1.189 1.527 1.858 2.181 2.495
12 0.880 1.159 1.433 1.702 1.967 2.227
15 0.894 1.196 1.492 1.784 2.071 2.355
20 0.718 0.989 1.249 1.499 1.741 1.979
22 0.719 0.992 1.253 1.504 1.748 1.987
24 0.771 1.088 1.395 1.690 1.976 2.253
26 0.873 1.073 1.270 1.464 1.655 1.843
30 0.898 1.095 1.288 1.479 1.669 1.860
31 0.640 1.574 2.474 3.332 4.156 4.954
40 0.850 1.043 1.23t 1.415 1.594 1.768
42 0.880 1.018 1.155 1.288 1.419 1.546
50 0.843 1.090 1.332 1.567 1.797 2.021

Total 0.831 1.179 1.523 1.873 2.235 2.616



00550
01500
02500
03500
04500
05500
06500
07500
08500
09500
10500
11500
12500
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14500
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16500
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RISK ASSESSMENT

MASSACHUSETTS: POISSON SIMULATION

EXHIBIT IV
PART 1A

Gamma Structure Function Probabilities: U(m,)

Class
00 10 12 15 20 22
.00052 .00000 .00000 .00000 00000 .00000
.00483 .00024 .00005 .00011 .00003 .00004
04873 01276 .00629 01121 .00228 .00237
05215 .02783 .01937 03109 .00573 .00591
.04960 .03663 03031 04525 .00842 .00864
.04702 .04213 03866 .05454 01064 .01089
04452 04542 104463 .05995 .01250 .01278
.04212 04711 04856 .06239 .01408 .01436
.03983 .04763 .05080 .06262 01541 .01570
.03764 04729 .05167 .06125 .01652 .01681
.03557 04632 05146 .05876 .01745 .01773
.03360 04489 .05043 05554 01821 .01849
03174 04314 .04877 05187 .01883 01910
.02997 04118 04667 .04796 .01932 .01957
.02830 .03908 04427 .04399 .01969 .01993
.02672 .036%90 04168 .04007 .01997 .02019
.02523 103471 .03898 03629 02015 .02036
.02381 .03252 .03626 .03269 102025 .02045
.02248 .03038 .03356 02932 .02028 .02046
02122 .02830 .03093 .02619 .02025 .02042
.02003 .02630 .02840 102332 .02016 02031
.01890 .02438 .02599 .02069 .02002 .02016
.01784 102256 .02371 .01831 01984 .01997
.01683 102084 02157 .01616 01962 .01973
.01588 .01922 .01957 01423 .01937 .01947
.01499 .01769 01772 01251 .01909 01917
.01414 .01627 .01600 .01097 .01878 01886
.01335 01494 01443 .00960 01846 .01852
01259 .01371 .01299 .00839 01811 .01816
.01188 .01256 .01167 .00732 .01775 01779
01121 .01150 .01047 .00638 .01738 .01741
.01058 .01051 .00938 00555 .01700 01701
.00998 .00961 .00839 .00483 01661 .01662
.00942 .00877 .00750 .00419 01621 01621
.00888 00800 .00669 .00363 .01581 .01580
.00838 .00729 .00596 .00315 01541 .01539
.00791 .00665 .00531 .00273 .01500 .01498
.00746 .00605 .00472 .00236 .01460 .01457
.00704 .00551 .00420 .00204 .01420 .01416
.00754 .00117 .00032 .00005 .03628 .03561
.00420  .00041 .00008 00002 .02413 .02359
.00234 .00014 .00003 .00000 01586 .01545
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m.

.00055
.00550
.01500
.02500
03500
.04500
.05500
.06500
.07500
.08500
.09500
.10500
11500
.12500
.13500
.14500
15500
16500
17500
.18500
.19500
.20500
.21500
.22500
.23500
.24500
.25500
.26500
.27500
.28500
.29500
.30500
31500
.32500
.33500
.34500
.35500
.36500
.74000
.84000
.94000

RISK ASSESSMENT

EXHIBIT 1V
PART 1B

MASSACHUSETTS: POISSON SIMULATION

Gamma Structure Function Probabilities: U(m,)

.00250

Class
24 26 30 31 40 42 50
.00000 .00000 .00000 .01429 .00000 .00000 .00000
00012 .00000 .00000 .03789 .00000 .00000 .00001
00605 .00078 .00103 .13601 .00045 .00005 .00219
01339 .00393 .00558 .08564 .00231 .00045 .00765
01817 .00827 .01204 .06508 .00497 .00138 .01315
.02166 .01297 .01902 .05369 .00798 .00279 .01812
.02426 01760 .02568 .04604 .01108 .00460 .02243
.02617 02188 .03159 .04038 .01411 00670 .02603
.02756 02569 .03652 .03595 .01696 .00899 .02894
.02851 .02893 .04039 .03234 01957 01137 .03122
02911 .03160 .04320 .02933 .02189 .01376 .03292
.02942 .03368 .04503 .02676 .02391 01609 .03410
.02949 .03523 04597 .02453 .02561 .01831 .03482
.02937 .03627 .04615 .02258 .02701 .02036 .03516
02909 .03685 .04569 .02086 .02812 .02222 .03S15
.02868 .03703 .04469 .01932 .02895 .02387 .03486
02816 .03686 .04327 .01793 .02952 .02529 .03433
02755 .03639 .04152 .01669 .02986 .02649 .03360
.02687 .03567 .03954 01555 .02998 .02745 .03272
02614 .03474 03740 .01452 .02992 .02819 .0317t
.02537 .03364 .03516 .01357 .02969 .02872 .0306l
.02457 .03242 .03287 .01271 .02931 .02905 .02943
02375  .03110 03058 .01191 .0288F .02919 .02820
.02292  .02971 .02833 .01117 .02819 .02916 .02695
.02208 .02827 02614 01049 .02749 .02897 .02568
02124 .02682 .02403 .00986 .02672 .02864 .02440
.02041 02535 .02201 .00927 .02588 .02819 .02314
01958 .02390 .02010 .00873 .02500 .02763 .02190
.01877 .02248 .01831 .00822 .02409 .02698 .02068
01797 02108 .01663 .00775 .02315 .02625 .01950
01719  .01973 .01507 .00731 .02220 .02546 .01835
01643  .01843 01362 .00690 .02124 .02462 .01724
01569 .01717 .01229 .00651 .02029 .02374 .01618
.01497 01598 .01106 .00615 .01934 .02282 .01516
01428 .01484 .00994 00581 .01840 .02189 .01418
01360 .01376 .00892 .00549 .01748 .02095 .01326
01295 .01273 .00799 .00519 .01658 .02000 .01238
.01233 01177 .00714 .00491 .01570 .01906 .01154
01172 01087 .00638 .00465 .01485 .01812 .01075
01337 .00285 .00046 .00655 .00979 .01131 .00467
.00725 .00099 .00010 .00403 .00432 .00470 .00190
.00389 .00033  .00005 00186 .00189 .00076



.00550
.01500
.02500
.03500
.04500
05500
.06500
.07500
.08500
.09500
.10500
11500
.12500
.13500
.14500
.15500
.16500
17500
.18500
.19500
.20500
.21500
.22500
.23500
.24500
.25500
.26500
.27500
.28500
.29500
.30500
31500
.32500
.33500
.34500
.35500
.36500
.74000
.84000
.94000

RISK ASSESSMENT

EXHIBIT IV
PART 2A

MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION

Gamma Structure Function Probabilities: U(m;)

Class
00 10 12 15 20 22
.0001 1 00000  .00000  .00000  .00000  .00000
00182  .00002  .00000  .00000  .00000  .00000
03052 .00404 00122 00289  .00042  .00044
04128 01436 00730 01472 00177 00184
04356 02435 01642 02958 00345 00358
04400 03275 02625 04334 00525 00542
04352 .03931 03539 05426 00706  .00727
04252 .04409 04309 06184 00882  .00907
04120 .04728 04902 06621 01050 01078
.03970  .04910 05312 06780 01208 01237
.03808  .04979 05551 06715 01353 01383
.03641 .04955 05639  .06480 01485 01516
03472 04858 05601 06125 01604 01636
03303 .04705 05461 05692 01710 01741
03137 04511 05243 05215 01803 01833
02975  .04289 04968 04721 01883 01913
Q2817 04047 04656 04231 01951 01979
02664  .03795 04321 .03757 02007 02034
02518  .03538 03977  .0331i 02052  .02079
02377 03283 03633 02898  .02088  .02112
02242 .03033 03296 02522  .02114 02136
02114 02791 02973 02182  .02131 02152
.01991 .02559 02668 01879  .02140 02159
01875  .02339 02382 01610  .02141 02159
01765  .02132  .02118 01375 02136 02152
01660  .01938 01875 01169 02125 02139
.01561 01757 01654 00991 02108 02120
01467  .01590 01454 00838 02087 02097
01378  .01435 01275 00706 02061 02069
01294 01294  .0i114  .00593 02031 02038
01215 01164 00971 .00498 01997 02003
01140  .01045 00844  .00416 01961 01965
01070 .00937 00732 00347 01922 01925
01004  .00839 00634 00289 01881 01882
.00941 .00751 .00547 00241 01838 01838
00883  .00670  .00472  .00200 01794 01793
00827  .00598  .00406  .00165 01748 01746
.00776  .00533 00349  .00137 01702 01698
00727 00474 00299  .00113 01655 01650
00558 00036  .00007  .00000 03403 03323
.00281 .00009  .00000  .00000 02060 02002
00141 .00004 00000  .00000 01222 01181
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m.

00055
00550
01500
02500
03500
04500
05500
06500
07500
08500
09500
10500
11500
12500
13500
14500
15500
16500
17500
18500
19500
20500
21500
22500
23500
24500
25500
26500
27500
28500
29500
30500
31500
32500
33500
34500
35500

36500

94000

RISK ASSESSMENT

EXHIBIT IV
PART 2B

MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION

Gamma Structure Function Probabilities: U(m,)

Class
24 26 30 31 40 4?2 50
.00000 .00000 .00000 .00773 .00000 .00000 .00000
.00001 .00000 .00000 .02699 .00000 .00000 .00000
.00154 00003 .0000S .11876 .00001 .00000 . .00025
00554 .00048 00075 .08325 .00021 .00001 .00182
00974 .00182 .00302 .06593 .00083 .00005 .00477
01369 .00422 00716 .05572 .00199 .00019 .00862
01724 00756 .01287 .04855 .00372 .00051 .01295
02035 .01162 01960 .04307 .00593 00111 .01740
.02300 .01610 .02670 .03866 .00854 .00205 .02170
02520 .02071 .03356 .03500 .01141 .00337 .02567
02698 .02521 .03974 .03188 .01442 .00507 .02917
.02837 .02938 .04490 .02918 .01744 .00714 .03214
.02941 .03308 .04886 .02682 .02039 .00952 .03455
.03012 .03620 .05158 .02472 .02316 .01215 .03639
.03056 .03870 .05307 .02285 .02569 .01493 .03768
.03074 04055 .05344 02117 .02794 01779 .03847
.03071 .04176 .05283 .01965 .02986 .02063 .03880
03049 .04238 05139 .01826 .03144 .02337 .03871
.03010 .04245 .04929 .01700 .03268 .02594 .03827
.02958 .04203 .04670 .01585 .03358 .02828 .03752
.02895 .04120 .04376 .01479 03416 .03035 .03653
.02823 .04002 .04060 .01382 .03442 .03209 .03532
.02743 03856 .03734 .01292 .03441 .03351 .03396
.02657 .03687 .03407 .01209 .03414 03458 .03248
02566 .03502 .03085 .01133 .03364 .03531 .03091
.02472  .03306 .02776 .01061 .03295 .03570 .02929
02377 .03103 .02482 .00995 .03208 .03578 .02764
02279 .02898 .02207 .00934 .03108 .03557 .02599
02182  .02693 .01952 .00877 .02996 .03509 .02435
.02085 .02492 01719 .00824 .02876 .03438 .02275
01989 .02296 .01506 .00774 .02749 .03347 .02118
.01894 02108 .0131S .00728 .02618 .03238 .01967
.01801 .01928 .01143 .00684 .02484 .031i16 .01823
01710 .01757 .00990 .00644 02348 .02982 .01684
01622 .01597 .00855 .00606 .02214 .02840 .01553
01537 .01447 00736  .00571 .02080 .02692 .01429
.01454 01307 .00631 .00537 .01950 .02540 .01312
01374 01178 .00540 .00506 .01822 .02388 .01203
01297 .01059 .00461 .00477 .01699 .02235 .01101
00925 .00063 .00018 .00553 .00406 .00342 .00175
.00428 .00003 .00000 .00322 .00125 .00078 .000S51
.00195 .00016 .00000 .00188 .00036 .00032 .00013



.00550
.01500
.02500
.03500
.04500
.05500
.06500
.07500
.08500
.09500
.10500
.11500
.12500
.13500
.14500
.15500
.16500
.17500
.18500
.19500
.20500
.21500
.22500
.23500
.24500
.25500
.26500
.27500
.28500
.29500
.30500
.31500
.32500
.33500
.34500
.35500
.36500
.74000

.94000

RISK ASSESSMENT

MASSACHUSETTS: POISSON SIMULATION

Probability of X Claims Given m;: (H)

EXHIBIT V
PART 1

Number of Claims: (X)

0

.99985
.99835
.98364
95600
92774
.90032
87372
.84789
.82283
.79852
77492
.75201
72979
.70822
68729
.66698
64726
.62814
.60957
.59156
.57407
55711
.54064
.52466
.50916
.49411
47951
.46533
45158
.43823
42528
41271
.40052
.38868
37719

.35523
.34473
.33454
.10861
.08046
.05961

1
00015
00165
01623
04302
06958
09453
11795
113990
16045
17967
19760
21432
22988
24434
25773
27013
28156
29208
30174
31057
31861
32591
33249
33841
34368
34835
135244
135598
35901
36154
36362
36525
36647
36730
36776
36787
36766
36714
36632
24111
20276
16809

2
.00000
.00000
.00013
.00097
.00261
.00496
.00796
01154
01564
.02021
.02519
.03054
03621
.04215
.04833
.05470
06124
06791
.07468
08152
.08841
.09533
.10224
.10914
11599
12279
.12952
.13616
.14271
.14914
.15545
.16162
16766
.17355
.17928
.18486
.19026
.19550
.20056
.26763
125548
.23701

3

.00000
.00000
.00000
.00001
.00007
.00017
.00036
.00063
.00102
.00152
00214
.00290
.00380
.00485

.00738
.00888
.01053
.01232
.01427
.01636
.01859
.02096
.02346
.02610
.02886
.03173
.03472
.03782
04101
.04430
.04768
05114
.05467
05827
.06193
06564
.06940
07320
.19805
.21460
.22278
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138

.00550
.01500
02500
.03500
.04500
.05500
06500
.07500
.08500
.09500
.10500
.11500
.12500
13500
.14500
.15500
.16500
17500
.18500
.19500
.20500
.21500
.22500
.23500
.24500
.25500
.26500
.27500
.28500
.29500
.30500
.31500
.32500
.33500
.34500
.35500
.36500
.74000
.84000
.94000

RISK ASSESSMENT

EXHIBIT V
PART 2

MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION

Probability of X Claims Given m;: (H)

Number of Claims: (X)

0

.99985
.99835
98365
95609
.92800
.90082
.874s51

.82438
.80051
.77740
.75502
73334
71235
.69202
67232
.65324
63476
.61684
.59949
.58266
.56636
.55055
.53523
.52038
.50598
.49202
.47848
.46534
.45261
.44025
.42827
41664
.40536
.39442
.38380
.37349
.36348
35377
13468
.10567
.08339

1
.00015
.00165
.01620
.04283
.06908
.09360
11649
13782
15768
17615
19331
.20922
.22395
.23757
.25013
.26169
27232
.28205
.29094
.29903
.30637
.31301
.31897
.32431
.32905
.33322
.33687
.34002
.34270
34494
.34677
.34820
.34927
.34999
.35039
.35049
.35030
.34985
.34915
.24466
21269
.18343

2
.00000
.00000
00015
.00106
00283
00535
00853
01230
01659
02132
02644
03189
03761
04357
104972
.05602
06244
106893
07547
08204
08860
09514
10164
.10808
11443
112070
12686
113290
.13881
14459
15022
15571
16103
16620
17121
17604
18071
18520
18952
24446
123546
22192

3

.00105
00125
.00148
.00174
.00202
.00233
.00267
00305
.00345
00389
.00437
.00488
.00543

.00663
.05335
.06989
.08598



