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CREDIBILITY FOR SEVERITY 

CHARLES C. HEWITT, JR. 

“THE UNSOLVED PROBLEM 

“In casualty insurance, the inherent hazard of an insured, or of a 
classification of insureds, is the product of an inherent frequency of 
loss occurrence and an inherent average amount of loss, and it is the 
value of this product for which an estimate is desired. Such an esti- 
mate must be expressed in terms of the amounts of the individual 
losses which have occurred and the a priori knowledge as to average 
frequencies, average amounts of losses, the distribution of frequen- 
cies and loss amounts about such averages and a priori knowledge 
as to the correlation between frequencies of loss and average loss 
amounts. 

“The expected value, or estimate, of such a product would, no 
doubt, be more complicated in form than the results obtained for 
the simpler cases studied herein. The form such an estimate should 
take would be very desirable information for the actuary to have, 
even though, at the present time, there is little or no knowledge as 
to the correlation between frequencies of loss and average loss 
amounts in casualty insurance. It is the hope of the writer that some- 
one with a knowledge of the statistical behavior of products will 
undertake the development of the appropriate procedure.” 

- A. L. Bailey [ 11 

“Most credibility formulas in use today measure the credibility 
of a given number of claims. What is really needed, however, is the 
credibility of the pure premium, which depends on claim severity as 
well as claim frequency.” 

- Allen L. Mayerson [ 91 

This paper accepts the challenge laid down by these two distinguished 
actuaries. 
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Credibility Defined 
The literature of this Society amply reflects the widespread use of the 

formula: 
Z=L 

n+K 
where : 

n equals the number of trials or exposure units 
K equals a constant (whose derivation will be the principal subject 

of this discourse) 
Z equals credibility (with range 0 to I ) . 

Credibility is applied in the following manner: 

1) there is an hypothesis concerning the mean expectation from some obser- 
vations, 

2) for n trials or exposure units a mean value of the observations is estab- 
lished, 

3) with two values to choose from, the question is asked, “To what extent 
do we believe the expectation and to what extent do we believe the obser- 
vations?“, 

4) the degree of belief in the observations is expressed as a measure z, and 
the degree of belief in the hypothesis as the complement, I - z, 

5 ) or more formally in the linear relationship : 

C=zR+(l -z)H 
where : 

R equals the mean of observation (Result) 
H equals the mean of the Hypotheses, and 
C equals the value to be used as a Compromise estimate 

Thus, credibility is a linear estimate of the true (or inherent) expectation 
derived as the result of a compromise between hypothesis and observation. 

Biihlmann [ 31 has demonstrated that: 

K equals Expected value of the process variance 
Variance of the hypothetical means 

The implications of this derivation of K are discussed more fully in [ 81. 

Credibility and Bayesian Estimation 
Before proceeding further it will be helpful to underscore the relation- 
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ship between credibility and a posteriori (or Bayesian) estimation and to 
weigh their relative advantage and disadvantages. 

Credibility does not (necessarily) produce the optimum estimate. 

Bayesian analysis produces the optimum estimate. 

Credibility does produce the “least-squares” fit to the optimum (Bayes- 
ian) estimates for all possible outcomes weighted by the respective 
probabilities of those outcomes. 

Both estimates - credibility and Bayesian - are “in-balance” for all 
possible outcomes. 

The estimate resulting from the application of credibility always falls 
on or between the hypothetical mean and the observed result. The 
Bayesian resultant frequently does not satisfy this condition. Hence, 
the use of credibility often produces results more easily explained to 
the layman, whether he be a customer or an underwriter. 

On the other hand the Bayesian resultant can never fall outside the 
range of hypotheses, whereas the credibility-produced .estimate can fall 
outside the “realm of possibility,” although such a happening is unlikely. 

Determination of the Bayesian estimate can be extremely complex, even 
on one trial, and is predictably too complex to handle for more than a 
few trials (or exposure units). The theoretical part of using credibility 
is encompassed in the fixing of the value for K; once K is determined, 
credibility may be applied by a clerk and understood by virtually any- 
one concerned. 

The Risk Process 
The basic process in risk and insurance is the compounding of a num- 

ber of events or occurrences (labelled claims) with a value assigned to 
each separate event or occurrence (called the amount of the claim). The 
value of the number of occurrences is discrete: 0, 1, 2, 3, . . . . . . , . . . . . , 
k ). . . . . The amount assigned to each occurrence may be constant, or it 
may vary over a wide range, often considered to be a continuum for con- 
venience of analysis. The compound process is discussed and expressions 
for moments of the compound process are derived in [ lo]. For purposes 
of this section it will be sufficient to draw the following expressions adapted 
from [lo]: 
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.E= kE”c,E 

and $(r2 = ,‘E *212 + &’ - ,,E2 

Where the prefatory subscripts have the following significance: 

x - the compound process (or distribution) 
k - the discrete process of determining the number of occurrences 
x2 - the distribution of the values of a single claim 

Thus kE is the mean number of occurrences, 81~z is the variance of the 
amounts of a single claim, etc. Of most importance are =E and &J which 
are the mean and variance of the compound process. 

The inhibitions placed upon the use of the expression for the mean and 
variance of the compound process are: 

(a) the value attributed to each separate occurrence is independent of 
all other values so attributed, 

(b) the values so attributed are drawn from the same probability dis- 
tribution, 

(c) the number of occurrences is statistically independent of the values 
attributed to the occurrences. 

There are circumstances in practice under which these inhibitions are 
breached - non-reporting of smaller claims as opposed to the more likely 
reporting of larger claims is clearly in this category. However, there are 
many situations in insurance for which these inhibitions are not violated 
to any important degree. Judicious selection of the proper event-producing 
process and/or what properly constitutes a single event (or claim) will gen- 
erally provide adequate reassurance that the expression for the compound 
process variance is quite satisfactory. 

It is important, nay vital, to realize that these inhibitions which qualify 
the “process variance” do not, in any way, affect the “variance of the hypo- 
thetical means,” which depends only upon defining the possible states and 
quantifying their a priori probabilities. 

Two Illustrative Examples 
In order to bridge the gap between the theoretical derivation by Btihl- 

mann [3] of the credibility “K” and actual application thereof, two exam- 
ples will be used to explain how the “variance of the hypothetical means” 
and the “expected value of the process variance” may be derived. In so 
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doing the theoretically correct method for inclusion of the severity com- 
ponent will also be illustrated -for the first time as far as this author is 
aware. 

A Discrete Example 
A die is selected at random from a pair of “honest” dice. It is known 

that one die has one marked face and five unmarked faces and that the 
other die has three marked and three unmarked faces. 

For reference we will define: 

A, as the state of having drawn the die with one marked and five 
unmarked faces 

A2 as the state of having drawn the die with three marked and three 
unmarked faces 

A spinner is selected at random from a pair of spinners. 

It is known that one spinner has six equally-likely sectors five of which 
are marked two and one of which is marked fourteen,’ and that the other 
spinner has six equally-likely sectors three of which are marked tlyo and 
three of which are marked fourteen. 

For reference we will define: 

Bl as the state of having selected the spinner with five twos and 
one fourteen 

B, as the state of having selected the spinner with three twos and 
three fourteens. 

Initially it will be specified that the selection of the die and the spinner 
are completely independent. 

Thus there are four equally-likely compound states : 

Aln BI 

Aln& 

Azn B1 

AznB2 

The state once determined will remain the same throughout, but will be 
unknown to the participants. 
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First, the die which was drawn will be rolled. If a marked face appears 
uppermost this constitutes a claim; if not, there is no claim. If there is a 
claim, the selected spinner will be spun to determine the amount of the claim. 

The process of rolling the die, once drawn, is assumed to be binomial, i.e 
either marked or unmarked face appears. 

A Continuous Example 
A private passenger automobile insurance risk will be chosen from a 

class of such risks. Each risk in the class has its own inherent measure of 
hazard which can never be exactly known to an insurer. 

For frequency of occurrence of a claim we will define: 

M as the state of having chosen a risk with the inherent frequency 
of claims in one exposure unit (one car-year) m (see [ 41, [ 51 
and [6] for an earlier treatment of this situation) 

The a priori probability of having chosen M is given by the 
gamma distribution: 

T(m)dm = ar -mr-le-“mdm 
r(r) 

where m varies between zero and (positive) infinity. 

The process by which the number of claims is giv?n is assumed to be 
Poisson for the particular risk, M. Thus the probability of n claims in one 
car-year is given by: 

Pr(n) = -$- e-+ 

where n is any non-negative integer. 

It is important to distinguish between the frequency process for the indi- 
vidual risk (Poisson as already stated) and the frequency process for the 
class of risks from which it is drawn. The latter process will be negative 
binomial as developed in [4], [5] and [ 61. 

For severity of an individual claim, use will be made of a distribution of 
some auto property damage losses by size which are fitted quite precisely 
by a compounding of the log-normal and gamma distributions. (A paper 
describing the method of fit and the accuracy thereof is in preparation.) 
For simplicity here it will be assumed that the distribution of a single prop- 
erty damage claim (X) follows the log-normal pattern. 
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We will define: 

8 as the state of having chosen a risk with the inherent severity 
(average amount of a single claim) : 

E(X) = efi+ 5 

where the loss amounts for the risk 6 are distributed log-normally: 

h(X; p, u)dX = --& e- + dx 

x = log ,X and varies from negative infinity to positive infinity. The a priori 
probability of having chosen p is given by the normal distribution: 

I 
N(p; N, S)d, = - 

(w--N)* 
- sg-/- 2.9~ 4 

where p varies from negative infinity to positive infinity and it is assumed 
that c does not vary from risk to risk in this particular class of risks. 

(Appendix A demonstrates that the class distribution of amounts of a 
single claim (Y) is also log-normal: 

n(Y; N, S, u)dY = 
1 

d27r(SS + d) 
e- --$&$$dr 

for the whole class.) 
y=log.Y 

Thus amounts of a single claim are distributed log-normally for both 
individual risks and the whole class. It is important, however, to distin- 
guish among the parameters of the respective log-normal distributions. 

For simplicity at this point it will be assumed that the inherent risk 
parameters m and p are completely independent. 

Thus there is an infinitude of compound states : 

Mne 

whose likelihood is given by the distribution: 

T(m) * N(p; N, S)dpdm 

The inherent hazard of the risk will be assumed to remain the same 
throughout. 
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Exposure Units 
Discrete Example - One roll plus, if necessary, one spin to determine 

the amount of the claim. 

Continuous Example - One car-year. 

Moments of Frequencies and Severities 
Discrete Example 

(Frequency) The probability of a claim for state A1 is l/6 and for state 
AZ is 3/6. Remembering that the variance in the binomial process 
is given by npq and that n equals one for one for one exposure unit, 
the respective variances are: 

Al: 1. (l/6) * (5/6) = 5/36 

Aa: 1. (3/6) . (3/6) = 9/36 = l/4 

Summarizing in the special notation adopted for the risk process : 

State ILE d 

-41 l/6 5/36 

A2 3/6 (or l/2) l/4 

(Severity) When a claim occurs the amount thereof is determined by 
use of the spinner. If B1 has been selected, then the key moments of 
a single claim may be calculated as follows: 

Amount of Probability of 
Claim (X) Amount f(X) x f(X) x2 f(X) 

2 S/6 5/3 10/3 

14 l/6 7/3 9w 

Total 1 4 36 

Thus the mean for state B1 is 4 and the variance (mean of the 
squares less the square of the mean) is 20. 

In a similar manner it can be shown that the mean and variance of 
the amount of a single claim for state BB are 8 and 36 respectively. 
Summarizing in the special notation adopted for the risk process: 
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State 

Bl 

B2 

51E & 

4 20 

8 36 

Continuous Example 
(Frequency) The frequency of property damage claims in one car- 

year for a risk with state M is m and since the process for an indi- 
vidual risk is Poisson the variance is also m. 

Summarizing: 

State kE kc2 

M m m 

(Severity) The severity (average amount of a single claim) for a risk 
with state 19 is : 

And, for the log-normal distribution, the variance of a single claim 
(for state f3) is: 

ezrrt@(eu~ - 1) 

Summarizing: 

State $3 mu* 
0 

e e”+ g escLtqeo* - 1) 

(The reader will surely recognize that the “sigmas” in the risk proc- 
ess notation are not the same as the “sigmas” in the log-normal 
distribution. There is a need to compromise between distinguish- 
ing symbols and still using familiar notation.) 

Pure Premium 
The product of frequency and severity (for one exposure unit) is com- 

monly referred to as the pure premium (II). When multiplied by the 
number of exposure units the pure premium indicates the charge necessary 
to cover expected losses. For the risk process the pure premium is given by: 
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Discrete Example 

Table 1 

Mean and Variance 
of the 

Pure Premium 

Probability 
Square 

Pure of Pure 
State of State Frequency Severity Premium Premium 

AtnBj f(A<nBJ & Ad.? II rI* 

(1) (2) (3) (4) (5) (6) 
l/4” (As calculated) (3) x (4) (5) squared 

AIn% l/4 l/6 4 213 4/9 
AlnBB2 l/4 l/6 8 4/3 16/9 

A,nBl l/4 l/2 4 2 4 

A2n B2 l/4 l/2 8 4 16 

Total 1 Weighted-by (2) -Total 2 50/9 

‘* Remember that each state in the dice-spinner example is equally likely. 

Thus, if one knew that the true state was A, n B2, one would charge a 
pure premium of 4. Since one never knows (in this example) which state 
one is dealing with, one would start a priori by charging the mean (of the 
hypotheses) pure premium of 2. 

The variance of the hypothetical means (mean of the squares less the 
square of the mean) is (14/g). 

Continuous Example 

Recalling that kE = m and **E = cut $- 

the pure premium for the state M n e is : 

Jyrn.&$- 

Also recalling that the probability of state M n e is: 

T(m) l N(p; N, S) dpdm 
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the mean (class) pure premium is given by: 

s=+aa 
E(n) = f eN+ 7 

In a similar manner the mean of the pure-premium-squared is given by: 

Thus the variance of the hypothetical means is : 

G(H) = f eBNtSztua[(r + l)eS” - r] 

Expected Value of the Process Variance 
In the risk process each separate state has its own process. Recall that 

the variance of the compound process is given by: 

d = kE * ,,2 + ,‘u2 * slEB 

Discrete Example 
Table 2 

Process Variance 

Frequency Severity 

Probability Mean- Process 
State of State Mean Variance Variance Squared Variance 

AinBj f(AcnBj) kE 2 mu2 ,,E2 2 
~ - - 

(1) (2) (3) ;krr, (5) (6) ;G 
l/4 (As calculated) (As calculated) l(3) x (5)1+ 

L(4) x (611 
Aln Bl l/4 l/6 5/36 20 16 50/9 
Aln & l/4 l/6 5/36 36 64 134/9 
A2n B1 l/4 l/2 l/4 20 16 14 
Azn B2 l/4 l/2 l/4 36 64 34 ~___ ___ ~ ___ 

Total 1 Weighted - by (2) - Total 154/9 
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It is pertinent to note at this point that the process variance of the indi- 
vidual states does not change, but, as actual experience is obtained, the 
probabilities of the individual states may change. New probabilities, after 
experience is obtained, are a posteriori. The mean of the process variances 
using the a priori probabilities is the expected value of the process variance 
- in this example (154/9) 

Continuous Example 

Recalling that &E = km8 = m and that 
,,a” = e”~+@(e”’ - I), and &2 = e2~t~* 

#~ = m[e”c”+““(e”” - 1) + ,m+@] 

aa2 = m * &(Wt@) 

This is the process variance for each individual risk with state Mn 19. 

Weighting each such variance by the a priori probability of the respective 
states and integrating over m and p is: 

E(,u”) = l*mT(m) [~~ez~U+@~N(p; N, S)dp] dm 

E(,o”) - I; et(NfSe+@) 

Credibility “K” 

(Expected value of the process variance) 

From the definition of credibility (Btihlmann) 

K= 
Expected value of the process variance 

Variance of the hypothetical means 

Discrete Example 

K = (154/9) = 11 

f14/9) ’ 

Now 
z=n 

n+K 

so that credibility for one exposure unit (one roll - and spin, if required) 

1 z=- 1 

1+11=12 
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and for two rolls - 2/13, three rolls - 3/14, etc. 

Continuous Example 

L e2 (NtB=ta=) 

K= 
a aeswua 

If the individual risks in the class being investigated were assumed to 
have the same severity, then S would be zero and K would reduce to: 

ae@ 

Furthermore, if severities werd ignored and the same amount used for each 
claim, then v would be zero and K would be further simplified to a, which 
is the same value determined in [ 61 and [ 81 when severities had not yet been 
introduced into credibility formulas. 

It should not be inferred that theoretical loss distributions are necessary 
for this method to work. First and second moments of raw data may also be 
used as estimators. 

Recapitulation 

This concludes the major thesis of this paper: 

To demonstrate how to determine theoretically correct credibilities for 
the pure premium by making use of the Btihlmann definition of credi- 
bility and the formula for the variance of the compound process. 

The steps involved are summarized below: 

To Determine the Variance of the Hypothetical Means 

( 1) Enumerate all of the possible states, 

(2) Assign an a priori probability to each state, 

(3) For each state separately assign a mean of the number of occur- 
rences or events (labelled claims) per exposure unit, 

(4) For each state separately, assign a mean value for one occurrence 
of an event (labelled a claim), 

(5) The product of the values assigned in (3) and (4) for each state 
separately is weighted by the a priori probability of that state, 
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(6) The sum of the weighted products in (5) is the mean of the hypo- 
thetical means, elsewhere referred to as H, the mean of the hy- 
potheses, 

(7) The products described in (5) are squared for each state separately 
and weighted by the a priori probability of that state, 

(8) The sum of the weighted products in (7) less the square of the 
mean of the hypothetical means is the variance of the hypothetical 
means, as used in the expression for K in the credibility formula. 

To Determine the Expected Value of the Process Variance 

Utilize the values obtained in Steps ( 1) through (4) in determiiiing the 
variance of the hypothetical means. 

(5) Square the value obtained in (4) for each state separately, 

(6) Obtain the variance of the mean number of occurrences, per ex- 
posure unit, and the variance of the amount of a single claim for 
each state separately, 

(7) Obtain the product of the value in (3) with the variance of the 
amount of a single claim for each state separately, 

( 8 ) Similarly, obtain the product of the value in (5) with the variance 
of the mean number of occurrences, per exposure unit, for each 
state separately, 

(9) The sum of the products for each state separately obtained in (7) 
and (8) is the process variance for each state respectively, 

(10) The sum of the process variances weighted by the a priori proba- 
bility of each respective state is the expected value of the process 
variance. 

The balance of the paper is devoted to applications of this new ap- 
proach and to a comparison of credibility results with the results of 
Bayesian estimation. 

Credibility vis-a-vis Bayesian Estimation 

While the discrete example of the dice and the spinners is fresh, it is 
instructive to compare credibility with the results of Bayesian analysis. To 
start, the probabilities of obtaining all possible outcomes under all possible 
states are set forth in Table 3. 
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Table 3 
Probabilities of States and Outcomes 

Outcome for One Trial in 144ths 
Marginal 

State 0 2 14 Total 

&nBl 30 5 1 36 

&n&t 30 3 3 36 

&nBl 18 15 3 36 

&nB2 18 9 9 36 

Total 96 32 16 144 
To illustrate the method of determining the values in the above table: 

Probability of state A2 n B1 equals l/4 
Probability of a claim given this state equals 3/6 

Probability of claim amount “2” given a claim and given this state equals 
5/6 

Therefore, Probability (2 nA2 mB1) equals l/4 x 3/6 x 5/6 equals 
15/144 

The inverse, or Bayesian, probabilities derived from the above table 
given the outcome of one trial but not knowing the true state, are obtained 
by dividing the individual cell probabilities by the probability of the outcome 
(column) in which the cell falls. The results, plus a refresher on the pure 
premiums of each individual state, are given in Table 4. 

State 

AlnBl 

&n& 

AtnJ% 

&nB2 

Total 

Table 4 
Inverse Probabilities 

Given Outcome Pure Premium 
[Table 1. 

0 2 14 Column (5) ] 

5/16 5/32 l/16 2/3 

5/16 3/32 3/16 4/3 
3/16 15/32 3/16 2 

3/16 9/32 9/16 4 

1 1 1 
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The probabilities in each of the “Given Outcome” columns represent 
the a posteriori probabilities of the respective individual states if the out- 
come is as given. They are, then, a revision of the a priori state probabilities 
found in Column (2) of Tables 1 and 2. The pure premiums in the last 
column above weighted by the a posteriori probabilities in each respective 
“Given Outcome” column are the Bayesian estimates, e.g. for the out- 
come “2” : 

Pure Premium/Given “2” = (5 x 2) + (3 x 4) -t (15 x 6) + (9 x 12) 
96 

=A$23 

In a similar manner the Bayesian estimates for the outcomes “0” and “14” 
are l$- and 2 E respectively. 

It is interesting to note that credibility has a stochastic aspect. For one 
could use the a posteriori probabilities of the individual states to recalculate 
the variance of the hypothetical means and the expected value of the process 
variance and hence “K.” The new “least squares” line so determined would, 
of necessity, pass through the new Bayesian estimate of the pure premium 
(22 instead of the a priori 2, if the outcome had been a “2”), and would 
no longer necessarily produce the same estimate after a second trial as the 
original “K” would for two trials. In practice it is doubtful if the stochastic 
approach would be used. 

However, the purpose of this section is to compare the credibility- 
produced estimates with the Bayesian pure premiums. This is done in 
Table 5. 

Table 5 
Pure Premiums 

Bayesian vs. Credibility-Produced 

Credibility-Produced 
Outcome Estimate 

Bayesian Square of the 
Estimate Differences 

(1) (2) (3) (4) 
[(l/12) X (l)] + [(11/12) X 21 See [(2) - (3)] squared 

Narrative 

0 11/6 7/4 l/144 
2 2 55/24 49/576 

14 3 35/12 l/144 
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The reader who has persisted with this discrete example this far is en- 
couraged to weight the “difference-squares” in Column (4) above by the 
probabilities of the outcomes from Table 3: 2/3, 2/9, and l/9 respectively 
- take the sum and verify for himself by trying alternatives that ,the credi- 
bility of l/12 does, in fact, produce a “least squares” fit to the Bayesian 
pure premiums in Column (3). 

Finally, it should be observed in this example that, as was pointed out 
much earlier, the Bayesian estimate (55/24) does not fall between the 
observed result (2) and the hypothetical mean (also 2). While this is easy 
enough for the probabilist to understand, it is awfully difficult to interpret 
for a layman. 

Interdependence of Frequency and Severity 
In the discrete example it was originally specified that the selection of 

the die (determining frequency) and the spinner (determining severity) 
are completely independent. Such a specification is not necessary in order 
to obtain credibility “K” using the method described herein. 

In fact, assume that state B, can only be associated with state A1 and 
that state Bz can only be associated with state AZ - total interdependence 
of frequency and severity. It is only necessary to make a change in the state 
probabilities in the second column of Tables 1 and 2. (A, 0 B1 becomes 
l/2 as does A2 n B2, while A1 n B2 and Al n B1 become zero.) Greater 
familiarity with the method could be obtained by the reader by making this 
substitution and carrying out the balance of the steps. (For the record, 
the new pure premium is 2% and K equals 7.12.) 

The important point is that hypothetical frequencies and severities may 
be interrelated without vitiating this method of determining the credibility of 
the pure premium. 

Auto Merit Rating - Application of Method (See Continuous Example) 
In private passenger automobile insurance the theory with respect to 

merit rating ([5] and [ 61) is pretty well established, if severity is ignored 
entirely. The connection between merit rating and credibility has been 
pointed out ( [ 21 and [ 71) , but for frequency of occurrence only. 

When severity is ignored, it has been shown in [6] and [ 81 that credi- 
bility for Canadian private passenger data - Class 1 (Adult-Pleasure Use) 
- is determinable from the parameters : 
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r = 2.62 

(K =) a = 30.1 

165 

r -= 
a .08704 (frequency-class) 

1 
z = 1 + 30.1 

= .032 

Bringing in the additional dimension of severity, for para-realistic auto- 
mobile property damage data (log-normally distributed&Appendix A) : 

N = 5.289 

s2 + u2 = 0.738 

S” = 0.01932 

eN+ y = $286.60 (severity-class) 

E(r+ pty = $24.95 (pure premium-class) 

From the continuous example: 
aeS*+U* (30.1)e0.7J8 

K = (r + I)@” - r = (3.62)e.0*gs2 - (2.62) = 58’8 

1 
z= 1+58.8 

= .017 

So the second dimension (severity) has the effect of halving credibility 
in this instance. For a coverage with wider dispersion of loss values (of a 
single claim), say bodily injury, there would have been an even greater 
reduction in credibility. 

Rating Plans With Normal/Excess Loss Splits 
Workmen’s Compensation Insurance has a multi-split experience rating 

plan and many forms of commercial insurance have single-split experience 
rating plans. As a change-of-pace from symbols, the results for a single-split 
experience rating plan have been calculated using the same data as in the 
previous section to illustrate how a plan with (complete) credibility, i.e. for 
amounts as well as occurrences, might work. (See Appendix B for complete 
details.) 

To illustrate the effect of splitting losses upon credibility values it was 
assumed that all risks would have the same size-of-loss distribution. It 
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would be possible with a computer and Monte Carlo methods to determine 
K for variable size-of-loss distributions with splitting, but this is beyond the 
needs of this paper. 

How would experience rating work for the values thus obtained? Table 
6 below sets forth the credibilities and experience-rated pure premiums for 
rzo losses, and for a single loss in the amount of $100, $500, $1,000 and 
$3,000 respectively: 

Table 6 
Class Pure Premium $24.95 

Experience-Rated Pure Premium 

Amount of Loss Split-Point 

(one) Loss $50 $100 $250 $500 $1,000 None ~ ~ - ~ __ ~ 
(z-normal) .03184 .03095 .02739 .02298 .01901 .01557 
(z-excess) .01088 .00757 .00289 .00083 .00014 0 

$ 0 $24.59 $24.57 $24.50 $24.47 $24.50 $24.56 
100 26.73 27.67 27.23 26.77 26.40 26.12 
500 31.08 30.70 32.07 35.96 34.00 32.35 

1,000 36.52 34.49 33.51 36.37 43.51 40.13 
3,000 58.28 49.63 39.29 38.03 43.79 71.27 

This table tells only a small part of a much larger story. For example, 
if the amounts of loss used above were divided among two or more separate 
occurrences, the resulting experience-rated pure premium would be dif- 
ferent. However, it is clear that the individual risk suffers most (relative to 
the amount of loss) when the single loss is right at the split point. Also the 
inconsistency in values, read horizontally for a particular amount of loss, 
illustrates the fact that credibility does not necessarily produce an optimum 
estimate but rather is a “least squares” value fitted to a series of optimum 
estimates. It also shows the inconsistency of subsuming credibility into 
normal and excess, thus implying that there is no interrelationship between 
the empirical number and amount of losses in each category. 

Conclusion 
Credibility is theoretically justifiable and eminently practicable when 

amount of loss is considered in addition to frequency of occurrence. The 
results produced by so using credibility are “least squares” approximations 
to Bayesian estimates. 
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The necessary “tools” are : 

1) A priori probabilities of all possible states (frequency and severity 
may or may not be interdependent), 

2) The first and second moments for each state of the - 
a) Discrete process which determines the number of occurrences, 

and of the - 
b) Amount of a single claim. 

APPENDIX A 

Log-Normal (Class) Distributions by Size-of-Loss 

Given X = amount of claim: 
x=log,X 

then the p. d. f. of X is : 

MX ; I-G a)dX = g:z e- 

(x-sJ@ 

Tdx 

Also given that p varies from risk to risk according to: 

1 
N(/L; N, S)dP = - 

(u-h’J* 

&,/.Ze 
- yiy dx 

While m does not vary from risk to risk. 

Pr(X) = C WX I d * Pr(d 
w 

s 
m 

= .MX; p, a)N(p; N, Sk& -cc 
1 

=------- 
s 

me- (a--11)* lee (fi--IYJr dp --- 

O-JG -cc 2u* Sd2r 2s~ 

Combining exponents and completing the square produces : 

1 Oa (also log-normal) = d2T(s8 + (T2) e- PfS”+oaJ 

where S* is the variance of the individual p’s about N, the mean of p’s. 
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As mentioned earlier some special-purpose auto property damage data, 
available to the writer will be used for illustrative purposes. For the log- 
normal fitted to this data the parameters are: 

N=5.289 ; (9 + CT”) = 0.738 

For purposes of illustrating method arbitrarily assume that the severity 
of an individual risk, with a p which is 2S below N, is equal to 75% of the 
average severity of the class. Then: 

eN-2St ; = 75% eNt 7 

and: -2s=1og,o.75+; 

and solving for S: S = 0.139 

S2 = 0.01932 

APPENDIX B 

A Numerical Illustration for Normal/Excess Split Plans 
From Appendix A assume, for simplicity, that all risks in a class have 

the same size-of-loss distribution. Then S = 0 and: 

N = 5.289 

u2 = 0.738 

And from the paper itself: 

r=2.62 

a = 30.1 

making for the class of risks : 

frequency = G = .08704 

severity = eN+ 5 = $286.60 

pure premium = $ eN+ 5 = $24.95 

K = a& = 63.0 (no split) 

Table B-l and the explanation which follows show how credibility 
should be calculated for a single split plan. 



Split 
Point 

(1) 

X 

TABLE B-l 
KEY PARAMETERS 

Cumulative 
Frequency mE mE2 2 2 

(2) (3) (4) “(;) ::I 
u2(r) K 

(7) (8) 
from from (.087) x [(.00288) x 05) 

F (X) Log-Normal* f3)2 Log-Normal* L(4) -t (5)] (411 (7) 

Normal (Below Split-Point) 

$ 50 .05447 $ 49.26 2,427 14.32 212.40 
100 .2131 92.72 8,597 297.40 773.80 
250 .6064 178.05 31,702 5,577.oo 3,243.OO 
500 a8595 238.40 56,835 23,142.OO 6,958.OO 

1,000 .97029 272.60 74,311 52,678.OO 11,048.OO 
No Limit 1.000 286.60 82,140 89,640.OO 14,945.oo 

Excess (Above Split-Point) 

[(.087) x (2)I 
1 - Qh? l(4) + (5) 7 

6.99 30.4 
24.76 31.3 
91.30 35.5 p 

163.68 42.5 214.00 51.6 8 
p 

236.60 63.0 2 

(.00288) x 
(2j2 x (4) 

$ 0 1 .ooo 286.60 82,140 89,640 14,945 236.60 63.0 
50 .94553 251.00 63,001 116,093 14,739 162.22 90.9 

100 .7869 246.40 60,713 146,284 14,179 108.25 131.0 
250 .3936 275.80 76,066 265,654 11,687 33.94 344.3 
500 .1405 343.10 117,718 535,686 7,985 6.692 1,193 

1,000 .0297 1 471.20 222,029 1,285,577 3,890 0.5644 6,892 

* Calculation not reproduced here s 
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The numbers in Table B-l have very little value per se, but the method 
of computing K for split losses is illustrated. Some explanation is required, 
particularly for anyone unfamiliar with rating plans in use in the United 
States on commercial insurance. “Normal losses” for a split-point of, say, 
$500, would be the total amount of any claim below $500 and the first 
$500 on any claim above that point. “Excess losses” would be that portion 
of any loss over $500 in excess of $500. 

Table B-l, Column (2) indicates that 85.95% of all losses will be $500 
or less and consequently that only 14.05 % (see under Excess) of all losses 
will be excess losses. Thus the frequency of excess losses is obtained by 
multiplying the regular frequency of (.087) by the probability that, given a 
loss, it is an excess loss. It has been stated by Verbeek [ 111 that excess 
losses taken from a Poisson process also follow a Poisson process. Thus the 
variance in Column (7) must be multiplied by the square of the probability 
of an excess loss in Column (2). 

Column (3) indicates that the average value of a loss limited to $500 
is $238.40 and also that the 14.05% of losses which are excess have an 
average (excess) value of $343.10. Columns (4) and (5) are self-explan- 
atory. Column (6) illustrates the calculation of the expected value of the 
process variance. Since all risks have the same severity the variance of 
the hypothetical means can be obtained (Column (7) ) by multiplying 
the variance of the hypothetical frequencies by the square of the average 
severity. By now Column (8) should be self-explanatory also. 

In summary, if claim amounts are disregarded, K has the value a of 30.1. 
For. low split-points - $50 and $100 - the effect is not much different 
from just counting claims as far as normal losses are concerned. But as 
the split-point is increased K increases and credibility given to normal 
losses would therefore decrease, until with no limit on the split-point K 
equals the previously calculated value of 63.0 for a no-split rating plan, 

On excess losses, K starts out at 63.0 with the split-point at $0, as might 
have been expected. However, when the split-point increases the credibility 
for excess loss approaches the vanishing point (K equals 1,193 for excess 
‘of $500 losses). 

In summary, credibility is greatest when severity is ignored. entirely 
(as has been the case in the past) ; when severity is introduced, credibility 
can be retained by limiting the value for which a loss enters the rating, but 
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credibility decreases as more and more of the value of the individual claim 
enters the rating until it reaches a fixed value when all loss amounts are 
subject to inclusion. If losses above a certain value (excess losses) are 
rated, credibility has a maximum at the same fixed value applying to the 
rating of all losses and then decreases to zero as the excess point moves 
upward toward infinity. 
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