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A M A T H E M A T I C A L  APPROACH TO 
FIRE PROTECTION CLASSIFICATION RATES 

K E N N E T H  L. M c I N T O S H  

I. INTRODUCTION 

A. The Problem. 

The actuarial core of the fire protection classification rate relativity 
problem is the actuarial core of any fire rating problem: The fire rate 
structure must be (or, at least, for generations, by custom and usage, has 
been) refined far beyond the refinement of the fire statistical plan. En- 
tirely apart from the detail of recently-publicized shortcomings of the 
current most widespread fire statistical plan, the National Board of Fire 
Underwriters Standard Classification of Occupancy Hazards, 1 further re- 
finement of the statistical plan is no answer of itself because, very simply, 
of credibility considerations. A fact well known to any experienced fire 
ratemaker has been formalized by Dr. Almer in the statement: "Statistical 
experience proves that most claims in any branch [of nonlife insurance] 
will be concentrated in some few statistical risk groups (or tariff parti- 
tions), leaving most tariff groups without effective statistics, even if a five- 
year experience is utilized.'"' 

Specifically in present instance, the actuarial problem is to support 
classification rates and rate relativities for as many as ten or more public 
fire protection classifications upon a statistical plan which, credibility con- 
siderations aside, spans the entire range of protection classifications with 
only two statistical classifications, "Protected" and "Unprotected." It is 
submitted that extension of theories already proposed 3,' not only will per- 
mit a mathematical approach to this problem, but also leads to certain 
working formulas which are completely and immediately practical of ap- 
plication in cook-book fashion to save laborious trial-and-error calcula- 
tion in rate revision operations. 

B. Fire Protection Classifications. 

In general, the relative efficacy of public fire defenses is evaluated for 

1 Among others, The National Underwriter, lune 19, 1964, p. 2. 

2 Almer, (.11). P. 341. (Bibliography is appended.) 

a McIntosh, (14). 

4 Mclntosh, (15). Specifically the section: Variable Hazard, p. 15. 
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rate making purposes by application of the National Board of Fire Under- 
writers Standard Schedule ]or Grading Cities and Towns oJ the United 
States with reference to Their Fire DeJenses and Physical Conditions. 5 This 
document, seldom designated by its full official title, has been described 
elsewhere in some detail, c but one particular feature is pertinent to what 
follows here. Application of the Standard Schedule to the public fire 
defense facilities maintained by a given community does not produce a 
protection classification directly; it produces a protection "grading," which 
subsequently is converted to a classification for rate making and under- 
writing purposes. 

In the complete absence of public fire defenses recognizable as such, 
a maximum grading of 5000 "points of deficiency" is assessed. For rec- 
ognizable fire defense facilities, the 5000-point maximum is reduced to 
some lesser figure, depending upon the detail of conditions found by in- 
spection to exist. Theoretical perfection, never yet approached, would 
result in a point grading of zero. The protection grading actually assigned 
to any given community will be some number of points of deficiency from 
zero (theoretically) to 5000; the better the public fire defenses, the lower 
will be the deficiency-point total, or "grading." 

The present significance of this fact is that the protection grading, al- 
though necessarily expressed in discrete units, the "points of deficiency," 
must be considered a continuous variable. Any grading from zero to 5000 
is theoretically possible, although for practical reasons a grading of less 
than 1000 points is extremely difficult to achieve, and no city in the United 
States currently enjoys a grading of 500 points or less. In theory the fire 
rate must be a continuous Junction of this continuous variable, despite 
the fact that, for obvious reasons, it cannot be treated as such in practice. 

• ~ A notable exception is found in the rating system of the State of Texas, whereunder 
public protection is evaluated by a very different approach. There are other minor 
exceptions. 

6Riegel & Miller, (19). p. 564. 
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The conversion of grading to classification is illustrated in the table 

below. 

Grading N.B.F.U. N.B.F.U. 
(Point Protection Statistical 
Total) Class* Class** 

0 

501 
1001 

1501 
2 0 0 l  
2501 

3001 
3501 

4001 
4501 

- 500 .......................... 1 .......................... "Protected" 

- 1000 .......................... 2 .......................... ' . . . . .  
- 1500 .......................... 3 .......................... ' . . . . .  

- 2 0 0 0  .......................... 4 .......................... ' . . . . .  
- 2500 .......................... 5 .......................... ' . . . . .  

- 3 0 0 0  .......................... 6 .......................... ' . . . . .  

- 3500 .......................... 7 .......................... ' . . . . .  
- 4000 ......................... 8 .......................... ' . . . . .  

- 4500 .......................... 9 .......................... "Unprotec ted"  
- 5000 .. . . . . . . . . . . . . . . . . . . . . . .  10 .......................... ' . . . . .  

* According to the N.B.F.U. Standard Schedule, 
** According to the N.B.F.U. Standard Classification o/ Occupancy Hazards. 

Two points should be noted for reference. First, mathematically speak- 
ing, the classification is a step function of the cont inuous grading, hence 
the rate as a function of classification becomes a step function of the grad- 
ing. This represents the imposit ion of an artificially discrete mathematical  

model upon what in actuality is a cont inuum. The practical necessity of 
this departure from actuality is not questioned. Any rating system where- 
under  the rate must  vary with variation of a single grading point  anywhere 
in the 0-5000 range would be impossible of practical application, if for 
no reason other than that it would drive the ratemaker insane in very 
short order. But  whatever the practical necessity, the artificiality of the 

model must  be recognized, to focus attention upon the problem of just 
how great a departure from actuality can be tolerated before the inevitable 
and extremely practical consequences of the fact of the departure itself 

may become unacceptably severe. In  other words, for ratemaking pur- 
poses, how refined should the protection classification system be to at- 
tain the max imum simplicity of practical operations consistent with avoid- 

ance of practical problems of unacceptable severity? The question is not 
academic. 

Secondly, both the number  of the classifications and the exact loca- 
tions of interclass boundaries  are arbitrary. Other classification systems 
can be, and in fact have been, formulated by subdividing the grading 
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range into brackets differing markedly from those shown above. Provided, 
of course, that stability of the rate structure is not destroyed by too- 
frequent revision, there is absolutely nothing to prevent the fire ratemaker 
from establishing protection classifications in whatever number, with inter- 
class boundaries at whatever locations, may prove most expedient and 
appropriate to the problem at hand, so long as it is specified just which 
protection classes are "Protected" and which are "Unprotected" for statis- 
tical reporting purposes. The N.B.F.U. protection classifications tabulated 
above are a generally (but not universally) recognized standard of ref- 
erence, but it is not unknown for a simplified, variant system to underlie 
Dwelling rates in the same jurisdiction wherein the N.B.F.U. classes may 
underlie commercial risk rates. At this writing a six-class system to under- 
lie Dwelling fire rates has been recommended to all fire rating bureaus 
nationwide. ~ 

The importance of these points, first, that any protection classifica- 
tion system is an artificial model and, secondly, that the detail of any 
such system is arbitrary, will be developed in Section 1V. A.2, following. 

C. Designation o~ Classes. 

Three categories of classifications are involved in what follows. For 
present purposes, the term "underwriting class" will be used to designate 
either an occupancy class, e.g., "Dwellings," "Metalworkers," etc., or a 
construction-occupancy class, e.g., "Frame Dwellings," "Brick Metalwork- 
ers," etc. The present development is not concerned with relationships 
between underwriting classes, but only with certain relationships between 
sub-classes within any given underwriting class. 

A "'statistical class," or a "'statistical sub-class" of an underwriting class, 
will be that sub-class of the underwriting class upon which loss experience 
is reported separately as "Protected" or, alternatively, as "Unprotected." 

A "protection class" is a sub-class either of the "Protected" or of 
the "Unprotected" statistical class. The precise definition of a given pro- 
tection class must be in terms o[ grading-point brackets, as illustrated 
above, but there will be no occasion in what follows here to specify such 
brackets, nor even again to refer to the grading except in general terms 
in discussion of continuity. In particular instance, it must and will be 
specified which protection classes belong to the "Protected" statistical class, 

z M e m o r a n d u m :  Recommended Sched,le o/ Fire Insurance Rates for Dwellings and 
Private Outbuildings Appertaining Thereto, dated December  9, 1959. The  "Inter- 
Regional  I n su rance  Confe rence  (now known as T h e  Fire  In su rance  Research  and 
Actuar ia l  Assoc ia t ion ) .  p. 3. 
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and which to the "Unprotected" statistical class. The term, "protected 
class" or "unprotected class," without capitalization or quotation marks 
refers to a protection class which is a member of the "Protected" or of the 
"Unprotected" statistical class. Protection classes will be specifically 
designated by number, and in particular instance the ranges of numbers 
assigned to protection classes belonging to the "Protected" and "Unpro- 
tected" statistical classes, respectively, will be specified. Invariably, the 
lower the numerical designation of a protection class, the better the quality 
of public fire protection associated therewith. Higher class numbers denote 
in/erior protection. 

D. The Presentation. 

The development proper may be said to begin with the consideration 
of rate structures in Section IV. Sections lI and 1II are concerned pri- 
marily with essential background material, definitions and notation. To 
support developments presented here, it has been necessary to reformu- 
late in precise mathematical expression certain theoretical material previ- 
ously presented by Mclntosh in somewhat loose statement, s 

If the working formulas of Section VI, dealing with practical appli- 
cations, are accepted on faith, then Section VI (page ??) may be read 
independently of all else save only reference, as necessary, to definitions 
and notation to be found in Sections 11 - IV. 

11. F I R E  P R O T E C T I O N  C L A S S I F I C A T I O N  RATES AND RATE R E L A T I V I T I E S  

A. The Fire Protection Classification Rate 

Fire rating terminology contains no exact equivalents of the casualty 
terms: "classification rate;" and, "classification rate relativity." Partly 
this is because terminology must be fitted in particular instance to the 
detail of a particular rating schedule, and the variations of detail among 
the several rating schedules in use are too great to permit any sort of 
standardized expression completely unambiguous out of context. More 
to the point, however, is the fact that a true "classification rate" is virtu- 
ally unknown in fire. The fire "classification rate" will be an average 
rate in nearly all. cases. Furthermore, the fire class average rate may re- 
flect fortuitous variation of conditions of hazard completely extraneous 
to the particular hazards definitive of the class. For  example, in a given 
state, the N.B.F.U. Class x "Mercantile Building" average rate may reflect 
a significantly disproportionate concentration in Class x of a particular 

s Mclntosh, (14). 
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type of construction not uniformly distributed among the several fire pro- 
tection classes. The possible severity of such distortion is exemplified 
by the fact that, in the State of Louisiana, the average Mercantile Build- 
ing rate of N.B.F.U. Class 9 is appreciably higher than the average rate 
of N.B.F.U. Class 10, although by provisions of the applicable schedule, 
the Class 9 Mercantile Building rate must be exactly 5% lower than the 
Class 10 rate wherever and whenever all hazard conditions other than the 
public protection are equal, whatever those extraneous conditions may be. 

That such considerations apply not only to the fire "schedule" rate, 
but also to the fire "class" rate, may not be obvious. However, many 
states surcharge the Private Dwelling "class" rate for additional families 
in occupancy, and whether this be done by "schedule charge" or by sepa- 
rate basis rate tables seems a distinction of convenience without substance. 
In an actual case known to the author, a disproportionate concentration 
of multiple-family occupancy in N.B.F.U. Class 3 resulted in a distortion 
of Dwelling protection classification rate relativities of better than 10%, 
in any comparisons of Class 3 with other protection classes. If the so- 
called "loss constant rating method" is used, whereunder the "effective" 
rate becomes a function of policy size, the distribution of policy size among 
the several protection classes may not be, and in general will not be, 
uniform. Again using Louisiana as example, the mean "effective" Brick 
Dwelling Building rate of N.B.F.U. Class 3 is lower than that for Class 2, 
precisely because the average Dwelling policy size in the City of New 
Orleans (which dominates Class 3) is appreciably higher than the aver- 
age policy size elsewhere in the State. 

In any given instance, the variation of extraneous hazard conditions 
from class to protection class may be insignificant; or the variation may 
be of a nature such that it is not reflected in the rates produced by ap- 
plicable schedule. Where this is the case, protection classification rate 
relativities may be determined by direct comparisons among the classi- 
fication rates themselves. But in many instances direct interprotection- 
class rate comparison is useless {or the purpose of determining the effect 
upon rate of public fire protection of itself and by itself. Another concept 
is needed. 

For present purposes, the "protection classilTcation rate" of Class x 
is defined to be the appropriately weighted average of individual rates 
respectively applicable to each of the several risks in OIass x. (How this 
shall be determined in the case of existing rates is of no present concern.) 
It is these rates which collectively must be reconciled in the course of 
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rate revision to statistical classification premiums developed by applica- 
tion of the rate level adjustment formulas independently of the actual rate 
revision calculations. 

B. The Fire Protection Classification Normal. 

To isolate for study the protection component of the protection classi- 
fication rate, the "protection classification normal" of Class x in general 
is defined to be that value which the protection classification rate would 
have assumed had all extraneous conditions of hazard throughout Class x 
been identical to those actually existing throughout the highest-numbered 
class of the protection classification system, except when dealing with the 
"loss constant method" of rating private dwellings. ?In that particular case, 
it may be desirable to normalize the effective rate to the statewide mean 
policy size. The classification normal may be and should be conceived as 
the classification rate "normalized" to a standard set of extraneous con- 
ditions. 

Choice of the highest-numbered protection class to be in general the 
standard-of-reference is not entirely arbitrary. Since the rate of this 
class reflects no recognition whatever of public protection, it already is 
self-decomposed into an extraneous component equal to the rate itself, 
and a protection component which (depending upon form of the calcula- 
tion) will be zero in summations or unity as a factor in products. Entirely 
apart from any theoretical significance, the self-decomposition of the rate 
of the highest numbered class may prove extremely convenient in prac- 
tical calculation involving certain rating schedules. 

The difficulty of calculating the classification normals, once the classi- 
fication rate of the highest-numbered class has been determined, will vary 
widely according to the detail of the rating schedule. In some cases, pre- 
cise calculation may be tedious to a point of practical impossibility. In 
general, where accurate calculation is not practicable, at least acceptably 
accurate estimates can be made. It is here assumed that either accurate 
calculation or acceptably accurate estimate of normals can be made in 
all cases, given adequate data of field conditions which must be obtained 
in any case. 

The "'rate-normal ratio" is defined to be the quotient of the classifi- 
cation rate divided by the normal, or, alternatively, the reciprocal quo- 
tient, of normal divided by rate. Although separate notation for each of 
these reciprocals will prove convenient to avoid negative exponents, in 
general discussion there will be no need to distinguish between them, and 
the term "rate-normal ratio" will be applied indiscriminately to either. 
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Where distinction may be necessary in particular instance, it will be made 
by notation if not clear from context. 

For what is to follow, it is not sufficient that the rate-normal ratio be 
obtainable by direct division of the normal into the rate, or v.v. Its pur- 
pose is to permit calculation of the rate from the normal, or v.v., when 
one only of these quantities is known independently. As with the normal 
itself, the difficulty of calculating or estimating the rate-normal ratio solely 
upon the basis of schedule provisions and known field conditions, will 
vary widely from schedule to schedule. It must be assumed for what fol- 
lows that calculation or acceptable estimate of the rate-normal ratios can 
be made by some method other than direct division between rate and 
normal developed independently of each other. 

It is further assumed here that the rate-normal ratio will be a con- 
stant, characteristic of class and not necessarily the same {or all protec- 
tion classes. No generalizations can be made concerning special methods 
required when the rate-normal ratio becomes a .function of the normal 
itself, except to say that in the author's experience graphical methods 
prove expedient and usually will yield satisfactory solutions. 

C. The Rate Revision Problem. 

The "underwriting target rate" is defined to be that rate which, if ap- 
plied indiscriminately to each and every risk of the underwriting class 
("Frame Dwelling," "Mercantile Building", etc., etc.), will produce the 
underwriting classification premium required by the rate level adjustment 
formulas. (Here assumed to have been pre-determined.) 

The "protected target rate" is defined by analogy, with specific ref- 
erence to the "Protected" statistical sub-class of the underwriting class. 
(Here assumed to have been pre-determined.) 

The "unprotected target rate" is defined by analogy, with specific ref- 
erence to the "Unprotected" statistical sub-class of the underwriting class. 
(Here assumed to have been pre-determined.) 

The "underwriting trial average" is defined to be the average of the 
several protection classification rates for the underwriting class over the 
entire range of protection classifications. This average is to be weighted 
in accordance with that proportion attributable respectively to each pro- 
tection class of the total amount of insurance written throughout the un- 
derwriting class? 

In practice the exact distribution of liability among the several .protection classes 
may not be ascertainable. In such instance, .the distribution is approximated by the 
best available set of indices, e.g. risk count by class, etc. 
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The "protected trial average" is defined by analogy, with specific ref- 
erence to the "Protected" statistical sub-class of the underwriting class. 

The "unprotected trial average" is defined by analogy, with specific 
reference to the "Unprotected" statistical sub-class of the underwriting 
class. 

From the foregoing definitions, it will follow by straightforward algebra 
(if not obvious) that a given set of protection classification rates will pro- 
duce upon field application the required classification premiums if and 
only if the trial averages produced by those rates are respectively equal 
to the corresponding target rates. The problem of developing adjusted 
protection classification rates which will produce required underwriting 
and statistical classification premiums thus resolves itself into the prob- 
lem of developing adjusted protection classification rates which will pro- 
duce trial averages equal to pre-determined target rates. 

Where only the underwriting target rate is specified, and where pre- 
existing protection classification rate relativities are to be left undisturbed, 
the immediate solution is, of course, simply to multiply all existing pro- 
tection classification rates by the percentage quotient of the required un- 
derwriting classification premium divided by the most recently available 
reported classification premium. However, if separately-specified pro- 
tected and unprotected targets require respective adjustments in differing 
percentages, simple multiplication of the protected and unprotected rates 
by the respectively indicated percentage factors will distort relativities, 
and may produce inversions such that the rates in a given community will 
decrease if the fire department is disbanded and the fire engines are sold 
for scrap. TM In any case, simple multiplication of all existing rates by a 
constant percentage factor is inappropriate where for any reason the pro- 
tection classification relativities are to be revised regardless of any premium 
adjustment. Where uniform percentage adjustment of all protection classi- 
fication rates is inappropriate, solutions may be obtained by trial and error. 

There are less-tedious methods. 

D. General Notation. 

The following general notation will be used throughout what follows, 
excepting only where superseded by special notation to be defined when 
introduced. 

a0 Mclntosh, (16). Specifically the section: Rate Adjustment, p. 13 l. The principle here 
involved is not restricted to protection classification rates, but is completely general 
in application whenever related classes are to be adjusted. 
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Let: 
x : - T h e  class number designating a particular protection class: 

"Class x. ''1~ 

, 1 : - T h e  highest class number assigned to a protected class. To be 
specified in particular instance. 

f l : - T h e  lowest class number assigned to an unprotected class. To 
be specified in particular instance. 

z : - T h e  highest class number assigned tinder the protection classi- 
fication system. To be specified in particular instanceY' 

R, :  - The protection classification rate o[ Class x. 

Q ~ : - T h e  protection classification normal of Class x. (By definition 
of Q,; then: Q: =-R,-, except  when dealing with the "loss con- 
stant rating method." Choice of "Q.." vs. " R , "  as appropriate 
to immediate context.) 

l f The,rate-normal ratio o1~ Class x. (Choice o[ "r ,"  
q, = Q , / R ~  : J vs. q,  as convenient. By definition of Q~,' then: 
r, R # Q , [  - ]  r . . - - q . - = - 1 ,  except  when dealing with the loss J ~.constant rating method.")  

,,x l 
= : - F o r  reasons of convenience to become apparent. 

T: - T h e  underwriting target rate. 

P: - T h e  protected target rate. 

U: - T h e  unprotected target rate. 

v~: - The pro-rata portion attributable to Class x of the total amount 
of insurance written throughout the underwriting class. ~ r v ,  = 1 

vl.: = "~pv,.; vu = ~,vvx 
11 Under some classification systems, the several classes are lettered rather than num- 

bered, but for what follows it is necessary that numbers replace any non-numerical 
class designations. 

1~ For consistency, the Greek omega, ",o", probably should be used here, but this is 
avoided because of the typographical similarity o[ "co" to Roman "w", frequently 
used in what follows. 
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f IJz//VI, ," 
Wx" = Vz//YU," 

P' = Z,,w=R~ 

t3 = E , : w , R ,  
^ 

T o : Y, Tv~Q~ 

F I R E  C L A S S I F I C A T I O N  R A T E S  

if 1 < x < , , .  Then: ~ . w ~ = l  
i f f l _ < x < z .  Then: ~ v w , = l  

: - The underwriting trial average rate. 

: - The protected trial average rate. 

: - The unprotected trial average rate. 

: - T h e  unprotected trial average normal. 

: - The protected trial average normal. 

: - T h e  unprotected trial average normal. 

PO = Z,.w,Q~ 

u O = Zuw.,Q~ 

Rate notation as given above invariably refers to the "adjusted" rates, 
i.e. those to be placed into effect upon completion of rate revision calcu- 
lations. Corresponding notation with reference to the "existing" rates in 
effect immediately prior to rate revision is obtained by superscript, thus" 

" R  e".  " e".  , ,U e,,. , Q~ , "T '";  P , (See Section IV.B,  following.) 

Y ( Y ) : - T h e  maximum (minimum) value of whichever of the fore- 
going quantities (except "x")  may replace "Y" ,  e.g. R~ (R~).  

Ill. RATE VECTORS; PROTECTION CURVES 

A. Sets and Vectors. 

That highly useful concept which permeates the structure of modern 
mathematics, and which a friend of the author has christened, "The Great 
God, Set", in impious reference to the fraticidal villain of the Pharaonic 
pantheon, is appears to be the mathematical key to the fire rating prob- 
lem, just as already it has proved the key to other problems long con- 
sidered invulnerable to systematic, mathematical attack. In simpler ap- 
plications, e.g. the solution of simultaneous linear equations, the villain 
need not be formally identified. TM As the problem becomes more com- 
plex, a point is reached where either he must stand forth in his own true 
shape, or else the development at best becomes interminably tedious and 
at worst becomes sheer impossibility. It is suggested that the critical point 
already may have been passed in fire rating theory. 1~ In any event, it will 
be reached here. 

A completed jigsaw puzzle presents a picture not inherent to any 
single one of its pieces, nor even collectively inherent to all of its pieces 

la Among others, Miiller, (17).  p. 114. 
14 ~But see, for example, Kemeny et al., (6) .  Ch. 4, Sect. 3, p. 223, for a set-theoretic 

approach to simultaneous linear equations. 
1~C[. McIntosh, (14).  
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except when these are arranged in particular relationships to each other. 
| t  is not the exact value individually assigned to any one protection classi- 
fication rate, R~, nor even the combination of values assigned respec- 
tively to each protection classification rate, which will produce required 
underwriting classification premiums. It is only by the assignment to 
each protection classification rate, respectively and in order, of the values 
represented in some permutation of some combination of possible values 
that the rate structure can be reconciled to a premium structure inde- 
pendently pre-determined. Except in special instance, the appropriate 
permutation will be unique to any given combination, and except in 
trivial instance 1~ the choice of appropriate combinations will not be 
unbounded. 

Two puzzles are readily identified and distinguished from each other 
by reference to the one as, e.g., "the ship picture," and to the other as, 
e.g., "the horse picture." Equally unambiguous identification and dis- 
tinction by meticulously cataloging the shape, size, coloration and place 
in the pattern of each individual piece of each respective puzzle, will 
prove an endless and fruitless task with any but the simplest of those 
puzzles designed for amusement of the pre-school-age toddler. A vector 
exhibits a particular permutation of a particular combination of values. 
A pair of ordinary Cartesian coordinates, (a,b),  which is a very simple 
vector, does not represent .the same point as the pair (b,a) unless it 
happens that a = b under all possible circumstance. When the vector 
itself is identified, there is no need .to catalogue the individual compo- 
nents, and the latter task may prove quite a chore when these components 
must be treated as variables to be subsequently evaluated. 

Finally, when a jigsaw puzzle must be moved, it is easier and quicker 
to move it assembled upon a biscuit board than to carry it piece by 
piece across the room. There will be no need for laborious re-assembly 
to re-form the picture; and .there is no chance of a piece being acciden- 
tally dropped in transit, to be unintentionally kicked out of sight under 
the sofa. 

A fire rate structure expressed in terms of rate vectors is easily trans- 
formed mathematically from what it is to what it should be. Systematic 

1~, With highly specialized underwriting classes, it may happen that in a given territory 
no risks in class will exist, yet a rate structure for the underwriting class may be 
desired either for the sake of formal completion of a comprehensive rating schedule, 
or in anticipation of future establishment of risks in class within the .territory. In 
such cases, normally the ratemaker will incorporate into the schedules the rate levels 
o[ other states where the class is represented, but obviously there are no bounds to 
his judgment in this instance. 
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mathematical approach to the fire rating problem on any basis other than 
in terms of rate vectors seems impossible. 

B.  R a t e  V e c t o r s .  N o t a t i o n  a n d  D e f i n i t i o n s .  

(Superscript C o n v e n t i o n : -  The convention of tensor notation, omis- 
sion of the parentheses distinguishing a superscript index, " R  ti~'', will be 
followed as a matter of convenience. If it is remembered that, through- 
out what follows, a letter superscript is an index, no t  an exponent, there 
will be no occasion for confusion.) 

R i = ( R I  i, R~ i . . . .  , R ~ ;  Rt~ i . . . . .  R j ) : -  A rate vec tor .  The super- 
script identifies the classification rate, R~i, as a component of 
the vector, R i. The superscript does n o t  designate a pre- 
determined value of R~. Also, it is quite possible that for some 
x,  then: R~ i = R j ,  where R ~ =/= R i. It  will be true that R ~ = R ~ 
only if R~ ~ = R j  for all  x .  The semicolon indicates the break 
between the protected and the unprotected classifications. 

R v:j = ( R /  . . . . .  R ,J ;  O , . . . ,  0 ) : - A  p r o t e c t e d  rate  vec tor .  The num- 
ber of terminal, zero components equals z - ~  (except as speci- 
fied later).  

R v:k = ( 0  . . . . .  O;  R ~  ~, • • . ,  R ,k) .  " - A n  u n p r o t e c t e d  rate  vec tor .  The 
number of initial, zero components equals ~ (except as specified 
later) .  

R e  ~ = ( R ,  ~ . . . . .  R,~, • R~ ~ . . . . .  R:~). " - A  " P - r e c o n c i l e d "  rate vector, 

such that: Y~,w~R~ ~ = P~ = P," but :  Y, vw~R~ ~ = (J~ :/= U. 

R/":~  = ( R j  ~, . . . ,  R ~ ;  O , . . . ,  O): - A P-reconciled protected rate vector. 

R v  s = ( R /  . . . . .  R~s," RO i . . . . .  R J ) : - A  "U-reconciled rate vector, 

such that: Y J v w ~ R j  = ~]l = U," but." Y . , , w ~ R j  = P~ =/: P. 

R u  U:j = ( 0  . . . . .  O;  RO j, . . . ,  R J ) . -  A U-reconciled unprotected rate 
vector. 

R r  ~ = ( R j  ~ . . . .  , R ~ ,  • Rt3 ~, . . . ,  R.~). • - A " ' T - r e c o n c i l e d "  rate vector, 

such that: Y . r v ~ R j  = ~ i  = T," bu t :  ~PW--R~ i = I ~i ~ P;  and." 
^ 

i U i ~ u w ~ R ~  = ~ U. 

11 i = ( R ,  i . . . . .  R ~ ,  • R ¢  ~ . . . . .  R..i). " -  A "Jeas ib le"  rate vector, such 

that: Y, ew~R-- = P~ = P;  and;  ~ v w ~ R - -  = f j i  = U. 

It  follows from definitions that T =  v r P  + vvU," whence, if 

/}~ is feasible, as above, then also: E~,v--R-- = 7"~ = T.  
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(a) R~=R~Y : j + R U  U : k = ( R /  . . . . .  R J ;  R o k , . . . ,  R,~), • where possibly 
but not necessarily: i = j = k. If, in the middle member, either 
the protected vector is not P-reconciled; or, the unprotected 
vector is not U-reconciled, then R ~ in the left member is not 

feasible. 

Note that the individual component rates do not carry the reconciliation 
subscript, "P",  "'U" or "T" ,  or the "feasible" tilde, " ~ " .  It is the vector, 
as a vector, which is reconciled, not the individual component rates. If 

R ~ is feasible, R~, and RJ is feasible, RJ; then R~ = R~/':~ + Ru v:i will 

also be feasible,/~k But the vectors: 

R ~ = RI / ' : i  + R c':~ = ( R ,  ~ . . . .  , R . i ;  R~J . . . . .  R~, ~ . . . . .  R J )  v s II  ~ 

and: 

R"' = R p:'' + R v  ' : j  = (R~ ~ . . . . .  R ~  . . . .  R,] ," Rt~J . . . . .  R j )  ~ R "  

will not be feasible except possibly in special cases, although every in- 
dividual component, R~ ~ or R,J, of R z and R'" appears also as a com- 

ponent of one or the other of the feasible vectors /}~ and RJ. 

Q i  = ( Q l i ,  . . . , Q i; Q ~ i ; . . .  , Q i): _ A normal vector. 

Qp:j; O r : e : _  A protected normal vector; an unprotected normal  vector. 

Definitions by analogy to definitions of R e:j and R U:k. 
r 

Q~ ~-----~R~ : - For all x; then R ,  i -= r ,Q ,  i. Then Qi "underlies" its "resting" 

vector, R ~. If R ~ is T- P- or U-reconciled, R,r ~, etc.; or is 
feasible, / i  ~, then Q~ is reconciled, Q,r ~, etc.; or feasible, 

Q~, accordingly. 
q 

Ri~------~Qi:- For all x; then Q i =  q ~ R j .  Then R i "rests upon"  its "un- 

derlying" vector, Q~. 

C. Protection Curves.  

A "protect ion curve"  is either a rate curve or a normal curve. 

A "rate curve" is any smoothly continuous curve passing through the 
plot of the component rates of a rate vector plotted against class number. 

A "normal curve" is a smoothly continuous curve passing through 
the plot of the component normals of a normal vector; provided that the 
slope of a normal curve must be non-negative throughout the interval 
l < x < _ z .  
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The reflection in protection classification rates of variation of 
extraneous hazard conditions may produce negative slope to the rate 
curve over part  of its length. Negative slope to the normal curve indi- 
cates increase of rate with improvement of protection, or v.v., through- 
out the interval of the protection grading where the negative slope oc- 
curs. Remembering that in theory, the rate is a continuous function of 
grading, which is a continuous variable (see Section I, preceding), this 
represents a logically indefensible violation of consistency which may re- 
sult in Qj, < Qo where ~ > ¢, under the classification system currently in 
use, and is certain to result in Q~, < Q¢ where /z > ~" under some classifi- 
cation system possible of adoption. 

A protection curve uniquely "determines" its "defining" vector. A 
rate vector or normal vector does not define a unique protection curve. 
In the absence of further specification, the vector defines an entire family 
of curves, but this is of no practical consequence. The French curves and 
ships' curves of Mr. Carlson's nostalgic reference ~ are still very much 
in evidence upon the fire ratemaker's desk. He is sufficiently calloused ,to 
the implications to lose no sleep over the fact that a particular squiggle 
which gives him an appropriate rate pattern will have an infinite number 
of siblings, any of whom would be equally obliging. 

IV. RATE STRUCTURES 

A. Adjusted Rate Structures. is 

1. The Feasible Adjusted Rate Structure. 

The "/easible adjusted rate structure", { / ~ I '  is the set of all feasible 
adjusted rate vectors. It is completely bounded. 

Let: 

[~,p = (P/w, , . . . , o,.o,..., o) = (~1, . . . , o,.o,..., o) 

R: = (O,..., P/w~,..., 0 ; 0 , . . . ,  O) = (0 , . . . ,  : ~ , . . . ,  0 ; 0 , . . . ,  O) 

1: Carlson, (13). p. 76. 
is See APPENDIX A ['or development of equations presented below without proof, 

and for further discussion of the concepts summarized below. For the practical sig- 
nificance of these concepts, in addition to APPENDIX A, see also Section VI.D, to 
follow. 
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R,,P = ( 0  . . . . .  P /wa , 'O  . . . . .  O )  = ( 0 , . . . ,  I~,, '0, . . . , O)  

h ; '  = ( o  . . . . .  o ;  U / w ~ , . . . ,  o )  = ( o , . . . ,  o , f ~ , . . . ,  o )  

!~?' = ( o  . . . . .  o , . o  . . . . .  U/w~ . . . . .  o )  = ( o , . . . ,  o , . o  . . . .  , 

f t ,  U = ( o , . . . ,  o , . o ,  . . . ,  U / w A  = ( o  . . . . .  o , o  . . . .  , k . . )  
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} ; ( f l - - a  + 1) 

/~t, . . . . .  O) 

Then  the feasible adjusted rate structure will be formally defined: If R i is 

feasible, R:' (i.e., R ~ is an element of {/i}), then necessarily: 19 

(1)  /}' = Rp p:s + R u  u:k = y,,aJ ' : i /}~" + Y.~.a~U:~k2 j 

(ax p:i >_ O; ~va~ p:i = 1. a~ '':~ > O; E, : a J  ;:k = 1) 

(Possibly, not necessarily: i ----- j = k) 

and the components  of/}~ will be given by: 

R~ i = aj':~/~z = a~r:JP/w~; (x = 1 . . . . .  a:) 
(1.a)  

Rz  i = azV:kRz ~--- a zU:kU/wz ;  (X = fl  . . . . .  Z.) 

By implications of definitions given, P > O, U > O; and for all x, then 
w¢/> O and R~ ~ >~ O. By hypothesis, henceforth for all x, then w, > O 
in all equations presented. If, for any x, then w, = O, i.e. if no insurance 
is written in Class x, 2° then the class must be dropped from all calcula- 
tion, and the rate must be established by judgment alone, with reference 
to the rates of other classes. In consequence,  R~ > O for  all x. Therefore ,  
for all x, the coefficients, a2 of E q . ( 1 )  must be non-negative to avoid 
R, ~ < O for some x. 

The  restriction that the two sets of coefficients, {a~ v:i} and {a~V:k}, each 
sum to unity is justified in Appendix A. For  the moment  it may be noted 
that since by Eqs. (1 . a ) :  

w~,R~ i = a,/':sP; (x = 1,2 . . . . . .  ) 
and: 

w~R~ i = a~r::JU; (x = B . . . . .  z) 

then the summation-to-unity restriction on aj." is sufficient to insure that 
R:~ will be feasible. 

19 CJ. Mclntosh,  (14 ) .  p. 151, Eq. (8)  
20 If, in a given state, no c o m m u n i t y  is classified as Class  x, or  if no risks o f  a given 

underwr i t ing  class are found  in any  Class  x c o m m u n i t y ,  then w , = O .  A t  this  
writing, no N.B.F .U.  Class  1 city exists  in the  Uni ted  'States. (See Section VI,  
to fol low.)  
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Obviously, however, not all vectors possible of calculation by Eq . ( l  ) 
will be acceptable solutions to the rate revision problem. To begin with, 
by Eq. (1 .a ) ,  for one or more x, it is possible that for some i, then 
R~ ~ = O, which is an absurdity in practice. Secondly, rate inversions may 
be produced, i.e. it would possible for a given community to suffer in- 
crease in rates solely by virtue of improvemen t  in its fire defenses, or 
v.v., which again is an absurdity. As noted above in Section II.B, reflec- 
tion in the rate, R~, of a disproportionate concentration in Class x of 
extraneous hazards may properly result in R~ > R~+z, but in considering 
the normals, the condition chat Q~ > Q¢+, constitutes a serious violation 
of consistency by the implication therein that improvement  of protection 
will increase loss expectation, or v.v. For many vectors calculable by 
E q . ( l ) ,  it will happen that R J r ,  = Q~ > Q~+~ = R~.+,/r . . . .  

virtue of defining I R I  and of formulating E q . ( l )  is to estab- The 
lish a basis for further development. 

2. The  Operational Adjus ted  Rate  Structure. 

Consistency, as above, requires only that for all x, then Q,  < Q,+,, 
but if Q, = Q~+, a triviality results. In such a case, Class x and Class 
(x + 1) should be consolidated into a single class. Therefore, the consist- 
ency requirement, that Q~ < Q,+,, properly may be and should be modi- 
fied by hypothesis to the strict inequality, Q~ < Q~+,, but even this is not 
sufficient. It has been noted in Section I.B. that the adoption of any pro- 
tection classification system constitutes imposition of an arbitrarily dis- 
crete model upon an actual continuum, which leads to the question of 
inter-class differentials. In theory the model is inappropriate, whence it 
follows that the results of application of the model will be inaccurate .  
Mr. Pruitt's statement that: "*** in ¢his area, as in so many others, sim- 
plicity and accuracy are mutually antagonistic. To the degree that we re- 
quire a mathematical and clearly defined accuracy, we must perforce 
sacrifice simplicity and ease of operation, ''-~* seems entirely appropria*e 
here, although the original context is presently irrelevant. The question, 
very simply, is: How great a departure from "mathematical and clearly 
defined accuracy" can be tolerated for the sake of "simplicity and ease 
of operation"? 

If the classification normal relativity Q J Q  . . . .  between adjacent nor- 
reals, is trivial, the rate structure becomes unnecessarily complex. .'= At 

~ Pruin, (18). p. 154 
~.2 It should be noted, however, th~,t in considering elements of the fire rate other than 

reflect.ion of public protection, it may become necessary to retain trivial rate differ- 
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the other  extreme,  if Q,/Q,+, is excessive, the result well may be Mr. 

Prui t t ' s  "horse  and rabbi t  s t e w - ' o n e  rabbit ,  one horse '  ,,;~3 in any case, 
the spec t rum of hazard  wi.thin the individual  class will be so broad as 
to const i tute open invi tat ion to rate devia t ion  and cream-skimming.  ~ 
There  also may  be o ther  ext remely  pract ica l  compl ica t ions  of a kind 
such that  some rat ing jur isdic t ions  on occasion have refined the pro tec t ion  

classif icat ion system by insert ion of  addi t ional  classes when excessive dif- 
ferences could be reduced in no o ther  fashion.  Exac t  figures at which 
Q~/Q~,, passes from " reasonab le"  to " t r ivial ,"  or, a l ternat ively,  to "ex-  
cessive" cannot  be specified; nevertheless it seems necessary,  and on oc- 
casion has proved necessary,  to establish bounds  to Q~/Q,+,. 

Strictly speaking,  excess or  tr iviali ty in this regard cannot  be judged 
on the basis of the rat io  Q,/Q~+I alone. The  rat io  Qz/Q,+, and the value 
of the dilference,  Q~+,- Q~, must  be examined  together,  for all pract ical  
purposes.  -05 To  incorpora te  s imul taneous  cons idera t ion  of QJQ~,+t and 
Q~÷I -  Q.~ into what  follows here,  however ,  would require  that  the bounds  
to be hypo theca ted  as appl icable  to Q,~/Q~,+, be made  functions of Q,+,, 
which in turn would mater ia l ly  compl ica te  the deve lopment  to no good 
purpose.  In  pract ical  opera t ions ,  fore-knowledge  of the general  level of 
rates to be ob ta ined  ( though not,  of course,  of the exact  values)  normal ly  
allows the r a t emaker  to es t imate  rat ios which will p roduce  reasonable  dif- 
ferences,  or  v.v. if he prefers.  W h a t  follows in terms of Q~:/Q~+I could 
have been deve loped  in terms of Qz+,- Q~, though obviously  the form of 

the deve lopment  would have differed. 

To exclude f rom the rate  s t ructure  values of Q~/Qz+, ei ther  excessive 
or trivial, let  c~ = QJQ~+,, and let the constraint ,  O < c ~  < c,  < b-~ < 1, 
be in t roduced  into the calculat ion.  By definition of the ra te -normal  ratio,  

ences 1o avoid violation of consistency. The ultimate cause of such circumstances is 
the fact that the contribution of a given hazard to the total expectation of loss will 
vary according to the presence or absence of other given hazards. Cf..Mclntosh, 
(14), p. 152; also (16), p. l18ff. (The solution given in the latter reference is 
an alternative to retention of a trivial differential, but is not always practicable.) 

-~zPruitt, (18). p. 153 

2.~ To untangle the metaphor, cream the rabbit. 

_,5 For example, the author once was involved in a rather heated controversy with ,the 
officials of a certain municipality over the question of whether or not a rate reduc- 
tion of $0.20 per $1.000 of insurance was an insultingly ".trivial" return for money 
spent by .the city to im~prove its protection classification, although lhe fiat sum 
anaounted to 11% of the 9re-existing rate of $1.80, a percentage normally consid- 
ered quite reasonable. 
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r~, it then follows that since Jx is defined by f~ = R~/R~+I, then O < 
~x <- Ix <- ~ < r J r  .... by the equation: 

(2) /'~ = cxr~/r~+,," and: ~ = c~r~/r~,1 

The hypothesis of bounds then may be stated completely as the constraint: 

(I)  O < c ,  < c, _< c--'~ < 1; and: O < t ,  _< tx < ~  < r~/r,+, 

It should be noted that Constraint (I)  also implies that Q, < Q,+, and 
that R,  > O, as required. 

"operational adjusted rate structure", op{[l], now may The be de- 
fined informally as the set of all feasible vectors whose component rates 
may be appropriate for application, and may be defined formally as a 

proper su,bset of the feasible rate structure [RI such that if R ~ is a mem- 

ber of op IRI, then: 

(3) opR i = opRp ":i + opRv v:k = 2~,a,P:J/~ P q- Zt,.a,V:h'/~ v 

(aJ':J > O," ~,,ea~ ":j = 1. a~ v:k 3> O," ~va~ u:~ = 1) 
(For  x v a a or z-~°: 

- -  , .  

(J,,at3 v:kw,~U/woP < aJ':~ <-]aa~V:~waU/wgp) 

(Possibly, not necessarily: i = j = k) 

The component rates, R,  ~, of opR ~, are given by Eqs. (1.a) subject 
to the restrictions imposed in Eq. (3)  upon the coefficients a'~. 

Henceforth, an operational rate vector, opR ~ will be denoted simply 
r~ . i3 ,  as R , except when it may be necessary to emphasize in particular 

context that a given vector not only is feasible but also is operational. 

Very obviously, the bounds [, and f-, are not mathematically rigorous, 
but the degree of rigidity exhib]-ted will vary with practical circumstance 
in a particular case. 

3. The Final Adjusted Rate Structure. 

T.he "final adjusted rate structure", consists of a single vector, R*, 
which is that particular vector whose components, R~*, are the rates to 

be placed into effect. Obviously, R* must be an operational vector. 

"~ By previously-given definition of z, [. does not exist, hence the restriction cannot 
apply to a,. 
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B. The Existing Rate Structure. 

The "existing rate structure" consists of a single vector, R ", whose 
components, Rx ", are the rates actually in effect at the time the operation of 
rate revision is initiated. Superscript "e" identifies quantities associated with 
the existing rate structure, thus: U', P", Q~, etc. 

The only present concern with the existing rate structure is the utiliza- 
tion of U ~, PL R~ ", etc., as the parameters and arguments of rating formu- 
las appearing in Section VI, to follow. 

V. RATE STRUCTURE ALGEBRA 
A. The Problem. 

It is, of course, obvious that, givea pre-determirted target rates, U and 
P, a feasible vector always will result ff the components, R~ ~, of any rate 

^ 

vector, R ~ are multiplied by the ratio P/P~ for x-----1,2 . . . . .  a, and by 
^ 

the ratio U/U ~ for x = f l , . . . , z .  There are, however, circumstances 
under which this simple solution either is inadequate or produces unde- 
sirable side effects, perhaps intolerable side effects. 

It may be that for some x, say x =/~, that the value to be assumed 
by the final adjusted rate, R~*, is pre-determined within narrow bounds 
by underwriting or other considerations, and an interminable number of 
trials with successive rate vectors, R ~, R j . . . .  may be required before a 
vector R k is found such that R e * =  R~kP/P k or R ~ * = R k U / U  k, accord- 
ingly as ~ < ~ or ~ > / r ,  and also such that for all x ~ ~, the rates R,* --  

RxkP/P k or R** = R,kU/~] k, as x _< ,~ or x >~ r ,  are considered appropri- 
ate. The problem becomes particularly difficult if bounding values of two 
or more of the final adjusted rates are pre-determined by side conditions. 

Also, when this method of solution is used, the  ratemaker has no con- 
trol over the boundary ratio, ca = Qa/Q~. Not only may ca become either 
obviously and completely trivial or obviously and intolerably excessive, 
but uncritical and exclusive reliance upon this method .has been known 
to produce in actual practice the weird situation where a community 
could secure wholesale fire rate reductions by disbanding the fire depart- 
ment and selling off the apparatus. In theory, remembering tha.t R,  is in 
actuality a continuous function of protection grading, separate adjustment 
of the premiums for the "Protected" and "Unprotected" statistical classes 
(where P/P'; =/= U/U ~) should be accomplished by rotating the rate curve, 
not by breaking it into two pieces and translating each piece up or down 
the vertical axis independently of the position of the other. ~= Although in 
~7 See Note  10, sup .  



72 FIRE CLASSIFICATION RATES 

many cases this theory is academic, in other cases it definitely will not be 
so. Whether or not it is academic will depend entirely on the actual values 
of  P% U% P/P~ and U / U  ~ in particular instance. 

Two systematic methods of solution which avoid both the theoretical 
and the practical difficulties involved here are given in Section VI, to fol- 
low, but first it may be well to explore the implications of Constraint (I)  
imposed upon the vectors of the operational rate structure. 

B. The Simplest Non-Trivial Case. 

Assume a system of four protection classes. Classes 1 and 2 belong 
to the "Protected" statistical class, and Classes 3 and 4 belong to the "Un- 
protected" statistical class. 

It follows from the definition, f ~ -  R J R  .... that since z = 4, then: 

R e  = feR~ 

(4) R, = I..R~ = LLR~ 
R ,  : f ,Re  = f , feR~ = l f fof ,R~ 

whence: 

(5)  

whence: 

(6) 

Epw~R.~ = (J ,w,  + we) Re = f~f.~ ( f , w ,  -t- we) R.~ -~ 

~ u w ~ R ~  = (fewe -q- w J  R~ = (fswe "q- w~) Re/ fe f3  = [I 

P =LL J,w, + w~ _;~, 

U Lw,  + w~ 
^ ^ i t  

where by definition: P-=P*/U~; and for reference to follow, let Y'* = 

P/U;  whence it follows that if R ~ is feasible, /~i, then: ~i = p ,  = P / U .  

It further follows from Eqs. (4) and (5) ,  by rearrangement follow- 
ing direct substitution of corresponding terms, that if R ~ is feasible, 

/{~, then: 

(7) 

Rt  ~-~" f i p  = f ifeifsi U 

f?w,  + w~ f, iw, + w~ 
P Lif,i  U 

R*i = ] ,~w,  + w~ : fs%vs + w~ 

P LIU 
R't  = h i if?w, + w.) = L~w, + w~ 

P U 
R~'i = t ,  iL ~ i f ]w,  + w,) - f, iwa + w~ 
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Imposing the bounds of Constraint (1) upon 1~* and re*, it follows from 
Eqs. (7) that extremal values of Re and Rs are given by: 

P • and" Re -- P 
Re = f i u ,  ' q_ we ' - f~iW, + We 

R e - -  )/sU ; and: R~ = _ fsU 
- -  f~w~ + w~ f,w~ + w.,, 

(s) 

(9)  

whence: 

(lo) 

(11) 

Re (I,w~ + w~) P 
/e i <_ 

R ,  --  ], (fxw, + we) U 

R ,  ( / ,w,  + w~) P 
1# > . . . .  

R ,  f ,  ( f ,w ,  + we) U 

The implications of lneq. (10) are that for arty choices ot~ [1 > O, 
and o [ f s  > O, as required by Constraint ( I ) ,  there may be encountered 
values of U and P, which are beyond the ratemaker's control, such that 
necessarily f i > re/rs, whence, by Eq. (IV.A.2),  ~s then Qe i > Q~ and 
possibly, even Q e ' >  Q~. Conversely, the implications of Ineq. (11) are 
that for any  choice of ~ < r , /re  and of fe < r / r~ ,  there will exist values 
of U and P such that necessarily ¢ > co ~ > O, where ¢ is arbitrarily small, 
which implies that '1 > I QJ - Q o I > O, where ~1 is arbitrarily small which 
is the very essence of triviality. By appropriate rearrangement of Ineqs. 
(10) and (1 l ) ,  comparable implications concerning the value of fj~ can 
be demonstrated to result from any choice of bounds to f~* and fs *, and 
concerning the value of f3 ~ for any choice of bounds to f~ and ] i .  

It  is to be noted that realization of the possibilities implied, as 
above, by Ineqs. (10) and (11) depends upon the ratio ~P* = e/u, and 
not upon ,the actual v~lue of either P or U. This fact may be turned to 
practical advantage. 

There are eight possible combinations: f~, #,, f.," 1,, re, -f~; etc., of 
the extremal ratios, f~ and f,. Entering each of these combinations in turn 
into Eq. (6) ,  let: 

f, w, -[- w.., _ J) (f t, fe, fa) =tet'-l w  + w, 
(12) 

9","  = p(f, ,  f~, J~) 

• -'s "Eq. (IV.A.2)": - Eq. (2) introduced in Section 1V.A. 
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From the first and last of Eqs. (12 ) ,  it will be seen that for any 
given choice of values for f~ and f-~, the value of Pr is the minimum value 
and the value of pyre is (he max.imum value which can be assumed by 
^ 

P ~ =  P(L ~, ffl, [fl) subject to Constraint  (1). I t  theft follows from Eqs. 
(7)  (whereby it is seen that R /  is for all x a function of either U or P, 
together with one or  more of the rat.ios ffl) that if P* < P~ or .9" > 
.pv,z, no operational rate vector will exist. To be feasible in such instance, 
there must be associated with the vector R ~, values of ffl such that for 
at least one x, then ffl > f.~ if P* > 9 vm, or 1, ~ < f~ if ~P* < y~l. 

If P* = P~ or P*----PYre, then there will exist exactly one opera- 

tional rate vector, /]*,  which may be calculated directly by Eqs. (7) ,  
en.tering as arguments of the equations the values of fl, re, f~ if P* -----PJ, 
and the values of 11, f,-,, f~ if P* = pyre. 

It  is to be demonstrated :'~ that if P~ < . 9 "  <pyre ,  then the final 

rate vector, /~*, may be calculated directly as a linear convex combina-  
tion :'° of certain vectors to be associated with P~, . . . , pv ,~ ,  provided that 

side conditions imposed upon R* (e.g., predetermined bounds to the 
value to be assumed by R~* for some one or  more x) do not render 
solution impossible in particular instance. The  smaller the value of 
P*-P~,  or, alternatively, of p y r e _ p , ,  the more restricted will be the rate- 
maker 's  freedom of choice. 

C. The General Case. 

For  notational convenience, let: 

{ R~/R~+I; i f : x < z  
f ~ =  1; i f : x = z  

( R J R ~ , , ;  if: ~ < t ~ < z  
f:=~, = H Jr  = 

• ~¢ Rc/R~," if: ~ _ < t , = Z  

With the above definition of re:t,, and extension of the previously- 
given definition of f~,,~l under  a generalized classification system of Class 

-°9 See APPENDIX A and also Section VI.D., to follow. 
:"'"Linear convex combination":--E.g., each of the two summations in the righl 

member of Eq.(IV.A.I) is a "linear convex combination" of vectors by virtue of 
the restrictions upon the coefficients a.V. (If these restrictions are removed, the en- 
tire right member becomes simply a "linear combination" of vectors.) 

:~1 It should be noted that this extension of the definilion of f.~ requires appropriate 
qualifying extension of the statement of Constraint (I). 
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1 , . . . ,  Class ,~; C l a s s / 3 , . . . ,  Class z, Eqs. (4) become: 

(13) R,~ = I~R,~+, = I~:.- ,R,~ = I : : : R :  

75 

whence Eqs. (5) become: 
12--J 

¢t--I 

(14) = l,,:~- (Y/'~:._,w~ + w J  R ~  = [> 
Ig=-.I 

E,,w~R~ = (f,.A-' (Ed~:-. w,A R~ 
= (Yv/~::w~) R. = 

whence: 

(15) ~ b yl~:~_,w~+w~ 
u Y,d~,:.w~ 

and by analogy to Eqs. (7),  for any feasible vector, /i~: 

(16) 

R ¢  ~ _ fc:~iP _ I¢:z l U  . < 
• Y J  . . . .  ' Zd,~:,?w,: ~w (¢ - ,0 

Imposing Constraint (I) upon I ,  ~, by analogy to Eqs. (8) and (9)" 

(.17) R~ = P P a-i ; and: R~ = a-, 
E l~:o-jw,~ + wo Y L:,~-,w. + wo 

• = J  - -  X = I  

tO:.-U ; and: R~ = }-t3:.U 

From Eqs. (17) and (18), inequalities analogous to Ineqs. (10) and 
(11 ) may be formulated, and these inequalities will carry exactly the same 
implications under a generalized classification system as do Ineqs. (10) 
and (11) under the 4-class system assumed in Section B, above. 

There will be 2"-' possible 
i,,l~., ...,1=_,,....,.1,,1o., ...,-L_,. 
b e a  system of 2:-' equations: 

combinations of the extremal ratios: 
Hence the analogue of Eqs. (12) will 



76 

(19)  
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G - I  

J~' = f.h~:-- "='- 
_ _ "xZrxJ~,: =~t .~ 

= ~ ( f  . . . . . .  /,,_, ,. f~,. f~ . . . . .  f~_,) 

J~"~ = 1~(I ', . . . . .  f',,-,," J',; f'o . . . . .  J'.--,): (/'.,. = L, or ]~) 

J"~ = ~(7,  . . . . .  L - , ,  L ,  D~ . . . .  , L - , ) .  

I t  will not follow that if q, =/= % then necessarily J~'~ =/: J~0; and for 
I < q~ < f~, the order of relative magnitude among the several l'q' may 

vary with the actual values of J~, -]~ and w~ in particular instance. In all 
cases, however, regardless of the parameter  values, the value of P' will be 
less than, and the value of pn, greater than, the value of any joep for 4, ~ 1 
or f~. Also, as under the 4-class system previously displayed, in the com- 
pletely general case: if P* < Pt or P* > pn, there will be no solution to 
the rate revision problem except in violation of Constraint  (1);  i£ 
P¢----=P~ or PC = pn there will be a unique solution to the problem; if 
p ~ <  pC < pn, then operational rate vectors may be calculated directly 
as linear convex combinations of  not more  than z vectors of certain ones 
to be associated with the several pco;,,~ finally, the smaller the value of 
iP* - J~ or, alternatively, of j~n _ y , ,  the narrower will be the bounds of 

the operational rate structure, o p { l i } ,  i .e. the more restricted will be the 
ratemaker 's  f reedom of choice. 

See A P P E N D I X  A for further discussion. 

Vl. RATE CALCULATION 

A .  T h e  Class i f i ca t ion  S y s t e m .  

Throughout  what follows, it is assumed that the protection classifi- 
cation system is the N.B.F.U. system described in Section I.B., preceding. 
However ,  as no city in the United States presently is classified as 
N.B.F.U.  Class l, then w, = 0, whence Class 2 is the lowest-numbered 
class to be considered in numerical examples. This is of absolutely no 
consequence in connection with M e t h o d  I, to follow in Section C, below, 
except to explain the absence of Class 1 rates throughout the calcula- 

:v_. Normally, the number of vectors required for this purpose will not exceed .three or 
four, but in no case will more than z vectors be required in the combination. See 
APPENDIX A and also Section VI.D, to follow. 
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tion. F o r  the significance of the missing Class 1 with respect  to Method  
II, Section D, below, see A P P E N D I X  A, Section 3, following. 

B. ,4pplication to "Loss  Constan.t Rates." Data .Tables. 

The  da ta  used in all numerica l  examples  to  follow is given in Tables  
I, 2 and 3. The  da ta  of Table  1 is to be used in all cases. I t  will be 
specified in par t icu la r  cases whether  Table  2 or, a l ternat ively,  Tab le  3 
is to be used. 

The rates and parameters given in these tables are based upon the 
F r a m e  Dwell ing Bui lding rates in effect as of this wri t ing in the State of 
Louisiana.  The  only modificat ion of the actual ly-exis t ing rate s t ructure  
has been to e l iminate  a so-cal led "Coun t ry  Dwell ing" rate (h igher  than 
R,o) ,  and to combine  the actual  weighting factors for "Coun t ry"  and for 
N . B . F . U .  Class 9 into the value shown for w9 in Table  1. The  true value 

of w~ would be less than 2 % ,  since N .B .F .U .  Class 9 is vir tual ly non- 
existent  in the state. 3a 

The  Dwell ing rate s tructure in Louis iana  embodies  the so-called "loss 
constant  rat ing method ,"  under  which the "effective rate," E¢, is given by 
the formula:  

= (C~ + D . V ) / V  

= The "loss constant." (Poss ib ly  the same for 
two or  more  classes.)  

D~ = The  "residual rate. ''3"~ 

V = "Policy size," i.e..the amount  of insurance 
under  a given policy. 

Let :  
V2 'v = The mean pol icy size in Class x. 
Vr ~v = The mean pol icy size statewide.  

I t  then follows by Eq. ( 20 )  that :  

( 21 )  E y  = (C~ + D~V~"")/V~"': = The  mean effective rate of Class x. 

( 22 )  E f t  = (C~ + D~V,~."v)/V,~. "" = The mean effective rate of Class x 
"no rma l i zed"  to the s tatewide mean 
policy size, V,/'v. 

a3 Whenever an 8th class community in Louisiana slips, it seems to sli~p all the way 
through N.B.F.U. Class 9 into Class 10. When a Class 10 town decides to im~prove 
its status, momentum usually carries it up through Class 9 into Class 8 or better. 

8.~ The "residual rate" commonly is denoted by "R." rather than by "D." in expressing 
Eq. (20), but in present context this notation obviously would cause confusion. 

(20) E~ 

where:  
Cx 



~O 

T A B L E  1 : ~ Weight ing  Factors .  

Stat. Class. 

Prot. Class 

Wz 

"Pro tec t ed"  

2 3 4 5 6 7 8 

0 .066  0.461 0.052 0.148 0.137 0 .079 0.057 

"Unpro tec ted"  

9 10 

0.215 0.785 

Prot. Class 

R~ ~ 

f~ 

wl----0,  min. Class N u m b e r  in c a l c u l a t i o n = 2 ,  a = 8 ;  / 3 = 9 ;  z = 1 0 .  

T A B L E  2: - -  Exis t ing  Rates .  

2 3 

1.81 2.01 

0.75 0.75 

0 .90 0 .90 

2.21 

0.75 

0 .90  

2.89 

0.80 

0.95 

3.09 

0.80 

0.95 

3.57 

0.80 

0.95 

3.77 

0.80 

0.95 

9 10 

4.24 5.02 

i - -  
0.80 * * 

-[- 

0.95 * * 

l- 

f3 

Z 

P" ~ 2.509;  U" = 4.852.  r~ -- q~ = 1, for  all x. 



T A B L E  3: - -  Exis t ing Rates ,  Exis t ing Normals .  

Prot. Class 

R . 

L 

Q z  e 

c.r 

r'a: 

q~ 

1.72 1.73 2.24 2.75 

0.83 0.64 0 .80  0.73 

1.00 0.77 0 .96 0.87 

3.22 

0.77 

7 8 

3.85 3.98 

0.82 0.74 

9 10 

4.77 5.47 

0.83 * * 

0 .99 * * 

4 .24 5.02 

0 .80  * * 

0.92 

1.81 2.01 2.21 2.89 3.09 

0.75 0.75 0.75 0.80 0.80 
I' I 

0.90 0.90 0 .90 0.95 ! 0.95 

0 . 9 5 l  0.861 

1.161 

1.014 

0 .986 

0.98 0.88 

1.052 

3.57 ] 3 . 7 7  

0.80 0.80 
I" 

0.95 0.95 

0 . 9 5 2 ]  1.042 1.078 1.056 

1 . 0 5 0  0.960 0.928 0.947 

0 .95 * * 

1.125 1.090 

0.889 0.917 

Po ---- 2.407; U ~ ---- 5.320.  
qe ---- 1.069; qtz --- 0 .911.  

Po • = 2.509;  Uo * ---- 4.852.  
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It will follow by straightforward algebra that E~ ~ as calculated by 
Eq. (21)  conforms exactly to the definition of the protection classifica- 
tion rate, R~, as given in Section ]I.D., preceding, and hence may be sub- 
stituted for R~ in any equation so far developed or to be developed be- 
low, without affecting the validity of the equation. 

In general, as noted in Section 1I, R~ is "normalized" to the condi- 
tions of Class z, i.e. of Class 10 in present instance, to obtain Q~. If 
V~o ~ is substituted for Vr .... in Eq . (22) ,  then E~ ~ will conform exactly 
to the general definition of Qz. The fact that it does not so conform to 
the general definition (unless by coincidence VTav= Vjo ~, which is 
urdikely) is presently irrelevant. The basic concept of Q~ is simply the 
normalization of R~ to some common set of extraneous hazard condi- 
tions, and the choice of Class l0  in the general case is not mandatory, 
though convenien,t. (See Section II.B, preceding) Normalization of 
Ez "v to the statewide average, Vr' ' ,  rather than to the Class 10 average, 
V,o "U, is not mandatory. However, choice of Vp ~ normally will give more 
conveniently-handled values for low-numbered classes, and also a truer 
picture of rate distribution, than will Vjv"L In any equation so far de- 
veloped or to be developed below, Ez9 may be substituted for Q~ without 
affecting the validity of the equation in the least. 

The values of R~ in Table 2 are the actual values of E ~  for Frame 
Dwelling Buildings, calculated from current Louisiana rates-in-effect on 
the basis of the actual policy-size sampling underlying the rate structure. 
These same E~ 0 are entered as "Q~" in Table 3, wherein E y  becomes 
"R~". Equations (21) and (22) form the bridge which links the present 
development with the loss constant rating method. 

It should be noted that the values of f,, }-~, c~ and c, shown in the 
tables are assumed for illustrative purposes only. There is no intent to 
suggest that these values are necessarily appropriate in any given instance. 

C. Method I. a~ 

Conditions of Application. 

(a) Neither the final value to be assumed by any individual adjusted 
rate, R~*, nor the percentage value of the adjustment .to any individual 
protection class, is pre-determined; and: 

(b) The bounds to the inter-class ratios, [, and }-~, or, c~ and c,, are 
considered to be extremely elastic. 

35 See APPENDIX B for derivation of all equations employed in this section. 
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Case 1. 

Supplemental Conditions:-  The rate-normal ratio, r~ = R~/Q~, may be 
taken equal to unity for all x; and: the shape of the existing rate curve 
is to remain unchanged. 

Algebraic Solution: 

For each protection class in turn, calculate the final adjusted rate, 
Rx*, by the equation: 

U - P PU ~ - UP e 
(23.a) R ~ * = R ~  ~U~_P~ F U~_p~ 

Graphical Solution: 

(1) Plot the points (pc;p) and (U";U), labeling the horizontal axis, 
"R~e, '' and the vertical axis, "R~*". Draw the straight line through these 
points. 

(2) Read the final adjusted rates, R,*, as the ordinates of those 
points on the line, whose abcissas are the respective existing rates, R~ e. 

EX A M PLE 1. 

Premium Adjustments Required: To the "Protected" statistical c l a s s : -  
10% increase. To the "Unprotected" statistical c l a s s : - 2 5 %  increase. 

Data Reference: Tables 1 and 2. 

Algebraic Solution: 

The complete rate calculation is shown in Table 4, together with the 
values of f~* and the verification. 

A 
The small differences, P* - P = 0.001 and &'* - U = 0.003 are due 

solely to rounding error, as may be seen by carrying at least five decimals 
at each stage of the overall calculation. The form of the calculation is 
exact. 

Whether or not the ratio f~* < f~ is to be accepted is a matter of judg- 
ment. In dollars and cents: f~Rs* -- R~* = $ 2 . 4 2 2  -- $2.339 = $0.083 
per $1,000 of insurance. 
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X R z  e 

2 1.81 

3 2.01 

4 2.21 

5 2.89 

6 3.09 

7 3.57 

8 3.77 

9 4.24 

10 5.02 

F I R E  C L A S S I F I C A T I O N  RATES 

T A B L E  4. 

Solution of Example I. 

R z *  

1.775 

2.057 

2.339 

3.299 

- ×  1.411 - - 0 . 7 7 9 = - )  3.581 

4.258 

4.520 

5.204 

6.304 

1,* Verification 

* * W~ .. w z R ~ *  

0.863 0.066 0.117 

0.897 0.461 0.948 

#0.709 0.052 0.112 

0.921 0.148 0.488 

0.841 0.137 0.491 

0.938 0.079 0.336 

0.872 0.057 0.259 

* * /~* = 2.761 

* * / ~ *  - P = 0.001 

0.856 0.215 1.119 

* * 0.785 4.949 

^ 

P = 1.10P e = 2.760; U = 1.25U 6--- 6.065 U* - 6.068 

(U-P)/(U~-P ~) = 1.411; (PUe-UP~)/(U~-P ~) = -  0.779 U* - U = 0.003 

# [~* = 0.709 < 0.75 = l.~ 

Graphical Solution: 

Figure 1 represents the graphical solution of the problem. The final 
adjusted rates obtained from the original of the graph are: 

R~* = 1 . 7 8 ; R ~ * = 3 . 3 0 ; R ~ *  = 4 . 5 0  

R ~ * = 2 . 0 6 ; R 6 * = 3 . 5 8 ; R g *  = 5 . 2 0  

Re* = 2.34 ; R:*  = 4.26 ; Rio* = 6.29 

and in verification: 

Y.~,w~R~* = / 3 ,  = 2.731; whence: /3* - P = - 0 . 0 2 9  

~,uwxR~* = ~]* = 6.016; whence: U* - U = - 0 . 0 4 9  

The graphical solution follows immediately from the fact that Eq. (23.a)  
is simply the slope-intercept form of a linear equation in R ,  e and R,* .  
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F I G U R E  1. 

Graphical Solution of Example  1. 

e,o -- ..................... , [~~~o7) 
, (u~; u ) 

5.0 

cr 4 . 0  

E 
&O . . . . . . . . . . .  

%~ 2.O,.o ' ~ (p~; p) 

o ,,,o :,o, 
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Case 2. 

Supplemental Cond i t i ons : - -The  rate-normal ratio, r~, may be taken 
equal to unity for all x; but." the shape of the existing rate curve is to be 
revised. 

Algebraic Solution: 

(1)  Determine by any convenient method a set of trial rates, R ,  ~, 

which define a rate curve of the desired shape. Calculate U~ = Y~uw~R~ ~ 

and P~ = E,,w~R ~. 

(2) Substitute R~ ~, U~ and bi respectively for R~ ~, U ~ and P" in 
Eq. (23 .a ) ,  and compute the final rates, R~*, as in Case 1. 

Note: Although the exact values of R~ ~, /.~ and /~ are imma.terial, 

the difference U~ - / 3 z  should contain at least as many significant figures as 
does the difference U - P. This normally will result if the several R~ ~ are 
so chosen that R,o ~ > U, Rs ~ > P, and R~ ~ < P for at least one value of 
~" such that ~ < 8. 

Graphical Solution: 

Proceed as in the graphical solution of Case 1, except that the points 

to be plotted are (/31,. p) and (/~i,. U), and the horizontal axis is to be 
labeled "R~ i ." 

E X A M P L E  2. 

Premium Adjustment Required: To the "Protected" statistical c l a s s : -  
25% increase. To the "Unprotected" statistical c l a s s : -  no adjustment of 
presently reported premium. ~ 

Data Reference: Tables 1 and 2. 

Assumption: The following trial rates define a rate curve of the desired 
shape: 

R.'  = 1 .37;R~ ~ = 2 . 2 2 ; R ~  ~ = 3 . 6 1  

R 3 ' = I . 6 1 ; R 6 ' = 2 . 6 1  ;R9 ~ = 4 . 2 5  

R~' = 1.89 ; R7 ~ = 3.07 ; R,o ~ = 5.00 
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Algebra ic  Solut ion:  

U ~ = 4.852 ; whence: U = 1.000U ~ = 4.852 

P~ = 2.509 ; whence:  P = 1.250P ~ = 3.136 

~ji = ~c .w~R i = 4.839 

Pi = ~,vw~R~ i = 2.066 

whence by Eq. (23.a)  with appropriate substi tutions:  

(23.a .1)  R ~ , * = 0 . 6 1 9 R ~  i q -  1 .858.  

The final adjusted rates calculated by Eq. (23.a)  are: 

R e * = 2 . 7 0 6 ; R ~ * = 3 . 2 3 2 ; R s *  = 4 . 0 9 3  

R J : = 2 . 8 5 5 ; R e * = 3 . 4 7 4 ; R 9  '~ = 4 . 4 8 9  

R,* = 3.028 ; R,* = 3.758 ;R,0* = 4.953 

and in verification: 

Y.vw~R~* = P* = 3.136; whence: /5. _ p = 0 

Y.vw~R~* = U* = 4 .853 ;whence :  U* - U = 0 .00 l  

The rate curves defined respectively by the trial rates R~ ~ and the 

final rates, R.g ~, are shown in Figs. 2.a and 2.b. The  relationship (see the 

figures) between R~ ~ -- L~ i and R~ '~ - L.~ should be noted. 

Case 3. 

S u p p l e m e n t a l  C o n d i t i o n s : - -  T h e  rate-normal  ratio, r,,, cannot  be taken 

equal to unity for all x; but:  the shape of the normal  curve is to remain 
unchanged.  

Algebra ic  Solut ion:  

(1)  Calculate the "unpro tec t ed  target normal , "  Uq, and the "pro-  

tec ted  target normal , "  Po, by the equations:  

U - P P U  ~ - U P  ~ 
Uo = Uo ~ U~ _ P~ + qg U ~ _ P~ ; (qu = ~ ; w ~ q ~ )  

(24)  
U - P P U  ~ -- U P  c 

- -  : '~ ,]4 ) Pq Po ~ U  ~ _ P ~ q - q p  U ~ _  p~ , ( q p = ~ .  ~q~) 

aa It may be noted that if the values of R, shown in ]'able 2 s imply  are increased each 
by 25% for Classes 2-8 while leaving R~ at present value for Classes 9 and 10, the 
result will be not only: Re* =4.71 :>4.24=R~*: but also: R7"-=4 .46~4 .24= 
R.~*. Remembering that by hypothesis, i", = 1, this solution is unacceptable even 
though the required premium volume would be obtained. 
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F I G U R E  2.a. 

Ra te  Curves.  Example  2. 
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r~ 

¢1 

x 

cY 

5.0 

4.0 
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FIGURE 2.b. 

Rate Curves. Example 2. 
Expanded Scale with Reference Lines. 
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(2) For each protection class in turn, calculate the final adjusted 
normals Q~* by the equation (cfi Eq.(23.a)  ):  

(23.b) Q~* = Q~e U e - P e  f PeUq ~ -  U~Pv c 
Uq ~ - p ~  Uo ~ - pq~ 

(3) Calculate the final adjusted rates by the equation: 

(25) R~* = r~Q~* 

It may be noted that Eqs.(23.b) and (25) can be combined if both 
sides of Ep.(23.b)  are multiplied by r~., yielding (Cf. Eq . (23 . a ) ) :  

- P~Uq ~ - U~p9 ~ (25.a) R~* = R~ ~ U~ Pq + r ~ - -  
U~ e Pe r U9 ~ -  po e 

whence R~* is obtained directly without intermediate calculation of Q~*. 
Offsetting the immediate operational economies of Eq.(25.a)  is the fact 
that unless significant changes are to be expected in the distribution of 
sums insured, as reflected in the several weighting factors, w~, the final 
adjusted normals, Q~*, of the current rate revision may be stored to be- 
come the existing normals to be used in the next subsequent rate revision. 
Thus the immediate use of Eqs.(23.b) and (25) in preference to Eq. 
(25.a) may save calculation at a later date. 

It also may be noted that it is possible to obtain a solution by the 
method of Case 1 which will produce the required premium. However, 
direct adjustment of Rx ~ to Rx* by Eq.(23.a)  when r~ :/: 1 is very likely 
to result in unacceptable inversion of the normals, i.e. for some x, then 
Q~ > Q .... If r~ ~ l ,  then R~ > R~+, is permissible, but never the in- 
consistency of Q~ > Q .... 

Graphical Solution: 

By analogy to the graphical solution of Case 1, the final adjusted 
normals Q,* are obtained from the plot of a straight line through the 
points (pqc; Pc) and (Uoc; U~), where the horizontal axis represents Q/: 
and the vertical axis represents Qjc. The final adjusted rates then follow 
by Eq. (25) .  

Case 4. 

Supplemental  C o n d i t i o n s : - T h e  rate normal ratio, r~, cannot be taken 
equal to unity for all x; and: the shape of the normal curve is to be re- 
vised. 
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Algebraic Solution: 

(1)  Calculate Uo and P~ by Eqs. (24)  as in Case 3. 

(2)  Determine by any convenient method a set of trial normals, Q~,  
^ 

which define a normal  curve of the desired shape. Calculate: Uo~= 
A . : ~  i 

~vw~Q~; and: Po~ = ~pw~Q~ . 

(3)  Calculate the final adjusted normals, Q~*, by Eq . (23 .b ) .  

(4)  Calculate the final adjusted rates, R~*, by E q . ( 2 5 ) ,  as in 
Case 3. 

Graphical Solution: 

Case 4 may be solved graphically for Q~*, by analogy to the graphi- 
cal solution of Case 3, whence R~* then follows by E q . ( 2 5 ) .  

E X A M P L E  3. 

Premium Adjustments Required: To the "Protected"  statistical c l a s s : -  
30% increase. To  the "Unprotec ted"  statistical c l a s s : - 5 %  increase. 

Data Re/erence: Tables 1 and 3. 

Assumption: The following trial normals define a normal curve of the 
desired shape: 

Q~ -- 1.37 ; Q5 ~ = 2.22 ; Qs ~ -- 3.61 

Q,~ = 1.61 ; Q~  = 2.61 ; Q9 ~ = 4.25 

Q~  = 1.89 ; Q~  = 3.07 ; Q,o ~ = 5.00 

Algebraic Solution: 

U ~ =- 5.320;  whence: U = 1.05 × 5.320 -- 5.586 

P~ = 2.407; whence:  P -- 1.30 × 2.407 = 3.129 

whence by Eqs . (24 )  : 

Uo -- 5.092; and:  P~ = 3.289 

and by hypothesis:  
^ . 

Uo ~ = ~uw~Q~ ~ = 4.839 
^ . 

P~' = ~pw~Q~ ~ = 2.066 

whence by Eq . (23 .b )  the final adjusted normals are: 

Q ~ * = 2 . 8 3 6 ; Q ~ * = 3 . 3 8 9 ; Q , *  = 4 . 2 9 3  

Q,* = 2.993 ; Q~* = 3.643 ; Qg* = 4.709 

Q~* = 3.175 ; Q,* = 3.942 ; Q~o* = 5.196 
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and in verification of the normals, Q~*: 

~l.w~Q~* -- /30" = 3.287; whence: 'rio* - P0 = - 0.002 

~uw;Q~* --/3~,* = 5.091; whence:  Uo* - U o = - 0.001 

F r o m  the final adjusted normais, as above, the final adjusted rates are, 
by E q . ( 2 5 )  : 

R ~ * = 2 . 6 9 4 ; R s * = 3 . 2 2 6 ; R s *  = 4 . 5 3 3  

R ~ * = 2 . 5 7 7 ; R G * = 3 . 7 9 5 ; R g *  = 5 . 2 9 8  

R4* = 3.219 ;Rz*  = 4.249 ;Rl0* = 5.664 

and in verification of the final adjusted rates, R~*: 

~l,w~R;* =/3*  = 3.124; whence: /3, _ p __ _ 0.005 

~uw~R~* = /~/* = 5.585; whence: U* - U -- - 0.001 

D. Method II. 3~ 

Conditions of Application. 

(a)  The bounds to the inter-class ratios, f; and 7;, are considered 
relatively inelastic as between one or more pairs of adjacent classes; or: 

(b)  The final values to be assumed by some one or more of ~he 
adjusted rates R~* are pre-determined by underwriting or other consid- 
erations; and: 

(c) The shape of the final rate curve (or final normal curve) is im- 
material. 

Pre-calculation of Parameters 

Pre-calculate and store for use in successive rate revisions over a 
period of years the parameter  vectors /3'~ whose component  rates are 
shown in Table 5. For  each vector N~', calculate 33s~ = ~;,w~N~. (I t  will 
be found that for all 95, then ~uw;N~¢ = 1.) Once calculated, these 
parameters need not be re-calculated unless and until either significant 
change occurs in the distribution of sums insured (i.e. in the values of w~) 
or the extremal ratios f~ and 7; are revised. 

Tables 6A and 6B show a sample calculation of these parameters 
f rom data given in Tables 1 and 3. Table 6B serves also as the table 
of parameters for use in illustrative examples to follow. 

~7 See A P P E N D I X  A for full discussion of Method I f  and der ivat ion of equat ions  to 
follow. 
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TABLE 5 : - Parameter Formulas. 

* * N2 No+ No+ Nlo+ * * N2 No@ No+ N,o+ 
(x I 7) (x I 7) 

______ ~___ ~~ - - ----- 

NE’ 
I 

f&‘B Iv, N,o N,” 
I fJ’o No %o -- - -- - 

N," 2 f,NB x, N,, N,"' 8 - 
2, N,, - 

N III 3 ,.&I; @o Np is,, Nzv" & ;;’ ]v ;,, -O -9 
Nt'" I fox9 ‘;3, A&, Nz"'rl I 

-- 
foNo % _N,o 

N,,= l 
Low9 + WI0 N,,=- l - 

fsW9 + WI,1 

No = f&o $9 = ,N,o - - - 

TABLE 6A: - Parameter Calculations. 

Iv,, = 
1 

= 1.0380 
0.83 X 0.215 + 0.785 

N,o = 1 
- 

0.99 X 0.215 + 0.785 
= 1.0022 

_Ng = 0.83 N,, = 0.8615 N x JO.88 = 0.7581 =f,N, 

-O 1 --Q-Q 0.74 = 0.6375 = f,N = N 

N, = 0.99 N,, = 0.9921 
0.88 = 0.8730 =&No = No 

R, x - 0.74 = 0.7341 = f#N, - 
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TABLE 6B: -Parameter Calculations. 

* * NV’ ) NV,, 1 NV”’ N’ 

C3 

N9 

f> - -9 

1.0380 
0.8615 
0.6375 

N’” 

NIL7 - 

N, 
_. - 
faN, 

1.0022 
0.9921 
0.8730 

N” 

N,O 

N9 

f,N, -. - 

1.0380 
0.8615 
0.6375 

- - 

- - 

- - 

- - 

- - 

- - 

- - 

- - 

- - 

- - 

- - 

- - 

/ 
- - _ - 

i 

N,, N,, N,o - 
N, N, ;i7b 

_f*x -- f,N, f,N, 
1.0022 1.0380 
0.9921 0.8615 
0.7341 0.7581 

1.0022 1.0380 1.0022 
0.9921 0.8615 0.9921 
0.7341 0.7581 0.8730 

x (0.82 =f:) x (0.98 = 77, 

0.5227 IO.6019 IO.62161 0.7158 

x (0.77 = fs) 

0.4024 IO.4634 1 0.4786 1 0.5511 

x (0.73 = f5) 

0.2937 IO.3382 / 0.3493 IO.4023 

X (0.80 = f,) 

0.2349 ( 0.2705 IO.2794 / 0.3218 

x (0.64 =fJ 

0.1503 IO.1731 IO.1788 IO.2059 

x (0.83 = fJ 

0.1247 IO.1436 IO.1484 IO.1708 

N:@ 0.6247 IO.7194 IO.7429 ' 0.8555 

x (0.92 = fb) 

0.5747 IO.6618 IO.6834 / 0.7870 

X (0.87 =F5) 

0.4999 i 0.5757 / 0.5945 ) 0.6846 

x (0.96 =r,) 

N,@ 0.4799 IO.5526 IO.5707 IO.6572 

x (0.77 = f3, 

N,Q 0.3695 0.4255 / 0.4394 1 0.5060 

x (1.00 = fp) 

0.3695 IO.4255 / 0.4394 / 0.5060 

I: * 

3.2656 0.3058 0.3160 0.3640 0.4577 0.5272 0.5444 0.6269 
I I 
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Properties of the Parameter Vectors. 

Regardless of the values of w~ and of /~ <7~ for any or  all x, it will 
be found that always: P ; <  P~' for any 4> ~ / ;  j ~ v ; , >  3~, for any ¢ : / :  
VIII; ~pr < S);;/ < jjv; < pv;;;. Also, for x < 8, always: N~; < N~ ;I; < 
N~ v; < N j  ;/;. The ordering of the remaining P~' and (for x < 8) of N ~  
will depend upon the actual values of w~, f~ and f ,  in a given case. 

On the assumption that the extremal ratios 1~ and 7~ are rigid bounds 
to f~;; then, letting P* = P/U," for any value o ( U  and for any values of 
w~, f~ and /~: 

(a)  If: P ;"  < P* < pv;; then: 

N~;;; = N~ >_ R~* /U  = N~* > N71 = N~," (x = ,~ = 8; or: x = z = 10) 

N.J;; = N~ < R ~ * / U  = N~* < N.~ V; = N..; (x - ~ ,  ---:- 8; or: x :/: z = 10) 

(b)  If:  ~,v; < j~, .%< pv ; , ;  then: 

N~ vI < R~* /U  = Nx* < N~ v;;;, (x < ~ = 8) 

(c) If:  P; < ~P* < P; ; ; ; then:  

N J  < R ~ * / U  = N~* < N~;t;; (x < ~ = 8) 

(d)  If :  

P* = P;, then necessarily: 1~* -- UN t 

p .  --  pv;;;, then necessarily: R* = UN vlH 

(e)  If P* < P; or P* > pv;;;, there will be no solution to the rate revi- 
sion problem unless and until the bound f~ or f-~ is relaxed for  at 
least one x. 

Additional and comparable  properties will depend on the values of w~ 
1~ and ]~. For  example, in the assumed instance of pv;; > 3~v; (see Ta.ble 
~iB), if P* > pv , ,  then N~* > N~ TM for x < 8, but  this would not neces- 
sarily be the case were p v ; ; <  pv;, as it might be in particular instance. 

Since the exact wdues of Ix and 7~ depend upon judgment,  these 
bounds may, of course, be relaxed to obtain a solution when and if the 
ratemaker runs afoul of one of the inequalities above. This will be a matter 
of judgment in a given case. In extreme cases, revision of the classification 
system may be necessary. The listed properties can be useful, however, in 
that before actual rate calculation is started, direct comparison of P* with 
P~ gives immediate indication of what may be expected in the course of 
the rate revision. 
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Procedure. 

The procedure will be illustrated by examples. 

9" = 3.129/5.586 = 0.5601 

(29) N~,* = N~ ° ~- Rs° /U  

( N f  = 2.000/5.586 = 0.3580) 

There is no solution to this problem. See Property (b) of the parameter 
vectors, and compare Ns ° with Nfl "~ from Table 6B. 

E X A M P L E  5. 

Target Rates: 

Side Condition: 

Solution: 

(26) 

whence: 

Then: 

(27) 

whence: 

b : 0.6700; and: (1 - b) ~ 0.3300 

N* = bN~ + (1 - b) IV~ 

(28) k*  ~- U/~'* 

The calculation of this example is completed and verified in Table 7. 
There are no worksheets other than Table 7 (unless the tape from a 
standard model desk calculator be counted as such). 

It may be noted that .this problem is exactly the problem solved in 
Method I, Case 4, as Example 3, preceding. It will be found that although 
both solutions are feasible vectors, the solution of this example is such that 
for all x, then f~ < fx* < f~, which is not the case with the solution of 
Example 3. 

P = 3.129; U = 5.586 

Rs* is to assume the value of 2.000 = R f .  

E X A M P L E  4. 

Target Rates: P = 3.129; U = 5.586 

Solution: 
P* = 3.129/5.586 = 0.5601 

Choose any P~' < P*, say 9 I'~. The only Pc > 9" in this case is 9 vm, 
so there is no choice, but in general, any 9~ > 9" could be chosen. Let: 

bP~ + (1 - b) 9~' = P*; Pq' < 9" < 9~) 

(0.5272 b + 0.6269 (1 - b) = 0.5601) 
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T A B L E  7: - S o l u t i o n  of Example  4. 

95 

pv~ pvnt  P* f b = 0 .6700 
0.5257 b + 0 .6269 ( I  - b ) - -  0.5601 • 

1 - b = 0 .3300 

b 

0 .6700 

N V! 

0.4255 

0.4255 

0 .5526 

0 .5757 

0.6618 

0 .7194  

0.7341 

0.9921 

1.0022 

(1 - b )  

+ 0 .3300 

NVIII 

0.5060 

0 .5060  

0 .6572 

0 .6846 

0 .7870  

0 .8555 

0 .8730  

0.9.921 

1.0022 

0 .4519 

0 .4519 

0 .5870  

0 .6166 

= 0.7031 

0 .7642 

0.7798 

0.9921 

1.13022 

U 

5.586N* = 

R~* = 2 .5243 

R ,*  = 2.5243 

R** = 3.2789 

Rs* = 3.4163 

R** = 3.9275 

R , *  = 4 .2688 

Rs* = 4.3559 

Rg* = 5 .5418 

Rio* = 5.5982 

/~* = 3.130 

/ ~ * - P  =0.001  

~/* "- 5.586 
^ 

U* - U = O  
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E X A M P L E  6. 

Target Rates: 

Side Condition: 

Solution: 

In general, a 

(30) 

F I R E  C L A S S I F I C A T I O N  RATES 

P - -  2.680; U - -  5.586 

R/* is to assume the value of 2.000 = R /  

P* ----- 2.680/5.586 = 0.4800 

N,  ° ---- 2.000/5.586 = 0.3580 

solution to this problem will be given by the equation: 

/V* = Yb¢*h'*; (be* >_ 0," Ebb,* = 1) 

whence the final rate vector is obtained by Eq. (28) 3s. The coefficients 
of Eq . (30)  are given by: a9 

Zb~,*P~' + (1 - Z b ¢ * )  P~ = P* 
(31) (b~,* > O; Y~bq,* < 1) 

Zb~  *N,~' + (1 - Z b g  *) N,~ = N~ ° 

Although a solution to Eqs. (31) always may be found by choosing not 
less than three values each of P~ and NS' .from among the eight listed 
in Table 6B, not all combinations of three or more values will give a 
non-negative solution as required. The simplest approach to the problem 
is as follows: 

Choose a valu, e of N,9 :~ < N~ ° and a value of N ~  :* > N~°. ~° Deter- 
mine b ~ by the equation: 

(32) b i N S  ':~ + (1 - b g  N~ ~ : i=  N~ ° 

and calculate: 

(33) fi*:~ = biP¢ :' + (1 -- b 9  P¢:~ 

If ~ * : * =  P*, the problem is solved by entering b ~ and (1 - b i) as co- 

efficients in Eq . (30) .  If P*:a =/= P*, chose a value of N, ¢:j < N~ ° and of 

N,V,:i > N ,  o, where possibly (not necessarily) q~:j = q~:i or tp:j = tp:i, but 

not both. Calculate b i by Eq . (32)  and, thence, j>,:i by Eq . (33) .  If 

P * : J = P * ,  the problem is solved. If ~*:J:/=P* and also either 

P*:' < P* and .p,:i < p , ,  or P*:' > P":' and ,v*:J > ~P*, repeat the 

as Despite the formal similarity, Eq. (30) does NOT follow by simple change of nota- 
tion in Eq. (1) of Section IV.A. See APPENDIX A. 

a~)C]. McIntosh, (14). p. 152, Eq. (9). Equalion (30), above, D O E S  follow from 
Eq. (9) of the reference by simple change of notation accompanied by re-definition 
of terms. 

ao If N ,  ° < N~ r, or N , /  > Nz  vIII, the problem is insoluble. 
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operation until values of ~,:k and j~,:z are obtained, such that 

~.:k < j~. < ~*:L (Normally, if: J~':~ =~PZ and PC:; = pv,/ ,  then ~*:' 

< J ~ * <  J'~*:~ or J%*:~>P* > J;*:J; but a t 'most  not more than three of 

four trials should be required to bracket the value of P* with values of 
) * ) .  

Assume J~'*:~ < J~* < iP*:J. Calculate t by the equation: 

tS*: '  + ( I  - t) 5* :~ = ~* (34) 

Thence calculate: 

( 3 5 )  

be?:i = tbi;  and: bg:i = t (1 - b ~) 

b~:j = (1 - t) b~; and bq~:s = (1 - t)  (1 - bJ) 

Thence a solution to the problem will follow 
efficients calculated by Eq . (35 ) ,  together with 
eter vectors, /~'¢~, etc., into Eq . (30) .  

upon entering the co- 
the associated param- 

The complete solution of Example 6 is given in Table 8. 

E x t e n s i o n  o /  A p p l i c a t i o n  

The procedures indicated under the Examples 4-6 may be extended 
to more complicated cases, e.g.  where values of R, ~ are predetermined 
for two or more classes, or where for some class the value of f7  already 
is so extreme that any further movement of the value either upward or, 
alternatively, downward, cannot be tolerated. Such extensions involve 
techniques of finding directly a non-negative solution of Eqs . (31) ,  and 
very possibly involve pre-calculation of additional parameter vectors 
beyond those given in Table 6B. Although a solution to Eqs . (30)  and 
(31) must always exist, utilizing not more than eight parameter vectors 
under the classification system assumed here for illustrative purposes, the 
total number of possible parameter vectors, no two of which are equal, 
will be 2 ~ = 256, and the practical difficulty lies in determining w h i c h  
eight out of that total will serve in particular instance. 

It seems probable that the full potential of Method 11 can be ex- 
ploited in application only if computer facilities are utilized. However, 
although they cannot be presented simply in empirical fashion, nor be 
applied properly without at least a basic understanding of theory sum- 
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TABLE 8: - Solution of Example 6. 

f’ = 2.680; U = 5.586; P* = 2.680/5.586 = 0.4800 

R,* = R,” = 2.000; N,O = 2.000/5.586 = 0.3580 

N3 N,“’ b’ = 0.2452 
0.15036’ + 0.4255 (1 - b’) = 0.3580 -, I 1 

1 (1 - b’) = 0.7548 

NJ’” NJV”’ bi = 0.4931 
0.2059b’ + 0.5060 (1 - bj) = 0.3580 - 

(I - bj) = 0.5069 

b’p’ + (1 - bi) p”’ = 0.4630 = $*:i 

bipfv + (1 - bj) pl’[Jl = 0.4971 = j;*:i 

0.4630t + 0.4971(1 - t) = 0.4800 -B 
I = 0.5014 

(1 - t) = 0.4986 

bi = 0.1229 = b,* 

II 

bj = 0.2458 = blv* 
0.5014 x 0.4986 x 

(1 - bi) = 0.3784 = bv,* (I - bj) = 0.2527 = bvII,* 

u 
5.586(b,*N’+ b,,*N’v -+ b,,,*Nv + b ,,,,, *NV”’ = j+,J = 

i;* = 2.660 
I;* - P = - 0.020 

fi* = 5.584 

u* - u = - 0.002 

ii* 

R,* = 1.9327 

R,O = 1.9986 

R,* = 2.6794 

R,* = 2.9354 

R,* = 3.5415 

R;* = 4.0688 

R,* = 4.4324 

R,* = 5.4502 

R,,* = 5.6206 
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marized in A P P E N D I X  A, extensions of Method II  beyond the elemen- 
tary applications illustrated ,above most certainly seem entirely practical. 

Vll .  C O N C L U S I O N  

No basic concept new to fire rating theory has been offered in Sec- 
tions I-VI,  preceding, nor is to be offered in appendices to follow. The 
substance of the entire development is reformulation and extension of 
theory previously suggested in forms not only incomplete, but also un- 
fortunately imprecise. In Section VI.C., public fire protection facilities 
simply are treated as a specific example of the variable "hazard r" earlier 
discussed in general terms by McIntosh, both from a theoretical and from 
a practical standpoint? 1 Section VI.D., preceding, and A P P E N D I X  A, 
to follow, are foreshadowed by an earlier application of the theory of 
polyhedral sets to the fire schedule rating problem on the mathematically 
acceptable but actuarially unrealistic assumption that the problem will 
be essentially linear, 4:2 which it is not. The probable severity of fire loss 
contingent upon occurrence .is not stochastically independent o1~ the 
probability of occurrence, whence it will follow that the charges and 
credits of a fire rating schedule cannot be strictly additive, except as an 
approximation over a very limited range of variation. 

The utility of Eqs. (IV. A. 1 ) and (VI.D.3 1 ) is that, taken together, these 
transformations permit reduction of the problem .to linear forms, 43 for 
which ready-made solutions usually will be available by the theorems of 
linear algebra, r '  

The tool marks can be polished off of the final product. All equa- 
tions of Section VI.C. are conventional and somewhat elementary alge- 
braic expressions, and the vector equations of Section VI.D. could be 
replaced by ordinary simultaneous equations at no sacrifice other than 
of typographical economy. On the other hand, a proof necessary to the 
support of Method I, Case 4, .is complete in five short matrix equa- 
tions, 4~ whereas it is extremely tedious to prove the same result by ordi- 

'~' Mclntosh, (15), p. 15, and (16), p. 131. Equation (9), p. 17 of the reference is 
the forerunner of Eqs. (VI. C. 23 -) presented here. The graphical method of curve 
adjustment cited without description on ,p. 20 of the reference is a graphical solu- 
tion of Eqs.(VI.C. 23 - ), though not same method presented in Section VI.C., pre- 
ceding here. 

.~2 McIntosh, (14). pp. 140-146, & lap. 150-152. See also Note 39, s ,p .  

.,3 By permitting immediate introduction of curvilinear coordinates. See APPEN- 
DIX A. 

"" See BIBLIOGRAPHY, to follow. 
45 Eqs. (B.9) - (B.13) of APPENDIX B. 
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nary algebra. Further, although it is easily demonstrated by conventional 
algebra w h y  Method I'l works w h e n  it works, it is only in terms of the 
properties of polyhedral convex sets 'c' that the conditions under which 
solution is possible are expeditiously found. If the properties of Eqs. 
(VI.D.30)  and (VI .D.31)  (of which Eq. (A.38)  of A P P E N D I X  A is 
the generalized form) can be completely investigated by ordinary alge- 
bra, the operation certainly will be interminable, as will be the problem 
of distinguishing between Eqs.(1V. A.1)  and (VI .D.30) ,  which, though 
similar in form, are by no means equivalent to each other. ''7 

Even so, it must be admitted that Method i[ can be demonstrated in 
a fashion much simpler than by the full, formal developments to be found 
in A P P E N D I X  A. The support of Method l I  is not, however, the sole 
reason, nor even the primary reason, for A P P E N D I X  A. When the devel- 
opment there presented was begun (in search of a method to define rate 
bounds under conditions such that all schedule charges are n o t  to be 
assumed as additive) there was no faint suspicion that Method I I  would 
begin to take shape on the work-bench almost immediately; the original 
concept of Section VI was restricted to Section V1.C., before early drafts 
of A P P E N D I X  A relegated Method I to by-product status. 

The main purpose of A P P E N D I X  A is to submit for evaluation, in 
all detail, an actuarial research tool which seems of not inconsiderable 
potential utility. Section 1 of A P P E N D I X  A is intended to stand on its 
own feet. When the transformations defined in that section are further com- 
pounded with the particular transforma,tion defined in Section 2 of AP- 
P E N D I X  A, then Method II  is the result. However, other transformations 
can be grafted onto the development of Section 1 as circumstance may 
dictate; the transformation of the coefficients of Eq.(1V. A.1) into the 
parameter vectors of Method II  is by no means the only direction the ex- 
tension of Section 1 could have taken. 

Once a transformation is defined, it can then be compounded in almost 
any desired direction to achieve almost any desired result with a minimum 
of effort. There is no reason why the transformations F* and F k of equa- 
tions (A.28) and (A.32)  must be defined in terms of Eqs. (A.26)  ex- 
cept for present purposes only. It would be interesting to see what might 
result f rom Eq. (A.32)  were F ~ defined in terms of those equations "not 
of a simple rational form" which have caused Messrs. Bailey and Simon 

.lG CJ. among others, Kemeny et al., (6). Ch. 5. 
~TSee APPENDIX A. 
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tO express a plaintive wish for a "small computer .  ' ' 'z  Were I :k to be so re- 
defined, very obviously the remaining elements of E q . ( A . 3 2 )  must  be ap- 
propriately re-defined also, which might prove difficult or perhaps impos- 
sible. But the idea seems worth a try. 

A second possible line of research would seem to lie in formal recog- 
nition of P and of U as the stochastic variables which actually they are, 
instead of as the constants which here they are unrealistically assumed to 
be. It  does not seem certain that this line is entirely divorced from the 
problem attacked by Bailey and Simon (cited above) ,  namely that  of 
determining the best set of classification and sub-classification relativities 
under a multiple-classification system. 

A P P E N D I X  A 

I. The Adjusted Rate Structures (Sections IV.  A. & V.) 

a. The  Feasible Rate  Structure, 

Implicitly by definitions given, for all x, then: 

w~ >~ 0," R~ >_ 0," if R l':j is P-reconciled, R/ ' :J ,  then: Y p w x R J  ~- P. 

If w c : O, drop the , "  term from the summation.  49 Then w~ > 0 for 
all x remaining. It  is assumed below that w~ > 0 for all x < ,~. 

Let  R j  = 0 for all x :/: t~. Then  R~j : P/wv;  whence it follows that, 
since never: R J <  0; then never:  RvJ > P/wv;  whence always: 

(A.1)  0 <_ Rf i  < P/w~; (x <_ a) 

Thence it follows that: 

(a)  The s e t { R v  e } i s  bounded. It  is contained in a hypersphere by 
virtue of lneq.(A.1).'~'° 

(b)  The set { R / '  1 is polyhedral and convex.  It is the intersection 
of the closed half spaces defined by Ineq. (A. 1 ).'~ 

Let  i { [  : (0 . . . . .  P / w ,  . . . . .  O; 0 . . . . .  0), where t5 < ~. Then the 

v e c t o r / ~ v  is an extreme point (or  "extremal vector")  of {R / ' } ,  whence: 
If and only if R v:i is a member  of { R / '  l , then: 

(A.2)  R,, v:j = "~,,aJ':J/~"; (a~ v:i > O; Y~,,a, '':~ = 1) ~"- 

.ts Bailey & Simon, (12). Specifically: Section B, lap. I1 & 13. 
a9 See Section 3, following. 
g0Taylor, (20). p. 70. 
~ Kemeny et al. (6). pp. 340-341. 
~2 Ibid. p. 347. 
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The  vectors /ix e form a basis for the space St, of all protected rate 

vectors R e, and the vectors / I f  are a in number.  Hence Sp is <~-dimen- 
sional and R e is ,~-dimensional. 53 

E q . ( A . 2 )  may be rewritten: 

(A.3)  R,,  p:s - - - -~ 'af :S  (/l~ e -  i l a P ) + i l a P ;  (aJ ' : s>~O, '~ 'ax  ~':j < 1) 
;¢=1 ~=1 

whence { R p P l  is spanned by the ( ~ -  1) linearly independent vectors 

( R f  --  R,,P), hence { Rp P } is an (,~ - 1)-dimensionaY '4 affine '~ subset of St,. 

By exact analogy to the foregoing: 

(A.4)  O < R~ k <_ U / w ~ ;  (x  >_ fl) 

The set of all U-reconciled rate vectors, {RuU}, is a (z  - fl)-dimensional 
affine subset of the space Sv  of all unprotected rate vectors. 

The  set { Ru u } is a bounded,  polyhedral  convex set having as extreme 

points .the (z  - f l)  vectors ~ o = (0 . . . .  O; 0 . . . . .  U / w ~  . . . .  , 0), 
where p. >_ fl, whence:  If  and only if R v:k is a member  of { Ro u I ,  then: 

(A.5)  R v:k = Y.ua,,V:~RJ, • (a~ U:k >_ O; ~_,va~ U:k = 1) 

Any  feasible vector, R~, may be written uniquely as: R ~ =  Re p:s + 

R v  v:~, whence it follows that the feasible rate structure, {/~ I is the direct 

s u m o f  { R e " }  and {RvU}:  

(A.6)  {R} = { R,'e} * I R v  v} 

whence the dimension of { ~ I = (~ - 1) + (z - -  fl) = z - 2.'~ 

Equat ion (IV.  A.1)  follows from E q s . ( A . 2 ) ,  (A.5)  and (A .6 ) .  

,~ Birkhoff & MacLane, (1). ~pp. 168-169 & 188. It may be noted that this basis is or- 
thogonal. 

r,a Ibid..pp. 164 & 168-169..Designation of the initial point with subscript "a" is 
arbitrary here. The usual designation of the initial point is with subscript "zero," 
but in ,present instance this would require re-numbering of the vectors, any one of 
which could have been chosen as initial point. 

r,~ ibid. p. 291, 

~ Ibid. p. 185. (The direct sum is denoted by " ~ "  in the reference (see ~p. 472), but 
"O" seems a more common symbol.) 
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Let :  

B : 

P / w l  . . . 0 0 . . . 0 

• o 

• . • • ° ° • • • . • 

0 . . . P / w a  0 . . . 0 

0 . . . 0 U / w ~  . . . 0 

• • • • • . • • • • • 

0 . . . 0 0 . . . U / w ~  

= T h e  " bas i s  

m a t r i x . "  

i = j = k ;  a n d :  Y = ~ P ; ( x < a )  

L u,. (x >__ 8) 

a f t  :~ = a~,  • and  a ~ = az ~ . . . . .  a= ~) : A " p r i m a r y  c o e f f i c i e n t  v e c t o r . "  

T h e n  E q . ( I V .  A . 1 )  m y  be  wr i t t en :  

= = l ; E u a ~  = 1 )  ( A . 7 )  ~7 

Let :  

I V =  

w l  0 

° . .  o o ~  

Wa 0 

0 Wo 

, o . . o ° 

0 w z  

= T h e  " w e i g h t i n g  m a t r i x . "  

Y *  = ( P  ; U )  = T h e  "' target v e c t o r "  

Y '  = ( P i ;  ~P) = A " t r ia l  a v e r a g e  v e c t o r . "  

T h e n  in genera l :  

( A . 8 )  R ~ W : a ~ B I V : i ' i ;  (a~, i >_ O; ~ r a ~  i = l ;  ~ v a ~  ~ = 1 )  and  in 

pa r t i cu l a r :  

~r The validity of Eq.(A.7) depends upon the symmetry of the matrix B. The equa- 
tion is not general for arbitrary choice of basis vectors. 
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(A.9)  R ' W  : a~BW = I "  = ¥* ;  (a~ ~ > 0," E,,a~ ~ = 1; yc, a~ ~ = 1) 

Where a i is defined by the condit ion that a ~ = a ~ if and only if R i = / } i .  

Let /3 denote the l inear  t ransformation whose matrix is B, and W de- 
note the l inear t ransformation whose matrix is W. 

Then :  

(A. IO) a~B = R i 

and the transformation,  /3, is one -one?  s 

Also:  

(A.11)  R i W  = a i B W  = Y~ 

b. The Operational Rate Structure, op { i l l .  

By Eqs. (IV. A . l . a )  and definition of [~: 

I f  = (af  " ~wx+,P)/(aL:,iw~P); (x < ~) 
(A .12)  ] i = (a~:  ~ wt~P)/(at~ :~ w,,U) 

j i = ( a V : i  u : i  . _ w~+,U)l(a~+, w~U), (x > B) 

whence:  

(A .13)  

(A .14)  

• " - a  i t~a~+~'w~/w~+, <_ a2 < f . . . .  wJwx+~; (x v ~ ,0 

[,,a~waU/wt~P <_ aa ~ < T, ao~w,U/w~P 

whence Eq. ( I V . A . 3 )  follows from Eq. ( I V . A . 1 )  upon imposition of 

Constra int  ( 1 ) '  0 < I,  < l,~ < J~ < r~/r=+,. 

By Eqs. (A.2)  and (A .5 ) ,  and by Ineq. (A .12)  

(A .15)  opRp t':~ = aV:~B 

ff~a~+]':iwJw~+, <_ aJ ' : i  
- -  - -  l ' : i  ; , P : i  

(A.16)  opRu U:~ = aV:iB 
(fzaz+,U:iwJwz+, <_ a.J j:i 

< f-~.~ax+,V:iwJw~.+,; Za.J 2:i .= 1) 
U 

r, S Birkhoff & MacLane, (1). p. 121. To avoid notational confusion, see paragraph 
near the top of the page, beginning: "In the choice of notation for transforma- 
tions***." The present author will follow Birkhoff & MacLane in writing the 
point under transformation to the le]t of the transformation symbol• 
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where, by analogy to definitions of R e and R U, let: 

a t' = (a,  p , . . . .  aJ ';  0 . . . . .  O) 

a U : (0  . . . . .  O; at~ U . . . . .  a J;)  

By Eqs. (IV. A.3),  (A.7) ,  (A.14) and (A.15) :  

(A.16.a) o p R '  = opR~::  ~ + o p R ~ :  ~; ( f , a ~ i w ,  U / w t 3 P  < a,  ~ < 
- ~ i a l w , , U / w o e  ) 

Note that lneq. (A.14) ,  appearing as a constraint in Eqs. ( IV.A.3)  
and (A.16.a) does no t  appear either in Eq. (A.15) or in Eq. (A.16).  The 
ratio f, '  is a "link," so to speak, b e t w e e n  op{Rl:} and oplng}; it is not 
associated exclusively with either subset of the direct sum, o p { ~ } .  It is to 

be demonstrated that o p { h }  may be the empty set. Let: a ~ = opa i "ff a~' 

conforms to Ineq. (A. 1 3) for all x :/: ,~; and:  a,, i conforms to Ineq. (A. 14). 
Then by Eq.(A.7)  : 

(A.17) o p R  i = o p a l B  

Let a "ra t io  vec tor" ,  ]~, be defined by: 

I t = (f , '  . . . . .  In-,'; f2; f ~ ' , . . . ,  h - l )  ''~ 

Then the inner inequalities of Constraint (1): f~ _< [~ _< f,~, define a 
bounded, polyhedral convex set, op{ ] }, the extreme points of which are: 

1¢~ = (f ' ,  . . . .  f ' ,_,;  f ' , ;  f'~ . . . . .  f'~_,)," (]'~ = f~ or f.0 

The number of extreme points of op{ ] } is 2: - ' ,  and the set is (z  - 2 ) -d i -  

mensional2 0 

Now, the ratio notation, fc:~, = R c / R , + , ,  adopted for convenience in 
Section V . C . ,  may obscure the development henceforward. Returning to 
conventional product notation and simplifying, Eqs.(V.C.I 5) and (V.C.16) 
may be rewritten: 

(A.18) f~If~ Y ~ P ( w ~ H ' Q  

5.,, The artificial ratio fz = 1, defined in Section V.C. for notational convenience only, 
may be introduced as the z" component of ]~ if desired, but this is not necessary. 

';0The demonstration is analogous to the demonstration by Eqs.(A.2) and (A.3) 
that { Rv v } is (a -- /)-dimensional. 
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(A.19-a) 

-b) 

(A.20-a) 

-b) 

R~ ~ -- 

R t x  t - -  

FIRE CLASSIFICATION RATES 

I~(,) Pt = R~(jt; ill) 
E d w ~ I I , . )  

e i  

1-I,.,6' 
Y o ( w . I I . , )  

- -  R~(J'," ~#)  

(~ < ~) 

(~ > #) 

where: 

f G-I 
I I  

1 - [ ( I )  ~ ~=¢ 

1 

I I  
1- [  (~,) ---- :~=p. 

2 
/1 

f , , . i f:  ~ < c t - - 1  

;'if: ¢ = a 

f ~ , ' i f : 1 3 < ~ < z - -  1 

; i f :  t x = z  

~ s ) =  ]-If:; i f : f i < _ ~ _ ( z - I  

and Eqs.(A.19- ) and (A.20- ) may be consolidated into: 

(A.21) R i:j = R(J ~ ; Y;) 

= ( . . . .  R~(t ' ;  f O  . . . .  ; . . . .  R d / ' ; f 9  . . . .  ) 
where possibly, but not necessarily, j = i. It does not follow that if 

~'J = f~, then necessarily j j = J~. 

Define a se t{[}  of "feasible ratio vectors," i j by the condition that 

if and only if i j is a member of {[}, then by Eq.(A.21) necessarily: 

Y~= Y*. By the previously-given definition of op{J} ,  it follows that if 

j~ is a member of o p { J } ,  then R i:t will necessarily conform to Con- 

straint (I) but will not necessarily be feasible. By this definition it follows 

that if i t  is a member of {]I ,  then R i:j necessarily will be feasible but will 
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not necessarily conform to Constraint (I) .  Therefore, if a set op{ i }  be de- 

fined as the intersection of op{J} and {j} ,  then necessarily R ':i will 

conform to Constraint (I)  and will be feasible. Hence, if ]i is a member 

of op{]},  then: R i : ' = o p R i : * = o p R  ', where the feasible tilde, ",----"- 

now replaces the second superscript. 

I f . f  is a member of o p l / I , l c t  ]=op] , 'and if l l '  = o p / } ' , l e t  a i =  ova'. 

Thence by Eqs. (A.7)  - (A.9) and (A.21):  

In general: 

(A.22) R(J~; YJ) = R k:i = a ~:i B 

and in particular: 

(A.23) R(opj'; Y*) = opR' = ova i B 

It follows from Eqs.(A.8)  and (A.9) that a set of "secondary coe~- 

cient vectors,"{ ~ }, will exist such that: 

(A.24) Zjb~ ~ (ir~; a k:i) = (Y*; a k:*) = (g*; a ~) 

where b~ k is the fh component of the vector ~k; and it follows further 

that [~} will be the solution set of the system of simultaneous equations: 

Ejbjk/3s = P 
(A.25) 

YibjkgZ j = U 

Hence a feasible rate vector, /}k, always may be obtained from two or 

more estimated trial coefficient vectors, a k:~' ak :~ , . . . .  This is no guar- 

antee, however, that /~k will conform to Constraint ( I ) ,  and if Con- 

straint (I)  may be violated, then / i  k can be obtained directly and with 

less effort by Method I (Section VI.C. and APPENDIX B) ,  from any 

one of the trial vectors, Rk:r, R ~:~, etc., particularly if R" may be taken 

as R k:~'. But if Constraint (I)  a'nay not be discarded, or if for some 

one or more classes, the final adjusted rate, R~*, is to assume a pre- 

determined value, R~ °, then Method I will not give ]i* directly, except 

by coincidence or after lengthy trial and error to determine an appro- 

priate trial vector. 
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By Eqs . (V.  A . l . a . ) ,  (A .12)  and (A .20 -b ) ,  "~ it will follow in straight- 

forward fashion that the components ,  a~ ~, of any feasible primary coeffi- 

a i _ w: 

, ( w,,'~ < 1) -b)  al," = ] I ~ a : -  ; (/3 < t~ - z - 
\ w : ]  

• - i a i . _ -d) ad = ] I I~  : , (~' < ,, - 1 )  

and Eqs . (A .26 - )  may be consolidated into: 

(A .27)  a '  = a(jS, • P*) 

Equat ion  (A.27)  defines a one-one t ransformation:  '~ 

F*.']L--)a i. The t ransformation F* serves to introduce curvil inear co- 

ordinates, ':~ whereby the l inear t ransformation of E q . ( A . 1 0 ) ,  B.'a---~/~ may 

be substituted in calculation for the non- l inear  t ransformation o f { t  I 

onto {k} defined by E q . ( A . 2 I )  when I " - -  Y*. By E q . ( A . 2 7 ) :  

(A .28)  ]iF* = a '  

whence by Eqs . (A .10)  and ( A . 1 1 ) :  

( i ' F * ) ~  = ~"~ = k ,  
(A.29)  

( f F * ) B W  = a i B W  = Y *  

To establish the validity of E q s . ( A . 2 8 )  and ( A .29 ) ,  it is sufficient to 

c,a The practical reasons for selecting Eq.(A.20-b) specifically from anaong the four 
equations, Eqs.(A.19- ) and (A.20- ), will become apparent in Section 3, to 
follow. 

c,.- Despite the formidable appearance of the function a(/',' p*), the demonstration 
that F* is one-one, is very easy. If Eqs.(A.26-b) --(A.26-d) are expanded by 
substitution of the value of a, ~ from Eq.(A.26-a), and a system of simultaneous 
equations is set up from the recursion formulas obtained by solving Eqs.(A.12) 
for a,' in terms of a , , ' ,  then all denominators cancel out immediately, and the rest 
will follow in simple and straightforward fashion. 

e,s Kaplan, (5) pp. 96 & 151; but see also pp. 132 .0'. For any fixed value of ~ = 

/ ; ' / /~ ,  the several ratios [~ are functionally dependent. 

cient vector, a ' ,  will be given by: 

(A.26-a )  
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prove that F* is one-one; and see Note 62, preceding. It is not necessary 
(fortunately) to define the matrix of/ :*,  thence to proceed by Eq.(A.7) 
and (A.9). 

Upon substitution of /)~//3j. = 1/f~: for U/P  = I / P *  in Eqs.(A.26-c) 
and (A.26-d), c''t the complete generalization of E q s . ( A . 2 7 ) -  (A.29) 
follows by exact analogy to the development of those equations, whence: 

(A.30) a~-:J : a(jk; fv) 

(A.3 l ) JkF~ = a ~:j 

(A.32) (jkFj)B w = a~:~BW = ~z~ 

In particular, if I k = ]~ = an extreme point of op{ J }, then 

(A.33) a~:* = a t  = a(j4'; 2P¢') 

where .9'~ is calculated by Eq.(A.18),  letting ]i = ] ~ ;  and where arbi- 
trarily by convention it is required that P carry the superscript of .f, re- 
gardless of the fact that possibly j~t. = j~ where jft :/: .fq,. 

By Eq.(A.33),  the extreme points of op{ . f l a r e  mapped in one-one 
correspondence onto the vectors at. Extending to any value of k the con- 
vention that J~ always must carry the superscript of .f, then all remaining 
points, P of the set op I ,f I are mapped by Eq.(A.30) onto the vectors a k. 

Thus there exists a family of transformations, IF ~1, whereby every .fk 
belonging to op I J / i s "  mapped in one-one correspondence into a co- 
efficient vector, ak; where possibly but not necessarily, k = 4,. By /lie defi- 
nition of op{.f /and the derivation of Eq.(A.30) it follows that any a k 
will conform to Constraint (I) if a k" = JkFk and jk is a member of I .f/. Let 
the set of all such coefficient vectors, ak/be designated c{ a }. 

It can be shown that c I a}is a bounded, polyhedral convex set whose 
extreme points are the vectors at  = .fe~Fee.'::' Thence it follows that any 

6'~Justified by Eqs.(A.19- ) and (A.20- ), and by the formal similarity to Eqs. 

( IV.A. l .a )  o f t h e e q u a t i o n s : R ,  ~ = a m c P ~ / . , ~ , w h e r e x < a ; a n d :  R, e =  a~ tr:~U~/w., 
where x >__ p. The substitution is equivalent to re-definition of the basis vectors 
in terms of ~'~ and U~, though the operation is not identical in concept to a change 
of basis. 

r,~ The fact that the set is bounded and convex follows immediately from the facts 
that opl[ I is bounded; and that, by its form, a([;]~) is a continuous function. 
The rest will follow from Eqs.(A.18) and (A.30) by the use of Lagrange multi- 
pliers. (Kaplan, (5) .  p. 128 ft.) 
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a k which is a m e m b e r  of c{ a ] will be given b y :  

(A .34)  a ~ =-- Y~b,l'a~'; ( b ,  ~' > O) Y,b~,  k = 1) 

Thence  it follows that,  if by Eq. ( A . 2 4 ) :  

(A .35 )  Z~,b~, k (Y~;  aee) --= ( Y * ;  a~); (b~, k > O; ~.eeb~, k = 1) 

then necessarily: ~ = o p t ;  whence the rate "I, ector o p R  k = opakB must be 
feasible and also must  conform to Constraint  (1);  whence the rate revision 
problem is solved. 

Since by E q . ( A . 7 ) ,  then: a~ ~ > O; Y.r.a.~ k - 12 ~ua~ h = 1; then the sys- 
tem of ordinary s imultaneous equations ecluivalent to E q . ( A . 3 5 )  need 
never  contain more  than z rows, the first two of which give the target 
rates, U and P. The  remaining rows may be formulated to contain as the 
constant  terms not more  than (z - fl) pre-selected values, a~, v:° = w.,R~°/U, 
of the coefficients aJ:k., plus (a -- 1) values, a~ P:° : w~R~,°/P, of the co- 
efficients a,e:k, ~° where R¢ ° is a pre-selected value of R ,  k. 

A solution to E q . ( A . 3 5 )  always must  exist, since, as noted, there will 
be 2 ~-' extreme points, 1~', of op{[ } ,  and hence there will be 2"- '  
choices among  the vectors  a* f rom which to .select at least (z + 1) vectors 
to give a syslem of not  more  than z equations in not less than z + 1 un- 
known secondary coefficients, b~ ~. However ,  a non-negat ive  solution may  
not exist. By the fo rm of E q . ( A . 1 8 )  ( r emember ing  that  for  all x, then 
[~ > 0 by Constraint  ( I ) ,  and w, > 0 by hypothesis)  it follows that  Pq' = 
max {P~} when ]fl' = }'~ for all x, and Pc = m i n l P * } w h e n  l~¢ = f,  for all 
x. Thence  it will follow tha t f f  P* = P / U  > max {P~} or P* < rain{ PC 1, then 
necessarily be k < 0 for at least one 4, in the solution of E q . ( A . 3 5 ) ;  whence 
a ~ ----- ~ ,bq,  ka4 ' will not belong to c I a  } and hence will not conform to Con-  
straint ( I ) .  

If  min {P*} _< P* < max  {P~}, a non-negat ive solution to E q . ( A . 3 5 )  
will exist, which will be given by some combinat ion  of not more than z 

of the 2 ~'-~ vectors (Y4;  a4). It  will be a unique solution if P* = max  {P~ I 
or  P* = rain {P~}. This  follows f rom the properties '  of c{a  k} as a bounded,  
polyhedral ,  convex set. 

Go See Subsection a., preceding. The nature of { ~ }  as the direct sum of { RP ° } 
and{Rv v}precludes the selection of more .than (z -- 0) of the azV:k; or of more 
than (a -- 1) of the a,PL 
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2 .  R a t e  C a l c u l a t i o n  M e t h o d  1I .  

For purposes of practical application, Eq.(A.35) is greatly simpli- 
fied by one final transformation, Gk:aX--->NX; where N ~ is an " a b s t r a c t  r a t e  

v e c t o r . "  Let: 

2t~ : Y ' / U '  = (~' ,"  1 ) ;  V *  = Y * / U  : -  ( P * ;  1 )  

and let the matrix of G ~ be: 

G k ~ .  

P C ~ w ,  . . . 0 0 . . . 0 

• , , • • , . • • , , 

0 . . . f i e / W a  0 . . . 0 

0 . . . 0 I / w t 3  . . . 0 

• . • • ° . , • • , . 

0 . . . 0 0 . . . I / w ,  

where if ~k = p , ,  then G e = G* 

Then: 

(A.36) ( a k G ) I V  = N e W  = 2re; (if a e = ae; then ) e  = V , )  

To prove Eq.(36) ,  by definition of G :  

(A.37) 
Z v w , N ,  ~ = E , w ~ a , k / w ,  = Z o a ~  ~ = 1 

whence Eq.(A.36) follows immediately. Equation (A.36) simply is the 
matrix form of Eqs.(A.37) with the first and second members transposed. 

Thence by analogy to Eq.(A.35):  

(A.38) '~,9bpk(~e~; N * )  = ( " t * ;  ~ik);  ( b ~  k > 0 ) ,  where N* = aC'G~'. 

Since by definitions of ~ and of "1'*, the second equation of the 
System (A.38) always will be ~ b ~  e = 1 ,  it is not necessary to include 
this equation in the constraints. 
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The discussion following Eq . (A .35) ,  concerning the existence of solu- 
tions thereto, applies in its entirety to Eq . (A.38) .  

It  follows from the definition of N0 that if a non-negative solution to 
Eq. (A.38)  exists, then ~k conforms to Constraint ( I ) ,  and hence may be 
written: opN h. And by Eq . (A.36)  and definition of "/'*: 

(A.39)  U(opNk)W = U'~,* = Y*  

Thence it follows that if R k = U(opfik), then necessarily: R ~ = opRk; 
whence Method H follows immediately. 

Letting N= ° =  R=°/U, where R~ ° is a pre-selected value of R= k, then 
up to (,~ - 1) values of N= ° for x < % plus up to (z - {3) values for x > fl, 
may .be entered as ,the constant terms of .the system of Eq . (A.38) .  Also, 
pre-selected ratios may be substituted for preselected rates, on a one-for- 
one exchange of choice, i.e., if f~° is chosen, where ( < % then only (a - 2) 
of the protected rates may be pre-selected. I f  a ratio 1~° is pre-selected, 
the product f~°N=+,k is substituted for N= ~ in the equation for N, ~. 

The nature of the entire foregoing development from Eq . (A.7)  for- 
ward now may be indicated by the compound-transformation equation: 

(A.40) U(~F~.GBW) = UI.T.= ~k 

where T ~ = F"G"BW; and ff J" = opj  ~ and F ~ = F*, then i zk =} '* .  

Once the transformations have been appropriately defined, the rest fol- 
lows in straightforward fashion. 

3. Practical Considerations. 

It follows from the "abstract ''~7 nature of pO and NO that once cal- 
culated, the values may be stored and used in the course of successive rate 
adjustments over a period of years. Re-calculation of these parameters 
is required only following significant change in the distribution of sums 
insured among the classes, revision of the original estimates of J, and f~ 
or revision of the classification system itself. " 

Throughout the formal development, tile fixed class numbers, a, {3, z, 
defined in Section I[ .D as indices, have been used also as parameters, 
e.g. in stating that { ~ }  is " ( z - 2 ) - d i m e n s i o n a l " .  So long as w~ > 0 

c,7 A more appropriate term here would be "dimensionless," in the sense that a 
trigonometric sine is a "dinaensionless" ratio; but since the abstract vector N is 
"'z-dimensional" in a mathematical sense; the term "abstract" is used to avoid 
semantic difficulties. 
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for all x = 1, 2 , . . . ,  z, this presents no problem. In such instance, ", ," 

not onIy designates a class, but also equaIs the number  of protection 
classes within the "Protected" statistical class, etc., but if w~ = 0 for any 
x, as in Section VI where all calculations contemplate wl = O, then z will 
not indicate the number of classes as well as the designation of the 
highest numbered class; and in reference to the incomplete system of Sec- 
tion VI, the feasible rate structure,{ /~ I ,  is n o t  (z - 2)-dimensional, but 
is (z - -  3)-dimensional. Although z = l O  still designates, as an index, the 
highest-numbered class, t h e  number of classes is not z = 10  but is 
z - I = 9, etc. In practical a'pplication, general expressions in which the 
fixed class numbers, a, fl and z, represent the number of classes, rather 
than indices designating particular classes, nmst be modified according 
to circumstances where w~ = 0 for one or more of the classes included in 
the system currently involved. 

If w, 1 = 0 . . . . .  Wo = 0, for one or for two or more consecutive class 
numbers, ~ . . . .  O, but w~ > 0 a n d  w~L > 0, where ~' = ,1 - 1 and t~ = 0 -F 1, 
a further modification must be made in all expressions involving c~ and 
f~ t o  avoid distortion of the results of practical calculations. In such 
instance, for: 

c o" substitute: d~ = Q ~ / Q ~  

Iv" " : g~ = R ~ / R I ,  

c,c_" " : d , ~ -  

f,/,. " : g , g  

and " 7  < r e ~ r / '  replaces " f  < r~/r~+," in Constraint ( I ) .  

The choice of Eq. (A.20-b)  from which to develop Eqs. (A.26-  ) 
rests upon the fact that normally there will be not more than two, or at 
most three, unprotected classes, vs. at least three, and probably six to 
eight protected classes. Hence in practice, the denominators will be 
simpler if either Eq. (A.20-b)  or Eq . (A.19-b)  is used in preference to 
the other choices. Of these two, choice of Eq . (A.20-b)  results in the 
simplest form of the recursion equations, Eqs . (A.26-  ), which in turn 
simplifies the formulas for pre-calculation of the several N~. In particular 
cases, it may prove expedient to choose Eq . (A.20-a)  or one of Eqs. 
(A.19- ). Theoretically, it makes no difference whatever in the final 
result, whichever of the four possibilities may be chosen; it is not even 
necessary that the same one of the four equations, Eqs.(A.19-  ) and 
(A.20- ) be chosen to calculate each of the several coefficients a~ k in 
turn. 
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APPENDIX B 

RATE CALCULATION METHOD I 

( S E C T I O N  VI. C . )  

By rearrangement of the standard "two-point" formula, the equation 

of a line through the points (xp; P~) and (xu;  ~J~) will be: 

?J, - b '  T u b '  - 
(B.1) L~ i = x -  + 

X p  - -  X u  X p  - -  X u  

where xe = ~ , x  w~ and xu = ~vx w~. It follows by straightforward algebra 
that if x is restricted to integral values, then: 

(B.2) ~,ew,:L~, i = P i ;  and: E u w ~ L ¢  = ~ji 

When/5~= p and ~ / i=  U, let L, i = L,, in Eqs.(B.1) and (B.2). 

It follows immediately from the definition of /3~ and U~, and from 
Eqs. (B.2), that: 

(B.3) ~ p w z ( R z  i - -  L,, i) = O; and: Z u w , : ( R f l  - L~fl) = 0 

Let: 
U - P  

(B.4) R ~ * - -  ^ ^ (R~ i - L ~  i ) + L ~  
U i -- p~ 

then by Eqs.(B.2) and (B.3) : 

~ w , R * *  - U - P ~ w ~ ( R ,  i _ L z i )  + Y,w,L~: 
- T 

e U i __ p i  1" z, 

(B.5) = ~,w,L,z = P 
P 

E w ~ R ~ *  = ~ , w , L ,  = U 
U u 

whence/~* as defined by Eq.(B.4) is feasible. 

Substituting into Eq.(B.4) the values of L,  ~ and L,,, and simplifying, 
it follows immediately that: 

U - P P~J'  - U P '  
(B.6) R~* = R.~ i - -  ~- 

- b ,  b ,  - 2,, 

It should be noted that (unless £/~ - / ~  = O, in which case the prob- 
lem is degenerate) the actual values of the trial averages, /5~ and U~ 
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are completely immaterial. Any trial rate vector whatever will be trans- 
formed into a feasible vector by Eq.(B.6).  Upon substitution of R~ ~ for 
R~ ~, etc., Eq.(VI. C.23.a) is obtained. 

Eq.(VI. C.23.b) follows by exact formal analogy to the above deriva- 
tion of Eq.(VI. C.23.a). 

Now let R* be feasible by hypothesis. Then by definition of q~ and by 
Eq.(VI. C.23.a) : 

U - P P U  c - U P  ~ 
(B.7) q~R~* -= q~R~eu~ _ p~ + q~ Ue _ pc 

whence by definition of q,, Eq.(VI. C.24) follows immediately by sum- 
mation of both sides of Eq.(B.7) following multiplication by w,: 

U --  P P U  ~ - U P  ~ 
~ u w ~ Q ~ *  = U~ = U¢f u~ _ l ~  + qp. U~ _ p~ 

(B.8)  
U --  P P U  ~ - -  U P  e 

~ew,~Q~* = Pc) = Po ~U~ _ P~ {- qu U" - P~ 

where qe = ~ e w ~ q ~  and qu - ~uw ~q~ .  But for insertion of the summa- 
tions on the left, Eq.(B.8) is Eq.(VI. C.24). 

To prove that for an arbitrary vector, Q J, if ~ p w ~ Q j  = Po and 
~..vw~:Qd = Uo, then necessarily the rate vector R j which rests upon 
Qi will be feasible, let Eqs.(B.8) be expressed in the form: 

(B.9) Q* W = (Po" Uo) = Y o *  

where W" is the weighting matrix defined in Section 1 .a., of APPENDIX A. 
(page .) Let the matrix M be defined as the z × z matrix whose 
entries along the main diagonal are r~, and elsewhere than along the 
main diagonal, are zero. Then: 

(B .10)  R* = Q * M  

By derivation of Eq.(B.8),  R* is feasible, /~*, whence by Eq.(B.10):  

(B.I1) 11*IV =- (P; U) = Y *  = Q.*MW 

By hypothcsis: QJW = Yo*; whence by Eq.(B.9) : 

(B.12) q J W  = ¥ 0 *  = Q * W  

whence immediately: 

(B.13) R J W  = Q J M W  = Q * M W  = R*V¢" = r *  

whence R~ must be feasible, IRJ. 
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It may be noted that a feasible solution always will result from ap- 
plication of Eq.(VI.  C.23.a) to the rates, Rz~= r~Q, ~, without consid- 
eration oi~ ,the normals as prescribed in Cases 3 and 4. However, by 
definitions given: 

(B.14) c~ = f~q~/qz+l 

It follows that i~ q~ > q~+,, it may happen that values of c~* will be ob- 
tained which not only exceed c, but also exceed unity, which implies 
Qz > Q~+,, which in turn implies increase of rate with improvement of 
protection. To illustrate, in Example 2, of Section VI. C., it was assumed 
that re -- 1, but on the alternative assumption that r, and q~ are as shown 
in Table 3, then by Eq.(B.14)  it will be found that the c~ ratios asso- 
ciated with the solution of Example 2 are such that c5 = 1.02 and 
c~ = 1.11. Unless r~ = r~, = 1 for all x, then the normals, rather .than 
the rates themselves, must be used in the calculation to preclude pos- 
sibility of inversions such as the foregoing; except in .the special case 
where P U ~ -  U/3~ = 0, in which case f~* will equal f i for all x, since 
the additive term then disappears from Eq.(VI.  C.23.a).  

A SHORT BIBLIOGRAPHY OF 
LINEAR ALGEBR A  

(If the notation of the present paper may be difficult to reconcile with 
some to be found in the references below, it will be impossible to recon- 
cile with each other the several notational systems represented in these 
references themselves.) 

( I )  Birkhoff, Garrett & MacLane, Saunders, A Survey o] Modern Al- 
gebra (Revised Edition) The Macmillan Co. (1953).  Not for the 
novice. If a "standard" reference may be said to exist, this seems to 
be it. 

(2) Cram6r, Harald, Mathematical Methods of Statistics. Princeton 
University Press. (1946).  Specifically: Ch. I1. Not for the 
novice. 

(3) Faddeeva, V. N., Computational Methods o~ Linear Algebra. (Trans- 
lated by Curtis D. Benster). Dover Paperback #$424. Not too 
difficult a summary of theory, followed by computational methods. 

(4) Glicksman, Abraham M., An Introduction to Linear Programming 
and the Theory of Games. John Wiley and Sons, Inc. (1963).  At 
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the level o1~ high school honors and introductory college programs. 
An excellent "first" for the novice. 

(5) Kaplan, Wilfred, Advanced Calcultts. Addison-Wesley Publishing 
Co., Inc. (1952). Specifically: Ch. 1 reviews vector algebra in 
preparation for vector calculus to follow. 

(6) Kemeny, J. G., Mirkil, H., Snell, J. L., & Thompson, G. L., Finite 
Mathematical Structures. PrenticeHall, Inc. (1959). Specifically: 
Chs. 4 & 5. Intermediate to advanced undergraduate level. Ch. 4 
is linear algebra; Ch. 5 is convex sets and linear programming. 

(7) Kuhn, H. W., & Tucker, A. W., Edi.tors. Linear Inequalities and 
Related Systems. Princeton University Annals of Mathematics 
Studies No. 38. Not for the novice. A collection of eighteen 
papers by various authors on topics indicated by the title. 

(8) May, Kenneth O., Elements of Modern Mathematics. Addison- 
Wesley Publishing Co., Inc. (1959). Very little on linear algebra 
as such, but the chapters on sets, functions and abstract theories 
are excellent preparation for the axiomatics of Birkhoff & Mac- 
Lane ( 1 ). 

(9) Shilov, Georgi E., An  Introduction to the Theory of Linear Spaces. 
(Translated by Richard A. Silverman). Prentice-Hall, Inc. (1961). 
Not for the novice. 

(10) Weiss, Lionel. Statistical Decision Theory. McGraw-Hill Book Co., 
Inc. (1961). Specifically: Ch. 6, the heading of which is: "Linear 
Programming as a Computational Tool." 
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DISCUSSION BY LESTER B. DROPKIN 

For several years now, writers and reviewers of papers presented to 
this Society have stressed the desirability, and indeed, the inevitability of 
utilizing theory, methods, techniques and procedures derived from what 
may be broadly referred to as the field of Finite Mathematics. During 
these same years the Society has also seen an increasing number of papers 
dealing with the ratemaking problems of the fire actuary. Recalling Mr. 
Mclntosh's earlier work, it is not unexpected that he would again bring 
these two lines together in the paper now under review. 

In his current paper, "A Mathematical Approach to Fire Protection 
Classification Rates," Mr. Mc[ntosh deals with the problem of determining 
a set of rates such that they will, in the language of the paper, simul- 
taneously fulfill the conditions of "feasibility" and "operational constraint." 
These two terms, although coming from the language of linear program- 
ming, represent simple and familiar concepts. The feasibility property will 
be readily recognized as that old friend: a rate structure in balance by 
part and in total. The question of operational constraints may similarly 
be recognized as coming within considerations of rate relativity, albeit the 
rate relativities here are not specifically given. Rather, each of the rate 
relativities is fixed only to the extent of having given lower and upper 
limits, such limits being predetermined by judgment or other outside fac- 
tors. It is, of course, the simultaneous existence of the feasibility and con- 
straint conditions that make the problem a real and interesting one. 

Tile definition of the problem and the treatment of its solution (in- 
cluding therein those cases where no solution is possible) proceeds via 


