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INSURANCE APPLICATIONS OF BIVARIATE
DISTRIBUTIONS

DAVID L. HOMER AND DAVID R. CLARK

Abstract

A technique is demonstrated for aggregating bivari-
ate claim size distributions using a two-dimensional Fast
Fourier Transform. Three insurance applications are de-
scribed in detail relating to: 1) individual risk rating,
2) loss and allocated expenses, and 3) Dynamic Finan-
cial Analysis.
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1. INTRODUCTION

1.1. The Basic Problem

When pricing insurance contracts it is useful to estimate not
only the average insured loss but also the insured loss distribu-
tion. Although an initial approach may include only an estimate
of the mean, risk measures generally require an estimate of the
distribution. This problem is often solved by modeling losses as
a sum of individual claims. A frequency distribution describes
the number of claims N; a severity distribution describes the size
of each claim Xk. The individual claim sizes are usually assumed
to be independent and identically distributed (iid) as well as in-
dependent from the claim counts. This model is known as the
Collective Risk Model [3]. The aggregate loss dollars Z are the
sum of the individual claim sizes

Z = X1 + +XN: (1.1)
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The expectation and variance of Z are easily expressed in terms
of the frequency and severity components

E(Z) = E(X)E(N): (1.2)

Var(Z) = Var(X)E(N) +E(X)2Var(N): (1.3)

Estimating the aggregate loss distribution requires more work,
but there are numerous techniques available: simulation, Fast
Fourier Transform, continuous Fourier Transform [1], recursion
[4, 8], and moment matching [5, 9]. In this paper, the Fast Fourier
Transform (FFT) will be used. The FFT has been described in
detail by Robertson [7] and Wang [10], and an overview is also
included here as Appendix C.

1.2. A Problem That Includes Dependencies between Loss
Components

The collective risk model as outlined above is sufficient to de-
scribe most insurance policies. One example in which this model
is not sufficient arises in individual risk rating. A policy may
provide specific excess coverage above a per-occurrence reten-
tion, and may also provide coverage in excess of an aggregate
amount for the retained losses. The excess of aggregate cover is
commonly called a stop loss cover.

The distributions for either the specific excess or stop loss
covers can be estimated using the collective risk model. However,
it is more difficult to estimate the distribution for the sum of the
two covers because there is a dependence between the pieces.
One trivial element of the dependence is easily seen—if there
are no retained losses then there are no losses in excess of the
retention.

Section 2 provides a more detailed description of this prob-
lem.
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1.3. Aggregating with the FFT—A Brief Review

Before introducing the complication of the dependence be-
tween two coverages, we will briefly review the Fast Fourier
Transform (FFT) technique for evaluating a standard collective
risk model. Appendix C provides a more detailed review.

In order to compute the aggregate loss distribution using the
FFT, the severity distribution is expressed as a probability vector1

x= (x0,x1, : : : ,xn 1). Each element xk is the probability of a claim
having size ck, where c is a scaling constant.

The distribution of the claim counts N is incorporated with
the use of its Probability Generating Function (PGF)

PGF(t) = E(tN): (1.4)

The frequency and severity components are put together using
a standard FFT technique. Denoting the FFT and its inverse as
FFT(x) and IFFT(x), respectively, the probability vector for the
aggregate losses is computed as

z = (z0,z1, : : : ,zn 1) = IFFT(PGF(FFT(x))): (1.5)

The PGF is applied elementwise, i.e., with some abuse of nota-
tion,

PGF((t0, t1, : : : , tn 1)) = (PGF(t0),PGF(t1), : : : ,PGF(tn 1)):

(1.6)

The vector size n must be large enough that the probability
of aggregate losses greater than cn is negligible. Any probability
mass for losses greater than cn will wrap around, i.e., mass for
losses greater than cn will be treated as though it is mass for the
available claim sizes (0,c,2c, : : : ,nc). The wrap-around problem
is typically avoided by padding the vector with zeros as discussed
in Robertson [7] and Wang [10].

1x is indexed starting at zero. x0 is the probability of a claim of size zero.
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1.4. Building a Bivariate Loss Distribution

The goal is to obtain a bivariate distribution of aggregate re-
tained losses and aggregate excess losses. This will be repre-
sented as a probability matrix2 Mz where Mz(j,k) is the proba-
bility that aggregate retained losses are c1j and aggregate excess
losses are c2k. As before, c1 and c2 are constant scale factors.

For a single claim this matrix is easily constructed. Suppose
x= (:4, :3, :3) and c= 1,000. Then for a 1,000 deductible, with
c1 = c2 = c= 1,000,

Mx =

:4 0 0

:3 :3 0

0 0 0

: (1.7)

The matrix Mx fully specifies the probabilities and dependen-
cies of losses in the retained and excess layers. The sum across
rows (:4, :6,0) produces the distribution of the retained losses;
the sum down the columns (:7, :3,0) produces the distribution of
the excess losses.

The advantage at this point is that the same FFT technique
can be used to calculate aggregate losses for Mx that we used
to calculate aggregate losses for x. With FFT() and IFFT() now
representing the two-dimensional FFT and its inverse, and with
PGF() as before, we compute the aggregate loss matrix Mz

Mz = IFFT(PGF(FFT(Mx))): (1.8)

As in the one-dimensional treatment, the PGF is applied elemen-
twise and the matrix Mx must have sufficient padding so that Mz
can hold the significant mass. Appendix A provides an example
of the two-dimensional FFT using publicly available software.

The FFT technique is not the only way to aggregateMx. Sundt
[8] shows thatMx can be aggregated using a recursive technique.

2Mz indices start from zero.
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The aggregation of bivariate severity matrices can be applied
to other problems as well. In what follows, three specific exam-
ples will be explored. In the first, the combined distribution of
losses on specific excess and aggregate excess is considered. In
the second, bivariate loss and ALAE distributions are computed,
and in the third example, a problem with a simulation technique
often used in DFA analysis is reviewed and corrected.

2. PER-OCCURRENCE AND EXCESS-OF-AGGREGATE COVERS IN
INDIVIDUAL RISK RATING

The first problem that we will review is common in individual
risk rating.

A fictional large insured, Dietrichson Drilling, is interested
in retaining the majority of their “predictable” workers compen-
sation losses, and mainly seeks to purchase insurance to cover
individual large claims. For example, they may choose to retain
the first 600,000 of each loss occurrence. At the same time, they
may have a concern that the number of occurrences could also
be higher than expected, and therefore seek protection on the
total dollars of retained loss.

Our company, Pacific All Risk Insurance Company, has been
asked to provide coverage on a per-occurrence basis of 400,000
excess of 600,000, and then also a stop loss cover to pay in
the event that their total retained loss exceeds 3,000,000. The
underwriter at Pacific All Risk has proposed the structure shown
in Table 2.1.

As the Pacific All Risk actuary, you have selected frequency
and severity distributions, and have estimated the expected losses
for each of these coverages. In order to calculate the needed
risk load on the program, however, you need to estimate the
distribution of the sum of the two coverages.

The company’s Fast Fourier Transform (FFT) model allows
you to estimate a distribution for either the per-occurrence or the
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TABLE 2.1

Policy Structure for Dietrichson Drilling

Named Insured: Dietrichson Drilling
Insurance Company: Pacific All Risk Insurance Co.

Per-Occurrence Layer: 400,000 xs 600,000
Stop Loss Layer: 5,000,000 xs 3,000,000

Allocated expenses included in the definition of “loss”

TABLE 2.2

Severity Distribution for Dietrichson Drilling

Probability Loss Amount Excess Loss

0.00% 0 0
37.80% 200,000 0
23.50% 400,000 0
14.60% 600,000 0
9.10% 800,000 200,000
15.00% 1,000,000 400,000

Average 480,000 78,200

stop loss layer with no problem, but you recognize that there is
likely to be a strong dependence between the results of the two
covers and you want to reflect this in your pricing.

We will consider a simplified version of this problem. First,
we will assume that the loss distribution can be reasonably ap-
proximated using only a five-point discretized severity distribu-
tion. In practice, a curve of more than a hundred points would be
needed in order to accurately capture the true shape. For our ex-
ample, the simpler distribution shown in Table 2.2 will be used.

Consistent with this loss distribution, our average severity
is estimated to be 480,000 and the average in the 400,000 xs
600,000 layer is 78,200.
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TABLE 2.3

Single Claim Primary & Excess Loss Bivariate
Distribution

Loss Excess of 600,000
Loss Capped
at 600,000 0 200,000 400,000 600,000 800,000 1,000,000

0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
200,000 37.80% 0.00% 0.00% 0.00% 0.00% 0.00%
400,000 23.50% 0.00% 0.00% 0.00% 0.00% 0.00%
600,000 14.60% 9.10% 15.00% 0.00% 0.00% 0.00%
800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,600,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

We have also estimated that the expected number of claims
is 5, with a variance of 6, and the frequency will be modeled
using a Negative Binomial3 distribution. The overall loss pick is
therefore 2,400,000 (5 480,000). Our aggregate model calcu-
lates expected losses of 123,529 in the proposed stop loss layer
above 3,000,000.

The first step in calculating the overall loss distribution is
to create a bivariate severity distribution of primary and excess
losses. This is shown in Table 2.3.

From Table 2.3, we can observe a strong dependence structure
between the primary and excess losses: we can have an excess
loss only if the primary 600,000 retention is hit.

This bivariate severity matrix becomes the input for the FFT
model, and may be denoted Mx. The matrix of the aggregate
distribution may be denoted Mz and is produced using the two-

3See Appendix D for details on the Negative Binomial distribution and its Probability
Generating Function.
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dimensional Fast Fourier Transform calculation:

Mz = IFFT(PGF(FFT(Mx))), and (2.1)

PGF(t) = (1:2 :2t) 25: (2.2)

For the bivariate matrix Mx shown in Table 2.3, the resulting Mz
is given in Table 2.4.

An additional step is needed in order to calculate the estimated
results in the stop loss layer above 3,000,000. For that calcula-
tion, the rows of Table 2.4 for all amounts 3,000,000 or less are
summed to compute the probabilities of no excess-of-aggregate
losses. The remaining rows are intact but the row labels are re-
duced by 3,000,000. The result is Table 2.5.

From Table 2.5, several statistics of interest can be calcu-
lated.4 The expected loss to the stop loss layer is 123,529 and
the probability that the stop loss is hit is 15.08%. The average
loss amount conditional upon the stop loss being hit is 819,210.

More dramatic from a risk management perspective is the
dependence between the per-occurrence and stop loss covers.
The expected loss to the per-occurrence layer is 391,000 (5
78,200), but this increases to 830,334 when we include only the
scenarios in which the stop loss is also hit. This dependence
needs to be considered in the decision to write the contract: on
average, when the stop loss is hit we will also be paying about
twice the expected amount in the per-occurrence layer.

The two-dimensional matrix shown in Table 2.5 can be used
to verify the expected loss pricing for either coverage individu-
ally. The probabilities associated with the stop loss program are
found by summing across rows; the probabilities associated with
the per-occurrence excess layer are found by summing down

4The probabilities for the aggregate distribution extend beyond the rows and columns
actually displayed.
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TABLE 2.4

Aggregate Primary & Aggregate Excess Loss
Bivariate Distribution

Loss Excess of 600,000
Loss Capped
at 600,000 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

0 1.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
200,000 1.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
400,000 2.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
600,000 3.09% 0.40% 0.66% 0.00% 0.00% 0.00% 0.00%
800,000 3.34% 0.65% 1.07% 0.00% 0.00% 0.00% 0.00%

1,000,000 3.39% 0.96% 1.58% 0.00% 0.00% 0.00% 0.00%
1,200,000 3.22% 1.27% 2.16% 0.26% 0.21% 0.00% 0.00%
1,400,000 2.86% 1.40% 2.44% 0.44% 0.36% 0.00% 0.00%
1,600,000 2.43% 1.45% 2.59% 0.66% 0.54% 0.00% 0.00%
1,800,000 1.97% 1.40% 2.57% 0.90% 0.78% 0.09% 0.05%
2,000,000 1.54% 1.26% 2.38% 1.02% 0.92% 0.15% 0.08%
2,200,000 1.17% 1.09% 2.12% 1.08% 1.01% 0.24% 0.13%
2,400,000 0.86% 0.90% 1.80% 1.08% 1.05% 0.33% 0.20%
2,600,000 0.62% 0.72% 1.47% 1.00% 1.01% 0.38% 0.24%
2,800,000 0.43% 0.55% 1.16% 0.88% 0.93% 0.42% 0.27%
3,000,000 0.29% 0.41% 0.89% 0.75% 0.82% 0.43% 0.29%
3,200,000 0.20% 0.30% 0.66% 0.61% 0.70% 0.41% 0.29%
3,400,000 0.13% 0.21% 0.48% 0.48% 0.57% 0.37% 0.28%
3,600,000 0.08% 0.15% 0.34% 0.37% 0.45% 0.32% 0.25%
3,800,000 0.05% 0.10% 0.24% 0.27% 0.35% 0.27% 0.22%
4,000,000 0.03% 0.07% 0.16% 0.20% 0.26% 0.22% 0.19%
4,200,000 0.02% 0.04% 0.11% 0.14% 0.19% 0.17% 0.15%
4,400,000 0.01% 0.03% 0.07% 0.10% 0.14% 0.13% 0.12%
4,600,000 0.01% 0.02% 0.05% 0.07% 0.10% 0.10% 0.09%
4,800,000 0.00% 0.01% 0.03% 0.04% 0.07% 0.07% 0.07%
5,000,000 0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.05%
5,200,000 0.00% 0.00% 0.01% 0.02% 0.03% 0.03% 0.04%
5,400,000 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% 0.03%
5,600,000 0.00% 0.00% 0.00% 0.01% 0.01% 0.02% 0.02%
5,800,000 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01%
6,000,000 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01%
6,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%
6,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
6,600,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
6,800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7,600,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7,800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
8,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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TABLE 2.5

Aggregate Primary Excess & Aggregate Excess Loss
Bivariate Distribution

Loss Excess of 600,000
Stop
Loss 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

0 30.28% 12.45% 22.89% 8.07% 7.65% 2.04% 1.26%
200,000 0.20% 0.30% 0.66% 0.61% 0.70% 0.41% 0.29%
400,000 0.13% 0.21% 0.48% 0.48% 0.57% 0.37% 0.28%
600,000 0.08% 0.15% 0.34% 0.37% 0.45% 0.32% 0.25%
800,000 0.05% 0.10% 0.24% 0.27% 0.35% 0.27% 0.22%

1,000,000 0.03% 0.07% 0.16% 0.20% 0.26% 0.22% 0.19%
1,200,000 0.02% 0.04% 0.11% 0.14% 0.19% 0.17% 0.15%
1,400,000 0.01% 0.03% 0.07% 0.10% 0.14% 0.13% 0.12%
1,600,000 0.01% 0.02% 0.05% 0.07% 0.10% 0.10% 0.09%
1,800,000 0.00% 0.01% 0.03% 0.04% 0.07% 0.07% 0.07%
2,000,000 0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.05%
2,200,000 0.00% 0.00% 0.01% 0.02% 0.03% 0.03% 0.04%
2,400,000 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% 0.03%
2,600,000 0.00% 0.00% 0.00% 0.01% 0.01% 0.02% 0.02%
2,800,000 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01%
3,000,000 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01%
3,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%
3,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3,600,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3,800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
4,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
4,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
4,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
4,600,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
4,800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
5,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

columns. By summing across rows or down columns, we calcu-
late the marginal distributions.

In order to calculate the distribution of the sum of the
two coverages combined, we sum the probabilities along each
lower-left to upper-right diagonal. Table 2.6 shows this calcula-
tion.
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TABLE 2.6

Probabilities for Aggregate Primary Excess Plus
Aggregate Excess Loss

Loss & ALAE Probability Calculation

0 30.28% = 30:28%
200,000 12.64% = 0:20%+12:45%
400,000 23.31% = 0:13%+0:30%+22:89%
600,000 9.02% = 0:08%+0:21%+0:66%+8:07%
800,000 8.94% = 0:05%+0:15%+0:48%+0:61%+7:65%

...
...

...

3. DISTRIBUTION FOR LOSS ONLY SUBJECT TO AGGREGATE
LIMIT PLUS UNLIMITED ALLOCATED LOSS ADJUSTMENT

EXPENSE (ALAE)

Our insured, Dietrichson Drilling, requests a general liabil-
ity policy on a traditional guaranteed cost basis. Our company,
Pacific All Risk Insurance Company, is willing to offer a stan-
dard policy form with a 1,000,000 per-occurrence limit and a
2,000,000 general policy aggregate.

Both the per-occurrence limit and the general aggregate limit
apply to the indemnity loss only. All defense costs and associ-
ated expenses (allocated loss adjustment expense—ALAE) are
covered in addition to these limits. The Pacific All Risk policy is
summarized in Table 3.1. The loss distribution is approximated
in Table 3.2.

As the Pacific All Risk actuary, you have been asked to esti-
mate the aggregate distribution of the sum of the loss and ALAE
combined. The first step in calculating the overall loss distribu-
tion is to assemble the bivariate severity distribution of loss and
ALAE. This is shown in Table 3.3.

For Dietrichson Drilling, we believe that there will be a strong
dependence between loss and ALAE; larger losses are generally
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TABLE 3.1

Policy Structure for Dietrichson Drilling

Named Insured: Dietrichson Drilling
Insurance Company: Pacific All Risk Insurance Co.

Per-Occurrence Limit: 1,000,000
General Aggregate Limit: 2,000,000

Allocated expenses paid in addition to loss

TABLE 3.2

Severity Distribution for Dietrichson Drilling

Probability Loss Amount

10.00% 0
45.00% 200,000
9.00% 400,000
9.00% 600,000
9.00% 800,000
18.00% 1,000,000

Average 432,000

Average ALAE % 37.29%

assumed to have larger dollars of associated expenses. The num-
bers in Table 3.3 are for illustration only, but were selected to
demonstrate such a dependence.

The table is constructed such that the loss severity curve does
not extend beyond the 1,000,000 per-occurrence limit, whereas
the ALAE curve does not have an explicit cap. By convention,
we are also including closed-without-pay claims in this analysis,
at least to the extent that they contribute ALAE.

This bivariate severity matrix becomes the input for the FFT
model, and will again be denoted as Mx. The matrix of aggregate



job no. 2022 casualty actuarial society CAS journal 2022D01 [13] 10-07-04 12:56 pm

286 INSURANCE APPLICATIONS OF BIVARIATE DISTRIBUTIONS

TABLE 3.3

Single Claim Loss & ALAE Bivariate Distribution

ALAE
Loss
Amount 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

0 8.39% 1.47% 0.13% 0.01% 0.00% 0.00% 0.00%
200,000 27.98% 13.29% 3.16% 0.50% 0.06% 0.01% 0.00%
400,000 4.15% 3.21% 1.25% 0.32% 0.06% 0.01% 0.00%
600,000 3.07% 3.30% 1.77% 0.64% 0.17% 0.04% 0.01%
800,000 2.28% 3.13% 2.15% 0.99% 0.34% 0.09% 0.02%

1,000,000 3.37% 5.65% 4.73% 2.64% 1.11% 0.37% 0.10%
1,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,600,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

distributions Mz is again given by the formula:

Mz = IFFT(PGF(FFT(Mx))), and (3.1)

PGF(t) = (2 t) 4: (3.2)

The frequency distribution is assumed to be Negative Binomial,
with a mean of 4 and a variance of 8.

The final matrix of aggregate distributions is shown in Ta-
ble 3.4. In order to cap the loss-only exposure at the 2,000,000
general aggregate, we sum the probabilities for losses above
2,000,000 into a single row. The result is Table 3.5. Finally,
we can create a single distribution from this matrix by summing
along each lower-left to upper-right diagonal to obtain Table 3.6.

It is also instructive to show a graph of the distribution of
the combined loss and ALAE both before and after the general
aggregate cap. In Graph 3.1 we can see that the “tail” of the cu-
mulative distribution is greatly reduced by imposing a 2,000,000
general aggregate. However, we note that there is still a non-
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TABLE 3.4

Aggregate Loss & Aggregate Allocated Loss
Adjustment Expense Joint Distribution

ALAE
Loss
Amount 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

0 7.42% 0.23% 0.02% 0.00% 0.00% 0.00% 0.00%
200,000 4.33% 2.23% 0.59% 0.11% 0.02% 0.00% 0.00%
400,000 2.22% 2.10% 1.01% 0.33% 0.08% 0.02% 0.00%
600,000 1.41% 1.82% 1.20% 0.54% 0.18% 0.05% 0.01%
800,000 1.06% 1.71% 1.40% 0.77% 0.33% 0.11% 0.03%

1,000,000 1.11% 2.09% 1.98% 1.27% 0.62% 0.25% 0.08%
1,200,000 0.69% 1.59% 1.84% 1.42% 0.83% 0.39% 0.16%
1,400,000 0.40% 1.07% 1.45% 1.32% 0.90% 0.50% 0.23%
1,600,000 0.25% 0.75% 1.15% 1.19% 0.92% 0.57% 0.30%
1,800,000 0.16% 0.56% 0.95% 1.08% 0.93% 0.64% 0.37%
2,000,000 0.12% 0.44% 0.82% 1.02% 0.96% 0.72% 0.46%
2,200,000 0.07% 0.30% 0.61% 0.84% 0.87% 0.72% 0.50%
2,400,000 0.04% 0.19% 0.43% 0.65% 0.73% 0.66% 0.50%
2,600,000 0.03% 0.13% 0.31% 0.50% 0.60% 0.59% 0.48%
2,800,000 0.02% 0.09% 0.22% 0.38% 0.50% 0.52% 0.45%
3,000,000 0.01% 0.06% 0.16% 0.30% 0.41% 0.46% 0.42%
3,200,000 0.01% 0.04% 0.11% 0.22% 0.32% 0.38% 0.37%
3,400,000 0.00% 0.02% 0.07% 0.15% 0.24% 0.30% 0.32%
3,600,000 0.00% 0.01% 0.05% 0.11% 0.18% 0.24% 0.27%
3,800,000 0.00% 0.01% 0.03% 0.08% 0.13% 0.19% 0.22%
4,000,000 0.00% 0.01% 0.02% 0.05% 0.10% 0.14% 0.18%

remote probability of loss even above 3,000,000, due to the in-
clusion of ALAE on an unlimited basis.

4. DYNAMIC FINANCIAL ANALYSIS

As the actuary for Pacific All Risk, you have now completed
your pricing work for individual insurance contracts. As a re-
ward for your hard work, you have been rotated to the actuarial
team that runs the company’s Dynamic Financial Analysis (DFA)
model, called Pacific Enterprise Risk Model (PERM).



job no. 2022 casualty actuarial society CAS journal 2022D01 [15] 10-07-04 12:56 pm

288 INSURANCE APPLICATIONS OF BIVARIATE DISTRIBUTIONS

TABLE 3.5

Aggregate Loss Capped at 2,000,000 & Aggregate
Allocated Loss Adjustment Expense Joint Distribution

ALAE
Loss
Amount 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

0 7.42% 0.23% 0.02% 0.00% 0.00% 0.00% 0.00%
200,000 4.33% 2.23% 0.59% 0.11% 0.02% 0.00% 0.00%
400,000 2.22% 2.10% 1.01% 0.33% 0.08% 0.02% 0.00%
600,000 1.41% 1.82% 1.20% 0.54% 0.18% 0.05% 0.01%
800,000 1.06% 1.71% 1.40% 0.77% 0.33% 0.11% 0.03%

1,000,000 1.11% 2.09% 1.98% 1.27% 0.62% 0.25% 0.08%
1,200,000 0.69% 1.59% 1.84% 1.42% 0.83% 0.39% 0.16%
1,400,000 0.40% 1.07% 1.45% 1.32% 0.90% 0.50% 0.23%
1,600,000 0.25% 0.75% 1.15% 1.19% 0.92% 0.57% 0.30%
1,800,000 0.16% 0.56% 0.95% 1.08% 0.93% 0.64% 0.37%
2,000,000 0.31% 1.31% 2.88% 4.41% 5.28% 5.31% 4.73%
2,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TABLE 3.6

Probabilities for Limited Loss Plus ALAE

Combined
Loss+ALAE Probability Calculation

0 7.42% = 7:42%
200,000 4.56% = 4:33%+0:23%
400,000 4.47% = 2:22%+2:23%+0:02%
600,000 4.09% = 1:41%+2:10%+0:59%+0:00%
800,000 3.99% = 1:06%+1:82%+1:01%+0:11%+0:00%

...
...

...

The goal of the PERM team is to model the distribution of
results for Pacific All Risk Insurance Company as a whole. In-
cluded in this analysis is sensitivity testing for interest rates and
various complex reinsurance structures. The PERM is a giant
simulation model that needs to be parameterized for the busi-
ness actually written.
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GRAPH 3.1

Cumulative Distribution Functions for Capped and
Uncapped Loss & ALAE

A simplification made in the PERM is that the model sep-
arately simulates an aggregate value for all “small” losses and
then simulates individual “large” losses. A truncation point of
1,000,000 has been selected for segregating large from small
losses.

An early version of the PERM made the assumption that the
small and large losses are independent. That is, the small and
large losses were simulated separately and then the results were
summed. However, this independence assumption was found to
be false, resulting in understated variability and unrealistically
low probabilities in the tail of the combined distribution.

In fact, the aggregate distributions of the small and large losses
are generally not independent. If a single frequency distribution
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is used to generate the overall number of losses, N, then the
covariance5 can be written explicitly

Cov(S,L) = p¹S(1 p)¹L(¾
2
N ¹N), (4.1)

where

S = aggregate small losses,

L= aggregate large losses,

¹S = conditional mean of small claim size,

¹L = conditional mean of large claim size,

p= probability that a given claim is small,

¾2N = variance of the claim counts, and

¹N =mean of the claim counts.

The sign of the covariance term is driven by the claim count
distribution. For the commonly used Negative Binomial this is
positive; for the Poisson it is zero.6 Equation (4.1) is derived in
Appendix B.

In order to model the losses for Pacific All Risk, we begin
by approximating the total loss distribution with a few discrete
points (Table 4.1). As in the previous examples, a five-point dis-
tribution is used here, but would need to be expanded to a greater
number of points in a more realistic application.

This single severity curve is then reconfigured into Table 4.2,
a bivariate matrix Mx. The first column defines the severity of
the “small” loss distribution. The first row is a single point con-
taining the probability of a “large” loss.

This format is a bit different than the previous examples, since
the vertical and horizontal axes are in different units: the vertical

5Sundt shows a more general formula in [8].
6In the case of the Poisson it can be shown that the large and small claims are actually
independent.
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TABLE 4.1

Severity Distribution

Probability Loss Amount

0.00% 0
43.80% 200,000
24.60% 400,000
13.80% 600,000
7.80% 800,000
10.00% 1,000,000

Average 431,200

TABLE 4.2

Single Claim Small Loss & Large Counts Joint
Distribution

Large Loss Counts
Small
Loss 0 1 2 3 4 5

0 0.00% 10.00% 0.00% 0.00% 0.00% 0.00%
200,000 43.80% 0.00% 0.00% 0.00% 0.00% 0.00%
400,000 24.60% 0.00% 0.00% 0.00% 0.00% 0.00%
600,000 13.80% 0.00% 0.00% 0.00% 0.00% 0.00%
800,000 7.80% 0.00% 0.00% 0.00% 0.00% 0.00%

1,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,600,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1,800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

in dollars and the horizontal in counts. This illustrates the flex-
ibility in the FFT technique to allow for different scale factors
for the two dimensions.

For a frequency distribution, we use a Negative Binomial with
mean 10 and variance 20. For an actual insurance company, the
overall frequency is likely to be much higher, but we continue
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with this simplified assumption for clarity. The aggregate distri-
bution matrix Mz is again given by the expression:

Mz = IFFT(PGF(FFT(Mx))), and (4.2)

PGF(t) = (2 t) 10: (4.3)

The resulting aggregate distribution matrix Mz is in Table 4.3.
Like the original bivariate severity, this matrix has units in dollars
for the “small” losses, and counts for the “large” losses. The
marginal distribution for the aggregate small losses is found by
summing the probabilities in each row.

The simulation procedure first simulates an aggregate amount
for the “small” losses, and then finds a conditional frequency
distribution for the “large” loss counts. The conditional large
loss frequency distributions are created by rescaling each row of
Mz to total 100%. This is shown in Table 4.4.

The conditional matrix shown in Table 4.4 is also instructive
in itself, because it clearly shows the dependence between large
and small losses. Simply put, an increase in frequency means
more losses in both the large and small categories.

The final simulation procedure for the PERM is then:

simulate the aggregate dollars of small losses out of its
marginal distribution;

simulate the number of large losses from the corresponding
conditional frequency distribution;

simulate a severity amount for each of the large losses.

This procedure allows us to efficiently simulate losses without
the need to individually simulate every small loss, and at the same
time preserves the dependence structure between the large and
small losses.
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TABLE 4.3

Aggregate Claim Small Loss & Large Counts
Bivariate Distribution

Large Loss Counts
Small
Loss 0 1 2 3 4 5 6

0 0.10% 0.05% 0.01% 0.00% 0.00% 0.00% 0.00%
200,000 0.21% 0.12% 0.04% 0.01% 0.00% 0.00% 0.00%
400,000 0.38% 0.22% 0.07% 0.02% 0.00% 0.00% 0.00%
600,000 0.58% 0.36% 0.12% 0.03% 0.01% 0.00% 0.00%
800,000 0.82% 0.53% 0.18% 0.05% 0.01% 0.00% 0.00%

1,000,000 1.07% 0.71% 0.26% 0.07% 0.01% 0.00% 0.00%
1,200,000 1.31% 0.91% 0.34% 0.09% 0.02% 0.00% 0.00%
1,400,000 1.54% 1.11% 0.43% 0.12% 0.03% 0.00% 0.00%
1,600,000 1.74% 1.30% 0.52% 0.15% 0.03% 0.01% 0.00%
1,800,000 1.90% 1.46% 0.60% 0.18% 0.04% 0.01% 0.00%
2,000,000 2.02% 1.60% 0.68% 0.20% 0.05% 0.01% 0.00%
2,200,000 2.09% 1.71% 0.75% 0.23% 0.06% 0.01% 0.00%
2,400,000 2.12% 1.78% 0.80% 0.25% 0.06% 0.01% 0.00%
2,600,000 2.11% 1.82% 0.84% 0.27% 0.07% 0.02% 0.00%
2,800,000 2.06% 1.83% 0.86% 0.29% 0.08% 0.02% 0.00%
3,000,000 1.98% 1.81% 0.87% 0.30% 0.08% 0.02% 0.00%
3,200,000 1.88% 1.75% 0.87% 0.30% 0.08% 0.02% 0.00%
3,400,000 1.76% 1.68% 0.85% 0.30% 0.09% 0.02% 0.00%
3,600,000 1.62% 1.59% 0.82% 0.30% 0.09% 0.02% 0.00%
3,800,000 1.48% 1.49% 0.79% 0.29% 0.09% 0.02% 0.00%
4,000,000 1.34% 1.38% 0.74% 0.28% 0.08% 0.02% 0.00%
4,200,000 1.20% 1.26% 0.70% 0.27% 0.08% 0.02% 0.00%
4,400,000 1.06% 1.14% 0.64% 0.25% 0.08% 0.02% 0.00%
4,600,000 0.94% 1.03% 0.59% 0.24% 0.08% 0.02% 0.00%
4,800,000 0.82% 0.91% 0.54% 0.22% 0.07% 0.02% 0.00%
5,000,000 0.71% 0.81% 0.48% 0.20% 0.07% 0.02% 0.00%

5. CONCLUSION

Aggregating a bivariate severity distribution is a useful tech-
nique. Two severity components are separately aggregated while
preserving their dependence structure. This technique can be ap-
plied when pricing a policy with a per-occurrence retention and
a stop loss on the aggregate retention. It can also be applied more
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TABLE 4.4

Conditional Distributions of Large Counts Given
Aggregate Small Losses

Large Loss Counts
Small
Loss 0 1 2 3 4 5 6

0 59.87% 29.94% 8.23% 1.65% 0.27% 0.04% 0.00%
200,000 56.88% 31.28% 9.39% 2.03% 0.36% 0.05% 0.01%
400,000 54.91% 32.07% 10.18% 2.33% 0.43% 0.07% 0.01%
600,000 53.26% 32.68% 10.87% 2.60% 0.50% 0.08% 0.01%
800,000 51.80% 33.17% 11.49% 2.85% 0.57% 0.10% 0.01%

1,000,000 50.37% 33.62% 12.11% 3.12% 0.64% 0.11% 0.02%
1,200,000 49.03% 34.01% 12.70% 3.39% 0.72% 0.13% 0.02%
1,400,000 47.77% 34.34% 13.26% 3.65% 0.80% 0.15% 0.02%
1,600,000 46.55% 34.63% 13.81% 3.92% 0.89% 0.17% 0.03%
1,800,000 45.38% 34.87% 14.34% 4.19% 0.97% 0.19% 0.03%
2,000,000 44.26% 35.09% 14.86% 4.47% 1.07% 0.22% 0.04%
2,200,000 43.17% 35.26% 15.37% 4.74% 1.16% 0.24% 0.04%
2,400,000 42.12% 35.41% 15.86% 5.02% 1.26% 0.27% 0.05%
2,600,000 41.10% 35.53% 16.34% 5.31% 1.37% 0.30% 0.06%
2,800,000 40.11% 35.62% 16.80% 5.59% 1.47% 0.33% 0.06%
3,000,000 39.16% 35.69% 17.25% 5.88% 1.58% 0.36% 0.07%
3,200,000 38.22% 35.73% 17.69% 6.17% 1.70% 0.39% 0.08%
3,400,000 37.32% 35.75% 18.12% 6.46% 1.82% 0.43% 0.09%
3,600,000 36.44% 35.75% 18.54% 6.75% 1.94% 0.47% 0.10%
3,800,000 35.58% 35.73% 18.94% 7.05% 2.07% 0.51% 0.11%
4,000,000 34.74% 35.69% 19.33% 7.34% 2.19% 0.55% 0.12%
4,200,000 33.93% 35.63% 19.71% 7.64% 2.33% 0.59% 0.13%
4,400,000 33.14% 35.56% 20.08% 7.94% 2.46% 0.64% 0.14%
4,600,000 32.37% 35.47% 20.44% 8.24% 2.61% 0.69% 0.16%
4,800,000 31.61% 35.36% 20.78% 8.54% 2.75% 0.74% 0.17%
5,000,000 30.88% 35.25% 21.12% 8.83% 2.90% 0.79% 0.19%

generally. The two random variables can be different items such
as dollars and counts.

In this paper we aggregate the bivariate distribution using the
FFT, but it is possible to do this with the continuous Fourier
Transform or simulation. Sundt [8] shows that this can be done
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with recursive techniques. It may sometimes be preferable to
utilize a mix of techniques.

This technique can be extended to n dimensions by developing
a multivariate distribution Mx. With the claim count PGF and
an n-dimensional FFT, the aggregate multivariate array Mz is
obtained as

Mz = IFFT(PGF(FFT(Mx))): (5.1)
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APPENDIX A

SAMPLE TWO-DIMENSIONAL FAST FOURIER TRANSFORM
USING R

It is convenient to compute FFTs using preprogrammed
software. An excellent piece of software that includes FFT
functions is based on the S language and is publicly avail-
able for free. It is called “R” [2]. Versions of R for vari-
ous operating systems can be found by following ‘http://cran.r-
project.org/’. R is copyrighted software made publicly available
under the GNU General Public License which is available at
‘http://www.gnu.org/copyleft/gpl.html’. The FFT function is also
available in commercial software packages, e.g., MATLAB and
S-Plus.

A listing from a session with R shows how easy it is to com-
pute two-dimensional FFTs. Lines typed by the user begin with
“>”. The inverse of a matrix M is obtained with “fft(M,T)/n,”
where n is the number of elements in the matrix.

>ms<-matrix(c(.4,0,0,.3,.3,0,0,0,0),3,3,byrow=T)
>ms
[,1] [,2] [,3]
[1,] 0.4 0.0 0
[2,] 0.3 0.3 0
[3,] 0.0 0.0 0
>f<-fft(ms)
>f
[,1] [,2] [,3]
[1,] 1.0+0.0000000i 0.55-0.2598076i 0.55+0.2598076i
[2,] 0.1-0.5196152i 0.10+0.0000000i 0.55-0.2598076i
[3,] 0.1+0.5196152i 0.55+0.2598076i 0.10+0.0000000i
>f*f
[,1] [,2] [,3]
[1,] 1.00+0.0000000i 0.235-0.2857884i 0.235+0.2857884i
[2,] -0.26-0.1039230i 0.010+0.0000000i 0.235-0.2857884i
[3,] -0.26+0.1039230i 0.235+0.2857884i 0.010+0.0000000i
>ma<-fft(f*f,T)/9
>ma
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[,1] [,2] [,3]
[1,] 0.16+0i 1.652685e-18+0i 2.301894e-17+0i
[2,] 0.24+0i 2.400000e-01+0i 2.467162e-17+0i
[3,] 0.09+0i 1.800000e-01+0i 9.000000e-02+0i

For those wishing to program their own algorithms, see [6].
Note that, when the object to be transformed consists only of
real numbers, there are symmetries that can be used to de-
crease the amount of computing required. Also note that many
software packages, including R, define the FFT as FFT(x)k =
n 1
j=0 exp( 2¼ijk=n), using a negative exponent instead of a pos-

itive one as we have in Equation (C.1). The corresponding in-
verse is IFFT(x̃)k = (1=n)

n 1
j=0 exp(2¼ijk=n). The reader wishing

to verify his code with a package like R should use the “negative”
sign convention.
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APPENDIX B

CORRELATION OF LARGE AND SMALL LOSSES

Consider the Collective Risk Model with aggregate losses rep-
resented by the sum of individual claims

Z = X1 + +XN: (B.1)

The Xi are independent and identically distributed (iid) random
variables denoting claim sizes. Claim counts are denoted by the
random variable N, which is independent from each Xi. It is
further assumed that the first moment of Xi is finite and that the
second moment of N is finite.

Let T denote the threshold for distinguishing between small
claims and large claims; i.e., Xi is small if Xi T. Define a small
loss indicator, Ii = 1 for Xi T and 0 otherwise. Then we have
small aggregate losses

ZS = X1I1 + +XNIN , (B.2)

and large aggregate losses

ZL = X1(1 I1)+ +XN(1 IN): (B.3)

Let p be the probability that Xi T: Denote the conditional
means for small and large claim sizes with

¹S =E[Xi Xi T], and (B.4)

¹L =E[Xi Xi > T]: (B.5)

Denote the claim count mean and variance with

¹N = E[N], and (B.6)

¾2N =Var[N]: (B.7)

PROPOSITION

Cov[ZS,ZL] = p¹S(1 p)¹L(¾
2
N ¹N): (B.8)
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Proof

E[ZSZL] = E
N

i=1

XiIi

N

i=1

Xi(1 Ii)

= ENEX
N

i=1

XiIi

N

i=1

Xi(1 Ii)

= ENEX
i=j

XiIiXj(1 Ij) +
j=i

XiIiXj(1 Ij)

= EN[N(N 1)EX[XI]EX[X(1 I)]],

since Ii(1 Ij) = 0 for i= j

=EN[N(N 1)¹Sp¹L(1 p)]

= (E(N2) ¹N)¹Sp¹L(1 p): (B.9)

E[ZL]E[ZS] = (¹N¹Sp)(¹N¹L(1 p)) = ¹2N¹Sp¹L(1 p):

(B.10)

These yield Equation (B.8), since

Cov[ZS,ZL] = E[ZSZL] E[ZS]E[ZL]: (B.11)
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APPENDIX C

THE DISCRETE FOURIER TRANSFORM AND THE PROBABILITY
GENERATING FUNCTION

In many insurance applications, we need to calculate an ag-
gregate distribution in which the claim size X and the number
of claims N are independent random variables. The aggregate
losses are Z = X1 + +XN , where the Xk are independent and
identically distributed as X. This is known as the Collective Risk
Model.

The Fast Fourier Transform7 (FFT) together with the Proba-
bility Generating Function (PGF) of the claim count distribution
provide a convenient technique for computing the distribution of
the aggregate losses.

This Appendix lists the key definitions and theorems under-
lying this technique. The authors recommend that the reader in-
terested in a more comprehensive review refer to Robertson [7]
and Wang [10].

C.1. Definition of FFT

We assume the claim size random variable X is discrete and
describe it with an n element probability vector x= (x0, : : : ,xn 1),
where Prob(X = ck) = xk, and c is a scalar constant. For the claim
count N we know the probability of each possible number of
claims Prob(N = j) (j = 0,1, : : :). Let FFT(x) denote the FFT of
x. FFT(x) is a vector with elements,

x̃k = FFT(x)k =
n 1

j=0

xj exp(2¼ijk=n), (C.1)

7The Fast Fourier Transform is a specific implementation of the Discrete Fourier Trans-
form. Following Wang [10] we use the term FFT for both.
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where i= 1. The FFT is also invertible; let IFFT denote its
inverse.

xk = IFFT(x̃)k =
1
n

n 1

j=0

x̃j exp( 2¼ijk=n): (C.2)

C.2. Convolution

If Z is the sum of random variables X and Y, i.e., Z = X +Y,
then its probability vector z is known as the convolution of x and
y and is denoted x y, where

(x y)k =
k

l=0

xlyk l: (C.3)

Similarly, if Z is the sum of j independent random vari-
ables identically distributed as X, then its probability vector
z is known as the jth fold convolution of x and is denoted
x j = (x j0 , : : : ,x

j
n 1):

It is convenient to define

x 0 = (1,0, : : : ,0): (C.4)

The jth fold convolution can then be computed recursively for
j 1.

x jk =
k

l=0

xlx
j 1
k l : (C.5)

C.3. Convolution Theorem for the Discrete Fourier Transform

THEOREM Let x and y denote the probability vectors of random
variables X and Y with n elements. If xk = yk = 0 for all k n=2
when n is even and for all k (n+1)=2 when n is odd, then

FFT(x y)k = FFT(x)k FFT(y)k: (C.6)

For convenience we write FFT(x y) = FFT(x)FFT(y), with
the understanding that the multiplication is applied elementwise.
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Extending this convention to powers, we also write (FFT(x))j for
((FFT(x)0)

j , : : : , (FFT(x)n 1)
j).

Applying the inverse transform to both sides of Equation (C.6)
we obtain a method for computing the convolution of two vari-
ables

x y = IFFT(FFT(x)FFT(y)): (C.7)

Similarly, for the jth fold convolution of x

FFT(x j) = (FFT(x))j , (C.8)

and
x j = IFFT(FFT(x)j): (C.9)

C.4. Wrapping

Consider the jth fold convolution of x and note that x j0 +
+ x jn 1 is not necessarily equal to 1, because n is finite. For

example, suppose we have n= 3 and x= (0,1,0). Then x 3 =
(0,0,0), since

x 1 = (0,1,0)

x 2 = (0 0,1 0+0 1,0 0+1 1+0 0) = (0,0,1)

x 3 = (0 0,1 0+0 0,0 0+1 0+0 1) = (0,0,0):

With n= 4 we would have x= (0,1,0,0) and x 3 = (0,0,0,1),
since

x 1 = (0,1,0,0)

x 2 = (0 0,1 0+0 1,0 0+1 1+0 0,

0 0+0 1+1 0+0 0)

= (0,0,1,0)

x 3 = (0 0,1 0+0 0,0 0+1 0+0 1,

0 0+0 0+1 1+0 0)

= (0,0,0,1):
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Robertson [7] describes the convolution in (C.3) as an un-
wrapped convolution. Equation (C.9) returns an un-wrapped con-
volution if x is properly padded with zeros.

When x is not properly padded (C.9) returns a wrapped8 con-
volution. Let (x ˜ y) denote a wrapped convolution; then

(x ˜ y)k =
n 1

j=0

xjy(k j) mod n, (C.10)

and

x
˜ j
k =

n 1

l=0

xlx
˜ j 1
(k l) mod n: (C.11)

The wrapped convolution x ˜ 3 for n= 3 is computed as

x
˜ 1 = (0,1,0)

x
˜ 2 = ((0,1,0) (0,0,1),(0,1,0) (1,0,0), (0,1,0) (0,1,0))

= (0 0+1 0+0 1,0 1+1 0+0 0,

0 0+1 1+0 0)

= (0,0,1)

x ˜ 3 = ((0,1,0) (0,1,0),(0,1,0) (0,0,1), (0,1,0) (1,0,0))

= (1,0,0):

The probability mass that is truncated with the un-wrapped con-
volution wraps with the wrapped convolution. Equation (C.9)
always produces a wrapped convolution, but wrapped and un-
wrapped convolutions are equal when x is properly padded with
zeros.

8Robertson [7] calls this a regular convolution.
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C.5. Definition of the Probability Generating Function

For a random variable N the Probability Generating Function
(PGF) is

PGFN(t) =
j=0

tjProb(N = j) = E(tN): (C.12)

The PGF for the Negative Binomial distribution is given in
Appendix D.

C.6. Collective Risk Theorem for the Discrete Fourier
Transform

We now show how to compute the aggregate probability vec-
tor z for the collective risk model using the FFT and the PGF
of the claims count. This technique has an error term R due to
wrapping which can be made arbitrarily small with sufficient
zero padding of the claim size vector.

THEOREM Suppose we have a collective risk model with claim
size probability vector x= (x0, : : : ,xn 1). Let PGFN be the Proba-
bility Generating Function for the claim counts N. Let M be the
largest integer such that x M0 + + x Mn 1 = 1. That is, M is the
largest number of times one can convolute x and still have room
for all the probability mass. Then

z = IFFT(PGFN(FFT(x))) +R, where (C.13)

Rk
j=M+1

Prob(N = j): (C.14)

Proof

z =
j=0

x jProb(N = j): (C.15)

Define
d(j) = IFFT((FFT(x))j): (C.16)
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Then

z =
j=0

d(j)Prob(N = j) +
j=0

(x j d(j))Prob(N = j):

(C.17)
Let R denote the second sum. Then

z =
j=0

d(j)Prob(N = j)+R

=
j=0

IFFT((FFT(x))j)Prob(N = j)+R

=
j=0

IFFT((FFT(x))jProb(N = j))+R: (C.18)

Because IFFT is linear and continuous, we can bring it outside
the summation. So,

z = IFFT
j=0

(FFT(x))jProb(N = j) +R

= IFFT(PGFN(FFT(x)))+R: (C.19)

Now,

R =
j=M+1

(x j d(j))Prob(N = j), (C.20)

since d(j) = x j for j M. Also, x jk d(j)k < 1, since each
d(j)k,x

j
k [0,1].

Thus,

Rk
j=M+1

Prob(N = j): (C.21)
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APPENDIX D

THE NEGATIVE BINOMIAL DISTRIBUTION

The Negative Binomial distribution with parameters p and k
has

Prob(N = j) =
¡ (k+ j)
¡ (k)j!

pk(1 p)j, and (D.1)

PGF(t) = pk(1 (1 p)t) k: (D.2)

The Negative Binomial mean and variance are

Mean =M =
k(1 p)
p

, and (D.3)

Variance =V =
k(1 p)
p2

: (D.4)

In terms of the mean and variance the PGF is

PGF(t) = (V=M (V=M 1)t)M
2=(V M): (D.5)

For example, a Negative Binomial with a mean of 5 and a vari-
ance of 6 has the Probability Generating Function

PGF(t) = (6=5 (6=5 1)t)5
2=(6 5) = (1:2 :2t) 25: (D.6)


