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TAILS OF COPULAS

GARY G. VENTER

Abstract

Actuaries who want to model correlated joint distri-
butions have a choice of quite a few copulas, but little
basis for choosing one over another. Methods are pro-
vided here to describe the features of different copulas,
so that more informed choices can be made.
Copulas differ not so much in the degree of associ-

ation they provide, but rather in which part of the dis-
tributions the association is strongest. Often needed for
property and casualty applications are copulas that em-
phasize correlation among large losses, i.e., in the right
tails of the distributions. Several copulas that do this are
discussed.
To describe aspects of the copulas, univariate func-

tions of copulas are introduced, for example, tail con-
centration functions. These descriptive functions can be
thought of as an intermediate step between correla-
tion coefficients, such as Kendall, Spearman, Gini, etc.,
which are zero-dimensional measures of association, and
the multi-dimensional copula function itself.
The descriptive functions can be used to select copu-

las having desired characteristics, such as tail concen-
tration, and they can also be used in the fitting process
to judge how well the fitted copulas match those aspects
of the data.

WHAT ARE COPULAS?

Copulas provide a convenient way to express joint distribu-
tions of two or more random variables. A copula separates the
joint distribution into two contributions: the marginal distribu-
tions of the individual variables, and the interdependency of the
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probabilities. One basic result is that any joint distribution can be
expressed in this manner. Another convenience is that the con-
ditional distributions can be readily expressed from the copula.

Some measures of association depend only on the copula and
not on the marginal distributions. Both Kendall’s tau and Spear-
man’s rank correlation are examples, but the usual Pearson linear
product-moment correlation depends on the marginal distribu-
tions. Correlation coefficients measure the overall strength of the
association, but give no information about how that varies across
the distribution. Through the choice of copula, a good deal of
control can be exercised over what parts of the distributions are
more strongly associated. One aspect emphasized below is con-
trolling the strength of the relationship in the tails of the distri-
butions. For instance, workers compensation and property losses
might be correlated in the extreme tails, but not elsewhere in the
distributions, and there are copulas with this kind of behavior.

A previous PCAS example of the use of copulas was Wang
[8], who provided details of calculation methods for aggregate
distributions, with some examples using copulas.

Technically, copulas are joint distributions of unit uniform
variates. In application, the unit uniform variates are viewed as
probabilities from some other variates. Then the joint distribution
of those variates is produced from those probabilities using their
individual inverse distribution functions. Copulas thus provide a
ready method for describing joint distributions and simulating
correlated variables. Quite a few copulas are available, with dif-
fering characteristics that lead to different relationships among
the variables generated.

This paper reviews several popular copulas, introduces some
others, and also introduces methods for selecting which copulas
may be most appropriate for a given application. In particular,
the behavior of the copulas in the right and left tails can be used
to distinguish among joint distributions that produce the same
overall correlation.
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The organization of the paper is first to review copula methods
in general, then to examine several specific copulas, and finally
to look at measures that can be used to identify key characteris-
tics of copulas. An example is provided to illustrate how these
measures are applied to some correlated loss data.

1. GENERAL CONSIDERATIONS

Copulas—Formal Definition

It would be convenient to be able to express a joint distribution
function F(x,y) as a function of FX(x) and FY(y), the individual
(or marginal) distribution functions for X and Y, i.e., as F(x,y) =
C(FX(x),FY(y)). To do this, C can be defined by C(u,v) =
F(F 1

X (u),F 1
Y (v)). This gives C(FX(x),FY(y)) = F(F

1
X (FX(x)),

F 1
Y (FY(y))) = F(x,y). The function C(u,v) is called a copula. For
many bivariate distributions, the copula form is the easiest way to
express and generate the joint probabilities. It allows a separate
description of the individual distributions and their association.
Copulas work in the multi-variate context also, but this paper
will primarily look at bivariate copulas, especially those defined
by a single parameter.

In this context, a copula is a joint distribution of two unit uni-
form random variates U and V with C(u,v) = Pr(U u,V v).
Also, c(u,v) will denote the corresponding probability density,
which is the mixed second partial derivative of C(u,v). The sim-
plest copula is the uniform density for independent draws, i.e.,
c(u,v) = 1, C(u,v) = uv. Two other simple copulas are M(u,v) =
min(u,v) and W(u,v) = (u+ v 1)+, where the “+” means “zero
if negative.” A standard result, given for instance by Wang [8],
is that for any copula C, W(u,v) C(u,v) M(u,v). M and W
are called the Fréchet upper and lower bounds, respectively.

Conditioning with Copulas

The conditional distribution can be defined using copulas. Let
C1(u,v) denote the derivative of C(u,v) with respect to the first
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argument. When the joint distribution of X and Y is given
by F(x,y) = C(FX(x),FY(y)), then the conditional distribution of
Y X = x is given by:

FY X(y) =C1(FX(x),FY(y)):

For example, in the independent case C(u,v) = uv, the condi-
tional distribution of V given U = u is C1(u,v) = v = Pr(V <
v U = u). This is of course independent of u.

If C1 is simple enough to invert algebraically, then the simu-
lation of joint probabilities can be done using the derived con-
ditional distribution. That is, first simulate a value of U, say u,
then simulate a value of V from C1, the conditional distribution
of V U = u.

Correlation

The linear correlation coefficient based on the covariance of
two variates is not preserved by copulas. That is, two pairs of
correlated variates with the same copula can have different cor-
relations. However, the Kendall correlation, usually denoted by
¿ , is a constant of the copula. That is, any correlated variates
with the same copula will have the ¿ of that copula.

There are different ways of defining ¿ , but the simplest may be
¿ = 4E[C(u,v)] 1. For independent variates with C(u,v) = uv,
E[C(u,v)] = 1

4 , so ¿ = 0. Also, for perfectly correlated vari-
ates U = V, E[C(u,v)] = 1

2 , so ¿ will be 1. Thus the scaling
makes ¿ look like a correlation coefficient. The key measure
though is E[C(u,v)], which is a basic constant of a copula
and generalizes to the case of several variates. The limiting
values are obtained for the Fréchet upper and lower bound
copulas, with ¿ = 1 for W and ¿ = 1 for M. These copulas
thus express complete negative and positive correlation, respec-
tively.
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2. SOME PARTICULAR COPULAS

Some well-known copulas and a few designed particularly for
loss severity distributions are reviewed here.

Frank’s Copula

Define gz = e
az 1. Then Frank’s copula with parameter

a= 0 can be expressed as:

C(u,v) = a 1 ln[1+ gugv=g1], with conditional distribution

C1(u,v) = [gugv+gv]=[gugv +g1],

c(u,v) = ag1(1+gu+v)=(gugv+ g1)
2, and Kendall’s ¿ of

¿(a) = 1 4=a+4=a2
a

0
t=(et 1)dt:

For a < 0 this will give negative values of ¿ .

C1 can be inverted, so correlated pairs u,v can be simulated
using the conditional distribution. First simulate u and p by ran-
dom draws on [0,1]. Here p is considered a draw from the con-
ditional distribution of V u. Since this has distribution function
C1, v can then be found as v = C

1
1 (p u). The formula for this,

which can be found from the formula for C1, is:

v = a 1 ln 1+pg1=[1+gu(1 p)] :

Once u and v have been simulated, the variables of interest X
and Y can be simulated by inverting the marginal distributions,
i.e., x= F 1

X (u) and y = F 1
Y (v).

Gumbel Copula

This copula has more probability concentrated in the tails than
does Frank’s. It is also asymmetric, with more weight in the right
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tail. It is given by:

C(u,v) = exp [( lnu)a+ ( lnv)a]1=a , a 1:

C1(u,v) = C(u,v)[( lnu)a+ ( lnv)a] 1+1=a( lnu)a 1=u:

c(u,v) = C(u,v)u 1v 1[( lnu)a+ ( lnv)a] 2+2=a[(lnu)(lnv)]a 1

1+ (a 1)[( lnu)a+( lnv)a] 1=a :

¿(a) = 1 1=a:

Unfortunately, C1 is not invertible, so another method is needed
to simulate variates.

Embrechts et al. [1] discuss the Gumbel copula and give a pro-
cedure to simulate uniform deviates from a general class of cop-
ulas to which it belongs. For the Gumbel this procedure starts by
simulating two independent uniform deviates, u and v, and then
solving numerically for 1> s > 0 with ln(s)s= a(s u). Then the
pair [exp(ln(s)v1=a),exp(ln(s)(1 v)1=a)] will have the Gumbel
copula distribution.

Heavy Right Tail (HRT) Copula and Joint Burr

For some applications actuaries need a copula with less cor-
relation in the left tail, but high correlation in the right tail, i.e.,
for the large losses. Here is one:

C(u,v) = u+ v 1+ [(1 u) 1=a+(1 v) 1=a 1] a, a > 0:

C1(u,v) = 1 [(1 u) 1=a+(1 v) 1=a 1] a 1(1 u) 1 1=a:

c(u,v) = (1+1=a)[(1 u) 1=a+(1 v) 1=a 1] a 2

[(1 u)(1 v)] 1 1=a:

¿(a) = 1=(2a+1):

The conditional distribution given by the derivative C1(u,v) can
be solved in closed form for v, so simulation can be done by
conditional distributions as in Frank’s copula.



job no. 2013 casualty actuarial society CAS journal 2013d01 [7] 09-23-03 12:14 pm

74 TAILS OF COPULAS

Frees and Valdez [2] show how this copula can arise in the
production of joint Pareto distributions through a common mix-
ture process. Generalizing this slightly, a joint Burr distribution
is produced when the a parameter of both Burrs is the same as
that of the heavy right tail copula.

Given two Burr distributions, F(x) = 1 (1+ (x=b)p) a and
G(y) = 1 (1+ (y=d)q) a, the joint Burr distribution from the
heavy right tail copula is:

F(x,y) = 1 (1+ (x=b)p) a (1+ (y=d)q) a

+[1+ (x=b)p+(y=d)q] a:

The conditional distribution of y X = x is also Burr:

FY X(y x) = 1 [1+ (y=dx)
q] (a+1), where

dx = d[1+ (x=b)
p=q]:

By analogy to the joint normal, this can be called the joint Burr
because the marginal and conditional distributions are all Burr. In
practice, the degree of correlation can be set with the a parameter,
leaving the p and q parameters to fit the tails, and b and d to set
the scales of the two distributions.

The Normal Copula

Useful for its easy simulation method and generalized to
multi-dimensions, the normal copula is lighter in the right tail
than the Gumbel or HRT, but heavier than the Frank copula. The
left tail is similar to the Gumbel.

To define the copula functions, let N(x;m,v) denote the nor-
mal distribution function with mean m and variance v, N(x) ab-
breviate N(x;0,1), and B(x,y;a) denote the bivariate standard
normal distribution function with correlation= a. Also let p(u) be
the percentile function for the standard normal, so N(p(u)) = u.
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Then with parameter a, which is the normal correlation coeffi-
cient:

C(u,v) = B(p(u),p(v);a):

C1(u,v) =N(p(v);ap(u),1 a2):

c(u,v) = 1= (1 a2)0:5 exp([a2p(u)2 2ap(u)p(v)

+ a2p(v)2]=[2(1 a2)]) :

¿(a) = 2arcsin(a)=¼:

The Kendall tau is somewhat less than a. The following table
shows a few values.

a 0:15643 0:38268 0:70711 0:92388 0:98769

¿ 0:10000 0:25000 0:50000 0:75000 0:90000

Simulation uses the conditional distribution C1. Simulate p(u)
from a standard normal and then p(v) from the conditional nor-
mal C1. The standard normal distribution function can then be
applied to these percentiles to get u and v.

Visualizing Copulas

The copula densities can be graphed as surface plots, and these
are somewhat informative, but to get a better feeling for what
the copulas will do in practice it is helpful to look at the joint
distributions they produce from a standard sample distribution.
The unit lognormal (where ln(x) is standard normal) is used for
this in the contour plots of the joint densities for the copulas
defined so far, using ¿ = 0:35.

The Frank and normal copulas graphed in Figures 1 and 2 do
not produce a strong relationship between large losses, although
the normal shows a slightly stronger relationship.

In contrast, the Gumbel copula keeps a strong relationship
even for the large losses, as seen in the higher values of the
density function in the upper right of Figure 3.
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FIGURE 1

FRANK JOINT UNIT LOGNORMAL DENSITY ¿ = 0:35

The HRT copula is even stronger in right tail correlation than
is the Gumbel. While difficult to see in Figure 4, it is also weaker
in the left tail. This will be more clear with the tail concentration
functions discussed below.

Kreps’ Partial Perfect Correlation Copula Generator

A family of copulas has been developed by Rodney Kreps
[6]. This is based on a method for generating copulas that are
mixtures of perfectly correlated and totally independent variates.
This is easier to describe as a simulation procedure and then look
at the copulas.
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FIGURE 2

NORMAL JOINT UNIT LOGNORMAL DENSITY ¿ = 0:35

The basic idea is to draw two perfectly correlated deviates
in some cases and two uncorrelated deviates otherwise. More
specifically, let h(u,v) be a symmetric function of u and v map-
ping the unit square to the unit interval. To implement the simu-
lation, draw three unit random deviates u, v, and w. If h(u,v)<w,
simulate x and y as F 1

X (u) and F 1
Y (v) respectively. Otherwise

take the same x but let y = F 1
Y (u) = x. Thus some draws are in-

dependent and some are perfectly correlated. The choice of the
h function provides a lot of control over how often pairs will be
correlated and what parts of the distributions are correlated.
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FIGURE 3

GUMBEL JOINT UNIT LOGNORMAL DENSITY ¿ = 0:35

For instance, h can be set to 0 or 1 in some interval like
j < u,v < k to provide independence or perfect correlation in that
interval, or it could be set to a constant p to provide correlation
in 100p% of the cases in that interval. Another choice is h(u,v) =
(uv)a. This creates more correlation for larger values of u and v,
with the parameter a controlling how much more.

Figures 5 and 6 illustrate simulations in the case where
h(u,v) = (uv)0:3 and both X and Y are distributed Pareto with
F(x) = 1 (1+ x) 4. The correlated and uncorrelated instances
clearly show up separately, in either the log or regular scale.
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FIGURE 4

HRT JOINT UNIT LOGNORMAL DENSITY ¿ = 0:35

For larger values of a, h(u,v) is smaller, so it is less likely that
h(u,v) exceeds the random value w and thus less likely that the
case u= v will be selected. For small values of a, on the other
hand, h(u,v) will be larger, approaching one as a goes to zero.
Thus h(u,v)> w is more likely, so u= v will also be more likely.
The partial perfect correlation copula generator thus provides a
good deal of flexibility and control over how much correlation
is incorporated and where in the distribution it occurs.

To describe the copulas that result, it will be convenient to
adopt the notation used in spreadsheets where a logical expres-
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FIGURE 5

SIMULATIONS OF PARETO (1,4) WITH h= (uv)0:3

sion in parentheses will indicate a value of zero if the expression
is false and one if it is true. Thus (u= v) is one if u= v and zero
otherwise, etc.

Although Kreps considers more general situations, a rela-
tively simple copula results in the case where h(u,v) breaks out
as a product of a univariate function evaluated at u and v, i.e.,
h(u,v) = h(u)h(v). If we define H(x) = x

0 h(t)dt, the copula for-
mulas become:

C(u,v) = uv H(u)H(v)+H(1)H(min(u,v)):

C1(u,v) = v h(u)H(v) +H(1)h(u)(v > u):

c(u,v) = 1 h(u)h(v)+H(1)h(u)(u= v):
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FIGURE 6

SIMULATIONS OF PARETO (1,4) WITH h= (uv)0:3

For a concrete example, pick an a between zero and one, and
let h(u) = (u > a). Thus if both u and v exceed a, the simu-
lated values of u and v will be identical, and otherwise they
will be independent. If x > a, H(x) = x

a dt= x a, and if
not, H(x) = 0. Thus H(u) = (u a)(u > a). Also, H(1) = 1 a,
and H(min(u,v)) = [min(u,v) a](u > a)(v > a). The copula
formulas above can then be computed directly for this h. The
Kendall correlation is ¿(a) = (1 a)4. Sometimes this copula is
called PP Max, for partial perfect max function. The scatter plot
of a simulated sample is graphed in Figure 7 for the case
¿ = 1

2.

Another example is to take h(u) = ua. Then H(u) = ua+1=
(a+1), and H(1) = 1=(a+1). Here, ¿(a) = 1=[3(a+1)4]+8=
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FIGURE 7

PP MAX DATA PAIRS ¿ = 0:5

[(a+1)(a+2)2(a+3)]. As a increases, this approaches zero, re-
flecting the fact that selecting u= v becomes less likely, and at
a= 0, ¿ = 1, as this gives the perfect correlation case.

Figure 8 shows simulated pairs for the case ¿ = 1
2. More cor-

related pairs occur at higher values of u and v, as can be seen
from the growing paucity of independent pairs when going to
the upper right.

3. DISTINGUISHING AMONG COPULAS

A few functions are introduced here to help illustrate different
properties that can distinguish the various copulas. These func-
tions can also be approximated from data, and so can be used
to assess which copulas more closely capture features of the
data.
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FIGURE 8

PP (uv)a DATA PAIRS ¿ = 0:5

Tail Concentration Functions

Given a copula, right and left tail concentration functions
can be defined with reference to how much probability is
in regions near 1,1 and 0,0 . For any z in (0,1) define:
L(z) = Pr(U< z,V < z)=z and R(z) = Pr(U > z,V > z)=(1 z). In
terms of the copula functions, L(z) is just C(z,z)=z. To calculate
R(z), note that 1 Pr(U > z,V > z) = Pr(U < z)+Pr(V < z)
Pr(U < z,V < z) = z+ z C(z,z). Then R(z) can be calculated
by R(z) = [1 2z+C(z,z)]=(1 z). Also, note that Pr(U < z,
V < z) = Pr(U < z V < z)Pr(V < z). But Pr(V < z) is just z,
as copulas are defined with uniform unit marginals, so L(z)
= Pr(U < z V < z) = Pr(V < z U < z), and similarly R(z) =
Pr(U > z V > z). Joe [4] uses the term “upper tail dependence
parameter” for R = R(1) = lim(z 1)R(z), and “lower tail depen-
dence parameter” for L= L(0) = lim(z 0)L(z).
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FIGURE 9

LR FUNCTIONS FOR ¿ = 0:35

The left tail function approaches unity for z near 1, so does
not distinguish much between copulas there, and similarly for
the R function near 0. Thus they can be combined into an LR
function which is L below 1

2 and R above
1
2 . This is graphed

in Figure 9 for the copulas discussed above and for the Clayton
copula, a heavy left tailed copula discussed later.

A basic feature that distinguishes copulas in the right tail is
whether R = R(1) = 0 or something greater. The Gumbel, HRT,
and partial perfect copulas all have R > 0. The HRT is heavier
in the right tail than the Gumbel, but less so than the partial
perfect copulas. The Clayton is the only copula here showing
positive left tail dependence. The HRT and PP Max copulas are
very lowly dependent in the left tail. In fact, for the PP Max L(z)
function the variates are independent in the left tail. Thus for
low z, L(z) = 1. The normal and Frank copulas do not show tail
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FIGURE 10

R AS A FUNCTION OF ¿

dependence in the limits, but away from the extremes the normal
shows greater tail concentration than the Frank on both sides.

For the four copulas with R > 0, R is shown below:

Gumbel HRT PP Power PP Max

R 2 21=a 2 a 1=(1+ a) 1 a

Since R and ¿ are functions of the same parameter, they can
be viewed as functions of each other. Once one is determined,
the other is fixed for single-parameter copulas. Figure 10 graphs
this relationship.
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A good starting point for choosing a copula would be to look
at the target pair ¿ ,R and find which copula is closest. But
since for the copulas above, R is usually greater than ¿ , lower
values of R would not be matched by any of them. R is somewhat
tricky to determine for empirical data, as the far tail values have
increasingly less data. Some projection of the lower values of
R(z) might be necessary. Also, the fitting should look at the R(z)
function, not just R.

Cumulative Tau

Other descriptive functions can be defined that show differ-
ent aspects of copulas. The cumulative tau function decomposes
the integral defining the Kendall tau. Recall that tau is defined
as 1+4 1

0
1
0 C(u,v)c(u,v)dvdu. The cumulative tau can be de-

fined as J(z) = 1+4 z
0

z
0 C(u,v)c(u,v)dvdu=C(z,z)

2.

The full double integral is a probability weighted average of
C(u,v), i.e., EC(u,v). To compare to this on the square from (0,0)
to (z,z), the partial integral has to be divided by the weights,
hence the first power of C(z,z) in the denominator. This quotient
will give the average value of C(u,v) in the square from (0,0) to
(z,z). This will increase as a function of z for any copula. The
second C(z,z) divisor expresses this average relative to C(z,z),
i.e., shows how the average C compares to the maximal C in the
square. This may or may not increase as a function of z, which
makes it a more interesting property of the copula.

The normalization to the range of a correlation with the 1
and 4 is a matter of convenience and familiarity, and gives J(1) =
¿ . The integration can be done numerically, although formulas
for some copulas are given in Appendix A. The shape of the
J function depends on the copula and the tau. It is graphed for
several taus for each copula in Figures 11–16. All the graphs end
up at ¿ for z = 1, but can start off high or low, and can increase
or decrease at varying rates.
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FIGURE 11

FRANK CUMULATIVE ¿ = 0:1,0:5,0:9

FIGURE 12

GUMBEL CUMULATIVE ¿ = 0:1,0:5,0:9
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FIGURE 13

NORMAL CUMULATIVE ¿ = 0:1,0:5,0:9

FIGURE 14

HRT CUMULATIVE ¿ = 0:1,0:5,0:9
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FIGURE 15

PP MAX CUMULATIVE ¿ = 0:1,0:5,0:9

FIGURE 16

PP POWER CUMULATIVE ¿ = 0:1,0:5,0:9

Some other descriptive functions are discussed in Appen-
dix B.
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4. FLIPPING A COPULA

The notation S(x) = 1 F(x) is often used to describe the sur-
vival function Pr(X > x). The joint survival function S(x,y) =
Pr(X > x,Y > y) is not 1 F(x,y), however, as that would be the
probability that either X > x or Y > y, but not necessarily both. In
fact, S(x,y) = 1 FX(x) FY(y)+F(x,y), i.e., Pr(X > x,Y > y) =
1 [Pr(X < x)+Pr(Y < y)]+Pr(X < x,Y < y).

Similarly for a copula C(u,v) = Pr(U < u,V < v) the sur-
vival function of the copula, i.e., CS(u,v) = Pr(U > u,V > v), is
CS(u,v) = 1 u v+C(u,v). Since C(FX(x),FY(y)) = F(x,y), we
have CS(FX(x),FY(y)) = S(x,y).

For a copula C, define CF(u,v) =CS(1 u,1 v) = u+ v
1+C(1 u,1 v). Then CF(SX(x),SY(y)) = CS(FX(x),FY(y)) =
S(x,y). Note that CS is not a copula as it is zero at (1,1), but CF
is a copula. Call CF the flipped copula of C. When the flipped
copula is applied to the survival functions it gives the joint sur-
vival function for the copula. However, the flipped copula can
be applied to distribution functions, and then it can have quite
different properties than the original copula has. The next copula
is an example.

Clayton’s Copula

This copula has heavy concentration of probability near (0,0)
so it correlates small losses. It is not intuitively interesting for
property-liability claims, but may have some application.

C(u,v) = [u 1=a+ v 1=a 1] a, a > 0:

C1(u,v) = u
1 1=a[u 1=a+ v 1=a 1] a 1:

c(u,v) = (1+1=a)[uv] 1 1=a[u 1=a+ v 1=a 1] a 2:

¿(a) = 1=(2a+1):

What is interesting here is that the heavy right tail copula is ac-
tually the flipped Clayton copula. The tau is the same for both
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copulas,1 and the tail concentration functions are swapped. This
is actually how the HRT copula was defined, and suggests defin-
ing other copulas by flipping known copulas. The copula would
have to have some asymmetry to make this worthwhile. One
candidate would be Gumbel’s copula.

The Flipped Gumbel

Gumbel’s copula is heavier in the right tail than the left. Flip-
ping it produces a copula with the opposite property:

C(u,v) = u+ v 1+exp ([ ln(1 u)]a+ [ ln(1 v)]a)1=a ,

a 1.
C1(u,v) = 1 exp ([ ln(1 u)]a+[ ln(1 v)]a)1=a

[ ln(1 u)]a+[ ln(1 v)]a 1=a 1

[ ln(1 u)]a 1=[1 u]:

c(u,v) = (1 u) 1(1 v) 1 [ ln(1 u)]a+[ ln(1 v)]a 2+1=a

[ln(1 u) ln(1 v)]a 1

[a+ [ ln(1 u)]a+[ ln(1 v)]a 1=a 1]

exp ([ ln(1 u)]a+ [ ln(1 v)]a)1=a :

¿(a) = 1 1=a:

5. APPLICATIONS

Loss Adjustment Expense

Two recent actuarial papers fit parameters to the joint distri-
bution of loss and loss adjustment expense for a liability line
using 1,500 claims supplied by Insurance Services Office, Inc.
The two studies may or may not have used the same data, but
they present scatter plots that are similar. They both use copulas
to describe the joint distribution.

1Tau for a sample is the average value of sign[(u x)(v y)] among all distinct pairs
(u,v),(x,y). This value is the same for the flipped pairs (1 u,1 v), (1 x,1 y), so tau
will be the same for the original and the flipped sample for any copula.
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There were methodological differences between the two pa-
pers. Frees and Valdez [2] assume Pareto marginals for both
distributions, but compare fits for several copulas. Klugman and
Parsa [5], on the other hand, compare fits for a number of sever-
ity distributions, but select Frank’s copula arbitrarily. The papers
may have taken different approaches to the censoring of claims
by policy limits as well. Klugman and Parsa say they omit claims
for which either loss or expense is zero, so they can get true
severity distributions for both. Frees and Valdez probably do
this as well.

Frees and Valdez used the K(z) function discussed in Ap-
pendix B to select among copulas. Plotting the empirical K(z)
against the values from several copulas, they found the Gumbel
looked best. The Gumbel also gave the best value for the Akaike
information criterion (AIC). Optimizing the AIC is equivalent
to finding the copula with the highest maximum likelihood in
this case, as all the copulas they tried had one parameter. The
best fit they found was produced by the Gumbel copula with
a= 1:453. This gives ¿ = 0:31. Klugman and Parsa estimate the
Frank a= 3:07438, which also gives ¿ = 0:31.

A convenient way to compare heavy-tailed severity fits is to
look at the median and the heaviness of the tail, which can be
quantified as the smallest positive moment that does not con-
verge. For the Pareto, for example, this moment is just the shape
parameter.

If we express the Pareto as F(x) = 1 (1+ x=b) a, then Frees
and Valdez find: for loss, a= 1:122 and b = 14,036, and for ex-
pense, a= 2:118 and b = 14,219. Klugman and Parsa find the
best severity fits with the inverse Burr, which can be expressed
as F(x) = (1+ (x=b) c) a. They estimate2 for loss, a= 1:046 = c,

2The inverse Burr with a= c they call the inverse paralogistic, which is actually a name I
coined some years ago. For the loglogistic, F(x) = 1 (1+ (x=b)a) 1, whereas the Pareto
has F(x) = 1 (1+(x=b)1) a, so the combined form F(x) = 1 (1+ (x=b)a) a could be
called the paralogistic. The inverse of a distribution in this context is the distribution of
1=X from that distribution, which generates the inverse Burr, inverse paralogistic, etc.
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b = 11,577.7, and for expense, a= 1:57658, b = 10,100.2, c=
0:573534. These parameters are converted to median and tail
heaviness (= c for the inverse Burr) below. There is reasonably
close agreement among these values except for the tail heaviness
for loss expense, for which the divergence is a little greater.

Loss Loss Expense Expense
Median Tail Median Tail

Frees & Valdez 12,000 1.12 5,500 2.12
Klugman & Parsa 12,275 1.05 5,875 1.58

Neither paper looked at the heavy right tail copula. For ¿
of 0.31, this is not too different from the Gumbel. In fact it is
similar to the Gumbel in the right tail and more like the Frank
in the left tail. This suggests that the joint Burr discussed above,
which is built from the HRT copula, may provide a reasonable
approximation to the loss and expense distribution, particularly in
the right tail. This could be useful for excess-of-loss reinsurance
estimates, especially when data is scarce. Recall that the joint
Burr distribution is given by:

F(x,y) = 1 (1+ (x=b)p) a (1+ (y=d)q) a

+[1+ (x=b)p+(y=d)q] a:

The a parameter comes from the HRT copula, with ¿ = 1=
(1+2a). For ¿ = 0:31, the implied a is 1.11. The tail heaviness
factors are ap and aq, so p and q can be estimated from these
parameters for this value of a. The tail heaviness can be estimated
from available data or industry values could be used. A simple
choice given the table above would be to take the loss factor as
1.11, which would give p= 1. A reasonable choice for q might
be 1.5. Finally, b and d can be estimated from the respective
medians. For example, for loss, the median is b(21=a 1)1=p. For
a= 1:11, then, b = (median)1:151=p. The medians from Klugman
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and Parsa with p= 1 and q= 1:5 give (rounded):

F(x,y) = 1 [1+ x=14150] 1:11 [1+ (y=6450)1:5] 1:11

+ [1+ x=14150+ (y=6450)1:5] 1:11:

Given a loss of x, the conditional distribution of loss expense
is also Burr:

FY X(y x) = 1 [1+ (y=dx)
1:5] 2:11, with

dx = 6450+11x
2=3:

Simulated Hurricane Losses

A simulation of n= 727 losses from a hurricane loss generator
for a sample data set of Maryland and Delaware exposures will
be used as an example of some of the issues that arise in copula
estimation. As the emphasis is on the copula, not the marginal
severities, the simulated losses were converted to probabilities by
dividing the loss ranks for each state by n+1 = 728. The prob-
ability pairs were grouped into 20 intervals of 5% probability in
each state for the graph. The graph in Figure 17 shows there is
a positive relationship between the loss probabilities for the two
states, with some degree of concentration near (0,0) and (1,1).
This is given in table form in Appendix C. A scatter plot of the
empirical probabilities is shown in Figure 18.

The usual estimate for the Kendall tau is to compute the av-
erage value over all pairs of observations (ui,vi), (uj ,vj), i < j of
sign[(ui uj)(vi vj)]. In this case the estimate is ¿ = 0:4545.

An empirical copula can also be built at each point by count-
ing the other points that are less in both states. As there are n 1
other pairs, the count divided by n 1 can be taken as an estimate
of the copula at that point. For this data, the maximum empirical
copula value is 0.9821 and the average is 0.36367. Four times
this less 1 is another estimate of tau, and this also is 0.4545.

Empirical L and R functions can be computed similarly. An
estimate for L(z) can be obtained as C(z,z)=z, where C(z,z) is
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FIGURE 17

MD & DE Joint Empirical Probabilities

computed as the proportion of pairs with u and v both less than
z. Then with this C, R is estimated by R(z) = [1 2z+C(z,z)]=
(1 z). These functions are graphed in Figure 19. The limiting
values L and R are problematic immediately, in that they appear
to be positive, yet much less than tau. All the copulas reviewed
above have either R = 0 or R > ¿ . The tails are fairly symmet-
rical, which poses additional fitting difficulties for single-tailed
copulas like the HRT, PP Max, and Clayton. The Frank and nor-
mal copulas are thus likely to fit best, even though they are too
light in the extreme tails.
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FIGURE 18

DE versus MD Copula

An empirical cumulative tau can also be calculated. For each
z, the empirical C(u,v) can be computed for each (u,v) pair with
both u and v less than z. Then the average of these values esti-
mates the average copula in the square from (0,0) to (z,z).
This divided by C(z,z), times four less one, is the estimate of
J(z).

Its graph in Figure 20 is not like the J(z) for any of the copulas
for small values of z, but the empirical calculation is based on
few points when z is small. For larger z it is most similar to the
almost linear J of the Frank copula.

TheM(z) function discussed in Appendix B can be calculated
either for DE MD or MD DE. Figure 21 graphs MD DE. It is
most like the M function for the normal copula.
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FIGURE 19

DE and MD L(z) & R(z)

The descriptive functions thus suggest that the normal and
Frank copulas should provide the best fits to this data, but they
will be light in the tails.

Maximum likelihood estimation (MLE) of the parameter was
performed for several of these copulas. The parameter and the
maximal likelihood are shown below. As all the copulas here
have a single parameter, the ordering of the likelihood function
is the same as those from the various information criteria like
AIC, etc.

Flipped
HRT Gumbel Frank Normal Gumbel

Parameter 0.968 1.67 4.92 0.624 1.68
Ln Likelihood 124 157 183 176 161
Tau 0.34 0.40 0.45 0.43 0.40
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FIGURE 20

DE and MD J(z)

The partial perfect copulas are difficult to estimate by MLE,
as it is rare to have observations with exactly equal marginal
probabilities. Nonetheless these copulas may be reasonable as
scenario generators. An alternative is to estimate the parameter
by matching tau. For the PP Power copula this gives a= 0:314.
However for this data some of the descriptive functions seem to
make this copula unlikely.

The likelihood function favors the Frank copula in this case.
Some of the descriptive functions are graphed for the fit and
the data for this copula and, in some cases, some other copulas
in Figures 22 and 23. The L and R functions are combined in
Figure 22. R(z) is shown for z > 0:5, and L(z) for z < 0:5. The
Frank copula looks like a close fit all along except in the tails,
where the normal is a little better. The PP Power appears to be
too heavy in the right tail for this data.

Figure 23 shows the J(z) function for the data and the normal
and Frank copulas. The two copulas provide quite different fits
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FIGURE 21

M(z) for MD DE< z

to this data, but it is a subjective matter as to which is better, with
the Frank probably having the edge for its close fit for z > 0:5.
The Frank copula has a lower sum of squared errors, but this
disappears if the first two points (at 1) are omitted.

Even though the Frank copula provides the best fit accord-
ing to the likelihood function, there are fitting problems in the
tails. Somewhat heavier-tailed copulas with strength in both tails
would be useful here. See Appendix D for an example. Another
alternative would be to use the Frank copula but model the ex-
treme events separately.

6. CONCLUSION

Copulas provide a convenient way to model and simulate cor-
related variates. Several copulas with varying shapes are avail-
able for modeling these relationships. Shape differences among
copulas can be discerned with the descriptive functions. These
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FIGURE 22

LR Function for DE=MD and Fits

can be used both in fitting copulas to data and in applying in-
formed judgment to select a copula for a given application.

Statisticians have identified a fair number of copulas, e.g.,
see Nelson [7]. The use of the descriptive functions provides an
avenue for researching their properties. There may also be more
descriptive functions that can reveal other aspects of a copula.
For instance, the J and M functions looked at average probabil-
ities between 0 and z. Mirror functions could look at the same
probabilities between z and 1, analogous to the way that R mir-
rors L. It would also be possible to define more functions over
non-rectangular parts of the unit square, such as the region where
C(u,v) is less than z, as in the K function, or sections like u and
v both less than z.

This paper focused on bivariate copulas but many of the con-
cepts can be generalized to the multi-variate case. The descrip-
tive functions have multi-variate analogs except for M(z) which
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FIGURE 23

J(z) Data and Fits

would have to be done pairwise. Only the normal and partial
perfect copulas fully generalize to multi-variate forms that al-
low specification of all pairwise correlations, but there are other
multivariate copulas, e.g., see Joe [4].

In summary, actuaries now have a number of copulas to chose
among and a number of techniques for refining that choice, yet
more copulas and more techniques could still be worth uncover-
ing.
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APPENDIX A—J(Z)

For a copula with distribution function C(u,v) define:

I(z) =
z

0

z

0
C(u,v)c(u,v)dvdu:

Then J can be expressed as:

J(z) = 4I(z)=C(z,z)2 1:

For the following distributions the formula for 4I(z) is given.

Gumbel

(2 1=a)exp[21+1=a ln(z)] 4( ln(z))a(1 1=a)
y
e 2ww adw,

where y = 21=a ln(z):

Heavy Right Tail

8z 8+4(2y 1) a+[4a(1 z)2 +2(1+ (2y 1) 2a)(a+1)]=

[2a+1]+8a
y

1
(w+ y 1) a 1w adw,

where y = (1 z) 1=a:

Partial Perfect Max

z4 + (z > a)(a4 4a3 +2(1+2z)a2 4az+2z2 z4):

Partial Perfect Power

z4 +4(a+1) 2[(y4 2y3=3+ y2=2)(a+1) 2

+ za+3(a2 +3a+4)(a+2) 1(a+3) 1

z2(a+2)(a2 +2a+2)(a+2) 2],

where y = za+1:



job no. 2013 casualty actuarial society CAS journal 2013d01 [37] 09-23-03 12:14 pm

104 TAILS OF COPULAS

Clayton

y b(b+1 b=y)(b+2)=(b+1),

where b = 2a and y = 2=z1=a 1:

BB1 (Appendix D)

2(1+ (ac) 1)y2 4(a+1)y2+a=[ac(a+2)]

4x(ac) 1
y

0
(w a 1) cw1+a[(ac+1)w a a 1]dw,

where x= 2(z a 1)c, and y = (1+ x1=c) 1=a:
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APPENDIX B

OTHER DESCRIPTIVE FUNCTIONS

Cumulative Conditional Mean

A function of interest is the conditional expected value of
V U= z. However this is often difficult to estimate from data,
as there are usually not too many values of V for any given value
of U. So a related function is chosen: the expected value of V
given U< z. Let

M(z) = E(V U < z) =
z

0

1

0
vc(u,v)dvdu=z:

Since E(V) = 1
2 , every copula will have M(1) =

1
2 so the differ-

ences in M among copulas will be for lower values of z and the
shape of the curve approaching z = 1.

Often the integral has to be done numerically, but for a
few copulas it is done explicitly at the end of this appendix.
Graphs of this function for several copulas are shown in Figures
24–29. For this function, the lower ¿ is, the closer the values
stay to 1

2 .

Copula Distribution Function

Genest and Rivest [3] define a function K(z) that is basi-
cally Pr(C(u,v)< z). It is the area of the unit square in which
Pr(C(u,v)< z). An empirical K(z) can be calculated for any z as
the proportion of empirical values of C(u,v) that are less than z.
Although C(u,v) approaches one as u and v approach one, it is
possible that C is low for most values of u and v, which would
make K(z) high for most zs. Or C could grow fairly quickly
through lower values of u and v, which would tend to make
K(z) smaller.
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FIGURE 24

Frank M(z) for ¿ = 0:1,0:5,0:9

FIGURE 25

Gumbel M(z) for ¿ = 0:1,0:5,0:9
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FIGURE 26

Normal M(z) for ¿ = 0:1,0:5,0:9

FIGURE 27

HRT M(z), ¿ = 0:1,0:5,0:9
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FIGURE 28

PP Power M(z), ¿ = 0:1,0:5,0:9

FIGURE 29

PP Max M(z), ¿ = 0:1,0:5,0:9
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FIGURE 30

M(z) Data and Fits

Genest and Rivest show how to calculate K for a number of
copulas. In particular,

Copula K(z)

Gumbel z(1 lnz1=a)
Frank z+ a 1(1 eaz) ln[(1 e az)=(1 e a)]

Hurricane Application

M(z) for the hurricane data and the Frank and normal copulas
is graphed in Figure 30. The normal copula is the one with the
better fit for small events, and the Frank fits better in the middle
of the range.

A scatter plot of the empirical K percentiles as a function of
the Frank K percentiles (often called the QQ plot) is shown in
Figure 31, along with the line x= y. The values are very close
to the line. This supports the fit, but as K(0) = 0 and K(1) = 1



job no. 2013 casualty actuarial society CAS journal 2013d01 [43] 09-23-03 12:14 pm

110 TAILS OF COPULAS

FIGURE 31

K percentiles, Data Versus Frank

for any copula, empirical or parametric, fit problems in the tails
are difficult to discern with this function.

M(z) Formulas

Partial Perfect Maximum

M(z) = 1
2

1
2(z > a)(1 a)(1 z)(z a)=z:

Partial Perfect Power

M(z) = 1
2 + (z

a+1 za)=[(a+1)(a+2)]:
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APPENDIX D

JOE’S BB1 COPULA

Several examples of two-parameter bivariate copulas are pro-
vided by Joe [4]. One that has a closed form for tau and can be
heavy in both tails he labels BB1. It is a generalization of the
Gumbel and Clayton copulas.

C(u,v) = 1+ [(u a 1)c+(v a 1)c]1=c 1=a, a > 0, c 1:

C1(u,v) = 1+ [(u a 1)c+(v a 1)c]1=c 1=a 1

[(u a 1)c+(v a 1)c]1=c 1(u a 1)c 1u a 1:

c(u,v) = 1+ [(u a 1)c+(v a 1)c]1=c 1=a 2

[(u a 1)c+(v a 1)c]2=c 2

ac+1+ a(c 1)[(u a 1)c+(v a 1)c] 1=c

(u a 1)c 1u a 1(v a 1)c 1v a 1:

¿ = 1 2=[c(a+2)]:

R(1) = 2 21=c; L(0) = 2 1=(ac):

The Gumbel is the limiting case a 0. The Clayton arises when
c= 1, but here the a parameter is the reciprocal of the Clayton a
parameter in the text.

With R, L, and ¿ all closed form it is possible to find a and
c to set two of them and then see what the third is. Not all
combinations are possible. Figure 32 graphs L as a function of R
for several values of ¿ . For each ¿ , there is an inverse relationship
between R and L. Either can get as low as needed, approaching
zero, for any value of ¿ , but then the other becomes large. Each
becomes somewhat higher than ¿ if the other one is low. Higher
¿ allows higher R and L. The left tails appear to be somewhat
heavier than the right tails, so flipping this copula could be useful
for some applications.
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FIGURE 32

BB1 L as a Function of R, ¿ = 0:1,0:2, : : : ,0:9

This copula is not particularly useful for the hurricane data,
as it is so heavy-tailed. The MLE log-likelihood was 170, which
was not as good as some other copulas. The a and c were 0.386
and 1.434, which gave ¿ = 0:415, L= 0:286, and R = 0:379. So
the ¿ was a little low and the tail parameters higher than the data
would suggest.


