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Introduction

In their important paper, Line-by-Line Surplus Requirements for Insurance Companies,
Stuart Myers and James Read' have developed an economically sound method for
allocating capital to lines of insurance. The purpose of my paper is to extend their model
and apply it to the pricing of catastrophe insurance by layer of coverage. I also show the
connection between capital allocation and risk loads by layer. With this paper, I hope to
introduce the Myers-Read (MR) method and its underlying concepts to a wider, less

finance-oriented audience.

The first section of this paper outlines the MR method, showing the relationship of this
model to the expected policyholder deficit concept. Also, I show how the underlying MR
premise, the constant default ratio, follows from a more fundamental price homogeneity
assumption. I further simplify the MR model to incorporate the concept of the loss beta.
This is a natural extension of the model, since the relevant risk measure for capital
allocation depends on the covariance of the losses of a line of business with the total
losses for all lines. Another refinement to the MR model is an adjustment to the capital
allocation formula to reflect empirical measurement of the loss volatilities and

covariances.

The second section of the paper extends the MR method to allocating capital to coverage
layers of an individual policy. Given the capital allocated to the entire contract, the
further allocation to layer depends on the layer beta, a concept analogous to the loss beta.
The layer beta is a simple function of the first two partial moments of the loss size
distribution. Using the notion of an infinitesimally narrow layer, I show that the layer
beta, and therefore the allocated capital, is a monotonic increasing function of the

coverage limit.

! This paper was developed under the aegis of the Automobile Insurance Bureau of Massachusetts. It has
not yet been published.



The third section borrows the powerful risk-neutral probability technique from finance,
and applies it to develop risk loads by layer. Having the risk loads by layer is essential to
capital allocation by layer, since the capital allocation depends on the market values of
losses by layer, not just the expected losses. Particular emphasis is given to calculating

risk loads for layers under the lognormal distribution.

The fourth and fifth sections of the paper apply the extended MR model to determine the
fair price for a high-layer catastrophe reinsurance treaty. The data used are modified from
an actual pricing exercise at my company. An important part of this section is estimating

parameters from empirical data.
The sixth and final section discusses key results and suggests areas for future research.

To help the reader follow the mathematics in this paper, I have appended a glossary of

notation after Section 6.

Section 1: The Myers-Read Model and Some Extensions

The Role of Capital in Insurance

Capital is defined as the net of total assets over obligations (liabilities) to non-owners.
Thus, depending on the accounting measure used, capital could also be called surplus,
equity or the market value of the firm. The principal role of capital in insurance is to

reduce the impact of insolvency on insured policyholders.

Since policyholders have a preference for protection against default on their claims, they
will want insurers to have more capital than less. However, due to the double-taxation of

corporate and personal income in the U.S., capital is costly.? Therefore, there is a tradeoff

2 When an insurance company owner contributes a dollar of capital to secure losses against defanlt, the
investment return from that dollar is taxed at the corporate level. The net return to the owner is r,(1-o,

where ¢ is the tax rate and r, is the investment return. However, the owner could get r, simply by directly
investing the dotlar in the financial markets. Thus, the owner’s opportunity loss is r, f per dollar invested.



between the cost and benefit of having capital. This tradeoff, in the interplay between
insurers, consumers and regulators, determines the level of capital carried by the average

insurer.

One-Period Default Model

The cost of an insurer’s insolvency is readily determined in a competitive market. Denote
the value of the insurer’s assets at the beginning of the period by A and the value of the
losses (also called liabilities) by L. The amount of capital C is A — L. The respective
values at the end of the period are A" and L’. At the end of the period, if L'> A’, then
the insurer is insolvent and the policyholders are short a default amount L'—A’. If

L’ < A’, then the default amount is zero. Let D represent the market value® of the

expected default amount and d = D/ L the default market value per unit of expected loss.

The expected default is also called the expected policyholder deficit in the actuarial
literature.* Several authors have shown that the market value of the expected amount of
default is equivalent to the price of a put option on the insurer’s assets. These authors
include Butsic (1994), Cummins (1988), Derrig (1989) and Doherty am:l Garven (1986).
The option to default is implicitly given by the policyholders to the owners of the

insurance company.

Competitive Market Model
We assume that the market for insurance is competitive: all insurance contracts having
identical coverage and identical levels of service will have the same price (called the fair

price or fair premium). Also, the default values for all insurers have a market price. To

In order to induce the owner to contribute capital, the policyholders must pay an additional amount in their
premiums to make up the income tax cost. Appendix 6 has a more complete discussion of income tax costs.

3 In financial economics, the market value equals the present value, at a risk-free interest rate, of the
expected default amount at the end of the period. In this calculation, the expectation is taken with respect to
a risk-neutral probability distribution. For more information, see Brealey and Myers (1996) and Panjer
(1998).

4 See Butsic (1994). This term was chosen to distinguish between the cost of insolvency to the policyholder
(whose premiums should reflect this cost) and the cost to capital providers, whose liability in a bankruptcy
is usually limited.



simplify the analysis, we assume that the only service or quaiity differentiation between
insurers is the amount of default and that premiums are net of expenses. Also assume that
prices are homogeneous, so that the market price per unit of insured loss is constant. All
insurers have identical capital amounts and line composition. All assets are invested
proportionately in the same portfolio of investments, so that all insurers’ investment

returns will be identical.

For a single insurer, the fair total premium for all policies is P =L~ D+T C, where T'is

the present value of income taxes’ per unit of capital. In words, the market price equals
the market value of the loss minus the market value of the default plus the cost of income

taxes. The respective loss value, capital and default values for policy i are L;, C; and D,.

The sum of each of these quantities over all policies equals the respective unsubscripted

amount (e.g., YL, =1L). Denote the capital per unit of loss for the insurer as ¢ =C/L,
and for the individual policy as ¢, = C;/L,. The fair premium for policy i is

(L1) P = L-D,+TC, = L ~h(L/L)D+Tc,L

i

where h, is a constant that determines the share of the total default value belonging to
policy i and D, is the portion of total default D assigned to policy i. If we define

d;=D;/L,,then h; =d;/d. We want to find equilibrium values of h, and c,.

Notice that, even if each insurer has a different capital and line mix, equation (1.1) still
holds, because the market price excluding the cost of default must be unique. The default-
free premium component L, + T ¢;L; = P, + D, will be the same for all insurers selling
line i (although D; would depend on company-specific parameters). Regardless of the

amount of capital held by the selling insurer, no policyholder would pay a higher price

3 Appendix 6 derives the result that, for a ane-period model, T will equal £ r /{(1+ r) (1-1)], where ¢ is the

income tax rate and r is the one-periad default-free interest rate. For more details see Myers and Cohn
(1987) and Derrig (1994).



for the same default-free transfer of risk. Thus, the capital allocation factor ¢; must be

generic to all companies and would represent some sort of industry average capital

allocation.

In a competitive market, the price per unit of expected loss will stay constant at the

margin, so we have
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Thus, the overall default ratio d remains constant with a marginal shift in the mix of
policies. Notice that we do not have to assume® that d remains constant, since it follows
directly from the competitive market assumptions that premiums properly reflect the

market value of default and that the price per unit of coverage is constant.

We see here that the default allocation between the lines is irrelevant to determining the
capital allocation in a competitive market. The default allocation parameters h; do not

appear in equation (1.3), which governs the capital allocation, although they appear in the

premium. Also, the income tax cost factor T does not enter into the capital allocation.

¢ Myers and Read start from this assumption, as I did in an earlier paper [Butsic (1994)].



This result establishes an economic rationale for keeping the default ratio d constant in
regulatory and pricing applications.

Deriving a Capital Allocation Formula

The expected value of default depends on the specific probability distributions governing
the change in value of the insurer’s assets and liabilities. A natural candidate is the

lognormal distribution, since it is commonly used in asset valuation (e. g., the Black-

. Scholes option-pricing model).

The lognormal density function is

1 _ 2
A9 = exp(nn(;)T’”}fz-

Here, x20; u is called the location parameter and v is called the dispersion parameter,

or volatility. The mean of the lognormal distribution is ¥ = exp(+v?/2) and the
variance is ¥ *[exp(v?) —1]. Thus the coefficient of variation (CV), or standard deviation

divided by the mean, is simply related to the volatility by CV? =[exp(v?)-1].

As shown by Myers and Read, if the assets and liabilities have respective volatilities v,
and v, along with a covariance parameter v 4> then the value of the default depends on

a single lognormal volatility v, such that

(15) vi=v]-2v,, +vi.

The sign of the covariance parameter is negative because a positive correlation (e. g., a

simultaneous increase/decrease in the value of assets and liabilities) will reduce the total



volatility v . The default value’ is found directly by the Black-Scholes option-pricing

formula:.

(1.6) D=LN(y+v)—AN(y)=L[N,-(1+)N,].

Here, y=—In(l1+¢)/v-v/2 and N(y) denotes the cumulative standard normal

probability distribution. Also, N, =N(y+v) and N, =N(y).

To find the capital allocation for each policy, we use equation (1.3). Taking the partial

derivative of D with respect to L, in equation (1.6) and setting the result equal to

equation (1.3) yields

oD oN oN a(1+c)) oL
1. _—= -1 _ 2 _ - oL _ _ '
an BL, L{BL, (1+¢) aL,» Nz aL, /+[Nl N2(1+C)]aL Nl N2(1+C)

Note that L=¥ L, and ¢ =¥ (c,L,/L). Thus, OL/3L, =1 and dc/3L, =(¢; ~¢)/L,

giving

NG) _
L

9

3L vl

(18) (¢, —0) -é%i[N(yw)]—(m)

We also have 9[N(u)]/0L, =n(u)[0u/dL;] for a variable u and n(y +v) = a+on(y),

where n(y) is the standard normal density. After substituting these expressions into '

equation (1.8), we get

_=C+(I+C)Ln(y)ﬁ'__
' N(y) 9L

1

(1.9)

7 Here, we are evaluating an exchange option (i.e., to trade one stock for another) whose worth is analogous
to that of the difference between insurer’s asset value (the first stock) and its liability value (the second
stock). Panjer (1998) p. 481-484, shows that the exchange option value can be found directly from the
Black-Scholes model using the composite volatility v .



Volatility, Line Mix and Loss Beta

To derive a practically useful result from equation (1.9), we need to determine Jv /oL,

or how the overall company volatility v changes with a change in L,.

We have assumed that the sum of individual loss values is lognormal. However, the
individual loss values will not be lognormal, since the sum of lognormal variables is not
lognormal (the product is, however). For the total of all lines, denote the CV of the loss

by o, . Thus o} =exp(v})-1.If the volatility is small, then v, = o, .

We assume that liabilities (losses) have distinct CV values o, for each policy i, and that

the losses for each pair of policies may be correlated. The total loss CV o, is determined

by

(1.10) o} =X3ww,0,0,p; =exp(v;)-1,
i
where w; = L./ L is the weight of the losses from the ith policy and p; is the correlation

coefficient between losses of policy i with those of policy j.

The volatility of the assets, v - does not depend on the mix of lines or policies, since the
investment portfolio composition does not change with the volume of assets. However,
the covariance parameter v ac Will vary with the mix. To simplify the analysis, we
nonﬁalizc the asset and liability values: let @ be the asset value divided by its mean and
7 the liability value divided by its mean. In other words, #=L/L. (The tilde denotes a
random variable and the variable with no tilde represents its expected value.) Then the
expected value of 7 is E[a] = exply, +v2/2]=1. Here, M, =-v2i/2 isthe lognormal

location parameter for the normalized asset value, Similarly, we have g, =—v}/2.

10



The covariance between & and 2 is 0, = E[@ £1- Ela) E[?] = exp[Eld £]-1. Since the
product of the two lognormal variables is another lognormal variable with a location
parameter equal to the sum of the individual location parameters and volatility equal to

the standard deviation of the underlying joint normal distribution, we have®
v? =v? +2v,, +vi. Therefore, E[d@ £)=explu, + 4, +v'12]=

exp(-v2/2-v}12+v’ 2] =explv,,] and we get
(1.11) o, =explv,]1-1.

Breaking 7 into its components, we have = zw; 7, , where i = L /L. Let @, bethe

correlation coefficient between ¢, and @ . Then
(1.12) o, =Cov@. ?)=3w,Cov@t)=0,5w,00;.

Finally, we can determine v /9L, in terms of the CV values and correlation coefficients

of the individual policies or lines of business. Taking the partial derivative of equation

(1.5) with respect to L;, we get

v v, dv, Vv, oV
1.13) —= L L _TAL AL .
(1.13) oL, v oL, v 9L

Noting that dw, /3L, = (1-w,)/ L and ow; /0L, =-w; /L for i # J» we take the

derivative of equation (1.10) with respect to L; getting

% Notice that the sign of the covariance term here is positive. In equation (1.5), it is negative, reflecting the
fact that we are evaluating an option whaose value is the difference between an insurer’s assets and
liabilities.

11
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i ariance of the ith policy losses with the entire
where o, = a,.gw,o,,p, is the cov.

portfolio of losses. Now we equate the derivatives of equations (1.11) and (1.12) with

respect to L;, getting

OV _60,0,=04 __ Ou—0Oy

JL, _VALL(1+0.AL) VALL(1+0.AL).

(1.15)

Here, o, is the covariance of the loss CV of policy i with the asset CV. Substituting

equations (1.14) and (1.15) into equation (1.13) and that result into equation (1.9) we get

Cet (1+c)n(y)[d.l -0} _ O, -O'ALJ-

(Li6) e NOW | (1+o?) (+o,)

Equation (1.16a) is equivalent to the Myers-Read result. The actual MR formula is, in my

notation,
(1.16b) ¢, = c+%k"u_ -vi) -, -VAL)]~

The advantage of equation (1.16a) over equation (1.16b) is that o « and o, are directly

measurable from empirical data, while their volatility counterparts are not. For practical

applications, the above MR result can be simplified, as I show next.

Simplifying the MR Model
Define the loss beta for the policy as B, =0,/0}. Since 0, = P00, , where p, is

the correlation between policy or line i losses and all losses, we also have

12




f, = pu (0,/0,). This is a parallel definition to the beta used in the Capital Asset
Pricing Model (CAPM). Notice that if losscs 10r policy (or line) i are independent of the
other policies, then fB; =w, (0} /o}). Similarly, for the policy loss-to-asset relationship,

we define 3, =0, /0,,. Thus, equation (1.162a) becomes

(117) ¢ =c+ (“C)”(Y)[(ﬁf -Yoi; & —Dcm}_

N(y)v | (+o]) (1+0,,)

Notice that, since ¥ w,f5;, =1 and ¥ w;}, =1, equation (1.17) gives ¥ w;c; = ¢, which
correctly reproduces the relationship between c; and c. Also, if 4, =1 and 3, =1, we get
¢, =c. It is important to notice that, under this model, the company’s total capital C is
allocated to each policy in an amount C;, with no overlap or shortfall. All the individual

capital amounts add to the total capital.

In general, the covariance between asset and liability values (6 ,, ) will be small relative
to o}, so the covariance can be ignored9 without introducing much error. From this point

forward, we assume that o ,, is zero. Given this assumption, equation (1.17) reduces to

; (1.18) ¢;=c+(pf,~-1Z,

2 2
with Z = a+ony) o —=(1+ c)—M-gA. Thus, for a given level of capital and a
N(y)v (+oy) N(y) o

fixed total loss and asset variability, equation (1.18) shows that the capital allocation to a
policy or line is a linear function of its loss beta. The slope Z acts as a leveraging factor:

the higher/lower the value of Z, the farther away /closer to the average capital ratio the

9 In Massachusetts rate filings, the underwriting beta is assumed to be about —0.20. The average property-
liability insurer has only about 20% of its investments in stocks, and the other assets (mostly bonds) have a
negligible comrelation with stock market returns. Thus, o, is about ~0.04 times the squared annual stock

CV g? (about 0.030), which is roughly equal to g7 (about 0.010 to 0.040).

13




line’s capital ratio will be. Because of its importance in capital allocation, we name it the

capital allocation factor.

In a ratemaking application where we are trying to estimate a fair price for policy i, the
factor Z will be a constant that depends on the equilibrium capital ratio ¢ and all-lines loss

and asset volatilities. These will be generic parameters based on industry data.

Since f;, = p, (6,/06,), aline with a high loss CV relative to that of all lines can still

require less capital than the average line if its correlation with the total losses is small
This is a consequence of diversification that explains why multi-line companies write

property catastrophe insurance.

Another interesting consequence occurs when a line has a low loss CV and also a low
correlation with other lines’ losses. In this case, it is possible for the allocated capital to

be negative.'°

Capital Allocation and Loss Beta Within a Line of Business
If we know the capital ratio for a particular line of business, along with the covariances of
losses within the line, then we can produce a formula for capital allocation within the

line. Appendix 1 develops this formula, shown as equation (1.19).

(1.19) ¢, =¢, +[pp" Ba —l]ﬁk Z.

kHk

Here, c, is the capital ratio for the line of business containing policy i, 5, is the loss beta
for the line relative to all lines, f, is the loss beta for the policy relative to the line
containing it, p; is the correlation between the policy losses and losses of all lines

(including line k), p,, is the correlation between the policy losses and losses of the line k,

1% This does not present a problem using the financial pricing model of equation (1.1). However, as
discussed in Section 6, it means that a return on equity pricing model cannot work.

14



and p, is the correlation between the line losses and losses of all lines (including line k).

If the covariance of losses in line k with all other losses (excluding line &) is zero,

Appendix 1 shows that equation (1.19) simplifies to
(1.20) ¢, =c, +[6, -116. Z.

This simpler formula will apply in the case of most property lines, whose losses are

presumed to be uncorrelated with other non-property lines.

Capital Allocation with Alternative Probability Distributions
The Myers-Read method is not dependent on the lognormal distribution. For example,
assume that the loss and asset values are normally distributed with the same CV as in the

lognormal case and o, = 0. With a derivation similar to that of the lognormal case, we

get

on(c/o)o;

121) ¢, =c+(f, -1 :
21 e =c+ B -D g S (+ 00

Notice that this result also shows a linear relationship with the loss beta.

Numerical Example of MR Method

An insurer has three lines whose loss values in total are lognormally distributed. The
respective loss values for the three lines are 500, 400 and 100, for a total of 1000. The
respective CV values are 0.2, 0.3 and 0.5. The correlation between line 1 and line 2 is

P, =0.75, with the other interline correlations being zero. Thus, the total loss CV is

0.2119 and the loss volatility is 0.2096.

The insurer’s capital is 500, giving ¢ = 0.500. Asset values are also lognormal with

annual asset CV of 0.0700 and volatility of 0.0699. Thus, the total volatility is

15



v =0.2209 and Z = 0.6784. The loss betas and the capital allocation to line are shown in
Table 1.1. ’

Table 1.1
Loss Beta and Capital Allocation for Numerical Example

Liability Loss Loss Capital/
Value Cv Beta Liability Capital
Line 1 500 0.2000 0.8463 0.3957 197.87
Line 2 400 0.3000 1.3029 0.7055 282.19
Line 3 100 0.5000 0.5568 0.1993 19.93
Total 1000 0.2119 1.0000 0.5000 500.00

Notice that even though line 3 has the highest loss variability, it has the lowest beta, and
therefore the smallest capital ratio. This occurs because line 3 is uncorrelated with the

other two lines and its volume is small compared to the total.

16




Section 2: Capital Allocation to Coverage Layers

There is no difference conceptually between separate policies and separate coverage
layers within the same policy. Capital can be allocated to layers in the same manner as it
is to individual policies or lines. We will apply equation (1.20), treating the individual

policy as a “line” and the layer as a “policy.”

Layer Beta
Let X be the loss (having expected value X) for an individual policy and let X(a,b) be
the amount of loss covered in the layer with lower limit « and upper limit b. When there

is no upper limit, the covered loss is denoted by X(a,). If X <a.then X(a,b)=0.1f
a<X <b,then X(a,b)=X —a .1t b< X, then X(a,b) =b—a. Itis easy to show that

the entire loss equals the sum of the losses covered by the three layers defined by a and b:
(2.1) X=X©,a)+X(a,b)+X(b.=).

It is useful here to define the partial nth moment (evaluated at u) of X,as

22) E, ()= x" f(x)dx.

Notice that E, (u) =1- F(u), where F(u)is the cumulative distribution function. The

expected value of X(a,b) is
(2.3) X(a,b)=E,(a)—E,(b)-1aE,(a)-bE,(})].
As shown in Appendix 2, the covariance between X (a,b) and X is

24) Cov[X(a,b),X1=E,(a)- E,(b)-[a E,(a)-bE,()] - X(a.b) X .

17



Thus the loss beta of the layer, relative to the entire policy, is

Cov[{X(a.b)/ X (@b)}L,(X/X) __ 1 C"V[f(“;”)’i]
2.5 plab) == VarcR 1 %) wa.b)  Var(X)

Where w(a,b) = X(a,b)/ X is the weight of the layer relative to the entire loss. Notice
that the loss beta is calculated using the CV measure, in which the standard deviation of

the loss is divided by the mean.

Assume the case where the covariance of losses in Jine & (the line whose expected loss is
X) with all other lines is zero. Applying equation (1.20) we get a formula for the capital

ratio of the layer from a to b.
(2.6) cla,b)y=c, +[fla.b)-115,Z = ¢, +[fla,D)-11Z,,
where Z, = 5, Z.

For the lognormal distribution with location parameter £ and volatility v,

Q.7 EJu):E[X"]N(@MU\.

/

Equation (2.7) can be used in equations (2.3) and (2.4) to produce the layer beta f(a,b)

for the lognormal distribution.

Numerical Example
A policy’s losses are lognormal with mean 100 and standard deviation of 50. Thus, the

second loss moment is 12500, with g =4.4936 and v = 0.4724 . Consider the layer

whose lower coverage limit is 100 and upper limit is 200. From equation (2.7),

18



E,(100) = 0.4066, E,(200) = 0.0442, E,(100) = 59.34, E,(200) =1091,
E,(100) =9508.81 and E,(200) = 2799.91.

Thus, X(a,b) =16.61, w(a,b) =0.1661, Cov[ X (a,b), X]1=1297.46 and
f(100,200) =3.125 . Table 2.1 below summarizes the results for all three layers.

Table 2.1
Example Results by Layer
Layer Ora atoh b to Infinity Total
Expected Covered Loss 81.32 16.61 2.07 100.00
Weight 0.8132 0.1661 0.0207 1.0000
Covariance 791.92 1297.46 410.62 2500.00
Beta 0.389 3.125 7.948 1.000

Notice that the weighted average of the betas is 1, and that the betas increase with the

level of the layer.

General Layer Beta Properties

We can gather further insight into capital requirements by coverage layer by examining
the behavior of infinitesimally narrow layers. Consider the layer from x to x+ A, where
A is so small that no loss value can occur between x and x+ A . Then the coverage is
simply A for any loss greater than x. Thus, the right tail of the probability distribution,
or G(u) =1- F(u) for a cumulative probability function F(u), is important in measuring

risk associated with layer coverage.

As discussed in Section 3, using the right-tail probability is a simple way to generate risk

loads by layer.

Define the point beta of the loss amount x as f(x) = E_rg F(x,x+A). Appendix 3

develops the general formula, for any well-defined loss distribution with x 2 0:

19




E,(x) _1]
XE(x) [

1
(2.8) Bx) =?-(
Here, s is the CV of the loss, or s? =Var(X)/ X 2. Notice that 5(0) =0, since
E,(0)=X and E;(0)=1. Also, as shown in Appendix 3, the slope of f(x) is positive,
so the layer beta, and thus the layer capital, is a strictly increasing function of the level of

the layer.

In the above numerical example, we have f(100) =1.837 and £(200) = 5.869. The layer
beta of 3.125 is between these two values. In this example, Figure 2.1 shows that, above

the mean, the point beta is approximately linear with the loss amount.

Figure 2.1
Approximate Linearity of Point Beta for Numerical Example
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Appendix 3 develops formulas for the point betas for several loss distributions: normal,
lognormal, gamma, Pareto and exponential. Figure 2.2 below displays point betas for the
numerical example. For this calculation, all distributions have a mean of 100 and a
standard deviation of 50 (CV of 0.50).
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Figure 2.2
Point Betas for Numerical Example Using Various Loss Distributions
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Legend: right hand side (x = 400), top to bottom
Pareto
Lognormal
Exponential
Gamma
Normal

For all these distributions, the point beta is approximately linear above the mean. In fact,

the Pareto and exponential distributions'! give an exact linear relationship.

11 Note that the log of an exponential random variable has the Pareto distribution. Also, as shown in
Appendix 4, the versions of these two distributions are defined to allow us to vary the mean and standard
deviation. Thus, they are not defined at zero.
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Section 3: Risk Loads by Layer Using Risk-Neutral Probability Distributions

In an economically valid model, capital allocation depends on the market values of .
losses, not just the expected losses. Section 2 has shown how capital can be allocated to a
layer based on the moments and covariances of the pure losses. However, this

development is incomplete.

Calculating market values by layer is equivalent to determining risk loads by layer, as
shown below. The application of risk loads by layer is at least as important as capital
allocation by layer. However, both concepts are addressed by modern financial theory.
Appendix 4 contains a more detailed development of the financial theory underlying risk

loads.

Risk Loads and Risk-Neutral Probability Measures

In section 2, X is the expected value of gross losses subject to a particular coverage,
before applying the layer limits. Assuming that X represents the pure (non-risk-adjusted)
loss values at the end of one period, the market value of the gross losses at the beginning

of the period can be expressed as X (1+ A)/(1+r), where A is the risk load and r is the
one-period default-free (riskless) interest rate. In other worcis, XA+ A) is the market, or

fair value of the liability viewed at the end of the period. Since policyholders, along with

investors, are assumed to be risk averse, A will usually be positive.

In finance, the market valuation at the end of a period can be expressed using the
powerful risk-neutral probability concept.'? Here, each actual probability f(x) ofa
specific loss amount x is replaced by an altered probability (the risk-neutral probability)
f (x) . The risk-neutral probability value is chosen so that, at the end of the period, the
investor is indifferent between having a certain amount X (the certainty equivalent

value) or the actual random amount X . The certainty equivalent amount is the above

market value loaded for risk:

12 See Brealey and Myers (1996) or Panjer (1998) for a good basic explanation of this concept.
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(B.1) X=XU+A)=[x(xdx.

Denote by X(a,b) the certainty equivalent loss covered by the layer from a to b.

Extending the risk load definition, we have 1+ A(a,b) = X (a,b)! X(a,b) and
(2 X@b)=Pax-a)fx)de+ B-a)f f(x)dx.

Notice that, if we separate the entire range of loss into layers, the transformed probability
density guarantees that the certainty equivalent loss amounts by layer add to the total
certainty equivalent loss. This in turn insures that the risk loads by layer add to the total
risk load.!® Venter (1991) uses the no-arbitrage principle to show that the only risk loads

that satisfy layer additivity must result from a transformed probability distribution.

Define the point risk load as A(x) = }si‘rg A(x,x+ A). This is similar to the point beta

concept from section 2. Define the right-hand tail of a cuamulative probability function
Fu) as Gw)=1-F(u). é(u) is the right-hand tail of the corresponding risk-neutral
distribution. Appendix 4 shows that, for any probability distribution, the point risk load
(abbreviated as PRL) is

Gx)

3B3) Ax)= G

1.

This is a compact and powerful result. The PRL at loss size x can be simply expressed as
the ratio of the right-hand tails of the cumulative risk-neutral and actual loss distributions,

minus 1.

B Other methods for calculating risk loads do not satisfy the additivity principle, which is essential toa
market price determination. In particular, variance-based risk loads such as those used by Meyers (1991)
and Miccolis (1977) do not have value additivity.
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Equation (3.3) has a form similar to that of the point beta in equation (2.8). Since

G(O) =G(0) =1, we get A(0) =0. This result is intuitively plausible, since a narrow
layer at zero of width A will almost certainly produce a covered loss of A. Thus, there is
no risk and there should be no risk load. At the other extreme, as x approaches infinity,
many types of risk-neutral density transformations will produce infinitely large point risk

loads.

Wang (1998) uses a proportional hazard (PH) transform to determine the risk-neutral
probability distribution. In the above notation, the transformed distribution is obtained
by G(x) =[G(x)}*, with 0 < g £ 1. The PH transform can readily be generalized so that,

instead of being constant, the exponent g is a function of x:
BG4 GH=[GEN",

with 0 < g(x) <1. Appendix 4 shows that any risk-neutral distribution giving a positive
point risk load for each x can be generated by a suitable function g(x). See figure 3.1 for

the implied generalized PH transform for a lognormal distribution.

Risk Loads for the Lognormal Distribution

A classic application of the risk-neutral probability measure is the Black-Scholes option-
pricing model. Instantaneous price changes (relative to the current price) are assumed to

drift according to geometric Brownian motion (GBM), which makes the relative changes

in stock prices over any period length lognormally distributed.

In the case of loss values behaving like stock values (having GBM), the risk-neutral
distribution is simply another loghormal distribution with a shifted location parameter but
with the identical volatility as the actual loss distribution.’* Denoting the shifted location

parameter by 4’, Appendix 4 shows that

' See Panjer (1998), Chapter 10 for a discussion of the parameter shift.
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(35) 1+A=exp(d) =exp(u'-4).

Thus, the exponential form of the risk load, A, equals the difference in the location

parameters (' — /L.

Varying the Lognormal PRL for Higher Layers

As discussed in Appendix 4, the GBM may not apply for the valuation of property
catastrophe losses. Given the same overall risk load for a distribution, risk loads for high
layers may be greater in the case of catastrophe losses compared to the case where losses
followed GBM. This extra loading appears to be present in the case of actual ceded

catastrophe reinsurance market prices seen at my own company.

An easy way to vary the risk load is by using a suitable generalized PH transform ¢(x). A

simple, two-parameter PH transform is the fractional transform

(3.6 gx)=—Z—,
x+m

with m 2 0and 0< g <1. If m is zero, equation 3.6 equals the constant PH transform. By
choosing ¢ and m so that A remains constant, we can vary the slope of A(x) to a great

extent, as shown in the numerical illustration below.

Numerical Example of Lognormal Risk Load by Layer

Let the expected loss be 100 with a CV of 0.50, the same as the example in Section 2.
The certainty equivalent expected loss is 120, giving an overall risk load of 0.20. Assume
that the risk-neutral probability is determined by a simple location parameter shift (LPS).
Figure 3.1 below compares actual and transformed right hand tails G(x) and G(x) .

denoted by Gh(x), as well as the implied generalized PH transform g(x).
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Figure 3.1

Actual vs. Risk-Newtral Right-Tail Probability Distribution
And Implied Generalized PH Transform
For Numerical Example

Notice that the PH transform lies between 0 and 1. Thus, the resulting point risk load is

non-negative at all loss sizes, as shown by Figure 3.2:

Figure 3.2

Point Risk Load Using Location Parameter Shift
For Numerical Example
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The PRL at the mean is 0.376, or about twice the overall risk load of 0.20. The PRL at

loss size 1000 is 6.17, which is over 30 times the overall risk load.
Figure 3.3 below shows the PRL for three values of m using the fractional transform of

equation 3.6. All cases have the same overall risk load of 0.20. The three pairs of

respective g and m values are (0.7102, 0), (0.8082, 20) and (0.9056, 40).
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Figure 3.3
Point Risk Load for Fractional Transform by Varying m Parameter

For Numerical Example
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For m = 0, the PRL at loss size 1000 is 92.14, or about 14.9 times the PRL using the
lognormal parameter shift. However, the PRL at lower loss levels is reduced to
compensate: the PRL at the mean is 0.298, compared to the 0.376 using the LPS

transform.

Figure 3.4 compares the PRL using the fractional transform with m = 40 to that using the
lognormal LPS.
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Figure 3.4
Point Risk Load Using Location Parameter Shift vs. Fractional Transform with m = 40

For Numerical Example
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Notice here that the fit is quité close. By using m = 40.7, the maximum difference
between the two PRL functions over the range 0 < x <1000 is about 0.065, occurring
when x = 1000. Thus, the fractional transform is a handy way to vary the risk load by
layer to obtain risk loads equal to or greater than those obtained from shifting the location

parameter.

Culculating Betas and Capital by Layer with Risk-Neutral Probabilities
Continuing the above numerical example, we first assume no risk load. Table 3.1

calculates the layer betas for various layers, whose lower limit is a and upper limit is b.

Table 3.1
Culculation of Layer Betas for Numerical Example
A=0
a b Efa) EWa) E(a@) X@b) CoviXX@ab)l Ha b
0 100 1.0000 10000 125000 81.33 791.9 0.39
100 200 04066 59.34 9508.8 16.61 12975 3.13
200 300 0.0442 1091 27999 1.79 326.1 727
300 400 0.0052 1.83 661.6 0.23 65.7 11.56
400 500 0.0008 035 1625 0.04 14.1 15.88
500 Infinity 0.0001 0.08 435 0.01 4.7 21.52
0 Infinity 100.00 2500.0 1.00
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We next calculate the layer betas using the ().20 overall risk load and a location parameter

shift, shown in table 3.2.

Table 3.2

Calculation of Layer Betas for Numerical Example
A = 0.20; Point Risk Load by Location Parameter Shift

a b Eo(@) Ei(a) Exa) X(a,b) CoviX,X(ab)] fa, b)

0 100 1.0000 120.00 18000.0 87.98 702.5 0.27
100 200 0.5595 8797 155365 26.90 1903.9 2.36
200 300 0.0938 2388  6383.6 424 726.6 51
300 400 0.0148 5.31 1964.4 0.70 194.2 9.25
400 500 0.0027 1.24 591.7 0.13 516 12.83
500 Infinity 0.0006 0.32 186.7 0.04 213 17.74

0 Infinity 120.00 3600.0 1.00

Notice that the layer betas are all lower with the risk load than without it. This is

intuitively plausible, since, as discussed in Appendix 4, the LPS transforms lower layers

into higher ones. The transformation is in proportion to 1+ A =1.20. For example,

G(100) = 0.4066 = G(120) and G(200) = 0.0442 = G(240) . Thus, the risk-neutral

probability transformation (location parameter shift) translates the layer from 100 to 200
into the layer from 120 = 100(1.20) to 240 = 200(1.20).

Finally, we calculate the layer betas using the ().20 overall risk load and the fractional PH

transform with m = 0 and ¢ = 0.7102, shown in table 3.3. The partial moments E,(x) and

E, (x) are obtained by numerical integration. E,(x) = é(x) is obtained directly from the

fractional PH transform.
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Table 3.3

Calculation of Layer Betas for Numerical Example
A = 0.20; Poin: Risk Load by Fractional PH Transform with m =0

a b Eoa) Eyxa) Eya) X(a,by CoviX,X(a,h)] ﬁ(a, b)
0 100 1.0000 120.00 191449 86.27 869.8 0.25
100 200 04422 7795 157177 26.49 2220.7 212
200 300 0.0903 2530 7584.2 5.46 1037.3 4.80
300 400 0.0201 781 31748 1.27 380.5 71.57
400 500 0.0052 260 13366 0.34 140.6 10.35
500 Infinity 0.0016 0.94 586.1 0.16 96.4 14.80
0 Infinity 120.00 4745.2 1.00

Here, compared to the LPS transform of Table 3.2, the layer betas are lower for all layers,
but nearly the same for the layers O to 100 and 100 to 200. However, the betas at the high
layers do not change by much compared to the PRL. As observed above, the ratio of the
PRL values at x = 1000 is 14.9, a 1390% change. The corresponding ratio of point betas
is 0.79, only a 21% change.
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Section 4: Parameter Measurement and Pricing Method

The theory in the preceding sections has little practical value unless we can estimate the
parameter values and apply them in a realistic pricing exercise. This section uses
historical data to provide the parameter estimates and also expands the pricing model

(introduced in Section 1) so that it can be used in a catastrophe reinsurance application.

Since the theory uses market valuation, data using statutory accounting principles must
be converted to an economic basis. For example, the pricing model discounts cash flows

to give market values. Appendix 5 contains the relevant exhibits for this section.

My primary intent is to illustrate the capital allocation method as applied to reinsurance.
To disguise proprietary information and to provide an incentive for others to do further
research in this area, I have rounded some values that can be estimated more precisely.
For a more important application, such as a rate filing, the parameter selection should be
done more carefully. However, the results determined here are in the right ballpark and

appear to be consistent with observed reinsurance prices.

The pricing example in Section 5 sets a fair premium for coverage of losses occurring

during 1999, so I have used parameter estimates based on data extrapolated to that period.

Constructing the Representative Insurer

To build a model that will approximate a market price for insurance coverage, we need to
examine a typical insurer within the industry. We call this abstraction the representative
insurer. For most of the parameters needed for the representative insurer, we use industry
data and assume that the representative insurer is a proportionate scaled-down version of

the industry. However, some parameters need to be adjusted further.
For example, if the industry were a single monopolistic insurer, far less capital would be

required to provide the same default ratio than for the representative insurer. The

representative insurer could not be as diversified as the entire industry.
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Estimating the Overall Capital Ratio _

Exhibit 1 uses 1991 to 1995 consolidated industry data to estﬁnate the overall capital
ratio for the average insurer. Key assumptions in this analysis are that the ratio of
statutory surplus to GAAP equity is 0.800 and that the economic value of the loss and
LAE reserves is a 12% discount from the recorded statutory values (the discounting is

shown in Exhibit 2). The indicated capital ratio is 0.610.

However, if the industry has inadequate loss reserves, then this value will be lower. If we
use a more recent time period, the capital ratio will be higher. The issue remains as to
whether the actual amount of capital held by the industry is a normative or equilibrium

value. Some analysts would argue that currently the industry is over-capitalized.
I believe that a capital ratio around 0.50 is a reasonable first approximation.

Estimating the Average Loss CV

Exhibit 3 uses 1982 to 1997 industry loss and LAE reserve data to estimate the annual
loss CV of liability (including Workers” Compensation) lines at 0.059. The
corresponding non-catastrophe loss CV is 0.044. The composite value is 0.053. But, due
to maximum diversification, the consohidated industry loss CV is undoubtedly lower than
that of the typical insurer. Therefore, the loss CV estimate should most likely exceed
0.08. For the purpose of approximating the capital allocation to lines of business, I have
used 6, =0.100.

Estimating the Catastrophe Loss CV
Cummins, Lewis and Phillips (1996) find that the lognormal distribution fits individual
large industry catastrophe losses fairly well and that the CV ranges between 2.1 and 2.3.

Since the individual losses can be assumed to be statistically independent, the CV of the
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aggregate losses is lower than that for an individual loss."* However, the catastrophe loss
CV for the representative insurer would be larger than that for the industry, due to

inefficient diversification. ;

RMS (Risk Management Solutions) engineering simulation modeling estimates of
individual insurer aggregate catastrophe losses show that the CV is in the upper region of
the above range and that the lognormal distribution fits the simulated annual aggregate

losses fairly well. Thus, I have selected the annual aggregate catastrophe loss CV as 2.30.

Estimating the Asset CV

Since investment returns for most insurers arise from well-diversified portfolios, the
average historical asset CV values should adequately represent those of a typical insurer.
Exhibit 1 and Exhibit 4 use 1945 to 1995 data to produce an industry-average asset CV of
0.075. In this analysis, I adjusted the bond CV to represent that of a typical property-
liability insurer (having a shorter average bond duration than the source data). I also

weighted the CV values by asset class to represent the average insurer’s portfolio mix.

Estimating the Capital Allocation Factor Z
From above, we have o, =0.075 and o, =0.100, giving a composite CV of
o =0.125. Since the overall capital ratio is ¢ = 0.500, the formula for the definition of Z

in equation (1.18) gives Z = (.427.

Estimating the Overall Catastrophe Risk Load

Here we run into a brick wall. It is clear that catastrophe insurance requires a risk load
and that high-layer catastrophe reinsurance requires a very large risk load. However, 1
have not found any good empirical data to analyze in order to estimate what loading the

market charges for catastrophe risk.

¥ Let ¥ = 3 X, be the sum of n independent identically distributed random variables ¥,. The CV of ¥ is

CV(P) = {Var(P) /EF) = {Ja Var(X) TnE(X )} = CV(X,) ¥ -
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One possible avenue is to examine rates for property insurance, filed with state insurance
departments. However, the actual approved rates will probably not represent unbiased,
market-clearing prices, since in many states insurers are not free to charge what they wish

for property insurance, especially in politically sensitive personal lines.

Another avenue is to analyze prices for catastrophe reinsurance and extrapolate the
implied risk load to the entire range of losses. Here, we may be able to obtain market
prices for a handful of companies, but even that amount of data is difficult to get, due to
the reluctance of both ceding insurers and assuming reinsurers to provide it. Even with
this data, the embedded risk load must be separated from the expected loss and the tax
burden of the capital requirement. Another issue is that what appears to be a huge risk
load may partially reflect the illiquid nature of high-layer catastrophe reinsurance. Few, if

any reinsurers are willing to take on that much risk.'

In view of the above discussion, I have chosen a 0.50 overall risk load for illustrating the
capital allocation and pricing method. This value is little more than a guess. Also, I have
initially assumed the LPS transform to establish risk loads by layer and the corresponding

capital amounts by layer (the PH transform is also considered in Section 5).

Interest Rate and Income Tax Rate
The certainty-equivalent loss is discounted to present value using a default-free interest
rate of 6%. This value is higher than the current one-year U. S. Treasury yield rate, but

well within the range of recent experience.

We assume a 35% Federal income tax rate. This value is the current corporate tax rate.

¢ It will be interesting to see if non-insurance risk financing mechanisms such as catastrophe bonds and
catastrophe futures will grow enough to offer material coverage that the reinsurers are currently unwilling
to provide. If so, their prices will give another method to infer risk loads.
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Estimating the Catastrophe Parameters

From Exhibit 1 (Appendix 5) we have the industry total market value of liabilities in
1995 at $499 billion. We extrapolate the market value of liabilities to $550 billion at the
beginning of 1999. Based on projecting expected individual company losses to the
industry level using market share data, the expected annual industry catastrophe losses
for 1999 are roughly $5 billion. To convert to a market value, we multiply by 1 plus the
overall risk load and take the present value using the risk-free interest rate. This result is
$7.08 billion = 5(1.5)/(1.06). Thus, the weight of market value of catastrophe liabilities to
all liabilities is 0.0129 = 7.08/550.

From Section 2, we use the relationship B, = w,(6} /0}) to get the loss beta for

catastrophes, considered as a line of business. Consequently, the overall catastrophe beta

is B, = 0.0129[2.30%1/{0.100}* = 6.81. Thus the capital ratio for catastrophes is
¢ =c+(f,-DZ,orc, = 2.98 = 0.500 + (6.81 —1)(0.427). The capital allocation factor

for catastrophes is Z, =2.91 = 6.81(0.427).

Pricing Method
To estimate fair reinsurance prices, we use the present value model of equation (1.1),
except with no default. Estimating the expected default of reinsurers is outside the scope

of this paper.17

We assume that premium is collected at the effective date of the coverage and there are
no administrative expenses. Loss adjustment expenses are included in the losses. The loss
is expected to occur at the middle of the exposure period and the payment is made 0.5
years later. Thus, the loss payment happens one year from the contract effective date.
This payment pattern should be a reasonable approximation to the actual payment of

1 For high-layer catastrophe reinsurance, there is a good possibility that losses large enough to pierce the
coverage layer will bankrupt some property reinsurers. Thus the default expectation is not trivial and can be
considered a hidden, additional cost of the reinsurance. The default is extremely difficult to price, since
several reinsurers usually participate in the treaty. Often they are foreign, with limited data from which to
assess their solvency prospects.
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catastrophe losses (a more precise estimate could incorporate the seasonality of
catastrophe losses). '

Since the losses are paid at the end of one year, the fair premium P(a,b) for the layer

from a to b is a fairly simple function of the expected loss in the layer, its risk load and

the required capital. Appendix 6 develops the fair premium formula

X (a,b)[1+ A(a,b)] + X (a,b)[1+ Ala,b)]c(a,b)rt
1+r 1+nQd-»

4.1) P(a,b)=
Notice that the fair premium can be separated into three components:
¢)) the present value of the expected loss, or X (a,b)/(1+71),

) the present value of the risk load, or X (a,b) A(a,b)/(1+r) and

X(a,b)[1+ A(a,b)] c(a,b)rt
(d+r)Y1-o )

(3)  the present value of the capital cost, or

For comparison between layers, it may be useful to calculate the expected loss ratio
implied by the fair premium. The expected loss ratio for the layer is
ELR(a,b) = X(a,b)/ P(a,b).

Since Section 2 developed the capital allocated to a layer (a to b) and Section 3 the risk
load applied to the layer, it is straightforward to get the expected return on the capital
(equity) allocated. Appendix 6 shows that the return on equity (ROE) for the layer is

| 1+r Aa,b) 1+r Aa,b)
42) R(ab) = =) ———= = - : '
42 R@b = re@-0772 % = rea "[1+z]c,+[ﬂ(a,b)—uz.,
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Section 5: Catastrophe Reinsurance Application

The example here is chosen to be fairly realistic, but it is simplified to eliminate some
details that inevitably surround a real pricing exercise. For example, administrative

expenses are assumed to be zero.

The problem is to obtain a fair price for high-layer catastrophe reinsurance protection for
a medium to large size insurer with $50 million of annual expected losses for nawral
property catastrophes. The reinsurance contract will cover total aggregate losses for all

catastrophes occurring during 1999.

Because there is no a priori reason to expect that losses from natural catastrophes are
correlated with losses from other lines, we can use equation (2.6) to estimate the capital
for a layer. Thus, the calculation is greatly simplified by ignoring the covariance between
the layer loss and losses from other lines. Also, since many insurers use extensive
catastrophe models, the parameters of the catastrophe loss distribution can be readily
estimated. A final simplifying element is that the cash flows from catastrophe coverage
are short-duration. Consequently, what might appear initially as a very difficult pricing

problem is actually much easier to solve.

The resulting fair price estimate can be used in negotiations with reinsurers over the price
of a desired contract or for deciding on how much coverage to buy (how high the layer).
The estimates may help indicate which layers are under- or over-priced relative to each
other. Another use for the estimate is to document the cost of coverage between a ceding
U.S. insurer and an assuming foreign affiliate. If the Treasury Department believes that

the cost is excessive, it may disallow a portion of the reinsurance premium.

Using the Parameters to Get a Layer Capital Formula

From Section 4, we have Z, =2.91 and ¢, = 2.98. So the capital allocation formula,

based on equation (2.6), becomes
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(5.1) c(a,b)=2.98+[f(a,b)-1][2.91].

Capital Ratio and Risk Load by Layer

We examine all layers up to $1 billion in $100 million increments. Using equation (5.1),
we get the capital ratio for each layer. The capital amount is the capital ratio times the
market value of the loss, or C(a,b) = c(a,b) X (a,b)/(1+ r). The risk load is derived by
the method used in Figure 3.1. Table 5.1 shows the right-tail probability, expected loss,

certainty-equivalent expected loss, layer beta, capital ratio, risk load and capital amount

for each layer:

Table 5.1

Cupital Ratio, Risk Load and Capital Amount by Layer for Catastrophe Pricing Example
: ($Millions)

b E,a) X(@ab) X(a.b) Blab) clab) Aab) C(ab)

0 100 1.0000 33.40 42.72 0.18 0.60 0.279 24.38
100 200 0.1867 7.24 12.25 0.69 2.08 0.693 24.09

200 300 0.0806 3.19 6.00 1.13 3.36 0.877 19.03

300 400  0.0445 176 3.53 1.55 4.58 1.008 15.24

400 500  0.0279 1.09 230 1.95 5.75 1.111 12.48

500 600  0.0189 0.73 1.60 235 6.91 1.198 10.42

600 700  0.0135 0.51 1.16 2.74 8.04 1.273 8.83

700 800  0.0100 0.38 0.88 3.13 9.16 1.340 7.59

800 900  0.0077 0.28 0.68 3.51 10.27 1.400 6.60

900 1000  0.0060 0.22 0.54 3.89 11.36 1.455 5.79

1000 Infinity  0.0048 1.20 3.35 8.29 24.17 1.790 76.33
0 Infinity 50.00 75.00 1.00 2.98 0500 210.78

Notice that the capital allocated to layers above $500 million (four standard deviations
above the mean) is $115.6 million—over half the total. The $75 million certainty-
equivalent expected loss equals the $50 million pure expected loss increased by the
overall 0.50 risk load.
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Fair Premium Estimate by Layer

Given the layer capital ratios and risk loads, equation 4.1 is used to determine the fair
premium and equation 4.2 the implied ROE by layer. Table 5.2 shows the fair premium
by layer, separated into its components (present value of expected loss. risk load and

capital cost). Table 5.2 also provides the implied ROE by layer.

Table 5.2

Estimated Fair Premium by Component,
Expected Loss Ratio and Implied ROE by Layer
For Catastrophe Pricing Example

($Millions)
Expected  Capital Risk Fair Expected  Implied
a b Loss Cost Load Premium _ Loss Ratio ROE
0 100 31.51 0.74 8.78 41.04 0.814 0272
100 200 6.83 0.73 4.73 12.29 0.589 0.213
200 300 3.01 0.58 2.64 6.24 0.512 0.180
300 400 1.66 046 1.67 3.79 0.463 0.161
400 500 1.03 0.38 1.14 2.55 0.427 0.149
500 600 0.69 032 0.82 1.83 0.398 0.140
600 700 048 0.27 0.62 1.37 0374 0.133
700 800 0.35 0.23 0.47 1.06 0.354 0.127
800 900 0.27 0.20 037 0.84 0.336 0.123
900 1000 0.21 0.18 0.30 0.69 0.321 0.119
1000 Infinity 1.13 233 203 548 0.219 0.094
0 Infinity 4717 6.42 23.58 7718 0.648 0.137

Results from this example seem to agree in magnitude with observed market prices. The
expected loss ratios are extremely low for high layers. Notice that the ROE by layer
decreases with increasingly high layers. This occurs because the risk load does not
increase as fast as the capital allocated to the layer. The overall implied ROE of 13.7%
can be found using equation (4.2) (with @ = 0 and b infinite). Since 4 =0.50 and

¢, =2.98, the overall ROE is 0.137 = 0.060 + (1-0.35)(1.036)(0.50) /[(1.5)(2.98)].

Although it appears from Table 5.2 that the implied ROE is highest at the lowest layer, it
is not. As observed in Appendix 6, the (point) ROE for the thin layer at zero is equal to
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the risk-free rate, which is 6% here. Figure 5.1 shows the ROE for point layers up to $100
million.
Figure 5.1
Point ROE for Catastrophe Pricing Example
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As seen ahove, the implied ROE peaks at about 35% for a narrow layer centered on
approximately $12 million.

Because the shape of the point ROE curve is non-linear, with a minimum value of r, it is

not feasible to use a pricing model that has a single required ROE as an input.

Results with Different Risk Loads

To see the impact of a change in the intensity of risk loads at high layers, we use the
fractional PH transform of equation (3.6) with m = 0 and ¢ = 0.813. These parameters
maintain the overall risk load at 0.50, but increase the risk load at higher layers. Table 5.3
compares the capital amounts, risk load amounts, and fair premiums by layer for the PH

transform to those of the above LPS transform.
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Table 5.3

Comparison of Fair Premium Components by Layer,
LPS vs. PH Transform

For Numerical Example
($Millions)
PH Transform LPS Transform
Capital Risk Fair Capital Risk Fair
w b Amount Load Premium Amount Load Premium
0 100 19.17 6.16 38.25 24.38 8.78 41.04
100 200 18.61 426 11.66 24.09 4.73 12.29
200 300 15.23 2.70 6.18 19.03 2.64 6.24
300 400 12.65 1.86 3.91 15.24 1.67 3.79
400 500 10.71 1.36 2N 12.48 1.14 2.55
500 600 9.23 1.03 2.00 10.42 0.82 1.83
600 700 8.05 0.81 1.54 8.83 0.62 1.37
700 800 7.11 0.65 1.22 7.59 047 1.06
800 900 6.33 0.53 0.99 6.60 0.37 0.84
900 1000 5.68 0.44 0.82 5.79 0.30 0.69
1000 Infinity 98.01 3.77 7.89 7633 2.03 5.48
0 Infinity 210.78 23.58 77.18 210.78 23.58 77.18

Compared to the LPS transform, the PH transform has both greater capital requirements
and risk loads at high layers. Since the overall capital requirement and risk loads are the
same, the PH transform has both smaller capital requirements and risk loads at low
layers. However, notice that, for the two methods, the amount of capital allocated to

layers is closer to being the same than is the risk load.
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Section 6: Discussion of Results

The results of each section are summarized in the Introduction. This section discusses the

implications of the results.

The Myers-Read Model and Loss Beta

The MR method is derived from underlying economic assumptions that govern the
behavior of financial markets. Not surprisingly, the resulting capital allocation is such
that the insurer’s total capital equals the sum of the capital amounts allocated to the

component policies.

The loss beta is the important attribute of a policy that determines the amount of capital
allocated to it. A policy will have a high/low beta if it has a high/low loss CV or if it has a
high/low correlation with other policies. A high-CV policy or line of business may not

require a great amount of capital it it has a low correlation with all other lines of business.

Relationship between Risk Loads and Capital Allocation

Since capital allocation depends on the market values of losses by layer, not just the
expected losses, the underlying risk load process influences the economic basis for
capital allocation to layer. Both the allocated capital and risk loads depend on the
particular loss size distribution. They both also share the value additivity property, where
the sum of capital and risk loads over a subdivision of policies or layers, equals the total

value.

However, the two processes are not the same. Capital allocation relies on the default risk
of a typical insurer, including sources of risk that do not command a risk premium in
financial markets. The risk loads for losses depend on non-diversifiable risk and do not
contain any default component. For example, a typical insurer has some specific risk that
would be diversified away if the insurer represented a proportional share of the entire
industry. Also, the asset risk of a representative insurer will affect capital allocation, but

will not influence the risk load. This happens because the insurer’s assets are already
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fairly priced by themselves. With risk-free assets, the risk load for losses would be the

same as with risky assets.

Role of Capital Allocation in Setting Premiums

For an insurer, the cost of carrying capital is the present value of the income taxes on
investment income from the capital. If there were no corporate income taxes, the capital
cost would be zero and the allocation of capital to line or policy would be unnecessary for

determining premiums. However, the market would still demand a risk load and the

premium would exceed the present value of the expected losses and expenses.

The expected return on capital by layer can be determined from the market or fair
premium, which depends on the capital allocation and risk load by layer. Because the
amount of capital and the risk load arise from different economic processes, the expected
ROE will not be a constant across all layers. In fact, the lowest layer will produce an

expected ROE equal to the riskless rate. a

Consequently, one cannot use a constant expected ROE in establishing a fair premium by
layer. By extension, this argument is also true for individual policies. At the policy level,
a more fundamental problem is that it is possible for the allocated capital for a low-risk

policy to be negative. Thus, the role of capital in pricing cannot be as the denominator in

a return on equity calculation. Rather, it is a basis for determining the value of income tax

costs.

Although ROE as a profit measurement may be useful at the level of the entire insurance
company, we conclude here that ROE is an inageyuate and potentially misleading
profitability measure at the line of business level and below. For determining fair prices
for lines, policies and individual layers of insurance, a present value method is more

appropriate.
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Catastrophe Reinsurance Pricing

I have demonstrated how parameter estimates for the MR model can be developed from

industry data. Because catastrophe losses are assumed to be uncorrelated with losses from

other lines, the capital allocation method is greatly simplified. Given some basic '
assumptions regarding the distribution of catastrophe losses and risk load behavior, I
have shown that the resulting capital allocation produces reasonable-looking market

premiums for reinsurance protection.

A major unresolved issue is the nature of the risk load process for catastrophe losses.
Admittedly there is no economic justification for any particular risk load process (except
perhaps the location parameter shift). However, I have shown that the extended MR
capital allocation method can accommodate any probability transformation that produces

positive risk loads by layer.

Areas for Future Research

Since the risk load influences capital allocation as well as being a separate component of
the premium, it is extremely important in estimating fair premiums. For catastrophe
losses, since the overall risk load is apparently so large, its importance increases.
Unfortunately, we know very little about the economic basis for catastrophe risk loads.

This area requires extensive investigation.

The parameters used in estimating the capital allocation factor Z were extrapolated from
industry-level data in order to characterize the representative insurer. These estimates can

be improved by analyzing individual insurers and averaging the results.

Conclusion

This paper has explained the development of the Myers-Read capital allocation model
and has extended it for practical insurance applications. An important use is catastrophe
reinsurance pricing, which many consider to be a difficult problem. The results shown in

the above exercise reveal the power of this new method.




Glossary of Notation

The location below indicates the equation number nearest to where the symbol or
acronym first appears. F denotes a footnote (if applicable).

Symbol  Location Definition

a 2.1 Lower limit of a coverage layer
d 1.10  Normalized asset (random) value
a,,a, A4.6  Constants in the approximation for the point risk load
A 1.1 Market value of assets for entire insurer (at beginning of period)
A 1.1 Market value of assets for entire insurer at the end of the period
b 2.1 Upper limit of a coverage layer
[ 1.1 Overall capital ratio for all lines: capital per unit of loss value
¢; 1.1 Capital ratio for line or policy i
G 1.19  Capital ratio for line containing policy i
c(a,b) 2.6 Capital ratio for layer froma to b
C 1.1 Capital amount for the entire insurer
C, 1.1 Capital amount for line or policy i
C(a,b) 5.1 Capital amount allocated to the layer from a to b
Cv 1.4 Coefficient of variation
d 1.1 Market value of expected default per unit of expected loss for
entire insurer
d; 1.1 Market value of expected default per unit of expected loss for
line/policy i _
D 1.1 Market value of expected default for entire insurer
D, 1.1 Default value for policy or line i
ELR(a,b) 42 Expected loss ratio for the layer fromato b
E (u) 2.2 Partial nth moment evaluated at u
f(x) 31 Probability of loss amount x
fx) 3.1 Risk-neutral probability of loss amount x
F(u) 22 Cumulative probability distribution, evaluated at u
G(u) 2.7 Right tail of cumulative probability distribution, evaluated at u
Gu) 33 Right tail of cumulative risk-neutral probability distribution,
evaluated at u
GBM 35 Geometric Brownian motion
h, 11 Default allocation constant for line/policy i
h(x) A22  Function that determines coverage at loss value x
k A4.7 Constant in translation of the volatility
kg A3.5  Parameter of exponential distribution
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k, A34 Parameter of Pareto distribution
X F18 Parameter of aliernative Pareto distribution
7 1.10 Normalized liability value for all losses
%, 1.10 Normalized liability value for line/policy i
L 1.1 Market value of losses for entire insurer (at beginning of period)
L 1.1 Market value of losses for entire insurer at the end of the period
L 1.1 Market value of loss for line/policy i
LPS 3.6 Location parameter shift
m 3.6 Parameter in fractional PH transform
MR Myers-Read (model)
MV(a,b) A6.1 Market value of the expected loss in the Jayer from a to b
MVL A6.3 Market value of the expected loss for the insurer
n 2.2 Index in partial moment definition
n(u) 1.8 Standard normal density function evaluated at u
N,.N, 1.6 Normal variables in equation (1.6)
N@) 1.6 Standard normal cumulative distribution function evaluated at u
P 11 Fair premium for all policies of an insurer
P, 11 Fair premium for line or policy i
P(a,b) 4.1 Fair premium for layer froma to b
PH 34 Proportional hazard (transform)
PRL 3.3 Point risk load
PVC A64 Present value of the income taxes from capital
q 34 Parameter in basic PH transform
q(x) 34 Generalized PH transform at loss value x
r F5 Risk-free interest rate
r, F2 Investment return
F A4.4  Exponential form of risk-free interest rate
R A4.4  Expected stock return
R A4.4  Exponential form of expected stock return
R(a,b) 42 Return on equity for the layer froma to b
R(x) A6.8 Point ROE evaluated at loss size x
ROE 4.2 Return on equity
s 2.7 CV of policy loss
t F2 Income tax rate
T 1.1 Income tax cost per unit of capital
TP A6.3 Income taxes paid
w, 1.10  Weight of losses from line/policy i compared to total losses
w(a,b) 25 Weight of losses from layer compared to total policy loss
x* A4.8  Value of loss at which the point risk load becomes negative
X 2.1 Expected value of individual policy loss
X 23 Value of individual policy loss
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3.1

X Certainty equivalent loss value
X (a,b) 23 Expected value of loss in the layer from a to b
X(a,b) 2.1 Value of loss in the layer froma to b
)?(a, b) 32 Certainty equivalent loss in the layer from a to b
y 1.6 A variable in equation (1.6)
Y 1.4 Mean of lognormal distribution
yA 1.18 Capital allocation factor
Z, 2.6 Within-line capital allocation factor
a A33 Parameter of gamma distribution
A3.4  Parameter of Pareto distribution
b 1.17 Loss beta for line/policy i relative to all losses
B, 1.19 Loss beta for line k relative to all losses
Ba 1.19 Loss beta for line/policy i relative to line k containing it
ba.b) 25 Loss beta in layer from a to b, relative to entire policy.
A(x) 2.7 Point beta at loss size x
d Ad47 Amount of location parameter shift
A 2.7 Width of narrow layer
7 A33 Parameter of gamma distribution
7; 1.17 Ratio of covariance of policy loss and assets to that of all losses
and assets
T'a; i) A33  Gamma distribution cumulative probability evaluated at x
A 3.1 Risk load for entire loss distribution
A 35 Exponential form of risk load for entire loss distribution
A(x) 33 Point risk load evaluated at loss size x
Ax) A4.5  Exponential form of point risk load evaluated at loss size x
A(a,b) 3.2 Risk load in the layer froma to b
H 1.4 Location parameter in lognormal distribution
A3.2  Mean of normal distribution
s 35 Shifted lognormal location parameter
M, 1.10  Location parameter for normalized asset value distribution
H, 1.10  Location parameter for normalized liability value distribution
v 14 Dispersion parameter in lognormal distribution; volatility
1.5 Combined asset and loss volatility in equation (1.5)
v, 1.5 Asset volatility
v, 1.5 Loss volatility
YV 1.5 Covariance (asscts and losses) parameter
6 A3.5 Parameter of exponential distribution
Pi 1.19  Correlation between policy i losses and all losses
Pr 1.19 Correlation between line & losses and all losses
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Pa 1.19  Correlation between policy i losses and line & losses

Py 1.10 Correlation between policy i and policy j losses

Pu 1.17 Correlation between policy i losses and all losses
o 1.10 Composite loss and asset CV for entire insurer

o, 1.10  Asset CV for insurer

o, 1.10  Loss CV for insurer

O, 1.10 Covariance between normalized asset and liability values
o, "1.10  Loss CV for policy or line i

o, 1.15 Covariance of loss CV with the asset CV

oy 1.15  Covariance of loss CV for policy i with CV for all losses
& 1.12 Correlation coefficient between normalized asset value and

normalized liability value for line/policy i
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Appendix 1

Separating Line and Policy Correlation Coefficients

Equation (1.18) applies both to a line (indexed by k) and a policy (indexed by i), so

(ALD) ¢, =c+(p,—1DZ,and
(A1.2) ¢, =c+(f, ~DZ.

Here, S, = p,0,/0 and f, = p,0,/ 0, where f, is the loss beta for the line relative to
all lines, f, is the loss beta for the policy relative to all lines, p, is the correlation
between the line losses and losses of all lines (including line k) and p; is the correlation
between the policy losses and losses of all lines (including line k). Also, 6,,0, and ¢ are

the respective loss CV values for the policy, line and total of all lines.
Eliminating the variable c in equations (Al.1) and (A1.2), we get
(A1.3) c,=c,+(p,—-pIZ = c,+(p;15,-DSZ.

Define 5, = p,0,/0, asthe loss beta for the policy relative to the line-containing it.
Here, p, is the correlation between the policy losses and losses of the line k. From the

above definitions of f, and f,, we have

(Al.49) bl B, =(p.1p.%0,10,)=(p;1p,Xba ! pu)= (0.6 Y (P:Pu )-

Substituting equation (Al.4) into equation (A1.3), we get

(ALS) c =c,‘+( P ,Bﬁ—qﬂ,z.

PuPr ;
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If the covariance of losses in line k with all other losses (excluding line k) is zero, then
p,=wo,/o and S, =w,6,/0, where w; and w, are the respective policy and line
weights for loss values relative to the total losses of all lines. Thus,

(Al.6) bilp.=w,/w)o,l0,)=w,0,/l0,=p,.

Notice that w, = w,/w, is the weight of the policy losses relative to the line losses.

Substituting equation (A1.6) into equation (A1.3) yields

(ALT7) ¢, =c,+(f—DA.Z.
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Appendix 2.
Development of Covariance Between the Layer and the Entire Loss

The covariance between two random variables is the expected value of their product

minus the product of their expected values. Thus,

(A2.1) Cov(X, X (a,b)] = E[X X(a,b)]- EIX1E[X(a.b)].

We already know that E[X]= X and that E[X (a,b)] = X (a,b)
= E,(a) - E, (b) —[aE,(a) ~ bE,(a)] from equation (2.3). To determine E[X X (a,b)],

we define a function Ah(x) that determines the coverage at each value of loss x. We have

0 x<a
(A2.2) h(x)=4x-a for a<x<b;.
b-a x2b

Therefore,
E[X X(a,b)) = [ xh(x) f (x)dx =[x[0] f (x) dx+[ x[x — a] f(x)dx+[ x[b - a] f(x)dx
=0+ f[x? - ax] f(x) dx +b—a)E, (b) = E, (a)— E, (b) ~[aE, (a) — aE, (b)) + (b — a) E, (b) -

This expression reduces to
(A23)  E[X X(a,b)] = E, (a) — E,(b) —[aE, (a) - bE, (b)].
Substituting equation (A2.3) into equation (A2.1), we get

(A24)  CoviX,X(a.b)) = E,(a) - E, (b)—[aE, (a) - bE, (b)) - X X (a,b).
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Appendix 3
Development of Point Beta Results

Formula for Point Beta in Equation (2.7)
We want to find f(x) = }11_1}10 P (x,x+ A). From equations (2.4) and (2.5) we get

X Cov[}? (x,x+A), )?]
Var(X) X(x,x+A)

Bx,x+A)=

__ 1 E®-EG+A)+E+A)EE+A)-xE () - X X(x,x+4)
X s? X(x,x+A) )

Here s is the CV of X . Thus,

1 P f)du+ @+ D, uf @ du —x[uf wydu 1
X [uf)dus e+ A, f@du=xf fydu  s*

Bl x+A)=

1 A
Xs? %f"’uf(u)du +%j’:"‘f(u)du-—_|;‘,f(u)du

l_[’,’“u’f(u)du —if”uf(u)du + [ uf () du ]

2

Because }Lr’no% j:” g()du = g(u) for any tunction g, the preceding expression becomes

1 Xf@-XPf@+E@G 1 _ 1| E®
Xs® g@-FM+EM® s° S| XE® |

A(x) =lim f(x,x+A) =

Proof That the Point Beta Slope is Positive

Ew _,
X Ey(x)

d d 1
We have g8'(x)=-—— =L
B'(x) Bx) [

sl

1 X E,(x)(d/d0)lE,(x)] - E,(x)}d I dx)[X E,(x)]
2

s X*[E, ()
1 X E, ()~ ()] = E; (x)[-Xf (x)) Xf(x)

= = E,(x)~ xE,(x)]-
5? X[ E, ()P TXE P T ]
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For x>0, — X® 4 Since [E,(x)—xE,(x)]= [ (u—x)f(u)du >0 for all x,
52X Ey(0)

then A'(x) must be greater than zero for all x > 0.

Point Beta Formulas for Various Probability Distributions

Here we use equation (2.8) to derive the point beta estimates. For each distribution, we
need to find s (the CV), the right-tail probability E,(x) and the first partial moment
E,(x) . The chosen distributions are the lognomial, normal, gamma, Pareto and

exponential. These distributions have two parameters that can be adjusted so that each

distribution will have the same mean and CV.

The lognormal distribution and its parameters were discussed in Section 1. The square of
the CV is s? = exp(v?)—1. From equation (2.7), we have E,(x) = N{u —In(x)]/v) and
E,(x) = X N{u~In(x)}/v +v). Thus,

1 N(u~In()})/v+v)
A3.1 = T
(A3.1) B(x) exp(v’)—l[ N(u-n(x))/v) 1]

The normal distribution has parameters # and o . The mean is g and the square of the
CVis s? =0/ u*. Applying equation (2.2) to the normal density, we get

Eyx)= N\’Lu - x]/o) and E,(x)= X E,(x)+0 n([x—y]/o ) Therefore,

_unfu-x1/o)
(43.2) px) = c (N([p —x]/a)}

The gamma distribution has parameters a and } . Its cumulative distribution function is
F(x)=T(a;yx) = [*{y*'e”1/T(@)dy. The mean is X =a/7 . The square of the CV is
s? =1/a . Applying equation (2.2) to the gamma density, we get E,(x) =1-T(a;} x)
and E, (x) =(a/}){1-T(a +1;} x)]. Therefore,
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wg(l=T@+lyx)
(A3.3) ﬁ(x)"“( 1- (e, ¥x) 1)'

The Pareto distribution'® has parametersk, >0 and & > 1. It is defined only for x>k,
and its cumulative distribution function is F(x) =1—(k, /x)“. The mean is

X =ak, l(a ~1) and the variance is finite only for a > 2. The square of the CV is

s> =l/[a(a-2)]. We get E (x)=1- F(x)=(k,/x)* and, applying equation (2.2) to
the Pareto density, E,(x) =(a/[a -1]) x E,(x) . Therefore,

(A3.4) B(x)=a(a-2) [ki - 1].

P
The slope of the Pareto S(x) is a constant, equal to a(a —2)/k,.

A modified form of the Exponential distribution has parametersk, >0 and 6> 0. Itis
defined only for x 2 k; and its cumulative distribution function is

F(x)=1-exp(6[k; —x]). The meanis X =k, +1/6 and the variance is 1/8 2 The
square of the CV is s> =1/(1+ k.6)?. We get E,(x) =1- F(x) = exp( [k, - x]) and,

applying equation (2.2) to the exponential density, E, (x) = (x +1/6 ) E,(x) . Therefore,

(A3.5) F(x)=6(+k.6) (x—kg).

The slope of the exponential f(x) is a constant, equal to 6(1+k.6).

'® Another form of the Pareto distribution is defined as F(x) =1—(x /[[x+x1)*, with x > 0. However, this
distribution has the undesirable property (for comparing point betas between altemative distributions) that
the square of the CV is a /(@ ~ 2) > 1. However, using the abave form of the Pareto distribution, the CV
can be any value greater than zero.
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Appendix 4
Risk Loads Using Risk-Neutral Probability Distributions

Point Risk Load as a Function of Right-Hand Probability Tails
From Section 3, the point risk load is A(x) = 1A1_r§rlo A(x,x+A). We have

(Ad.1) 1+ A(x) = lim 7 (u =) f @) s+ W F )l
' & [ a2 f (e) e + (W), f ()

i [ (u—x) f)du+ [[,, f(u)du
520 (1 A" (u - x) f (e + [, flu)du

since G(u) =1—- F(u) for a cumulative probability function F(u) and

Ll_'flo -;-j:“ () du = g(x) for any function g(u), the limit in equation (A4.1) reduces to

[fawde =~ _ G _

A42 Ax)=
(A42) @ [F fwadu G(x)

1.

Equation (A4.2) has a form similar to that of the point beta in equation (2.8). Since
G(O) =G(0)=1, we get 2(0)=0. This is intuitively plausible since, for a thin layer of
width A whose lower limit is zero, the actual coverage in the layer tends to be A with

certainty. Therefore, no risk is present.

Because the average point risk load (over all values of x) must equal 4, there will be

some value of the loss for which the point risk load will be greater than A. However,
since the maximum value of G(x) is 1, the value of the PRL is limited to
1/G(x)—1= F(x)/G(x) . As x becomes large, this limitation in fact allows infinitely
large point risk loads, which occur under many types of risk-neutral density

transformations. In general, a desirable property of the PRL is that A(x) 20 for all x.
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Under this non-negativity constraint, the allowable probability transforms are severely

restricted.

For some applications, it is useful to define the risk load in an exponential form, so that
i(x) =In[1+ A(x)], or exp[ﬂ'.(x)] =1+ A(x). We use the dot to represent the continuously
compounded version of the annual rate. Notice that A(x) = In[G(x)/ G(x)], and since the

maximum possible value of é(x) is 1, we have 1(x) <In[l/G(x)].

Generalized Proportional Hazard Transform

The proportional hazard (PH) transform is G(x)=[G(x)]*, with 0 < ¢ <1. Under the PH
transform, the point risk load is simply A(x)= [GOO) -1=[1/G(x)]"? —1. Since g is
less than 1 and [1/G(x)] 21, then A(x) > 0. Also, as x becomes extremely large, the

point risk load tends to infinity.

The PH transform can readily be generalized so that, instead of being constant, the

exponent g is a function of x:
(A4.3) G =[G,

with 0< g(x) £ 1. If g(x) =0, then é(x) equals its maximum possible value of

[G(x)]° =1 and A(x) equals its maximum value of 1/ G(x)-1.1f g(x) =1, then

A(x) = 0. Hence, by varying g(x) between zero and 1, all feasible positive values of the
PRL at x may be attained. In other words, any transformed distribution that gives a
positive point risk load for each x can be generated by a suitable function 0 < g(x) 1.
Alternatively, from equation (A4.3), the implied generalized PH transform for any risk-
neutral distribution G(x) is ¢(x) =In[G(x))/In[G(x)]. Figure 3.1 shows the implied

generalized PH transform for a lognormal distribution with risk loads specified by a

location parameter shift (discussed next).
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Risk Loads for the Lognormal Distribution by Shifting the Location Parameter

The classic Black-Scholes (1973) option-pricing model can be derived using the risk-
neutral probability measure. Instantaneous price changes (relative to the current price) are
assumed to drift according to geometric Brownian motion (GBM), which makes the
relative changes in stock prices over any period length lognormally distributed. Let S be
the current stock price, § the certainty-equivalent stock value at the end of one period,
and R the expected return on the stock. Thus, § = S IA+r)=[SA+R)]J1+A)/Q1+r),and
1+A=(01+r)/(1+R).

Define 14+ 4 =e;', 1+r=¢" and 1+R =& . This gives A=—(R-F), so the risk load
for a stock will usually be negative, since the expected return on the stock will exceed the
risk-free rate. This is intuitively plausible, because risky asset returns are discounted at
high interest rates to reflect investors’ aversion to low returns. Conversely, the risk load

for a liability will usually be positive, reflecting policyholders’ aversion to high losses.

In the case of loss values behaving like stock values (having GBM), the risk-neutral
distribution is simply another lognormal distribution with a shifted location parameter but
with the identical volatility as the actual loss distribution.'® Denoting the shifted location

parameter by 4, the risk load for the entire loss distribution is specified by

. X v
Ad.4 1+Ad=exp)==>=——-Ft—= —p).
(A4.4) xp(4d) =~ expla+1v] exp(u’ - /)

2

Thus, the exponential form of the risk load, A, equals the difference in the location

parameters 4’ — 4. For the lognormal distribution, F(x) = N(y), where

y =[In(x) — ¢/ v . For the risk-neutral version, y =[nx)-plv=y- Alv . Thus,

19 See Panjer (1998), Chapter 10 for a discussion of the parameter shift.
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F(x)= N(y") = N(y— A/v) . For large values of u, we know® that 1~ N(u) = n(u)/u.
Therefore,

(A4.5) i) = ny-Am)_y _,[ny-4/m))
n(y) )y—)./v n(y)

After a little manipulation, we find that in[n(y -l v)/n(y)] equals a, In(x)+a,, where

a, = Alv? and a, = —-a,[u+ %i] are constants that depend on the overall risk load and

the parameters of the non-transformed lognormal distribution. So equation (A4.5)

simplifies to a linear function of In(x):
(A4.6) A(x)=a, In(x)+a,.

Consequently, if the overall risk load is positive, a, is positive and the point risk load

will tend to infinity as x approaches infinity.

Alternative View of the Lognormal LPS Transformation

An interesting feature of the lognormal transformation under the location parameter shift

(LPS) is that, for any loss size x, we have é[x(l+ A)] = G(x) . This result can be derived
by substituting z = y(1+A)in Glx(1+ D= [[,,,, F(2)dz., where f(z)dz is the LPS

transformed lognormal density, with 22" = g+ A . Thus, the transformed right-tail

probability function is obtained simply by moving to the left of the actual right-tail
distribution, from x(1+ A) to x.

The risk-neutral method substitutes a different probability for the actual probability,
keeping the loss values the same. Alternatively, we can exchange the actual loss value for

a different loss value, keeping the same probability. Both methods can produce the same

2 See Feller (1968), page 175.
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G(x) . For the LPS transformation, the loss value translation is the original value divided

by the constant 1+ 4.

Creating a Larger Lognormal PRL for Higher Layers

An important property resulting from the GBM assumption for asset or liability values is
the ability to create a continuous riskless hedge. If values drift in infinitesimal amounts, it
is possible to simultaneously buy an option (or other derivative) and sell a quantity of the
underlying asset or liability, so that the combined portfolio has no risk. Although the
GBM assumption might apply to the valuation of liability?' losses, it probably does not
apply for property catastrophe losses. Here, the amount of loss is virtually unpredictable
from one short time span to the next. The value of the catastrophe loss is revealed
suddenly, and does not drift up and down in small increments. Therefore, it is impossible
in principle to form a continuous hedge by buying coverage in a layer and selling shares

of total catastrophe losses.

Because a riskless hedge cannot be created, it is reasonable to expect that, given the same
overall risk load for a distribution, risk loads for high layers may be greater in the case of

catastrophe losses compared to the case where losses follow GBM.

One direct way to obtain this high-layer risk load hoost is to shift the volatility
(dispersion parameter). For the lognormal distribution, we modify the volatility in

addition to the location parameter. Thus, we let v/ =kv and 4" =y +4 . Since
1+ )X =exp(d) X =exp(A+pu+3v?)= X =exp(u+ 5 +1k*v?), we get the overall

risk load in terms of the translation parameters § and k:

(A4.7) A=6+ Kk -1v2.

! One can view the market value of liability losses as being related to a claim cost intlation index, which
can vary nearly continuously.
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Notice that if k = 1, then Equation (A4.7) reduces to equation (A4.4) With é=41.

An undesirable consequence of the two-parameter transformed lognormal distribution is
that the PRL will be negative for a range of loss values. This occurs when G(x) > G(x) ,
or 1= N{[In(x) — 4}/v}>1- N{[In(x)— £']/v’}) . Equating the two sides of this inequality

and solving for x, we get
(Ad.8) x*= XA+ A)" explzkv?].
Thus, when 4 >0, and k #1, we have A(x) <0 for x between zero and x*.

The negative risk load can be avoided entirely by using a suitable generalized PH
transform q(x). However, the cost of this remedy is that f (x) and its moments have to be

approximated with numerical methods.

A simple, two-parameter PH transform is the fractional transform

(A4.9) qlx) =—2&—,
xX+m

with m >0and 0< g <1. If m s zero, equation (A4.9) equals the constant PH transform.
By choosing g and m so that 1 remains constant, we can vary the slope of A(x) to a

great extent, as shown in the numerical illustration of Section 3.

Other generalized PH transformations® will also create steep PRL slopes, but the above

fractional transform is sufficient to illustrate the process.

2 Since g(x) must be between zero and one, any cumulative or righi-hand probability distribution will
work, as long as the resulting transformed distribution has a finite mean. Good choices appear to be the
right-hand Pareto and exponential distributions. Pursuing these alternatives is worthwhile, but is beyond the
scope of this paper.
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Appendix 5: Parameter Estimates

Exhibit 1

Calculation of Equity/Liability Ratio and Asset CV
U. S. Property-Liability Industry Data

$Billions

Calculation of Equity/Liability Ratio

1991 1992 1993 1994 1995 wverage Source
Loss & LAE Reserve 307.1 3269 336.3 3485 360.9 Best'sA & A*
Acc Year Loss & LAE incurred 1773 1962 175.8 197.4 196.8 Best's A& A
Net Liabilties 484.4 523.1 512.1 545.9 5587.7 A+B
Surplus 158.7 163.1 182.3 1933 230.0 Bests A& A
Surplus/GAAP Equity 0.800 0.800 0.800 0.800 0.800 See Below™
GAAP Adjustment 39.7 408 45.6 48.3 575 Dx{(1E-1)
Reserve Discount Factor 0.120 0.120 0.120 0.120 0.120 Exhibit 2
Reserve Discount 36.8 39.2 40.3 138 43 AxG
Incurred Loss & LAE Disc Factor 0.079 0.079 0.079 0.079 0.079 Exhibit 2
Incurred Loss Discount 140 155 13.9 15.6 156 Bxi
Economic Liabilities 4335 468.3 457.8 488.5 498.8 C-H-J
Economic Equity 2493 258.6 282.1 299.1 346.4 D+F+H+J
Equity/Liabitios 0575 0552 0616 o612 0694 os10] LK
Invested Assaets: Portfolio Mix
Stocks 0.183 0.180 0.178 0.184 0202 0.185 Best's A& A
Bonds 0.718 0.710 0721 0.725 0.701 0.715 Best's A& A
Short-Term & Other 0.099 0.110 0.101 0.091 0.097 0.100 Best's A& A
Total 1.000 1.000 1.000 1.000 1.000 1.000 N+O+P
Invested Assats: Volatilty Q Source
Stocks 0.1776 Exhibit 4
Bonds 0.0545 Exhibit 4
Shon-Term & Other 0.0317 Exhibit 4
Total I 0.0750[ Sum of column Q times average of N, O, P
*Best's Aggregates and Averages
s : 1991 imony of N LR hal in the California Proposition 103 rate hearings (File No. REB 1006; Exhbit 10)
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Appendix 5, Exhibit 2

1993 Industry Loss & LAE Reserve Discount Factors

$Millions
Source:
Best's Aggregates and Averages
A B [o] D E F G H |
| Loss & LAE |
Paid Incurred Unpaid Annual PV of Reserve
Ratic Increment Unpaid  Unpaid _ 1- Ratio Discount
10000 09208 00792
1993 78,389 188,433 110,044 0.4160 0.4160 0.5840 0.5306 0.0915 10,066
1992 126,143 192,362 66,219 0.6558 0.2398 0.3442 0.3057 0.1120 7,416
1991 131,127 174,809 43,682 0.7501 0.0944 0.2499 0.2207 0.1169 5,106
1990 141,613 170,880 29,267 0.8287 0.0786 0.1713 0.1486 0.1322 3,870
1989 146,034 165,234 19,200 0.8838 0.0551 0.1162 0.0979 0.1572 3,018
1988 132,845 146,378 13,534 0.9075 0.0237  0.0925 0.0773 0.1639 2,219
1987 122,469 132,178 9,708 0.9265 0.0190 0.0735 0.0607 0.1730 1,679
1986 114,811 121,964 7,183 0.9414 0.0148 0.0586 0.0479 0.1838 1,318
1985 112,301 118,318 6,017 0.9491 0.0078 0.0509 0.0417 0.1807 1,087
1984 102,191 107,437 5246 0.9512 00020 0.0488 0.0411 0.1581 830
Prior 24,446 0.0049 0.0439 0.0376 0.1439 3,518
0.0049 0.0391 0.0340
0.0049 0.0342 0.0303
00049 00293 00264 C—
0.0049  0.0244 0.0224
0.0049 0.0195 0.0182
0.0049 0.0146 0.0139
0.0049 0.0098 0.0094
0.0049 0.0049 0.0048
0.0043  0.0000
K L M
Total 334517 1.0000 40,124
N
Yield Rate 0.0361
Column and Item Notes:
A From Schedule P, Part 1, Column 27
B  From Scheduie P, Part 1, Column 12
C From Schedule P, Part 1, Column 22
D A/B
E (D value )- (prior year D valua); last ten values are equal, such that the sum is 1
F 1-D
G Prasent value of remaining column F values using interest rate N; pay tis d to occur mid-year
H 1-G/F
I CxH
K Sum of column C
L M/K
M Sum of column |
N Average 3-year Treasury note yield during 1991-95, minus a 2 percentage point risk adjustment




Appendix 5, Exhibit 3

Calculation of CV for Industry Loss & LAE Reserve
and Non-Catastrophe Property Losses

Source:
Bast's Aggregates and Averages
Source: Best's A&A
industry Industry Cumulative By Line Underwriting Experience ~ industry
Loss & LAE Non-Cat Property* Page 156-159; 1993 Edition
Year  Reserve Growth** Loss Ratio
(SMillions) Il Loss & LAE Ratios |

1982 111,959 Fire IM PPAPD CAPD Total
1983 122,715 0.0961 0.705 1983 623 66.5 720 73.1 705
1984 134,926 0.0995 0.759 1984 733 708 76.4 797 75.9
1985 154,425 0.1445 0.719 1985 62.0 63.6 754 68.4 7.9
19086 184,577 0.1953 0.647 1986 547 485 70.4 552 64.7
1987 217,646 0.1792 0.611 1987 504 46.9 66.8 50.4 61.1
1988 241,692 0.1105 0.634 1988 539 499 69.0 519 634
1989 269,294 0.1142 0.684 1989 66.0 57.0 726 56.4 68.4
1990 289,878 0.0764 0.676 1880 626 59.9 711 58.6 676
1991 307,141 0.0596 0.631 1991 63.1 57.7 65.4 54.6 63.1
1992 326,900 0.0643 0.651 1992 76.2 63.1 64.8 576 65.1
1993 336,316 0.0288 0.653 1993 66.7 628 66.7 575 653
1994 348,504 0.0362 0.689 1994 699 618 709 62.1 68.9
1995 360,940 0.0357 0.717 1985 699 54.1 753 676 7.7
1996 365,319 0.0121 0.751 1996 586 624 79.6 76.0 751
1997 363,351 -0.0054 0.712 1997 596 87.7 743 75.9 7.2

1983-92 425 383 2554 433 3795

“Lines include Fire, Infand Marine, Private Passenger Auto Physical Damage and
C ial Auto Physical D:

“*Equals (current year value) / (prior year value) - 1
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Appendix 5, Exhibit 4

Asset CV Estimation
1 2 3
1946-1995 Stocks Bonds  90-Day
Average Return 0.1331 0.0520 0.0484
Std Deviation 0.1776 0.0993 0.0317
Std Deviation
Adjusted for P-L
Portfolio | 0.4776] 0.0545] 0.0317]
Bond Maturity 20.00
Bond Duration 14.90
Industry Maturity 9.84
Industry Duration 8.18
Adjustment Factor 0.549
1 2

Midpoint
Maturity Range % of Total of Range
Oto 1 Year 11.43 0.50
110 5 Years 24.76 3.00
510 10 Years 26.27 7.50
1010 20 Years 23.11 15.00
Over 20 Years 14.43 25.00
Total/Average 100.00 9.84
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Source

Exhibit &
Exhibit 5

C1=B1; C3=83; C2=8B2xH

Exhibit 5

D2 x (1 + A2xD2/2)/ (1 + A2x D2)
From section | below
Fx{(1+A2xF/2)/(1+A2xF)
G/E

1992 Best’s Aggregates and Averages
1992 Best's A& A

1992 Best's A& A

1992 Best's A& A

1992 Bests A& A

Sum of (I, column 1) x (I, column 2)




Appendix 5, Exhibit 5

Investment Return Data

Sowrce: Stocks, Bonds, Bills and Inflati 1996 Yearbook, | A i inc. Chicago, 1996

I Annual Total Retum* 1 L Index ]
Stocks Bonds 90-Day Treas Stocks Bond 90-Day Treas

1945 3.965 2.930 1.237
1946 -0.081 0.017 0.004 3.645 2.980 1.242
1947 0.057 0.023 0.005 3.853 2.911 1.248
1948 0.055 0.041 0.008 4.065 3.031 1.258
1949 0.198 0.033 o.011 4.869 3132 1272
1950 0.306 0.021 0.012 6.360 3.198 1.287
1951 0.240 -0.027 0.015 7.888 3112 1.306
1952 0184 0.035 0.017 9.336 3221 1.328
1953 -0.010 0.034 0.018 8.244 3.331 1.352
1954 0.526 0.054 0.009 14.108 3.511 1.364
1955 0.316 0.005 0.015 18.561 a.527 1.385
1956 0.066 -0.068 0.025 18.778 3.287 1.419
1957 -0.108 0.087 0.032 17.646 35873 1.464
1958 0.434 -0.022 0.015 25.208 3.404 1.486
1959 0.120 -0.010 0.030 28.322 3.460 1.530
1960 0.005 0.091 0.027 28.455 3.774 1.57%
1961 0.260 0.048 0.021 36.106 3.956 1.604
1962 -0.087 0.079 0.027 32.955 4.270 1.648
1963 0.228 0022 0.032 40.468 4.364 1.700
1964 0.165 0.048 0.035 47.138 4.572 1.760
1965 0.125 -0.004 0.030 53.008 4.552 1.829
1966 Q.10 0.002 0.048 47.674 4.560 1.916
1967 0.240 -0.049 0.042 59.104 4.335 1.987
1968 o1 0.026 0.052 65.641 4.446 210t
1969 -0.085 -0.081 0.066 60.059 4.086 2.2%
1970 0.040 0.184 0.065 62.465 4.837 2385
1971 0143 0.110 0.044 71.406 5.370 2.490
1972 0.190 0.073 0.038 84.956 5.760 2585
1973 -0.147 0.011 0.069 72.500 5.825 2764
1974 -0.265 -0.031 0.080 £3.311 5.647 2986
1975 0.372 0.146 0.058 73.144 6.474 3159
1976 0.238 0.186 0.051 90.584 7.681 319
1977 -0.072 0.017 0.051 84,076 7.813 3.480
1978 0.066 <0.001 0.072 89.502 7.807 3740
1979 0.184 -0.042 0.104 106.112 7.481 4.128
1980 0.323 0.026 0.112 140.413 7.285 4592
1981 -0.048 0.010 0.147 133.615 7.218 5.267
1982 0214 0.438 0.105 162.221 10.374 5.822
1983 0.225 0.047 0.088 198.743 10.862 6.33%
1984 0.566 0.164 0.009 311.197 12.642 6.950
1985 -0.103 0.309 0.077 279.114 16.549 7.496
1986 0.185 0.198 0.062 330.671 19.833 7.958
1967 0.052 -0.003 0.055 347.967 19.780 8.363
1988 0.168 0.107 0.064 406.458 21.807 8.926
1989 0.315 0.081 534,455 9.651
1990 -o.0x 0.075 517.490 10.376
1991 0.306 0.054 675.592 10.838
1992 0.077 0.035 727.412 11.315
1983 0.100 0.030 800.078 11.657
1994 0.013 0.043 810.538 12.157
1995 0.374 0.055 1113918 12.827

*Calculated by (index, current year )/ (index, prior year) - 1
Stocks are Standard & Poors 500, bonds are 20-year Moody corporate AAA
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Appendix 6
Fair Premium and Return on Equity by Layer

Denote the fair premium for the layer from a to b by P(a,b). The income tax rate is ¢, the
risk-free interest rate is r and the return on (equity) capital is R. Assume that the income
tax rate is applied to income measured at the end of the year and that the tax is paid at the

end of the year

The fair premium is determined by equation (1.1) with no default present. Thus the fair

premium for the layer is

(A6.1) P(a,by=MV(a,b)+T C(a,b),

where MV (a,b) = X (a,b)[1+ A(a,b)}/(1+r) is the market value of the expected loss in
the layer, C(a,b) is the amount of capital required for the layer coverage and T is the
present value of income taxes per unit of capital. Below we show that the second term in
equation (A6.1) is the proper cost of income taxes and derive a formula for T in equation
(A6.4). Substituting this T expression into equation (A6.1) and noting that

C(a,b) =c(a,b)MV (a,b), we get

X (a,b)[1+ A(a,b)] + X{(a,b)[1+ A(a,b)lc(a,b)rt

(A6.2) P(a.b) = 1+r A+rd-2)

Present Value of Income Taxes
We have assumed here a tax system that taxes economic income. We show here that in
this case, the only tax burden carried by the insurer is the cost of taxes on investment

income from capital.

Assume that the capital is zero and that the premium equals the market value of the loss,

denoted by MVL. The loss, paid at the end of the year, is L . At the end of the year, the
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income is the premium minus the loss, plus the investment income? on the premium. The

tax paid is
(A6.3) TP =f{MVL(+r)-L1=tMVLQ+r)—tL .

The market value, evaiuated at present, of TP is the sum of the market values of the two
components of equation (A6.3). Since the premium MVL is a known quantity, its market

value is determined by taking the present value at the risk-free rate. Thus the market

value of tMVL(1+r) is tMVL . The market value of the random amount of loss Lis by

definition MVL, so the market value of ¢L is tMVL, since ¢ is a constant. Therefore, the
market value of TP is zero, and the only remaining tax value to consider is due to the

income from the capital.

Assume that there is no insurance sold, but the insurer has an amount of capital C. The
income from the capital is rC and the present value of -fax on this known amount is

PVC =trC/(1+ ry. Now suppose that somehow the insurer can get the potential
policyholders to pay some premium to offset the tax cost of the capital. There is no risk to
the transaction, since both the capital and the premium are known. If PVC is charged,
taxable underwriting income in the amount of PVC is generated (there are no losses or
expenses). Thus, the additional premium necessary to pay for the taxes on the income
from capital is PVC/(1—1t) =trC/[(1+r)(1-1)] =T C . Therefore,

tr

(A6.4) y L —
d+r)(1-1)

To check this result, the beginning assets are C plus the premium component TC. Thus,

investment income of rC(1+7T) plus underwriting income of 7C is taxed at the end of

the year, leaving an after-tax income of [1-#][rC(1+T)+TC = rC . Consequently, the

23 We have assumed here that the investment of cash flow is invested in risk-free securities. Myers and
Cohn (1987) and Derrig (1994) show that the present value of income taxes on investment income is the
same for risky assets as for risk-free assets. This result occurs because the tax paid on risky investment
retumns is discounted at the risky investment return.
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return on capital is r, which is the same return that investors would get in the marketplace

for an alternative investment with no risk.

Return on Equity by Layer

At the end of the year, the initial assets (premium plus capital) will have earned expected
investment income of r{P(«,b)+ C(a,b)} and the expected underwriting income will be
P(a.b) — X(a,b). The sum of these two components is taxed at the rate ¢ and then
divided by C(a,b) to produce the expected return on capital (equity) R(a,b) for

coverage in the layer:

(A6.5) R(a,b):(l—t)[r+ P("’b)(“')‘x(“’b)}.

C(a,b)

Substituting the value of P(u,b) trom equation (A6.2) into equation (A6.5) and

simplifying, we get

1+r A(a,b)

A6.6 R(a,b) = r+(-f)——r——.

( ) (a,0) r+( )l+2. @b

Using equation (2.6), we get the layer ROE in terms of the layer risk load and the layer
beta:

(A6.7) R(ab) = ,+(1_,)[1+r] A(a,b)

144} c, +(B(a.b)-11Z,

Since the layer risk load and the layer beta can be determined for infinitesimally thin
layers, and the other variables in equation (A6.7) are constants, then the layer ROE can
also be determined for infinitesimally thin layers. The point ROE for the layer at x is

1+r A(x)
144 ¢, +[f(x)-1)Z,

(A6.8) R(x) = r+(1-n

Notice that, since 4(0) =0, R(0) =r, regardless of the layer beta (aslong as ¢, # Z,).
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