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Abstract 

Two well-known methods for calculating risk load -- Marginal Surplus and Marginal Variance -- are applied 
to output from caiastrophe modeling software. Risk loads for these “marginal methods” are calculated for 
sample new and renewal accounts. Differences between new and renewal pricing are examined. For new 
situations, both current methods allocate the full marginal impact of addition of a new accounl lo that new 
account. For renewal situalions, a new concept is introduced -- “renewal additivity”. Neither marginal 
method is renewal additive. A new method is introduced, inspired by game theory, which splits the mutual 
covariance between any hvo accounts evenly behveen those accounts. The new method is extended and 
generalized to a proportional sharing of mutual covariance between any two accounts. Both new 
approaches are tested in new and renewal situations. 

(1) Introduction 

The calculation of risk load continues to be a topic of interest in the actuarial community 
-- see Bault [l] for a recent survey of well-known alternatives. One area where the CAS 
literature is somewhat scarce, and the need is great, is calculation of risk loads for 
property catastrophe insurance. 

The new catastrophe modeling products produce modeled “occurrence size-of-loss 
distributions” for a series of simulated events. Using the occurrence size-of-loss 
distribution, one can easily calculate expected losses, loss variance and standard 
deviation. Two of the more well-known risk load methods from the CAS titerature -- 
what I call “Marginal Surplus” (MS) from Kreps [3] and “Marginal Variance” (MV) from 
Meyers [6] -- use the marginal change in portfolio standard deviation (respectively 
variance) due to addition of a new account as a means to calculate the risk load for that 
new account. However, as we shall see, problems arise when we use these marginal 
methods in calculating the risk loads for the renewal of the accounts in a portfolio. 

We apply the MV and MS methods to a simplified occurrence size-of-loss distribution, 
calculate risk loads both in assembling or building up a potiolio of risks, and in 
subsequently renewing that por?folio. Then we discuss the differences between build-up 
and renewal results. 

1 wuutd Iike to thank Eric Lemieux and Sean Uingsted for their suppoft, editorial soggestions and 
review of early drafts. / woufd also like fo fhank Paul Kneuer for bis fhoughtfu/ and insighfful review which 
improved me paper. 
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We then introduce a new concept to the theory of property catastrophe risk loads -- 
renewal additivity. However, the concept is not new to the field of game theory, where 
we will draw inspiration for a new approach. 

We begin with a brief outline of the mechanics of catastrophe occurrence size-of-loss 
distributions, and the calculation of risk loads using the two marginal methods. 

(2) The Catastroohe Occurrence Size-of-loss Distribution 

For demonstration purposes throughout the paper, we will use a simplified version of an 
occurrence size-of-loss distribution. It captures the essence of typical catastrophe 
modeling software output, while keeping the examples understandable’. 

A series of modeled events denoted by identifíer i are considered independent Poisson 
processes each with occurrence rate h,. To simplify the mathematics, following Meyers 
[SI, we will employ the binomial approximation with probability of occurrence pi [where 
h, = -ln(l - p, )]. This is a satisfactoty approximation for small h, 3. 

For an individual account or portfolio of accounts, the model produces an expected loss 
for each event Li. We will refer to a table containing the event identifiers i, the event 
probabilities pi and modeled expected losses Li as an “occurrence size-of-loss 
distribution.” 

From Meyers [6], the formulas for expected loss and variance are [ Ci = sum over all 
events ]: 

E Ll = Ci { 4 l pi > 

Var [L] = Ci { Li2 ’ pi * (1 - pi) } 

12.11 

The formula for covariance of an existing portfolio L (with losses Li) and a new account 
n (with losses n,) is : 

Cov [L, n] = Ci ( Li * n i * pi l (1 - pi) } 12.31 

The total variance of the combined portfolio [ L + n ] is then 

2 In particular, we will only be considering single event or occurrence size-of-loss distributions. 
Many models also produce multi-event or aggregate loss distributions. Occurrence size-of-loss 
distributions only reflect the largest event which occurs in a given year. Aggregate Ioss distributions reflect 
the sum of losses for all events in a given year. Clearly, the aggregate table provides a more complete 
picture, but for purposes of our exposition here, the occurrence table works well and the formulas are 
substantially less complex. 
3 An event with a probability of 0.001 (typical of the more severe modeled events) would have h = 
0.0010005. 
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Var [L] + Var [n] + 2 l Cov [L, n] 12.41 

(3) The Marainal SurDlus (MS) Method 

This is a translation to property catastrophe of the method described in Rodney Kreps’ 
“Reinsurer Risk Loads from Marginal Surplus Requirements” [3]. 

Consider: 

L, = losses from a portfolio before a new account is added 
L, = losses from a portfolio after a new account is added 
S, = Standard deviation of LO 
S, = Standard deviation of L, 

Borrowing from Mr. Kreps, assume needed surplus V is given by 

z l Standard Deviation of loss - expected Return L3.11 

where z is, to cite Mr. Kreps (p. 197), “a distribution percentage point corresponding to 
the acceptable probability that the actual result will require even more surplus than 
allocated.” Then 

V,=r*S,-R, 
V, = z * S, - R, 13.21 

The difference in returns R, - RO = r, the risk load charged to the new account. The 
marginal surplus requirement is then 

V,-Vo=Z*fS,-S,]+r l3.31 

We determine the risk load based on required return y on that marginal surplus, which 
is based on management goals, market forces and risk appetite. The MS risk load 
would be: 

r = y*z/(l +y)*[S,-S,] 13.41 

(4) The Marainal Variance fM# Method 

This is based on Glenn Meyers’ 1995 CAS Discussion Paper program article 
“Managing the Catastrophe Risk” [SI. 

Mr. Kreps sets needed surplus equal to z l standard deviation of return - expected return. If we 
assume premiums and expenses are invariant, then VaflReturn] = Var[P - E - L] = Va@-]. 
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For an existing pottfolio L and a new account n, the MV risk load would be: 

r = h * Marginal Variance of adding n to L 
=h*{Var[n]+2*Cov[L,n]} l4.11 

where k is a multiplier similar to y * z / (1 + y ) from the MS method, although 
dimensioned to apply to variance rather than standard deviatior?. 

(5) Buildina UD a Portfolio of 2 Accounts 

Now we are prepared to apply the methods to the sample portfolio. Table A shows the 
occurrence size-of-loss distribution and risk load calculations for building up 
(assembling) a portfolio of 2 accounts, (X) and (Y). We assume (X) is written ftrst, and is 
the only risk in the portfolio until (Y) is written. 

(5.1) MS Method 
Here is a summary of pertinent values from Table A for the Marginal Surplus method: 

Table 5.1 

:ount (X) ) Account (Y) 1 Account (X) 1 Account ] Building Up (X) & (Y): Acc 
Marginal Surplus + Account (Y) 1 (X + v 

(1) Change in Standard 4,429 1 356 4,785 1 4,785 
Ueviation 

(2) Risk Load Multiplier 0.33 0.33 0.33 

(3) Risk Load = (1) l (2) $1.461.71 $117.43 $1,579.14 $1,579.14 

* Item (1) is the change in portfolio standard deviation from adding each account, or 
margina/ standard deviation. 

l Item (2) is the Risk Load multiplier of 0.33. Using Mr. Kreps’ formula, a return on 
marginal surplus y of 20% and a standard normal multiplier z of 2.0 (2 standard 
deviations, corresponding to a cumulative non-exceedance probability of 97.725%) 
would produce a risk load multiplier of 

y'z/(l +y) = 0.20*211.20 = 0.33 (rounded) l5.11 

* Item (3) is the Risk Load, the product of Items (1) and (2). 

5 Mr. Meyers develops a variance based risk load multiplier by converting a standard deviation 
based multiplier using the following formula: 

X = (Rate of Return l Std Dev Mult’) / (2 l Avg Capital of Competitors) 
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Since (X) is the first account, the marginal standard deviation from adding (X) equals 
the standard deviation of (X) (Std Dev [X]) of 4,429. This gives a risk load of $1,461.71, 

The marginal standard deviation from writing (Y) equals Std Dev [X + Y] - Std Dev [XI, 
or $356, implying a risk load of $117.43. 

The sum of these two risk loads (X) + (Y) is $1,461.71 + $117.43 = $1,579.14. This 
equals the risk load which this method would calculate for the combined account (X + 
YI. 

(5.2) MV Method 
Here is a summary of pertinent values from Table A for the Marginal Varíance method: 

Table 5.2 

Bui/cBng Up (X) & (v): Account (X) Account (Y) Account (X) Account 
Marginal Varíance + Account (Y) (X + Y) 

(1) Change in Variance 19,619,900 3,279,059 22,898,959 22,898,959 

(2) Risk Load Multiplier 0.000069 0.000069 0.000069 

(3) Risk Load = (1) l (2) $1,353.02 $226.13 $1,579.14 $1,579.14 

l Item (1) is the change in portfolio variance from adding each account, or marginal 
variance. 

l ltem (2) is the Variance Risk Load multíplier h of 0.000069. To simplify comparisons 
between the two methods (recognizing the difficulty of selecting a MV-based 
multiplierô), I converted the MS multiplier to a MV basis by dividing by Std Dev [X + yl: 

h = 0.33 l 1,579.14 = 0.000069 15.21 

This means the total risk load calcuiated for the portfolio by the two methods will be the 
same, although the individual risk loads for (X) and (Y) will differ between the methods. 

l Item (3) is the Risk Load, the product of Items (1) and (2). 

Since (X) is the fir.st account, the marginal variance from adding (X) equals the variance 
of (X) (Var [X]) of 19,619,900. This gives a risk load of $1,353.02. 

The marginal variance from writing (Y) equals Var [X + v] - Var [XI, or $3,279,059, 
implying a risk load of $226.13. 

6 Mr. Meyers (61 (p.124) admits that in practice “it might be difficult for an insurer to obtain the 
(lambdas) of each of its competitors.” He goes on to soggest an approximate method to arrive al a usabte 
lambda based on required capital being ‘Z standard deviations of the total loss distribution.” 
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The sum of these two risk loads (X) + (Y) is $1,353.02 + $226.13 = $1,579.14. This 
equals the risk load which this method would calculate for the combined account (X + 
w. 

(6) Renewina the Portfolio of 2 Acccunts 

Table B shows the natural extension of the Build-up scenario - renewal of these 2 
accounts, in what could be termed a “static” or “steady state” portfolio (one with no new 
entrants). 

As for applying these methods in the renewal scenario, renewing policy (X) is assumed 
equivalent to adding (X) to a portfolio of (Y); renewing (Y) is assumed equivalent to 
addìng (Y) to a portfolio of (X). 

(6.1) MS Method 
Here is a summary of pertinent values from Table B for the Marginal Surplus method: 

Table 6.1 

The marginal standard deviation for adding (Y) to (X) is 356, same as it was during 
Build-up -- see Section (5.1). The risk load of $117.43 is also the same. 

However, adding (X) to (Y) gives a marginal standard deviation of Std Dev [X + v] - Std 
Dev M , or 4,171. This gives a risk load for (X) of $1.376.27, which is (85.45) less than 
$1,461.71, the risk load for (X) calculated in Section (5.1). 

The sum of these two risk loads is $1,376.27 + $117.43 = $1,493.70. This is also 
(85.45) less than the total risk load from Section (5.1). 

(6.2) MV Method 
Here is a summary of pertinent values from Table B for the Marginal Variance method: 
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Table 6.2 

The marginal variance for adding (Y) to (X) is 3,279,059, same as it was during Build-up 
-- see Section (5.2). The risk load of $226.13 is also the same. 

However, adding (X) to (Y) gives a marginal variance of Var [X + v] - Var M, or 
22521,000. The risk load is now $1,553.08, which is $200.06 more than the $1,353.02 
calculated in Section (5.2). 

The sum of these two risk ioads is $1,553.08 + $226.13 = $1,779.21. This is also 
$200.06 more than the total risk load from Section (5.2). 

(7) ExDiorina the Differences Between New and Renewal 

Why are the total Renewal risk loads different f’rom the total Build-up risk loads? 

(7.1) MS Method 
In SeCtiOn (5.1) Build-up, the marginal standard deviation for (X), AStd Dev [X], was : 

AStd Dev M = Std Dev [X] 
= SQRT[L, {X;*p,*(l-p,)} 1, 

(Xi = modeleed losses for X for event i] 
i7.11 

while in Section (6.1) Renewal, the marginal standard deviation was 

AStd Dev DC] = Std Dev [X + YJ - Std Dev M 
= SQRT [ Ci { (X,+Y,)’ * pi * (1 - pi) ) ] - 

SQRT[ri {Y,‘*p,*(I -pi)}] (7.21 

For positive Yi, this value ís less than Std Dev [Xj7. Therefore, we would expect the 
Renewal risk load to be less than the Buitd-up. 

I For example. assume Var [X) = 9. Var M = 4, Cov [X, v] = 1.5; then 
AStd Dev [x] = Sqrt(Var [X) ) = Sqrf (9) = 3 for X alone 
AStd Dev [Xj = Sqrt(9 + 4 + 2’1.5) - Sqrt(4) = 4 - 2 = 2 < 3. for X added fo Y 
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Unfortunately, when the MS method is applied in the renewal of all the accounts in a 
portfolio, the sum of the individual risk loads will be less than the total portfolio standard 
deviation times the multiplier. This is because the sum of the marginal standard 
deviations (found by taking the difference in portfolio standard deviation with and 
without each account in the portfolio) is less than the total portfolio standard deviation*. 
This is because the square root operator is “sub-additive”: the square root of a sum is 
less than the sum of the square rootss. 

(7.2) MV Method 
In Section (5.2) Build-up, the marginal variance AVar [X] was 

AVar [X] = Var [X] 
= c, { x; * p, * (1 - pi) 1. 17.31 

while in Section (6.2) Renewal the marginal variance was 

AVar [X] = Var [X + v] - Var M 
= {Var[X]+2*Cov[X,Y] +Ver+!j)-q 17.41 
= Var [X] + 2 * Cov [X, v] 
z Var [XI. 

Since 2 l Cov [X, u] is greater than zero, we would expect the Renewal risk load to be 
greater than the Build-up. 

However, when the MV method is applied in the renewal of all the accounts in a 
portfolio, the sum of the individual risk loads will be more than the total portfolio 
variance times the multiplier. This is because the sum of the marginal variances (found 
by taking the difference in portfolio variance with and without each account in the 
portfolio) is greater than the total portfolio variance. The covariance between any two 
risks in the portfolio is double counted: when each account renews, it is allocated the 
full amount of its shared covariance with all the other accounts. 

The renewal scenarios point out that these two methods are not what I call “renewal 
additive,” defined as follows: 

For a given portfolio of accounts, a risk load method is renewal additive if the sum 
of the renewal risk toads calculated for each component account equals the risk 
load calculated when the combined accounts are treated as a single account. 

8 The same issue is raised in Mr. Gogol’s discussion 121. 
9 For example. Sqrl[S + 16) c Sqtt[S] + Sqrl[lG]. 
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Neither the MS nor the MV method is renewal additive: MS because the square root 
operator is sub-additive; MV because the covariance is double counted. In order for 
them to be renewal additive, one must assume an entry order for the accounts. 

It’s a puuling predicament. We apply the risk load formula for the renewal of account 
(X). The formula makes sense for the renewal of account (X). It also makes sense for 
the renewal of account (Y). However, the portfolio total does not make sense. We could 
say that in the renewal context, these methods were “individually rational” yet the total 
was not “collectively rational”. 

I chose these terms deliberately as a segue to the next section. They come from the 
field of game theory. These concepts and others (including additivity) have been 
studied extensively by game theorists, and their results will provide us with inspiration 
for a new approach. 

(9) A New ADDrOaCh from Game Theorv 

I focused on ideas in two papers by Jean Lemaire: “An Application of Game Theory: 
Cost Allocation” [4], and “Cooperative Game Theory and Its Insurance Appiications” 251. 
In both papers, Mr. Lemaire considers the insurance applications of results from 
“cooperative games with transferable utílities”‘O. 

The material can be daunting. To facilitate the discussion, I will combine and 
paraphrase the formal game theory definitions from both of Mr. Lemaire’s papers, then 
follow wíth translations to our problem”. 

Basics 
“A n-person cooperative game with transferable utilities is a pair [N, v(S)] where N = 
{l, 2, . . . . n} is the set of the players, and v(S), the characteristic function of the 
game, is a super-additive’* set function that associates a real number v(S) with each 
coalition S of players” ([4], p. 68). 

II) Citing Mr. Lemaire [5] (p.20) : “Cooperative game theory analyzes those situations where 
participants’ objectives are partiatly cooperative and partially conflicting. It is in the participants’ interest to 
cooperate, in arder to achieve the greatesl possible total benefits. When it comes to sharing the benefits 
of cooperation, however, individuals have conflicting goals.... Partticipants are negotiating about sharing a 
given commodtty (such as money or political power) which is fully transferable between players and 
evaluated in the sarne way by everyone.... For this reason, the class of games defined here is cailed 
‘Cooperative games with transferable utilities.” 

In our case, the conflicting goals arise because all but the largest risks must have catastrophe 
coverage, and must go for this coverage to an insurance company. Insurance companies write many such 
risks, whlch means they have loss covariance created by the pooling of risks exposed to the same 
potential catastrophic events. The desire for coverage conftlcts with the desire to be atlocated the teast 
covariance. 
II Those wishing a more detailed explanation are strongly encouraged to read Mr. Lemaire’s papers. 
12 Super-additivity is defined as follows: for S, T any two disjoint coalitions. and a characteristic 
function v. super-additivity implies v(S) + v(T) <= v(S union T). 
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Translation: 
l Player = account. 
l Coalition S = portfolio. 
l Characteristic function v(S) = portfolio variance (super-additive because of the 
covariance component). 

Imoutation, Individual rationalitv. additivitv 
“An imputation is a vector y = (y,, . . . . y,) such that yi >= v(i) for every i, and IX ¡=,, ,,y, = 
v(N)” ([5] p. 68). 

Translation: 
l Imputation = allocation of the coalition total value V(N) back to the individual members. 

l The first condition (y, >= v(i) for evety i) is known as “individual rationality” -- each 
member’s allocation y, is no smaller than its value would be were it on its own ( = v(i)). 

l The second condition (Xi=,, ,o ,yi = v(N)) is known as “additivity” - the sum of the 
individual allocations must add up to the coalition total value. 

In our problem, the imputation is each account’s marginal variance (under the MV 
method) from adding it to the remainder of the portfolio. This imputation is individually 
rational, since the allocations are larger than the individual account variances because 
of the covariance component. However, as we have seen, it is not additive -- the sum of 
the individual allocations (marginal variances) is greater than the total variance. 

Collective rationalitv and the Core 
“An imputation is collectively rabona1 if there is no sub-coalition S’ under which the 
players are better off than they were under S. 

“The core of the game is the set of all collectively rational imputations.” ([5], p. 25) 

Translation: 
l Collectively rabona1 = the coalition is stable -- there is no incentive for players to split 
off and form factions. 

l The core sets the boundartes for possible, stable allocations. 

Shaolev value 
“The Shapley value is the center of gravity of the core’s extrema1 points.” ([4], p. 72) 

Translation: 
The Shapley value is the only allocation which satisfies the following three axioms ([4], 
p. 69): 
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1. Symmetty (Order-inclependence) - for all permutations P(S) of accounts in a portfoiio 
S, c(S) = c(P(S)). Knowing the combination of accounts is sufficient to have an additive 
allocation. 

2. Inessential Plavers (Uncorreiated accounts) - if an account generates no covariance 
with the existing portfolio, it is simply ailocated its own variance, and nothing more. 

3. Additivity - allocations from distinct games should be additive. This particular 
condition has no parallel in our situation. 

Only one allocation method satisfies these three axioms -- the “Shapley value”. It 
equals the average allocation taken over all possible entrance permutations -- the 
different orders in which a new member could have been added to the coalition’3 (Le. a 
new account could have been added to a portfolio). 

For example, if we had a portfolio of accounts (A), (B), and (C), and we want to add a 
new account (D), we could consider the marginal variance for adding (D) in all the 
following entrance permutations: 

Table 9.1 
Entry Permutations for Account D 

._-... __._ _ ..- -__-~ ..____ __- 
13 Mr. Lemaire [5] provides this more complete definition of the Shapley value (p. 29): “The Shapley 
value can be interpfeted as the mathematical expectatiin of the admission value, when aft orders of 
formation of the grand coalitin are equiprobable. In computing the value, one can assume. for 
conveniente, that all players enter the grand coalition one by one, each of them receiving the entire 
benefits he brings to the coalition formed just before him. All orders of formation of N are considered and 
intervene with the same weight Un! in the computation. The combinatoria1 coefficient results from the fact 
that there are (s-l)!(n-s)l ways for a @ayer to be the last to enter coalition S: the (s-l) other players of S 
and the (n-s) players of N\S (thoseplayets in N which are not in S - DM) can be permuted without 
affecting jis position.” 
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8 Fourth After (ABC) Var [D] + 2’Cov [D, A] + 
2’Cov [D, B] + P*Cov [D, C] 

The Shapley value is the straight average of Column (4) Marginal Variance over the 
eight permutations: 

Shapley Value ={Sum[Column(4)]}/8 

= { b*Var ID] + 
8”Cov [D, A] + 
8*Cov [D, B] + 

P.11 

8*Cov [D, C] } / 8 

= Var [D] + Cov [D, A] + Cov [D, B] + Cov [D, C] 

Or, to generalize, given 

L = losses for existing portfolio 
n = losses for new account 

Shapley Value = Var[n]+Cov[L,n]. WI 

Before seeing this result, we might have been concerned about the practicality of this 
approach - how much computational time míght be required to calculate all the 
possible entrance permutations for a portfolio of thousands of accounts? This simple 
reduction formula eliminates those concerns. The Shapley value is as simple to 
calculate as the marginal variance. 

Comparing the Shapley value to the marginal variance formula from Section 4: 

Marginal Variance =Var[n]+2’Cov[L,n], WI 

we note the Shapley value only takes 1 times the covariance of the new account and 
the existing portfolio. 

We can also calculate the Shapley value under the marginal standard deviation 
method. However, due to the complex nature of the mathematics -- differences of 
square roots of sums of products -- no simplifying reduction formula was immediately 
apparenP. 

Therefore, we will focus going forward on the MV method and the variance-based 
Shapley value. Life will be much easier (mathematically) working with the variances, 

~ -~~..- -.~ 
II Please contact the author if you can successfully reduce formulas involving the average of the 
difference of square roots of sums of products. 
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and we lose very little by choosing variance. Citing Mr. Bault ([ll, p. 821, from a risk load 
perspective, “both [variance and standard deviation) are simply special cases of a 
unifying covariance framework.” In fact, Mr. Bault goes on to suggest “in most cases, 
tbe ‘oorrect’ answer is a marginal risk approach that incorporates covariance”‘5. 

(10) Sharina the Covariance 

The risk load question, framed in a’game-theoretical light, has now become: 

How do accounts share tbeir mutual covariance for purposes of calculating risk 
load? 

The Shapley method answers, “Accounts split their mutual covariance equally.” At first 
glance this appears reasonabíe, but consider the following example. 

Assume two accounts, (L) and (M). (M) has 100 times the losses of (L) for each event. 
Their total shared covariance is 

2 * Cov(L, M)= 2 * Ci { Li l M, * p, * (1 - pi) } 
= 2 ‘C, {Li * IOOL, * pi * (1 -pi)} [IO.l] 

The Shapley value would equally divide this total covariance between (L) and (M), even 
though their relative contributions to the total are clearty not equal. There is no question 
that (L) should be assessed some share of the covariance. The issue is whether there 
is a more equitable share than simply half. 

We can develop a generalized covariance sharing (GCS) method which uses a weight 
W/(L, X) to determine (L)‘s share of the mutual covartance between itself and account 
(X) for event i: 

CovShareF (L, X) = W,L(L, X) * 2 * Li * xi * pi + (1 - pJ [l 0.23 

Then (X)3 share of that mutual covariance would simply be 

CovShareix (L, X) = (i - W,L(L, X)] l 2 ’ Li ex, * p, l (1 - pi) 

The total covariance share allocation for (L) over all events would be 

CovShare,,L = Zz Zi { CovShare:(L, Z) } 
{ C, = sum over every other account in the portfolio } I10.41 

16 Mr. Kreps [3] also incorporates covariance in his “Reluctante” R (p. 198), which has the formula R 
= [yz/(l+y)]/(PSC + o)/(S’ + S), where C is the correlation of the contract with the existing book. The Risk 
Load is then equal to Ra. 
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The Shapley method is a generalized covariance sharing method with W:(L, X) = 50% 
for all (L), (X), and i. 

Returning to the example with (L) and (M), we can develop an example of a weighting 
scheme which assigns the shared covariance by event to each in proportion to their 
loss for that event. W,L(L, M), account (L)‘s share of the mutual covariance between 
itself and account (M) for event i, equals 

W,L(L, M) = [ Li / [ Li + M, ] ] [10.5] 
= [ Li / [ Li + IOOL, ] ] 
= (1 1101) 
= roughly 1% of their mutual covariance for event i 

We will call this the “Covariance Share” (CS) method. 

(ll) Awlvincr the Shaolev and CS Methods to the Examole 

Now we will see how the Shapley and CS methods petform in our 2 Account example 
for both Build-up and Renewal. 

(ll .l) Portfolio Suild-uo 
Table C shows the Build-up of accounts (X) and (Y) from Section 5, but for the Shapley 
and CS methods. Here is a summary of the pertinent values from Table C for the 
Shapley value: 

Table Il .1 

Building Up (X) & (V): Account (X) Account (Y) Account (X) Account 
Sbepley Value + Account (Y) (X + Y) 

(1) Change in Variance 19,619,900 1,828,509 21,448,409 22,898,959 

(2) Risk Load Multiplier 0.000069 0.000069 - 0.000069 

(3) Risk Load = (1) l (2) $1,353.02 $126.10 $1,479.11 $1,579.14 

and for the Covariance Share: 

Table ll .2 
Building Up (X) & (v): Account (X) Account (Y) Account (X) Account 

Covariance Share + Account (Y) (X + Y) 
(1) Change in Variance 19,619,900 950,658 20,570,558 22,898,959 
(2) Risk Load Multiplier 0.000069 0.000069 0.000069 
(3) Risk Load = (1) * (2) $1,353.02 $65.56 $1,418.57 $1,579.14 
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Both Shapley and CS produce the same risk load for (X) as the MV method on build-up 
- $1,353.02. This is because there is no covariance to share - (X) is the entire portfolio 
at this point. However, let’s compare the results of the three variance-based methods 
for account (Y): 

Table ll .3 

Comparison of Build-up Risk Loads for Account (Y) 

Marginal Variance (MV) - $226.13 
Section 5.2 

Shapley Value $126.10 

Difference from MV $100.03 

Covariance Share (CSI $65.56 

l Difference ffom MV l $~6&57l 

Compared to MV, which charges account (Y) for the full increase in variance (Var p/l + 
2* Cov pC, YJ), the Shapley method only charges (Y) for Var M + Cov [X, YJ The same 
can be said for the CS method, although the share of the mutual covariance depends 
on each account’s relative contribution by event, weighted and summed over all events. 
Let’s see what happens to that difference from MV upon renewal. 

(11.3) Renewal 
Table D shows the renewal of (X) and (Y) for the Shapley and CS methods. Here is a 
summary of pertinent values from Table D for the Shapley method: 

Table ll .4 
Renewing (X) @I r/): Account (X) Account (Y) Account (X) Account 

Shapley Value + Account (Y) (X + Y) 
(1) Change in Variance 21,070,450 1,828,509 22,898,959 22,898,959 

(2) Risk Load Multiplier 0.000069 0.000069 0.000069 . 
(3) Risk Load = (l)‘* (2) $1,453.05 $126.10 $1,579.14 $1,579.14 

(4) Build-up Risk Load $1,353.02 $126.10 $1,479.11 $1,579.14 

(5) Difference $100.03 $0 $100.03 $0 

and for the Covariance Share method: 

Table ll .5 
Renewing (X) & r/): Account (X) Account (Y) Account (X) Account 
Covariance Share + Account (Y) (X + v 
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With both the Shapley and CS methods, the sum of the risk loads for Account (X) and 
Account (Y) equals the risk load for Account (X + Y), namely $1,579.14. This means we 
have two renewal additive methods, which also means they are legitimate imputations. 

To see what happened to difference from MV, compare the risk loads calculated at 
renewal for (X) with those at build-up: 

Table Il .6 

Build-up VS Renewal Risk Shapley Cov Share 
Loads for Account (X) 

Renewal $1,453.05 $1,513.59 

Build-up $1,353.02 $1,353.02 

Additional Renewal Risk Load $100.03 $160.57 
over Build-up 

Difference from MV $100.03 $160.57 

The difference from MV during build-up is simply the portion of (X)‘s risk load 
attributable to its share of covariance with (Y). It was missed during build-up because it 
was unknown -- account (Y) had not been written. 

(12) Conclusion 

These new approaches address the concerns with renewal additivity, and point out the 
issue of covariance sharing between accounts. Perhaps the ideal solution might involve 
using a marginal method for the pricing of new accounts, and a renewal additive 
method for renewals. Any number of variations are possible, as long as one avoids 
double-counting the covariance. 

It is hoped that this paper has also set the stage for further discussion of order 
dependency. This is a complex issue which was only touched on here, but which moves 
more to the forefront as advances in computer technology and modeling make ever 
finer levels of analysis possible. 
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Table (A) Build a Portfolio of 2 

Ent i p(i) j 
1 Loss for Risk 

l-P(i) ( (X) ( MI (X + Y) 

: - 2.0% 1 .O% 98.0% 99.0% ~25.000 15,000 200 500 1 25,200 15.500 
3.0% 97.0% 10.000 3wJO 13.000 
3.0% 97.0% 8,000 1,000 9JwJ 
1 .O% 99.0% 5.m 2,000 7,000 
2.0% 98.0% 2,500 1.500 4,000 

E[L] 1 1.2901 179 1,469 
Var[L] j 19.619.900 j 377,959 22.898.959 

Std DeviL] 1 4,429 / 615 4,765 

covar 1 (X) 1 
(X) 1 19.619,900 1 

M. 
1,450.550. 

(Yj I 1,450.550 1 377.959. 

00 M (x)+(YJ 
Change in Std Deviation 4.171 356 4,526 

Risk Load (Std Dev) X376.27 117.43 1.493.70 
0.33 1 Risk Load (A) 1,461.71 117.43 1.579.14 

1 Dirraran~ (85.451, (85.45) 

jII / 
[ 

“;~w~ “ti;: 22,521,OOo 1.553.08 
j / 

3,279.059 226.13 25.600.059 1.779.21 
0.000069 1 Risk Load (A) 1.353.02 226.13 1.579.14 

j Differmxi 200.06) 200.06 

Table (B) Renew the Portfolio of 2 Risks 

( Event ij PQI 
I 

l-P(i) [ 
Loss for Risk 

(X) [ MI (X + Y) 

98.090 25,000 200 25,200 
99.0% 15,000 500 15,500 
97.0% 10,000 3,000 13,000 
97.0% &oao 1,000 9,000 
99.0% 5.000 2,000 7,000 
98.0% 2,500 1,500 4,000 

E[L] 1 1.29or 1791 1,469 
VafJL] / 

/ 
19,6- 22.898.959 

Std Dev[L] 4,429 / 615 ] 4.785 

Covar ( 3) ( M 
(X)) 19.619.900 / 1,450.550 
(Y) / _t.450.550 l 377.959 

.~ 
(X) 0 (x)+py 

Change in Std Deviation 4,171 356 4,526 
117.43 1,493.70 
117.43 1.579.14 

(85.45) 

Changa in Variance -22.521.000 3.279.059 25.800.059 
Risk Load 

r 0.000069 / (Variance) Risk LoadfA) 

1.553.08 226.13 
1.353.02 226.13 1.779.21 1.579.14 

/ Difremncíi 200.06 2So.06 
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Table (C) Build a Portfolio of 2 Risks - Alternatives 

covnrlsntsshnfn 1 21.948,301 950.6581 22,698,859 
RirkLondEovShere) / 1,613.69 65.56j M79.14 

O.LIOOO69 1 Rlsk Load (Ci 1353.02 65.58 1 1 Dlffemm+ 100.57 =D&mdRisk Loadtofn(Cf 1 11 

--- _________.~. __ 

Table (El) Renew the Portfolio of 2 Risks - Alternatives 

1 CovadanceShare$ ' 
1 Eventi( P(i) / l-P(I)/ WI d 

: 2.0% 1.0% 98.0% 99.0% 14,516.129 9920,635 -463.671 79,365 

3 3.0% 97.0% 46.153.646 13,646.154 
4 3.0% 97.0% 14.222222 1,777,776 
5 1.0% 99.0% 14,266,714 5.714.266 
6 2.0% 98.0% 4,667.596 1 2.612.500 

Total 
r 2.326.401 1 572.6991 2901,100 L 

Shapleyvalue 
RbkLoad(Shap&y) 

0.000069 1 

/ 21.070.450 1828.509 1 ' 22.898.959 
[ 1.453.05 126.10[ 1.579.14 

1.353.02 126.101 
100.03 =DefemdRisk Loadfrom[C~ ! 

/ 
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