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1.0 INTRODUCTION AND SUMMARY 

The present paper aims to present a statistical modelling framework and environment 

for conducting loss reserving analysis. The modelling framework and approach 

affords numerous advantages including increased accuracy of estimates and 

modelling of loss reserve variability. Since the loss reserve is likely to be the largest 

item in the insurer's balance sheet and is subject to much uncertainty, modelling of 

loss reserve variability is an integral component of assessing insurer solvency and 

assessment of risk based capital. 

The paper is organised as follows: 

Forecasting and some modelling concepts are introduced in Section 2. The salient 

features of the data that ought to be captured by a model are discussed and 

arguments in favour of probabilistic models are presented. It is emphasised that the 

only way to assess loss reserve variability is through probabilistic models. The 

statistic~ MODELLING FRAMEWORK is introduced where each model in the 

framework has four components of interest. The first three involve trends in the three 

directions, development year, payment~calendar year and accident year and the 

fourth component is the random fluctuations (distributions) about the trends. 

In Section 3 we begin by discussing trend adjustments to a univariate time series and 

illustrate how analogous adjustments to loss reserving data cannot be handled by 

graph and ruler, mainly as a consequence of the projection of the payment/calendar 

year trends onto the development year and accident year directions. Two 

deterministic, models Cape Cod (CC) and Cape Cod with constant inflation (CCI) are 

discussed. Age-to-age development factors are defined as trend parameters. 

A rich class of deterministic development factor models is introduced in Section 4 

where each model in the framework contains the three trend components of interest. 

It is shown how as a result of the projection of calender year (trends), a very simple 
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trend model causes very different development year trends (development factors) for 

different accident years. Standard actuarial techniques based on age-to-age link 

ratios of the cumulative payments cannot capture the payment/calendar year trends 

in the payments. 

In Section 5 the class (or family) of deterministic development factor models that only 

contain trend components in the three directions is extended to include random 

fluctuations. The resulting models in the rich Development Factor Family (DFF) are 

probabilistic models that relate the distributions of 'payments' in the various cells in 

the triangle by trend parameters. It is emphasised that one of the principal uses of 

regression is the estimation (or fitting) of distributions. Estimation of a model 

belonging to the DFF involves the fitting of distributions to the cells in the loss 

development array. Data based on a simple DFF model are generated (simulated) 

and it is demonstrated how the development year patterns are invariably complex. 

The trends cannot be determined from the age-to-age link ratios nor from graphs. 

For readers who are sceptics and may argue "But this is simulated data" should read 

Section 1 2 where we analyse real life data involving a line written by a larger insurer 

for which the age-to-age link ratios on the cumulative payments are relatively smooth. 

HOWEVER, there are major shifts in payment~calendar year trends in the payments 

that are quite alarming. 

We use regression for a number of purposes: 

Estimation of trends. 

Estimation or fitting of distributions. 

In Section 6 we demonstrate how regression can also be employed to adjust data for 

trends. We state as a THEOREM that the only way to separate payment/calendar 

year trends from development year trends is by application of regression. Practical 

applications of regressions involving real life data sets are given in Sections 12 and 

13. 

In Section 6 we also present a number of tests that we believe any sound loss 
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reserving statistical framework should pass. It is shown that standard actuarial 

techniques based on age-to-age link ratios fail these minimum tests. 

As a result of the dependence of the payment/calendar year direction on the other 

two directions, many of the models in the DFF that contain many parameters cannot 

be estimated in a spreadsheet or statistical package and some that can be estimated 

may contain much parameter uncertainty. This phenomenon, known as 

multicollinear'ity, is discussed in Section 7 and motivates the introduction of varying 

parameter, dynamic or credibility models. Varying parameters or stochastic 

parameters can also be regarded as proxies for the myriad of variables that affect the 

complex claims generating process. 

In Section 8 we show how the (fixed) parameter regression models may be estimated 

in a spreadsheet or statistical package and how an estimated model may be 

employed in producing forecast distributions of (incremental) payments. The forecast 

(estimated) distributions provide information required for the assessment of risk based 

capital and solvency. 

Additional modelling concepts including parsimony, Akaike Information Criterion and 

distributional assumptions are discussed in Section 9. Moreover, we describe the 

importance of the twin concepts of stability and validation analysis and show how 

data with unstable trends (in the payments) are less predictable (subject to greater 

uncertainty) than data with staple trend (and some random fluctuations). Parameter 

uncertainty (or instability) can reduce predictability much more than process 

uncertainty. 

Accuracy of forecast distributions is also discussed. We empha,~ise that the "optimal" 

statistical model, when trends are unstable, may not be the best for producing 

forecasts and discuss what assumptions may be appropriate for the future, especially 

in the light of analysing other data types. Instability in trends in the more recent 

payment years in the incremental payments requires more actuarial judgment about 

future trends. 
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The model building strategy and selection of appropriate assumptions about the 

future are discussed in Section 10. It is stressed that the model building strategy ~s 

necessarily an iterative cycle of model specification, estimation and testing. If trends 

in the more recent payment/calendar years are unstable, the nature of the instability 

and possible explanation for the instability is relevant information in deciding on 

assumptions for the future. This typically may require analysis of other data types 

employing the advocated modelling framework. We conclude in Section 10 with a 

discussion of time series models versus explanatory (or casual) models and offer 

arguments for the superiority of the former over the latter. 

Section 11 discusses how prediction intervals may be derived from the forecast 

distributions and how they are relevant to the assessment of risk based capital and 

solvency. Prediction intervals computed from the forecast distributions are 

conditional on the assumptions made about the future remaining true. 

The preliminary diagnostic analysis and the model building strategy are illustrated 

with two real life examples. Project 1 of Section 12 is concerned with real data of a 

large company. In terms of standard age-to-age link ratio techniques the data and 

ratios are relatively smooth and it does not appear that there are any problems. 

HOWEVER, there are major shifts in payment/calendar year trends in the payments 

that are alarming especially since the new high trend cannot be explained by a 

corresponding increase in speed of closure of claims. Project 2 of Section 13 also 

involves real data. Here the link ratios are relatively irregular, yet trends are stable, 

so that three years earlier estimation of the, same model would have forecast the 

distributions of payments in the ceils of the last three payment~calendar years and 

moreover would have produced the same outstanding reserve estimates. 

In Section 14 we remark about an important extension of the DFF MODELLING 

FRAMEWORK that makes the family of models infinitely richer. 

The paper concludes with summary remarks in Section 15. 

Throughout the paper we also hope to dispel a number of pervasive loss reserving 
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myths regarding data, age-to-age link ratios, volume, credibility, sources of 

information, actuarial judgment (when and where required), business knowledge, 

statistical probabilistic modelling and forecasting. 
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2.0 STATISTICAL FORECASTING 

The best way to suppose what may come, is to remember what is past. 

George Savile, Marquis of Halifax. 

In this section we discuss a number of fundamental statistical forecasting concepts 

including which salient features of the data should be "remember what is past". 

2.1 FORECASTING 

Indeed it (forecasting) has been likened to driving a car blindfolded while following 

directions given by a person looking out the back window. Nevertheless, if this is the 

best we could do, it is important that it should be done properly, with the appreciation 

of the potential errors involved. In this way it should at least be possible to negotiate 

straight stretches of road without a major disaster. 

Andrew C. Harvey [9] 

In the loss reserving context the 'straight stretches' are the stable trends in the 

(incremental) payments. If the trends have been stable in past years, we are 

confident in supposing the same trends in the future. 

2.2 WHY A PROBABILISTIC OR STOCHASTIC MODEL? 

There are extremely compelling reasons as tp why we should be using probabilistic 

models to model insurance data, whether for the purpose of loss reserving, rate 

making or any other purpose. 

According to Arthur Bailey's [2] paper Sampling Theory in Casualty Insurance, 

any insurance data can only be regarded as "an isolated sample ,,,", See top of page 

8 of the text book Foundations of Casualty Actuarial Science [5], Bailey is 

basically saying that any insurance data can only be regarded as a sample (path) 

from perhaps a very complex process. 
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If a fair coin is tossed 100 times, the mean number  of heads is 50, but the probabil i ty 

of observ ing 50 heads is only 0.08. If a fair dice numbered 1 to 6 is rolled, the mean 

is 3.5, yet the probabi l i ty of observing 3.5 ~s zero. (The variabil i ty inherent in coin 

tossing in known as process uncertainty). 

So, the probabi l i ty of observ ing the mean in most, if not all, insurance processes is 

zero. Given, that we do not observe the mean, we need to compute  more than just 

the mean. The mean on its own is not terribly informative. We need to also compute  

the standard deviat ion, so that we have some idea of how 'far' our (future) 

observat ions will be from the mean. The best, of course, is to compu te  the whole 

distr ibution. From the computed  distr ibution we can derive the moments ,  percenti les 

and predict ion (conf idence (sic)) intervals. 

Returning to the text book  Foundations of Casualty Actuarial Science [5], 

the int roductory chapter 1, top of page 2, says "The mention of probabilities reminds 

us to state the obvious, that probability theory (whether classical or Bayesian) forms 

the basis of actuarial science. If the actuaries hadn't probability theory, they would 

have to invent it." Indeed, the author also bel ieves that statistical probabi l ist ic 

methods  are essential to actuarial studies, and it is pnncipal ly  by the aid of such 

methods  that these studies may be raised to the rank of sciences. 

2.3 MODELLING FRAMEWORK 

The mode ls  cons idered in the present paper  are relatively simple. They have four 

componen ts  of interest that have a straightforward interpretation. 

The first three componen ts  are the trends in the three direct ions, development 

year, accident year and payment/calendar year. The fourth componen t  is 

the random f luctuat ions about  the trends. The random f luctuat ions componen t  is just 

as impor tant  as the three trend componen ts  and is necessari ly an integral part of the 

model .  The data or t ransform thereof are decomposed  thus: 

DATA = TRENDS + RANDOM FLUCTUATIONS 

454 



The concept of trends and random fluctuations about trends is over two 

hundred years old. These concepts have been widely used in analysing (and 

forecasting) any univariate time series such as sales, stock market prices, interest 

rates, consumption, energy and so on. 

The principal aim of analysing a loss development array is to obtain a sensible 

description of the data. The trends in the past, especially in the payment/calendar 

year direction, are determined and the random fluctuations about the trends are 

quantified, so that it can be best judged which assumptions should be used for future 

trends (and random fluctuations). The models are probabilistic (equivalently, 

stochastic) since the probability distributions of the random fluctuations 'about' the 

trends are identified. Probabilistic models are testable and can also be validated. 

They also afford numerous other advantages including computation of risk margins 

required for the assessment of risk based capital. 

IF THE TRENDS ARE STABLE THEN THE MODEL WILL VALIDATE WELL AND BE 

STABLE. If the trends are unstable then the decision about future trends is no longer 

straightforward. Instability in trends with little random variation about the trends makes 

data less predictable then stable trends with much random fluctuation. See Sections 

9.6, 10.2 and 10.3. The same principles apply to the modell ing of a univariate time 

series. 

The 'best' identified model contains assumptions (equivalently, information). All the 

assumptions must be tested to ensure they are supported by the data (experience). 

As we proceed through the model identification strategy we are extracting reformation 

(about trends and stability thereof and the amount of random variation) and we 'hope' 

that the 'best' identified model tells us that the calendar year trend is stable 

(especially more recently). If trends are not stable then we may not necessarily use 

the optimal statistical model for forecasting. See Section 9.6. 

None of the numerous models contained in the MODELLING FRAMEWORK actually 

represent explicitly the underlying claims generating processes. The multitude of 
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variables involved in generating the claims are invariably complex. What we attempt 

to achieve is the identification of a parsimonious model in terms of the simple 

components of interest for which all the assumptions inherent in the (proba~ilist~c) 

model are supported by the data. It is subsequently argued that the experience (data) 

can be regarded as a sample (path) from the identified probabitist~c model. The 

multitude of variables that are the determinants of the claims processes are proxied 

by the TRENDS and the (residual) variance of the RANDOM FLUCTUATIONS. 

Another classical modelling example in insurance where the same kind of modelling 

concepts are used is when a Pareto distribution, say, is fitted to loss sizes. It is not 

assumed that the Pareto distribution represents the underlying generating process. 

Whatever is driving the claims is very complex and depends on many variables. All 

that is assumed is that the experience (sample) can be regarded as a realisation from 

the estimated Pareto distribution. Subsequently the estimated Pareto distribution is 

used to estimate probabilities of very large claims including those exceeding the 

maximum observed claim in our sample and most importantly it is used to quantify 

proDabilistically the variability in loss sizes. 

The principal advantage of an explicit statistical model is that it makes the 

assumptions dear. Other advantages include improved accuracy and quantification 

of variability required for assessment of risk based capital and testing of solvency. 
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3.0 THE GEOMETRY OF TRENDS AND AGE-TO-AGE DEVELOPMENT FACTORS 

In this section we show that loss development arrays possess only two independent 

directions, not three, and define age-to-age development factors as development year 

trends 

3.1 TREND ADJUSTMENTS TO A UNIVARIATE SERIES 

In one dimension, or equivalently for any univariate series, trend concepts are intuitive 

and natural. 

Consider the series log P, where P, is the pdce of gasoline in year t. Figure 3.1.1 

below depicts the log P, series (dark line segments) over a 20 year period. 

TRENDS ADJUSTMENTS 

2 3 ,I $ 6 7 | 9 .  JO I I  J2 1} 1,1 l.$ 16 17 1 |  19 

L~ I:J'ices (m m:minBl val~s) ~ Mjj,~.~ed 1ol} I:mces (m$ vlllue of year 20) 

Figure 3.1.i 

It appears that there is a constant average trend.in the nominal prices. The least 

squares estimate of the trend is 0.23, say. So prices have been growing at an 

average rate of 23% However, 23% is the nominal growth, since there has been 

economic inflation over the 20 year period. Suppose economic inflation has been 8% 

continuous rate for the whole 20 year period. The light line segments represent the 

log prices adjusted to the $ value of year 20. 
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The trend in the adjusted prices is 23% - 8% = 15% If instead, one was only given 

the nominal prices and the adjusted prices (without knowing the adjustment), the 8% 

adjustment could be determined by estimating the difference in trends in the two 

series. Trends (on a log scale) are additive. 

So, REGRESSION as an approach to estimating trends and adjusting data, 

immediately suggests itself. 

3.2 TREND PROPERTIES OF LOSS DEVELOPMENT ARRAYS 

Since a model is suppose to capture the trends in the data, it behoves us to discuss 

the geometry of trends in the three directions, v~z., development  year (or delay), 

accident year and payment (or calendar) year. 

Development years are denoted by cl; d=0,1,2 ..... s- l ;  accident years by w; 

w=1,2 ..... s; and payment years by t; t = l  ..... s. 

d 

t 

Figure 3.2.1 
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The payment year variable t can be expressed as t = w + d. This relationship 

between the three directions implies that there are only two ' independent '  directions. 

The two directions, delay and accident year, are or'thogonal, equivalently, they have 

zero correlatton. That is, trends in either direction are not projected onto the other. 

The payment year direction t however, is not orthogonal to either the delay or 

accident year directions. That is, a trend in the payment year direction is also 

projected onto the delay and accident year directions. Similarly, accident year trends 

are projected onto payment year trends. 

In order to aid the exposit ion we shall assume, without loss of generality, that the 

numbers in the loss development array are incremental payments. It Is emphasised 

that all the arguments and concepts presented apply to all loss development 

arrays including incurreds, counts, averages and so on. 

We now illustrate the geometric properties of trends of a loss development  array with 

some data. 

Consider the fol lowing triangle of incremental paid losses: 

Triangle One 

100 200 150 100 
100 200 150 100 
100 200 150 100 
100 200 150 100 
100 200 150 100 
100 200 150 
100 2OO 
I O0 

80 60 40 20 
80 60 40 
80 60" 
80 

This triangle will be said to satisfy the Cape Cod assumptions, viz., homogenei ty  of 

age-to-age development  factors across accident years and homogenei ty  of levels 
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across accident years. Each accident year has the same initial starting value, that is. 

same value ~n delay O. 

Suppose we subject the payments to 

years. We obtain the next triangle: 

Triangle Two 

a 10% yearly inflation across the payment 

100 220 182 133 117 97 
110 242 200 146 129 106 
121 266 220 161 142 117 
133 293 242 177 156 
146 322 266 195 
161 354 292 
177 390 
195 

71 39. 
78 

To obtain the t ~" diagonal of the second triangle, we multiply each payment in the t " 

diagonal of tr iangle one by (1.1)"'. 

We observe the following: 

For triangle two, age-to-age development factors are homogeneous across 

accident years but are 10%. higher than" in triangle one. 

2. In triangle two there is a 10% accident year trend. 

Observations 1 and 2 imply that triangle two could be obtained from one by the two 

successive (and commutative) operations: subject triangle one to 10% per year trend 

in accident year direction to obtain: 
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Triangle Three 

100 200 150 100 80 
110 220 165 110 88 
121 242 182 121 97 
133 266 200 133 106 
146 293 220 146 
161 322 242 
177 354 
195 

60 40 
66 44 
73 

20 

and then subject triangle three to 10% trend in the development year direction to 

obtain: 

Triangle Four 

100 220 182 133 117 97 
110 242 200 146 129 106 
121 266 220 161 142 117 
133 293 242 177 156 
146 322 266 195 
161 354 292 
177 390 
195 

71 39 
78 

Triangle four is the same as triangle two. A loss development array depicted by 

triangle two (or four) is said to satisfy the Cape Cod with constant payment year 

inflation assumptions. 
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The following displays demonstrate the equivalence of trends ~n general. 

[I 11 

)I 1 

m ~ -12 

~'Z 12 

The above equivalence relations are exemplified by the relationships between the four 
triangles. We also have, 

' )2.. i 

' > -IZ 

3. I +3. 2 
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It is important that the reader understands the relationship and difference between 

Cape Cod (CC) data and Cape Cod with constant inflation (CCI) data. 

CC data have accident years that are completely homogeneous (homogeneity of level 

or values at development year zero and homogeneity of age-to-age factors). CCI 

data can be obtained from CC data by subjecting the payment years to a constant 

trend. If we remove the constant payment year trend from the CCI data we will have 

CC data. 

So, the difference between CCI data and CC data is a calendar year trend 

adjustment. If we did not know how the CCI data were created from the CC data, 

how would we determine the (simple) difference? 

With the univariate series considered in Section 3.1 the difference between the 

nominal prices and adjusted prices can be determined by estimating the trend, using 

eye and ruler, for each series. Estimating trend using eye and ruler can be regarded 

as a form of crude regression. With the loss reserving data CC and CCI, it also 

makes sense to estimate the payment year trends and subsequently conclude that 

the difference in the two loss development arrays resides in the difference in the two 

trends. But how do we estimate the trends? Given the dimensionality of the data, 

eye and ruler are not useful. Moreover, given the geometry of trends, we need to 

separate the trends in the three directions. Equivalently, we need to determine the 

payment year trends after adjusting for development year trends. 

Accordingly, formal regression is suggested as the only way of separating the trends. 

A number of words of caution. In actual fact the "true" trends in the three directions 

are non-identifiable. It is only the resultant trends that are identifiable. 

Here is an example. Consider a CC triangle for which the (continuous) trend a.cross 

development years is constant and is -0.25. Suppose to this CC triangle we 

introduce a continuous calendar year trend of 0.2 and a continuous accident year 

trend of 0.1. The adjusted triangle can be represented thus: 
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0.2 

-0 .25  

o.1 

Al ternat ively,  it can be represented  as: 

-0.05 

0.3 

or, 

0.3 

-0.35 
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All three trend triangles are the same and would produce the same projections for the 

completion of the rectangle. We have three directions (or variables) but only two 

independent equations. 

3.3 DETERMINISTIC AGE-TO-AGE DEVELOPMENT FACTORS 

Consider, at first, only one accident year (say, the first) that takes the value p(d) at 

development year d and let y(d) = log p(d). 

Oefine: ¢ = log p(o) 

and 

'Y = y(,j)-y(,j-1) 

A 

Q 

R 

> 
j-1 j d 

Figure 3.3.1 

The parameter ¢¢ (alpha), denotes the initial value, or intercept, or level whereas the 

parameter Yi represents the trend, on a logarithmic scale, from development year 

j-1 to development year j. 

The parameter Yi is a difference on a log scale and since the length of PR in Figure 
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3.3.1 is 1, Yi is the slope of the line PQ, and hence is the trend between 

development yea?s j-1 and j. 

Now, 

y(d) = y(o) + y(1) - y(o) + ... + y(d) -y(d-1) 

¢/ 

=¢z + ~ y i  
j=l 

(3.3.1) 

That is, y(d) can be expressed as the initial value plus the sum of the differences to 

development  year d. The differences can also be regarded as trends. Indeed, 

YJ = y(j) -y(j-1) 

= log p(.j) - l o g  p(.j-1) 

,o0[  1 

One of the principal reasons for taking logari thms of the data is because the 

difference of two logar i thms is equivalent to analysing trends and approximately 

equivalent to analysing percentage changes. 

The trend parameter  ~1 is the log of the ratio p(j)/p(j-1). The latter ratio is an age-to- 

age deve lopment  factor. So, Yj can also be interpreted as a log of a development  

factor. Indeed, in what fol lows we shall refer to it as a development  factor (on a log 

scale). 
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Consider the following monotonically increasing series {p(j)} for which the trends are 

depicted in the Figure 3.3.2 below. 

A 

y(dl 

Ts y~....j._.__1 Y2 
7 f 

> 
1 2 3 4 5 d 

Figure 3.3.2 

The 'f's represent both the differences in y values and the trends depicted by the 

straight line segments. 

Accordingly, development factors on a log scale form a curve comprising of straight 

line segments (trends). 
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4.0 DETERMINISTIC DEVELOPMENT FACTOR MODELS 

In this section we develop the mathematical descnption of the two models 

corresponding to triangles one and two respectively of Section 3.2. 

Let p(w,d) denote the value in the loss development array corresponding to accident 

year w and development year d and set y(w,d)=logp(w,d).  

4.1 CAPE COD (CC) 

Consider triangle one of Section 3.2. Each accident year has the same a value, viz., 

¢ = log100 and each accident year has the same development factors Y ~, Y 2 .... , Y 

(Y ,). For example, Y 3=1og(100/150). 

So, we can write 

d 

jol 
(4.1.1) 

Equation (4.1.1) describes the deterministic CC model. 

4.2 CAPE COD WITH CONSTANT INFLATION (CCI) 

Consider now triangle two of Section 3.2. It was obtained from triangte one by 

subjecting it to a constant trend {n the payment year direction. 

Let's denote the payment  year trend on a logarithmic scale by the Greek letter, 

(called iota). For triangle two ~ = log 1.1. 

468 



The value y(w,d) that lies in payment year w + d is inflated by t (w • d - 1). 

So, for triangle two, 

d 

/ - 1  
(4.2.1) 

The last equation may be re-cast, 

d 

.,l~W,O) = ¢ + t 'W - t + ~ (yi ÷ t) . (4.2.2) 
J , 1  

The two foregoing equations are identical and represent the CCI determinist ic model. 

The latter equat ion tells us that the level parameter for accident year w is 

¢ * t + w -  t, so that there is an t trend along the accident years and that the 

deve lopment  factor from delay j-1 to j is Y i + t . This is just a mathematical  

verif ication that the payment  year trend t projects on the other two directions. 

4.3 CC FAMILY AND CCI FAMILY 

There are other CC models for which the CC assumpt ions viz., homogenei ty  of 

accident  years, apply. 

469 



For example, it may be that Y 3 = Y ,=... = Y 8, so that the trends from development year 

two to eight are constant as depicted below: 

y(d) 

2 ~f3 

> 
2 3 4 5 $ 77 8 

Figure 4.3,1 

Another possibi l i ty is that all development  factors Y ,, "f 2 ..... are equal to Y say, so 

that we could write: 

y (w,d)= • + ¥ d  (4.3.1) 

This model  we call the single development  factor (SDF) model. It is a straight line 

curve on a log scale and exponent ial  curve on the $ scale. It is the same curve for 

each accident year. 

So, we can construct many variants of the CC model  (4.1.1 .). In the sequel, anytime 

we refer to CC without an added qualif ication we shall mean model  (4.1.1) with 
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aistinct Y 's. 

Similarly, depending on the "relationships" in the Y's in the CCI model, we can 

construct  many variants of the CCI model. 

4.4 A CC MODEL WITH THREE INFLATION PARAMETERS 

The data in Appendix A1 to Appendix A4 are generated as follows. 

First we create payments based on formula: 

p(w,d)= exp(alpha- 0.2*d). 

So this is deterministic SDF data (where the accident years are homogeneous). See 

Appendix AI. 

On a log scale we introduce a 10% trend from 1978-82, 30% trend from 1982-83 and 

15% trend from 1983-91. See Appendix A2. 

1,3 

I l J  

|2 

II.S 

II 

IOJ, 

I0 

Development year trends 

Accid~e,nt year 1983 

/~:odent year 1978 Accident year 1979 

i i i i i i i i i i | i i i 

0 l 2 3 4 S 6 77 | 9 |0 I1 12 13 

Figure 4.4.1 
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Figure 4.4.1 displays the graph of the log data versus development year for the first 

six accident years. The reader can reproduce this graph ~n a spreadsheet. 

Observe how calendar year trends project onto development years and accident 

years. 

Consider the first accident year 1978. The 10% calendar year trend projects onto the 

development year, so that the resultant trend from development year 0 to 

development year 4 is -0.2 (the gamma) + .  1 (the iota)= -. 1. The 30% trend between 

calendar years 1982 and 1983 also projects onto the development year so that the 

trend between development year 4 and 5 is +.1 =-0.2+.3. Thereafter the trend is 

-.2+ 15=-.05. Since .15 is larger than 1, the decay in the tail is less rapid (-.05>-.1). 

Consider the next accident year 1979. First up to development year 3, this accident 

year is 10% higher than the previous one since the 10% calendar year trend also 

projects onto the accident years. The 10% upward trend is one development year 

earlier than in prewous accident year since the 30% trend is a calendar year change. 

So, changing calendar year trends can cause some interesting development year 

patterns. The pattern is different for each accident year. The calendar year trends 

cannot be determined by the link ratios (Appendix A4). 

The patterns became much more complicated in the presence of random fluctuations 

super imposed on the trends. See Section 5 for a discussion of the current example 

including random f luctuat ions 

The model  describing the data we have constructed can be represented pictorially 

thus: 
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Y d 

y 
w 

Figure 4.4.2 

where Y=-0.2, ~ ,=0.1, t 2=0.3 and t ==0.15. 

Writing the equations explicitly is not necessary. Indeed, it is too complicated. 

We note that the resultant trend (age-to-age development factor) between 

development years j-1 and j is the (base) development factor Y between the two 

development ye~l.rs plus the payment, year trend ~ (iota) between the two 

corresponding payment years. 

The above model can be described succinctly in terms of the five parameters, a, y, 

,, t 2 and t 3. We could create a slightly more involved model by adding 

accident year trends (more a's). 
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4.5 CHAIN LADDER (CL) 

The chain ladder (CL) statistical model is described in Christofides [4]. It is a two- 

way ANOVA model where accident years and development years are two factors at 

various levels. The CL statistical model is the direct statistical extension of the 

standard age-to-age development factor technique. See Christofides [4] for details. 

It is written (omitting the random fluctuations). 

y(w,d)  = = .  + ~ ~'i (4.5.1) 
j . 1  

The parameter a w corresponding to accident year w represents the effect of accident 

year w and the parameter Yi-Y~, (difference in trends) represents the effect of 

development year j. The number of parameters in the model is 2s-1. 

The CC model assumes complete accident year homogeneity, that is, same ~z and 

same Y i's. For the CL model we assume homogeneity of development factors ('Y/s). 

but heterogeneity of levels (a's). 

The principal deficiency of the CL model is that it does not relate the calendar years 

in terms of trends. 

If we do not have an estimate of trends in the past, how do we know what 

assumptions we can make about the future trends? See comments by George Savile 

at beginning of Section 2.0 and the discussion in Section 9.6. 

HOWEVER, the CL model is an extremely powerful interpretive tool as we shall see 

in Section 6 and more impressively in an application to a real life example in Section 

12. 
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4.6 THE SEPARATION MODEL (SM) 

The separat ion method  separates the base systematic run-off partern (assumed 

h o m o g e n e o u s  across accident years) from exogenous  influences, viz., payment  year 

inflation (or effects). The determinist ic model  is usual ly expressed (parametr ized) as 

p(w,d) = e(~t~ d ~.w. 

where the { e (w) } are the exposures, propor t ional  to number  of claims incurred. 

{ bd} are the deve lopmen t  factors and the parameter  Xw • ~ expresses the 'effect' 

of payment  year  t = w + d. 

The corresponding mode l  in our  framework is wri t ten (parametrized) as 

d w - d 

y(w,O~ = ,  + ~ Yi + ~ t, (4 .61)  
j . 1  t - 2  

where  the parameters  { YJ } are the base systemat ic  deve lopmen t  factors and t t is 

the force of inf lat ion f rom payment  year t - 1 to paymen t  year  t. 

The mode l  has 2s - 1 parameters.  

Note that this mode l  necessar i ly assumes that there are signif icant changes in 

inf lat ion rates (trends) be tween every two cont iguous  paymen t  years and, moreove r  

that there are signif icant changes in base deve lopmen t  factors be tween  every two 

deve lopmen t  years. 

Refer to the d iscussion of Sect ion 9,6 where  we  show that if t rends are indeed 

unstable then the paymen ts  are not terr ibly wel l  predic table.  
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4.7 DETERMINISTIC DEVELOPMENT FACTOR FAMILY 

Let's reconsider the model  of Section 4.4. It can be descr ibed succinct ly as a version 

of CC (viz., SDF) subjected to three payment  year trends. If we remove the three 

payment  year trends, we are back to SDF. On this model  we could also super impose 

(add) accident year  trends. 

So, any determist ic deve lopment  factor model  (DFF) can be descr ibed as some 

version of CC subject to payment  year trends and accident year  trends. 

Mathemat ical ly ,  the family of deve lopment  factor models  is 

d w * d  

y(w, e = e ,  + ~ yj , C t, (4.7.1) 
i , 1  t - 2  

A mode l  has a level parameter  a .  for accident year w - it represents the effect or 

level or exposure  of the acc ident  year, Between every two deve lopmen t  years, we 

have a deve lopmen t  factor or trend parameter  .f j (the factor f rom de lay  j-1 to j) and 

be tween every two paymen t  years we have a trend (or inflation) parameter  L t , the 

inflation from paymen t  year  t-1 to t 

All mode ls  cons idered thus far be long to the deve lopment  factor family. For example.  

CC is wdt ten as: 

d 

j ° l  
(4.7.2) 

So for CC type mode l  ~ = ~  (for e a c h w )  and ~ t = °  for each t .  
w 

There is no need to memor i se  the equat ion represent ing the fami ly of models.  All 
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that needs to be understood ~s that the parameters of a model  compr ise (i) trends 

(development factors) in the development  year direction (the y's), (JJ) leveJs 

(exposures) for each accident year (the ~'s) and (iJ) trends (inflation) in the payment 

year direction ( t 's). Furthermore, any payment  year trend projects on the other two 

directions. 
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5.0 STOCHASTIC DEVELOPMENT FACTOR MODELS 

In this section the class of deterministic DFF models (4.7.1) that only contain trend 

components is extended to include random fluctuations. 

Consider one accident year only for which the deterministic model is 

d 

~ = = * ~  xj (5.1) 
/.,I 

This model says that at delay o we can on!y observe one (log) value, viz a. Similarly, 

for the other delays. Between any two delays we can only observe one trend, the 

trend corresponding to the development factor. 

We now assume that around the trends there are random fluctuations. We write 

d 

~ = = ' ~ Y j * ~  , (5.2) 
hi 

where ~ the error term, has a normal distribution with mean 0 and variance 0.2. In 

actuarial par'lance ~ is known as the process uncertainty. Given that the errors are 

random variables, the dependent variable y is arso a random variable. 
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The probabil ist i¢ (stochastic or regression) model  is depicted below. 

y(d} 

~ normal 

i I I I I 
0 1 2 3 4 5 

For the stochastic model,  ¢ is no longer the value of y observed at delay O. It is the 

mean of y(o). Indeed, y(o) has a normal distr ibution with mean ¢ and variance o;. 

Similarly, 7 i is not the observed trend between delay j-1 and j, but rather it is the 

mean trend. 

The parameters of the stochast ic model  represent means of random variables. 

Indeed, the model  (on a log scale) compr ises a normal distr ibution for each 

deve lopment  year where the means of the normal distr ibutions are related by the 

parameter  ¢ and the trend parameters 7,, I' = . . . .  , 7 s. 

From equat ion (5.2) we have 

y ( d ) - y ( d - 1 )  = '/d + c a -  8d., (5.3) 

where ¢ d is the 'error' at delay d. 
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Accordingly,  

That is, the deve lopment  factor Yd is the mean of the log of the ratio on the $ 

scale. A deve lopment  factor is a parameter. 

Based on model  (5.2), the random variable p(d) has a Iognormal  distr ibut ion with, 

(/ 

Median = exp[= - ~ y i ] ,  (5.5) 
j ' -  1 

Mean  = m e a n .  exp [0.5 02 ] ,  (5 6) 

and 

Standard 

Deviation = mean • ~/exp I o21 - 1 . {5.7) 

Since, y(d) - y(d-1) ~ N(Yd ' 2°z)  , we have 

E l.~.~.L -.-~] = exp[y, " o2], (5 8) 

so that the deve lopmen t  factor on the $ scale (the mean  of a ratio) is given by the last 

equat ion.  

The stochast ic mode l  for p(d) compr ises a Iognormal  distr ibut ion for each 

deve lopmen t  year  where  the medians of the Iognormal  d ist r ibut ions are related by 
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equat ion (5.5) and the means are related by equat ion (5.6). So. in fitt,n G cr 

est imat ing the mode l  (Section 8) we are essentially fitting a tognormal  distr ibution to 

each deve lopment  year. The curve (on a log scale) compns ing  straight line segments 

is only one componen t  of the model.  The principal componen t  compnses the 

distributions, 

As another example,  we consider the stochastic CC model ,  viz., 

d 

y(w,~ -- . - Z x j -  ~ (5.9) 
j o l  

In this mode l  we assume, for example,  that y(1,0) ..... y(s,0) are observat ions from a 

normal  distr ibut ion with mean  ~z and var iance ~ .  

The assumpt ions conta ined in the model  must be tested to ensure that they are not 

v iolated by the data. 

The stochast ic deve lopment  factor family (DFF) is wri t ten as: 

d w - d  

j - ~  t , 2  

Note that the mean  trend be tween cells (w,d-1) and (w,d) is Y= + 

mean  trend be tween cells (w,d) and ( w + l , d )  is a . ~z + w ~ l  w-1 -d • 

and the w o a  

A mode l  be long ing  to the DFF of (stochastic) mode ls  relates the Iognormal  

distr ibut ions of the cells in the tr iangle On a log scale the distr ibut ion for each cell 

is normal  where  the means  of the normal  distr ibut ions are related by the "trends" 

equat ion be long ing  to the family (4.7.1). 
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We now return to the deterministic development factor model of Section 4.4. 

To all the log "payments" in the triangle we add random numbers from a normal 

distribution with mean zero, Equivalently, to the trends depicted in Figure 4.4.1. we 

add random numbers from a normal distribution displayed in Appendix A5. The sum 

of trends (Appendix A2) plus random fluctuations (Appendix A5) is displayed in 

Appendix A6. 

The graph of the first six accident years of the data in Appendix A6 is given in the 

Figure 5.2 below, 

13 

12.5 

12 

it.5 

11 

10.5 
Impoml~e to detecl ~an~r'~ trends ~ eye 

Trends plus random fluctuations 

Another deficiency of the CL probabilistic model is that it contains the explicit 

assumption that the errors for the youngest accident year and the last development 

year are both zero, The chance of that, is zero! 

| 0  I I | | I I l I I I I I I I 

0 I 2 3 4 ~ 6 7 I 9 I0 11 |2  13 

Figure 5.2 

NOTE that it is impossible to determine the trends and/or change in trends by eye 

or from the age-to-age link ratios of the cumulative payments (Appendix A9). See 

Appendices A7 - Ag. THE TRENDS CAN ONLY BE DETERMINED BY USING 

REGRESSION. 
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Notwithstanding the fact that the DFF modell ing framework can be applied to any loss 

development array, muclq of the remainder of the discussion will involve analysis of 

the incremental payments for the following reasons: 

the geometry of trends: 

simplicity ana parsimony: 

distributions of future payments is relevant information for financia; 

statements. 

Other reasons are given in Sections 10.3 and 10.4. 
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6.0 REGRESSION AS A FORM OF ADJUSTMENT AND MINIMUM TESTS 

Hitherto we have apphed regression for two related purposes. Estimation of trends 

in the 'payments' and estimation of the distribution of payments in each cell. The 

estimated trends relate the means of the distributions on a log scale. 

For example, if the CC model is an appropriate model, then the 'payments' come 

from Iognormal distributions and the means of the log 'payments' lie on the surface: 

d 

~w,a~==-Z Yj 
j=1 

6.1 REGRESSION AS A FORM OF ADJUSTMENT 

Regression is also a very powerful approach to adjusting data, especially in the loss 

reserving context. 

In view of the fact that payment~calendar year trends project onto the other two 

directions, a graph of the data in one direction gives no indication of the trends. See 

for example, the simulated data with three payment year trends discussed in Section 

5, and in particular, Figure 5.2. 

We define a residual by 

= y - ~  

That is, a residual is an observed value minus its fitted value. 

Residuals can be interpreted as the data adjusted for what has been fitted. Let's 

consider a number of examples. 
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Suppose we simulate (generate) a tr iangle based on a CC model .  The model  

generat ing the data can be writ ten 

CC DATA = CC TRENDS + ERROR (randomness) 

If to the data we est imate the CC model ,  then the residual is 

residual = CCDATA - FITTED CC TRENDS 

= est imate of error, 

that is, the residuals represent  the data after we take away (subtract.) what  we fitted, 

alternatively, the residuals represent  the data adjusted for what  we  fit. Here we 

subtract  the est imates of the t rends we  used to create the data, so residuals should 

represent  what  is left, which is " randomness" in the three direct ions. "Random" 

residuals versus payment  years are depicted in Figure 6.1.1. 

Residuals versus payment years 

1970 1975 19|0 1985 1990 1995 2 ~  

F i g u r e  6 . 1 . 1  

Suppose  we  now  generate,  

DATA = CC data  + 10% ca lendar  year  t rend 
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If we fit the CC model to this data the residual is 

residual = DATA - fired CC TRENDS 

= estimate of error + 10% calendar year trend 

So here residuals versus payment/calendar years will exhibit a straight upward trend 

(÷ randomness) as depicted in Figure 6.1.2. After removing the CC trends from the 

data, there still remains the 10% calendar year trend plus the random fluctuation. 

Residuals versus payment years 
Irdieatiota of  pos i t i ,~  ' ~ t ~ '  

J 

2 

I 

o 

-1 

-Z 

-3 
1970 1975 1910 [~t$ 1990 19'95 2 ~  

Figure 6.1.2 

If you estimate the. average trend in these residuals in a spreadsheet you would 

obtmn an estimate of approximately 10% (the trencl introduced into the data). 

If we estimate the CCl model to the data, we are essentially estimating a trend 

parameter through the payment year residuals (Figure 6.1.2) of the previous CC 

model. 
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Now the residuals versus payment years should be random as we have removed 

/subtracted) all the (estimated) trends we introduced into the data. 

Consider now data created as follows 

DATA = CC data + 
+ 

10% trend (calendar years 1978-85) 

20% trend (calendar years 1985-91) 

If we fit the CC model to this data the residual is 

residual = DATA - fitted CC TRENDS 

= estimate of error + 10% (78-85)+15% (85-91) 

The residuals versus payment/calendar years exhibit two trends, one from 1978-85 

and sharper trend from 1985-91. See Figure 6.1.3 below. 

Residuals versus payment years 
T~ distinct tnmds 

3 

2 

I 

o 

-t 

-Z 

-3 
1970 197S 19|0 1915 19'90 1995 2900 

F i g u r e  6 . 1 . 3  

In now estimating the CCI model to the data, we are essentially estimating a trend 

parameter through the payment year residuals of Figure 6.1.3. The average trend is 

between 10% and 20%. The residuals versus payment years are now 'v-shaped'. See 

Figure 6.1.4 below. 
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Residuals versus payment years 
A , ~  adjuslmg for averse u'mxl 
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Figure 6.1.4 

We are now  led to est imate the two trends. 

In v iew of the fact that ca lendar year trends project  onto  the other two directions, we 

can only  obtain an indicat ion of payment  year  trends, after we first remove the 

deve lopmen t  year  t rends from the data (and vice versa). 

R E G R E S S I O N  I S  A V E R Y  P O W E R F U L  T E C H N I Q U E  F O R  S E P A R A T I N G  T H E  

T R E N D S  I N  T H E  T H R E E  D I R E C T I O N S  F R O M  R A N D O M  F L U C T U A T I O N S  

In Sect ion 12 we  analyse a real life example  that possesses relat ively smooth  age-to- 

age link ratios, yet  there are major  shifts in ca lendar  year trends that are quite 

a larming.  

6 . 2  M I N I M U M  T E S T S  

The author  bel ieves that a sound loss reserving statistical mode l l ing  f ramework  

should  pass a number  of very s imple basic fundamenta l  tests. 

Turning to the univar iate (log price) series of Sect ion 3.1, if the (average) trend in the 

nomina l  pr i ces  is zero, that is, the prices are random about  a zero trend then th~s 
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feature in the data could be determined informally by examining the graph with eye 

and ruler and formally in a spreadsheet by estimating the trend, showing that it is 

insignificant and testing the residuals for randomness. Hence, 

Test 1: If the (incremental) payments in a loss development array are random 

observations (from a Iognormal distribution), and accordingly there are no trends in 

each of the three directions, then a sound loss reserving methodology should 

determine this. 

We illustrate with an example. Appendix B1 contains incremental payments drawn 

at random from the same tognormal distribution. Note the variability. The mean 

forecast or fitted value for each cell is the same. Indeed, estimation of the CC model, 

for example, to the data would yield insignificant Y 's, as they should be. Application 

of the DFF modelling framework will allow us to identify the salient features ot the 

data extremely fast. 

The age-to-age link ratios are displayed in Appendix B3 and do not appear to convey 

much relevant information. (Compare with age-to-age link ratios in Appendix B5. 

What can you tell?) 

For those readers who feel that random data (no trends) represents a pathological 

case, should analyse a number of Lloyd's Syndicates data. 

Returning to the univariate series of Section 3.1, it is rather straightforward to identify 

both informally and formally the difference between the nominal prices and the 

adjusted pdces. A second loss reserving test is suggested. 

Test 2: Consider any real life incremental paid loss development array. Create from 

this array a second array by subjecting it to a number of trends, for example, a 10% 

trend (say) in the first five calendar years (say), and a 15% trend (say) in the 

subsequent calendar years, then a sound loss reserving methodology will allow for 

a quick determination of the simple difference between the two loss development 

arrays. 
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The DFF modelling framework passes Test 2 with flying colors. The reader will find 

that by applying Test 2 to standard age-to-age link ratio techniques they fail it. That 

is because standard techniques do not satisfy the necessary and simple property of 

additivity of trends. 

In order to dispel the myth that smooth age-to-age link ratios imply stability of trends 

we analyse in Section 12 a real life array with smooth factors and find major trend 

instability that is quite alarming and in order to dispel the converse myth that rough 

age-to-age link ratios imply trend instability, we analyse in Section 13 a real life array 

with rough ratios and find stability so that had we used the same model estimated 

three years earlierl it would have accurately predicted the distributions for the ~ast 

three calendar years and would have given the 'same' outstanding estimates. 

To further illustrate the impact of randomness of payments on age-to,age link ratios, 

Appendix B4 contains an array generated by an SDF probabilistic model with 

constant 20% calendar year trend. The link ratios are presented in Appendix B5 and 

appear relatively rough. Yet, the same model estimated four years earlier would have 

predicted the distributions of the payments of the ~ast four years and would have 

produced the 'same' completion of the rectangle! 

It is interesting to also observe that even though the data in Appendix B4 has a 20% 

calendar year (and accident year) trend, as you step down a column (development 

year), sometimes the numbers decrease rather than increase (by 20%). 

For example, (1989, 1) to (1991, 1) the.payment reduces from 767664 to 350789. 

This is explained by the random fluctuations component of the model. Examine now 

Figure 3.1.1 and note that even though the mean trend in nominal prices is 23%, 

prices from one year to the next do not necessarily increase. This is due to the 

random fluctuations. So, the same phenomenon applies to loss reserving data. 

Consider now the unusual large value of 1317425 corresponding to (1985,6). it is no j 

unusual. It comes from the tail of the Iognormal distribution. Given that the 

Iognormal is skewed to the right, values greater than the median tend to be 'far' from 
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the median, whereas values less than the median tend to be relatively close to the 

median. 
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7.0 VARYING PARAMETER, DYNAMIC OR CREDIBILITY MODELS 

7.1 MULTICOLLINEARITY 

Many of the models within the family (5.1 O) cannot be estimated in a spreadsheet or 

any statistical package. Models that contain "many" iotas, alphas and gammas suffer 

from a problem known as multicollinearity. This problem is explained as follows. 

To estimate the Ordinary Least SQuares line for the simple linear regression: 

y j = = ~ - p x j - c  ' , 
(7.111) 

we estimate the intercept ¢ and slope .8 by minimising the error sum of squares, 

SS=~ (y~-=-pxy 

Taking partial derivatives of the tast equatLon with respect to = and /Y, and setting 

them to zero we obtain: 

--2]E ~ (yj--=--pXj) = 0 (7i 1.2) 

and 

- 2 ~  X,(y~-=-13X,) = 0 (7.113) 

Equivalently, 

Y-~-~x = o (7,114 ) 
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and 

x t y : n a ~ ' - p ~  x~ = 0 (7.~.5) 

The two linear homogeneous equations are known as the normal equations anq their 

solution yields the least squares estimates of a and 6'. 

For a model having P parameters in t~e DFF family, a spreadsheet (or a statistical 

package) sets up P linear homogeneous equations in.order to solve for P unknowns. 

However, as a result of the non-orthogonal i ty of the payment year direction with the 

other two directions, some of the equations in the normal equations are redundant, 

e.g., 

a -P  = 2 

and 

2 = - 2 ~  = 4 

So, there is no unique solution. 

If there are some equations that are almost redundant, e.g., 

and 

=-I~ = 2 

2a -213 = 4.00001, 

then the estimates will have high standard errors, so that the resulting model  will be 

unstable. 
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7.2 OVERCOMING MULTICOLLINEARITY 

The phenomenon of multicollinearity associated with fixed parameter models can be 

interpreted in terms of information. There is not sufficient information ~n one loss 

development array to estimate many payment year parameters and accident year 

parameters (especially, for more recent accident years). Another interpretation is that 

the independent variables in the regression are not really independent. We showed 

in Section 3 that calendar year trends are related to development year trends and 

accident year trends. 

If we include another ¢ parameter for the last accident in our model we are using 

one single datum to estimate that parameter. That is, we assign full c[edibility to the 

last accident year's datum and zero credibility to previous years in respect of the 

estimation of the additional a parameter. A better approach may be to assign some 

credibility to the previous years data and less than full credibility to the last year's 

datum. 

We are motivated to introduce exponential smoothing/varying parameter/credibility 

models, as a result of multicollinearity. Multicollinearity can lead to fixed parameter 

regression models that (i) are unstable and (ii) have large prediction errors. 

The technique of exponential smoothing has received widespread use in the context 

of forecasting a time series. It originated more than 40 years ago without any 

reference to an underlying model thai makes the technique optimal. 

We first present heuristic arguments for exponential smoothing and varying parameter 

models. The following illustrations aqd arguments may be viewed from two different 

perspectives. The data may be regarded as either 

(1) sales data over time, or 

(2) incremental paid losses for delay 0 across accident years. 
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(i) Constant  mean level (one parameter)  

Suppose we have a sequence of t ime series observat ions y,. Y2.,.,Y. such that 

Yr = ~ , ¢ t  , t=l  ..... n 

where a i5 a constant  mean level and Lt is a sequence of uncorel lated errors with 

constant variance. Figure 7.2.1 be low depicts such a series. 

Yt 

The mode l  descr ib ing the data is the simplest regression model .  

Our mode l  has only  one parameter ,  so that the years are comple te ly  h o m o g e n e o u s  

(stable!). 

If ~ is known,  the best  forecast  of a future observat ion Y(,)~I, based  on in format ion 

up to t ime n, ~s 

(n).~ = a . 
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If the parameter  e is unknown,  we est imate it from the past data (y, . ,y . )  by its 

ord inary least squares estimate, 

6. = ~ yJn, 

so that the one-s tep-ahead forecast of y(.)., is now 

9(n}+1 = Y " 

We can now write,. 

,Y(n • 1) • 1 = ,V(n) - 1 ÷ 
(.Y. • ~ - Yl.) - ~) 

n ~ l  

The last equat ion indicates how a forecast from t ime origin n+  1 can be expressed 

as a l inear combina t ion  of the forecast from t ime origin n and the most  recent 

observat ion.  This is the s implest  credibi l i ty formula, due to Gauss [8], used when 

updat ing sample  averages. Since the mean level o is assumed constant,  each 

observat ion contr ibutes equal ly  to the forecast. 

The above  formula for updat ing sample averages is an exper ience  rating (credibdity) 

formula  in the context  of adjust ing a premium, assuming the risk (parameter)  does 

not change  f rom year  to year. 

In comput ing  & ( = ~  we  assign the same weight  to each obse rva t i on  From the 

loss reserving perspect ive,  we are assuming that the acc ident  years are comple te ly  

h o m o g e n e o u s .  In order  to est imate the next years premium,  we use all the acc ident  

years'  data! 

We now  turn to another  example .  
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(ii) Unstable mean level (each vear its own parameter) 

Here, 

yf=~t÷Cf 

where the mean level at changes dramatically in successive time periods. Each year 

t has its own parameter at. Figure 7.2.2 depicts a series of Yt values that may ~e 

generated by this model. 

Figure 7.2.2 

Here, the best we could do, is forecast y~,j., by 

We are assigning zero weight to the past and full weight to the current observation. 

From the loss reserving perspective, accident years are completely heterogeneous. 

so that each accident year's individual parameter is estimated by that year's individual 

experience. 

497 



(iii) Local ly constant mean level exponent ial  smooth inq and credibi l i ty 

Often situations present themselves where the mean is approx imate ly  constant locally. 

Assigning equal  weights to the past would be too restrictive and assigning zero 

weight  would result in loss of in fo rmat ion .  It would be more reasonable to choose 

weights that decrease (geometr ical ly) with the age of the observat ions. 

We could have 

.P(n) .~ = K Y n  + K(1 - K ) y  n _~ * K(1 -/.~2yn. 2 . . . .  

For n sufficiently large this may be writ'ten 

9 (,I., = • (,-,)*, + K(y, - 9 in-,)-,) 

= ( l -K)9( , .~1. ,  + K y , .  

This is also a credibi l i ty formula. 

(7.2.1) 

Muth [12] showed that the exponent ia l  smooth ing  formula (7.2.1) is an opt imal  

forecast for the fo l lowing model :  

y ,  = ~ ,  • ~, : V a d ¢  ~ = o~ 

cz, = cz,.,+Tir :Var'[r l~] = o~ (7.2.2) 

Here the mean  level ct  3rocess is a random walk. If o~ = 0. then we have the 
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constant mean level situation (i) and if o~ ~s large we have the unstable mean levee 

situation (ii). The parameter o~ should be chosen as small as possible at the same 

time ensuring that the trend in the data ~s captured, 

Choosing o~ (relative to 

likelihood estimates of o~. 

o~) that minimises the SSPE yields the maximum 

Figure 7.2.3 

The exponential smoothing formula (7.2.1) formally credibility weights all the 

observations. It is" an experience rating formbla for a risk (parameter) that changes. 

If in the situation depicted in Figure 7.2.3, one were to assign zero weight to the past 

in place of using formula (7.2.1), then much information would be potentially lost. 

We illustrate the methodology of formula (7.2.1) in the loss reserving context. 

Suppose, for the sake of argument, there are only two accident years (but more than 

three development years), and the y and t parameters are zero. 
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We have, 

y(1.d) = a 4- ~(1.d): d=0 ,1 ,2  ..... n , - l (say)  (7.2 3) 

and 

y(2,d) = ¢ + ¢(2,d); d=0 ,1 .2  ..... n=-l(say) 
2 

(7.2.4) 

The first acc ident  year  has n, observat ions and the second  n= observat ions.  Denote 

the s igma-squared  ass igned  to observat ions by o 2. Accord ing ly ,  Var[ ¢ (1,d)] = 

Var[ ¢ (2,d)] = o .2 . 

The relat ion be tween  e 2 and e, is g iven by 

a = ¢ + 11 V a r i a n c e ( q )  = o~ (7.2.5) 2 t 

Subst i tu t ing equat ion  (4.4) for ¢ ,  into (4.3) yields: 

y(2,d)  = ¢ ,  + n + t (2,d)  . (7.2.6) 

C o m b i n i n g  the  last equa t ion  with (4.2) we  have, 

y(1,d)  = ¢ ,  + c (1,d) 

wi th (7.2.7) 

y(2,d) = a ÷ ~ + ¢ (2,d) 
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Since, cond i t iona l  on a~ the observa t ions  y(2,0), y(2,1) . . . . .  are cor re la ted we 

reduce  by suf f ic iency to obta in:  

E l  = ~ 1  + FZ1 

and 

Y2 = (11 * £2 

where  V a r [ t J  = o21nl . Va r [ t z ]  = o21h2 . o~ 

n 1 - I  ~ - 1 

and ~', = ~ y (1 ,d~ ln ,  , y2 = ~ y ( 2 , o ) l n , .  
d-O d , O  

The es t imate  of  a~ min im ises  the we igh ted  error  sum of squares  

w,(y ,  - ,~2) 2 • w2(~ 2 - ~ , )2  

where  

wl ~ - V a r i e d  = o21ni 

and 

w~ ~ = Vat [e2]  . oz ln2  - o2 n . 
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Similarly, the est imate of =2 is ob ta ined by minimis~ng, 

w , ( ~ 2  - = 2 )  2 + w 2 ( y ,  - = 2 )  2 , 

2 where  now w~ -1 = °2/n2 and w2 1 = 0 2 / n l  - oq 

The est imates of &l and &2 are g iven by respect ivel  V. 

and 

a= = (1  - z , ) ~ ,  • z2~,2 

where, 

nl n 2 

0 2 0 2 
z 1 = z 2 =  

n~. ~ n 2 , and n._.E . n~ 

2 0 2 0 2 2 °2  02 * n2 o71 o n~oq 

Both 6.1 and  6. 2 are credib i l i ty  est imators. 
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2 
The smaller Or} is (relative to ~), the more information is being pooled across the 

two years in estimating al and a2. We are credibility weighting the two years' data. 

For a description of general recursive credibility formulae, see Zehnwirth [14]. 

We conclude this section by remarking that even in the absence of multicollinearity, 

varying parameter models are more stable and validate better than the 

'corresponding' fixed parameter regression models.' Moreover, according to A.C. 

Harvey's [9] modern book on forecasting, explanatory variables are "proxied by a 

stochastic trend". 
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8.0 PARAMETER ESTIMATION AND FORECASTING OF DISTRIBUTIONS 

In the present section we describe how the (fixed parameter) regression models may 

be set up m a spreadsheet (or a statistical package) for the twofold purpose of 

estimating the model parameters and forecasting the distnbutions of future 

(incremental) payments. 

A practical illustration of this procedure for the chain ladder statistical model is given 

by Christofies [4] in the second volume of the Institute of Actuaries Loss Reserving 

Manual [11 ]. 

8.1 EST IMATION 

In order to estimate a regression model in a spreadsheet we need to create. 

corresponding to each dependant observation y, the values of the (row) design vector 

containing the values of the independent variables. 

Let y(w,d) = log p(w,d) ancl let 

model, that is, 

13/=(~1,=2,...,=~ Y1 ..... ,f, 

13/ be a row vector holding the parameters of the 

t 1, . . . ,  ~,nO 

The model has (i) k distinct e parameters where ~ , represents the level for accident 

y e a r s  1,2. w, (say):  ¢ r e p r e s e n t s  the  level of a c c i d e n t  y e a r s  w, -~ 1. w 2 (say) 
• ' 2 . . . .  
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and  so on, (ii) I d is t inct  Y p a r a m e t e r s  w h e r e  Y, is t rend a long  d e v e l o p m e n t  years  O. 

1 . . . .  d~; Y2 is t rend  a long  d e v e l o p m e n t  years  d,, d, + 1 . . . .  d= and  so on and (iii) m 

d is t inct  iota p a r a m e t e r s  w h e r e  ~1 rep resen ts  the t rend a long  p a y m e n t  years  

0,1,2,. . . ; t , ;  t2 rep resen ts  the t rend a long  p a y m e n t  years  t, . . . . .  t=, and  so o n  

The a r g u m e n t s  k, I and  m m a y  take  the va lue  O. 

The c o r r e s p o n d i n g  des ign  vec to r  is 

J,.{(w,O) = (~11,812, ' .61 k , t~2 1 - - 6 2  i ,83 1 .... 6= , .  ) 

w h e r e  each  6 is a va r i ab le  de f ined  as fo l lows  

61i = 1 ifw~.~ + 1 _< w <_ wj(Wo = 1) 

= O, o t he rw i se  ; 

621 = 1 

and  6=j = d-di. 1, I f d  >_ d~., + 1 (j >_ 2) 

= 0 o t h e r w i s e  ; 

and  

63j = w + d- t~ , ,  i f w + d  >_ ti. , 

= 0 o therw ise .  
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We now stack the y observations to form a column vector 

= (y(1,0) ..... y(1,s-'i), y(2.1) ..... y (2,s-2) . . . . . . . . .  y(s,0)) 

and corresponding design vectors to form a design matrix, 

x = (,d(1.o) ....... £ (s .0 ) )  

The observat ion equation can now be written 

= X ~-~ , 

where £ contains independent errors from a normal distribution with mean zero and 

variance o =. 

To estimate a DFF model in"a spreadsheet, one needs to specify the column vector,V 

and the co lumns of X as the independent  variables. 

The spreadsheet  will create .~. the ordinary, least squares estimator of ~ and some 

other statistics including FI 2, S 2 and standard errors of parameters. 

The estimate of the variance - covariance matrix of ~. is given by 

~ )  = s2(x/ .xl  -' 

Some statistical packages such as MINITAB will p roduce the variance - covariance 

506 



matrix as explicit output. Residuals and standardised residuals are straightforward 

to compute. 

A lucid exposition of multivariate regression theory is given in Charterjee and PNce 

[3]. 

8.2 FORECASTING (PREDICTION) OF DISTRIBUTIONS 

We have stressed repeatedly that a regression model is a probabilistic model and 

that the models contained in our rich DFF framework relate the normal distributions 

of the log payments of the cells in the loss development array by (trend) parameters. 

We now would like to obtain estimates of normal distributions for payment years 

exceeding s. 

That is, for calendar years beyond the evaluation year. 

0 1 s-1 

Consider a cell (w,d) for which w + d > s  and d ~s-1. 
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Suppose we assume that the mean trend along payment years _> s is 7.5. the 

estimate of trend from payment year s-1 to s. (If ~s is not a parameter in the model 

then ~'s = 0). We also assume that the standard deviation of the trend is se ('~s). the 

standard deviation of the estimate. We stress emphatically that the larger se (~'s) is. 

the mean trend ~s being the same. the larger the (mean) payments. 

The vector of parameter estimates now contains the 6./s, ~/s but only one iota 

estimate, viz, is. 

The (design) independent  value in the design vector g.~(w,e) corresponding to ~ ,  is 

now (w+d-s)  = number of payment years from s to w+d .  The other parameters 

contain the same design elements as in the estimation stage. The forecast .# of y 

corresponding to cell (w,d) is given by: 

(w,~ = ~ ( w , ~ .  

We can now stack all forecasts ~ into a vector ,,Y and design vectors ~ into a matrix 

X. 

The est imate of the variance - covariance matrix of ~ is 

V ~ = X / V (.~) X -a 2 I 

where I is the identity matrix. 
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The quantity ~z is the estimate of the process variance (uncertainty), whereas 

x / v (~,)x 

is a function of the variance of ~ , representing the parameter uncertainty. 

Since V (~) is a function of ~2 , the estimates of parameter uncertainty and 

process uncertainty are related. Quite often the smaller 0 2 is (relatively speaking), 

the smaJler the parameter uncertainty. 

Using Fisher's fiducial approach we can argue that our forecast for the distnbution 

of y(w,d) is normal with mean ,~w,~ and variance V ~ (w,d)), the diagonal element 

of V (,~ corresponding to y(w,d). 

Indeed, ,,it' has a multivariate normal dist~bution with mean ~ and variance 

covariance V (j~. 

So, by applying standard regression theory we can compute our estimate of the 

multivariate normal distribution of the y values in the lower right of the rectangle. 

Each estimate ,~ of the corresponding y variable is best in the sense that it minimises 

the mean square error. 
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E [ ( y - f  (.y) )2 ] ,  

over all statistics f(.), where f(.) ~s a function of the data E. 

In order to obtain the distr ibutions (multivariate) of the (incremental) payments ana 

accident year and payment  year sums, we employ  the relat ionship between the 

mult ivariate Iognormal  and the mult ivariate normal distr ibutions and standard 

statistical theory involving variances of sums. The means of the Iognormal 

distr ibut ions are best est imates of the corresponding incremental  payments.  

We remark that our forecast distr ibutions can also be argued for from a Bayesian 

viewpoint .  The forecasts are Bayes with respect to a noninformat ive prior. 

The reader will appreciate that to write a macro in a spreadsheet  for a part icular 

model  in the model l ing f ramework would be extremely prohibi t ive in terms of t ime  let 

a lone writ ing a macro for each model  

For readers that are interested, the author can make  avai lable a Lotus worksheet  

contain ing some of the models  discussed in the real life study of Sect ion 13. 

510 



9.0 MODELLING CONCEPTS 

9.1 INTRODUCTION 

The mechanisms by which claim severities, frequencies and delays are generated are 

invariably complex. When a model is constructed, it is not intended to be an accurate 

description of every aspect of the claims processes. The aim is to simplify the 

underlying processes in such a way that the essential features are brought out. 

According to Milton Friedman [7]: 'A hypothesis is imPortant if it 'explains' much by 

little...'. Similar views are expressed by Popper [13]: 'Simple statements.., are to be 

prized more highly than less simple ones because they te!l us more," because their 

empirical content is greater, and because they are better testable.' 

The "essential features" of the data in the loss reserving context are the trends and 

the random fluctuations about the trends. We decompose the data thus: 

Log 'payments' = Trends + Random Fluctuations 

Another way of thinking of this statistical model is to regard the Trends as a 

mathematical description of the main features of the data and the Random 

Fluctuations (or error or noise component) as all those characteristics not 'explained' 

by the Trends. All the complex mechanisms involved in generating the data are 

implicitly included in the model as creating the Trends plus the residual variance in 

the Random Fluctuations. See also Section,7 on varying parameter models. 

The final identified model that 'explains' the data does not represent explicitly the 

underlying generating process. The model has probabilistic properties for which the 

data may be regarded as a sample (path) from it. Another classical modell ing 

example in insurance where the same kind of modell ing concepts are used is when 

we fit a Pareto distribution, say, to loss sizes. We do not assume that the Pareto 

distribution represents the underlying generating process. Whatever is driving the 

claims is very complex and depends on many factors. All we are saying is that our 

experience (sample) can be regarded as a random sample from the estimated Pareto 
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distribution. The estimated Pareto distribution describes the vanabdity ~n the loss 

sizes. 

By way of summary, in order to take account of variables (or factors) not includea ~n 

the Trends, we consider probabilistic models. See also Sect=on 7 on varying 

parameter models. 

There are a number of criteria for a good model with high predictive power: 

Ockham's Razor - parsimony; 

goodness of 'fit'; 

validation and stability. 

9.2 O C K H A M ' S  RAZOR - P A R S I M O N Y  

Ockham's razor, also known as the principle of parsimony, says that in a choice 

among competing models, other things being equal, the simplest is preferable. 

Accordingly, a parsimonious model that provides a description of the salient features 

of the data may be preferable to a complicated one for which the residual variance 

in the error is smaller (and so R-squared is larger). See also Section 10.4. 

We stress R-squared (or adjusted R-squared) does not measure the predictive power 

of a model. 

Consider two data generating models, Model 1 is, 

i t  =p" *¢t (9.2.1) 

where ¢, ~ N (o, o =) and the signal to noise ratio ~/o 2 is large. Here, R-squared = 

0 and since o= is "small" predict=ons based on samples from this model will be 

relatively accurate. 
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For Model 2, 

yt=cL .~ t+¢  t , (9.2.2) 

where ~t ~ N(O, o2). Suppose o 2 is relatively large and R-squared is 85% 

Predictions based on samples from this model will have larger errors than predictions 

in the first model. The forecasting errors are not a function of R-squared. 

The consequences of adopting an inappropriate model will depend on its relationship 

to the 'true' model. 

Underparametrisation - it imposes invalid constraints on the 'true' model. 

Overparametrisation - the model is more general than is necessary. 

Overparametrisation has different consequences to underparametrisation. 

Overparametrisation leads to high errors of prediction. The forecasts are extremely 

sensitive to the random component (in contrast to the trends) in the observations. 

Indeed, over'fitting can be disastrous in certain circumstances. Over'fitting a model is 

equivalent to including randomness as part of the (systematic) trend (component). 

Underparametrisation, on the other hand, tends to lead to bias rather than instability. 

The dangers of overparametrisatjon are illustrated with a simple example. Imagine we 

have some yeady sales figures, as depicted below in Figure 9.2.1, and generated by 

Yt = 1 + 2t + 3t = + ct , 

say, where the t t 's are random from N(O,G2), and Yt represents the number of sales 

in year t. 
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Sales versus years 
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We wish to forecast sales for 1987. We could estimate a straight line model: 

Y, = Po + p , ' t  * ¢, (9.2.3) 

This model  produces residuals that are not random and is therefore rejected. The 

quadrat ic model,  

Y, = Po + [31 * t  ~" p2* t  2 ÷ c t (9.2.4) 

on the other hand, produces residuals that appear random. Moreover, R-squared is 

higher and parameters are significant. 

We could try a fifth degree polynomial,  viz., 

Y, = Po + P l * t  + pZ*F  . . . . . .  PS " P + zt (9.2.5) 

This model  will p roduce zero residuals, that is, it will go through every data point and 

the R = = 100%. However, it is useless from the point of view of forecasting. Why? If 
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we change only one data point marginally, the forecast will change to a very large 

degree. Moreover, if we use the model at year end 1986 to forecast sales for 1988. 

re-estimate the model at year end 1987 to update our forecast for 1988, the two 

forecasts would be completely different. The data are NOT unstable. IT IS THE 

MODEL THAT IS UNSTABLE. The model is incredibly sensitive to the random 

component  in the data. It should only be sensitive to the systematic trend. 

Incidentally, standard techniques based on calculation of age-to-age link ratios suffer 

from the same defect. 

9.3 AKAIKE INFORMATION CRITERION AND INFORMATION 

It has been emphasised that in comparing the goodness of 'fit' of various models, an 

appropriate al lowance should be made for parsimony. This has a good deal of 

appeal, especially where the model may be based primarily on pragmatic 

considerations. 

Akaike Information Criterion (AIC) is both a function of S 2 and the number of 

parameters in the model. It is an information theoretic criterion that can be used for 

discriminating between any two models, even if they are non-nested. It originated with 

the work of Akaike. 

In general the AIC is given by 

AIC = -21og(l~elihood) + 2P 

For DFF models it reduces to 

AIC = Nlog[2T" [ S=(MLE)] o N ÷2P, 
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where  

(i) N = Number  of observat ions. 

(ii) s 2 (MLE) is the max imum l ikel ihood est imator of 0 2 , 

and (iii) P denotes the number  of parameters. 

The aim is to select a model  with a min imum (relative) AIC. Note that the AIC can be 

used to discr iminate between any two models,  irrespective of whether  they have any 

parameters in common.  

9.4 R E C U R S I V E  R E S I D U A L S  A N D  SSPE 

Consider  a t ime series z,, ~ . . . . .  z, where 2 t . , ( t  ) denotes a forecast of ~ . ,  based 

on the data z,, ~ . . . .  , z.,. That is, the forecast is based on the informat ion up to t ime 

t only. The one-s tep-ahead forecast (predict ion) error is given by 

~,(1 )--z,.,-2,.,(0 

The notat ion ~ t(1) expresses the fact that it is the one-s tep-ahead predic t ion error that 

is ca lcu lated f rom past data up to and including t ime t. The est imates of the 

parameters  of the mode l  are on ly 'based  on the data Z,, Z 2 . . . . .  ~.  

In order  to compu te  the errors { ~ 1 ) }  the mode l  has to be est imated many  t imes. 

The sum of the squared one-s tep-ahead predict ion errors, deno ted  by SSPE is given 

by 

n 
SSPE = E ~2 -,o , (1) 
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The time t o is chosen so that it exceeds the maximum number of parameters amongst 

the models being considered: by at least one. 

Computation of the SSPE may take much time even with a good spreadsheet 

program, as the model has to be estimated for sub-samples, (Z ...... Z~); t=t  o, 

to+ 1 ,..,n-l. 

Readers familiar with exponential smoothing will note that the optimal smoothing 

constant of exponential smoothing is determined by minimising the SSPE. See 

Abraham and Ledholter [1] for a lucid exposition of exponential smoothing. 

By way of summary of the quality of 'fit' statistics, consider the quadratic polynomial 

example of Section 9.2, and suppose there are at least twenty data points. The 

relative magnitudes of R =, AIC and SSPE as we fit polynomials of order one to six 

(say) are: 

R = increases with more parameters; 

AIC decreases from polynomial of order one to polynomial of order two, 

subsequently increasing as degree of polynomial increases (for most 

samples); 

SSPE behaves in much the same way as AIC. 

Accordingly, a polynomial of degree exceeding two would have performed worse in 

a forecasting context than a polynomial of degree two, had we used them each year. 

A relatively 'low' SSPE is preferable to a high SSPE. Naturally, there are other aspects 

of testing, including significance of parameters, distributional assumptions, residual 

displays and the number of parameters. 

The 'tests' should be seen as complementary rather than competitive. 
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9.5 OUTLIERS, SYMMETRIC DISTRIBUTIONS AND NORMALITY 

Outliers are data points with large standardised residuals. Observations classified as 

outliers have residuals that are large relative to the residuals for the remainder of the 

observations. 

Estimates of parameters and supporting summary statistics may be sensitive to 

outliers. Residual displays provide information on outliers. Moreover, if omission of 

outliers from the regression affects the output, then that provides more evidence that 

the omit'ted observations are in fact outliers. 

An outlier may be a result of a coding error, in which case it should be assigned zero 

weight, or it may be a genuine observation that is unusual and accordingly has a 

large influence on the estimates, unless it is assigned reduced weight. 

To detect outliers routinely, we need a rule of thumb that can be used to identify 

them. A Box plot  is a schematic plot devised by J.W. Tukey. The following steps 

summarise the general procedure for constructing a Box plot. 

Order the data. 

Find the median (M), lower quartile (LQ), upper quartile (UQ) and mid-spread 

(MS), where MS = UQ - LQ. ' 

Find the upper and lower boundaries defined by 

L8 = LQ - 1.5*MS 

UB = LQ + 1.5°MS. 

Footnote: LQ and UQ are 
hinges. They 
quartiles. 
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List all outliers. An outlier is defined as any observation above the upper 

boundary or below the lower boundary. 

Construct a Box plot as follows: 

(a) Draw a horizontal scale; 

(b) Mark the position of the median using " I "; 

(c) Draw a rectangular box around the median, with the right side of the box 

corresponding to the UQ and the left side corresponding to the LQ. The 

length of the box is equal to the MS. The median divides the box into two 

boxes; 

(d) Find the largest and smallest observations between the boundaries and 

draw straight horizontal lines from the UQ to the largest observation below 

the upper boundary and from the LQ to the smallest observation above the 

lower boundary; 

(e) Mark all observations (outliers) outside the ~oundaries with hollow circles 

(o). If an outlier is repeated, mark the nun-~=.r of times it is repeated. 

to.Wet boundary ~per boundary 

1 I 1 o 

I-"- M~DSPRZAD "--'t 
out outlier 
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We can also conclude (diagnostically) that a distribution is symmetric if the median 

is approximately half way between the LQ and the UQ. 

A DFF model assumes that the weighted standardised residuals come from a normal 

distribution. Accordingly a normal probability plot should appear approximately linear. 

That is, the plot of weighted residuals against normal scores should have points that 

fall close to a straight line. This means that the correlation should be close to unity. 

9.6 VALIDATION AND STABILITY 

The important question is whether the estimated model can predict outside the 

sample. It is therefore important to retain a subset (the most recent one or two 

payment years) of observations for post-sample predictive testing. This post-sample 

prediction testing is called VALIDATION. 

VALIDATION of the last payment year, or any payment year, is also related to the 

concept of STABILITY. If we don't use the last payment years' data to estimate the 

model, the ultimate losses should not differ from that obtained by using the last years' 

data by more than one standard error. We would like to identify a model that delivers 

STABILITY of reserves from year to year (only if trends are stable). 

9.6.1 VALIDATION 

Consider the triangle of incremental paid losses depicted below. 

1976 

1989 

1990 

1991 

15 
) d 

Figure 9.6.1.1 
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We have model that has been identified and estimated using all the data, up to 1991 

If the same model were estimated at year end 1988, would it predict accurately the 

incremental payments for 1989, 1990 and 1991? And what do we mean by 'predict 

accurately'? 

Let's illustrate with a fair coin. If a fair coin is to be tossed 100 times we can 'predict 

accurately' the distribution of the number of heads. The exact distribution is Binomial 

(100, 0.5). The distribution details the probabilities of all the possible outcomes. If 

instead, we had.a mutilated coin and we required a future prediction based o n a  

sample data then our predicted distribution is.Binomial .(100, ~) where ,b is an 

optimal estimate of the true probability p of a head occurring, based on the sample. 

We now return to our triangle. At year end 1988, we would estimate the parameters 

of the same model using the smaller sample and we would predict a distribution for 

each of the log 'payments' in 1989, 1990 and 1991. See Section 8.2 on forecasting 

of distributions. 

So, one of the most important validation tests is to determine whether the observed 

log 'payments' in 1989, 1990 and 1991 can be regarded as a sample from the 

predicted distributions. 

More specifically,.tet j;' be a prediction of a log 'payment' y for a cell in payment year 

1989, 1990 or 1991. We call, 

E =y-~ , 

the validated residual or the prediction error. 

We test the validated residuals for (i) randomness in the three directions delay, 

accident  year and payment  year; (ii) randomness versus predicted values ~ and (iii) 
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most importantly, normality. 

9.6.2 STABILITY 

Returning to our example of the foregoing section, we ask the question whether at 

year end 1988 our completion of the rectangle should be materially different to our 

completion at year end 1991. The answer is in the negative if trends (especially in 

the payment year direction) are stable. 

We illustrate with four examples. (There are numerous others that occur in practice.) 

Example 1: Suppose payment year trends (after &djusting for trends in the other two 

directions) are as depicted in Figure 9.6.2.1 below. The trend is stable and suppose 

its estimate is 10% + 2%, How do we know that the trend is stable? Well, as we 

remove the more recent payment years from the estimation, the estimates of trends 

do not change (significantly). For example, after removing 1990 and 1991, the 

estimate of trend is 9.5% ~ 2.1%, say. Alternatively, we could estimate a new trend 

parameter from 1989-1991 and examine whether the trend has changed significantly. 

17..5 
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11.5 

11 

10.5 

10 

9.5 
1977/ 1971 15rt9 L910 1911 1912 1913 19114 19115 19116 

Stable trends 

1976 1917 1911 1919 1990 1991 

Figure 9.6.2.1 
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Typically, if the payment/calendar year trend is stable, the model will also validate 

well. Here our estimates of outstanding payments do not change significantly as we 

omit recent years. 

Example 2: Consider the payment year trends depicted in Figure 9.6.2.2 below. 

Instability in trends 
12.~1 

12 

11.5 

I I  

I0.$ 

10 

9.5 
197/6 1977/ 1971 1979 1910 1911 1912 19113 19114 19t$ 19116 19117 1911 1919 1990 1991 

Figure 9.6.2.2 

The trend in the years 1976 to 1989 is relatively stable. Its estimate is 10% + 2%, 

say. However, the trend from 1989 to 1990 is higher at 15% ~ 1%) and from 1990 

to 1991 it is -4%.(_t 1.3%), say, This information is extracted from the "optimal" 

statistical model. The shifts in trends is a property of the data (determined through 

the model). A question now emerges as to which trend assumption do we make for 

the future, first in the absence of any other information. It would be foolhardy to 

assume the estimate between the last two years of -4% ~ 1.3%. The most 

reasonable assumption (for the future) is a mean trend of 10% with a standard 

deviation of 2%, that which was estimated for the years 1976-1989. 

Suppose we also have access to another data type, the number of closed claims 

development array. See Sections "10.2 and 10.3. We find utilising our DFF modelling 
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framework that the additional 5% above the 10% between 1989 and 1990 can be 

explained by a corresponding increase in speed of closures of claims and the -15% 

from 1990 to 1991 below the 10% from 1976-1989 can be explained by a 

corresponding decrease in the speed of closures of claims. What assumption about 

future trends in payments should we adopt then? I would still recommend 10% ± 2% 

for the future. That's a decision based on my judgement and experience. The 

instability in trends in the last few years means that the model will not validate well. 

At year end 1990, we would not have forecast the distributions for 1991, for example. 

Example 3: It is possible to have a transient change in trend. Consider Figure 

9.6.2.3. The business has been moving along 10% ± 2% but between the last two 

calendar years 1990 and 1991 the trend increases to 20% ~ 3%. What do we 

assume for the future? Well, that depends on the explanation for the increase in 

trend. Suppose its a "transient" change that can be explained by a new level of 

benefits that apply retrospectively. Then it is reasonable to assume 10% ~ 2% for 

the future. Suppose instead that subsequent to analysis of claims closed triangle, the 

trend change is explained by increase in severities. That's a problem, because this 

means that it is now more likely that the new trend will continue. 

Transient change in trends 
12.~ 
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Figure 9.6.2.3 
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So the decision making process about the future becomes more complicated when 

trends are unstable. We are talking about trends in the (incremental) payments not 

age-to-age link ratios. 

The last example illustrates an 'unpredictable' loss development array. 

Example 4: The payment year trends are depicted in Figure 9.6.2.4 below. 
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Figure 9.6.2.4 

Note instability in trends. At year end 1989, would anyone be able to predict a flat 

trend for the next, year and a downward trend for the following year? 

Here, maybe, one could calculate a ~ , a weighted average of trends estimated in 

the past with a weighted variance ~= and assume for the future a mean trend of 

with standard deviation of trend 6. Since ~ will De relatively large, mean forecasts 

will be well above the median forecasts and the standard deviation of the distributions 

relatively large. See Section 8.2 
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It is instructive to relate the foregoing discussion with the quote from A.C. Harvey [9] 

given at the beginning of Section 2.1. 

9.7 POST-SAMPLE PREDICTIVE TESTING AND MODEL MAINTENANCE 

Once a model has been identified for year end 1991, and assumptions about the 

future are made, the model is stored. 

One year later, in 1992, on receipt of additional information (diagonal), there is no 

need to analyse the (augmented) triangle from the sta~. We already have a model 

for which we now conduct post-sample predictive testing and model updating and 

maintenance. 

Has the model at year end 1991, predicted the distributions for 1992? This question 

is answered by restoring the model, assigning zero weight to "payments" in 1992 and 

validating the year. We also test for stability of parameters. If the model estimated 

at year end 1991 does not predict 1992 accurately, we know which parameter is the 

culprit and accordingly may have to amend the model (slightly). 

For example, consider Example 2 of the preceding sub-section. If the 1992 data do 

not lie on the 10% + 2% trend, then we have more evidence of changes in trends 

and our assumption of 10% +_ 2% becomes pretty suspect. 

Typically, once a model is identified for an incremental paid loss development array: 

the same model (with occasional minor amendments) is used in every subsequent 

year. 
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There is no way that a statistical method can automatically determine the "best" 

model and assumptions to be adopted for the future Rather. this decision is based 

on the model identification strategy (that may include analysis of other data types) 

and considerable judgment, especially if trends in the incremental payments are 

unstable. 

Of course, any information about the nature of the business (especially change in 

business) may be critical in determining the assumptions for the future 

For example, in a number of loss development arrays of Lloyd's Syndicates analysed 

by the author, asbestos and pollution claims are not covered by policies written after 

1978, say. This means that the calendar year effects of asbestos and, pollution claims 

only apply to accident years prior to. 1978. So, the iota estimates applying to 

accident years prior to 1978, do not apply to accident years post 1978. 

For loss development arrays where the forecast uncertainties are relatively large, 

analysis of "similar" arrays within the company or anaJysis of industry wide arrays, for 

the purpose of formally credibility adjusting the parameter (estimates) could prove 

very useful. Incidentally, credibility is not just a function of volume. It is a myth that 

if claim numbers are "small" or incremental paids are small, or the triangle dimensions 

are small, then random fluctuations necessarily swamp the pattern (trends). The 

noise to signal ratio, equivalently, process uncertainty, may be very small even with 

small volume. Of course large volume and little process uncertainty does not mean 

that standard actgarial techniques will pick Up the changing trend. See Section 12 

for a study of a real life example involving (very) large volume and alarming calendar 

year shifts that cannot be detected using standard actuarial techniques. 

On every subsequent evaluation date post-sample predictive testing is conducted and 

the model is updated. Since data are recorded sequentially over time, updating 

procedures that can be applied routinely and that avoid re-analysis of the history are 

very desirable. See Section 9.6.2. 
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criterion is not satisfied, the model may have to be re-specified and :he 

identification cycle repeated. 

Step 6: Assumptions about the future based on Step 5 involving possibly analysis 

of other data types (Sections 10.2 and 10.3), are decided and forecasts and 

standard errors are produced. The final model is stored. 

Step 7: Finished. 

STEPS IN MODELLING 

PRELIMINARY I 
ANALYS I S 

SPE= F =A=ON I 
I 

[ MODEL 
ESTIMATION 

,k 

TESTING 

YES 

FORECASTING 

VALIDATION NO 
AND 

STABILITY 

YES 

. ,  v 

FINISHED 
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10. MODEL IDENTIFICATION AND ASSUMPTIONS ABOUT THE FUTURE 

The aim is to identify a parsimonious model that separates the (systematic) trends 

from the random fluctuations and moreover determine whether the trend in the 

payment/calendar year direction is stable. 

Recall that models contain information and accordingly the 'best' identified model 

conveys information about the loss development array being analysed. 

For example, CCI (with constant development in the tail) indicates that the calendar 

year trend has been stable. This model should validate well and produce 'stable' 

outstanding estimates as recent calendar years are added or removed from the 

estimation. See preceding Sections 9.6.1 and 9.6.2. 

10.1 MODEL IDENTIFICATION 

The identification of the 'optimal' statistical model involves a number of iterative steps. 

Step 1: Preliminary analysis facilitates the diagnostic identification of the 

heterogeneity in the data. The types of heterogeneity are also 

diagnostically identified. 

Step 2: Based on step 1 a (preliminary) model is specified. 

Step 3: The specified model is estimated. 

Step 4: The model is checked to ensure that all assumptions contained in the 

model are satisfied by the data. If the model is inadequate, it has to be re- 

specified (step 2), and the iterative cycle of model specification - estimation 

- checking must be repeated. 

Step 5: The best identified model is validated and tested for stability. If either 
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10.2 ASSUMPTIONS ABOUT THE FUTURE 

We demonstrated in Section 9.6 that if payment~calendar year trend has been stable, 

especially in the more recent years, then the assumption about the future trend is 

relatively straightforward. For example, if the estimate in the last five years has 

been ~ ± s . e .  ( £ ), then we assume for the future a mean trend of E with a 

standard deviation of trend of s.e. ( ~ ). We do no..~, assume that trend in the future 

is constant. Our model does include the variability (uncertainty) in trend in the future. 

If on the other hand, payment/calendar year trend has been unstable as is illustrated 

in examples 2 and 3 of Section 9.6, assumptions about future trends are not so 

obvious and may depend on analysis of other data types. 

In Section 10.1 we also cited a practical example where special knowledge about the 

business is a contributory factor in making decisions about the future. Bu.~, that 

special knowledge is combined with what we found in the past experience. 

10.3 OTHER DATA 'TYPES AND METHODS 

Hitherto much emphasis has been placed on the importance of analysing and 

predicting distributions for (incremental) paid loss development arrays. Reasons 

given include: 

• the geometry of trends; 

* simplicity and parsimony; 

• distributions of future payments is 

statements. 

relevant information for financial 

We now discuss other data types and methods. 

10.3.1 PAYMENTS PER CLAIM CLOSED 

Let the "series" {p,} denote the payments loss development array and the series {n,} 

denote the closed claims development array. 
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We shall say that {n,} causes {p,}, if taking account of past values of n, leads to 

improved predictions of future values of p,. (This is know as Granger causality.) 

Typically, an actuary analyses ~ = pen t and obtains predictions ~= of future values 

of %. The analysis of {n,} leads to predictions ,rt= of future values of n,. 

The future values of p, are then predicted by P= = ~= #= . 

So, is the forecast ~= better than the forecast ~', that only depends on past 

values of p,. A forecast is better if its mean square error is less. That is, ~ is 

better than '~', if 

El(pc-p=) =] < E[(~-pc) = ] 

The author believes that ~'~ is better than P= . That is, there is no reduction in 

forecast error with respect to the given information set { ~=, ~¢, .,~c }. However, 

this does not rule out the possibility that when there is an instability in calendar year 

trends in {p,} as described in Section 9.6, analysis of {nt} will not lead to improved 

accuracy of predicting future values of {Pt}- The information extracted from the 

analysis of {nt} may improve the actuary's judgment in respect of which assumptions 

to use for future trends of Pt. 
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10.3.2 INCURRED LOSSES AND CASE RESERVES 

Analysis of incurred losses (paid to date plus case reserves) does not provide 

information about what is still to be paid. We have given sufficient reasons why any 

analysis of cumulative data is unsound. And adding case reserves to cumulative 

paids reduces the information (not increases the information). 

Incremental paid losses and case reserves should be analysed separately. That is 

the best way to determine the information contained in each data type and any 

relationships that may exist between the two data t'ypes. 

For example, if there is a trend shift in the incremental paids between calendar years 

1984 and 1985 and a corresponding shift in the case reserves one year later, 

between 1985 and 1986, then we know that the case reserves are lagging the 

payments. 

If instead we found that case reserves are leading the payments then a change in 

trend in the case reserves between the last two calendar years, for example, may 

suggest an increase in trend in payments one year later (in the future). See Sections 

10.1 and 10.2. 

For a small dimensional triangle of a long tail line, case reserves for the early accident 

years will be helpful in determining the development year trend (y)  in the future. 

There are ways of determining whether case reserves have been "accurate" in 

forecasting subsequent payments. See the paper by Fisher and Lange [6]. 

Perhaps we should also remark that case reserves vary between and within claims 

personnel and due to changing reserving philosophy of the company. 
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10.4 TIME SERIES MODELS VERSUS EXPLANATORY (OR CAUSAL) 

MODELS 

The rich modelling framework advocated by the author contains essentially ttme 

series models. The only "causal" variable is time, equivalently payment year, accident 

year and development year. The past values of the incremental payments are used 

to forecast future values of the payments. 

There is an alternative approach to forecasting in statistics called explanatory or 

causal models. These models make an at'tempt to discover the factors (or variables) 

affecting the behaviour of the claims process. 

There are many reasons for preferring time series models to explanatory models. 

• Causality based on the definition given in Section 10.3.1 is hard to prove, 

especially since the causal variables need to also be forecast. 

• Simplicity and parsimony discussed in Sections 9.1 and 9.2. 

The claims process is complex and is unlikely to be understood and even 

if it were understood, it may be extremely difficult to determine the 

relationships that govern the behaviour of claims. Moreover, its likely the 

relationship changes with time. This last reason is part motivation for 

varying parameter models. (See Section 7). 

Explanatory models are difficult to validate and test for stability and when 

they don't work it may be hard to determine the reason. 

By way of summary, we advocate the use of the DFF of models applied primarily to 

the incremental payments and applied to "related" data types, especially for the case 

in which calendar year trend instabilities are found in the incremental payments. 
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11.0 PREDICTION INTERVALS, RISK BASED CAPITAL AND RELATED ISSUES 

11.1 INTRODUCTION 

Loss reserves often constitute the largest single item in an insurer's balance sheet. 

An upward or downward 10% movement of loss reserves could change the whole 

financial picture of the company. 

The current paper is not meant to focus on risk based capital and solvency issues, 

but mainly to stress that these are necessarily probabilistic concepts. The paper's 

principal intention is to show how the distributions (or variability) of loss reserves may 

be derived from sample data. It is the variability or uncertainty of loss reserves that 

is relevant to risk based capital and solvency considerations. 

11.2 PREDICTION INTERVALS 

We have given persuasive arguments for the use of probabilistic models, especially 

in assessing the variability or uncertainty inherent in loss reserves. The probability 

that the loss reserve, carried in the balance sheet, will be realised in the future, is 

necessarily zero, even if the loss reserve is the best estimate. See Sections 8.0 and 

10.3 for definition of best. 

Future (incremental) paids may be regarded as a sample path from the forecast 

(estimated) Iognormal distributions. The estimated distributions include both process 

risk and parameter risk. 

The forecast distributions are accurate provided the assumptions made about the 

future will remain true. For example, if.it is assumed that future calendar year trend 

(inflation) has a mean of 10% and a standard deviation of 2%, and in two years time 

it turns out that inflation is 20%, then the forecast distributions are far from accurate. 

Accordingly, any prediction interval computed from the forecast distributions is 

conditional on the assumptions about the future remaining true. 
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Suppose ,5 is a mean of a forecast Iognormal distribution corresponding to payment 

p. Both /~ and p are random variables. 

Letu = Iogp,  ~ = E[u]  and o z = Var[u].  

u (a random variable) is given by 

~. = o Z ( ~ / 2 )  , 

A 100 (1-~)% prediction interval for 

where Z ( ~z/2) is the 1 - ¢/2 percentage point of the standard unit normal distribution. 

A 100 (1-a)% prediction interval for p (=log u) is 

exp [# ~ o Z ( a / 2 ) ] .  

The latter interval is non-symmetric about # since the tognormai distribution is 

skewed (to the right). The parameters ~ and o are computed from the mean and 

standard deviation of p, and the relationship between the Iognormal and normal 

distributions. 

The limits of the interval can be interpreted as follows. Suppose repeated samples 

of the rectanqle are taken (from the estimated probabilistic model), then the 

proportion of times the observed p value will lie in the observed interval (in the long 

run) is 1-a. Bear in mind that p is a random variable. 

The distribution of sums, for example, accident year outstanding payments, is the 

distribution of a sum of Iognormal variables that are correlated. The exact distribution 

of the  sum can  be obtained by generating (simulating) samples from the estimated 

multivariate Iognormai distributions. Alternatively, one can approximate the 

535 



distr ibut ion of the sum by a Iognormal.  Indeed. the Iognormal  wou ld  be the riskiest. 

If there are 'many '  components  in the sum. then the Central Limit Theorem could be 

invoked, especial ly if the Iognormal  distr ibut ions of the paids are not terribly skewed. 

See Section 13 for a real life example. 

Insurer's risk can be def ined in many different ways. Most definit ions are related to 

the standard deviat ion of the risk, in part icular a mult iple of the standard deviat ion. 

If an insurer writes more than one long tail l ine and aims for a 100(1 - a )% secunty 

level on all the lines combined,  then the risk margin per l ine decreases the more lines 

the c o m p a n y  writes. This is a lways true, even if there exists some dependence  

(correlat ion) be tween the var ious lines. 

Consider  a company  that writes n independent  long tail lines. Suppose that the 

standard error of loss reserve L(j) of l ine j is se(j). That is, se(.j) is the standard error 

of the loss reserve var iable L0). The standard error for the comb ined  lines 

L(1)+.. .  + L ( n ) i s  

se(Total) = [se2(1 +. . .+se=(n)]  05 

If the risk marg in  for all l ines comb ined  is k*se(Total),  where  k is de te rmined by the 

level of securi ty required, then the risk margin for l ine j is 

k 'se(Total)*se(. j ) / [se(1) +... + se(n)] 

<kse(j) .  

The last inequal i ty  is t rue even when se(Total) is not given by the above  expression.  

If as a result of analys ing each line using the DFF model l ing  f ramework  we find that 

for some  lines t rends change in same years and the changes  are of the same order  

of magni tudes,  then the paid losses are not independent .  (There may also be some  
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probabJlistJ¢ model, derived from the company's experience, that describes the 

particular line for that company. In the hundreds of arrays that the author has 

analysed, no one model described more than one loss development array. 

The approach the author is advocating allows the actuary to determine the 

relationships within and between companies experiences and their relationships to 

the industry in terms of simple well understood features of the data. 

In establishing the loss reserve, recognition is often given to the time value of money 

by discounting. The absence of discounting implies that the (median) estimate 

contains an implicit risk margin. But this implicit margin may bear no relationship to 

the security margin sought. The risk should be computed before discounting (at a 

zero rate of return). 
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correlations between the residuals). 

In that situation, line i and j are correlated, say, then one should use se(i)+se(j) as 

the upper bound of the standard error of L(i)+L(.j). 

We now return to an important modelling concept or 'law of payments'. 

Suppose we assume for the future payment/calendar years a mean trend of (~) with 

a standard deviation (standard error) se (~). Specifically we are saying that the trend 

t ,  a random variable, has a normal distribution With mean 7, and standard deviation 

se (~). Recognition of the relationship between the Iognormal and normal 

distributions tells us that the mean payment increases as se ( t )  increases (and ;, 

remains constant). The greater the uncertainty in a parameter (the mean remaining 

constant), the more money is paid out. 

The foregoing arguments apply to each parameter in the model. 

11.3 RISK BASED CAPITAL 

The author understands that the NAIC is drafting regulations where part of the risk 

based capital requirements will be based on loss reserves. In the article by 

Laurenzano [10], page 50, the loss reserve component of the risk based capital 

formula "selects the worst reserve development ...". 

The approach advocated by the NAIC is flawed for many reasons including: 

The uncertainty in loss reserves (for the future) should be based on a 

probabilistic model (for the future) that may bear no relationship to reserves 

carried in the past; 

* The uncertainty for each line for each company should be based on a 
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12.0 ANALYSIS OF PROJECT 1 

12.1 INTRODUCTION AND SUMMARY 

The principal objectives of the analysis of real life data in this section are to 

demonstrate that: 

Age-to-age link ratios based on the cumulative paid losses give no indication 

about the trends and random fluctuations in the (incremental) payments. 

2. Smooth data may have major shifts in calendar year trends. 

3. Regression as an approach to .adjusting data and determining trends and 

changes thereof is very powerful. 

4. Large company's run-off payments are not necessarily stable in respect of 

calendar year trends, even though the payments may be extremely smooth 

(with very little random fluctuations about the trends). 

12.2 DATA AND AGE-TO-AGE LINK RATIOS 

The data (save a multiplicate factor in order to preserve confidentiality) come from a 

large insurer and are given in Appendix C1. Accident year exposures, (from 

memory), represent earned premium (rela~tivities). As we shall see in the next section, 

the exposures are not that important. 

The age-to-age link ratios presented in Appendix C2 are relatively smooth. For the 

early development years they tend to decrease slightly in the middle accident years 

and then increase in the latter payment years. 
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12,3 ANALYSES 

We define a normalised payment as the (incremental) paid divided by the 

corresponding accident year exposure and apl31y the MODELLING FRAMEWORK to 

the normalised payments. 

If p(w,d) is the incremental payment corresponding to accident year w and 

development year d, and e(w) is the accident year exposure, then the normalised 

payment is p(w,d)/e(w) and we define, 

y(w,d) = log [p(w d)/e(w)] 

Figure C3 (in Appendix C3) represents a graph of the normalised payments versus 

delay for the first two accident years in the triangle. Observe that the run-off 

development for both years is remarkably smooth. 

The chain ladder (CL) statistical model is given by, 

d 

y(w,d) = ~w " ' ~  Yj* c 
1-1 

Since the exposures e(w) are absorbed into the parameters a ~,, the estimates of the 

development trends y j do not depend on the exposure base used. Indeed, there are 

other statistics that are invariant (for CL) with respect to exposure base including, AIC, 

residuals, S-squared, normality testing and forecasts. The chain ladder model adjusts 

for the different levels (¢ 's) of each accident year. 

The estimates of the CL parameters and associated regression table are presented 

in Appendix C4. R-squared is high and S-squared is small. Hence, the random 

540 



fluctuations are small. Now, the CL model adjusts the data for development year 

trends and accident year trends (or levels). Many parameter differences are 

insignificant but that is not important since we are not trying to identify a 

parsimonious model here but rather show how some of the models in the 

FRAMEWORK may be used for fast identification of payment/calendar year trend 

changes. 

So, the residuals represent the data adjusted (after removing) for the average 

development year trends and the average accident year trends. 

Residuals versus development years (Figure C5.1 ) and accident years (Figure C5.2) 

are the "best" we can obtain since we have removed the trends in these two 

directions. In Figure C5.1, the sum of residuals for any one development year is zero 

and in Figure C5.2, the sum of residuals for any one accident year is zero. 

HOWEVER, residuals versus payment years (Figure C5.3) exhibit a very strong V 

shape AND THIS IS FOR SMOOTH DATA OF A LARGE COMPANY. So, after 

removing accident year and development year trends from the data we observe major 

shifts in calendar year trends. (Compare this with the simulated data of Sections 4.4 

and 5). There appears to be a change in trend in 1984 and definitely a change in 

trend in 1985. 

We now estimate the CC model. It adjusts the data for the average development year 

trends. Appendix C6 presents the regression output and Figure C7 is a graph of 

residuals versus payment years-that indicates an upward trend (positive inflation). 

It is hard to tell from this graph whether there is a major shift in trends. 

In order to estimate a trend parameter through the residuals of Figure C7, we 

estimate the CCI model to the data. The'regression output is presented in Appendix 

C8 and the residuals versus payment years are displayed in Figure C9. The average 

payment year trend is 12.1% (~  0.53%). The V shape in residuals is distinct, 

suggesting very strongly the change in trends. 

Our final model introduces another two payment year trend parameters. One from 
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1984-1985 and one from 1985-1987. The regression output is given in Appendtx C10. 

Note shift in trend from 9.85% to 19.52%. This is quite alarming, especially if it 

cannot be explained by an increase in speed of finalisations of claims. See Section 

10.2, for a discussion of assumptions to be applied for the future. 

We now graph in Appendix C11 the Iognormalised payments versus delay for the first 

two accident years. Since 19.52% is much higher than 9.85%, observe that the trend 

in the tail increases for both accident years, and for accident year 1978 the change 

is one development year earlier than in accident year 1977. That is because the 

trend change is a calender year change. 

So there is overwhelming statistical evidence of a major shift in calendar year trends 

in the last two calendar years. What assumptions do we make about the future 

trends? We could analyse the number of claims closed development array and 

determine whether the substantial increase in trend in the payments is due to a 

corresponding increase in trend in the number of closed claims. If the answer is in 

the negative, then the trend increase must be due to increase in severities which 

would then be a major concern for the company. See Section 10.2. 

In this section we have not identified a parsimonious model for the data. Instead the 

objective was to demonstrate how some of the models in the MOOELLING 

FRAMEWORK may be used for quick determination of major calendar year shifts (in 

data that are relatively smooth and do not appear problematic if we are to employ the 

standard actuarial approaches based on link ratios). 

The reader will appreciate that our modelling approach is interactive and terribly 

computer intensive. In order to identify the calendar year trend changes we have had 

to estimate four models. To set up each model in a spreadsheet is extremely time 

consuming. See Section 8. 

542 



13.0 ANALYSIS OF PROJECT 2 

13.1 INTRODUCTION AND SUMMARY 

In the present section we analyse a real life loss development array for which the age- 

to-age link ratios of the cumulative paids are relatively unstable, yet the trends in the 

pa.ids are stable. 

The "best" identified model is essentially a version of CC with two additional iotas 

(payment year trend parameters) that are used.to adjust for "low" payments in one 

payment year. The model (and so the trend in the data) is stable and validates very 

well. Had the model been employed three years earlier, it would have yielded the 

"same" outstanding payments and would have forecast the distributions of 

(incremental) payments for the last three years extremely accurately. 

13.2 DATA AND PRELIMINARY ANALYSIS 

The incremental paid loss development array and accident year exposures are 

displayed in Appendix D1. The exposures are estimates of the number of ultimate 

claims incurred in each accident year. We define a normaiised payment as the paid 

divided by the corresponding accident year exposure and identify a DFF model for 

the normaJised payments. 

The first step in the preliminary (diagnostic) analysis is to graph the data. Figure D2.1 

displays a graph of normalised payments versus development year for all accident 

years combined. It exhibits a band whose width (variability) increases as the 

normaiised payments get larger. 

On the other hand, the graph of the Iognormalised payments depicted in Figure D2.2 

exhibits a band whose width is relatively constant. That is, % variability is constant 

with development year suggesting a Iognormal distributions for the normalised 

payments. 
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The graph in Figure D2.2 also gives us a preliminary idea of a parsimonious numC, er 

of Y's (development year trend parameters) that may be required in the model. 

It appears we require one Y from delay 0-1, one from delay 1-2 (that turns out to be 

insignificant to zero), one from delay 2.4 and one from delay 4-8. 

13.3 MODEL IDENTIFICATION 

In this sub-section we implement the model selection Strategy discussed in Section 

10. 

Model 0 and 1 : Estimate a CC model with the four Y parameters suggested by the 

preliminary diagnostic analysis. It turns out that the parameter Y 2 is insignificant from 

zero, as was anticipated from the graphs. Set Y 2 to zero and re-estimate the model. 

Regression tables and residual displays are given in Appendix D3 and Appendix D4. 

respectively. 

Residuals versus delay and accident years suggest that the trends in these two 

directions have been captured well. This diagnostic test can be formalised by adding 

more parameters and testing for significance of parameters and their differences. 

Since we have estimated a CC model, the residuals may be interpreted as the data 

adjusted for the development year trends. 

Residuals versus payment years (Figure D4.3) suggest (i) zero trend from 1975-1979, 

(ii) tow payments in 1974 and (iii) perhaps zero trend from 1969-1973. So we next 

estimate. 

Model 2: This model  is the previous CC model with four iota parameters. The first 

iota represents the trend from 1969-1973, the second iota the trend from 1973-1974 
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the third iota represents the trend from 1974-1975 and the fourth iota represents the 

trend from 1975-1979. We find that both the first and fourth iota are insignificant, and 

the first being less significant than the fourth. 

Model 3: Previous model with first iota set to zero. We find that fourth iota is stdl 

insignificant. 

Model 4: Previous model with fourth iota set to zero. We find all parameters and 

their differences are significant. Moreover, SSPE and AIC are the lowest amongst the 

four models. Outlier analysis indicates that the observation in accident year 1972, 

delay 7 is an outlier. 

So our final identified model (before conducting validation and stability analysis) has 

three gammas (0-1, 2.-.4 and 4-8), two iotas (1973-1974 and 1974-1975) and one 

alpha, and it also assigns zero weight to (1972,7). 

The regression tables and various statistical displays are given in Appendices D5 to 

D7. 

Figure D7.5 of Appendix D7 displays a normal probability plot where r 2 (correlation 

squared) between the normal scores and ordered residuals is 0.993. The P-value is 

in excess of 0.5. 

So we have shown that the log incremental payments in the cells of the loss 

development array can be regarded as observations from normal distributions whose 

means are related by the (trend) parameters given in Appendix DS. 

Forecasts, standard errors and % errors based on the model are presented in 

Appendices D8 and D9, respectively, 

Appendix D8 

This appendix presents: 
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(i) each observed payment (OBS); 

(ii) each expected model payment (EXP), that is a mean of a Iognormal 

distribution; 

(iii) forecasts for each accident year subdivided according to development 

year (right side of stair.case corresponding to EXP row); 

(iv) standard errors of each individual forecast (below each forecast); 

(v) total forecast (outstanding) for each accident year and associated 

standard error (right hand column); 

(vi) total forecast (payment) to be made in each future payment year in 

respect of all the accident years and ass°ciated standard errors (bottom 

row). This is the.future liability stream with corresponding uncertainties 

that may prove useful for asset/liabiiity matching; 

(vii) total outstanding with associated standard error (bottom right hand 

corner). 

Expected values and forecasts are estimates of means of Iognormal distributions. 

Standard errors are estimates of standard deviations of Iognormal distributions. 

Appendix D9 

Here we present a quality of fit table comparing the original observed payments with 

the model expected payments. For each accident year and for each payment year 

we compute the ratio of the difference in total observed and total expected to the total 

observed. The quality of fit is high. 

13.4 VALIDATION AND STABILITY ANALYSIS 

We now re-estimate the same model and assign zero weight to the last three 

calender years (1979, 1978 and 1977). We aim to determine (i) whether the model 

estimated at year end 1976, would have forecast the distributions of payments in 

years 1977-1979 and (ii) are the parameter estimates of the model and the forecasts 

based on the model stable. 
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Appendix 010 presents the parameter estimates as of year end 1976. Compare 

these estimates with those obtained at year end 1979 (Appendix D5). Note that none 

of the parameter estimates have changed significantly. The estimate of the tail. 

-0.5544 (+  0.0753) at year end 1976, is slightly higher than the estimate-0.6749 (+  

0.0390), at year end 1979, hence the higher forecasts in the tail. The estimates of 

iotas 1973-1974 and 1974-1975 are very close (and so stable). 

Appendix D l l  represents "All" residuals displays. All residuals include those 

corresponding to observations used in the estimation .(1969-1976), and the validated 

residuals (1977-1979) corresponding to observations not included in the estimation. 

All displays are great. 

In particular, Figure D11.3 shows the distribution of the validated residuals (prediction 

errors) for 1977-1979 relative to residuals corresponding to years used in the 

estimation. 

Appendix D12 presents displays of the validated residuals (only those corresponding 

to years 1977-1979). All displays are in good shape. 

Most importantly, Appendix D12.4 presents a test whether the Iognormalised 

payments in 1977-1979 come from the forecasted distributions as at year end 1976. 

The squared correlation between normal scores and validated residuals is 0.959 with 

a P-value of 0.313. 

By way of summary, there is very strong statistical evidence that the model at year 

end 1976 would have predicted accurately the distributions of 'payments' for 1977- 

1979. 

Let's now compare the forecasts, Appendix D13 (validation model) with Appendix D8. 

Total outstanding beyond 1979, based on estimated model at year end 1976 is 

12,620,833 ~ 1,072,089 compared with estimated model at year end 1979 of 

12,948,473 ~ 1,030,808. No difference. 
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So, we could have obtained the same answers three years ago (that is, without the 

last three years information). All other forecasts compare extremely favourably 

Note that in Appendix D13 the expected va]ues corresponding to payment years 

1977-1979 actually represent mean forecasts based on estimated model at year end 

1976. 

From Appendix D14 we see that had we reserved mean forecasts at year end 1976 

(for years 1977-1979) we would have underferecast 1977 and 1978 by 13% and 1% 

respectively, and over'forecast 1979 by 5%. 

Our findings using probabilistic models have shown that: 

and 

calendar year trends are essentially stable, save the dip in the year 1974; 

the model used three years earlier would have predicted accurately the 

distributions of payments for the last three years; 

rough (irregular) age-to-age link ratios, especially in the early development 

years, give no indication of stal:)ility of trends. 

The author has analysed numerous data sets with rough (or irregular) age-to-age link 

ratios for which the payment/calendar year trends are stable. Converse{y, smooth 

age-to-age link ratios does not mean stability of trends. 

We conclude this section by showing how to compute a prediction interval for the 

total outstanding payments, using the discussion of Section 11.2. 

From Appendix DS, the mean outstanding is given by 

m = mean = 12,948,473 

and the standard deviation (or standard error) by 
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sd = 1.030,808 

We assume that the total reserve (or liability) L is a random variable with mean m ana 

standard deviation sd and moreover the distribution of L is Iognormal. 

Put y = log L, then y has a normal distnbution with mean P. and standard deviation 

o, say. 

Therefore, 

m = exp [p. + 0.5 02 ] 

and 

sd = m [exp (02 ) -1] 0, 

Solving the last two equations for p and ~ we obtain, 

P' = 16.37332 

and 

o = 0.079482 

Employ ing Section 11.2, a 100 (1-¢)% predict ion interval for the random variable L 

is given by 

exp [16.37648 ~ 0.079482Z (¢/2) ]  
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where Z (= /2)  is the 1 - a /2  percentage point of the standard unit normal distr ibution 

The median of the distr ibut ion of L is exp [ ~ ] = 12,907,636 which is very close to the 

mean of 12,948,473. Since a z is small the Iognormal  distr ibut ion is not terribly 

skewed, so that were we to assume that the distr ibut ion of L is normal  (rather than 

Iognormal),  the predict ion intervals would be almost  the same. 
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14. EXTENSION OF THE DFF MODELLING FRAMEWORK 

We observed t~at a fruitful extension of the DFF model l ing  f ramework  was the 

introduct ion of vary ing parameter  (dynamic) mode ls  in Sect ion 7. 

Another  important  extension is related to the distr ibut ional assumpt ion of normality. 

Hitherto, we have assumed that the var iances of the y values, denoted by o 2 . are 

identical (constant) 

The var iance on a log scale can be interpreted as % variabil i ty. So constant o 2 

implies constant % variabil i ty. For many loss deve lopment  arrays this assumpt ion is 

not valid. For some arrays, % variabil i ty increases in the tail, for some  others, % 

variabi l i ty is h igher in the early deve lopment  years. When o z is not constant  and 

varies with deve lopmen t  years we need to also model  the o z's. That is, we  int roduce 

a secondary  equat ion. 

This is outs ide the scope of the present paper. 
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15. CONCLUSIONS 

We have argued that the four components of interest regarding a loss development 

array are the trends in the three directions and the distributions (random fluctuations) 

about the trends. 

A MODELLING FRAMEWORK was introduced where each model contained therein 

possesses the four components of interest. The modelling approach offers the 

actuary a way of fitting (estimating) distributions to the cells in a loss development 

array and predicting (forecasting) distributions for future years that affords numerous 

advantages including: 

simplicity; 

clarity of assumptions; 

testing of assumptions; 

assessment of loss reserve variability; 

asset/liability matching; • 

model maintenance and updating. 

We showed how the identified optimal statistical model for the (incremental) payments 

conveys information about the loss experience to date. In applying the model to 

predicting distributions of future payments the actuary may (need to) adjust some of 

the parameters to reflect knowledge about the business and to incorporate his view 

of the future. View of the future may be based on analysis of other data types, 

especially if there are instabilities in the payments in the recent calendar years. 

A prediction interval computed from the forecast distributions is conditional on the 

assumptions made about the future remaining true. 

In passing we have debunked a number of pervasive loss reserving perceptions 

concerning data types, age-to-age link ratios, stability, forecasting and regression. 

Methods based on age-to-age link ratios do not (and cannot) separate trends from 
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random fluctuations and moreover do not satisfy the basic fundamental property of 

additivity of trends. 
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Appendix A1 

Mode l ls  p = exp(elpha-.2d) with no error or rendomness  
alpha = 11.51293 

Yea~deley 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
1978 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 11080 9072 7427 
1979 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 11080 9072 
1980 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 11080 
1981 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 13534 
1982 100000 81873 67032 54881 44933 36788 30119 24660 20190 16530 
1983 100000 81673 67032 54881 44933 36788 30119 24660 20190 
1984 100000 81873 67032 54881 44933 36788 30119 24660 
1965 100000 81873 67032 54881 44933 36788 30119 
1986 100000 81873 67032 54881 44933 36788 
1987 100000 81873 67032 54881 44933 
1988 100000 81873 67032 54881 
1989 100000 81873 67032 
1990 100000 81873 
1991 100000 



A_ipjB2pndlx A2 

y= lo t I (p  ) plu.I ;.1 Inf. I rom 197882 . .3  Inf. from 1982-83 and .15 Inf. from 1983-91 

Year,delay 

0 
1976 11,5129 
1979 11,6129 
1980 11,7129 
1981 11,8129 
1982 11.9129 
1983 12,2129 
1984 12,3629 
1985 12,5129 
1988 12,6629 
1987 12.8129 
1988 12,96 29 
1989 13,1129 
1990 13,2629 
1991 13.4129 

1 
11.4129 
11.5129 
11.6129 
11.7129 
12.0129 
12.1629 
12.3129 
12.4629 
12.8129 
12,7629 
12.9129 
13.0629 
13.2129 

2 
11.3129 
11.4129 
11.5129 
11.8129 
11.9629 
12.1129 
12.2629 
12.4129 
12.5629 
12.7129 
12.8629 
13.0129 

3 
11.2129 

11.3129 
11.6129 
11.7629 
11.9129 
12.0629 
12.2129 
12.3629 
12.5129 
12.6629 
12.8129 

4 5 6 7 8 9 10 11 12 13 
11.1129 11,2129 11,1629 11.1129 11.0629 11.0129 10.9629 10.9129 10.8629 10.8129 
11.4129 11.3629 11.3129 11.2829 11.2129 11.1629 11.1129 11.0629 11.0129 
11.5629 11.5129 11.4629 11.4129 11.3629 11.3129 11.2629 11,2129 
11.7t29 11.6629 11.6129 11,5629 11.5129 11.4629 11,4129 
l f ,8829 11.8129 11.7629 11.7129 11,6629 11.6129 
12.0129 11.9629 11.9129 11.8629 11.8129 
12.182'9 12.1129 12.0629 12,0129 
12.3129 12.2629 12,2129 
12.4629 12.4129 
12.6129 



Appendix A3 

Cumulative dale (on a $ scale) derived from Appendix A2 

¢0 

100000 190484 272357 346439 413471 487552 558021 625053 688816 749469 807164 862045 914250 963908 
110517 210517 301001 382874 ~73358 559428 641302 719182 793263 863732 930764 994527 055180 
122140 232657 332657 443174 548302 648302 743425 833908 919979 001852 1079732 1153814 
134986 257126 392112 520515 642655 758838 869355 974482 1074482 1169605 1260089 
149182 314055 470886 620068 761975 896961 1025363 1147504 1263687 1374204 
201375 392929 575141 748467 913339 1070170 1219352 1361259 1496245 
233965 456519 668219 869594 1061148 1243360 1416685 1581557 
271828 530399 776359 1010324 1232878 1444578 1645954 
315819 616236 902001 1173829 t432400 1678360 
366930 715964 1047976 1363795 1664212 
426311 831831 1217574 1584504 
495303 966450 1414619 
575460 1122855 
668589 



Appendix A4 

I I .904837 
1.904837 
1.904837 
1.9O4837 
2.105170 

11.951229 
t .951229 
1.951229 
1.951229 
1.951229 
1.951229 
1.951229 
:1.951229 

Age-to- age link ratios of the cumulative losses of Appendix A3 

1.429816 1.272002 1.193488 1,179170 1.144535 1.120124 1.102011 1.088054 1.078981 1.067992 1.060558 1.054316 
1.429816 1.272002 1.23632,7 1.181830 1.146351 1.121440 1.103008 1.088834 1.077607 1.068505 1.060986 
1.429816 1,332224 1.237213 1.182381 1,146726 1.121712 1.103213 1.088994 1.077736 1.068611 
1.524979 1.327463 1.234652 1.180786 1.145639 1.120925 1.102618 1.088529 1.077362 
1.499375 1.316812 1.228856 1.177152 1.143152 1.119119 1,101248 1.087456 
1.463726 1.301361 1.220279 1.171712 1.139400 1.116378 1.099162 
1.463726 1.301361 1.220279 1.171712 1.139400 1.116378 
1.463726 1.301361 1.220279 1.171712 1.139400 
1.463726 1.301361 1.220279 1.171712 
1,463726 1.301361 1.220279 
1,463726 1.301361 
1.463726 



Append ix  A5 

Random error  random f rom Normal  with mean 0 

Year, delay 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
1978 0.083 0.075 .0.076 -0.065 -0.188 -0.164 -0.101 0.076 0.021 0.029 0.005 0.03 -0,073 .0.241 
1979 -0.113 .0,049 -0,086 -0.123 0,148 0.09 -0,06 .0.099 -0.032 0,096 0.028 0.1 -0,331 
1980 0.086 -0.007 .0.037 0.17 0.071 .0.138 0.047 0.022 0.036 0.003 0.004 0058  
1981 -0,071 0,147 0.067 -0.028 -0,132 0.049 0 -0.117 -0.042 0.026 -0.078 
1982 0.081 0.059 0.073 0.048 0.025 0.029 -0.023 .0.133 .0.044 0.066 
1983 0.117 0.059 -0.017 -0,081 .0.051 -0.024 -0.048 0.124 0,033 
1984 -0.024 -0.026 0,134 0,214 0,071 0.193 .0,022 0.012 
1985 0.022 0.015 0.076 -0.028 -0,004 0,155 0.032 
1986 -0.043 0.181 0.184 .0.192 -0.16 -0.048 
1987 0.07 0,106 0.144 0,032 -0.102 
1988 0.056 -0.195 0.032 0.041 
1989 0,145 0.187 -0.159 
1990 0.001 .0.153 
1991 -0,142 



Appendix A6 

Sum of data in Appendices A2 and AS to produce trends + randomness 

Yen~delay 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

0 
11,5959 
11.4999 
11.7989 
11.7419 
11.9939 
12.3299 
12.3389 
12.5349 
12.6199 
12.8829 
13.0189 
13.2579 
13.2639 
13,2709 

1 
11.4879 
11.4639 
11.6059 
11.8599 
12.0719 
12.2219 
12.2869 
12.4779 
12.7939 
12,8689 
12.7179 
13.2499 
13.0599 

2 
11.2369 
11.3269 
11.4759 
11.8799 
12.0359 
12.0959 
12.3969 
12.4889 
12.7469 
12.8569 
12,8949 
12.8539 

3 4 5 6 
11.1479 10.9249 11.0489 11.0619 
11.1899 11.5609 11.4529 11.2529 
11.7829 11.6339 11.3749 11.5099 
11,734911,5809 11.7119 11,6129 
11,9609 11~879 11,8419 11,7399 
11.9819 11.9619 11,9389 11.8649 
12.4269 12.2339 12.3059 12.0409 
12.3349 12,3089 12.4179 12.2449 
12.3209 12,3029 12,3649 
12.6949 12.5109 
12.8539 

7 8 9 10 11 12 13 
11.1909 11.0839 11.0419 10.9679 10.9429 10.7899 10.5719 
11.1639 11.1809 11.2589 11.1409 11.1629 10.6819 
11.4349 11,3989 11.3159 11,2669 11.2709 
11.4459 11.4709 11.4889 11.3349 
11,5799 11.6189 11.6789 
11.9869 11.8459 
12.0249 



Appendix A7 

Incrernenlal pelds derived from Appendix A6 

1978 108651 97529 75879 69418 55542 62875 63697 72468 65114 62436 57983 5 6 5 5 1  48528 39023 
1979 98706 95216 83025 72396 104914 94174 77103 70538 71747  77567  68934 70467 43560 
1980 133106 109743 96365 130993 112860 87108 99698 92494 89224 82117 78190 78504 
1981 125731 141478 144336 124854 107034 122015 110514 93517 95885 97626 83692 
1982 161765 174888 168704 156514 145495 138954 125480 106927 111179 118054 
1983 226364 203191 179136 159835 156670 153108 142187 160637 139511 
1984 228411 216837 242050 249422 205644 220996 169549 166858 
1985 277868 262472 26S375 227499 221660 247187 207918 
1986 302519 360015 343485 224336 220334 234427 
1987 393525 388054 383425 326081 271278 
1988 450855 333667 398276 382277 
1989 572576 568013 382277 
1990 576021 469724 
1991 580068 



Appendix A8 

Cumulative palds from Appendix A7 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
! 985 
1986 
1987 
1988 
1989 
1990 
1991 

108651 
98706 

133106 
125731 
161765 
226364 
228411 
277868 
302519 
393525 
4,50855 
572576 
576021 
580068 

206180 282059 351477 
193922 2769473 49343 
242849 339214 470207 
267209 411545 536399 
336653 505357 661871 
429555 608691 768526 
445248 687298 936720 
540340 805715 1033214 
6625341006019 1230355 
781579 11650041491085 
784522 1182798 1565075 

1140589 1522866 
1045745 

407019 469894 533591 606059 671173 733609 791592 848143 896671 
454257 548431 625534 696072 767819 845386 914320 984787 1028347 
583067 670175 769873 862367 951591 1033708 1111898-1190402 
643433 765448 875962 969479 10653641162990 1246682 
807366 9463201071800 1178727 12899061407960 
925196 10783041220491 1381128 1520639 

1142364 13633601532909 1699767 
1254874 1502061 1709979 
1450689 1685116 
1762363 

935694 



Appendlx A9 

1978 1.897635 
1979 1.964642 
1980 1.824478 
1981 2,125243 
1982 2.081123 
1983 1.897629 
1984 1.949328 
1985 1.944592 
1986 2.19O057 
1987 1.986097 
1988 t.740076 
1989 1,992030 
1990 1.815463 
1991 

1.368023 
1.428136 
1.396810 
1.540161 
1.501121 
1.417026 
1.5436629 
1,491125 
1.518441 
1.490577 
1,507667 
1.335157 

1.246111 
1.261407 
1.386166 
1.303378 
t .309709 
1.262588 
1.362902 
t .282356 
t .222993 
t .279896 
1.323197 

Age-to-age factors (link ratios) of the cumulative payments 

1.158024 1.154476 1.135556 1,135811 1,1074381,093025 1.079039 1.071439 1.057216 't,043519 
1.300318 1.207314 1,140588 1.112764 1.1030741,101022 1,081541 1.077070 1.044232 
1.240021 1.149396 1,148764 1.120141 1.1034641.086294 1,075640 1.070603 
1.199j541 1.189631 1,144378 1,106759 1.0989031,091636 1,071962 
1.219823 1.172107 1.132597 1,099763 1,094321 1.091521 
1.203857 1.165487 1.131861 1,131616 1.101012 
1.219536 1.193454 1.124361 1.108650 
1.214534 1.196981 1.138421 
1.179081 1.161597 
1,181933 

ONe cannot determine changing calendar year trends from the age-to-age link ratios. 



APPENDIX B1 

ACC. YEAR 

Random Incremental paids from (same) Iognormal distribution 

DELAY 

1 2 3 4 5 6 7 

1976 10266 3419 3724 9606 
1977 1767 2454 6580 2819 
1978 6232 5143 2667 4278 
1979 4597 3591 5909 5156 
1980 2483 3805 3995 6315 
1981 1643 2077 5101 1907 
1982 3270 7230 1853 4158 
1983 3161 2065 5890 
1984 5305 6078 
1985 6127 

8152 8175 3958 3030 
1957 2150 3677 4751 
2289 6215 6273 4905 
4013 3557 1961 
3480 3486 
3274 

8 £ 

1733 381 
2832 
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APPENDIX B2 

Cumulative payments 

DELAY 
0 1 2 3 4 5 6 7 8 9 

ACC. YEAR 

1976 10266 13685 17409 27015 35167 43342 47300 50330 52063 55574 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

1767 4221 10801 13620 15577 17727 21404 26155 28987 
6232 11375 14042 18320 20609 26824 33097 38002 
4597 8188 14097 19253 23266 26623 26784 
4248 8053 12048 18363 21843 25329 
1643 3720 8821 10728 14002 
3270 10500 12353 16511 
3161 5226 11116 
5305 11383 
6127 
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APPENDIX B3 

Age- to -Age [,.Ink Rat los 

DELAY 

0/1 1/2 2/3 3/4 4/5 5/6 6/7 7/8 8/9 

ACC. YEAR 

1976 1.333041 1.272122 1.551783 1.301758 1.2324.62 1.091320 1.064,059 1.034,432 1.067437 
1977 2.388794 2.558872 1.280994 1,14,3885 1.138024 1.207423 1.221987 1.108277 
1978 1.825258 1.234461 1.304657 1.124945 1.301567 1,233857 1.148200 
1979 1.781181 1.721665 1.385781 1.208435 1.182884 1.073108 
1980 1.895715 1.496088 1.524153 1.189511 1.159593 
1981 2,264150 2,371236 1,218188 1,305182 
1982 3,211009 1,176476 1,336598 
1983 1,653274 2.127057 
1984 2.145711 
1985 
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APPENDIX 84 

YEAR 

Incremental palds generated by SDF model with 20% calendar year trend 

DELAY 

2 3 4 5 6 7 8 9 

1978 53275 66971 121278 292065 86300 79271 240147 
1979 31912 85884 42106 150200 88290 62798 230017 
1980 24g64 96951 208159 697227 213581 251802 489886 
1981 82867 117837 279958 469997 577054 378084 438640 
1982 41268 252181 101806 219303 283631 352082 748704 
1983 32190 491133 239252 228226 375903 494626 323417 
1984 231651 401780 626068 496230 388360 395640 653268 
I985 31273 409583 433997 831822 572?87 468844 1317425 
1986 92728 342040 246087 530327 837381 694392 
lg87 1477/72 208578 389162 602683 743423 
1988 14,6151 209864 1827396 1391050 
1989 81526 767664 1042474 
1990 206885 350789 
1991 559279 

86269 73645 225638 
346594 169950 113715 
387322 524382 133462 
556884 338201 173980 
727854 147742 299994 
482001 157137 
535755 

lO 

218708 
48703 

206570 
161958 

11 

72438 
82441 
76440 

661J 
16891 



A P P E N D I X  B5 

A g e - t o - a g e  l i nk  ra t i os  

DELAY 

0/1 1/2 2/3 314 4/5 5/6 6/7 . 7/8 8/9 9/10 10/I ! 

1978 2.26 
1979 3.69 
1980 4.88 
1981 2.42 
1982 7.11 
1983 16.26 
1984 2.73 
1985 14.10 
1986 4,69 
1987 2.41 
1988 2,44 
1989 10.42 
1990 2.70 
1991 

2.01 2.21 1.16 1.13 1.34 1.09 
1.36 1,94 1.28 1,21 1.48 1.49 
2.71 3.11 1.21 1.20 1.33 1.20 
2.39 1,98 1,61 1.25 1.23 1.24 
1.35 1.55 1.46 1.39 1.60 1.36 
1.46 1.30 1,38 1,36 1. t 7 1.22 
1.99 1,39 t .22 1,18 1.26 1.17 
1.98 1,95 1.34 1,21 1.48 
1.57 1.78 t .69 1.34 
2.09 1,81 1,55 
6,13 1.64 
2.23 

1.07 1.21 
t. 16 1.09 
t .22 1.05 
1.12 1.05 
1.05 1.10 
1.06 

Note that link ratios do not tell us that we have a constant stable calendar year trend 

1.17 
I.Q4 
1.07 
1.05 

1.05 
1.06 
1.02 

11112 

1.05 
1.11 



APPENDIX CI 

ACC. YEAR 

1977 153638 
1978 178536 
1979 210172 
1980 11448 
1981 219810 
1982 205654 
1983 197716 
1984 239794 
1985 326304 
1986 420778 
1987 496200 

DELAY 
4 5 6 

188412 134534 87456 60348 42404 31238 
226412 158894  104.686 71448 47990 35576 
259168 168388 1 2 3 0 7 4  83380 56086 38496 
253482 183370 131040 78994 60232 45568 
266304 194650 1 2 0 0 9 8  87582 62750 51000 
252746 177,506 1 2 9 5 2  96786 92400 
255408 194648 142328  105600 
329242 264802 190400 
471744 37540O 
590400 

ACCl EXPOSURES 

YEAR 

1977 2.20 
1978 2.40 
1979 2.20 
1980 2.00 
1981 1.90 
1982 1.60 
1983 1.60 
1984 1.80 
1985 2.20 
1986 2.50 
1987 2.60 

21252 
24818 
33768 
38000 

16622 
22662 
27400 

14440 
18000 

10 

12200 



APPENDIX C2 

AGE LINK RATIOS OF CUMULATIVE PAYMENTS 

DELAYS 

0/I 112 213 3/4 4/5 5/6 617 7/8 

1977 2.226337 1.393316 1.183505 1 .106992  1,067912 
1978 2.268158 1 ,392381  1.185665 1.106873 1.064853 
1979 2,233123 1.401389 1.187119 1 .106787  1.064900 
1980 2,198791 1 , 3 9 4 4 0 3  1.202128 1.101360 1.070173 
1981 2.211519 1,400420 1.176416 i.109359 1.070629 
1982 2,228986 1,387229 ~ .203681 1 . 1 2 6 4 4 6  1,095567 
1983 1.291792 1 ,429568  I . . 219719  1.133653 
1984 2.373077 1,465360 1.228344 
1985 2.445719 1,470397 
1986 2,403115 

1.046848 1 .030445  1.023109 
1.045149 1 .030135  1.026712 
1,041831 1 .035220  1.027606 
1,049607 1.039413 
1,053616 

8/9 

1,019622 
1.020665 

9/10 

1.016259 



A P P E N D I X  C 3  

Normalised payments versus delay 
loo 

9O 

IO 

10 

6O 

~0 

40 

30 

2O 

IO 

o 
0 t 2 3 4 ~ 6 7 

Acczder~ year  197'7/ ~ Accident  year  1978 

F l g u r o  C 3  
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APPENDIX C4 - (Statistical Chain Ladder) 

R E G R E S S I O N  T A B L E  

PARAMETER ESTIMATES 

OEV. 
YEAR GAMMA 

DIFFERENCE 
S . E .  T-RATIO IN GAMMA S.E. T-RATIO 

1 0.2511 0.0370 6.79 
2 *0.3069 0.0385 -7.97 -0.5580 0.0650 -8.59 
3 -0.3928 0.0406 -g.68 ~.0859 0.0682 -1.26 
4 -0.3803 0.04,32 -8.81 0.0124 0.0723 0,17 
5 -0.3402 0.04,64 -7.34 0.04,01 0,0773 0,52 
6 -0.3384 0.0505 -6.71 0.0018 0.0835 0,02 
7 -0.2908 0.0559 ,5,20 0.0476 0.0917 0,52 
8 ~.224,8 0.0637 -3.53 0.0660 0.1030 0.64 
9 -0.2152 0,0763 -2.82 0.0095 0.1202 0,08 
0 -0.1893 0,1030 -1,84 0.0259 0,1526 0,17 

NOT ALL PARAMETERS ARE SIGNIFICANT 

ACCI 
YEAR 

1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 

ALPHA 

11.04,84 
11.1402 
11.3935 
11,5218 
11.8001 
11.7939 
11.7979 
11.9095 
12,0116 
12.07"74 
12.1592 

PARAMETER ESTIMATES 

DIFFERENCE 
S . E .  T-RATIO IN ALPHA 

0.0380 290.75 
0.0380 293.17 0.0918 
0,0385 295,97 0.2533 
0.0393 293.10 0.1283 
0.0405 286.71 0.0783 
0.0,420 280,55 0.1938 
0.0442 266,67 0.0040 
0.0474 251.04 0.1115 
0.0524 229,08 0.1022 
0.0613 196,88 0.0657 
0.0827 147,00 0.0818 

ALL PARAMETERS ARE SIGNIFICANT 

S.E, 

0.0370 
0.0385 
0.0406 
0.0432 
0.04,64 
0.0505 
0.0559 
0.0637 
0,0763 
0.1030 

T-RATIO 

2.48 
6.58 
3.16 
1 81 
4,18 
0.08 
1.9g 
1.60 
0.86 
0.79 
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APPENDIX C4 

(REGRESSION OUTPUT CONTINUED) 

S = 0.0827 S-SQUARED = 0.0068 S-SQUARED(SCI) = 0.0449 

S(B) = 0.0827 S(B)-SQUARED = 0.0068 DELTA = 0.0000 

R-SQUARED = 99.5 PERCENT N = 66 P = 21.0 

SSPE = 0.94,8 WSSPE = 0.948 AiC = .124.97 AIC(SCI) = -52.18 
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A P P E N D I X  C 5  

Residuals versus development years 
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Residuals versus accident years 
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APPENDIX C5 

Residuals versus payment years 

.2 
1974 1976 1971 1950 1912 19114 1911.6 L9 | |  199~ 

Figure C$.3 
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APPENDIX C6 • Cape Cod 

R E G R E S S I O N  T A B L  

PARAMETER ESTIMATES 

DEV, 
YEAR GAMMA 

DIFFERENCE 
S .E .  T-RATIO IN GAMMA S,E. T.RATIO 

1 0.2029 0.1416 1.43 
2 -0.3567 O. 14.89 -2.40 -0.5596 0.2514 -2.23 
3 -0.4468 O. 1574 -2.84. -0.0901 0.2651 -0.34 
4 -0.4.352 0.1677 -2.59 0.0116 0.2814 0.04 
5 -0.3947 O. 1803 -2.19 0.0404 0.3010 0.13 
6 -0.4139 O. 1962 -2.11 -0.0192 0.3256 -0.06 
7 -0.3656 0.2174 .1.64 0.0563 0.3574 0,16 
8 -0.3067 0.2475 - 1.24 .0.0489 0.4012 0.12 
9 -0.3150 0.2958 - 1.06 -0.0083 0.4677 -0.02 
10 -0,2352 0,3966 -0,59 0,0797 0,5916 0,13 

NOT ALL PARAMETERS ARE SIGNIFICANT 

ACCI 

YEAR ALPHA 

PARAMETER ESTIMATES 

DIFFERENCE 
S,E. T-RATIO IN ALPHA S.E. T-RATIO . 

1977 11.6776 0.0977 119.53 
1976 11.6776 0.0977 119.53 0.0000 0.0000 0.00 
1979 11.6776 0.0977 119.53 0.0000 0.0000 0.00 
1980 11.6776 0.0977 119.53 0.0000 0.0000 0.00 
1961 11.6776 0.0977 119.53 0.0000 0.0000 0.00 
1982 11.6'776 0.0977 119.53 0.0000 0.0000 0.00 
1983 11.6778 0.097"7 119.53 0.0000 0.0000 0.00 
1954 11.6776 0.0977 119,53 0.0000 0,0000 0.00 
1985 11.6776 0.0977 119,53 0.0000 0,0000 0,00 
1986 11.6776 0.0977 119.53 0,0000 0.0000 0,00 
1987 11.6776 0.0977 119.53 0.0000 0.0000 0.00 

ALL PARAMETERS ARE SIGNIFICANT 
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APPENDIX C6 

(REGRESSION O U T P U T  CONTINUED)  

S = 0.3240 S .SQUARED = 0 .1050 S-SQUARED(SCI)  = 0.04.49 

S(B) = 0.324.0 S(B) -SQUARED = 0.1050 DELTA = 0.0000 

R-SQUARED = 91.1 PERCENT N = 66 P = 11.0 

SSPE = 7.4,33 WSSPE = 7.433 AIC = 45.51 AIC(SCI)  = -52.18 

578 



~ P P E N D  X C7  

Residuals versus payment years 
• i ~ii~:i:~: > i l l  i!: i i i i ~ ; / ~ : ~  , -  ; . ] 

" ' . . , :..." :::. - " :  ..". T ? . . '  i . "  ~..", :" .~ : " ~ " " ' ! :  =." • l ' ,  . ... ' .  
. ~ "  :,~; .: ' " ' ,;~. : . , .  .~ :: ~al~b"ttt~,aF.~a . . . . .  .~.:::~ .~..~ :ii~- . ~ , " .  : :..~ :;i~ 

• . ........ ~.. ~'~ :. ,::. :. , :~  ' . . . . . . , -  . ~ . . . '  . . ' . ' .  : . , :  • '-....'.....i , ". ,~ ~ ~.' : ...~..... C .:. . . . I  ~i....-.... " . . " : : " i . ~ i  : . . . . .  : : ~ °  ,.::.~ i.: . '~.~..,.':.,i~~.~:~:;:.,.i?,,>~,~.~.:.. . .?~':.~ " ..... ,..:.~:~, 

• " .  , .  . : " , ~ . ! ~ . . . ~ . : . . 7 . , ' . . :  . v~  ;. -.. . . -  ~ , ~ . . .  
• . . : ~ . .  : . ~ : ~ .  ~ :~..'.,:~.~ ~ ; : ~ , ~ . ~ , . ; > . ~ . = , .  • . o - '  . . . . .  . ~  . . . . . . . .  . . ~  ~ . ~  

. . .  ' . . . . . . , :  .~'.~. !.t:~,%.~:~,::~ . , . : .~  : , ~  ~ .~. . . .  " - " . ~  L '  ' ~ ; . ~ "  . . .- ' .~,>~: ~ t " - : ~ ' ~ ; ~ ' ; . . "  . .  . . . .  ~ .~.  
o, ; . . , .  .....,~..,.; ~ ; ~ , . . ~ . . ~ . : . . v - ; . ~ . . - . . ! , . ; ~  . . . .  . . . . . . .  .~: : . . ~ ?  : . . ; . ~  : . , ~ . , . , . , ~  . .  ~ . .  . . . . . . . . : ! ~ , 1 . - , . ~ , . : , .  . ~ .  

/ 9 7 4  ' " : '  :'=' : :  " ~ ~ ~ :  " ~  " " " ' ' "  " "  ' " ' ' "  * " " "~  ";" ~ ! ' :  " ~ ' . ! . ' l . ~ . ~  ; . . . . : , "  . ! : "  ' 7 , , ' .  ~", ' . "  - , " . . ! . ~ .  ~ :'?~ .~ ; -- 

2 ~ .  1 9 1 6  lIII 1990 

F i g u r e  C 7  

579 



APPENDIX C8 - Cape Cod with constant inflation 

DEV 
YEAR GAMMA $.E. 

R E G R E S S I O N  T A B L  
. . . . . . . . . . . . . . . . . . . . . . . . . .  

PARAMETER ESTIMATES 

DIFFERENCE 
T-RATIO IN GAMMA S,E. -RATIO 

1 0.1424 0,0439 3.24 
2 .0.4172 0.0462 -9.03 -0.5596 0.0779 -7.19 
3 -0.5072 0,0488 - 10.39 -0.0901 0.0821 - 1.10 
4 -0.4956 0.0520 -g. 53 0.0116 0.0871 0.13 
5 -0.4552 0.0559 -8.14 0.0404 0.0932 0 43 
6 -0.474-4 0,0608 -7 80 -0.0192 0.1008 -0.19 
7 -0.4161 0.0674 -6.18 0.0583 0.1107 0.53 
8 -0.3672 0.0767 -4.79 0.0489 0.1243 039 
9 -0.3754 0.0917 -4.10 -0.0083 0.1449 -0.06 
10 -0.2957 0.1230 .2.41 0.0797 0,1832 0.4,.4 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE ACCI 
YEAR ALPHA S.E. S.E. T.RATIO IN ALPHA T-RATIO 

1977 11.0728 0.0403 275.09 
1978 11 0728 0.0403 275.09 0.0000 0.0000 0.00 
1979 11.0728 0.0403 275.09 0.0000 0,0000 0.00 
1980 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1981 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1982 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1983 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1984 11.0728 0.0403 275.09 0.0000 0.0000 0.00 
1985 11.0728 0.0,403 275.09 0.0000 0.0000 0.00 
1986 11.0728 0.0403 275,09 0.0000 0.0000 0.00 
1987 11.0728 0.0403 275.09 0.0000 0.0000 0.00 

ALL PARAMETERS ARE SIGNIFICANT 

S.E. 

PARAMETER ESTIMATES 

DIFFERENCE 
T-RATIO IN IOTA S.E. 

PMNT 
YEAR IOTA 

1978 0.1210 
1979 0.1210 
1980 0,1210 
1981 0.1210 
1982 O,1210 
1983 0,1210 
1984 0.1210 
1985 0.1210 
1986 0.~210 
1987 0.1210 

T-RATIO 

580 

ALL PARAMETERS ARE StGNIFICANT 

0,0053 22,79 
0.0053 22,79 0.0000 0.0000 0,00 
0,0053 22.79 00000 0.0000 0,00 
0.0053 22.79 0.0000 0.0000 0.00 
0.0053 22.79 0.0000 0.0000 0.00 
0.0053 22.79 0.0000 0.0000 0.00 
0.0053 22.79 0.0000 0.0000 0.O0 
0.0053 22,79 0.0000 0.0000 0.00 
0.0053 22.79 010000 0.0000 0100 
0,0053 22.79 0,0000 0.0000 0 00 



APPENDIX C8 

(REGRESSION O U T P U T  C O N T I N U E D )  

S = 0 .1oo4 S-SQUARED = 0.9101 S-SQUARED(SCI )  = 0 .0449 

S(8)  = 0 .1004 S(B) -SQUARED = 0.0101 DELTA = 0 .0000 

R-SQUARED = 99.2 PERCENT N = 66 P = 1 2 0  

SSPE = 1.176 WSSPE = 1.176 AIC = -105.40 AIC(SCI)  = -52.18 
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A P P E N D I X  C 9  

Residuals versus payment years 
A.~cr adjL~tu~ for a~mgc pal, mere year trend 
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APISENDIX C10 - Cape Cod with three payment year parameters 
(1977-84, 1984-1985 and 1985-1987) 

R E G R E S S I O N  T A B L E  
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PARAMETER ESTIMATES 

DEV. DIFFERENCE 
YEAR GAMMA S . E .  T-RATIO IN GAMMA S.E. T-RATIO 

1 .0.1505 0.0371 4.05 
2 -0.4098 0.0390 -10.50 -0.5603 0.0657 -8.52 
3 -0.5008 0,0413 -12.14 -0,0910 0.0693 .1.31 
4 -0.4906 0.04.39 -11.17 00102 0.0736 0.14 
5 -0.4522 0.0472 -9.56 0.0384 0.0787 0.49 
6 -0.4748 0.0514 -9.24 0.0225 0.0851 -0.26 
7 -0.4222 0.0569 -7.41 0.0526 0.0935 0.56 
8 -0.3849 0.0651 -5.91 "0.0373 0.1050 0.36 
9 -0.4126 0.0780 -5.29 -0.0277 0.1229 -0.23 
10 -0.3329 0.1042 -3.19 0.0797 0.1547 0.52 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

ACCI DIFFERENCE 
YEAR ALPHA S . E .  T.RATIO IN ALPHA S,E. T-RATIO 

1977 11.1536 0.0400 276.91 
1978 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1979 11.1536 0.0400 278.91 0.0000 0.0000 0,00 
lg80 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1981 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1982 11.1536 0.0400 278.91 0.0000 0,0000 0.00 
1983 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1984 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1985 11.1536 0.0400 278.91 0.0000 0.0000 0.00 
1986 11.1536 0.04,00 278.91 0.0000 0.0000 0.00 
1987 11.1536 0.0400 278.91 0.0000 0.0000 0.00 

ALL PARAME'rERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

PMNT DIFFERENCE 
YEAR iOTA S . E .  T-RATIO IN IOTA 

1978 0.0985 0.0077 12.74 
1979 0.0985 0.0077 12.74 0.0000 
1980 0.0985 0.0077 12.74 0.0000 
1981 0.0985 0.0077 12.74 0.0000 
1982 0.0985 0.0077 12.74 0.0000 
1983 0.0985 0.0077 12.74 0.0000 
1984 0.0985 0.0077 12.74 0.0000 
1985 0.1174 0.034,3 3.42 0.0189 
1986 0.1952 0.0197 9.91 0.0778 
1987 0.1952 0.0197 9.91 0.0000 

S . E .  

0,0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0385 
0.0484 
0.0000 

T-RATIO 

0.00 
0.00 
0 O0 
0.00 
0,00 
0.00 
0.49 
1.61 
0.00 
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A P P E N D I X  C 1 0  

( R E G R E S S I O N  O U T P U T  C O N T I N U E D )  

S = 0 . 0 8 4 7  S - S Q U A R E D  = 0 . 0 0 7 2  S - S Q U A R E D ( S C I )  = 0 . 0 4 4 9  

S(B) = 0 . 0 8 4 7  S ( B ) - S Q U A R E D  = 0 . 0 0 7 2  D E L T A  = 0 . 0 0 0 0  

R - S Q U A R E D  = 9 9 . 4  P E R C E N T  N = 66  P = 14.0 

S S P E  = 1 .000  W S S P E  = 1 .000 A IC = -126 ,26  A IC(SCI )  = - 52 .18  

, . . '  . . .  

.i~ ~ ,,,! :~:.~ .!. . 

',t". • , . . . : . .  .. . .  , .'l" 

4 ~ ,  ¸ • ,  " ~ . :  . 
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APPENDIX C l l  
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APPENDIX D1 

INCREMENTAL PAID LOSSES 

DELAY 

ACCI. YR 0 1 2 3 4 5 6 7 8 

1969 193013 1584331 1151882 778980 
1970 376473 1541950 17t9509 1032570 
1971 568891 1579158 1277822 734670 
1972 428753 970640 955898 1095771 
1973 458252 989072 1417606 953222 
1974 355229 948807 1292900 748003 
1975 282419 688332 1158793 903450 
1976 2676(X) 1044790 1216437 527644 
1977 560307 940002 1185899 
1978 360171 1011773 
1979 445545 

475203 143352 128612 
289305 382508 270087 
680369 217221 147800 
510072 491853 242995 
881133 278778 197156 
547288 274367 
629983 

70645 
108354 
57099 

299845 

25077 
23133 
64829 

ACCl 

1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 

YR EXPOSURES 

523.00 
643.00 
676.00 
673.00 
809.00 
669.00 
513.00 
543.00 
622.00 
703,00 
743,00 



APPENDIX  D2 

Normalised payments versus delay 
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Log normalised payments versus delay 
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APPENDIX D3 
R E G R E S S I O N  T A B L E  

PARAMETER ESTIMATES 

DEV. DIFFERENCE 
YEAR GAMMA S.E. T-RATIO IN GAMMA 

1 1.1647 0.1234 9.4.4 
2 0,0000 0,0000 0,00 -1.1647 
3 -0.3769 0,0631 -5,98 -0,3769 
4 -0,3769 0,0631 -5.98 0.0000 
5 -0.8226 0,0466 -13.35 -0,2457 
6 -0,6226 0.0466 -13,35 0.0000 
7 -0,6226 0.0466 -13,35 0.0000 
8 -0.6226 0.0466 -13.35 0.0000 

ACCI 
YEAR ALPHA 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T.RATIO IN ALPHA 

1969 6.3672 0.0997 63.84 
1970 6.3672 0,0997 63.84 0.0000 
1971 6,3672 0,0997 63.84 0.0000 
1972 6,3672 0,0997 63,84 0.0000 
1973 6.3672 0.0997 63,84 0,0000 
1974 6.3672 0.0997 63.84 0.00O0 
1975 6,3672 0.0997 63,84 0.0000 
1976 6,3672 0,0997 63,84 0,0000 
1977 6.3672 0,0997 63,84 0.0000 
1978 6.3672 0,0997 63.84 0,0000 
1979 6.3672 0.0997 63.84 0.0000 

PMNT 
YEAR IOTA 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN IOTA 

1970 0.0000 0.0000 0.00 
1971 0.0000 0.0000 0.00 0.0000 
1972 0.0000 0.0000 0.00 0.0000 
1973 0.0000 0.0000 0,00 0.0000 
1974 0.0000 0,0000 0,00 0,0000 
1975 0,0000 0.0000 0.00 0,0000 
1978 0,0000 0,0000 0.00 0.0000 
1977 0.0000 0.0000 0,00 0.0000 
1978 0.0000 0,0000 0,00 0,0000 
1979 0.0000 0,0000 0,00 0,0000 

ALL PARAMETERS ARE SIGNIFICANT 

S.E. 

0.1234 
0.0631 
0.0000 
0.0985 
0.0000 
0.0000 
0.0000 

S.E. 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 

S.E. 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

T-RATIO 

-9.44 
-5.98 
0.00 

-2.49 
0.00 
0.00 
0.00 

T-RATIO 

0.00 
O.O0 
0.00 
0,00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

T-RATIO 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
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A P P E N D I X  D 4  

Residuals versus delay 
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APPENDIX D4 

Residuals versus payment years 

I ~  1961 1970 197l 1974 1976 197I 1910 1912 

Figure D4.3 
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APPENDIX D5 

DEV. 
YEAR 

ACCI 
YEAR 

1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 

PMNT 
YEAR 

1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 

GAMMA 

1.1777 
0.0000 

-0.3478 
-0.3478 
-0.6749 
-0.6749 
.0.6749 
-0,6749 

ALPHA 

6.4594 
6.4594 
6.4594 
6.4594 
6.4594 
6.4594 
6.4694 
6,4594 
6,4594 
6.4594 
6.4594 

IOTA 

0.0000 
0.0000 
0.0000 

0.0000 
-0.4792 
0.3723 
0.0000 
0.0000 

0.0000 
0.0000 

R E G R E S S I O N  T A B L E  

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN GAMMA S.E. 

0.0993 11.86 
0.0000 0.00 -1.1777 0.0993 
0.0519 -6.70 -0.3478 0.0519 
0.0519 -6.70 0,0000 0.0000 
0.0390 -17,32 -0,3270 0,0803 
0.0390 -17,32 0.0000 0,0000 
0,0390 -17,32 0.0000 0,0000 
0,0390 -17.32 0.0000 0,0000 

ALL PARAMETERS ARE ~GNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN ALPHA S.E. 

0.0927 69.68 
0.0927 69.68 0.0000 0.0000 
0.0927 69.66 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.66 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 
0.0927 69.68 0.0000 0.0000 

ALL PARAMETERS ARE SIGNIFICANT 

S.E. 

0.0000 
0.0000 
0.0000 
0.0000 
0.1306 
0.1182 
0.0000 
0.0000 
0.0000 
0.0000 

PARAMETER ESTIMATES 

DIFFERENCE 
T-RATIO IN IOTA S.E. 

0.00 
0.00 0.0000 0.0000 
0.00 0.0000 0.0000 
0.00 0.0000 0.0000 
-3.67 -0.4792 0,1306 
3.15 0.8515 0.2330 
0.00 -0.3723 0.1182 
0.00 0.0000 0.0000 
0.00 0.0000 0.0000 

0.00 0.0000 0.0000 

ALL PARAMETERS ARE SIGNIFICANT 

T-RATIO 

- 11 .86  

-6.70 
0.00 
-4.07 
0.00 
0.00 
0.00 

T-RATIO 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

T-RATIO 

0.00 
0.00 
0.00 

-3.67 
3.65 
-3.15 
0.00 
0 O0 
0.00 
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APPENDIX D6 

( R E G R E S S I O N  O U T P U T  C O N T I N U E D )  

S = 0 . 2 6 5 4  S . S Q U A R E D  = 0 . 0 7 0 4  S - S Q U A R E D ( S C I )  = 0 . 5 4 6 9  

S(B) = 0 . 2 6 5 4  S ( B ) . S Q U A R E D  = 0 , 0 7 0 4  D E L T A  = 0 . 0 0 0 0  

R - S Q U A R E D  = 93 .5  P E R C E N T  N = 62  P = 6 .0  

SSPE = 7,:360 W S S P E  = 7 .360  A IC = 17.13 A IC(SCI )  = 43.81 
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APPENDIX D7 

Residuals versus delay 

0 I 2 3 4 ~ 6 7 I 9 

Figure D7.1 

Residuals versus accident years 
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Residuals versus payment years 
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Normal scores versus residuals 
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F O R E C A S T I N G  O U T P U T  

ASSUMED FUTURE INFLATION = 0.0000 
STANDARD ERROR = 0.0000 

EXPECTED PAYMENTS/OBSERVED PAYMENTS + . . . . . . . .  .4- 
(PAYMENTS IN $1 S) 

FORECAST MEAN PAYMENTS/STANDARD ERRORS 

EXP: 346295 1123112 1123112 793172 561671 177321 130329 66469 33951 
OBS: 193013 1584331 1151882 778980 475203 143352 128612 70845 25077 

EXP: 425750 1380806 1380806 975161 428440 314654 160233 81720 41741 
OBS: 376473 1541950 1719509 1032570 289305 382508 270087 108354 23133 

EXP: 447601 1451671 1451671 636733 650595 330803 168456 85914 43883 
OBS: 568891 1579158 1277822 734670 680369 217221 147800 57099 64829 

+ ......... 4 
EXP: 445614 1445229 898519 915576 647708 329335 167709 85533 I 43689 

m 

OBS: 428753 970640 955898 1095771 510072 491853 242995 299845 I 12280 
+ ......... + 

EXP: 535664 1080091 1559962 1100596 778597 395887 201599 102817 52517 
3BS: 458252 989072 1417606 953222 881133 278778 197156 27673 14762 

+ ......... + i 
EXP: 275565 1290006 1290006 910134 643858 327378 I 166712 85024 43429 
~BS: 355229 948807 f292900 748003 547288 274367 I 43841 22884 12207 

+ . . . . . . . .  + 

~XP: 305191 989197 989197 697906 493721 251038 127837 65198 33302 
)BS; 282419 688332 1158793 903450 629983 65999 33618 17546 9361 

÷ ......... + 
I 

~XP: 323039 1047045 1047045 738719 J 522593 265719 135313 69011 35249 
)BS: 267600 1044790 1216437 527644 I 140549 69858 35584 18574 9908 

+ ......... + 

!XP: 370037 1199377 1199377 846194 598624 304378 155000 79051 40378 
)BS: 560307 940002 1185899 221766 160997 80022 40761 21276 11350 

+ ......... + 
!XP: 418225 1355566 1355566 956389 676580 344016 175185 89345 45636 
)BS: 360171 1011773 360708 250646 181963 90443 46069 24047 12827 

0 

0 

0 

0 

O 

0 

43689 
1228O 

155334 
32822 

295165 
53323 

477376 
79132 

1027886 
167258 

2023625 
300456 

3642717 
502218 

4 .......... + 
:XP: 442022 1432697 1432697 1010807 715077 363590 185152 94429 48233 5282681 
)BS; 445545 381231 381231 264907 192317 95589 48690 25415 13557 674135 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PAYMENT YRS: ! 4721306 3518808 2235705 1316405 653075 314876 140065 48233 12948473 
30 ERRORS: i 623018 504462 345451 223516 111688 57649 29752 13557 103080~ 



APPENDIX D9 

ACC. 
YEAR EXPECTED OBSERVED 

(PAYMENTS IN $1'S) 

69 4355433 4551295 
70 5189312 5743889 
71 5267328 5327859 
72 4849689 4695982 
73 5652397 5175219 
74 4736946 4166594 
75 3475212 3662977 
76 3155847 3056471 
77 2768792 2686208 
78 1773792 1371944 
79 442022 445545 

TABLE OF OBSERVED AND EXPECTED BY YEAR 

DIFFERENCE 

$95862 
554577 
60531 

-153707 
-477178 
-57O352 
187765 
-99376 
-82584 

-401848 
3523 

PMNT 
%ERROR YEAR EXPECTED OBSERVED DIFFERENCE 

(PAYMENTS IN $1's) 

4 69 346295 193013 -153282 
9 70 1548863 1960804 411941 
1 71 2951519 3262723 311204 

-3 72 4071263 4506400 435137 
-9 73 4969396 4214487 -754909 

-13 74 3496670 3467526 -29144 
5 75 5166314 4936092 -230222 

-3 76 4908050 4270279 -637771 
-3 77 4708472 5166110 457638 

-29 78 4697662 4569353 -128309 
0 79 4802265 4337196 -465069 

%ERROR 

-79 
21 
9 
9 

-17 
0 

-4 
-14 

8 
-2 

-10 



4DI) 
F O R E C A S T I N G  O U T P U T  

ASSUMED FUTURE tNFLA]ION = 00000  
STANDARD ERROR = 0.0000 

EXPECTED PAYMENTS/OBSERVED PAYMENTS 
EAR 

+ . . . . . . . .  4- 
(PAYMENTS IN $1 S) 

FORECAST MEAN PAYMENTS/STANDARD ERROrri 

169 EXP: 346295 1123112 1123112 
OBS: 193013 1584331 1151882 

J70 EXP: 425750 1380806 1380806 
OB S: 376473 15,41950 1719509 

171 EXP: 447601 1451671 1461671 
OBS: 568891 1579158 1277822 

J72 EXP: 445614 1445229 898519 
OBS: 428753 970640 955898 

}73 EXP: 535664 1080091 1559962 
OBS: 458252 989072 1417606 

~74 EXP: 275565 1290006 1290006 
OBS: 355229 948807 12929QQ 

175 EXP: 305191 989197 989197 
OBS: 282419 688332 1158793 

J76 EXP: 323039 1047045 1047045 
OBS: 267600 1044790 1216437 

=77 EXP: 370037 1199377 1199377 
OBS: 560307 940002 1185699 

~78 

793172 561671 177321 130329 66469 33951 
778980 475203 143352 128612 70845 2507? 

975161 428440 314654 160233 81720 41741 
1032570 289305 382508 270087 108354 23133 

636733 650595 330803 168456 85914 43883 
734670 680369 217221 147800 57099 64829 

+ . . . . . . . .  + 

915576 647708 329335 167709 85533 I 43689 4368' 
1095771 510072 491853 242996 299845 I 12280 1228, 

+ ......... + i 
1100596 778597 395887 201599 ] 102817 52517 15533 
953222 881133 278778 197156 I 27673 14762 3282 

÷ ......... + I 
910134 643858 327378 ~ 166712 85024 43429 29516' 
748003 547288 274367 I 43841 22884 12207 5332 

÷ ......... + 

697906 493721 251038 127837 65198 33302 477371 
903450 629983 65999 33618 17548 9361 7913: 

+ ......... + ! 

738719 ~ 522593 265719 135313 69011 35249 1027861 
527644 I 140549 69858 3558~ 18574 9908 16725~ 

+ ......... + 

I 846194 598624 304378 155000 79051 40378 202362! 
221766 160997 80022 40761 21276 11350 300451 

i + ......... ÷ 
EXP: 418225 1355566 1355566 956389 676580 344016 175185 89345 45636 364271, 
OBS: 360171 lO 11773 360708 250646 181963 90443 46069 24047 12827 5022 I 

+ ......... 
~79 EXP: 442022 i 1432697 1432697 1010807 715077 363590 185152' 944229 48233 5282r~L 

OBS: 445545 | 381231 381231 264907 192317 95589 48690 25415 13557 67413' 

) T.FOR PAYMENT YRS: I I 4721306 3518808 2235705 1316405 653075 314876 140065 482233 1294 84 / 

fANOARD ERRORS: I 623018 504462 345451 223516 111688 57849 29752 13557 103()HH~ 



APPENDIX D1O 

VAU DATION 

OEV. 
YEAR GAMMA 

1 1.2466 
2 0.0000 
3 -0.4024 
4 -0.4024 
5 -0,5544 
6 -0.6544 
7 -0.6544 
8 -0.5544 

ACCI 
YEAR ALPHA 

1969 6.4278 
1970 6.4278 
1971 6.4278 
1972 6.4278 
1973 6.4278 
1974 6,4278 
1975 6.4278 
1976 6.4276 
1977 6.4276 
1978 6,4278 
1979 6,4278 

PMNT 
YEAR IOTA 

1970 0.0000 
1971 0.0000 
1972 0,0000 
1973 0.0000 
1974 -0.4798 
1975 0.3067 
1976 0.0000 
1977 0.0000 
1978 0.0000 
1979 0.0000 

R E G R E S S I O N  T A B L E  

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN GAMMA S.E. T-RATIO 

0.1076 11.58 
0.0000 0.00 -1.2468 0.1076 -11,58 
0.0639 -6.29 -0.4024 0.0639 -6.29 
0.0639 -6.29 0.0000 0,0000 0.00 
0.0753 -7,37 -0,1520 0,1213 -1,25 
0,0753 -7.37 0.0000 0.0000 0,00 
0,0753 -7.37 0.0000 0.0000 0.00 
0,0753 -7.37 0,0000 0,0000 0.00 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN ALPHA S.E. T-RATIO 

0.0922 69.72 
0.0922 69.72 0.0000 0,0000 0.00 
0.0922 69.72 0.0000 0.0000 0.00 
0,0922 69.72 0.0000 0.0000 0 00 
0,0922 69.72 0.0000 0,0000 0.00 
0,0922 69.72 0.0000 0.0000 0,00 
0,0922 69.72 0,0000 0.0000 0,00' 
0,0922 69.72 0,0000 0,0000 0.00 
0.0922 69,72 0,0000 0,0000 0.00 
0.0922 69.72 0,0000 0.0000 0,00 
0,0922 69.72 0.0000 0,0000 0.00 

ALL PARAMETERS ARE SIGNIFICANT 

PARAMETER ESTIMATES 

DIFFERENCE 
S.E. T-RATIO IN IOTA S.E. T-RATIO 

0.0000 0,00 
0.0000 0.00 0.0000 0.0000 0,00 
0.0000 0.00 0.0000 0.0000 0.00 
0.0000 0.00 0.0000 0.0000 0.00 
O, 1206 -3,97 -0,4796 O. 1206 -3.97 
0.1203 2.57 0,7686 0.2196 3.59 
0,0000 0.00 -0.3087 0.1203 -2.57 
0.0000 0.00 0.0000 0.0000 0.00 
0.0000 0,00 0.0000 0.0000 0.00 

0.0000 ALL 0 O0 0.0000 0.0000 0.00 
PA~AM~TEIZS ARE 5~61,1ilCieANT 
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A P P E N D I X  0 1 1  

All residuals versus delay 
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Figure 011.1 

All residuals versus accident years 
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All residuals versus payment years 
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All residuals versus predicted values 
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A P P E N D I X  O 1 2  

Validated residuals versus delay 
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Validated residuals versus payment years 
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F O R E C A S T I N G  O U T P U T  
. IDATION MODEL 

ASSUMED FUTURE INFLATION = 0.0000 
STANDARD ERROR = 0.0000 

~R 
EXPECTED PAYMENTS/OBSERVED PAYMENTS 

(PAYMENTS IN $1 2) 
FORECAST MEAN PAYMENTS/STANDARD ERROR: 

EXP: 333078 1157384 1157384 
ORS: 193013 1584331 1151882 

774069 519825 184730 144344 83624 48721 
778980 475203 143352 128612 70845 25077 

) EXP: 409501 1422941 1422941 
ORS: 376473 15419,50 1719509 

951676 395746 308064 177464 102811 59900 
1032570 289305 382508 270087 108354 23133 

EXP: 430518 1495969 1495969 
OBS: 568891 157915,8 1277822 

EXP: 428607 1489330 925009 
ORS: 428753 970640 955898 

EXP: 515220 1111935 1510497 
OBS: 582529 989072 1417606 

EXP: 264794 1249101 1249101 
ORS: 355229 948807 1292900 

EXP: 275840 957831 957831 
ORS: 282419 688332 1158793 

EXP: 291071 1013844 1013844 
OBS: 267600 1044790 1216437 

EXP: 334450 1161346 1161346 
ORS: 560307 940002 1185899 

+ ......... -F I 
E XP: 378003 1312583 [ 1312583 
ORS: 360171 1011773 I 318349 

+ ......... + 

1387267 1387267 EXP: 

FOR PAYMENT YRS: 
~DARD ERRORS: 

399511 

620480 565416 323874 186571 108087 62974 
734670 680369 217221 147800 57099 64829 

+ ......... + I 
839313 562907 322437 185743 107607 I 62695 

1095771 510072 491853 242995 299845 I 20985 
+ . . . . . . . .  + i 

1008922 676660 387595 223278 I 129353 75364 
953222 881133 278778 197156 I 36802 25226 

+ ......... ÷ 

834325 559561 320521 184639 106968 62322 
748003 547288 274367 46231 30433 20860 

+ . . . . . . . .  + 

639774 429081 245780 141584 82025 47790 
903450 629983 58502 35451 23336 15996 

+ ......... + 

677187 454173 260153 149864 86821 50584 
527644 113657 61923 '37524 24701 16931 

+ ......... + 
I 775710 520250 298003 171668 99453 57944 

184214 130192 70932 42983 28295 19395 

876727 588000 336810 194023 112404 65489 
208204 147147 80169 48581 31980 21920 

926612 621456 355974 205063 118800 69216 

OBS: 445545 336463 336463 320050 155519 84731 51345 33799 23168 
.................................. ~ ................... + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  + ......................................... 

4552200 3368314 2106825 1264545 700034 375411 184289 69216 
578766 453677 299060 193348 117101 77112 47562 23168 

0 
0 

0 
0 

0 
O 

62695 
20985 

204717 
52836 

353929 
72717 

517179 
85810 

1001596 
147670 

1923027 
262653 

3486O36 
452821 

5071655 
625691 

12620833 
10720~9 



A IDlY 

TABLE OF OBSERVED AND EXPECTED BY YEAR 

ACC. 
YEAR 

69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

PMNT 
EXPECTED OBSERVED DIFFERENCE %ER YEAR EXPECTED OBSERVED DIFFERENCE 

(PAYMENTS IN l l "S )  (PAYMENTS IN $1's) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4403160 4551295 148135 3 69 333078 193013 -140065 
7251043 5743889 492846 8 70 1566886 1960804 393918 
5289859 5327859 38000 0 71 3010843 3262723 251880 
4753347 4695982 -57365 -1 72 4121587 4506400 384813 
5434107 5175219 -258888 -5 73 4972020 4214487 -757533 
4477402 4166594 -310808 -7 74 3502693 3467526 -35167 
3260356 3662977 402621 10 75 4892575 4936092 43517 
2996847 3056471 59624 1 76 4655693 4270279 -385414 
2657142 2686208 29066 1 77 4477648 5166110 688462 
1690586 1371944 -318642 -23 78 4493854 4569353 75499 
399511 445545 46034 10 79 4586481 4337196 -249285 

%ER 

-72 
20 

7 
8 

-17 
-1 
0 

-9 
13 
I 

-5 


