
The intertwining threats of climate change and catastrophe challenge society’s ability to interpret 
shocks like recent hurricanes and wildfires.  New capabilities have arisen in the recently expanded 
power of home computers which can now process vast databases; and in shared tools, such as R 
programming which offers calculation tools in combination with palatable “visual analysis” through 
plots and maps. Utilizing these technologies, this paper serves as a reference guide to weather analysis 
as it pertains to climate, and as regional climates relate to loss.  A high level of detail in daily station 
records allows matching of specific weather measurements to losses in both time and location, lending 
ability to identify thresholds, durations, and combined forces leading to loss; further, changes in data or 
data quality can then be distinguished from shifts in climate.  Physical explanations provide essential 
directions to begin exploration, focusing on an example of the phases of El Niño Southern Oscillation 
(ENSO) by which climate varies throughout the globe naturally, not only in extremes.  The venture to 
discover climate’s effect on losses becomes less daunting through pre-written modifiable code, sources 
for ENSO indices and other meaningful inputs, and a useful collection of tables and visual references. 

Availability:  https://cran.r-project.org/ 
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ 

Keywords: Climate change, weather analysis, El Niño Southern Oscillation (ENSO), R programming, maps 

Abbreviations: 

ENSO El Niño Southern Oscillation 
GHCN-D Global Historical Climatology Network – Daily 

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt 

NOAA National Oceanic & Atmospheric Administration 
SST Sea Surface Temperature 

GHCN Weather Elements 

PRCP Precipitation        

SNOW Snowfall

SNWD Snow depth

TMAX Maximum temperature  

TMIN Minimum temperature  

WIND* elements are coded to include: 

AWND   Average daily wind speed 

WSF1   Fastest 1-minute wind speed 

WSF2   Fastest 2-minute wind speed 

WSF5   Fastest 5-second wind speed 

WSFG   Peak gust wind speed 

WSFI   Highest instantaneous wind speed 

WSFM   Fastest mile wind speed         

(* WIND is not an element abbreviation of GHCN-D.) 

Meteorology for Actuaries – Part 2 
Climate and the El Niño Southern Oscillation 

Gwendolyn Anderson, ACAS, MAAA 

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 1



1. INTRODUCTION 

 Part One provided a basic backdrop of maps that can be instantly plotted in R language.  

Weather and one’s own loss values may now be added to these backdrops.  Part Two introduces 

daily meteorological data, publicly available through the Global Historical Climatology Network – 

Daily (GHCN-D).   These vast datasets offer the level of detail suited to matching with weather-

related losses in both time and location, easily accessed by R code with 8GB memory, a recent 

standard for most home computers.  These combined advancements – memory, language, and data 

– expand the potential for exploring not only weather events but overall shifts of climate.   This 

paper provides code, input sources and references, along with physical explanations of the weather 

phenomenon.  Climate cycles are illustrated through an example of the El Niño Southern 

Oscillation.  Many maps and plots in this paper are produced in R language from modifiable code 

provided in the appendix.   

 

1.1 Research Context  

 As extreme weather events devastate North America, continually breaking records of a recent past, 

concerns widen over what seem to be pronounced changes in climate: is the potential for change 

understood well enough to simply prepare for the next storm?  In absence of human industry, climate 

already changes naturally, with a myriad of interactions from diverse sources on multiple scales.  

Adding layers of complexity is the growing range of human activities that appear to impact climate 

systems, all while human skills and technologies advance in sync with nature’s destruction.  Portentous 

storms assert the need to utilize modern technologies to a timely advantage, to place state-of-the-art 

tools in reach to those with both common and uncommon skills.   

 

1.1.1 Record Storm Losses 

 The costliest storms in United States history, those producing damages of $1 billion or more, are 

plotted below chronologically in actual unadjusted costs.  A notable escalation of events occurred in 

the last three decades, disrupting the scale of catastrophic loss.  Hurricane Hugo took a destructive 

inland course in 1989, followed in 1992 by Andrew which more than doubled record cost in three 

short years.  Andrew led to insurer insolvencies, sending shock and a wake-up call through the 

industry.  Professional leaders then turned to catastrophe modeling for answers, simulating the 

physical process of hurricane activity within trade secret models. This move proved effective in 

preparing financially for the spate of mega storms to follow.   
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 By 2005, Katrina seemed to break the all the rules, striking levees and storm walls which had not 

been properly engineered to prevent vast flooding of the low-lying New Orleans area.  Failed planning, 

it seemed, had quadrupled the former record set by Andrew.   

 
 
Figure 1.  Costliest Atlantic Hurricanes - Katrina damages were a multiple of preceding “mega storms” 
due to failed engineering.  In absence of adjustments, more recent storms seem to rescale catastrophes since 
the post-Andrew era.  Inset - Andrew damages were unprecedented and took insurers by surprise.  (All 
storms exceeding U.S. $1B in actual, unadjusted damages.)   
 

 Yet in 2012, Sandy struck the most densely populated area of the United States, unusually far to 

the north and late in season, again destroying property at multiple times the scope of Andrew.  Five 

years later, the combined severity of three major land falling hurricanes in 2017 is unprecedented for 

a single season, with no poor engineering to blame.  It is clear from these pictures that the costliest 

storms in all of history are also the most recent – imagine the shape had the Gulf Coast been protected 

against Katrina.  These trends would appear to belie randomness and raise new questions surrounding 

severe weather and climate.  In response to public concern, the role and sources of climate change 

might now be approached across broader disciplines.   
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1.1.2 A New Kind of Global Warming  

 Actuaries, modelers, economists and scientists alike are inclined to bring the historical loss record 

in line with present day conditions.  Such adjustments include consideration for not only dollar 

inflation, but construction upgrades, migrations of population to coastlines, changes in levels of wealth 

near ocean fronts; and in the case of an insurance loss history, any changes in coverages or generosity 

of settlement.  These financial insights alter the picture entirely: by various estimates of ‘normalized’ 

storm damages spanning over a century, the outcome appears a random process.  Considering storms 

since 1900, the ICAT Damage Estimator [www.icatdamageestimator.com] ranks Katrina only as the 

fourth most damaging storm through 2012, and Sandy as eighth.     

 Hidden within the appearance of randomness is another process, recognized mainly in the scientific 

community, that might invite further refinements to views of weather-related losses.  Somewhere in 

between the view of escalating catastrophes and the view of random losses, lies the natural force of 

cyclical climate change.  The El Niño Southern Oscillation (ENSO) exerts major influence on the 

strength and timing of Atlantic hurricanes.  Such cycles exist in absence of any human contribution to 

the atmosphere, and are irregular, reflecting a certain randomness of nature occurring in phases.  These 

cycles may also be prone to change and may in themselves be subject to influences.  How should 

climate be regarded if natural cycles might differ in frequency, duration or amplitude over future 

decades compared to the past century?   

 The same weather patterns or phases that influence severe weather events can be discerned more 

plainly in common weather elements like rainfall and temperature.  These elements might attract less 

media attention than hurricanes, but will provide a far less volatile example of natural climate cycles.  

As a base illustration, Florida rainfall will be compared to ENSO indices in winter months, outside of 

the hurricane season.   

 The actuary, whose forté is prediction from limited data, might benefit from stepping into the 

shoes of the scientist, and might even tighten a few laces to fit a loss perspective.  The weather data 

history is fraught with missing records and changes of stations whose measurements depend on 

elevation and surrounding conditions.  If inflation, population, construction, wealth and coverage were 

not enough, changes in record keeping could also be mistaken for ‘climate change.’  The insurance 

industry may wish to weigh in on weather data collection now, to better account for climate shifts as 

they arrive.    

 A new trend in global warming may be in sight: a warming up to a cooperation in use of resources, 

from shared tools to shared understanding.  Perhaps this trend may lead from strong varied opinions 

toward the exploration of facts and figures reinforced by the science that explains the physical 

phenomenon of weather.    
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1.2 Objective 

 Since research on weather and climate comes primarily from outside of the insurance sector, little 

focus is placed on loss estimates.  Within the insurance industry, most research on these topics remains 

proprietary, limiting the public’s grasp of the situation and limiting participation by those who might 

strengthen the climate conversation.  This paper seeks to remove limitations to analysis.  At most, the 

boundlessness of relationships to be explored might be recognized.  At least, a highly detailed resource 

of element measurements should illuminate the sparseness of record available by which to identify 

climate shifts.   

 This paper provides tools and references to accompany the vast daily station data of the Global 

Historical Climatology Network (GHCN), along with an understanding of the physical processes of 

weather as insight to the analysis of weather peril losses.  A framework is provided through code and 

useful references, with an example of the El Niño Southern Oscillation and Florida winter rainfall.  

Broad paths may be explored through this data set, whether the direction one wishes to pursue is 

global or focused within a unique region.     

 

1.3 Outline 

 Background and Methods, Section 2, suggests methods for matching daily weather data sets to 

losses, through focus on damageability thresholds, durations, and interactions of weather elements 

that lead to loss.  Beyond a programming method, a background in the physical phenomenon of 

weather guides interpretation of the data set and provides a basis for analysis.  The description 

begins with the source of weather: the heat of the equator.  Next, the motion of weather enters 

through the atmospheric circulation by which the heat is redistributed on earth.  This leads to the 

core phenomenon to be covered, the El Niño Southern Oscillation (ENSO), with its pronounced 

influence on weather patterns in parts the globe distant from its origination around the equatorial 

Pacific.  Sources are provided for indices that measure different oceanic regions of the ENSO phase 

by Sea Surface Temperature (SST), pressure, and other attributes.  The time scale of ‘climate’ is 

differentiated from that of ‘weather,’ and cycles are recognized as a climate determinant.  The short 

history of meteorological records gives insight into the sparseness of measurement available to 

compare climate over time, in spite of large data sets available today.  The actuary’s unique 

capabilities where data is lacking could be constructive contributors in the climate arena.   

 Results, Section 3, presents example findings from code output, including United States maps of 

station locations; and choropleths, anomalies color-coded by state.  Some summaries of missing 

records and data changes are given by year.  Florida winter rainfall is shown to correlate well to 

some ENSO indices and not to others.    
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 Code to process the GHCN-D data is provided in the appendix.  The code is intended for 

modification to the level desired.   

 

2. BACKGROUND AND METHODS 

 The relationship between weather perils and insurance losses may be explored by linking a history 

of loss and exposures to the meteorological data.  An approach is desired that would isolate the 

types of weather events leading to loss.  Some background in the physical process of weather 

provide necessary insights to the analysis, bringing awareness of the natural climate cycles of the El 

Niño Southern Oscillation.  Data quality and completeness require attention so that data changes 

not be mistaken for ‘climate change.’ 

 

2.1 Thresholds 

 A high level of detail in daily station records allows matching of specific weather measurements to 

losses in both time and location.  This detail lends the ability to establish thresholds at which losses 

are likely to occur.  Thresholds tend to represent physical phenomena, such as zero degrees Celsius at 

which water freezes, or wind speeds that topple trees.   

 Durations of extreme weather are also relevant, and can be tracked daily up to the time of loss, 

such as low levels of precipitation eventually leading to crop loss.  Combined forces may lead to 

damages, such as drought accompanied by high temperatures.  Damaging interaction of weather 

elements may be intertemporal, such as drought-inflicted regions becoming susceptible to fires or 

mudslides with higher temperatures or rainfall, respectively.  Thresholds should be expected to vary 

by region, for instance, Seattle with its immense drainage capacity may withstand multiples the rainfall 

of flood-prone Charleston.   

 Thresholds and durations cannot be extracted from monthly summaries, and loss events cannot 

be pinpointed in data sets that have been gridded in rectangular areas encompassing multiple stations.  

A maximum monthly temperature or average monthly temperature is not useful.  Summaries that 

count threshold values can be created from daily data while retaining the source detail.  Care must be 

taken to adjust for various changes to daily record keeping over time. 

 For the purpose of measuring climate change, standard deviation anomalies from a selected base 

period average serve as straightforward and meaningful measures.  The anomaly will usually be 

calculated for a summary period, such as a month or year, compared to some longer base of 30 

Januaries or 30 full years, for instance.  These figures give an intuitive sense of fluctuation across time 

with appropriate scaling for the selected region; a large anomaly of rainfall in the desert will represent 
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a small quantity in comparison to the same anomaly in the tropics.  In absence of climate change, 

anomalies will take values spread about zero according to the stable underlying distribution of the 

element.  Relative values like temperatures will be normally distributed while quantities like 

precipitation, bounded below by zero, will be skew. 

 Some regions suffer no loss from large deviation weather events while others regions hover at the 

edge of the climate extremes where disasters occur.  Anomalous weather events could impact loss if 

present climate extremes of a region are close to loss thresholds.  Attention should be given to cycles 

and shifts of climate in regions where loss thresholds have been crossed or where near-threshold 

weather patterns can be identified.  The distribution of the weather element could be tracked over 

time or compared against the base period.     

 One familiar threshold guide is the Saffir-Simpson scale, which assigns a level of damage to 

hurricane categories by wind speed.  The types of damages will vary by region and by the types of 

buildings in the region.  The same damageability scales would clearly not apply in a country with 

building standards inferior to those of the United States.   

 

Table 1. Saffir-Simpson Hurricane Wind Scale  

Category Sustained Winds Damages 

1 74-95 mph Very dangerous winds will produce some damage 

2 96-110 mph Extremely dangerous winds will cause extensive damage 

3 111-129 mph Devastating damage will occur 

4 130-156 mph Catastrophic damage will occur 

5 157+ mph Catastrophic damage will occur with increased severity 

 

 Station detail is especially critical for ascertaining data completeness and quality, a realization erased 

by most summaries and grids.  A common practice before 1982 was to assume missing daily quantity 

records were zero, a critical value for tracking drought.  Thresholds cannot be reliably identified on 

days where values are left blank or assumed zero, unless, of course, a method is employed to generate 

values providing better information than the entered records.   

 With some R code already written and ready to run, delving into the data should be straightforward.  

The analysis is perhaps only as complicated as the weather.   

  

2.2 The Source of Weather 

 A grasp of the concept of climate and its potential for change stems from understanding the 

physical source of weather: heat.  The basics of daily and seasonal weather, which derive from heat 
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and movement, explain the mechanisms of the El Niño Southern Oscillation, or “ENSO,” with its 

varying phases of impact on regional climates.   

 The intense heat from the sun’s rays near the equator seeks to equalize itself across the earth 

through winds and currents, all while the earth is engaged in two circular motions, rotating on a tilted 

axis while simultaneously orbiting the sun.  People speak often of the “sunrise” and “sunset,” and of 

changes in weather they feel which may be swift and drastic.  Yet holding constant is the imperceptive 

quality of the underlying phenomena of motion around both an axis and a “stationary” sun, a sun that 

neither rises nor sets.  While of little consequence to weather, the entire solar system including the sun 

and earth are actually moving through space around the Milky Way Galaxy in a third grander orbit.  

So the earth is in orbit, along with other planets, in a spiraling motion through space about a moving 

sun.  The solar system’s orbit might only impact the earth’s climate over tens of millions of years.  

What is more, the Milky Way Galaxy is itself in orbit with other galaxies.     

 While essentially “sitting still” at her desk, an analyst could make fairly precise calculations of the 

earth’s rotational motion based on latitude, all while feeling nothing of the earth beneath her speeding 

around and around at a staggering rate of over 800 miles per hour.  This figure would increase to over 

1,000 mph were she located near the equator.  Simultaneously, she is orbiting the sun at 66,700 miles 

per hour so that in one full turn of the seasons, the distance traveled amounts to 584 million miles.  

The earth makes one complete revolution, completing a “sidereal day,” in about four minutes short 

of 24 hours. Over four thousand miles of orbit completes each cycle of the “solar” day in an average 

of around four minutes – astounding speed!  Since the earth’s orbit it elliptical, the time and distance 

to complete a solar day varies with closeness to the sun.  By the earth’s dramatic motion in space, the 

state of heat inequality is driven by a rapid change of position.   

 With one half of the spheroid planet always illuminated, the surface of the earth travels thousands 

of miles in a single day’s rotation to distribute heat evenly around it like a chicken roasting on a spit, 

which translates into a seemingly trivial differentiation of temperatures: cooler in the morning and at 

night compared to afternoon.  The lag of several hours in respectively the warmest and coolest 

temperatures of the day following midday and midnight, comes from the magnificent ability of the 

earth’s surface and atmosphere to store and slowly release heat energy.  The hundreds of millions of miles 

in revolution through the solar system differentiates seasons – but only due to the slight tilt of the 

earth on its rotational axis.  In its elliptical orbit, the earth’s varying distance from the sun does not 

significantly influence temperatures.  Rather the angle of the sun’s rays decides intensity.  A common 

illustration is a flashlight directed straight at a wall: moving the distance of the beam’s source forward 

and away scarcely influences the light’s intensity compared to angling its direction to a slant – the angle 

diffuses the brightness.  Were the earth to spin straight up and down on a vertical axis while orbiting 

the sun, even hundreds of millions of miles could not produce a January distinguishable from June.  
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 The atmospheric circulation on earth – a large scale movement of air distributing thermal energy 

across the earth’s surface – can be described by the process of “convection.”  Convection is a circular 

motion of molecules within fluid, where fluids encompass both liquids and gases such as air.  With a 

difference in temperature, hotter material rises while the colder sinks with gravity.  In a room, hot air 

rises to the ceiling.  On earth, the convective process occurs within the troposphere both latitudinally, 

from the equator to the poles, and longitudinally across the equator.  From the equator to the poles, 

the decrease of solar intensity with latitude sets convective circulation patterns into motion.  Along 

the equator, a difference in temperature arises between land and ocean because of the substantial 

difference in the amount of heat these surfaces types absorb and emit.   

 
 

Figure 2.  This illustration shows “idealized” patterns of ocean currents and the six convective 
cells which wrap around the globe within the troposphere, the lowest level of the atmosphere, 
where weather occurs.  The rotation of the earth produces ocean currents flowing in opposite 
directions and breaks in the convective circulation loops at approximately 30° and 60° north 
and south.   

 

 

 Were the earth to stand still on its axis, cold winds would blow from the poles to the equator across 

its surface while hot air would rise at the equator in a convective circulation towards the poles.  

Rotation enters this equation with an elaborate influence, generating six segments of “idealized” wind 

directions that deviate from the theory, as all weather does, with changes in terrain and a profusion of 

random disturbances and interactions.  Nearest the equator are the easterly (i.e. “from the east”) trade 

winds which early merchant ships sailed, ranging from about 0° to 30° north and south.  In both 

hemispheres from around 30° to 60° are the westerlies (i.e. “from the west”) by which those ships 
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made their return voyages, and at roughly 60° to 90° the circulation again reverses to easterly polar 

winds.  Were it not for the complex circulation patterns arising from the earth’s rotation, 

intercontinental trade could not have taken place by sail and oar.  The force of the earth’s rotation is 

strongest at the poles and weakens towards the equator, where seafarers could become trapped in the 

calm of the “doldrums.”  The circulation pattern along the equator, where rotation produces no force 

of deflection, is known as the “Walker circulation.”   At the equator, easterly winds across the wide 

open Pacific, in concert with the Walker circulation, give rise to the El Niño Southern Oscillation.  

Around the 30° latitude lines, subsiding dry air of the convective cells generates the desert regions in 

bands across Africa and Australia.  From as far away as the farthest eastern end of the African deserts, 

dry subsiding air stirs winds that may continue to travel from east to west across the hot African land 

deriving strength to propel still further west across a warm Atlantic and morph into some of the most 

powerful hurricanes striking the eastern United States.  This storm pathway illustrates the weather 

system is truly massive.     

 

2.3 The Atmosphere 

 The atmosphere would be “paper thin” if the earth were scaled on the size of a basketball.  The 

phenomenon of weather occurs only within its very base layer, the troposphere.  Mount Everest, at 

just over 29,000 feet elevation (about five and a half miles), sits in the upper troposphere.  The final 

layer of atmosphere ends about 6,200 miles from the surface which would only be a twelve hour flight, 

could an airplane traverse the thinning air.    

 Cold temperatures compress molecules, so that colder air is denser with less movement of 

molecules.  Areas of high pressure – which essentially originate from coldness – move towards areas 

of low pressure – similarly defined by warmth – so the pressure differences from unequal heating near 

the earth’s surface give rise to winds.  The height of the troposphere varies with temperature and 

changes with seasons: at the equator it may extend as high as twelve miles while the winter poles may 

compress the layer to seven miles.   

 The earth’s atmosphere is naturally comprised of gases.  In dry air, without consideration of water 

vapor, the composition is roughly 78% nitrogen and 21% oxygen, gases which allow heat leaving the 

earth’s surface to pass through and escape into space.  The remaining roughly one percent of the 

mixture includes a very small proportion of “greenhouse gases” – gases typically measured in parts 

per million or billion which absorb heat released from the earth and trap them near the surface.  These 

gases include carbon dioxide, methane and nitrous oxide. Water vapor is another greenhouse gas 

present in varying proportions by region, making up nearly 4% of the troposphere’s gases in tropical 

regions near the equator, but closer to 1% near the poles.  The proportion also varies through the 
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natural cycles of cloud formation and precipitation.  Without naturally occurring greenhouse gases, 

scientists estimate the average temperature at the earth’s surface would drop from 59°F to 0°F.  The 

mixture is precise: with less than 16% oxygen content, ordinary fires would not burn; while high 

oxygen concentrations would aggravate combustibility.  Therefore these molecular elements are 

precious to life on earth, and no more detectable to us than the motion of the earth beneath our feet.  

Yet imagine in its entirety, only a few miles outside the range of sight and rotating along with us, this 

thin invisible atmosphere is enough to disguise the hurling high speeds of the earth’s rotation and 

orbit!  This illustrates that the climate system, while massive, is also meticulously detailed.     

 Scientists agree that adding greenhouse gases to the atmosphere will raise surface temperatures.   

The warming effect of recent history is best illustrated in the award-winning documentary “Chasing 

Ice” in which photographer James Balof chronicles the rapid melting of glaciers.  Charles Keeling 

began recording carbon dioxide levels in the atmosphere at Mauna Loa Observatory beginning in 

1958, noting seasonal variations of concentrations in the atmosphere; by 1961 he issued the first 

warnings of anthropogenic contributions to the greenhouse effect.  Roger Pielke Sr. stirred 

controversy in 2007 by claiming carbon dioxide accounts for only 28% of human-caused warming, 

stressing the remaining 72% is still human caused.  

 Large bodies of water absorb and release heat at a much slower rate than the atmosphere or ground 

terrain, requiring over a thousand times the energy to heat as the same volume of air.  The upper ocean 

near the surface can store approximately 30 times the heat as the atmosphere immediately above it. 

Interaction between water bodies and the atmosphere also creates sea breezes.  These phenomena 

lead climates near coasts and large lakes to be more temperate than areas inland.  The ocean is a 

gigantic sink for atmospheric warming, the effects of which may not be felt so well on land until the 

ocean has reached its full capacity for absorption.   

 Other human activities and natural forces can cause temperatures to rise, or fall, and climate change 

collectively refers to all types of changes to regional climates or long-term weather patterns and 

extremes, not only heating, but cooling or changes in precipitation or winds.  For instance, 

deforestation releases carbon to the atmosphere but further alters surface reflectivity from greener to 

drier while removing the valuable balancing process of photosynthesis by which carbon dioxide is 

converted with sunlight into oxygen.  Forests can suddenly be replaced by agriculture or housing 

tracts; water use, land use, and controlled burning can all immediately influence climate.  City streets 

of asphalt have induced the “urban heat island effect,” an effect that can be counteracted with the 

numerous benefits of roof gardens.  Nuclear power plants raise the water temperature of adjacent 

lakes that supply water to cooling towers.  Natural volcanic eruptions spew carbon and particulate 

matter into the atmosphere, typically cooling the earth for several years from the high reflectivity of 

particles.  Particulate matter from all types of pollution, even dust rising from cleared fields, assists 
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storm clouds to grow larger and form into more powerful storms.  While greenhouse effects are 

described as slow and gradual, many types of climate change are more immediate including the natural 

cycles of ENSO. 

 

2.4 El Niño Southern Oscillation 

 The Pacific is the largest body of water in the world, twice as large as the Atlantic and far deeper.  

Its expanse across the hot equatorial region wraps nearly half the earth’s circumference, spreading the 

canvas for the brush strokes of the El Niño Southern Oscillation, or simply ENSO.  Temperature and 

pressure will typically differ substantially from one end of the Pacific to the other.  The tropics of the 

western Pacific hold some of the hottest water in the world’s oceans: surface temperatures may warm 

to around 84°F covering an area the size of Australia.  At the Peruvian coast, temperatures may be as 

cold as 60°, uncharacteristically low for the tropics.  Yet the sun’s rays are of equal strength all across 

this equatorial region. 

 Motions and attributes of oceans are not separated from atmosphere; rather the two interact with 

“positive feedback loops” by which changes are amplified, pushing away from equilibrium to invite 

instability.  The atmosphere responds to disruptions quickly in time scales of days to weeks, while the 

ocean reacts more slowly, over months to years.  The El Niño Southern Oscillation is a single large-

scale coupled interaction of atmospheric pressure and ocean temperature across the Pacific Ocean, 

stretching from the coast of South America at Ecuador and Peru in the east to Indonesia and Australia 

in the west.  “Southern Oscillation” refers to the “seesaw” effect in atmospheric pressure between the 

eastern and western Pacific: when pressure at one end shifts to lower than normal the other end will 

become higher than normal.  “El Niño” refers to ocean warming across the Pacific equator which 

occurs together with the dominating shifts of pressure.  These shifts in the tropics can exert powerful 

influence on global weather.   

 Beneath an evenly intense sun, a striking contrast in surface temperatures arises at opposite ends 

of the central Pacific.  Five major contributors emanate primarily from the earth’s rotation: (1) heating 

by both sun and warm air as water is pushed westward along the equator by trade winds, (2) upwelling 

along the equator by the same motion of the trade winds, (3) cold upwelling at the coast of Peru, (4) 

warm downwelling at Indonesia, and (5) the change in the depth at which colder waters lie from the 

surface, across the equator.  The underlying mechanisms deserve elaboration before considering how 

a reversal takes place. 

 As winds blow across the surface of any body of water, the turning motion of the rotating earth 

will cause the water to spiral so that it moves overall perpendicularly to the wind direction.  In the 

southern hemisphere, water is deflected to the left of the wind direction; and in the northern to the 
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right.  Winds blowing towards the equator from both the north and the south turn towards the west.  

As water is displaced along the equator from either side, water from below the surface rushes in to 

replenish the space.  Winds blowing northward along the coast of Peru similarly produce an upwelling, 

where temperatures near the ocean’s surface are cold.  The opposite occurs at Indonesia and the other 

land barriers of the Maritime Continent, where westward winds produce a downwelling of warm 

surface waters according to the direction of the earth’s rotation.  Sinking warm waters push the colder 

basin waters below down to even further depths.  Note that the ocean is stratified: water near the 

surface is warm from various influences such as the sun’s heat, evaporation, and mixing winds; while 

deeper waters are still and cold.  The “thermocline” lies in between, a thin dividing layer in which 

temperatures drop quickly through a shallow depth.  The sinking of warm waters at the western Pacific 

encourage a downward slope to the thermocline from east to west.  The waters upwelled along the 

equator by “the trades” increase in warmth moving west as the cold lower layer slopes down further 

and further below surface.      

 

 
Source: NOAA Jetstream 

 
Figure 3. El Niño Southern Oscillation.  The ‘normal’ state of the Pacific Ocean is illustrated on the 
left; but when conditions are amplified the same pattern become a La Niña event.  An El Niño event is 
illustrated on the right.   

 

Warm surface water pushed westward by the trades eventually encounters barriers in the land 

masses of Australia and Indonesia, where it literally piles up.  Over time the western sea level may 

gain 20 inches elevation, forming a mound of water visible from space.  This view serves as an 

assessment of the ENSO phase.  The slope of the ocean’s surface, then, opposes the slope of the 

thermocline.  The heated water that reaches the Maritime Continent of Indonesia evaporates from 

the ocean, condenses into rain clouds, and pours out tropical rain storms, fueling upper level winds.  

Every year, over 100 quadrillion (1017) gallons of water evaporates from the ocean, mostly around 
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the tropical equator, with about 90% of the precipitation falling over the ocean.  Rising warm air 

travels through the troposphere eastward back across the equator and then settles in a convective 

loop, reinforcing the westward trade winds along the surface.    

Awareness of a reversal in the usual pattern originated in Peru.  Ordinarily, winds blow northward 

along the coast of Peru stirring up cold waters, replacing depleted surface waters by rich nutrients 

from deep basin waters – that feed vibrant fish populations – which in turn sustain bird populations 

– whose droppings provide fertilizer to the agricultural sector.  A seasonal transformation of an 

inconsistently warm current entering this coastal region was first identified by Peruvians at 

Christmastime as El Niño, the boy or the Christ child.  A strong El Niño event can devastate Peruvian 

fisheries, impair agriculture, and induce rain storms that flood the coastal regions.    

 When trade winds are brisk, coastal upwelling is strong along Peru, and the thermocline is steep, 

an amplified phase of colder eastern sea surface temperatures may be referred to as La Niña, or the 

girl.  The same conditions at a lesser strength are considered “neutral,” or the “normal” state of the 

Pacific – sometimes called La Nada, the nothing – a state which does not prompt severe weather.   

 An El Niño event always begins with pressure changes, namely, a lessening of the pressure gradient 

between the eastern and western Pacific.  Since winds blow from high to low pressure, this leveling of 

pressure weakens the trade winds that have driven water to pile up towards the west.  The heated 

water will then slosh back in a countercurrent that sends the excesses of warm water across the Pacific.  

The central and eastern regions of the Pacific waters warm near equal to the western temperatures, 

repositions the intense rainstorms away from Indonesia towards the central or eastern Pacific, and 

shifting large scale wind patterns in turn.  Pronounced phases of ENSO – El Niño and La Niña alike 

– are known for diverse consequences of extreme weather at near and distant regions of the globe, 

sometimes with opposite impacts to one another.  All of the effects together do not amount to true 

opposites considering some arise from a shift in the region of predominant precipitation, a location 

change which is not an opposite.   

 The term “El Niño” has come to signify an amplified cycle which typically occurs on intervals of 

three to five years, historically from two to seven years.  Variation is not only in frequency and strength 

but also duration which may span several months to a few years.  La Niña is especially well known for 

enhancing Atlantic basin hurricane activity.  Within the troposphere where weather occurs, various 

wind speeds and directions may occur for several miles above the ground known as “vertical wind 

shear” which when strong, can topple hurricanes or stifle their formation.  La Niña conditions foster 

an evenness along altitudes favorable to hurricane formation and survival, that is, a weakening of 

vertical wind shear.  Other consequences of El Niño and La Niña are shown in the maps following. 
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 What triggers the pressure gradient to lessen, unleashing an El Niño event, remains a scientific 

mystery.  There may not be one precise answer since weather is influenced by numerous factors 

characterized by random occurrences, and further by interactions and also feedbacks.  Ambient air 

pressure is constantly changing, and even while the pressure changes are measurable, the sources of 

change may not be discernible.  Random distortions to any number of usual weather patterns or 

combinations thereof could eventually lead to shifts of pressure at the equator: sudden bursts of 

opposing winds, sub-surface waves, changes in salinity from the sinking of salty waters along the 

equator, or distant elements such as mountain snowpack or glacier ice, could shape valid hypotheses.  

This mystery beneath recurring large-scale global weather patterns illustrates that the climate system, 

both massive and detailed, remains largely “over our heads.” 

 

Table 2. Summary of ENSO event characteristics – the phases of the El Niño Southern Oscillation 
may be summarized by a few characteristics.  When La Niña conditions are present but are mild, not 
amplified, the phase is neutral and global weather patterns are not influenced.   

 

La Niña   El Niño 

Strong upwelling of cold deep basin waters at coast 
of Peru 

Weaker upwelling along Peruvian coast, and 
upwelling of warmer waters 

Steep thermocline with cold water nearer to surface Less slanted thermocline 

Strong easterly trade winds  Weakening easterly trade winds 

Warm western Pacific and cooler eastern and 
central Pacific 

Central to eastern Pacific assume warmer 
temperature, nearer that of western Pacific 

Region of persistent precipitation is over warmest 
water near Indonesia 

Region of persistent precipitation is shifted, 
over warmest water near central Pacific 

High sea level pressure in eastern Pacific differs 
from low pressure in western Pacific – strong 
Walker circulation 

Sea level pressure in eastern Pacific lowers 
near to level of western Pacific – weakening 
Walker circulation  
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Figure 4. Regional Weather Impacts of El Niño Southern Oscillation – El Niño and La Niña – winter 
and summer seasons.  These four maps provided by the NOAA serve as excellent reference to the regional 
effects of natural climate cycles in weather data specific to the ENSO phenomenon, and may be consulted for 
planning climate phase analyses by location and time of year.  

 
(A) El Niño - winter season 
El Niño effects during December through February 

 
Source: NOAA Jetstream 

 
(B) El Niño - summer season 
El Niño effects during June through August 

 
Source: NOAA Jetstream 
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(C) La Niña - winter season 
La Niña effects during December through February 
 

 
Source: NOAA Jetstream 

 
(D) La Niña - summer season 
La Niña effects during June through August 

 
Source: NOAA Jetstream 
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2.5 ENSO Indices  

 The original indices tracking the phase of ENSO are named by the ship tracks that originally 

recorded sea surface temperatures (SST) across this equatorial region of the Pacific, beginning with 

Niño 1 and 2 near the coast of Peru where destructive forces of the ENSO phenomenon were first 

witnessed.  Niño 3 extends across an eastern equatorial band of the Pacific, reflecting the later 

realization of a farther reaching phenomenon.  Niño 4 covers the tropics to the west, and Niño 3.4 is 

measured in a midregion overlapping Niño 3 and 4.  The Niño indices are recorded most commonly 

as average monthly SST and are also given weekly, and further as anomalies from a base mean SST 

value.  The more extreme colder temperatures relate to La Niña events, the warmer to El Niño.   

 The Ocean Niño Index (ONI) is derived from the Niño 3.4 SST as rolling three month periods 

(Jan-Feb-Mar, Feb-Mar-Apr, etc.).  The Trans-Niño Index (TNI) is derived in a different manner 

combining Niño 1 and 2 with Niño 4.  The TNI considers that the difference in SST on opposite 

sides of the Pacific better reflects the phase for certain purposes, and takes the standardized Niño 1 

and 2 minus the Niño 4 with an additional standardizing adjustment; specifically, a five month running 

mean is applied and then standardized using the 1950-1979 period.  The regions of measurements for 

ENSO indices are shown in the map below. 

 

 
Figure 5. ENSO Regions – regions where the phase of ENSO is measured by SST or pressure are 
shown in a Pacific-centric map. The TNI is based on Niño 1+2 and Niño 4 while ‘BEST’ is based on 
Niño 3.4 and the SOI.    
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Table 3. ENSO Index Coordinates – the coordinates where ENSO indices are measured are given 
in Atlantic-centric coordinates (-180° to 180°) and Pacific-centric coordinates (0° to 360°) 

 
ENSO Index Atlantic Coordinates Pacific Coordinates 
 

Niño 1+2 / TNI (east) 0°-10°S,  90°W-80°W 0°-10°S, 270°E-280°E 
 

Niño 3  5°N-5°S, 150°W-90°W 5°N-5°S,  210°E-270°E 
 

Niño 3.4 / ONI / ‘BEST’(i) 5°N-5°S, 170°W-120°W 5°N-5°S,  190°E-240°E 
 

Niño 4 / TNI (west) 5°N-5°S, 160°E-150°W 5°N-5°S,  160°E-210°E 
 

EQSOI (west) 5°N-5°S, 220°W-270°W 5°N-5°S,  90°E-140°E 
EQSOI (east) 5°N-5°S, 80°W - 130°W 5°N-5°S,  230°E-280°E 
 

SOI / ‘BEST’(ii): 
Darwin, Australia    12.4634°S, 130.8456°E 
Tahiti     17.6509°S,  210.5740°E 

 

 Further indices exist to track the ENSO phase without SST measures.  The Southern Oscillation 

Index (SOI) records the large-scale fluctuations in pressure between the western and eastern Pacific, 

at the locations of Darwin, Australia versus Tahiti.  The pressure differential is associated with heat in 

the atmosphere as opposed to the surface water of the ocean, and the atmospheric pressure gradient 

is prone to change much more swiftly than ocean temperatures.  The SOI is more negative during an 

El Niño event, where pressure in the eastern Pacific lowers nearer to that of the western Pacific.  The 

Equatorial SOI is another measure based on pressure, but instead of relying on two distinct points 

observes averages across larger regions, over Indonesia and off the coast of Ecuador. 

 The Multivariate ENSO index (MEI) combines several characteristics into one index.  Its 

calculation  considers the six main observed variables over the tropical Pacific: sea-level pressure (P), 

zonal (U) and meridional (V) components of the surface wind, sea surface temperature (S), surface air 

temperature (A), and total cloudiness fraction of the sky (C); calculated in rolling bimonthly periods 

(Jan-Feb, Feb-Mar, etc.).  Various index measures track different characteristics of the ENSO phase, 

so they will serve as unequal indicators to climate effects in various regions of the globe.  Klaus Wolter 

of the NOAA describes the relevance of the MEI, in relation to other indices, as follows:     

 “Why do I believe that the MEI is better for monitoring ENSO than the SOI or various 
SST indices?  In brief, the MEI integrates more information than other indices, it reflects the 
nature of the coupled ocean-atmosphere system better than either component, and it is less 
vulnerable to occasional data glitches in the monthly update cycles. Now, if you are 
interested in ENSO impacts in a very specific part of the world, I would suggest that you 
obtain other ENSO indices as well and establish which one best fits your needs. For 
instance, in Australia, Darwin sea level pressure and/or the SOI may be more appropriate 
than the MEI. My claim here is that the MEI does a better job than other indices for the 
overall monitoring of the ENSO phenomenon, including, for instance, world-wide 
correlations with surface temperatures and rainfall.”    
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Figure 6.  Phases of the MEI.  Multivariate ENSO Index since 1950.   

 

Indices tracking ENSO phases are available online at these NOAA sites:   
 
 Website Address  Indices (format: Wide or Long)  from 
(I) www.cpc.ncep.noaa.gov/data/indices/   Niño, ONI (L); SOI, EQSOI (W)  1950’s 
   Niño Weekly (L)  1990’s 
(II) www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/   Niño (W); SOI (W) 1870’s 
(III) www.esrl.noaa.gov/psd/data/climateindices/list/  Niño, ONI SOI, TNI, BEST, MEI (W) 1950’s 
(IV) www.esrl.noaa.gov/psd/enso/mei/table.html MEI (W)   1950’s 
 

(I) NOAA National Weather Service – Climate Prediction Center – Monthly Atmospheric & SST Indices 

(II) Global Climate Observing System – Working Group on Surface Pressure 

NOAA– Earth System Research Library – Physical Sciences Division – Climate Indices – Monthly 
Atmospheric and Ocean Time Series 
(III) NOAA– Earth System Research Library – Physical Sciences Division – Multivariate ENSO Index 

 

2.6 Climate versus Weather 

 Weather typically describes short-term phenomena while climate describes the long-term weather 

conditions that predominate a specific region.  A “climatological normal” is an average of a weather 

element over 30 years, which serves as a base for comparison.  For scientific purposes, climate is 

usually defined by a 30-year period; for some purposes, the base climate period chosen might span 40 
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to 100 years.  The definition of climate includes not only the long-term averages and typical variations 

in the elements, but further places emphasis on the extremes experienced over the full range of the 

selected base period.  A “very hot day,” then, describes weather, while “the hottest day in London 

since 1976” designates a boundary for one major city’s climate.   

 The common 30-year scope implies that weather is expected to fluctuate to a certain extent, from 

one year to the next, and variations in this range would not constitute climate change.  The assumption 

that three decades would cover the irregular fluctuations of the El Niño Southern Oscillation might 

also be implied, since this is the major cyclical climate factor for some regions.  But because of the 

myriad of interactions among climate variables, not only is ENSO a source of natural climate 

variations, ENSO is itself susceptible to change.  A base climate period might be more closely 

examined for trends, cycles, and shocks.  Irregularities might be taken to another level of comparison 

and adjustment when considering future loss potential.   

 For the examples of this paper, the years 1961-1990 are selected as a base period for climate.  This 

period corresponds to the earliest 30-year term at which instruments are considered reliable and 

consistently gauged.  Care should certainly be taken in relying upon analyses which include decades 

prior to the 1960’s since old ship records or primitive instruments may reflect not a change in climate 

but rather a change in measurement capabilities or variations in techniques for capturing data.   

 Certain adjustments to daily data will remain essential since the 1960’s, due to inconsistencies in 

recording zero measurements, or the closing and opening of weather stations, for instance.  Changes 

in data quality have been especially drastic since 1982 as a range of improvements were implemented 

for achieving more complete, more consistent records.  Some of the prominent data changes are 

presented in summary in the ‘Results and Discussion’ section.       

 

2.7 Actuarial Analysis 

 Weather is no stranger to the insurance industry; policies insuring ships against storms and other 

causes of sinkage were first written Before Christ.  Modeling weather has become a standard only 

since Hurricane Andrew, and still catastrophe simulations are proprietary which limits discussion 

beyond what little the model designers and their clients wish to share.  The duration of property 

insurance policies rarely exceeds one year, so insurers can adjust premiums in response to gradual, 

long term climate mechanisms and may not need to discern source changes.  Primary consideration 

might be given to ENSO phases, which can be predicted sometimes six months in advance.  Other 

short-horizon climate disruptors may possibly receive some attention.  Yet, with growing concern 

over nature’s destructive forces, the role of weather and risk experts may need to be updated to 

include more than the offering of near-term insurance policies.   
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 Actuaries possess refined comprehension of the messages raveled inside vast sets of data.  The 

need to measure economic costs of calamities has given actuaries a uniquely precise viewpoint of risk 

assessment.  Actuarial science can bring advancements to climate analysis in such areas as credibility 

and outliers, treatment of sparse data, recognition of interactions, removal of double-counting, 

identification of noise signals, normalization, trending and pattern searching.  Actuaries have placed 

greater focus on mathematical aspects of storm losses and are far more rigorous in these numerical 

areas than the other sciences.  The treatment of catastrophic weather loss in models combines the 

skills of the actuary with the atmospheric scientist, together but separately, in a limited market.  

Techniques in weather and catastrophe may be progress to apply financial and actuarial expertise 

directly, along with the distinct qualities of physical sciences.    

 

3. RESULTS AND DISCUSSION  

 Results are given from output of the code provided in the appendix, and serve as examples of the 

much wider range of information the meteorological data sets can provide.   

 

3.1 Data Completeness 

 Stations open and close over time, with changes of location; differences in elevation and 

surroundings impact measurements.  While precipitation (PRCP) has been recorded at over 56,000 

stations in the United States and Canada since 1960, fewer than six percent of these stations contain 

data for 30 base years and the subsequent 27 years for comparison.  

 
 
Figure 7.  Precipitation (rainfall) records have been recorded at over 48,000 stations in the United States 
since 1960 (left figure).  Only 6.4% of these stations records include some data in all 57 years from 1961 to 
2017 (right figure); however, over 26% of the yearly precipitation data for these decades was recorded at these 
long-operating stations. 
 

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 22



 The GHCN-D data is fraught with missing records.  Beginning in 1982, an existing notation 

became commonly utilized to indicate a blank that had been assumed zero, for quantity measures 

such as rainfall.  The number of identifiable missing records jumped in 1982, and new initiatives 

were taken so that record completion has improved since then.  The practice of assuming zero 

records was phased out by the end of 2010.   Prior to 1982, blanks that were assumed zero cannot 

be identified, so while the data appears more complete for older years, in reality, the zero records are 

unreliable.    

 The National Centers for Environmental Information (NCEI) of the NOAA also provides 

monthly GHCN data summaries of weather elements (GHCN-M), to which ‘homogeneity 

adjustments’ have been made [www.ncdc.noaa.gov/ghcnm].  The online data source includes 

reference materials describing adjustments that are called for by the raw daily data records.  

 

Table 4.  Change in assumed zeros.  In 1982, GHCN-D missing records appeared to increase only 
because blanks became identifiable by notation; subsequently completeness has improved.   
 

      Missing Records as a % of days of year   Zero observations* as a % of observations 

Year PRCP SNOW SNWD TMAX TMIN  Year PRCP SNOW SNWD TMAX TMIN 
1960 2.8% 4.0% 6.2% 2.6% 2.7%  1960 75% 96% 90% 9% 34% 
1961 3.2% 5.4% 8.5% 3.2% 3.3%  1961 73% 97% 92% 7% 33% 
1962 3.2% 5.5% 8.0% 3.3% 3.3%  1962 74% 97% 91% 8% 33% 
  …         …      

1979 5.7% 8.5% 11.2% 7.0% 6.8%  1979 73% 96% 90% 10% 35% 
1980 5.4% 8.8% 11.5% 6.8% 6.8%  1980 75% 97% 92% 8% 34% 

1981 4.1% 6.9% 8.6% 5.8% 5.8%  1981 74% 97% 94% 7% 33% 

1982 31.4% 82.6% 78.6% 4.7% 4.5%  1982 60% 78% 58% 9% 34% 

1983 31.3% 83.0% 78.9% 4.2% 4.1%  1983 60% 79% 62% 9% 33% 
1984 32.0% 83.5% 77.7% 4.6% 4.6%  1984 61% 80% 63% 8% 34% 
  …         …      

2015 21.1% 41.7% 44.6% 4.5% 4.6%  2015 68% 96% 79% 8% 31% 
2016 22.0% 39.5% 41.3% 4.7% 4.8%  2016 69% 96% 82% 8% 31% 

2017 19.4% 34.4% 32.7% 4.4% 4.4%  2017 68% 96% 82% 8% 32% 

* For temperatures, ‘zero observations’ are counts at or below zero degrees Celsius (freezing temperatures). 

 It might be expected that rainfall (snowfall) might not be recorded reliably during extremely dry 

(hot) weather.  For snowfall in Minnesota, missing records average 45% for summer months for which 

all records are zeros, but still over 25% of records are missing in snowy winter months.   
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Table 5.  United States Precipitation Records.  The percentage of daily records each year seems to be falling 
while actually data quality is improving.  Prior to 1982, blank records were assumed zero but most lacked 
identifying notation. 

    % days   
 % days % days  blank    blank   
  with record  assumed  % days  % records assumed  count of 
Year record missing   zero   zero   zero  zero  stations 
1961 95.1% 3.2%  0.1% 69.7% 73.3% 2,343  9,704  
1962 92.2% 3.2%  0.1% 68.7% 74.5% 2,291  9,757  
1963 94.6% 3.3%  0.1% 72.3% 76.4%  2,762  9,479  
... 
1979 92.7% 5.7%  0.1% 67.6% 72.9% 2,447  8,527 
1980 92.1% 5.4%  0.1% 69.2% 75.1% 2,477  8,650  
1981 94.2% 4.1%  0.1% 69.6% 73.9% 2,658  8,690  
1982 67.3% 31.4%  25.8% 40.2% 59.7% 817,610  8,673  
1983 67.7% 31.3%  26.4% 40.4% 59.7% 833,783  8,646  
1984 67.0% 32.0%  27.0% 40.9% 61.0% 851,171  8,608  
...          
2008 69.3% 20.0%  5.8% 47.5% 68.5% 428,242  20,058      
2009 70.6% 20.1%  3.9% 47.3% 67.0% 323,319  22,537  
2010 71.9% 21.1%  3.1% 50.1% 69.7% 268,530  23,497  
2011 71.8% 21.1%  0.0% 50.0% 69.6%     24,411  
2012 72.2% 20.4%  0.0% 51.9% 72.0%   25,516  
2013 71.9% 20.9%  0.0% 49.8% 69.3%   26,427  
2014 71.7% 21.4%  0.0% 49.3% 68.9%   26,366  
2015 72.7% 21.1%  0.0% 49.2% 67.6%   26,017  
2016 73.9% 22.0%  0.0% 51.1% 69.2%   24,381  
2017 72.5% 19.4%  0.0% 49.5% 68.3%   25,605  

 

 The change in missing records is explained Dr. Matt Menne, the creator of the GHCN-Daily 

meteorological databank at the NOAA’s National Centers for Environmental Information (NCEI):  

"Many volunteer observers, especially in the more historic past, have not consistently 
recorded zeros each day when no rain was observed and rather would often leave the day 
blank in such cases.  Because zeros have so often been left blank on reporting forms, 
NCEI used to more or less routinely assign a zero value to daily precipitation totals that 
were left blank.  These added zeros were intended to be accompanied by a flag noting 
that the value "was missing but presumed zero" so that they could be distinguished from 
days when the observer noted a zero.  However, the practice of assuming zeros for 
blanks was discontinued after 2010 when we moved to a new ingest and processing 
system for daily data, largely because the accuracy of assuming a zero for blanks could 
not be assessed very well.  In addition, volunteer observers were rapidly transitioning to 
electronic reporting around the same time and are now prompted somewhat by the new 
electric entry system as to whether a missing value was really meant to be reported as a 
zero."   
 
 

3.2 Choropleth Maps 

 Choropleth maps are color coded ranges that allow immediate visual interpretation.  R contains 

numerous packages that will produce a choropleth map, although most are designed for quantity 
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measures and lack flexibility for other purposes.  The example choropleths plot anomalies centered at 

zero, which is straightforward to code in the package ‘ggplot2’ but may be more cumbersome to 

produce with other packages.  The package ‘ggplot2’ has an advantage of being compatible with 

‘fiftystater’ that includes insets of Alaska and Hawaii.   

 The first choropleth example is created from scratch in package ‘maps’ and provides code that 

allows for a high degree of customization.   A drawback of this package is the lack of insets for Alaska 

and Hawaii, although these states can still be mapped separately.   

 The code allows for a year to be selected, which is compared against the base climate period (1961-

1990).  The base period average and standard deviation are calculated for each state separately.  The 

choropleth shows the number of deviations upward or downward from the base average.  

 

 
 

 
Figure 8.  Choropleth maps produced from scratch using package ‘maps’ for an El Niño 
event year 1982 (top) in contrast to a La Niña event year 2011 (bottom). 
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Figure 9. Choropleth map produced by package ‘ggplot2’ with package ‘fiftystater’ 
insets, using the base color scheme (top); and using a custom color scheme with a 
midpoint specified at zero anomaly (bottom).     
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3.3 Plots of Elements vs. Indices 

 Florida winter precipitation (PRCP) is chosen as an example region from the NOAA Jetstream 

maps, which indicate wet and cool conditions are expected during El Niño phases, dry and warm 

during La Niña.  Several ENSO indices and time periods are selected to plot against the average daily 

recorded rainfall.  Only stations have been included with some data in all 57 years (1961-2017); data 

completeness by month has not been checked.  No adjustment has been made for assumed zero 

entries prior to 1982 which lack notation as blank records.  The plots assign a shape to distinguish 

points in the two decades before 1982 which could adjust upwards due to an over prevalence of zeros.   

 For the Niño indices, there does not appear to be a strong relationship.  For the MEI, the 

correlation with Florida rainfall appears convincing from January to March, but not in December.  By 

this example, the choice of index would appear critical for identifying the specific characteristics of 

ENSO that impacts the region.  If a loss threshold has been established for Florida rainfall, then a 

relationship between the MEI and the threshold might cause an insurer to consider ENSO phases in 

its loss history and realign expectations for the future.   

 

 

 
Figure 10. Florida rainfall (PRCP) in December plotted against the Niño 4 Index does not reveal a distinct 
pattern.  
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Figure 11. Florida rainfall (PRCP) in January plotted against the Niño 4 Index does not reveal a strong phase 
relationship.   

 

 

 
Figure 12. Florida rainfall (PRCP) in January plotted against the Niño 1+2 Index might reveal a 
slight phase relationship.  

 

 

 

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 28



 
Figure 13. Florida rainfall (PRCP) in December and January plotted against the Multivariate ENSO 
Index (MEI) appears random.  

 

 

 
 

Figure 14. Florida rainfall (PRCP) in January and February plotted against the Multivariate ENSO 
Index (MEI) reveals a positive correlation.   
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Figure 15. Florida rainfall (PRCP) in February and March plotted against the Multivariate ENSO Index 
(MEI) reveals a positive correlation.  

 
 

4. CONCLUSION 
 

 With an uncertain future of weather extremes, one might only expect a deluge in climate stances.  

A detailed raw data source for weather records in GHNC-D can bring some tangibility, at least to the 

past, to establish a more concrete understanding of the elusive phenomenon of weather.  A revised 

viewpoint would neither presume upward trends in storm losses nor simply level losses to present 

conditions.  Instead the physical process of heat and motion in cycles and patterns, on many scales, 

might link weather to losses through thresholds.  A closer look at distributions and shifts in weather 

occurring near damageability thresholds might allow losses to definitively enter the climate formula.   

  If human activity drives any part of climate change, the next technological advancements might be 

designed to evaluate and financially prepare for the outcome.  The objective is to not only use the 

newest tools to the greatest advantage, but to continually expand our capabilities towards progress,  

which may include contributions toward an accurate, consistent bank of data with enough stability to 

distinguish amplitudes, durations and interactions inherent in natural cyclical ‘climate change.’     

 The growing attention to climate as it affects insurance loss may be a calling for actuaries to uncover 

the hidden message of the meteorological files.  The trends in technologies may finally bring the 

sophisticated topic of climate “down to earth.”   
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Code and Code Description 
(February 2018) 

 

 

5.0    Set up in R   
5.1 Code 1   Weather Daily Loop – Unzip Year by Year 
5.2 Code 2   Detailed Station Inventories 
5.3 Code 3   Initial Year-Month Summaries 
5.4 Code 4   Complete Year and Year-Month Summaries 
           Merged with Station Locations and Inventories 
5.5 Code 5   Missing Records by Year 
5.6 Code 6   Multiple Month Indices (MEI and ONI) 
5.7 Code 7   Weekly Niño Indices 
5.8 Code 8   State Summaries / Plot Selected Stations 
                 Visual Analysis with Choropleth Maps 
                  5.8.1 Package ‘maps’ – 48 mainland states 
                  5.8.2 Packages ‘ggplot2’ and ‘fiftystater’ – AK & HI insets 
5.9 Code 9   Combine Monthly Indices  
5.10 Code 10 Plot ENSO Index Time Series 
5.11 Code 11   Plot Element vs. Index by State 
5.12 Code 12   Map of ENSO Index Regions 
5.13 Code 13 Costliest Storms 
 
 

5.0 Set up in R      
 

 To begin, copy and paste the code into an *.R script file.  The code follows the descriptions.  If R 

GUI and R Studio have not yet been installed, instructional videos are available on youtube.  After 

copying code into the *.R script, single quotes may need to be replaced with properly formatted 

quotes (use <ctrl>-f to find and replace single quotes.)  Before running the code, directory paths 

must be specified and inputs copied into *.csv files. 

 

Directories and Inputs 

 The paths to three directories are to be specified in the code where R can locate the initial input 

files and write output files.  The input files for this example will be in *.csv (Comma Delimited) and 

need to be saved to the directory folders named in the code.  The files listed below with the 

directories are the files to be used in the code examples.  The code can be modified to run fewer or 

more years of zipped *.gz files or to read different base inputs.  If expanding years of input, be 

aware that daily data figures are unadjusted and years before 1960 will be subject to inconsistencies 

in measurements.  The files saved in the first two directories (I) dirzip and (II) dirbase provide the 

inputs to produce subsets and summaries, which are written out as more accessible *.csv files to (III) 
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diroutput.  The output files will be accessed again to run subsequent code much more efficiently 

than by unzipping cumbersome *.gz files.   

 The three directories and contents will be as follows:  

 
(I) dirzip <- "C:/…/WeatherZip" 

 1960.csv.gz 
 1961.csv.gz 
 … 
 2016.csv.gz 
 2017.csv.gz 

(II) dirbase <- "C:/…/WeatherBase" 
 BEST1mo.csv 
 CostlyStorms.csv 
 EQSOI.csv 
 ghcnd-inventory.csv  
 ghcnd-stations.csv  
 ghcnd-states.csv 
 MEI.csv 
 NinoMonthly.csv  
 NinoWeekly.csv 
 ONI.csv 
 SOI_Anom.csv 
 TNI.csv 

(III) diroutput <- "C:/…/WeatherData" 
 

 
 The first folder (I) dirzip contains the zipped files daily data, which are downloaded from the 

NOAA GHCN-Daily at this website address:  

 
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ 
 
 by_year/  folder of zipped files of daily data by year to download 
 readme.txt  detailed descriptions of variables and their values 
 ghcnd-stations.txt StationID, name, coordinates, elevation, state/province abbreviation  
 ghcnd-countries.txt two-character GHCN country and territory codes, and names   
 ghcnd-states.txt two-character US states and territories, Canadian provinces 
 ghcnd-inventory.txt StationID, coordinates, station start and end years by element 
 

 
 Although text files can be read by R, it is more reliable overall to copy and parse the data into 

excel and save as *.csv files. The example code runs data for the US and Canada ('CA').  The file 

ghcnd-countries.txt gives two-character country codes and country names that can be used as inputs 

to modify the example.  The file ghcnd-inventory.txt provides basic ranges of years during which 

stations have recorded data, by weather element; this inventory list is longer than ghcnd-stations.txt 

which lists each station once only.  The code will summarize greater station detail from the weather 

records to assist in selecting consistent data across years.  Note that the zip code field in ghcnd-

stations.txt is missing entries so it would not serve for mapping stations to counties.   

 The fields ‘Open’ and ‘Close’ in the ghcnd-inventory.txt file were included in the example code at 

a later time so as not to be shown in the sample outputs of this paper.   
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--------------------------------------------------------------------------------------------- 
Table 1.  Sample output from ghcnd-stations.txt saved as *.csv and read by R as a data table.   

 
  StationID lat lon elev St Name GSNFlag zip 
1: ACW00011604 17.1167 -61.7833 10.1 NA ST JOHNS COOLIDGE FLD NA NA 
2: ACW00011647 17.1333 -61.7833 19.2 NA ST JOHNS NA NA 
3: AE000041196 25.333 55.517 34 NA SHARJAH INTER. AIRP NA 41196 
4: AEM00041194 25.255 55.364 10.4 NA DUBAI INTL NA 41194 
5: AEM00041217 24.433 54.651 26.8 NA ABU DHABI INTL NA 41217 
---         
*: ZI000067969 -21.05 29.367 861 NA WEST NICHOLSON NA 67969 
*: ZI000067975 -20.067 30.867 1095 NA MASVINGO NA 67975 
*: ZI000067977 -21.017 31.583 430 NA BUFFALO RANGE NA 67977 
*: ZI000067983 -20.2 32.616 1132 NA CHIPINGE NA 67983 
*: ZI000067991 -22.217 30 457 NA BEITBRIDGE NA 67991 
 
*  column numbers not shown (104122 – 104126) 
--------------------------------------------------------------------------------------------- 
StationID station identification number 
lat latitude coordinate of station location 
lon longitude coordinate of station location 
elev elevation of station location 
St  state or province two-character abbreviation 
Name station name 
GSNFlag (see readme.txt for details) 
zip zip code of station location 
 
 
--------------------------------------------------------------------------------------------- 

Table 2.  Sample output from ghcnd-inventory.txt saved as *.csv and read by R as a data table. 

 
 StationID lat lon elem Open Close 
1: ACW00011604 17.1167 -61.7833 TMAX 1949 1949 
2: ACW00011604 17.1167 -61.7833 TMIN 1949 1949 
3: ACW00011604 17.1167 -61.7833 PRCP 1949 1949 
4: ACW00011604 17.1167 -61.7833 SNOW 1949 1949 
5: ACW00011604 17.1167 -61.7833 SNWD 1949 1949 
---       
596841: ZI000067983 -20.2 32.616 PRCP 1951 2017 
596842: ZI000067983 -20.2 32.616 TAVG 1962 2017 
596843: ZI000067991 -22.217 30 TMAX 1951 1990 
596844: ZI000067991 -22.217 30 TMIN 1951 1990 
596845: ZI000067991 -22.217 30 PRCP 1951 1990 

--------------------------------------------------------------------------------------------- 
Open first year the station recorded data for the weather element specified  
Close final year the station recorded data for the weather element specified 
 
 
--------------------------------------------------------------------------------------------- 
Table 3. Sample output from ghcnd-states.txt (left) and ghcnd-countries.txt (right) saved as 

*.csv files and read by R as data tables. 

 || 
 St Name ||  loc CountryName 
 1: AB ALBERTA || 1: AC Antigua and Barbuda 
 2: AK ALASKA || 2: AE United Arab Emirates 
 3: AL ALABAMA || 3: AF Afghanistan 
 4: AR ARKANSAS || 4: AG Algeria 
 5: AS AMERICAN SAMOA || 5: AJ Azerbaijan 
 ---   || ---   
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 70: WA WASHINGTON || 214: WI Western Sahara 
 71: WI WISCONSIN || 215: WQ Wake Island [United States] 
 72: WV WEST VIRGINIA || 216: WZ Swaziland 
 73: WY WYOMING || 217: ZA Zambia 
 74: YT YUKON TERRITORY || 218: ZI Zimbabwe 
--------------------------------------------------------------------------------------------- 
loc two-character abbreviation for country or territory 
 

 

 The file IndexMonthly.csv is created by code, combining various monthly indices that have been 

accessed separately from online sources and saved into *.csv files.  ENSO indices used in the sample 

code can be copied from these sources: 

 
Website Address  Indices (format: Wide or Long)  from 
(I) www.cpc.ncep.noaa.gov/data/indices/   Niño, ONI (L); SOI, EQSOI (W)  1950’s 
   Niño Weekly (L)  1990’s 
(II) www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/   Niño, SOI (W)  1870’s 
(III) www.esrl.noaa.gov/psd/data/climateindices/list/  Niño, ONI SOI, TNI, BEST, MEI (W) 1950’s 
(IV) www.esrl.noaa.gov/psd/enso/mei/table.html MEI (W)   1950’s 

 

 The first online resource (I) includes all of the monthly Niño indices and anomalies in one file, 

dating from the 1950’s (ERSST monthly).  Weekly Niño indices and anomalies are also available in 

one file, although only from the 1990’s (OISST weekly).  The ONI is given in a separate file (ERSST 

seasonal) also from the 1950’s.  These indices are given in a “long” format, indicated above as (L), 

where months are stacked in one column.  The SOI and EQSOI are each given in separate files 

from the 1950’s in a “wide” format (W) where each month is in a separate column.  In R code, the 

“wide” format can be converted to “long,” or vice versa, using package ‘tidyr’ functions (i.e. gather() 

and spread()).   

 The second online resource (II) provides a number of climate indices, including each of the Niño 

indices  given separately in “wide” format from 1870, and each anomaly separately also.  The SOI is 

similarly given in “wide” format monthly back to 1866.  The older years may be of limited value for 

comparison against inconsistent weather data.  The third online resource (III) also contains 

numerous climate indices, and is a source for the Trans-Niño Index (TNI) in wide format from the 

1950’s.  The fourth resource (IV) is the direct site for the Multivariate ENSO Index (MEI).   

 

Running Code 

 

 To run one or multiple lines of code, highlight the code and press <ctrl>-r.  To run one line of 

code, alternatively, place the cursor at the line and press <ctrl>-<enter>.  To run a ‘for loop’ 

highlight the entire loop from ‘for’ to the end bracket ‘}’ and press <ctrl>-r.   Comment lines begin 

with ‘#’ and will not run.   

 

Packages 
 
data.table   functions run faster than base R code  
   rbindlist() to combine years of weather data frames from a list 
   setnames() to update column headers 
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tidyverse   a set of packages for organizing data 
   package 'readr' to unzip *.gz files  
   package 'dplyr' to calculate statistics 
   package 'ggplot2' to map choropleths 
  package 'tidyr' functions to convert formats between wide and long 
lubridate  functions to calculate number of days in month, leap years, etc.   
 
 

 Tutorials are available online for instruction on utilizing the data.table functions advantageously. 
 
 
Common Errors 
 
 Because the daily data is voluminous, errors encountered running code may involve space and 

memory.  “Error: cannot allocate vector of size _ Mb” may occur if many large data sets are stored 

in the environment.  The command ls() can be used to view current data sets, and rm() can be used 

to remove a data set specified within the parentheses.  To free memory, the computer can be 

completely shut down and restarted without opening programs other than R.  If a ‘for loop’ stops 

prior to completion, the command ls() can be used to identify the latest data set so the code can be 

continued from that point inside the brackets; a shorter loop can then be defined based on the 

remaining years or elements.    

 

5.1 Code 1:  Weather Daily Loop 
 
--------------------------------------------------------------------------------------------- 
Table 4. Code 1 Sample Output.  Weather Daily Loop.  Precipitation, US and Canada.   
 
  StationID date elem VAL MFlag QFlag SFlag Time loc year month monthday VAL_US 
1: CA001010720 19600101 PRCP 0 - - C - CA 1960 1 101 0 
2: CA001010720 19600102 PRCP 25 - - C - CA 1960 1 102 0.098425 
3: CA001010720 19600103 PRCP 0 T - C - CA 1960 1 103 0 
4: CA001010720 19600104 PRCP 41 - - C - CA 1960 1 104 0.161417 
5: CA001010720 19600105 PRCP 257 - - C - CA 1960 1 105 1.011811 
---              
* USW00094967 19601227 PRCP 0 T - 0 - US 1960 12 1227 0 
* USW00094967 19601228 PRCP 0 - - 0 - US 1960 12 1228 0 
* USW00094967 19601229 PRCP 0 T - 0 - US 1960 12 1229 0 
* USW00094967 19601230 PRCP 0 - - 0 - US 1960 12 1230 0 
* USW00094967 19601231 PRCP 5 - - 0 - US 1960 12 1231 0.019685 
--------------------------------------------------------------------------------------------- 
*  column numbers not shown (3982198 – 3982201) 

date  yyyymmdd format 
VAL  record in metric system units according to weather element, given in Table 5  
MFlag  includes notation ‘P’ for blank records assumed zero 
QFlag  (See readme.txt for details) 
SFlag  (See readme.txt for details) 
Time  (See readme.txt for details) 
year  field created from date 
month  field created from date 
monthday field created from date  
VAL_US  conversion of VAL field to US Imperial system units, given in Table 5 
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 Code 1 is a double loop that unzips the massive meteorological data files containing the daily 
station detail of weather element measurements.  Since unzipping requires the most run time, for 
each year unzipped the code loops through weather elements to write out to separate *.csv files by 
element.  Wind data is sparse so a few of the GHNC elements are combined in one output file as 
‘WIND’ as a collective term, not a GHNC element.  The number of *.csv files to be written out 
equals the number of years selected in the outer loop times the number of elements selected.   
 
--------------------------------------------------------------------------------------------- 
Table 5.  Weather elements included in sample code.     
 
FIVE CORE ELEMENTS  
 
 Abbr Element Unit of Measure          Converted (US)  
 PRCP Precipitation tenths of mm             inches 
 SNOW Snowfall mm                       inches 
 SNWD Snow depth mm                       inches 
 TMAX Maximum temperature tenths of degrees C      degrees Fahrenheit 
 TMIN Minimum temperature tenths of degrees C      degrees Fahrenheit 
 
 WIND    elements are coded to include: 
 
 Abbr Element Unit of Measure   US           
 AWND    Average daily wind speed          tenths of meters per second  mph 
 WSF1    Fastest 1-minute wind speed       tenths of meters per second  mph 
 WSF2    Fastest 2-minute wind speed       tenths of meters per second  mph 
 WSF5    Fastest 5-second wind speed       tenths of meters per second  mph 
 WSFG    Peak gust wind speed              tenths of meters per second  mph 
 WSFI    Highest instantaneous wind speed  tenths of meters per second  mph 
 WSFM    Fastest mile wind speed           tenths of meters per second  mph 
--------------------------------------------------------------------------------------------- 

 

 To preserve memory resources, time, and storage, few calculations are made while unzipping.  

Only five columns are added, the location (country/territory) for selection purposes, a few date 

fields (year, month, month-day), and the U.S. measurement conversion.  The sample countries 

selected are United States and Canada, which are manageable with 8GB memory.  Additional 

countries or territories may need to be selected separately to avoid errors from inadequate memory; 

while countries with extremely sparse data may needed to be selected in combination so the code 

will not stop.  Additional weather elements that may be selected are listed in the ‘readme.txt’ file at 

the GHCN-D site. The ‘readme.txt’ file provides descriptions for the fields in the data files 

represented by the data set column names.    

  The MFlag notation ‘P’ in the daily records is quite critical as it represents blank records 

assumed as zero.  This notation applies only to quantity elements like rainfall, and not to continuous 

measures such as temperature.  MFlag also has a notation ‘T’ that R can mistake for a logical 

(True/False) causing the ‘P’ notations to be deleted when writing out to a saved file.  The code 

converts empty cells to dashes which avoids losing data in an unintended format conversion.    

 Code 3 will adjust counts of zero and blank entries based on the MFLAG ‘P’ notation, but the 

notation was not widely used before 1982.  The data requires adjustments for unidentified blanks 

assumed zero prior to 1982, and for the improvement in completion of zero records since 1982.    
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5.2  Code 2: Detailed Station Inventories 
 
--------------------------------------------------------------------------------------------- 
Table 6.  Code 2 Sample Output. Detailed Station Inventories.  Precipitation, US and Canada.   
 
 StationID loc St lat lon elev elem mindate maxdate 
1: CA001010066 CA BC 48.867 -123.3 4 PRCP 19840701 19961129 
2: CA001010235 CA BC 48.4 -123.5 17 PRCP 19710601 19950430 
3: CA001010595 CA BC 48.583 -123.5 85 PRCP 19610208 19801128 
4: CA001010720 CA BC 48.5 -124 351 PRCP 19600101 19710831 
5: CA001010780 CA BC 48.333 -123.6 12 PRCP 19600101 19660430 
---          
56621: USW00094996 US NE 40.695 -96.85 NA PRCP 20020622 20171231 
56622: USW00096404 US AK 62.737 -141.2 NA PRCP 20110926 20171231 
56623: USW00096406 US AK 64.501 -154.1 NA PRCP 20140829 20171231 
56624: USW00096407 US AK 66.562 -159 NA PRCP 20150814 20171231 
56625: USW00096408 US AK 63.452 -150.9 NA PRCP 20150820 20171214 
 
 minyear minmo maxyear maxmo clsdmbeg clsdmend clsdinm clsdbef 
1: 1984 7 1996 11 0 1 1 182 
2: 1971 6 1995 4 0 0 0 151 
3: 1961 2 1980 11 7 2 9 31 
4: 1960 1 1971 8 0 0 0 0 
5: 1960 1 1966 4 0 0 0 0 
---         
56621: 2002 6 2017 12 21 0 21 151 
56622: 2011 9 2017 12 25 0 25 243 
56623: 2014 8 2017 12 28 0 28 212 
56624: 2015 8 2017 12 13 0 13 212 
56625: 2015 8 2017 12 19 17 36 212 
 
 clsdaft clsdfulm bsyrct rcyrct bryrct bsspan rcspan brspan 
1: 31 213 7 6 13 7 6 13 
2: 245 396 8 5 13 20 5 25 
3: 31 62 20 0 20 20 0 20 
4: 122 122 11 0 11 11 0 11 
5: 245 245 6 0 6 6 0 6 
---         
56621: 0 151 0 16 16 0 16 16 
56622: 0 243 0 7 7 0 7 7 
56623: 0 212 0 4 4 0 4 4 
56624: 0 212 0 3 3 0 3 3 
56625: 0 212 0 3 3 0 3 3 

--------------------------------------------------------------------------------------------- 
StationID  Station identification number from GHCN-D.    
loc  two-character country code, the first two digits of the StationID  
St  two-character state or province abbreviation where station is located 
lat  latitude coordinate of station location 
lon  longitude coordinate of station location 
elev  elevation of station location 
elem  weather element 
Open  (not shown) first year of station records from ghcnd-inventory.csv 
Close  (not shown) last year of station records from ghcnd-inventory.csv 
mindate  earliest date of station record, from years selected to summarize 
maxdate  latest date of station record, from years selected to summarize 
minyear  year of mindate 
minmo  month of mindate 
maxyear  year of maxdate 
maxmo  month of maxdate 
clsdmbeg count of days the station was not yet operating at beginning of partial month 
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clsdmend count of days the station was no longer operating at end of partial month 
clsdinm  total days station did not operate in partial months (clsdmbeg + clsdmend) 
clsdbef  count of days in year the station was not yet operating for full months 
clsdaft  count of days in year the station no longer was operating for full months  
clsdfulm count of days in year the station was closed for full months (clsdbef + clsdaft) 
bsyrct  count of years with observations in the selected base period  
rcyrct  count of years with observations in recent years following base period 
bryrct  count of years with observations in base and recent years  
bsspan  span of base years that fall within the mindate and the maxdate 
rcspan  span of years following the base period within the mindate and the maxdate 
brspan  span of base and recent years that fall within the mindate and the maxdate 

 

 

 Code 2 is an intermediate step to conserve memory.  Code 2 reads in the subsets of daily data 

from Code 1 and produces summaries of station inventories separately for each weather element, for 

all stations with at least one record in the years of data selected.  The focus of the summary is to 

calculate the minimum and maximum date of record.  These dates are compared against the station’s 

opening and closing years given in ghcnd-inventory.txt, to arrive at counts of days the station was 

not operating in partial months (also full months), for the month (also the year) the station opened 

or closed.  The summary counts years with records for the selected base years and recent years, and 

also calculates the span of time from the earliest to latest year of record without deducting empty 

data years.  The summary again merges, with data from ghcnd-stations.txt, to list each station’s 

location by coordinates and state.  All years from the daily files are combined into one file for each 

element, so the number of files output is equal to the number of elements selected.  If the ghnc-

station.txt list is incomplete, the two-character state abbreviation can be found in the StationID for 

more recent years; but the elevation and coordinates will be missing from final outputs.   

 

5.3 Code 3:   Initial Year-Month Summaries  

--------------------------------------------------------------------------------------------- 
Table 7.  Code 3 Sample output. Initial Year-Month Summary.  Precipitation, US and Canada.   
 
  StationID loc elem year month VALm VALm_US sumVALsqd_US 
1: CA001010720 CA PRCP 1960 1 3497 13.7677165 20.0084785 
2: CA001010720 CA PRCP 1960 2 4155 16.3582677 29.8169911 
3: CA001010720 CA PRCP 1960 3 3839 15.1141732 24.9078523 
4: CA001010720 CA PRCP 1960 4 3486 13.7244094 16.6643623 
5: CA001010720 CA PRCP 1960 5 2412 9.496063 6.6623473 
---         
9001954: USW00096408 US PRCP 2017 8 800 3.1496063 1.1848844 
9001955: USW00096408 US PRCP 2017 9 623 2.4527559 0.7029729 
9001956: USW00096408 US PRCP 2017 10 895 3.523622 1.6202957 
9001957: USW00096408 US PRCP 2017 11 598 2.3543307 0.6302003 
9001958: USW00096408 US PRCP 2017 12 211 0.8307087 0.1854269 

 
  VALsqm_US zerrec recs zblank zerobs obs daysinmo misclsd 
1: 189.5500186 10 31 0 10 31 31 0 
2: 267.5929227 12 29 0 12 29 29 0 
3: 228.4382324 11 31 0 11 31 31 0 
4: 188.3594147 9 30 0 9 30 30 0 
5: 90.1752124 6 31 0 6 31 31 0 
---         
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9001954: 9.9200198 9 30 0 9 30 31 1 
9001955: 6.0160115 15 30 0 15 30 30 0 
9001956: 12.4159123 15 31 0 15 31 31 0 
9001957: 5.5428731 17 30 0 17 30 30 0 
9001958: 0.6900769 9 14 0 9 14 31 17 

--------------------------------------------------------------------------------------------- 
VALm  monthly sum of daily VAL 
VALm_US  monthly sum of daily VAL_US, VAL converted to U.S. unit of measure. 
sumVALsqd_US sum of squared daily values in U.S. units, to compute daily variances 
VALsqm_US squared monthly values in U.S. units, to computer monthly variances 
zerrec  count of records with zero values (quantities); zero and below (temperature) 
recs  count of all records 
zblank  blank records assumed zero and recorded as zero (for quantity elements) 
zerobs  net (below) zero observations, after subtracting blanks assumed zero 
obs  net observations, after subtracting blanks assumed zero 
daysinmo count of days in calendar month, representing maximum possible records  
misclsd count of days in month with missing records, or days station not open 

 

 Code 3 is an intermediate step to conserve memory.  Code 3 reads in the subsets of daily data 

from Code 1 and summarizes monthly data.  It also provides important counts of records, for use in 

selecting stations with adequately complete data or for identifying areas in need of adjustments.   

 A critical threshold is calculated as variable ‘zerobs’ which for quantities like rainfall counts zero 

values relating to drought.  For temperatures, the critical threshold ‘zerobs’ represents freezing 

temperatures, zero degrees Celsius and below.   

 A critical data adjustment is made to quantity records through a code calculation, deducting blank 

records assumed zero (‘zblank’) from zero records (‘zerrec’) and records (‘recs’) to arrive at the 

adjusted count of observations (‘obs’) and zero observations (‘zerobs’).  This calculation does not 

hold for years before 1982 when the MFlag notation ‘P’ was rarely used to identify blanks assumed 

zeros.   

 No adjustment has been made to the raw daily data records either for blank records assumed 

zero, or to account for the continued improvement in record completion since 1982.  Therefore, the 

GHNC-D data is in need of adjustments for changes in record keeping over time.  No other 

adjustments are made by the example code, besides converting ‘zblank’ record counts from zero to 

blank.   

 A number of adjustments have been made in the monthly summary GHNC-M, available online 

[www.ncdc.noaa.gov/ghcnm] with references on the ‘homogeneity adjustment’ that could be 

considered when analysis necessitates consistency along with the detail of the raw daily data set.   
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5.4  Code 4: Complete Year and Year-Month Summaries 
             Merged with Station Locations and Inventories 
 
--------------------------------------------------------------------------------------------- 
Table 8.  Code 4 Sample output (I).  Complete Year-Month Summary.  Precipitation, US and 
Canada 
  
 StationID loc St lat lon elev mindate maxdate 
1: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
2: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
3: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
4: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
5: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
6: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
 
  elem year month VALm VALm_US sumVALsqd_US VALsqm_US  
1: PRCP 1960 1 3497 13.768 20.008 189.550019  
2: PRCP 1960 2 4155 16.358 29.817 267.592923  
3: PRCP 1960 3 3839 15.114 24.908 228.438232  
4: PRCP 1960 4 3486 13.724 16.664 188.359415  
5: PRCP 1960 5 2412 9.4961 6.6623 90.175212  
6: PRCP 1960 6 535 2.1063 0.7874 4.436496 
 
  zerrec recs zblank zerobs obs daysinmo misinm clsdinm 
1: 10 31 0 10 31 31 0 0 
2: 12 29 0 12 29 29 0 0 
3: 11 31 0 11 31 31 0 0 
4: 9 30 0 9 30 30 0 0 
5: 6 31 0 6 31 31 0 0 
6: 18 30 0 18 30 30 0 0 

--------------------------------------------------------------------------------------------- 
clsdinm  count of days station closed in partial month, sum (clsdmbeg + clsdmend) 
misinm count of missing records in partial month, the difference (misclsd - clsdinm) 
 
--------------------------------------------------------------------------------------------- 
Table 9.  Code 4 Sample output (II).  Complete Year Summary. Precipitation, US and Canada 
 
  StationID loc St lat lon elev mindate maxdate 
1: CA001010720 CA BC 48.5 -124 351 19600101 19710831 
2: CA001010780 CA BC 48.3333 -123.633 12 19600101 19660430 
3: CA001010965 CA BC 48.5667 -123.433 91 19600801 19700630 
4: CA001011500 CA BC 48.9333 -123.75 75 19600101 20171231 
5: CA001011920 CA BC 48.5333 -123.367 37 19600101 19700331 
6: CA001012010 CA BC 48.7167 -123.55 1 19600101 20010311 
 
  elem year VALy VALy_US sumVALsqd_US sumVALsqm_US VALsqy_US 
1: PRCP 1960 33091 130.27953 198.905868 1892.87716 16972.7553 
2: PRCP 1960 9473 37.29528 24.867707 170.58961 1390.9376 
3: PRCP 1960 3842 15.12598 8.665075 63.39429 228.7954 
4: PRCP 1960 11755 46.27953 39.69544 259.06651 2141.7947 
5: PRCP 1960 7778 30.62205 16.595573 107.77906 937.7098 
6: PRCP 1960 9984 39.30709 29.90204 184.49805 1545.0471 
 
  zerrec recs zblank zerobs obs daysum daysinyr monthct 
1: 167 366 0 167 366 366 366 12 
2: 208 366 0 208 366 366 366 12 
3: 82 148 0 82 148 153 366 5 
4: 210 366 0 210 366 366 366 12 
5: 223 364 0 223 364 366 366 12 
6: 208 366 0 208 366 366 366 12 
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  clsdinm clsdfulm clsdall misinm misfulm misall 
1: 0 0 0 0 0 0 
2: 0 0 0 0 0 0 
3: 0 213 213 5 0 5 
4: 0 0 0 0 0 0 
5: 0 0 0 2 0 2 
6: 0 0 0 0 0 0 

 
  bsyrct rcyrct bryrct bsspan rcspan brspan 
1: 11 0 11 11 0 11 
2: 6 0 6 6 0 6 
3: 10 0 10 10 0 10 
4: 17 27 44 30 27 57 
5: 10 0 10 10 0 10 
6: 28 11 39 30 11 41 

 

 Code 4 combines the output of Code 2 and 3, the detailed station inventory and the initial year-

month summary.  The code produces a year-month summary with station detail and similarly a 

detailed yearly summary.  The year-month summary gains a more complete record count from the 

station detail; a month where records are missing or stations are not operating is merged to match 

the partial month of the data summary.  The days in a month the station is not open are 

distinguished from the days the station is open but records are missing.  The yearly summary further 

includes day counts for full months in the year where all records are missing or the station is closed.      

 
5.5 Code 5:    Missing Records by Year 

 
--------------------------------------------------------------------------------------------- 
Table 10.  Code 5 Sample Output.  Missing Records by Year.  All sample weather elements, US 
and Canada.    

        
  loc elem year zerrec recs zblank zerobs obs 
1: US AWND 1982 0 243 0 0 243 
2: US AWND 1984 63 102531 0 63 102531 
3: US AWND 1985 111 101691 0 111 101691 
4: US AWND 1986 57 104826 0 57 104826 
5: US AWND 1987 46 116725 0 46 116725 
---         
881: CA WSFG 1969 0 364 0 0 364 
882: CA WSFG 1970 0 136 0 0 136 
883: CA WSFG 2015 70208 175879 0 70208 175879 
884: CA WSFG 2016 95246 235934 0 95246 235934 
885: CA WSFG 2017 74654 196613 0 74654 196613 
 
  stndays stndysinyr stnmos clsdinm clsdfulm clsdall misinm misfulm misall stnct 
1: 243 365 8 0 0 0 0 122 122 1 
2: 102968 105042 3376 16 640 656 421 1434 1855 287 
3: 102074 102930 3356 17 92 109 366 764 1130 282 
4: 105445 119355 3467 7 11421 11428 612 2489 3101 327 
5: 117619 118260 3867 1 579 580 893 62 955 324 
---           
881: 365 365 12 0 0 0 1 0 1 1 
882: 151 365 5 7 214 221 8 0 8 1 
883: 180861 247470 5919 536 64712 65248 4446 1897 6343 678 
884: 240462 247416 7884 379 3968 4347 4149 2986 7135 676 
885: 200453 239075 6597 779 36251 37030 3061 2371 5432 655 
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 stndays stndysinyr stnmos clsdinm clsdfulm clsdall misinm misfulm misall  
1: 243 365 8 0 0 0 0 122 122 
2: 102968 105042 3376 16 640 656 421 1434 1855 
3: 102074 102930 3356 17 92 109 366 764 1130 
4: 105445 119355 3467 7 11421 11428 612 2489 3101 
5: 117619 118260 3867 1 579 580 893 62 955 
---          
881: 365 365 12 0 0 0 1 0 1 
882: 151 365 5 7 214 221 8 0 8 
883: 180861 247470 5919 536 64712 65248 4446 1897 6343 
884: 240462 247416 7884 379 3968 4347 4149 2986 7135 
885: 200453 239075 6597 779 36251 37030 3061 2371 5432 
 
  stnct pctobsyr pctmisyr pctclsdyr pctzblkyr pctzeroyr pctzerobs 
1: 1 0.665753 0.334247 0 0 0 0 
2: 287 0.976095 0.01766 0.006245 0 0.0006 0.000614 
3: 282 0.987963 0.010978 0.001059 0 0.001078 0.001092 
4: 327 0.878271 0.025981 0.095748 0 0.000478 0.000544 
5: 324 0.98702 0.008075 0.004904 0 0.000389 0.000394 
---        
881: 1 0.99726 0.00274 0 0 0 0 
882: 1 0.372603 0.021918 0.605479 0 0 0 
883: 678 0.710708 0.025631 0.26366 0 0.283703 0.399184 
884: 676 0.953592 0.028838 0.01757 0 0.384963 0.403698 
885: 655 0.822391 0.022721 0.154889 0 0.312262 0.3797 

--------------------------------------------------------------------------------------------- 
 
 
 

5.6 Code 6:      Multiple Month Indices 
                                       
--------------------------------------------------------------------------------------------- 
Table 11.  Code 6 Sample output.  Multiple month indices (Bimonthly).  Precipitation, US and 
Canada.  
         
  StationID loc St lat lon elev mindate maxdate elem 
1: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
2: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
3: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
4: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
5: CA001010066 CA BC 48.8667 -123.283 4 19840701 19961129 PRCP 
---          
9184276: USW00096406 US AK 64.5014 -154.13 NA 20140829 20171231 PRCP 
9184277: USW00096407 US AK 66.562 -159.004 NA 20150814 20171231 PRCP 
9184278: USW00096407 US AK 66.562 -159.004 NA 20150814 20171231 PRCP 
9184279: USW00096408 US AK 63.4519 -150.875 NA 20150820 20171214 PRCP 
9184280: USW00096408 US AK 63.4519 -150.875 NA 20150820 20171214 PRCP 
 
  year ord bimo MEI VAL2m VAL2m_US sumVALsqd_US sumVALsqm_US 
1: 1985 1 JanFeb -0.595 60 0.2362 0.042904086 5.58E-02 
2: 1986 1 JanFeb -0.195 2822 11.11 9.504433009 6.45E+01 
3: 1987 1 JanFeb 1.205 1332 5.2441 1.477462955 1.57E+01 
4: 1988 1 JanFeb 0.706 870 3.4252 1.73507347 8.60E+00 
5: 1989 1 JanFeb -1.262 1254 4.937 1.710893422 1.40E+01 
---         
9184276: 2016 12 DecJan 2.227 5 0.0197 0.000387501 3.88E-04 
9184277: 2015 12 DecJan 0.42 33 0.1299 0.008137516 1.69E-02 
9184278: 2016 12 DecJan 2.227 111 0.437 0.034425569 9.56E-02 
9184279: 2015 12 DecJan 0.42 0 0 0 0.00E+00 
9184280: 2016 12 DecJan 2.227 470 1.8504 0.351695703 1.72E+00 
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  zerrec recs zblank zerobs obs daysum misinm clsdinm monthct 
1: 23 25 0 23 25 31 6 0 1 
2: 27 58 0 27 58 59 1 0 2 
3: 25 55 0 25 55 59 4 0 2 
4: 36 51 0 36 51 60 9 0 2 
5: 24 49 0 24 49 59 10 0 2 
---          
9184276: 0 1 0 0 1 31 30 0 1 
9184277: 19 23 0 19 23 62 39 0 2 
9184278: 16 24 0 16 24 62 38 0 2 
9184279: 1 1 0 1 1 31 30 0 1 
9184280: 39 60 0 39 60 62 2 0 2 

 
--------------------------------------------------------------------------------------------- 
ord sorting order for multiple month time period based on first month of period   
bimo  bimonthly time period for MEI (JanFeb, FebMar, …, NovDec)  
trimo (not shown) trimonthly time period for ONI (JFM, FMA, …, DJF) 
MEI bimonthly Multi-Variate ENSO Index   
ONI (not shown) trimonthly Ocean Niño Index 
misinm sum of missing records for combined months of bimo or trimo period 
clsdinm sum of days station closed for combined months of bimo or trimo period 
monthct count of months with records for bimo or trimo period 
 

  
 Some ENSO indices are based on multiple months of data.  Bimonthly sums are merged with the 

Multivariate ENSO Index (MEI) and trimonthly sums are merged with the Oceanic Niño Index 

(ONI).  A count of months is made to indicate at least one record was present in each month.  The 

detail of observations by month can be viewed in the year-month summary.  Stations may be 

selected having observations near to 60 (bimonthly) or 90 (trimonthly) or a minimum monthly 

observation can be established utilizing the year-month summary for station selection. 

 
 

5.7  Code 7:   Weekly Niño Indices 
 
--------------------------------------------------------------------------------------------- 
Table 12.  Code 7 Sample output.  Weekly Niño indices.  Precipitation, US and Canada. 
 
  StationID loc elem St lat lon elev weekno yrgrp ctrweek 
1: CA001010066 CA PRCP BC 48.8667 -123.283 4 1566 1991 1/2/1991 
2: CA001010960 CA PRCP BC 48.6 -123.467 38 1566 1991 1/2/1991 
3: CA001011467 CA PRCP BC 48.5833 -123.417 53 1566 1991 1/2/1991 
4: CA0010114F6 CA PRCP BC 48.5667 -123.4 38 1566 1991 1/2/1991 
5: CA001011743 CA PRCP BC 48.6833 -123.6 99 1566 1991 1/2/1991 
---           
544315: USW00094911 US PRCP SD 42.8783 -97.3633 NA 1617 1991 12/25/1991 
544316: USW00094918 US PRCP NE 41.3536 -96.0233 NA 1617 1991 12/25/1991 
544317: USW00094931 US PRCP MN 47.3864 -92.8389 NA 1617 1991 12/25/1991 
544318: USW00094957 US PRCP NE 40.0803 -95.5919 NA 1617 1991 12/25/1991 
544319: USW00094967 US PRCP MN 46.9006 -95.0678 NA 1617 1991 12/25/1991 

 
  VALw VALw_US sumVALsqd_US VALsqw_US zerrec recs zblank zerobs obs misclsd 
1: 0 0 0 0 6 6 0 6 6 8 
2: 85 0.3346457 0.04738359 0.07168764 4 7 0 4 7 7 
3: 140 0.5511811 0.13751628 0.2015004 4 7 0 4 7 7 
4: 96 0.3779528 0.06782814 0.08642817 4 7 0 4 7 7 
5: 54 0.2125984 0.02287805 0.02287805 4 6 0 4 6 8 
---           
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544315: 0 0 0 0 7 7 7 0 0 7 
544316: 145 0.5708661 0.31268213 0.32588815 5 7 0 5 7 0 
544317: 0 0 0 0 7 7 0 7 7 0 
544318: 117 0.4606299 0.2015779 0.21217992 5 7 0 5 7 0 
544319: 0 0 0 0 7 7 0 7 7 0 

 
  Nino12Ind Nino12Anom Nino3Ind Nino3Anom Nino34Ind Nino34Anom Nino4Ind Nino4Anom 
1: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
2: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
3: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
4: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
5: 23.2 0.5 25.3 0.1 26.9 0.4 28.9 0.5 
---         
544315: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 
544316: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 
544317: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 
544318: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 
544319: 23.6 0.3 26.7 1.4 28.5 1.9 29.6 1.2 

--------------------------------------------------------------------------------------------- 
VALw  weekly sum of daily VAL  
VALw_US weekly sum of VAL_US, VAL converted to U.S. unit of measure. 
sumVALsqd_US weekly sum of squared daily values in U.S. units, to compute daily variances 
  

 
 Niño indices are available monthly at least since 1950, and weekly since 1990.  The weekly indices 

give more specific information about the ENSO phase that might be relevant to the timing of losses.  

The code produces weekly summaries by element according to the weekly groupings of the Niño 

indices, which begin on 12/31/1989 and are always seven days in length.  The result of these 

divisions will be the same beginning on 1/1/1961.  As these weeks will shift through years, they will 

not provide comparison periods year by year.  An alternative numbering scheme is provided at the 

end of the code labels an eight day week at the end of each year and an eight day week with every 

leap day.  The eighth days weeks can be excluded from assignment if desired.  This alternative 

provides a comparative basis among years but does not match the weekly Niño indices time periods 

so the index values might be interpolated.  The code counts the number of observations by week so 

that the level of completeness can be determined and used in station selection.   

 
--------------------------------------------------------------------------------------------- 

Table 13.  Weekly Niño numbering scheme (Table 13-A, left) with seven days per week, and 
alternative scheme for comparisons among years (Table 13-B, right) with eight day weeks at the 
end of each year and with each leap day. 

       
   weekno date ctrweek yrgrp || weekno mdchar ctrweek 
 1  1 19610101 1961-01-04 1961 || 1 1 101 1961-01-04 
 2  1 19610102 1961-01-04 1961 || 2 1 102 1961-01-04 
 3  1 19610103 1961-01-04 1961 || 3 1 103 1961-01-04 
 4  1 19610104 1961-01-04 1961 || 4 1 104 1961-01-04 
 5  1 19610105 1961-01-04 1961 || 5 1 105 1961-01-04 
 6  1 19610106 1961-01-04 1961 || 6 1 106 1961-01-04 
 7  1 19610107 1961-01-04 1961 || 7 1 107 1961-01-04 
 8  2 19610108 1961-01-11 1961 || 8 2 108 1961-01-11 
 9  2 19610109 1961-01-11 1961 || 9 2 109 1961-01-11 
 1 0 2 19610110 1961-01-11 1961 || 10 2 110 1961-01-11 
 11 2 19610111 1961-01-11 1961 || 11 2 111 1961-01-11 
 12 2 19610112 1961-01-11 1961 || 12 2 112 1961-01-11 

--------------------------------------------------------------------------------------------- 
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 weekno (A) each week is given its own number; (B) weeks 1 – 52 each year 
 date (A) always 7 days in week, field to merge with element or loss records 
 ctrweek weeks are identified by central day of the week.  (A) matches Niño indices. 
 yrgrp indicates output *.csv file particularly for weeks overlapping two years 

mdchar (B) month-day will correspond to the same week number in every year.   
 
 

5.8  Code 8  State Summaries 
 Visual Analysis with Choropleth Maps 
 
--------------------------------------------------------------------------------------------- 
Table 14. Code 8 sample of summary by state, with anomalies to be plotted on choropleth maps. 
Precipitation, US by state. 
 
 loc St elem year VALy VALy_US obs stnct VALsqSt_US 
1: US AL PRCP 1960 487419 1918.9724 14162 39 3682455.2 
2: US AZ PRCP 1960 159360 627.4016 21350 60 393632.7 
3: US AR PRCP 1960 796665 3136.4764 24788 70 9837484.1 
4: US CA PRCP 1960 1083230 4264.685 75153 208 18187538.5 
5: US CO PRCP 1960 246999 972.437 26517 74 945633.7 
6: US CT PRCP 2016 74192 292.0945 2921 8 85319.19 

 
 bsstnobs bsstnyrs bsmean bsstdev rm.na anom  
1: 396676 1200 2239.84 319.3026 TRUE -1.0049014  
2: 544398 1800 1050.5949 1052.0216 TRUE -0.4022668  
3: 691713 2130 3467.5654 556.574 TRUE -0.5948697  
4: 1874258 6270 4607.6652 1421.5972 TRUE -0.241264  
5: 722090 2280 1122.9764 165.4945 TRUE -0.9096334  
6: 79998 240 366.5045 61.08135 TRUE -1.2182111 
  
      Name STDEVgrp colreg 
1: alabama neg1.5 wheat2 
2: arizona neg0.5 lightyellow1 
3: arkansas neg0.5 lightyellow1 
4: california pos0.50 lightcyan1 
5: colorado neg0.5 lightyellow1 
6: connecticut neg1.5 wheat2 

--------------------------------------------------------------------------------------------- 

 

 Code 8 summarizes by state, greatly reducing the data set size, and from the state data creates 

choropleth maps – maps that color code a region according to a selected data field.  Two different 

packages are used to create choropleth maps, maps that color code a selected data field by region.  

The packages are ‘maps’ and ‘ggplot2.’  In this case the regions are states, and the example data field 

is the anomalous rainfall in the year mapped as compared against the base climate period.  

Choropleths of anomalies centered at zero are not as immediately plotted in R because the 

choropleth packages are primarily designed for positive values such as census data.   

 Package ‘maps’ does not plot Alaska or Hawaii with the mainland United States, but the code is 

simple and straightforward to use for creating a choropleth, and individual states can still be plotted 

separately.  The example choropleth will be created ‘from scratch,’ meaning a column of colors will 

be defined in the data set corresponding to the anomaly for each state.  In this case, the positive 

anomalies will be assigned deepening shades of blue to indicate more rainfall at a glance, while the 

negative anomalies will be assigned deepening shades of tan and brown to indicate dryness.  Points 
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are easily plotted on the choropleth to show the location of each station selected for the data 

underlying the choropleth.  

 Package ‘ggplot2’ has an advantage over ‘maps’ in its compatibility with the package ‘fiftystater’ 

which plots insets for Alaska and Hawaii.  This package also allows a midpoint to be defined at zero, 

and will either assign automatic base colors or else will assign grades of colors based on selections 

made for the low, midpoint, and high values.  Selecting a midpoint color with contrast to the low 

and high value colors will produce a choropleth that is easily interpreted.   

 To avoid plot errors and formatting glitches, be sure to expand the plot region large enough for 

map to fit, and for the legend to fit to the side of the map. 

 The code uses package ‘dplyr’ to produce statistics for the base climate period, but also provides 

the formulas for calculating anomalies directly.  Note that if the package ‘plyr’ is loaded in R, then 

‘dplyr’ will not complete the calculations unless ‘plyr’ is detached.   

 

--------------------------------------------------------------------------------------------- 
Table 15.  Code 8 sample calculation of base year statistics, mean and standard deviation. 
Precipitation, US by state. 
 
 loc St elem bsstnobs bsstnyrs bsmean bsstdev rm.na 
 <chr> <chr> <chr> <int> <dbl> <dbl> <dbl> <lgl> 
1 US AK PRCP 348076 990 1354.76 118.8982 TRUE 
2 US AL PRCP 396676 1200 2239.84 319.3026 TRUE 
3 US AR PRCP 691713 2130 3467.565 556.574 TRUE 
4 US AZ PRCP 544398 1800 1050.595 1052.0216 TRUE 
5 US CA PRCP 1874258 6270 4607.665 1421.5972 TRUE 
6 US CO PRCP 722090 2280 1122.976 165.4945 TRUE 
--------------------------------------------------------------------------------------------- 
 

 
 

5.9   Code  9   Combine Monthly Indices  
 
--------------------------------------------------------------------------------------------- 
Table 16.  Code 9 Sample Output. Monthly ENSO indices combined into a single file 
‘IndexMonthly.csv’ with all indices converted to ‘long’ format.   
 

   year month Nino12 Anom12 Nino3 Anom3 Nino4 Anom4 Nino34 Anom34   SOI EQSOI  BEST    TNI 

  <int> <int>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> 

1  1951     1  24.11  -0.44 24.79 -0.87 27.21 -1.02  25.24  -1.31   2.5   0.1 -1.13  1.315 
2  1951     2  25.19  -0.83 25.65 -0.76 27.09 -1.01  25.71  -1.03  -1.5  -1.4  0.64  0.168 

3  1951     3  25.74  -0.68 26.87 -0.28 27.74 -0.47  26.90  -0.33   0.5  -0.2  0.18 -0.027 

4  1951     4  25.29  -0.18 27.37 -0.11 28.21 -0.24  27.58  -0.13   1.1   0.2  0.00 -0.655 

5  1951     5  24.59   0.33 27.07 -0.09 29.18  0.43  27.92   0.11  -0.9  -0.2 -0.01  0.316 
--------------------------------------------------------------------------------------------- 

 
 This interim code combines various ENSO index files into one, for convenience, utilizing a 

common “long” format.  The Niño indices are promulgated in the “long” format while other indices 

are available formatted “wide.”  For ENSO indices, the “long” format includes two separate 

columns for year and month, and one column per index; while the “wide” format includes separate 

columns for each month of the year.  It is most practical to utilize the “long” format for all indices, 

in order to merge data by year and month, and to label each index as a column header.   
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5.10 Code 10 Plot ENSO Index Time Series 
 
--------------------------------------------------------------------------------------------- 
Table 17. Sample output of Multivariate ENSO Index (MEI) for plotting time series.   
 
 bimo Year MEI posM month 
273 JanFeb 1950 -1.163 FALSE 1 
205 FebMar 1950 -1.312 FALSE 2 
477 MarApr 1950 -1.098 FALSE 3 
1 AprMay 1950 -1.445 FALSE 4 
545 MayJun 1950 -1.376 FALSE 5 
 

--------------------------------------------------------------------------------------------- 
 

 

 This code produces time series bar plots of indices from MEI, ONI, and the monthly indices 

previously combined into one dataset by Code 9.  The column “positive” is added to discern index 

values above and below the x-axis, corresponding to positive and negative ENSO phases color 

coded in the bar graph.  The plots are formatted for anomalies and could be modified to present 

SST measures  

 For the monthly ENSO indices, a vector “IndexName” is defined by the column headings for 

the index values.  The ENSO index to be plotted is selected by its number position in the vector.  

The code replaces the column heading with “PlotIndex” which locates the data to plot.  After 

plotting the column heading is returned to the original ENSO index title.  If errors are encountered, 

reset the column headers to the original headers.   

 
--------------------------------------------------------------------------------------------------------------------------- 
Table 18.  Column headings for data set ‘indices’ given by names(indices), before 
selecting the index (top) and after, where SelIndex <- 4 (bottom).  
 
 [1] "year" "month" "Nino12" "Anom12" "Nino3" "Anom3" "Nino4"  
 [8] "Anom4" "Nino34" "Anom34" "SOI" "EQSOI" "BEST" "TNI" 
 
[1] "year" "month" "Nino12" "Anom12" "Nino3" "PlotIndex" "Nino4"     
 [8] "Anom4" "Nino34" "Anom34" "SOI" "EQSOI" "BEST" "TNI"       

--------------------------------------------------------------------------------------------------------------------------- 
 

 
 
5.11  Code 11     Plot Element vs. Index by State 
 
--------------------------------------------------------------------------------------------- 
Table 19.  Sample output of monthly data summarized by state/territory with corresponding 
monthly ENSO indices.  Precipitation, US and Canada. 
 
 St loc elem year month pre82 VALm VALm_US 
1: BC CA PRCP 1960 1 Y 40321 158.74409 
2: BC CA PRCP 1960 2 Y 32910 129.56693 
3: BC CA PRCP 1960 3 Y 30385 119.62598 
4: BC CA PRCP 1960 4 Y 27480 108.18898 
5: BC CA PRCP 1960 5 Y 26997 106.2874 
6: BC CA PRCP 1960 6 Y 11381 44.80709 
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 sumVALsqd_US VALsqm_US zerrec recs zblank zerobs obs daysinmo 
1: 192.12355 1613.4087 429 863 0 429 863 868 
2: 142.06836 1054.816 467 806 0 467 806 812 
3: 86.56722 882.4508 452 849 0 452 849 868 
4: 79.6731 826.5286 488 856 0 488 856 870 
5: 61.02212 601.5856 404 875 0 404 875 899 
6: 15.57885 109.3986 570 838 0 570 838 840 

 
 misinm clsdinm stns avgVALm_US Nino12 Anom12 Nino3 Anom3 
1: 5 0 28 0.18394449 24.23 -0.31 25.31 -0.35 
2: 6 0 28 0.16075301 25.68 -0.34 25.93 -0.47 
3: 19 0 28 0.14090222 26.24 -0.18 26.87 -0.29 
4: 8 6 29 0.12638899 24.43 -1.04 27.15 -0.33 
5: 24 0 29 0.12147132 23.33 -0.94 26.71 -0.45 
6: 2 0 28 0.05346908 21.71 -1.3 25.86 -0.64 

 
 Nino4 Anom4 Nino34 Anom34 SOI EQSOI BEST TNI 
1: 27.62 -0.62 26.27 -0.29 -1.5 -1.1 1.51 -0.945 
2: 27.44 -0.65 26.29 -0.45 -1.2 -0.7 0.74 -0.668 
3: 27.75 -0.45 26.98 -0.25 0.4 0.4 -0.07 -1.399 
4: 28.01 -0.44 27.49 -0.22 -0.2 -0.1 0.7 -1.911 
5: 28.42 -0.33 27.68 -0.13 0.4 0.7 -0.39 -0.373 
6: 28.33 -0.46 27.24 -0.35 2.9 0.3 -0.75 -1.149 

--------------------------------------------------------------------------------------------- 
 

 
 Code 11 summarizes by state, greatly reducing the data size.  This code is intended to be highly 

customizable.  The example given is a simplified illustration.  Yearly data is used to select stations 

with records in all 57 base and recent years, which adds consistency to the location of observations 

across time so that comparisons of yearly results are meaningful.  The detailed station inventories 

could be used to make this type of selection, but reading yearly data has the advantage including 

counts of observations by which to further refine selections.  Alternatively, the year-month summary 

could be used to set a minimum level of completeness for selected months based on monthly 

observation counts.  Many other criteria can be introduced.  As the weather element data will be 

summarized from a station level to a state level, it is important to consider the stations represented 

by the selections.  Strict selections may result in overly sparse records by state or sparseness in 

relevant regions.    

 The data to read in will be monthly, bimonthly or trimonthly, depending on the index selection.  

The MEI is bimonthly and ONI is trimonthly.  The vector “IndexName” is defined by the column 

headings for index values, the same as in Code 10.  A loop is coded so that all of the indices can be 

plotted at once; or the loop can be commented out.  If errors are encountered, remember to reset 

the column headers to the original headers.     

 The code identifies years prior to 1982 versus years from 1982 on, and base climate period years 

versus subsequent years.  The data is summed preserving the 1982 split but could be modified to 

retain the base period, or another split specified by a code modification.  Outliers labeled to identify 

the year of each point, can be revised at the left and right limits, according to the overall spread of 

the plot.  Some graph labels are also automated and may need to be refined.        

 For the example, no adjustment is made for the change in proportion of blank records assumed 

zero (‘zblank’) which has been drastic especially since 1982.  The plot is color-coded to show points 

before and after 1982.  Erroneous zero entries will be overstated prior to 1982, so that adjustments 
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for unidentified blanks assumed zero would shift points upward.  The adjustment should affect the 

final relationship displayed between the weather element and the ENSO index.  The effort to 

improve completion of records since 1982 will also cause zero records to increase since 1982, over 

which time zero entries have been somewhat understated. 

 
 
5.12  Code 12   Map of ENSO Index Regions 
 
 This code creates a map of the ENSO Index regions.  Details on mapping are covered in Part I.   

 
5.13 Code 13 Costliest Storms 
 
 The data on costliest storms was copied from Wikipedia in January 2018.  The table below can be 

copied into excel and saved as a *.csv file ‘CostlyStorms.csv’ in the base directory as input to this 

code.  The Wikipedia data is updated regularly, and if the input file is updated then the formatting of 

the bar graph will require updates to the code.  Some storm dates are provide which can be used for 

comparison against ENSO indices.    

 

Table 20.  List of Costliest Atlantic Hurricanes.  Storms exceeding U.S.  $1 Billion, in descending order.  

Storms that broke the historical record for damages, at the time of the storm’s dissipation, are highlighted, 

showing that the costliest storms have move up the list in large strides that may appear uncharacteristic of 

inflation or randomness by damages on an unadjusted actual cost level.  This table is intended for input to R. 

[ Source : Wikipedia ] 

  
  Peak Classification  Unadjusted   (> $1B)   
 Storm Hurricane Category Damages   Storm # Begin End 
 Name (0 = Tropical Storm) in U.S. $Billions Year  of Year Date Date  

 Katrina 5 125 2005 3 823 831 

 Harvey 4 125 2017 1 817 903 

 Maria 5 92 2017 3 916 1003 
 Sandy 3 68.7 2012 2 1022 1102 
 Irma 5 64.2 2017 2 830 916 
 Ike 4 38 2008 3 901 915 
 Wilma 5 27.4 2005 6 1016 1027 

 Andrew 5 27.3 1992 1 816 828 

 Ivan 5 26.1 2004 3 902 924 
 Rita 5 18.5 2005 4 918 926 
 Charley 4 16.9 2004 1 809 815 
 Matthew 5 15.1 2016 1 928 1010 
 Irene 3 14.2 2011 1 821 830 
 Frances 4 9.8 2004 2 824 910 

 Hugo 5 9.47 1989 1 910 925 

 Georges 4 9.37 1998 2 915 1001 
 Allison 0 8.5 2001 1 604 620 
 Gustav 4 8.31 2008 2 825 907 
 Jeanne 3 7.94 2004 4 913 929 
 Floyd 4 6.5 1999 1 907 919 
 Mitch 5 6.08 1998 3 1022 1109 
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 Isabel 5 5.5 2003 1 906 920 
 Fran 3 5 1996 1 823 910 
 Opal 4 4.7 1995 3 927 1006 
 Stan 1 3.96 2005 5 1001 1005 
 Karl 3 3.9 2010 2 914 918 
 Dennis 4 3.71 2005 1 704 718 

 Alicia 3 3 1983 1 815 821 

 Gilbert 5 2.98 1988 1 908 929 
 Luis 4 2.97 1995 1 828 912 
 Lee 0 2.8 2011 2 902 907 
 Isaac 1 2.8 2012 1 821 903 
 Michelle 4 2.35 2001 2 1029 1106 

 Agnes 1 2.1 1972 1 614 623 

 Marilyn 3 2.1 1995 2 912 930 
 Dean 5 1.95 2007 1   
 Alex 2 1.89 2010 1   
 Joan 4 1.87 1988 2   
 Fifi 2 1.8 1974 1   
 Frederic 4 1.71 1979 2   
 Dolly 2 1.6 2008 1   
 Allen 5 1.57 1980 1   
 David 5 1.54 1979 1   
 Bob 3 1.51 1991 1   
 Juan 1 1.5 1985 2   
 Roxanne 3 1.5 1995 4   
 Ingrid 1 1.5 2013 1   

 Betsy 4 1.43 1965 1   

 Camille 5 1.42 1969 1   
 Elena 3 1.3 1985 1   
 Isidore 3 1.28 2002 1   
 Lili 4 1.16 2002 2   
 Alberto 0 1.03 1994 1   
 Emily 5 1.01 2005 2   
 Beulah 5 1 1967 1   
 Bonnie 3 1 1998 1   
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Code 
 
 
# =================================================== # 
# ================= CODE CONTENTS =================== # 
# =================================================== # 
 
# 5.0     Set up in R      
# 5.1   Code 1   Weather Daily - Loop to Unzip Year by Year 
# 5.2   Code 2   Initial Detailed Station Inventories 
# 5.3   Code 3   Initial Year-Month Summaries 
# 5.4   Code 4   Complete Yearly and Year-Month Summaries 
#                   Merged with Station Locations and Inventories 
# 5.5   Code 5   Missing Records by Year 
# 5.6   Code 6   Multiple Month Indices (MEI and ONI) 
# 5.7   Code 7   Weekly Nino Indices 
# 5.8   Code 8   State Summaries / Plot Selected Stations 
#                  Visual Analysis with Choropleth Maps 
#                     5.8.1 Package 'maps' - 48 mainland states 
#                     5.8.2 Packages 'ggplot2' and 'fiftystater' - AK & HI insets 
# 5.9   Code 9   Combine Monthly Indices 
# 5.10  Code 10    Plot Index Time Series 
# 5.11  Code 11   Plot Element vs. Index by State 
# 5.12  Code 12   Map of ENSO Index Regions 
# 5.13  Code 13 Costliest Storms 
 
 
# Station/Element level:  1 (daily), 2, 3 (yr-mo), 4 (yr-mo & yr), 6 (2 mo & 3 mo), 7 (weekly) 
# Country/Element level:  5 
# State/Element level:    8, 10 
# 
# 1. Loop to unzip daily meteorological data year by year.  Long run time.   
# 2. Open daily files to detail station inventories, dates open/closed, missing records.  
# 3. Open daily files to summarize by year-month. 
# 4. Merge station detail into year-month summary; summarize by year  
# 5. Yearly summary of total and average counts of missing records, blanks assumed zero,  
#  observations, etc.  
# 6. Summarize monthly data into two- and three-month periods for comparison to MEI and ONI.    
# 7. Open daily files to summarize by seven day periods matching weekly Nino indices. 
# 8. Customizable station selections, summarize by state, plot stations and choropleth  
# 9. Convert wide formats to long; combine monthly ENSO indices into one .csv file for  
#  convenience. 
#  
# ENSO Indices - bimonthly (MEI), trimonthly (ONI), monthly (Nino, SOI, EQSOI, TNI, BEST),  
# and weekly (Nino) 
 
# Daily GHCNDex data - download files by year into a folder specified as the working directory 
# ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ 
# ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/ 
 
# =================================================== # 
# ================= SET UP IN R ===================== # 
# =================================================== # 
 
 
######################################## 
#             BEGIN SETUP              #               
######################################## 
 
# Set Default Working Directory (Optional) 
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setwd("C:/…/Weather") 
getwd() 
 
# Remove list to free memory 
rm(list=ls()) 
ls() 
 
# Set directories for downloaded zipped files, base input files, and written output  
dirzip <- "C:/…/WeatherZip" 
dirbase <- "C:/…/WeatherBase" 
diroutput <- "C:/…/WeatherData" 
 
# Load packages data.table, tidyverse, lubridate 
library(data.table)   # data.table functions run faster than base R code.  
# rbindlist() combines years of weather dataframes in list;  
# setnames() updates column headers 
library(tidyverse)    # a set of packages for organizing data; package 'readr' to unzip. 
library(lubridate)    # days_in_month() gives expected number of records 
 
 
#................. FUNCTION REPEAT ROWS ...............  
rep.row <- function(x,n){ 
  matrix(rep(x,each=n),nrow=n) 
} 
#...................................................... 
 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
#----------------- FIVE CORE ELEMENTS ---------------------------------------- 
# 
# SelElem Element            Unit of Measure        Converted (US) 
# 
# PRCP Precipitation        tenths of mm           inches 
# SNOW Snowfall            mm                     inches 
# SNWD Snow depth          mm                     inches 
# TMAX Maximum temperature  tenths of degrees C    degrees Fahrenheit 
# TMIN Minimum temperature  tenths of degrees C    degrees Fahrenheit 
# 
#----------------------------------------------------------------------------- 
# 
# WIND    elements are coded to include: 
# 
# AWND    Average daily wind speed         (tenths of meters per second) 
# WSF1    Fastest 1-minute wind speed      (tenths of meters per second) 
# WSF2    Fastest 2-minute wind speed      (tenths of meters per second) 
# WSF5    Fastest 5-second wind speed      (tenths of meters per second) 
# WSFG    Peak gust wind speed             (tenths of meters per second) 
# WSFI    Highest instantaneous wind speed (tenths of meters per second) 
# WSFM    Fastest mile wind speed          (tenths of meters per second) 
# 
#------------------------------------------------------------------------------ 
 
 
######################################## 
#             END SETUP                #               
######################################## 
 
# 
============================================================================================== 
# 
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# ===== CODE 1 ===== LOOP TO UNZIP DAILY METEOROLOGICAL FILES YEAR BY YEAR 
===================== # 
# 
============================================================================================== 
# 
 
# Elements                    # View list of elements 
# Elements <- Elements[1:2]   # Select subset of elements (option) 
 
# Set directory to file location of downloaded zipped files 
setwd(dirzip) 
# Put files in directory that will be unzipped and read 
gzfiles <- dir(pattern = "*.csv.gz") # creates the list of all the csv files in the directory 
gzfiles   # view files selected 
# gzfiles <- gzfiles[1:3]  # Select subset of files from the list (option) 
 
dataset <- list() # creates a list that will hold the meteorological data files 
 
######################################## 
#          BEGIN OUTER LOOP            #               
######################################## 
 
# OUTER LOOP : Selected years of zipped .GZ daily weather station data files 
 
for (k in 1:length(gzfiles)){ 
  setwd(dirzip) 
  dataset[[k]] <- read_csv(gzfiles[k], col_names = FALSE) 
  # Add column names 
  colnames(dataset[[k]]) <- c("StationID","date", "elem", "VAL", "MFlag",  
                              "QFlag", "SFlag", "Time" ) 
   
  # Create data table to save processing time - Subset elements from this table 
  dtbl <- as.data.table(dataset[[k]]) 
   
  # reduce the large data frame in the list to save memory in the loop 
  dataset[[k]] <- 0 
   
  # Create location field (country etc.) to be used to subset data 
  dtbl[, loc := substring(StationID, 1, 2)] 
  class(dtbl$elem) 
   
  ######################################## 
  #          BEGIN INNER LOOP            #               
  ######################################## 
   
  # Inner Loop : all Elements for the unzipped year 
   
  for (L in 1: length(Elements)){  
    # 'WIND' will subset several wind elements; otherwise use SelElem 
    ifelse(Elements[L] != 'WIND',  SelElem <- Elements[L],  
           SelElem <- c("AWND", "WSF1", "WSF2", "WSF5", "WSFG", "WSFI", "WSFM")) 
     
    # Subset US and Canadian data for selected element, so datasets are small enough to write 
    subdat <- dtbl[elem %in% SelElem & loc %in% c('US', 'CA')] 
    subdat[is.na(subdat)]<- "-" 
    # Replace line above to include US Territories 
    # subdat <- dtbl[elem %in% SelElem & loc %in% c('US', 'CA', 'AQ', 'CQ', 'GQ',  
    #'JQ', 'LQ', 'RQ', 'VQ', 'WQ')] 
 
# Add year and month fields 
subdat[, year := as.integer(substring(date, 1, 4))] 
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subdat[, month := as.integer(substring(date, 5, 6))] 
subdat[, monthday := as.character(substring(date, 5, 8))] 
# N.B. monthday 0122 appears in csv as 122. 1202 appears in csv as 1202. 
 
# Convert unit of measure specific to selected element.   
if(SelElem == 'PRCP'){ 
  subdat[,VAL_US := (VAL/254)] 
} 
if(SelElem == 'SNOW' | SelElem == 'SNWD'){ 
  subdat[,VAL_US := (VAL/25.4)] 
}  
if(SelElem == 'TMAX' | SelElem == 'TMIN'){ 
  subdat[,VAL_US := (VAL*0.18) +32] 
}  
if(Elements[L] == 'WIND'){ 
  subdat[,VAL_US := (VAL/10)*2.23694] 
} 
 
# Sort the files by location and StationID 
subdat <- subdat[order(subdat$elem, subdat$StationID), ]   
 
# Create file name according to year of data 
yrchar = as.character(subdat[2, 10]) 
 
# Name file where daily data will be written out to 
filenmday = paste0("USCANday", Elements[L], yrchar, ".csv") 
# Write DAILY subsets of data to csv files  
setwd(diroutput) 
write_csv(subdat, filenmday, col_names=TRUE) 
 
# Remove datasets and unused values to save memory 
rm(filenmday, yrchar, subdat) 
 
gc()  # call for garbage can saves memory 
  } 
   
  ######################################## 
  #      END INNER LOOP (Elements)       #               
  ######################################## 
   
  rm(dtbl) 
   
} 
 
######################################## 
#        END OUTER LOOP (Years)        #               
######################################## 
 
rm(dataset, gzfiles, k, L, SelElem) 
 
# END PROGRAM CODE 
 
#  
 
# ========================================================================================== # 
# ===== CODE 2 ================ INITIAL STATION INVENTORY ================================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# Select subset of elements (option) 
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Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
# Elements <- Elements[1:2] 
 
# Select base years (eg. 1961 - 1990) for climatology, typically 30 past years 
BegBsYr <- 1961 
EndBsYr <- 1990 
 
setwd(dirbase) 
 
stnlist <- read_csv('ghcnd-stations.csv', col_names = FALSE) 
colnames(stnlist) <- c("StationID","lat", "lon", "elev", "St", "Name", "GSNFlag", "zip" ) 
stnlist$loc <- as.character(substring(stnlist$StationID, 1,2)) 
stnlist <- as.data.table(stnlist) 
stnsub <- stnlist[, c('StationID', 'loc', 'St', 'lat', 'lon', 'elev')]  #(*Change columns*) 
USCANstn <- subset(stnsub, stnsub$loc %in% c('US', 'CA')) 
head(USCANstn) 
 
 
stninv <- read_csv('ghcnd-inventory.csv', col_names = FALSE) 
colnames(stninv) <- c("StationID","lat", "lon", "elem", "Open", "Close") 
stninv$loc <- as.character(substring(stninv$StationID, 1,2)) 
stninv <-as.data.table(stninv) 
#(*Change columns*) 
stninv0 <- stninv[, c('StationID', 'loc','lat', 'lon', 'elem', 'Open', 'Close')]   
USCANinv0 <- stninv0[loc %in% c("US", "CA")] 
rm(stnlist, stnsub, stninv, stninv0) 
 
# Set working directory to access output of daily csv files 
setwd(diroutput) 
######################################## 
#         BEGIN OUTER LOOP             #               
######################################## 
for (w in 1:length(Elements)){ 
  SelElem <- Elements[w] 
  # Select station inventory by element, merge with station list 
  USCANinv <- USCANinv0[elem == SelElem] 
  stnloc <- as.data.table(full_join(USCANstn, USCANinv[, c('StationID', 'Open', 'Close')],  
                                    by = 'StationID')) 
 
  # creates the list of all the csv files in the directory 
  csvfiles <- dir(pattern = paste0("USCANday",  SelElem, "*"))    
  csvfiles 
   
  # Define list for loop 
  daily <- list() 
   
  ######################################## 
  #         BEGIN INNER LOOP             #               
  ######################################## 
   
  ##### LOOP: for selected element, loop through all years of daily records 
   
  for (q in 1:length(csvfiles)){ 
     
    daily[[q]] <- read_csv(csvfiles[[q]], col_names = TRUE) 
    subdat <- as.data.table(daily[[q]]) 
    daily[[q]] <- 0 
     
    # Summarize by Station the minimum and maximum operation dates 
    stnmindt <- subdat[, lapply(.SD, min, na.rm=TRUE), .SDcols='date',  
                       by=list(StationID, loc, elem, year)] 
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    stnmaxdt <- subdat[, lapply(.SD, max, na.rm=TRUE), .SDcols='date',  
                       by=list(StationID, loc, elem, year)] 
    setnames(stnmindt, 'date', 'mindate') 
    setnames(stnmaxdt, 'date', 'maxdate') 
    stndates <- as.data.table(full_join(stnmindt, stnmaxdt,  
                                        by = c('StationID', 'loc', 'elem', 'year'))) 
     
    rm(subdat, stnmindt, stnmaxdt) 
     
    # Collect years into one data frame 
    if(q==1){ 
     stndtall <- stndates 
    } 
    if(q>1){ 
      stndtall <- rbind(stndtall, stndates) 
    } 
     
    # Remove files to save memory 
    rm(stndates) 
     
    # Call garbage can gc() to save memory 
    gc() 
  }  
   
  ######################################## 
  #       END INNER LOOP (Years)         #               
  ######################################## 
   
  rm(csvfiles, daily, w, q) 
   
  # Continue through code to end 
   
  # Sort the records by location, element (for WIND), year and StationID 
  stndtall <- stndtall[order(loc, elem, StationID, year),] 
   
  # Summarize minimum and maximum station operation dates for all combined years 
  stnminall <- stndtall[, lapply(.SD, min, na.rm=TRUE), .SDcols='mindate',  
                        by=list(StationID, loc, elem)] 
  stnmaxall <- stndtall[, lapply(.SD, max, na.rm=TRUE), .SDcols='maxdate',  
                        by=list(StationID, loc, elem)] 
  stndtsum <- as.data.table(full_join(stnminall, stnmaxall,  
                        by = c('StationID', 'loc', 'elem'))) 
   
  rm(stnminall, stnmaxall) 
   
  # -------- create additional date fields ----------- 
  stndtsum[,minyear := as.integer(substring(mindate,1,4))] 
  stndtsum[,minmo := as.integer(substring(mindate,5,6))] 
  stndtsum[,maxyear := as.integer(substring(maxdate,1,4))] 
  stndtsum[,maxmo := as.integer(substring(maxdate,5,6))] 
   
  stndtinv <- as.data.table(right_join(stnloc, stndtsum,  
                                       by = c('StationID', 'loc'))) 
   
  # ---------- partial month adjustments ---------------- 
  stndtinv[, daysmaxmo := days_in_month(as.Date(paste(maxyear, maxmo, 15, sep ="-")))] 
  stndtinv[, begminmo := as.integer(paste0(minyear, ifelse(minmo < 10, "0", ""),  
                                           minmo, '01'))] 
  stndtinv[, endmaxmo := as.integer(paste0(maxyear, ifelse(maxmo < 10, "0", ""),  
                                           maxmo, daysmaxmo))] 
  stndtinv[, clsdmbeg := (mindate - begminmo)] 
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  stndtinv[, clsdmend := (endmaxmo - maxdate)] 
  # eliminate calculation fields 
  stndtinv[ ,':='(daysmaxmo = NULL, begminmo = NULL, endmaxmo = NULL)]   
  # Compare minimum date with ghcnd-inventory station open year 
  stndtinv[, clsdmbeg := ifelse(Open < minyear, 0, clsdmbeg)] 
  stndtinv[, clsdmend := ifelse(Close > maxyear, 0, clsdmend)] 
  stndtinv[, clsdinm := (clsdmbeg + clsdmend)] 
   
  # ---------- full month adjustments ---------------- 
  # ....... Set up count of days in full months before and after station in operation ..... 
  # start with days in months for 'regular' year (non leap year) - then add leap year adj 
  dys <- days_in_month(as.Date(paste(1961, seq(1:12), 15, sep ="-"))) 
  dysleap <- c(dys, 1) 
  repdys <- rep.row(dysleap, nrow(stndtinv)) 
  repmos <- rep.row(seq(1:12), nrow(stndtinv)) 
  # ...................................................................................... 
  # Count mins  
  output <- matrix(0, nrow(stndtinv), 13) 
  for(i in 1:nrow(stndtinv)){ 
    output[i,1:12] <- (repmos[i,1:12] < stndtinv$minmo[i]) 
  } 
  # Adjust days in February for leap years: output[,2] is 0 or 1 for second month February 
  output[,13] <- leap_year(stndtinv$minyear)*(output[,2])  
  daysout <- repdys*output 
  stndtinv$clsdbef <- apply(daysout, 1, sum) 
  # Count maxs 
  output <- matrix(0, nrow(stndtinv), 13) 
  for(i in 1:nrow(stndtinv)){ 
    output[i,1:12] <- (repmos[i,1:12] > stndtinv$maxmo[i]) 
  } 
  # Adjust days in February for leap years: output[,2] is 0 or 1 for second month February 
  output[,13] <- leap_year(stndtinv$maxyear)*(output[,2])  
  daysout <- repdys*output 
  stndtinv$clsdaft <- apply(daysout, 1, sum) 
  # Compare minimum date with ghcnd-inventory station open year 
  stndtinv[, clsdbef := ifelse(Open < minyear, 0, clsdbef)] 
  stndtinv[, clsdaft := ifelse(Close > maxyear, 0, clsdaft)] 
  stndtinv[, clsdfulm := (clsdbef + clsdaft)] 
   
  # ------- count base and recent years ------------- 
  stndtall[, bsyrct:= ifelse(year >= BegBsYr & year <= EndBsYr, 1, 0)] 
  stndtall[, rcyrct:= ifelse(year > EndBsYr, 1, 0)] 
  stnyrct <- stndtall[, lapply(.SD, sum, na.rm=TRUE), .SDcols=c('bsyrct', 'rcyrct'),  
                      by=list(StationID, loc, elem)] 
  stnyrct[ ,bryrct := (bsyrct + rcyrct)] 
  stndtfin <- as.data.table(full_join(stndtinv, stnyrct,  
                       by = c('StationID', 'loc', 'elem'))) 
   
  rm(stndtall, stndtsum, stndtinv, stnyrct) 
  rm(dys, dysleap, daysout, repdys, repmos, output, i) 
   
  # Sort the records by location, element (for WIND) and StationID 
  stndtfin <- stndtfin[order(loc, elem, StationID),] 
   
   
  # Fill in missing State (St) from StationID - valid for recent years ID naming convention 
  stndtfin$St <- ifelse(is.na(stndtfin$St), as.character(substring(stndtfin$StationID, 4, 5)), 
                        as.character(stndtfin$St)) 
  # If State (St) filled in from StationID, still missing lat, lon, and elev (1998-2016) 
   
  attach(stndtfin) 
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  stndtfin$begbs <- ifelse(minyear<=BegBsYr & maxyear>=BegBsYr, BegBsYr,  
                           ifelse(maxyear<BegBsYr, 0, ifelse(minyear>EndBsYr, 0, minyear))) 
  stndtfin$endbs <- ifelse(minyear<=EndBsYr & maxyear>=EndBsYr, EndBsYr, 
                           ifelse(minyear>EndBsYr, 0, ifelse(maxyear<BegBsYr, 0, maxyear))) 
  stndtfin$begrc <- ifelse(maxyear<=EndBsYr, 0, ifelse(minyear <=EndBsYr+1,  
                                                       EndBsYr+1, minyear)) 
  stndtfin$endrc <- ifelse(maxyear<=EndBsYr, 0, maxyear) 
  attach(stndtfin) 
  stndtfin$bsspan <- ifelse((begbs == 0 | endbs == 0), 0, endbs - begbs + 1) 
  stndtfin$rcspan <- ifelse((begrc == 0 | endrc == 0), 0, endrc - begrc + 1) 
  stndtfin$brspan <- stndtfin$bsspan + stndtfin$rcspan 
  # stndtfin$spanyrs <- maxyear - minyear + 1 
  # eliminate calculation fields 
  stndtfin[ ,':='(begbs = NULL, endbs = NULL, begrc = NULL, endrc = NULL)]  
  # Name files to write station inventories 
  filenmstns <- paste0("_USCANstndt", SelElem, "df.csv") 
  # Write station inventories to csv files  
  setwd(diroutput) 
  write_csv(stndtfin, filenmstns, col_names=TRUE) 
   
  rm(stndtsum, stndtfin, stndtinv, stndtall) 
  rm(filenmstns, csvfiles) 
   
  gc()  # Call garbage can to spare memory 
   
} 
######################################## 
#     END OUTER LOOP (Elements)        #               
######################################## 
rm(USCANstn, USCANinv0, USCANinv, stninv, stnloc) 
# rm(BegBsYr, EndBsYr) 
 
 
##### END Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 3 ========= INITIAL YEAR MONTH SUMMARY (from Daily files) ===================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# # Set working directory to access output of daily csv files 
setwd(diroutput) 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
######################################## 
#         BEGIN OUTER LOOP             #               
######################################## 
 
# OUTER LOOP: Loop through list of selected weather elements 
 
for (z in 1:length(Elements)){ 
   
  SelElem <- Elements[z] 
  # creates the list of all the csv files in the directory 
  csvfiles <- dir(pattern = paste0("USCANday",  SelElem, "*"))    
  csvfiles   # View list of selected file names 
  #csvfiles <- csvfiles[58]  # Select years 
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  # Define list for inner loop 
  daily <- list() 
  ######################################## 
  #         BEGIN INNER LOOP             #               
  ######################################## 
   
  # INNER LOOP: for a given element, loop through all years of daily records 
   
  for (q in 1:length(csvfiles)){ 
     
    daily[[q]] <- read_csv(csvfiles[[q]], col_names = TRUE) 
    subdat <- as.data.table(daily[[q]]) 
    daily[[q]] <- 0 
     
    # Create additional field columns  
    subdat[, VALsqd_US := (VAL_US)^2] 
    subdat[, zerrec := (VAL <= 0) + 0]   
    subdat[, recs := 1] 
    subdat[, zblank := ifelse(MFlag == 'P', 1, 0)] 
    subdat[, zerobs := (zerrec - zblank)]   
    subdat[, obs := (recs - zblank)] 
     
    # Select columns to summarize based on SelElem (*Change columns*) 
    yrmocol <- c('VAL', 'VAL_US', 'VALsqd_US', 'zerrec', 'recs', 'zblank',   'zerobs', 'obs') 
     
     
    # Aggregate data into monthly summaries  
    yrmosum <- subdat[, lapply(.SD, sum, na.rm=TRUE), .SDcols=yrmocol,  
                      by=list(StationID, loc, elem, year, month)] 
    setnames(yrmosum, "VAL", "VALm") 
    setnames(yrmosum, "VAL_US", "VALm_US") 
    setnames(yrmosum, "VALsqd_US", "sumVALsqd_US") 
    # Add fields and reorganize columns 
    firstcols <- yrmosum[, StationID:sumVALsqd_US]  # reorganize columns 
    firstcols[,VALsqm_US := (VALm_US)^2] 
    lastcols <- yrmosum[,zerrec:obs]                # reorganize columns 
    yrmosum <- cbind(firstcols, lastcols) 
    yrmosum[,daysinmo := days_in_month(as.Date(paste(yrmosum$year,  
                                               yrmosum$month, 15, sep ="-")))] 
    yrmosum[,misclsd := (daysinmo - obs)] 
    rm(firstcols, lastcols) 
     
    #yrmosum[,MEANd_US:= VALm_US/obs] 
    rm(subdat) 
     
    rm(yrmocol) 
     
    # Collect years into one data frame 
    if(q==1){ 
      yrmoall <- yrmosum 
    } 
    if(q>1){ 
      yrmoall <- rbind(yrmoall, yrmosum) 
    } 
     
    # Remove files to save memory 
    rm(yrmosum) 
     
    # Call garbage can gc() to save memory 
    gc() 
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  } 
  ######################################## 
  #       END INNER LOOP (Years)         #               
  ######################################## 
   
  # Sort the files by location and StationID 
  yrmoall <- yrmoall[order(elem, year, StationID), ]  
   
  # Name files to write all years of monthly summarized data out to 
  filenmyrmo <- paste0("_USCANyrmo0", SelElem, "df.csv") 
  # Write MONTHLY subsets of data to csv files  
  write_csv(yrmoall, filenmyrmo, col_names=TRUE) 
   
  rm(yrmoall) 
  rm(filenmyrmo) 
  rm(csvfiles) 
   
} 
 
######################################## 
#     END OUTER LOOP (Elements)        #               
######################################## 
 
# Clear variables to move on to next code 
rm(daily, q, z, SelElem) 
 
#### End program code 
 
 
# ========================================================================================= # 
# ===== CODE 4 ====== MERGE STATION INVENTORIES/LOCATIONS TO YEAR MONTH SUMMARY =========== # 
# ========================================================================================= # 
# ================================== SUMMARIZE BY YEAR ==================================== # 
# ========================================================================================= # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# Set working directory to access output of initial year-month summary and station inventory 
setwd(diroutput) 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
# Elements <- Elements[1:2] # Select elements (option) 
 
######################################## 
#         BEGIN SINGLE LOOP            #               
######################################## 
 
# Loop through list of selected weather elements 
 
for (j in 1:length(Elements)) 
{ 
  SelElem <- Elements[j] 
   
  # Find file name to read in - year month data summary 
  fileyrmo <- paste0("_USCANyrmo0", SelElem, "*") 
  yrmofiles <- dir(pattern = fileyrmo) # creates the list of the files in the directory 
  yrmofiles   # view files selected 
   
  # Find file name to read in - station dates of operation and inventories 
  filenmstn <- paste0("_USCANstndt", SelElem, "*") 
  stnfiles <- dir(pattern = filenmstn) # creates the list of the files in the directory 
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  stnfiles   # view files selected 
   
  # Read in Data Files - yearly station data, station dates of operation, station locations 
  yrmodat <- read_csv(yrmofiles[1], col_names = TRUE) 
  stndates <- read_csv(stnfiles[1], col_names = TRUE) 
   
  # Remove variables to clean up environment 
  rm(fileyrmo, filenmstn, yrmofiles, stnfiles) 
   
  # Create data tables to process faster 
  yrmodat <- as.data.table(yrmodat) 
  stndates <- as.data.table(stndates) 
   
  # ---------- merge partial month adj to 'Year Month' data ---------------- 
  stnmins <- stndates[, .(StationID, elem, minyear, minmo, clsdmbeg)]  #(*Change columns*) 
  stnmins <- stnmins[clsdmbeg > 0] 
  setnames(stnmins, 'minyear', 'year') 
  setnames(stnmins, 'minmo', 'month') 
   
  stnmaxs <- stndates[, .(StationID, elem, maxyear, maxmo, clsdmend)] #(*Change columns*) 
  stnmaxs <- stnmaxs[clsdmend > 0] 
  setnames(stnmaxs, 'maxyear', 'year') 
  setnames(stnmaxs, 'maxmo', 'month') 
   
  yrmomin <- as.data.table(left_join(yrmodat, stnmins,  
                           by = c('StationID', 'elem', 'year', 'month'))) 
  yrmofin <- as.data.table(left_join(yrmomin, stnmaxs,  
                           by = c('StationID', 'elem', 'year', 'month'))) 
  yrmofin[is.na(yrmofin)]<- 0   
  rm(stnmins, stnmaxs, yrmomin)  
  rm(yrmodat) 
   
  # _______ MERGE STATES / PROVINCES / COORDINATES / STATION MIN/MAX DATES __________________ 
   
  # Add state, coordinates, range of station operation dates (min and max) 
  yrmodet <-  as.data.table(right_join(stndates[, StationID:maxdate], yrmofin,  
                            by = c('StationID', 'loc', 'elem')))  #(*Change Columns*) 
  # keep yrmofin for yearly summary 
  # yrmosumdet <- yrmodet[,c(1:2, 21:26, 3:20)]  #(*Change Columns*) 
 # yrmosumdet <- cbind(yrmodet[,StationID:loc], yrmodet[,St:maxdate],  
 #                    yrmodet[,elem:clsdmend]) #misinm]) #(*Change Columns*) 
  yrmodet$clsdmend <- as.integer(yrmodet$clsdmend) 
  yrmodet$clsdmbeg <- as.integer(yrmodet$clsdmbeg) 
  yrmodet[, misinm := misclsd - (clsdmbeg + clsdmend)] 
  yrmodet[, clsdinm := (clsdmbeg + clsdmend)] 
  # Remove columns 
  yrmodet[ ,':=' (clsdmbeg = NULL, clsdmend = NULL, misclsd = NULL)]  
  
  # Name file to write data out to 
  fileyrmoinv <- paste0("_USCANyrmoinv", SelElem, "df.csv")  
  # Write YEAR MONTH inventories of data to csv files  
  write_csv(yrmodet, fileyrmoinv, col_names=TRUE) 
  rm(yrmodet, fileyrmoinv) 
   
  # Continue to sum by year, using year-month data prior to station location merge 
  # Add count field for months 
  yrmofin[, count := 1] 
  yrmofin$clsdmbeg <- as.integer(yrmofin$clsdmbeg) 
  yrmofin$clsdmend <- as.integer(yrmofin$clsdmend) 
  # Select data columns to summarize yearly based on SelElem. Eliminate month field 
  yrcol <- names(yrmofin)[c(6:19)]   #(*Change columns)   
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  yrsum <- yrmofin[, lapply(.SD, sum, na.rm=TRUE), .SDcols=yrcol,  
                   by=list(StationID, loc, elem, year)] 
  setnames(yrsum, "VALm", "VALy") 
  setnames(yrsum, "VALm_US", "VALy_US") 
  setnames(yrsum, "VALsqm_US", "sumVALsqm_US") 
  setnames(yrsum, "daysinmo", "daysum") 
  setnames(yrsum, 'count', 'monthct') 
   
  # Rearrange column order and insert new field columns 
  firstcols <- yrsum[,StationID:sumVALsqm_US] 
  firstcols[,VALsqy_US := VALy_US^2] 
  midcols <- yrsum[,zerrec:daysum] 
  midcols[,daysinyr := 365+leap_year(yrsum$year)*1] 
  yrsum <- cbind(firstcols, midcols, yrsum[,misclsd:monthct]) 
  # Sort data 
  yrsum <- yrsum[order(StationID, elem, year),] 
  # Remove data sets to free space 
  rm(firstcols, midcols, yrcol) 
  # Keep yrmofin to spread monthly observations to a yearly format 
   
  # ------ merge full month adjustments to 'Year' data ---------------- 
  stnyrmins <- stndates[, c("StationID", "elem", "minyear", "clsdbef")]    #(*Change Columns*) 
  stnyrmins <- stnyrmins[clsdbef > 0] 
  setnames(stnyrmins, 'minyear', 'year') 
   
  stnyrmaxs <- stndates[, c("StationID", "elem", "maxyear", "clsdaft")]    #(*Change Columns*) 
  stnyrmaxs <- stnyrmaxs[clsdaft > 0] 
  setnames(stnyrmaxs, 'maxyear', 'year') 
   
  yrmin <- as.data.table(left_join(yrsum, stnyrmins,  
                          by = c('StationID', 'elem', 'year'))) 
  yrfin <- as.data.table(left_join(yrmin, stnyrmaxs,  
                          by = c('StationID', 'elem', 'year'))) 
  rm(stnyrmins, stnyrmaxs, yrmin) 
  rm(yrsum) 
  yrfin[is.na(yrfin)]<- 0  
   
  yrfin[, clsdinm := (clsdmbeg + clsdmend)] 
  yrfin[, clsdfulm := (clsdbef + clsdaft)] 
  yrfin[, clsdall := clsdinm + clsdfulm] 
   
  yrfin[, misinm := (misclsd - clsdinm)] 
  yrfin[, misfulm := (daysinyr - daysum - clsdfulm)] 
  yrfin[, misall := (misinm + misfulm)] 
   
  # Reduce columns 
  yrfin[ ,':=' (clsdmbeg = NULL, clsdmend = NULL)]  
  yrfin[ ,':=' (clsdbef = NULL, clsdaft = NULL)]   
  yrfin[ , misclsd := NULL] 
   
  # Spread monthly observations in a 12 column grid for each station - year 
  # yrmoobs <- yrmofin[, .(StationID, elem, year, month, obs)] 
  # yrmogrid <- spread(yrmoobs, month, obs)  
  # yrmogrid[is.na(yrmogrid)] <- 0 
  # rm(yrmoobs) 
  # colnames(yrmogrid) <- c('StationID', 'elem', 'year',  'mo01',  'mo02', 'mo03', 'mo04',  
  # 'mo05', 'mo06', 'mo07', 'mo08', 'mo09', 'mo10', 'mo11',  'mo12') 
  # Compare to 'obs' data check 
  # yrmogrid[, yrobs := mo01+mo02+mo03+mo04+mo05+mo06+mo07+mo08+mo09+mo10+mo11+mo12]  
  # yrmogrid <- yrmogrid[order(StationID, elem, year),] 
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  #yrsumgrid <- as.data.table(left_join(yrfin, yrmogrid, by = c('StationID', 'elem', 'year'))) 
  #rm(yrfin, yrmogrid) 
   
  stndat <- cbind(stndates[,bsyrct:brspan], stndates[,StationID:maxdate]) 
  rm(stndates) 
  yrdet <- as.data.table(left_join(yrfin, stndat, by = c('StationID', 'loc', 'elem')))  
  rm(yrfin, stndat) 
  #rm(stndates) 
   
  # Reorder data to organize for output 
  #(*Change Columns*) 
  yrsumdet <- cbind(yrdet[,StationID:loc], yrdet[,St:maxdate], yrdet[,elem:brspan])  
  rm(yrdet) 
   
  # Sort data 
  yrsumdet <- yrsumdet[order(elem, year, StationID), ]  
   
  # Name file to write data out to 
  fileyrdet <- paste0("_USCANyrinvgrid", SelElem, "df.csv")  
  # Write YEARLY summary to csv files  
  write_csv(yrsumdet, fileyrdet, col_names=TRUE) 
  rm(fileyrdet, yrsumdet) 
   
  gc() 
   
} 
######################################## 
#         END LOOP (Elements)          #               
######################################## 
 
##### End Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 5 ============== Missing Records Summary by Year (loc) ======================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# Set working directory to access initial year-month summary and station inventory  
setwd(diroutput) 
 
######################################## 
#            BEGIN LOOP                #               
######################################## 
 
# Loop through yearly inventories, sum all stations by year 
 
yrfiles <- dir(pattern = "_USCANyrinvgrid") # creates the list of the files in the directory 
yrfiles  # view files selected 
 
for (g in 1:length(yrfiles)){ 
   
  # Read in Data Files - yearly station data, station dates of operation, station locations 
  yrdat <- read_csv(yrfiles[g], col_names = TRUE) 
  yrdat <- as.data.table(yrdat) 
  # Reduce columns 
  yrdat <- yrdat[, StationID:misall]  # Select consecutive columns 
   
  ###################################################  
  # Summarize missing records by year and loc 
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  yrdat[,stnct := 1] 
  miscols <- names(yrdat)[c(18:32)]   #(*Change columns*) 
  misrecsum <- yrdat[, lapply(.SD, sum, na.rm=TRUE), .SDcols=miscols,  
                      by=list(loc, elem, year)] 
  misrecsum <- as.data.table(misrecsum) 
  misrecsum <- misrecsum[order(loc, elem, year),] 
   
   
  if (g==1){ 
    misrecall <- misrecsum 
  } 
  if (g > 1){ 
    misrecall <- rbind(misrecall, misrecsum) 
  } 
   
  rm(misrecsum, yrdat) 
} 
 
# Define percentage fields (Note zerobs-to-obs has a different denom) 
misrecall[, pctobsyr := (obs/daysinyr)] 
misrecall[, pctmisyr := (misall/daysinyr)] 
misrecall[, pctclsdyr := (clsdall/daysinyr)] 
misrecall[, pctzblkyr := (zblank/daysinyr)] 
misrecall[, pctzeroyr := (zerobs/daysinyr)] 
misrecall[, pctzerobs := (zerobs/obs)] 
setnames(misrecall, 'daysum', 'stndays') 
setnames(misrecall, 'monthct', 'stnmos') 
setnames(misrecall, 'daysinyr', 'stndysinyr') 
 
# Rearrange column order 
misrecfin <- cbind(misrecall[, loc:year], misrecall[, pctzerobs:pctobsyr],  
                   misrecall[, .(stnct)], misrecall[, zerrec:misall]) 
 
 
#misrecfin[, daysyravg := stndysinyr/stns] # check it is 365 or 366 
misrecfin[, obsavg := (obs/stnct)] 
misrecfin[, clsdavg := (clsdall/stnct)] 
misrecfin[, misavg := (misall/stnct)] 
misrecfin[, zblankavg := (zblank/stnct)] 
misrecfin[, zeroavg := (zerobs/stnct)] 
misrecfin[, mosavg := (stnmos/stnct)] 
 
 
######################################## 
#         END LOOP (Elements)          #               
######################################## 
 
# Write out Missing Record Summary for All Elements 
write_csv(misrecall, "_USCANmisrecELEMdf.csv", col_names=TRUE) 
 
# Reopen option 
# misrecall <- read_csv("_USCANmisrecELEMdf.csv", col_names=TRUE) 
# misrecall <- as.data.table(misrecall) 
 
mistbl <- misrecall[,c('loc', 'elem', 'year', 'pctmisyr')] 
clsdtbl <- misrecall[,c('loc', 'elem', 'year', 'pctclsdyr')] 
obstbl <- misrecall[,c('loc', 'elem', 'year', 'pctobsyr')] 
stntbl <- misrecall[,c('loc', 'elem', 'year', 'stnct')] 
zerobstbl <- misrecall[,c('loc', 'elem', 'year', 'pctzerobs')] 
 
mistbl <- mistbl[elem %in% c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN')] 

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 66



mistblw <- spread(mistbl, elem, pctmisyr)  
mistblw[is.na(mistblw)] <- "" 
mistblw 
 
clsdtbl <- clsdtbl[elem %in% c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN')] 
clsdtblw <- spread(clsdtbl, elem, pctclsdyr)  
clsdtblw[is.na(clsdtblw)] <- "" 
clsdtblw 
 
obstbl <- obstbl[elem %in% c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN')] 
obstblw <- spread(obstbl, elem, pctobsyr)  
obstblw[is.na(obstblw)] <- "" 
obstblw 
 
zerobstbl <- zerobstbl[elem %in% c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN')] 
zerobsw <- spread(zerobstbl, elem, pctzerobs)  
zerobsw[is.na(zerobsw)] <- "" 
zerobsw 
 
write_csv(obstblw, 'pctmisrec.csv', col_names=TRUE) 
write_csv(mistblw, 'pctmisrec.csv', col_names=TRUE) 
write_csv(clsdtblw, 'pctclsdrec.csv', col_names=TRUE) 
write_csv(zerobsw,  'pctzerobs.csv', col_names=TRUE) 
 
##### END PROGRAM CODE 
 
 
 
# ========================================================================================== # 
# ===== CODE 6 ========== BIMONTHLY (MEI) and TRIMONTHLY (ONI) INDICES ===================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
# Open station level summaries by year month; sum by two- and three- month periods. 
# The MultiVariate ENSO Index (MEI) is bimonthly (two months).   
# The Oceanic Nino Index (ONI) is trimonthly (three months). 
 
# Read in MEI and ONI from base directory 
setwd(dirbase) 
MEI <- read_csv('MEI_Index.csv', col_names = TRUE) 
colnames(MEI) <- c('year', 'DecJan', 'JanFeb', 'FebMar', 'MarApr', 'AprMay', 'MayJun', 

'JunJul',  'JulAug',  'AugSep', 'SepOct', 'OctNov', 'NovDec') 
ONI <- read_csv('ONI_Index.csv', , col_names = TRUE) 
head(ONI) 
 
# use functions from tidyvers package to convert index lists from wide to long  
MEIlong <- gather(MEI, "bimo", "MEI", 2:13) 
head(MEIlong) 
ONIlong <- gather(ONI, "trimo", "ONI", 2:13) 
head(ONIlong, 10) 
setnames(ONIlong, 'Year', 'year') 
rm(MEI, ONI) 
 
# Create labels for bimonthly and trimonthly aggregations 
bimolabel <- data.frame(k = seq(1, 12, 1),  
                        bimo = c('JanFeb','FebMar', 'MarApr', 'AprMay', 'MayJun', 'JunJul',  
                                 'JulAug', 'AugSep', 'SepOct', 'OctNov', 'NovDec', 'DecJan')) 
trimolabel <- data.frame(k = seq(1, 12, 1),  
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trimo = c('JFM','FMA', 'MAM', 'AMJ', 'MJJ', 'JJA', 'JAS', 'ASO', 
'SON', 'OND', 'NDJ', 'DJF')) 

 
 
# Set working directory to access year-month summaries 
setwd(diroutput) 
######################################## 
#           BEGIN MAIN LOOP            #               
######################################## 
 
for (h in 1:length(Elements)) 
{ 
  SelElem <- Elements[h] 
   
  fileyrmo <- paste0("_USCANyrmoinv", SelElem, "df.csv")  
  fileyrmo 
  filestndt <- paste0("_USCANstndt", SelElem, "df.csv")  
  filestndt 
  #  yrmofiles <- dir(pattern = fileyrmo) # creates the list of the files in the directory 
  #  yrmofiles  # view files selected 
   
  setwd(diroutput) 
  # Read in Data files - year month data with missing records and closed dates inventories 
  yrmoall <- read_csv(fileyrmo[1], col_names = TRUE) 
  # Select columns and place in data table for efficiency 
  yrmodat <- as.data.table(yrmoall)   # 8,579,187 
  rm(yrmoall, fileyrmo) 
  minyr <- min(yrmodat$year) 
  maxyr <- max(yrmodat$year) 
   
  yrmodat[, monthct := 1]   # Count months summed in loop 
  yrmodat$monthX <- yrmodat$month 
  # Create 'Month 13' data as January of next year, 'Month 14' as February of next year 
  wrapmo13 <- yrmodat[month == 1] 
  wrapmo14 <- yrmodat[month == 2] 
  wrapmo13$monthX <- 13 
  wrapmo13$year <- wrapmo13$year - 1 
  wrapmo14$monthX <- 14 
  wrapmo14$year <- wrapmo14$year - 1 
  loopsum <- rbind(yrmodat, wrapmo13, wrapmo14) 
  loopsum <- loopsum[year >= minyr] 
  loopsum <- loopsum[order(elem, StationID, year, monthX), ] 
  rm(yrmodat) 
   
  # Create lists for loop 
  bimosum <- list() 
  trimosum <- list() 
  # Select columns of values to sum in loop 
  sumcols <- names(loopsum)[c(14:26)]   #(*Change columns*)  
  ######################################## 
  #       BEGIN MINOR LOOP               #               
  ######################################## 
  for (k in 1:12){ 
    mo1 <- as.character(k) 
    mo2 <- as.character(k+1) 
    mo3 <- as.character(k+2) 
    #mo2lab <- ifelse(k == 12, 1, mo2) 
    #mo3lab <- ifelse(k == 12, 2, mo3) 
    bimosub <- loopsum [monthX == mo1 | monthX == mo2] 
    trimosub <- loopsum[monthX %in% c(mo1, mo2, mo3)] 
    bimosum[[k]] <- bimosub[, lapply(.SD, sum, na.rm=TRUE), .SDcols=sumcols,  
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                             by=list(StationID, loc, elem, year)] 
    trimosum[[k]] <- trimosub[, lapply(.SD, sum, na.rm=TRUE), .SDcols=sumcols,  
                               by=list(StationID, loc, elem, year)] 
    bimosum[[k]]$ord <- k 
    trimosum[[k]]$ord <- k  
    bimosum[[k]]$bimo = bimolabel[k,2] 
    trimosum[[k]]$trimo = trimolabel[k,2] 
  } 
  ######################################## 
  #         END MINOR LOOP               #               
  ######################################## 
   
  # Continue through code to end 
   
  rm(wrapmo13, wrapmo14, mo1, mo2, mo3, k) 
  rm(loopsum, bimosub, trimosub, sumcols) 
   
  bimosumall <- rbindlist(bimosum) 
  trimosumall <- rbindlist(trimosum) 
  setnames(bimosumall, "daysinmo", "daysum") 
  setnames(trimosumall, "daysinmo", "daysum") 
  setnames(bimosumall, "VALm", "VAL2m") 
  setnames(trimosumall, "VALm", "VAL3m") 
  setnames(bimosumall, "VALm_US", "VAL2m_US") 
  setnames(trimosumall, "VALm_US", "VAL3m_US") 
  setnames(bimosumall, "VALsqm_US", "sumVALsqm_US") 
  setnames(trimosumall, "VALsqm_US", "sumVALsqm_US") 
  rm(bimosum, trimosum) 
   
  class(bimosumall$year) 
  bimosumall$delete <- ifelse((bimosumall$year == maxyr & bimosumall$ord == 12), 'Y', 'N') 
  trimosumall$delete <- ifelse((trimosumall$year == maxyr & trimosumall$ord == 11), 'Y',  
                        ifelse((trimosumall$year == maxyr & trimosumall$ord == 12), 'Y', 'N')) 
   
  bimofin <- subset(bimosumall, bimosumall$delete == 'N') 
  trimofin <- subset(trimosumall, trimosumall$delete == 'N') 
  bimofin[, delete:=NULL] 
  trimofin[, delete:=NULL] 
  rm(bimosumall, trimosumall) 
  #nrow(bimosumfin)  # 8,750,322 PRCP 
  #nrow(trimosumfin) # 8,846,206 PRP 
  bimofin$year <- as.integer(bimofin$year) 
  bimofin$bimo <- as.character(bimofin$bimo) 
  trimofin$year <- as.integer(trimofin$year) 
  trimofin$trimo <- as.character(trimofin$trimo) 
   
  # Merge MEI (bimo) and ONI (trimo) indices with summed data 
  bimoInd <- as.data.table(left_join(bimofin, MEIlong,  
                           by = c('year', 'bimo'))) 
  trimoInd <- as.data.table(left_join(trimofin, ONIlong,  
                            by = c('year', 'trimo'))) 
  rm(bimofin, trimofin) 
   
  # Merge Station inventories / states / coordinates 
  setwd(diroutput) 
  stndates <- read_csv(filestndt, col_names = TRUE) 
  stndates  <- as.data.table(stndates) 
   
  bimoIndSt <- as.data.table(right_join(stndates[, StationID:maxdate], bimoInd,   
                              by = c('StationID', 'loc', 'elem'))) #(*Change columns*)# 
  rm(bimoInd) 
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  trimoIndSt <- as.data.table(right_join(stndates[, StationID:maxdate], trimoInd,   
                              by = c('StationID', 'loc', 'elem'))) #(*Change columns*)# 
  rm(trimoInd) 
  rm(stndates) 
  
  setwd(diroutput) 
  bimofilenm <- paste0('_USCANbimo', SelElem, 'df.csv') 
  trimofilenm <- paste0('_USCANtrimo', SelElem, 'df.csv') 
  write_csv(bimoIndSt, bimofilenm, col_names = TRUE) 
  write_csv(trimoIndSt, trimofilenm, col_names = TRUE) 
   
  rm(bimofilenm, trimofilenm, filestndt) 
  rm(bimoIndSt, trimoIndSt) 
   
} 
 
######################################## 
#       END MAIN LOOP (Elements)       #               
######################################## 
 
rm(bimolabel, trimolabel, MEIlong, ONIlong) 
rm(h, maxyr, minyr) 
 
##### End Program Code 
 
 
 
# ========================================================================================== # 
# ===== CODE 7 ========================== WEEKLY INDICES =================================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
# For weekly Nino Indices choose BegDat <- "1989/12/31"  
# (Weekly SST data starts week centered on 1990/01/03) 
# ------------------------------------------------------ 
BegDate <- "1961/01/01"    # 1961/01/01 gives same grouping as 1989/12/31 
EndDate <- "2017/12/31" 
# --------- weekly labels for grouping sums ----------- 
dte = seq(as.Date(BegDate), as.Date(EndDate), "days")  # sequence of dates from beg to end 
nodys <- length(dte)   # Number of days in sequence 
noweeks <- as.integer(nodys/7)   # Number of full weeks in sequence 
remdys <- nodys%%7             # Remaining days, not full weeks 
weeklabel <- data.frame(weekno = c(rep(1:noweeks, each = 7), rep(noweeks+1, remdys)), dte = 
seq(as.Date(BegDate), as.Date(EndDate), "days")) 
weeklabel$chardate <- paste0(as.character(substring(weeklabel$dte, 1, 4)), 
as.character(substring(weeklabel$dte, 6, 7)), as.character(substring(weeklabel$dte, 9,10))) 
weeklabel$date <- as.integer(weeklabel$chardate) 
startlab <- as.Date(BegDate)+3      # Weeks are labeled by middle day 
centerdates <- seq(as.Date(startlab), by = "7 days", length.out = noweeks)  # middle day for 
each week of sequence 
weeklabel$ctrweek <- c(rep(centerdates, each = 7), rep(as.Date(tail(centerdates,1))+7, 
remdys))  # label all days 
weeklabel$yrgrp <- substring(weeklabel$ctrweek, 1, 4) 
weeklabel <- weeklabel[,c(1,4:6)] 
rm(BegDate, EndDate, centerdates, dte, nodys, remdys, startlab, noweeks) 
# ------------------------------------------------------ 
 
######################################## 
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#          BEGIN OUTER LOOP            #               
######################################## 
 
for (z in 1:length(Elements)){ 
   
  # Set working directory to access output of daily csv files 
  setwd(diroutput)    
   
  SelElem <- Elements[z] 
  # creates the list of all the csv files in the directory 
  csvfiles <- dir(pattern = paste0("USCANday",  SelElem, "*"))  
  csvfiles <- csvfiles[30:58]  # select years since 1989 to match Nino indices 
  # csvfiles 
   
  daily <- list() 
  ######################################## 
  #    BEGIN FIRST INNER LOOP            #               
  ######################################## 
  # for selected element, loop through all years of daily records 
   
  for (q in 1:length(csvfiles)){ 
  
    # Set working directory to access output of daily csv files 
    setwd(diroutput)  
     
    daily[[q]] <- read_csv(csvfiles[[q]], col_names = TRUE) 
    subdat <- as.data.table(daily[[q]]) 
    daily[[q]] <- 0 
     
    # Create additional field columns  
    subdat[, VALsqd_US := (VAL_US)^2] 
    subdat[, zerrec:= (VAL <= 0) + 0]   
    subdat[, recs:= 1] 
    subdat[, zblank := ifelse(MFlag == 'P', 1, 0)] 
    subdat[, zerobs:= (zerrec - zblank)]   
    subdat[, obs := (recs - zblank)] 
     
    # Include additional week labels for summarizing by week (already have year and month) 
    subdatwk <- as.data.table(left_join(subdat, weeklabel, by = 'date')) 
    rm(subdat) 
     
    # Select columns to summarize based on SelElem 
    wkcol <- names(subdatwk)[c(4, 13:19)]   #(*Change columns) 
     
    weeksum <- subdatwk[, lapply(.SD, sum, na.rm=TRUE), .SDcols=wkcol,  
                         by=list(StationID, loc, elem, weekno, yrgrp, ctrweek)] 
    setnames(weeksum, 'VAL', 'VALw') 
    setnames(weeksum, 'VAL_US', 'VALw_US') 
    firstcols <- weeksum[, StationID:VALsqd_US] 
    firstcols[, VALsqw_US := (VALw_US)^2]    # PRCP 3,339 rows = 64 States x 52 weeks roughly 
    weeksum <- cbind(firstcols, weeksum[, zerrec:obs]) 
 
    rm(firstcols) 
    rm(subdatwk) 
    rm(wkcol) 
     
    # Sort columns 
    weeksum <- weeksum[order(elem, loc, weekno),] 
     
    if(q == 1){ 
      weeksall <- weeksum 
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    } 
    if( q > 1){ 
      weeksall <- rbind(weeksall, weeksum) 
    } 
     
    rm(weeksum)   
  
    gc()  # Call for garbage can to spare memory 
     
  } 
   
  ######################################## 
  #     END FIRST INNER LOOP (Years)     #               
  ######################################## 
   
  rm(daily, csvfiles, q) 
   
  # Weeks numbered according to Nino indices overlap years;  
  # Sum again to complete summation of boundary weeks. 
  wkscol <- names(weeksall)[7:15]  #(*Change columns) 
  weekly <- weeksall[, lapply(.SD, sum, na.rm=TRUE), .SDcols=wkscol,  
                      by=list(StationID, loc, elem, weekno, yrgrp, ctrweek)] 
  rm(weeksall)  #PRCP sum removes 306,156 rows 
  rm(wkscol) 
  # Calculate missing or closed records based on complete 7-day week sums 
  weekly[, misclsd := (7 - obs)] 
   
  gc() 
   
   
  # Read in list of stations with state/province, elevation, coordinates 
  setwd(dirbase) 
  stnlist <- read_csv('ghcnd-stations.csv', col_names = TRUE) 
  colnames(stnlist) <- c("StationID","lat", "lon", "elev", "St", "Name", "GSNFlag", "zip" ) 
  stnlist$loc <- as.character(substring(stnlist$StationID, 1,2)) 
  stnlist$StationID <- as.character(stnlist$StationID) 
  stnsub <- stnlist[,c(1:5,9)]  #(*Change columns*) 
  USCANstn <- subset(stnsub, stnsub$loc %in% c('US', 'CA')) 
  rm(stnlist, stnsub) 
   
  # Read in Nino Indices 
  setwd(dirbase) 
  ninoweekly <- read_csv('NinoWeekly.csv', col_names = FALSE) 
  colnames(ninoweekly) <- c("ctrweek","Nino12Ind", "Nino12Anom", "Nino3Ind", "Nino3Anom",  
   "Nino34Ind", "Nino34Anom", "Nino4Ind", "Nino4Anom") 
   
   
  ######################################## 
  #   BEGIN SECOND INNER LOOP (Years)    #               
  ######################################## 
  # Select data year by year and merge with station locations and weekly Nino indices 
  for  (p in 1:length(unique(weekly$yrgrp))){ 
    yrwrite <-  as.integer(min(weekly$yrgrp)) + (p-1) 
    weeksel <- weekly[yrgrp == yrwrite] 
     
    weekst <- as.data.table(left_join(weeksel, USCANstn[,1:5], by = 'StationID')) 
    rm(weeksel) 
    weekselst <- cbind(weekst[, StationID:elem], weekst[,.(St)], weekst[,lat:elev],  
   weekst[,weekno:misclsd])   #(*Change columns*) 
    rm(weekst) 
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    # Include weekly Nino Indices from 1990 to present in weekly table 
    weekselIndex <- as.data.table(left_join(weekselst, ninoweekly, by = 'ctrweek')) 
    rm(weekselst) 
     
    setwd(diroutput) 
    filenmweek <- paste0("USCANweek", Elements[z], yrwrite, "df.csv") 
    write_csv(weekselIndex, filenmweek, col_names = TRUE) 
    rm(yrwrite, weekselIndex) 
  } 
   
  ######################################## 
  #    END SECOND INNER LOOP (Years)     #               
  ######################################## 
  rm(USCANstn, ninoweekly, weekly, filenmweek) 
   
} 
######################################## 
#     END OUTER LOOP (Elements)        #               
######################################## 
 
rm(p, z, weeklabel) 
 
##### End Program Code 
 
 
# EXTRA CODE - does not link to weekly indices 
 
# ------- weekly labels for weeks of all years to fall on the same days ----------- 
# Choose any non-leap year from Jan 1 to Dec 31 
BegDate <- "1961/01/01" 
EndDate <- "1961/12/31" 
dt = seq(as.Date(BegDate), as.Date(EndDate), "days")  # sequence of dates from beg to end 
weekno = as.integer((c(rep(1:52, each = 7), 52))) 
 
startlab <- as.Date(BegDate)+3  
centerdates <- seq(as.Date(startlab), by = "7 days", length.out = 52) 
ctrweek <- c(rep(centerdates, each = 7), tail(centerdates, 1)) 
 
weeklab <- data.frame(weekno, ctrweek, dt) 
dtleap = as.Date("1964/02/29")  # Choose any leap day 
newrow <- data.frame(weekno = as.integer(9), ctrweek = centerdates[9], dt = dtleap) 
weeklabel <- rbind(weeklab, newrow) 
weeklabel$moday <- format(as.Date(weeklabel$dt), "%m-%d") 
weeklabel$mdchar <- as.character(paste0(substring(as.character(weeklabel$moday), 1, 2), 
substring(as.character(weeklabel$moday), 4, 5))) 
weeklabel <- weeklabel[order(weeklabel$moday),] 
weeklabel <- weeklabel[,c(1,5, 2)] 
rm(BegDate, EndDate, centerdates, dt, dtdleap, newrow, ctrweek, startlab, weeklab) 
 
# Code to advance year (if merging by full date) 
weeklabel$ctrweek <- paste0(as.character(as.integer(substring(weeklabel$ctrweek, 1, 4))+1), 
                            substring(weeklabel$ctrweek, 5, 10)) 
 
# ========================================================================================== # 
# ===== CODE 8 ============= SELECT STATIONS and SUMMARIZE BY STATE ======================== # 
# ========================================================================================== # 
# =================================== PLOT STATIONS ======================================== # 
# ========================================================================================== # 
# ================================ MAP STATE CHOROPLETH ==================================== # 
# ========================================================================================== # 
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# Go back to repeat SETUP at top if R has been closed. 
 
# Select base years (eg. 1961 - 1990) for climatology, typically 30 past years 
BegBsYr <- 1961 
EndBsYr <- 1990 
 
# Select weather element to identify summary files  
SelElem <- 'PRCP' 
 
# for mapping - read in state names and abbreviations 
setwd(dirbase) 
stabbr <- read_csv('ghcnd-states.csv', col_names = FALSE) 
colnames(stabbr) <- c('St', 'Name') 
stabbr$Name <- tolower(stabbr$Name)  # need lower case for package 'maps' 
 
# Set working directory to access output of yearly csv files 
setwd(diroutput) 
yrfilenm <- paste0('_USCANyrinvgrid', SelElem, 'df.csv') 
yrall <- read_csv(yrfilenm, col_names = TRUE) 
yrall <- as.data.table(yrall)      #   785,941 PRCP 
 
rm(yrfilenm)  
 
table(yrall$bryrct) 
table(yrall$bsyrct) 
# Select Stations from yearly data 
yrsel <- yrall[loc == 'US' & bryrct == 57] 
#yrsel <- yrall[loc == 'US' & bsyrct > 24 & rcyrct > 22] 
 
# OPTION: Plot comparisons - all US stations 
library(maps) 
USall <- yrall[loc == 'US'] 
map("state") 
points(USall$lon, USall$lat, pch=19, cex = 0.05, col = 'dodgerblue3') 
# Plot comparisons - only selected US stations 
map("state") 
points(yrsel$lon, yrsel$lat, pch=19, cex = 0.05, col = 'dodgerblue3') 
 
# REVIEW SELECTION OF STATIONS 
# view count of stations in summary data 
length(unique(yrall$StationID)) 
# view count of stations in selection 
length(unique(yrsel$StationID)) 
# view number of stations selected by State 
table(yrsel$St) 
 
# Add field for station count by state or year count by station 
yrsel[, ct := 1] 
yrselcol <- c( "VALy", "VALy_US", "obs", "ct")  #(*Change columns*) 
yrselsum <- yrsel[, lapply(.SD, sum, na.rm=TRUE), .SDcols=yrselcol,  
                  by=list(loc, St, elem, year)] 
yrstns <-   yrsel[, lapply(.SD, sum, na.rm=TRUE), .SDcols='ct',  
                  by=list(StationID, St, lat, lon)] 
yrselsum <- as.data.table(yrselsum) 
setnames(yrselsum, 'ct', 'stnct') 
yrselsum[, VALsqSt_US := (VALy_US)^2] # 56 years x 50 states 
nrow(yrselsum)  # 58 years x 50 states = 2900 
 
# Base Years State Level Summary 
baseyrs <- yrselsum[year >= BegBsYr  & year <= EndBsYr] 
# Calculate mean and stdev stats manually by formula 
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basesum <- baseyrs[, lapply(.SD, sum, na.rm=TRUE),  
                   .SDcols=c('VALy_US', 'VALsqSt_US', 'stnct', 'obs'),  
                   by=list(loc, St, elem)] 
basesum <- as.data.table(basesum) 
basesum[, bsMean := (VALy_US/30)] 
basesum[, bsSD := sqrt((VALsqSt_US - ((bsMean^2) * 30))/29)] 
setnames(basesum, 'stnct', 'bsstnyrs') 
setnames(basesum, 'obs', 'bsstnobs') 
 
# Use package dplyr to calculate mean and st dev, remove NA's 
# Warning: dplyr summarise function will not group if package 'plyr' is loaded 
# detach(package:plyr) 
  anomaly <- baseyrs %>% 
  group_by(loc, St, elem) %>% 
  summarise(bsstnobs=sum(obs), bsstnyrs = sum(stnct), bsmean = mean(VALy_US),  
            bsstdev = sd(VALy_US), rm.na = TRUE) 
 
# head(anomaly) 
 
# Merge base year statistics with yearly data set 
yrstat <- as.data.table(left_join(yrselsum, anomaly,  
                         by = c('loc', 'St', 'elem'))) 
# Calculate anomalies by year and state  
yrstat[, anom :=  (VALy_US - bsmean) / bsstdev] 
 
# Merge state names with yearly data set, for mapping  
yrstatst <- as.data.table(left_join(yrstat, stabbr, by = 'St')) 
nrow(yrstatst) 
 
# Create a file name to describe data output to write 
fileyrst <- paste0('USyrstat', SelElem, 'df.csv') 
write_csv(yrstatst, fileyrst, col_names = TRUE) 
 
# To reopen the data table 
# fileyrst <- paste0('yrstat', SelElem, 'df.csv') 
# yrstatst <- read_csv('yrselstatsPRCP56.csv', col_names = TRUE) 
# yrstatst <- as.data.table(yrstatst) 
 
#............................................. 
#...... Choropleth from Scratch .............. 
#............................................. 
 
#Load package 'maps' to plot custom choropleth  
library(maps) 
 
# Select a year of data 
SelYr <- 2016 
yrst <- yrstatst[year == SelYr] 
 
# Create breaks for ranges in the standard deviations 
yrst$STDEVgrp <- cut(yrst$anom,  
                     breaks = c(-Inf,  -1.5,  -1,  -0.5,  0, 0.5,  1,  1.5,  2, 2.5, Inf),  
                     labels = c("neg2&-", "neg1.5", "neg1.0", "neg0.5", "pos0.50", 
                                "pos1.00", "pos1.5", "pos2.0", "pos2.5", "pos3&+"),  
                     right = FALSE) 
 
# Create labels and choose color scheme to match the ranges 
STDEVgrp= c("neg2&-", "neg1.5", "neg1.0", "neg0.5",  
            "pos0.50", "pos1.00", "pos1.5", "pos2.0", "pos2.5", "pos3&+")  
colreg <- c("wheat3", "wheat2", "wheat1",  "lightyellow1", "lightcyan1", "lightskyblue1",  
            "skyblue2", "skyblue3", "skyblue4", "midnightblue") 
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# Combine group and colors in a data frame 
colregdf <- data.frame(STDEVgrp, colreg) 
 
# Merge colors with year data 
yrstcolor <- as.data.table(left_join(yrst, colregdf, by = 'STDEVgrp')) 
# Remove Alaska and Hawaii to avoid error in plotting 48 states (Check DC, Puerto Rico etc) 
yrstplot <- yrstcolor[St != 'AK' & St != 'HI'] 
 
# Split data table into segments by regional colors to plot colors 
yrstseg <- split(data.frame(yrstplot), yrstplot[, colreg]) 
 
# Draw states then add colors for each split in a loop 
map("state") 
for (r in 1:length(yrstseg)){ 
  map("state", region=yrstseg[[r]]$Name, interior=F, fill=T, boundary=T,  
      col = as.character(yrstseg[[r]]$colreg[1]), add=T) 
} 
 
# Indicate font sizes for map    
par(ps = 12, cex = 0.8, cex.main = 2.2) 
title(paste0("Precipitation Anomalies by State - ", SelYr)) 
# Add points for the selected station locations 
legendtxt <- c("< -1.5", "-1.5 to -1.0", "-1.0 to -0.5", "-0.5 to 0", "0 to +0.50", 
               "+0.5 to +1.0", "+1.0 to +1.5", "+1.5 to +2.0", "+2.0 to +2.5", "> +2.5") 
par(ps = 16) 
legend("bottomright", legendtxt,  horiz = FALSE, fill = colreg) 
# Add points for station locations 
points(yrstns$lon, yrstns$lat, pch = 19, cex = 0.3, col = 'maroon4') 
 
 
#.................................................... 
#........ Choropleth by Package ggplot2 ............. 
#.................................................... 
 
library(ggplot2) 
library(fiftystater) 
 
# ggplot2 base choropleth colors (data can be yrst or yrstcolor) 
 
t <- ggplot(yrstcolor, aes(map_id = yrstcolor$Name, fill=yrstcolor$anom)) +  
  geom_map(map = fifty_states, colour = 'black') +  
  expand_limits(x = fifty_states$long, y = fifty_states$lat) + 
  coord_map() + ggtitle(paste0('Precipitation Anomalies by State in ',  
                               SelYr, '\n(Base Years ', BegBsYr,  ' - ', EndBsYr, ')')) + 
  theme(plot.title=element_text(size = rel(1.5), lineheight = .9,  
                                family = 'Times', colour = 'black', hjust = 0.5)) + 
  theme(axis.title.x=element_blank())+ 
  theme(axis.title.y=element_blank()) 
 
t + fifty_states_inset_boxes() 
 
# assigning custom choropleth colors centere at zero 
 
q <-  ggplot(yrstcolor, aes(fill = anom, map_id = Name)) +  
  geom_map(map = fifty_states, colour = 'black') +  
  expand_limits(x = fifty_states$long, y = fifty_states$lat) + coord_map() + 
  scale_fill_gradient2(low = "wheat4", mid = "white", midpoint = 0,  
                       high = "dodgerblue4", limits = c(-3,3)) + 
  ggtitle(paste0('Precipitation Anomalies by State in ', SelYr,  
                 '\n(Base Years ', BegBsYr,  ' - ', EndBsYr, ')')) + 
  theme(plot.title=element_text(size = rel(1.5), lineheight = .9,  
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                                family = 'Times', colour = 'black', hjust = 0.5)) + 
  theme(axis.title.x=element_blank())+ 
  theme(axis.title.y=element_blank()) 
 
q + fifty_states_inset_boxes() 
 
##### End Program Code 
 
 
# ========================================================================================== #  
# ===== CODE 9 ================= COMBINE MONTHLY INDICES ================================== # 
# ========================================================================================== # 
 
# Set boundaries on data to combine – make sure years exist in the data 
MinYr <- 1951 
MaxYr <- 2017 
 
# Read in monthly Nino Indices  
setwd(dirbase) 
ninomonthly <- read_csv('NinoMonthly.csv', col_names = TRUE) 
nino <- as.data.table(ninomonthly) 
nino 
colnames(nino) <- c('year', 'month', "Nino12", "Anom12", "Nino3", "Anom3", "Nino4", "Anom4",  
   "Nino34", "Anom34") 
nino 
nino <- nino[year >= MinYr & year <= MaxYr] 
 
SOI <- read_csv('SOI_Anom.csv', col_names = FALSE) 
EQSOI <- read_csv('EQSOI.csv', col_names = FALSE) 
TNI <- read_csv('TNI.csv', col_names = FALSE) 
BEST <- read_csv('BEST1mo.csv', col_names = FALSE) 
colnames(SOI) <- c('year', seq(1:12)) 
colnames(EQSOI) <- c('year', seq(1:12)) 
colnames(TNI) <- c('year', seq(1:12)) 
colnames(BEST) <- c('year', seq(1:12)) 
 
SOIlg <- as.data.table(gather(SOI, "month", "SOI", 2:13)) 
EQSOIlg <- as.data.table(gather(EQSOI, "month", "EQSOI", 2:13)) 
TNIlg <- as.data.table(gather(TNI, "month", "TNI", 2:13)) 
BESTlg <- as.data.table(gather(BEST, "month", "BEST", 2:13)) 
SOIlg <- SOIlg[year >= MinYr & year <= MaxYr] 
EQSOIlg <- EQSOIlg[year >= MinYr & year <= MaxYr] 
TNIlg <- TNIlg[year >= MinYr & year <= MaxYr] 
BESTlg <-  BESTlg[year >= MinYr & year <= MaxYr] 
 
IndexAll <- cbind(nino, SOIlg[,3], EQSOIlg[,3], BESTlg[,3], TNIlg[,3]) 
 
write_csv(IndexAll, 'IndexMonthly.csv', col_names = TRUE) 
 
 
##### End Program Code 
 
 
# ========================================================================================== #  
# ===== CODE 10 ================= PLOT INDEX TIME SERIES =================================== # 
# ========================================================================================== # 
 
# Load packages 
library(reshape2)   # To convert Index data from wide to long 
library(ggplot2)    # To produce graphs of indices 
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setwd(dirbase) 
indices <- read_csv('IndexMonthly.csv', col_names = TRUE) 
indices <- as.data.table(indices) 
indices[indices < -99] <- NA 
IndexName <- names(indices)[3:14] #(*Change Columns*) 
 
IndexName  # view index names (column headers) 
# Select index number 
i = 4 
# assign column number of selected index 
indcol <- as.integer(i+2) 
SelIndex <- names(indices)[indcol] 
# Rename column to be plotted 
setnames(indices, SelIndex, "PlotIndex") 
PlotDat <- cbind(indices[, year:month], indices[, .(PlotIndex)]) 
PlotDat$positive <- PlotDat$PlotIndex >= 0  # TRUE/FALSE values  
ggplot(PlotDat, aes(x=year, y = PlotIndex, fill = positive))  + geom_bar(stat="identity") + 
ylab(SelIndex) 
# Reset name of column plotted to original index name  
setnames(indices, "PlotIndex", SelIndex) 
 
# If error, reset column names 
# colnames(indices) <- c(names(indices)[1:2], IndexName) 
 
MEI <- read.csv('MEI_Index.csv', header = TRUE) 
colnames(MEI) <- c('Year', 'DecJan', 'JanFeb', 'FebMar', 'MarApr', 'AprMay', 'MayJun',  
                   'JunJul', 'JulAug',  'AugSep', 'SepOct', 'OctNov', 'NovDec') 
head(MEI) 
 
# Labels used to sort bimo and trimo ascending for time series 
molabels <- data.frame(month = seq(1, 12, 1),  
                       mo = c('Jan','Feb', 'Mar', 'Apr', 'May', 'Jun',  
                              'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'), 
                       bimo = c('JanFeb','FebMar', 'MarApr', 'AprMay', 'MayJun', 'JunJul',  
                                'JulAug', 'AugSep', 'SepOct', 'OctNov', 'NovDec', 'DecJan'), 
                       trimo = c('JFM','FMA', 'MAM', 'AMJ', 'MJJ', 'JJA',  
                                 'JAS', 'ASO', 'SON', 'OND', 'NDJ', 'DJF')) 
 
# use tidyvers gather() to convert wide format to long  
MEIlong <- gather(MEI, "bimo", "MEI", 2:13) 
MEIlong[MEIlong < -99] <- NA 
head(MEIlong) 
 
# Create column to identify positie values in order to color code graph plot 
MEIlong$posM <- MEIlong$MEI >= 0    # TRUE/FALSE values  
MEIlongno <- merge(MEIlong, molabels[,c(1,3)], by = 'bimo', all.MEIlong = TRUE) 
MEIlongno <- MEIlongno[order(MEIlongno$Year, MEIlongno$month),] 
head(MEIlongno,15) 
 
ggplot(MEIlongno, aes(x=Year, y = MEI, fill = posM)) + geom_bar(stat="identity") + ylab("MEI")  
 
##### End Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 11 ================ PLOT ELEMENT vs. INDEX by STATE =========================== # 
# ========================================================================================== # 
# Go back to repeat SETUP at top if R has been closed. 
library(stringr)  # Converts all capitals to title format 
 
# Base years (eg. 1961 - 1990) for climatology, that agree with data 
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BegBsYr <- 1961 
EndBsYr <- 1990 
 
Elements <- c('PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'WIND') 
 
# SELECTIONS FOR PLOTS 
SelElem <- 'SNOW'    # Four character weather element abbreviation 
SelState <- 'MN'     # Two character state abbreviation 
SelIndex <- 1        # 1, 2, 3, ..., 12 column order of index in IndexMonthly.csv 
SelMonth <- 1        # 1, 2, 3, ..., 12 month 
# Select first month of bimonthly/trimonthly sums: 
# 1 = 'JanFeb'/'JFM'; 12 = 'DecJan'/'DJF' 
 
MoLabel <- c('January', 'February', 'March', 'April', 'May', 'June', 'July',  
             'August', 'September', 'October', 'November', 'December') 
Month2 <- ifelse(SelMonth == 12, 1, SelMonth+1) 
Month3 <- ifelse(SelMonth == 11, 1, ifelse(SelMonth == 12, 2, SelMonth +2)) 
SelBiMo <- paste0(substring(MoLabel[SelMonth], 1, 3), substring(MoLabel[Month2], 1, 3)) 
TriMoSel <- paste0(substring(MoLabel[SelMonth], 1, 1), substring(MoLabel[Month2], 1, 1), 
                   substring(MoLabel[Month3], 1, 1)) 
BiMoLab <- paste(substring(SelBiMo, 1, 3), substring(SelBiMo, 4, 6), sep = ' - ') 
TriMoLab <- paste(BiMoLab, substring(MoLabel[Month3], 1, 3), sep = ' - ') 
rm(Month2, Month3) 
ElemLab <- data.frame(Elem = Elements[1:5],  

ElemName = c('Rainfall', 'Snowfall','Snow Depth',  
              'Max. Temperature', 'Min. Temperature')) 
# for mapping - read in state names and abbreviations 
setwd(dirbase) 
stabbr <- read_csv('ghcnd-states.csv', col_names = FALSE) 
colnames(stabbr) <- c('St', 'Name') 
# read in indices 
setwd(dirbase) 
indexmo <- read_csv('IndexMonthly.csv', col_names = TRUE) 
 
# Set Working Directory to access csv data files to plot 
setwd(diroutput) 
 
#  Read in Yearly Inventory 
yrfile <- paste0('_USCANyrinvgrid', SelElem, 'df.csv') 
yrdat <- read_csv(yrfile, col_names = TRUE) 
yrdat <- as.data.table(yrdat) 
 
# Select stations based on yearly inventory - customize code here 
# Input selection criteria for stations (record completeness, etc) 
selyrdat <- yrdat[bryrct == 57]   # All States 
nrow(yrdat) 
nrow(selyrdat) 
selstn <- data.frame(StationID = unique(selyrdat$StationID), keep = 'Y') 
# rm(selyrdat, yrdat)  # Remove once selections are decided 
rm(yrfile) 
 
 
#***********************************************# 
###  CHOOSE FROM THREE DATA FILES TO READ IN  ### 
#***********************************************# 
 
# Set Working Directory to access csv data files to plot 
setwd(diroutput) 
 
# For Nino Indices, SOI, EQSOI, TNI, and 'BEST', read Year Month data 
yrmofile <- paste0('_USCANyrmoinv', SelElem, 'df.csv') 

Meteorology for Actuaries – Part 2  
Climate and the El Niño Southern Oscillation

Casualty Actuarial Society E-Forum, Spring 2018-Volume 2 79



yrmodat <- read_csv(yrmofile, col_names = TRUE) 
yrmodat <- as.data.table(yrmodat) 
 
# For MEI read bimonthly data 
MEIfile <- paste0('_USCANbimo', SelElem, 'df.csv') 
MEIdat <- read_csv(MEIfile, col_names = TRUE) 
MEIdat <- as.data.table(MEIdat) 
 
# For ONI read trimonthly data 
ONIfile <- paste0('_USCANtrimo', SelElem, 'df.csv') 
ONIdat <- read_csv(ONIfile, col_names = TRUE) 
ONIdat <- as.data.table(ONIdat) 
 
 
#**********************# 
#   MONTHLY INDICES    # 
#**********************# 
 
# Keep selected stations, merged with selected data set 
seldatmo <- as.data.table(left_join(yrmodat, selstn, by = 'StationID')) 
nrow(seldatmo) 
seldatmo <- seldatmo[keep == 'Y'] 
seldatmo[ , keep := NULL] 
nrow(seldatmo) 
seldatmo[, stns := 1] 
seldatmo[,base := ifelse(year <= EndBsYr & year >=BegBsYr, 'Y', 'N' )] 
seldatmo[,pre82 := ifelse(year < 1982, 'Y', 'N' )] 
 
# Columns to sum by state for Nino, SOI, EQSOI, TNI, BEST 
selmocols <- names(seldatmo)[c(14:26)]   #(*Change columns*) 
Statedat <- seldatmo[, lapply(.SD, sum, na.rm=TRUE), .SDcols=selmocols, 
                     by=list(St, loc, elem, year, month, pre82)] 
Statedat[, avgVALm_US := (VALm_US / obs) ] 
Statedatmo <- as.data.table(left_join(Statedat, indexmo, by = c('year', 'month'))) 
IndexName <- names(Statedatmo)[21:32] 
IndexName 
 
########## RUN PLOT ################ 
# Ok to change SelMonth, SelState, and SelIndex at this point. 
# Optional Loop - uncomment two lines plus end bracket } to remove 
for (indloop in 1:length(IndexName)){ 
  SelIndex <- indloop 
   
  # Choose the index column to plot 
  setnames(Statedatmo, IndexName[SelIndex], 'IndexPlot') 
   
  # Limit data to plot selections  
  Statedatplot <- Statedatmo[month == SelMonth & St == SelState & !is.na(IndexPlot)] 
   
  # View range of values for setting y-axis limits 
  min(Statedatplot$avgVALm_US) 
  max(Statedatplot$avgVALm_US) 
  # View range of values for setting x-axis limits 
  min(Statedatplot$IndexPlot) 
  max(Statedatplot$IndexPlot) 
   
  # Define boundaries of plot 
  xlo <- floor(min(Statedatplot$IndexPlot)) 
  xhi <- ceiling(max(Statedatplot$IndexPlot)) 
  yhi <- ceiling(max(Statedatplot$avgVALm_US)*100)/100 
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  # Select colors and point shapes 
  color1 <- 'lightpink4' 
  color2 <- 'darkcyan' 
  pch1 = 1 
  pch2 = 18 
   
   
  # Labels and Title - revise as needed 
  ElemLabel <- subset(ElemLab, ElemLab$Elem == SelElem) 
  SelSt <- subset(stabbr, stabbr$St == SelState) 
  SelStPlot <- str_to_title(SelSt[2]) 
  PlotTitle <- paste0(SelStPlot, " ", MoLabel[SelMonth], " ", ElemLabel$ElemName, " vs. ",  
  IndexName[SelIndex],"  Index") 
   
  # Widen Plot Region before running plot code 
  plot(Statedatplot$IndexPlot, Statedatplot$avgVALm_US, xlab=paste0("Monthly ",  

 IndexName[SelIndex], " Index"), 
       ylab="average station measurement", xlim=c(xlo, xhi), ylim=c(0, yhi),  
       main=PlotTitle, 
       pch = ifelse(Statedatplot$pre82=='Y', pch1, pch2), cex.main=1.2, frame.plot=FALSE,  
       col=ifelse(Statedatplot$pre82=='Y', color1, color2)) 
  legend(xlo, yhi, pch=c(pch1, pch2), col=c(color1, color2),  

c("prior to 1982", "1982 and on"),  
          bty="o",  box.col="darkgreen", cex=.8) 
  # Label outlier points with year - choose boundaries at right and left of plot 
  Statedatplot[, outlier := ifelse(IndexPlot > xhi – 0.5 | IndexPlot < xlo + 0.5, year, "")] 
  text(Statedatplot$IndexPlot, Statedatplot$avgVALm_US, Statedatplot$outlier, pos=1, cex=0.6) 
 
   
  # Option: linear regression 
  # reg<-lm(avgVALm_US~IndexPlot, data=Statedatplot) 
  # abline(reg, lty =2, col = 'grey50') 
 
  # Reset column names in data   
  setnames(Statedatmo, 'IndexPlot', IndexName[SelIndex]) 
   
} 
 
# In case of error, restore original column names  
# colnames(Statedatmo) <- c(names(Statedatmo)[1:20], IndexName) 
 
#**********************# 
#          MEI         # 
#**********************# 
 
# Keep selected stations, merged with selected data set 
seldat <- as.data.table(left_join(MEIdat, selstn, by = 'StationID')) 
nrow(seldat) 
seldat <- seldat[keep == 'Y'] 
seldat[ , keep := NULL] 
nrow(seldat) 
seldat[, stns := 1] 
seldat[,base := ifelse(year <= EndBsYr & year >=BegBsYr, 'Y', 'N' )] 
seldat[,pre82 := ifelse(year < 1982, 'Y', 'N' )] 
 
# Columns to sum by state for MEI 
selcols <- names(seldat)[c(13:25)]   #(*Change columns*) 
StateMEI <- seldat[, lapply(.SD, sum, na.rm=TRUE), .SDcols=selcols, 
                   by=list(St, loc, elem, year, ord, bimo, MEI, pre82)] 
StateMEI <- as.data.table(StateMEI) 
StateMEI[, avgVAL2m_US := (VAL2m_US / obs)] 
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rm(seldat, MEIdat) 
 
########## RUN PLOT ################ 
# Ok to change SelBiMo and SelState at this point. 
# Limit data to plot selections 
# SelState <- 'FL' 
# SelMonth <- 2 
Month2 <- ifelse(SelMonth == 12, 1, SelMonth+1) 
SelBiMo <- paste0(substring(MoLabel[SelMonth], 1, 3), substring(MoLabel[Month2], 1, 3)) 
StateMEIplot <- StateMEI[St == SelState & bimo == SelBiMo & !is.na(MEI)] 
BiMoLab <- paste(substring(SelBiMo, 1, 3), substring(SelBiMo, 4, 6), sep = ' - ') 
 
# View range of values for setting y-axis limits 
min(StateMEIplot$avgVAL2m_US) 
max(StateMEIplot$avgVAL2m_US) 
# View range of values for setting x-axis limits 
min(StateMEIplot$MEI) 
max(StateMEIplot$MEI) 
 
xlo <- floor(min(StateMEIplot$MEI)) 
xhi <- ceiling(max(StateMEIplot$MEI)) 
yhi <- ceiling(max(StateMEIplot$avgVAL2m_US)*100)/100 
 
# Plot MEI graph - be sure to update ranges and title 
color1 <- 'lightpink4' 
color2 <- 'darkcyan' 
pch1 = 1 
pch2 = 18 
 
# Labels and Title - revise as needed 
ElemLabel <- subset(ElemLab, ElemLab$Elem == SelElem) 
SelSt <- subset(stabbr, stabbr$St == SelState) 
SelStPlot <- str_to_title(SelSt[2]) 
MEITitle <- paste0(SelStPlot, " ", BiMoLab, " ", ElemLabel$ElemName, " vs. MEI") 
 
 
plot(StateMEIplot$MEI, StateMEIplot$avgVAL2m_US, xlab="MEI",  
     ylab="average station measurement", xlim=c(xlo, xhi), ylim=c(0, yhi),  
     main=MEITitle, 
     pch = ifelse(StateMEIplot$pre82=='Y', pch1, pch2), cex.main=1.2, frame.plot=FALSE,  
     col=ifelse(StateMEIplot$pre82=='Y', color1, color2)) 
legend(xlo, yhi, pch=c(pch1, pch2), col=c(color1, color2), c("prior to 1982", "1982 and on"),  
       bty="o",  box.col="darkgreen", cex=.8) 
# Label outlier points - choose boundaries 
StateMEIplot[, outlier := ifelse(MEI > 1.6 | MEI < -1.6, year, "")] 
text(StateMEIplot$MEI, StateMEIplot$avgVAL2m_US, StateMEIplot$outlier, pos=1, cex=0.6) 
 
# Option: linear regression 
reg<-lm(avgVAL2m_US~MEI, data=StateMEIplot) 
abline(reg, lty =2, col = 'grey50') 
 
 
##### End Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 12 ===================== MAP ENSO INDEX REGIONS =============================== # 
# ========================================================================================== # 
 
library(maps) 
library(mapproj)  # coordinate grids 
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# Pacific-centric Coordinates 
 
# Nino 1+2  
CoordPCNino12 <- data.frame( 
  lat = c(0, 0, -10, -10, 0), 
  lon = c(270, 280, 280, 270, 270)  
) 
 
# Nino 3 
CoordPCNino3 <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(210, 270, 270, 210, 210)  
) 
 
# Nino 3.4 
CoordPCNino34 <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(190, 240, 240, 190, 190)  
) 
 
# Nino 4 
CoordPCNino4 <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(160, 210, 210, 160, 160)  
) 
 
# Equatorial SOI - West (5°N-5°S, 220°W-270°W) 
CoordPCEQSOI_W <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(90, 140, 140, 90, 90)  
) 
 
# Equatorial SOI - East   (5°N-5°S, 80°W-130°W) 
CoordPCEQSOI_E <- data.frame( 
  lat = c(5, 5, -5, -5, 5), 
  lon = c(230, 280, 280, 230, 230)  
) 
 
######################################################## 
# NINO INDEX REGIONS - ALL INDICES 
########################################################### 
# Map Pacific Centric Index SST Region 
map("world2", xlim = c(80,300), ylim = c(-40, 40)) 
 
# EQSOI Regions 
rect(140, -5, 90, 5, col = 'lightcyan1', border = FALSE) 
rect(230, -5, 280, 5, col = 'lightcyan1', border = FALSE) 
 
map("world2", xlim = c(80,300), ylim = c(-40, 40), add = TRUE) 
map.axes() 
 
map.grid(label = FALSE, lty = 1, col = "grey") 
par(ps = 12) 
title("El Nino Southern Oscillation Index Regions", family='Times') 
 
par(ps = 10) 
lines(x = CoordPCNino12$lon, y = CoordPCNino12$lat, col = "black", lwd = 2) 
text(275, -3, "Nino",  family='Times') 
text(275, -7, "1+2" ,  family='Times') 
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par(ps = 12) 
lines(x = CoordPCNino4$lon, y = CoordPCNino4$lat, col = "black", lwd = 2) 
text(175, 1, "NINO 4",  family='Times') 
lines(x = CoordPCNino3$lon, y = CoordPCNino3$lat, col = "black", lwd = 2) 
text(255, 1, "NINO 3", family='Times') 
Nino34col <- 'dodgerblue3' 
lines(x = CoordPCNino34$lon, y = CoordPCNino34$lat, col = Nino34col, lty = 3, lwd = 3) 
text(213, 9, "NINO 3.4 / ONI", col = Nino34col, family='Times', lwd = 3) 
#text(213, 9, "NINO 3.4 / ONI / 'BEST'", col = Nino34col, family='Times', lwd = 3) 
 
SOIcol <- 'midnightblue' 
DarwinPC <- c( 130.8456, -12.4634) 
points(130.8456, -12.4634, cex = 1, col = SOIcol, pch = 19) 
par(ps = 8.5) 
text(124, -12, "Darwin", family='Times') 
Tahiti <- c(210.574, -17.6509) 
points(210.574, -17.6509, cex = 1, col = SOIcol, pch = 19) 
par(ps = 8.5) 
text(205, -15, "Tahiti", family='Times') 
 
par(ps = 12) 
lines(x = c(130.8456, 210.574), y = c(-27, -27), col = SOIcol, lwd = 1) 
text(170, -30, "SOI", family='Times', lwd = 2) 
lines(x = c(130.8456, 130.8456), y = c(-15, -27), col = SOIcol, lwd = 1) 
lines(x = c(210.574, 210.574), y = c(-20, -27), col = SOIcol, lwd = 1) 
 
EQSOIcol <- 'cyan4' 
TNIcol <- 'mediumpurple4' 
par(ps = 12) 
text(150, 23, "EQSOI",  family='Times', lwd = 2, col = EQSOIcol) 
text(231, 23, "EQSOI",  family='Times', lwd = 2,  col = EQSOIcol) 
#text(170, 32, "TNI",  family='Times', lwd = 2, col = TNIcol) 
#text(275, -27, "TNI",  family='Times', lwd = 2, col = TNIcol) 
par(ps = 9) 
text(150, 18, "(Western)",  family='Times', lwd = 1, col = EQSOIcol) 
text(231, 18, "(Eastern)",  family='Times', lwd = 1, col = EQSOIcol) 
#text(170, 27, "(Western)",  family='Times', lwd = 1, col = TNIcol) 
#text(275, -32, "(Eastern)",  family='Times', lwd = 1, col = TNIcol) 
arrows(150, 15, 135, 2, length = 0.1, angle = 20, col = EQSOIcol, lwd = 1.8) 
arrows(231, 15, 245, -2, length = 0.1, angle = 20, col = EQSOIcol, lwd = 1.8) 
#arrows(170, 23, 170, 5, length = 0.1, angle = 20, col = TNIcol, lwd = 1.8) 
#arrows(275, -24, 275, -10, length = 0.1, angle = 20, col = TNIcol, lwd = 1.8) 
 
 
 
##### End Program Code 
 
 
# ========================================================================================== # 
# ===== CODE 13 ====================== COSTLIEST STORMS ==================================== # 
# ========================================================================================== # 
 
# Go back to repeat SETUP at top if R has been closed. 
 
# Read in data on Costliest Atlantic Hurricanes 
setwd(dirbase) 
Costly <- read_csv('CostlyStorms.csv', col_names = FALSE) 
Costly <- as.data.table(Costly) 
colnames(Costly) <- c("Name", "Cat", "Dmg_USB", "year", "YrNo", "BegDay", "EndDay") 
Costly[, Label := paste(year, YrNo, sep = '_')] 
# Create columns for formating plot labels 
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Costly[, textadj := 0] 
Costly[, NameLab := ifelse(Costly$Dmg_USB >=7, Costly$Name, "")] 
head(Costly, 10) 
 
head(Costly, 10) 
tail(Costly, 10) 
#______________________________________________ 
# Plot All Storms 
#______________________________________________ 
# Sort chronologically 
Costly <- Costly[order(year, BegDay),] 
Costly$NameLab <- ifelse(Costly$Dmg_USB >=10, Costly$Name, "") 
Costly[Name == 'Hugo', 10] <- "Hugo" # Label Hugo 
# Adjust text positions and eliminate some names 
Costly[Name == 'Hugo', 9] <- - 0.5 
Costly[Name == 'Maria', 9] <- 0.5 
Costly[Name == 'Charley', 9] <-  -1.8 
Costly[Name == 'Wilma', 9] <-  1 
Costly[NameLab == 'Matthew', 10] <- "" 
Costly[NameLab == 'Rita', 10] <- "" 
Costly[NameLab == 'Irma', 10] <-  "" 
 
# Create Bar Plot of all storms (Show in wide plots screen) 
j <- barplot(Costly$Dmg_USB, ylim = c(0, 150), col = "darkblue", cex.main = 1.5,  

cex.axis = 0.8, cex.names = 0.7, names.arg = Costly$Label, las = 2,  
ylab = "U.S. Dollars ($ Billions)", xlab = "Year / Storm Number") 

j 
text(j + Costly$textadj, Costly$Dmg_USB+6, Costly$NameLab, cex = 1.2) 
lines(x = c(0, 16), y = c(9.47, 9.47), col = "darkblue", lty = 2, lwd = 1) 
text(59, 98, "Irma", cex = 1.2) 
arrows(59.5, 93.5, 65.8, 68, col = "black", length = 0.1, angle = 20, lwd = 1.9) 
 
#______________________________________________ 
# Storms Up to Andrew 
#______________________________________________ 
 
# Select years and sort chronologically 
CostlyA <- Costly[year<=1992,] 
CostlyA <- CostlyA[order(year, BegDay),] 
head(CostlyA) 
 
# Adjust text positions and eliminate some names 
CostlyA[Name == 'Andrew', 9] <-  -1 
 
# Create bar plot of storms (Show in narrow plots screen) 
a <- barplot(CostlyA$Dmg_USB, ylim = c(0, 30), col = "darkblue", cex.main = .8,  

cex.axis = .8, cex.names = 0.6, names.arg = CostlyA$Label, las = 2,  
ylab = "U.S. Dollars ($ Billions)", xlab = "Year / Storm Number") 

a 
text(a + CostlyA$textadj, CostlyA$Dmg_USB+0.9, CostlyA$NameLab, cex = 1) 
lines(x = c(0, 16), y = c(9.47, 9.47), col = "darkblue", lty = 2, lwd = 1) 

 

##### End Program Code 
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