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Abstract: There are two competing views on how to determine capital for an insurer whose loss liabilities 
extend for several time periods until settlement. The first focuses on the immediate period (usually one-year) 
and the second uses the runoff (until ultimate loss payment) time frame; each method will generally produce 
different amounts of required capital. Using economic principles, this study reconciles the two views and 
provides a general framework for determining capital for multiple periods. 

For an insurer whose liabilities and corresponding assets extend over a single time period, Butsic [2013] 
determined the optimal capital level by maximizing the value of the insurance to the policyholder, while 
providing a fair return to the insurer’s owners. This paper extends those results to determine optimal capital 
when liabilities last for several time periods until settlement. Given the optimal capital for one period, the 
analysis applies backward induction to find optimal capital for successively longer time frames.  

A key element in this approach is the stochastic process for loss development; another is the choice of 
capital funding strategy, which must respond to the evolving loss estimate. In addition to the variables that 
affect the optimal one-period capital amount (such as the loss volatility, frictional cost of capital and the 
policyholder risk preferences), in this paper I show that the horizon length, the capitalization interval (time 
span between potential capital flows), and the policy term will influence the optimal capital for multiple time 
periods. Institutional and market factors, such as the conservatorship process for insolvent insurers and the 
cost of raising external capital, also play a major role and are incorporated into the model.  

Results show that the optimal capital depends on both the annual and the ultimate loss volatility. 
Consequently, more total capital (ownership plus policyholder-supplied capital) is required as the time horizon 
increases; however, optimal ownership capital may decrease as the time horizon lengthens due to the 
policyholder-supplied capital, which includes premium components for risk margins and income taxes. Also, 
less capital is needed if capital flows can occur frequently and/or if the policy term is shorter. Insurers that are 
able to more readily raise capital externally will need to carry less of it.  

The model is extended to develop asset risk capital and incorporate features, such as present value and risk 
margins, that are necessary for practical applications. Although the primary focus is property-casualty insurance, 
the method can be extended to life and health insurance. In particular, the approach used to determine capital 
required for multi-period asset risk will apply to these firms.  

The resulting optimal capital for insurers can form the basis for pricing, corporate governance and 
regulatory applications. 
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 ____________________________________________________________________________________________  

1. INTRODUCTION AND SUMMARY  

There is a considerable body of literature on how to determine the appropriate risk-based capital 

for an insurance firm. Generally, the analysis applies a particular risk measure (such as VaR or 

expected policyholder deficit), calibrated to a specific valuation level (e.g., VaR at 99.5%) to 
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determine the proper amount of capital. However, most of the commonly-used risk measures apply 

most readily to short-duration risks, for example, property insurance, where the liabilities are settled 

within a single time period. Application of these methods is more problematic when addressing 

long-term insurance claims, such as liability, workers compensation and life insurance.  

How to treat long-term, or multi-period, liabilities and assets is the subject of much debate in the 

actuarial and insurance finance literature. For a good, practically-oriented discussion of this topic, 

see Lowe et al [2011]. Essentially there are two camps: one side advocates using an annual1 (one-

period) time horizon, wherein the current capital amount must be sufficient to offset default risk 

based on loss liability and asset values over the upcoming period, usually one year. The other side 

argues that the current capital must offset the default over the entire duration (the runoff horizon) 

required to settle the liability. Essentially, the issue is whether capital depends on the loss volatility 

only for the upcoming year, or the ultimate loss volatility. This controversy has gained momentum 

with the impending implementation of the Solvency II risk-based capital methodology, which uses 

an annual (single-period) time horizon.2 

As shown in the subsequent analysis, the problem may be solved by extending the one-period 

model to a longer time frame. I have used the concept of an optimal capital strategy to determine the 

appropriate capital amount for the current period, which is the first period of a multi-period liability. 

For a one-period liability, there is a theoretically optimal amount of capital that depends on the 

insurer’s cost of holding capital and the nature of the policyholders’ risk aversion. These results are 

derived in An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measurement (Butsic 

[2013]), which develops the appropriate risk measure (adjusted ruin, or default probability) and 

                                                           
1 More generally, the period could be shorter than one year, but most applications use the annual time frame. In this 
paper I use the more general concept of time periods. 
2 See the European Parliament Directive [2009]; Article 64.  



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 3 

calibration method (using the frictional cost of capital) for a one-period insurer in an equilibrium 

insurance setting. The analysis here can be considered as an extension to this paper which, for 

reference, I shorten to EBRM. 

With multi-period risks, we can use the same fundamental assumptions that drive optimal capital 

for a single period. The main point is that, as in a one-period model, the optimal capital over several 

periods depends on the balance between capital costs and the amount that the policyholders are 

willing to pay to reduce their perceived value of default.  

Capital in this paper is defined in the general accounting sense as the difference between assets 

and liabilities. For practical applications, capital will need to be defined according to a standard 

accounting convention such as IFRS,3 U.S. statutory accounting or the accounting used in Solvency 

II. 

Although the analysis is geared toward producing optimal capital for property-casualty insurance 

losses, the methodology also applies to long-term asset risk and life insurance (see sections 8 and 9). 

1.1 Summary 
The main result of this paper is that the optimal capital for an insurer with multi-period losses 

depends on both the volatility of losses for the current year and the volatility of the ultimate loss 

value. The ultimate loss volatility is a factor because, when an insurer becomes insolvent, it generally 

enters conservatorship and the losses will develop further, as if the insurer had remained solvent. 

This further development depends on the ultimate loss volatility. As long as there is volatility for 

remaining loss development, the optimal total capital (defined as ownership plus policyholder-

supplied capital) increases as the time horizon lengthens, but at a decreasing rate. However, because 

                                                           
3 In IFRS (International Financial Reporting Standards) and Solvency II accounting, the value of unpaid claim liabilities 
is treated as the best estimate of the unpaid claims plus a risk margin.  Sections 2-7 treat liabilities as the best estimate of 
unpaid claims. The effect of risk margins is discussed in Section 8. 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 4 

policyholder-supplied capital (needed to pay future capital costs and the risk margin) is included in 

premiums, and these also increase with loss volatility, the optimal amount of ownership capital may 

decrease if the time horizon is long enough. The ownership capital (e.g., statutory surplus or 

shareholder equity on an accounting basis) is normally the relevant quantity used for risk-based 

capital analysis. 

For a multiple-period time horizon, the amount of optimal capital depends on the same variables 

as for an insurer with a single-period horizon: the frictional cost of holding capital (primarily the cost 

of double-taxation), the degree of policyholder risk aversion, loss/asset volatility and guaranty fund 

participation. However, with multiple periods, optimal capital also depends on 

1. The underlying stochastic process for loss development; the horizon length is also a random 
variable.  

2. What happens to unpaid losses when an insolvency occurs? In particular, conservatorship 
for an insolvent insurer has a strong effect. 

3. The capital strategy used by the insurer. The ability to add capital when needed is particularly 
important. 

4. The cost of raising external capital. In the case of some mutual insurers or privately-held 
insurers, the limitation on the ability to raise capital is a key factor. 

5. The length of time between capital flows. The shorter this time frame, the less capital is 
needed.  

6. The policy term. More capital is needed for a longer term, since if default occurs early in the 
term, the remaining coverage must be repurchased. 

Also, the optimal capital depends on two factors important for multi-period risk that are not 

modeled (for simplicity) in EBRM: 

1. The interest rate. As the interest rate increases, less capital is necessary to mitigate default 
that will occur in the future. 

2. The risk margin (or market price of risk) embedded in the premium. This amount acts as 
policyholder-supplied capital and reduces the amount of ownership capital needed. 

As identified in items 3 through 5, optimal capital depends on the insurer’s ability to raise capital 

and the cost of doing so. A lower cost of raising capital and/or better ability to raise capital will 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 5 

imply a lower amount of optimal capital. For most insurers, the best feasible strategy is to add capital 

when it will improve policyholder welfare, and withdraw capital otherwise. This strategy of adding 

capital where appropriate (called AC) means that capital is added only if the insurer remains solvent. 

An alternative strategy (full recapitalization, or FR), adds capital even when the insurer is insolvent. 

Under FR, only the current-period loss volatility is considered and thus is consistent with the 

Solvency II risk-based capital methodology.4 However, the FR strategy is not feasible, so the 

Solvency II method can understate risk-based capital for long-horizon losses.  

The optimal capital for an insurer with asset risk is determined by combining the asset risk with 

the loss risk, and getting the joint capital for both. The implied amount of asset-risk capital is 

obtained by subtracting the loss-only optimal capital from the joint capital. If the asset risk is low, it 

is possible that the optimal capital for the combined risks is lower than that for the loss-only risk. 

Two factors tend to reduce the optimal implied asset-risk capital for long time horizons, compared 

to the loss-only risk capital. First, when an insurer becomes technically insolvent, asset risk is 

virtually eliminated, as a consequence of entering conservatorship (where the insurer’s investments 

are replaced with low-risk securities). Second, the positive expected return from risky assets acts as 

additional capital. As with losses, the optimal asset-risk total capital increases with the time horizon 

length. 

1.2 Outline 
The remainder of the paper is summarized thusly: 

                                                           
4 The Solvency II approach to risk margins and capital adequacy can be interpreted as assuming that recapitalization is 
always possible.  Note however, that the Solvency II approach includes liability risk margins that increase the amount of 
assets required of the insurer. These assets increase with the horizon length. The additional (policyholder-supplied) 
capital from those assets depends on the ultimate loss volatility, so that the Solvency II method does not rely solely on the 
current-period loss volatility. Other than the risk margin issue, I do not compare the Solvency II assumptions to those of 
the models developed in this paper.   
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Key Results from the One-Period Model (Section 2) 

Section 2 summarizes the results for a one-period model, showing how the cost of holding 

capital and the policyholder risk preferences will provide an optimal capital amount. Coupled with 

the insurer’s capital strategy, the one-period optimal capital amounts will generate optimal capital for 

longer-duration losses spanning multiple periods. 

Multi-Period Model Issues (Section 3) 

Section 3 introduces issues presented in a multi-period model that are not applicable to the one-

period case. These issues are explored further in subsequent sections. A key concept is the stochastic 

loss development process, wherein the estimate of the ultimate loss fluctuates randomly from period 

to period, with the current estimate being the mean of the ultimate loss distribution; this process 

determines expected default values in future periods. Another important issue is the impact on 

assets and loss liabilities following technical insolvency, where a regulator forces an insurer to cease 

operations when its assets are less than its liabilities; in this case, losses continue to develop after the 

insurer has defaulted. I describe capital funding strategies, which are necessary to address the period-

to-period loss evolution. This section also discusses the distinction between ownership capital and 

policyholder-supplied capital; this issue may not be relevant in a one-period model. 

Basic Multi-period Model (Section 4) 

Section 4 presents a basic model of an insurer with multiple-period losses for liability insurance. 

First, I summarize the assumptions underlying a one-period model and add those necessary for a 

multi-period model. Then I describe characteristics of the loss development stochastic process, 

including a parallel certainty-equivalent process needed to value the default from the policyholders’ 

perspective. Third, I specify a premium model, which allows the calculation of the value of the 

insurance contract to both policyholders and the insurer, and thus the optimum capital amount for 
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both parties. Fourth, I examine the distinction between ownership capital and total capital, which 

also includes policyholder-supplied capital.5 Fifth, I discuss capital funding strategies, where insurers 

attempt to add or withdraw capital to maintain an optimal position over time; the strategies vary 

according to efficiency (value to policyholders) and feasibility. Finally, I show that the most efficient 

feasible strategy is where capital is added if the insurer remains solvent; this is denoted as AC. 

Optimal Two-period Capital (Section 5) 

Section 5 determines the optimal capital for a two-period model under the AC strategy. Here I 

evaluate the certainty-equivalent value of default under technical insolvency, which is a key 

component of the analysis. This section introduces a stochastic loss process with normally-

distributed incremental development, used in subsequent sections to illustrate optimal capital 

calculation. Next, the AC model is enhanced to incorporate an additional cost of providing capital 

from external sources. Finally, I analyze the how optimal capital can be determined for an insurer 

with limited ability to raise external capital, such as a mutual insurer. 

Optimal Capital for More Than Two Periods (Section 6) 

Section 6 extends the two-period model to multiple periods using backward induction. This 

procedure provides optimal initial capital for the various capital strategies. 

Capitalization Interval (Section 7) 

Section 7 examines how optimal insurer capital depends on the capitalization interval, or the time 

span required to add capital from external sources. This interval determines the period length for a 

multi-period model. Section 7 also shows how the policy term affects optimal capital. 

Extensions to the Multi-period Model (Section 8) 

                                                           
5 For shareholder-owned insurers, policyholder-supplied capital includes the premium components of risk margins and 
provision for income taxes. In addition to these funds, policyholders of mutual insurers provide ownership capital in 
their premiums. 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 8 

Section 8 extends the basic multi-period model to include features necessary for a practical 

application. I apply a stochastic horizon, where the loss development continues for a random length 

of time. Also, the analysis shows the effect of using present value and risk margins. The section 

concludes with a brief discussion of applying the methodology to life and health insurance. 

Multi-Period Asset Risk (Section 9) 

Section 9 determines optimal capital for asset risk by extending the loss model to a joint loss and 

asset model. The joint model is simplified by using an augmented loss variable, which incorporates 

the asset risk and return into a loss-only model.  

Conclusion (Section 10) 

Section 10 concludes the paper. 

Other Material  

Appendix A through Appendix D contain detailed numerical examples that illustrate key 

concepts and provide additional mathematical development. The References provide sources for 

footnoted information. To assist in following the analysis, the Glossary explains the mathematical 

notation and abbreviations used in the paper. The final section is a Biography of the Author. 

2. KEY RESULTS FROM THE ONE-PERIOD MODEL 

This discussion briefly shows how optimum capital is determined in a one-period model. More 

details can be found in EBRM. 

2.1 Certainty-Equivalent Losses 
Since a policyholder is presumed to be risk-averse, the perceived value of each possible loss, or 

claim, amount is different from the nominal value. For a policyholder facing a random loss, the 

certainty-equivalent (CE) value of the loss is the certain amount the policyholder is willing to pay in 
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exchange for removing the risk of the loss. Let L denote the expected value of the loss and p(x) the 

probability of loss size x. The expected value of the loss is . The translation from 

nominal loss amounts to the CE value of the amounts can done using an adjusted probability 

distribution : 

 

 .   (2.11) 

 

Here,  is the CE expected loss, with . The value of the default to the policyholder is 

called the certainty-equivalent expected default (CED) value and is denoted by . Its expression is 

parallel to that of the nominal expected default D: 

 

 .   (2.12) 

 

Here A is the insurer’s asset amount. We have ; for asset values significantly greater than 

the mean loss L, the CED can be an extremely high multiple of the nominal expected default 

amount.  

If policyholder risk preferences are determined from an expected utility model, then the CE loss 

distribution can be obtained directly from the unadjusted distribution and the utility function. 

2.2 Consumer Value, Capital Costs and Premium 
In purchasing insurance, the policyholder pays a premium  in exchange for covering the loss. 

However, the coverage is only partial, since if the insurer becomes insolvent, only a portion of a loss 

(claim) is paid. Thus, the value V of the insurance to the policyholder, or consumer value, equals the 

CE loss minus the premium minus the CED, or  
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 .  (2.21) 

 

If V > 0, then the policyholder will buy the insurance. 

In the basic model described in EBRM (see the assumptions in Section 4) the only costs to the 

insurer are the loss and the frictional cost of capital (FCC), denoted by z. The FCC is primarily 

income taxes, but may include principal-agent, regulatory restriction or other costs. Assuming that 

the capital cost is strictly proportional to the capital amount C, the premium is  

 

 .  (2.22) 

 

Since adding capital reduces the CED but increases premium (through a higher capital cost), 

there generally will be an optimal level of capital that maximizes V and therefore provides the 

greatest policyholder welfare. By taking the derivative of V with respect to the asset amount A, we 

get the requirement for optimal assets, and therefore optimal capital: 

 

 . (2.23) 

 

Here  is the default, or ruin, probability under the adjusted probability ; it equals the 

negative derivative of  with respect to A. This result assumes that the premium is not reduced by 

the amount of expected default; if so, then equation 2.23 is an approximation. 

Meanwhile, the insurer’s owners are fairly compensated for the capital cost through the zC 

component of the premium, so their welfare is also optimized. Since policyholder and shareholder 

welfare are both maximized, this theoretical optimal capital level can form the basis for pricing, 

regulation and internal insurer governance. 

Notice that if there were no prospect of the insurer’s default and the cost of capital were zero, 
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the consumer value of insurance would be the CE expected loss minus the nominal expected loss, or 

. Call this amount the risk value. It is the maximum possible value that the policyholder could 

obtain by purchasing insurance. In the basic model, the prospect of default introduces the frictional 

capital cost and the CE expected default as elements that are subtracted from the risk value to 

produce the net consumer value. A useful term for the sum of these two amounts is the solvency cost. 

Since the risk value is not a function of the insurer’s assets (the basic model assumes riskless assets; 

risky assets are analyzed in section 9), minimizing the solvency cost is equivalent to maximizing the 

consumer value. 

3. MULTI-PERIOD MODEL ISSUES 

Determining optimal capital for multiple periods presents several challenges not evident in the 

one-period situation. These issues are introduced below and are addressed in greater depth in 

sections 4 through 9. 

3.1 Stochastic Loss Development 
In the one-period case, the loss is initially unknown, but its value is revealed at the end of the 

period. For multiple periods, the loss value may remain unknown for several periods. Consequently, 

in order to establish the necessary capital amount for each period (using the accounting identity that 

capital equals assets minus liabilities), we need to estimate the ultimate loss; this assessment is known 

as the loss reserve. The reserve estimate will vary randomly from period to period until the loss is 

finally settled. The stochastic reserve estimates will form the basis for a dynamic capital strategy. 

3.2 Default Definition and Liquidation Management 
In a multi-period model, the loss reserve values are estimates of the ultimate unpaid loss liability. If 

the estimated loss exceeds the value of assets at the end of a period, the insurer is deemed to be 
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technically insolvent. The insolvency is “technical” because it is possible that the reserve may 

subsequently develop downward and there is ultimately no default. If the insurer adds sufficient 

capital to regain solvency, then there is the further possibility that the insurer may yet again become 

insolvent in future periods. Thus, multiple insolvencies are theoretically possible for a recapitalized 

individual insurer that emerges from an initial technical insolvency.  

Generally, when an insurer becomes technically insolvent, regulators transfer its assets and 

liabilities to a conservator, or receiver, who manages them in the interests of the policyholders. This 

usually means that the assets are invested conservatively in low-risk securities6 and when claims are 

paid, each policyholder gets the same pro-rata share of the assets according to their claim amounts.  

There are several important consequences to receivership. First, the liabilities remain “alive” and 

are allowed to develop further. Second, there is no source of additional capital to mitigate the 

ultimate default amount (however, no capital can be withdrawn either, unless the assets become 

significantly larger than the liabilities). Third, the conservative asset portfolio will most likely have a 

significantly reduced asset risk compared to that of the insurer prior to conservatorship. These 

features profoundly affect the multi-period capital analysis, as shown in the subsequent sections. 

3.3 Dynamic Capital Strategy 
In a one-period model the capital is determined once, at the beginning of the period. In a multi-

period model, capital is likewise determined initially, but it also must be determined again at the 

beginning of each subsequent period. In order to optimize the amount of capital used, the capital-

setting process will require a predetermined strategy. This strategy is dynamic: the subsequent capital 

                                                           
6 For example, the state of California uses an investment pool for its domiciled insurers in liquidation. The pool contains 
only investment grade fixed income securities with duration less than 3 years (see California Liquidation Office 2014 
Annual Report). New York is more conservative: funds are held in short-term mutual funds containing only U.S. 
Treasury or agency securities with maturities under 5 years (see New York Liquidation Bureau 2014 Annual Report). 
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amounts will depend on the values of the assets and of the insurer liabilities as they evolve. Even 

though the capital strategy is dynamic, there will be an optimal starting capital amount. Also, for 

each strategy, viewed at the beginning of the first period, there will be a distinct expected amount of 

capital at the beginning of each subsequent period. 

3.4 Capital Funding 
Since there is a cost to the insurer for holding capital, the insurer must be compensated for this 

cost. This cost is included in the premium. In a one-period model, the premium is paid up front and 

the loss is paid at the end of the period; there is no need to consider subsequent capital 

contributions. In a multi-period model, the liability estimate may increase over time, leaving the 

insurer’s assets insufficient to adequately protect against insolvency. In such an event, the 

policyholders will be better off if the insurer’s shareholders contribute additional capital. However, 

the insurer will be worse off due to the added capital cost. Nevertheless, if the premium includes the 

cost of additional capital funding, consistent with a particular funding strategy, it is economically 

practical for the insurer to make the capital contribution. Conversely, if the loss reserve decreases, it 

may be mutually beneficial for the insurer to remove some capital, consistent with the capital 

funding strategy. 

For an ongoing insurer, there is a strong incentive to add capital as needed, since failure to do so 

may jeopardize the ability to acquire new business or renew existing policies. However, if technical 

insolvency occurs, it may not be feasible for the shareholders to add capital, since the prospect of a 

fair return on the capital may be dim. Thus, there are some limitations on capital additions. For a 

true runoff insurer, however, there is no incentive to add capital, so capital can only be withdrawn 

(which may occur if allowed by regulators).  
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3.5 Capital Definition  
In a multi-period model, the premium will include the expected frictional cost of capital for all 

future periods. However, at the end of the first period, only the first-period capital cost is expended 

for the multi-period model, and so the balance becomes an asset that is available to pay losses. This 

premium component thus can be considered as policyholder-supplied capital, since it increases the asset 

amount and serves to mitigate default in exactly the same way as the owner-supplied capital in the 

one-period model. Similarly, if the premium contains a provision for the insurer’s cost of bearing 

risk (a risk margin), that amount will also function as capital. Section 4.4 discusses the distinction 

between ownership capital and policyholder-supplied capital. Section 8.3 develops optimal capital 

with a risk margin. 

4. BASIC MULTI-PERIOD MODEL 

This section extends the one-period model to N periods and discusses some important 

differences between the two cases. The basic model developed here is designed to contain a minimal 

set of features that directly illustrates the optimal capital calculation. Other features, which may be 

necessary for practical applications, are discussed in sections 5 through 8. 

The basic multi-period model follows a specific cohort of policies insuring losses that occur at 

the start of the first period and which are settled at the end of the Nth period. The model assumes 

that the insurer is ongoing, so that other similar policies are added at the beginning of the other 

periods. The basic model does not track these other policies; however, the prospect of profit from 

the additional insurance provides an incentive to add more capital to support the basic model 

cohort, if necessary.  

4.1. Model Description and Assumptions 
I start by adopting the basic assumptions of the one-period model, as developed in EBRM, and 
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modifying some of them to fit the requirements of the multi-period model, as indicated below.  

(1) Policyholders are risk averse with homogeneous risk preferences and their losses have the 
same probability distribution. Thus, the certainty-equivalent values of losses and default 
amounts are identical for each policyholder. 

(2) There are no expenses (administrative costs, commissions, etc.). The only relevant costs 
are the frictional capital costs and the losses. These costs determine the premium.   

(3) The cash flows for premium and the initial capital contribution occur at the beginning of 
the first period. The frictional capital cost is expended at the end of each period (before 
the loss is paid).7 The entire loss is paid at the end of the last period. Other capital 
contributions or withdrawals may occur at the beginning of each subsequent period, 
depending on the insurer’s capital strategy.  

(4) The interest rate is zero. This simplification makes the exposition less cluttered (since the 
nominal values equal present values) and does not affect the key results. Section 8.2 
provides results with a positive interest rate. 

(5) Losses have no correlation with economic factors and consequently have no risk margin. 
Thus, since the investment return is also zero, the expected return on owner-supplied 
capital is also zero.8 Section 8.3 analyzes results with a risk margin. 

(6) The frictional capital cost rate is z ≥ 0. It applies to the ownership capital defined in 
section 4.4.  

(7) There is no cost to raising external capital (section 5.4 develops results that include this 
cost). 

(8) There is no guaranty fund or other secondary source of default protection for 
policyholders. The only insolvency protection for policyholders is the assets held by the 
insurer. 

(9) Capital adequacy is assessed only at the end of the period for regulatory purposes. Thus, 
an insolvency can only occur at the end of a period. 
 

Additionally, we require some assumptions specific to the multi-period case that do not apply to 

a one-period model: 

                                                           
7 I chose this assumption to be consistent with the one-period model in EBRM. For the one-period model, this 
assumption avoids the issue of policyholder-supplied capital vs. ownership capital. If the loss is paid before the capital cost 
is expended, the optimal capital is determined from , instead of  , which is a simpler 
result that gives approximately the same optimal capital.  
8 This is a standard financial economics assumption; with no systematic risk, the required return equals the risk-free rate 
(which is zero here). There will be a positive expected return if a risk margin (discussed in section 8.3) is included.  
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(1) The ultimate loss is not necessarily known when the policy is issued, but is definitely 
known at the end of the Nth period (or sooner). This situation requires an intermediate 
estimate (the reserve amount) of the ultimate loss at each prior period. The reserve value 
is unbiased: it equals the expected value of the ultimate loss. 

(2) The premium includes the expected FCC, since under a dynamic capital strategy, the capital 
amounts in future periods will depend on the random loss valuation and thus are also 
random.  

(3) A capital strategy is used, wherein for each possible pair of loss and asset values at the 
end of each period, the insurer will add or withdraw a predetermined amount of capital. 

(4) The policy term is one period. Section 7.4 discusses the case where the term is longer 
than a single period. 

Since the certainty-equivalent value of losses and related expected default amounts are assessed 

from the perspective of each individual homogeneous policyholder, we scale the insurer model to 

portray each policyholder’s share of the results. Therefore, it is useful to consider the model as 

representing an insurer with only a single policyholder. 

In the multi-period model with N periods, variables that have a time element are generally 

indexed by a subscript denoting a particular period as time moves forward. The index begins at 1 for 

the first period and ends at N for the last period. Balance sheet quantities such as assets and capital 

are valued at either the beginning or end of the period, depending on the context. For example,  

represents capital at the beginning of the first period and  denotes the assets for the first period 

after the capital cost is expended. For simplicity, I drop the subscript for the first period where the 

situation permits. 

When developing optimal capital with backward induction (section 6) the index represents the 

number of remaining periods: e.g.,  denotes the initial ownership capital for a three-period model. 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 17 

Optimal values are represented by an asterisk (e.g., ), certainty-equivalent quantities by a carat 

(e.g., ), market values (used in risk margins) by a bar (e.g., ) and random values by a tilde (e.g., 

). 

Note that under this simplified model, it is not necessary to distinguish between underwriting risk 

(the risk arising from losses on premiums yet unearned) and reserve risk (the risk arising from 

development of losses already incurred from prior-written premiums). 

4.2 Stochastic Process for Losses  
To analyze capital requirements, it is useful to categorize property-casualty losses into two 

idealized types, which are approximate versions of real-world processes. The first loss type is short-

duration, e.g., property, where losses are settled at the end of the same period as incurred; a loss has 

at most a one-period lag between its estimated value when incurred and when ultimately settled. The 

second type is long-duration, e.g., liability coverage, where the lag is at least one period; if a loss occurs 

in a particular period, its value in a subsequent period will depend on its value in the earlier period. 

For analyzing capital under the section 4.1 basic model, short-duration losses are one period, 

since the loss value cannot carry over to a subsequent period. Also, the expected value of losses in a 

subsequent period is independent of losses occurring in an earlier period. Since the per-policy mean 

loss (adjusted for inflation) does not change much over time, property losses generally follow a 

stationary stochastic process. With short-duration losses under the basic model considered to be one-

period,9 determining optimal capital is straightforward (see section 2), and so I turn to liability losses.  

4.21 Long-Duration Loss Stochastic Process 
Under a one-period model, the expected loss is L, which is a component of the premium. With a 

                                                           
9 An exception is where the policy term is more than one period. This case is discussed in section 7.4. 
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multi-period model, we use the same notation for the initial loss estimate. However, there will be 

intermediate reserve estimates  at the end of the periods 1 through N – 1. The 

realized value of the ultimate loss is denoted by . Because we have assumed that the reserve 

estimates are unbiased, each reserve value  is the mean of the possible values for the next reserve 

estimate . In other words, the difference , or the reserve increment, has a zero 

mean. The sequence of reserve estimates is a random walk, which is a type of Markov process.10 In a 

Markov process the future evolution of the value of a variable does not depend on the history of the 

prior values. In other words, conditional on the present reserve value, its future and past are 

independent. There cannot be a correlation between successive reserve amounts if the estimates are 

unbiased. The normal loss model in section 5.3 is an example of this stochastic process, which is an 

additive model since the increments are summed to determine successive values. 

An alternative stochastic process that may characterize loss evolution is a multiplicative model. 

Here we define , which has a mean of 1 for all t. The product of the multiplicative 

random  factors and the initial loss estimate L will give the ultimate loss value . The lognormal 

loss model in section 5.3 is an example of this stochastic process. Notice that 

, which is an additive random walk with a zero mean as described 

above. 

For simplicity, I assume that the  values have the same type of probability distribution (e.g., 

normal) for all time values t. I also assume that the variance of  (denoted by ) is constant per 

                                                           
10 See Bharucha-Reid[1960]. 

http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Independence_(probability_theory)
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period. In practice, this assumption may need to be modified.11 Finally, I assume a similar regularity 

for the multiplicative model. 

Notice that the variance of the ultimate loss  is the sum of the variances of the  sequence, 

or . There is no covariance between any of the reserve increments due to the memory-less 

property of the Markov process (a non-zero correlation would imply that the prior reserve history 

could help predict the future reserve values). The  variance exists because the flow of 

information (positive and negative) regarding the ultimate loss value is random. The subsequent 

estimates of ultimate value are determined by information that becomes revealed over time, such as 

how many claims have occurred, the nature of the claims, the legal environment, inflation and so 

forth. 

4.22 Certainty-Equivalent Stochastic Process 
The certainty-equivalent loss values will evolve according to a stochastic process parallel to that 

of the underlying losses. Generally, if the policyholder risk aversion is based on utility theory, the 

risk value embedded in the CE losses is approximately proportional12 to the loss variance. The 

relationship is exact if the loss values are normally distributed and policyholder risk aversion is 

represented by exponential utility. For this additive stochastic process with a constant13 per-period loss 

volatility, the CE expected loss at the end of N periods is then 

 

                                                           
11 This assumption can be modified to provide a specific variance for each period, as will be necessary for practical 
applications. The actual distribution may vary according to the elapsed claim duration. For example, the long discovery 
(with claims incurred but not reported) phase for high-deductible claims will imply a low variance for the reserve 
estimates for the first few years. Scant information regarding the claims arrives over this time span, so there is little basis 
to revise the initial reserve. 
12 See Panjer et al. [1988], page 137. 
13 If the loss volatility is not constant, then the term  is replaced by , where  is the variance of 
the ith period loss volatility.  
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 ,  (4.221) 

 

where a is a constant that indicates the degree of risk aversion. Therefore, the CE expected loss 

increases each period by the risk value . Since the CE loss mean increases linearly with the 

time horizon, we can create a parallel CE stochastic process by satisfying equation 4.221. Appendix 

B shows how the N-period CE distribution of losses or assets is determined under the normal-

exponential model and includes a numerical example. 

Notice that equation 4.221 represents the CE expected loss value with N periods remaining; as 

the loss evolves there will be fewer periods left and the risk value will diminish (it will be zero when 

the loss is settled). 

Appendix A illustrates a two-period stochastic process with a simple numerical example using a 

discrete probability distribution. 

4.3 Premium and Balance Sheet Model  
Following the one-period model, the premium for the multi-period case equals L plus the 

expected capital cost. However, the capital for each period after the initial period will be determined 

by the evolving loss estimate, so it also will be a random variable. Consequently, the capital cost 

component of the premium will be the expected value of the sequence of capital costs. Let C denote 

the ownership capital, which is the amount of capital contributed initially (here I drop the subscript 1 

for the first period). For a specific capital funding approach, under an N-period model, let  be the 

capital amount at the beginning of the ith period.  

Assume that the frictional capital cost is proportional to the ownership capital (see section 4.4 for a 

discussion of capital sources) at the rate z. As shown in EBRM, the double-taxation component of 
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the capital cost depends solely on the ownership capital amount.14 The expected capital cost for all 

periods is then . Accordingly, the fair premium equals 

, which has the same form as in the one-period case.  

The expected value of the future capital amount or of the capital cost should be calculated using 

unadjusted probabilities, since, like the expected return on capital, the frictional capital cost rate z does 

not depend on policyholder risk preferences. Also, the insurer is already compensated for the risk it 

bears through the risk margin built into the premium. Although the risk margin is zero here in the 

basic model, a more general model, such as in section 8.3, will include it. 

This premium model forms the basis for pricing methods that use the present value of expected 

future costs and whose losses have embedded risk margins (see sections 8.2 and 8.3). The present 

value of the expected capital costs is determined by discounting them at a risk-free rate. 

When the policies are written, the initial assets equal the owner-contributed capital plus the 

premium, or . With a zero interest rate, these assets are cash in the basic 

model. The liabilities are the expected losses, the expected capital cost15 and the ownership capital, 

which is the residual of assets minus the obligations to other parties. At the end of the first period, 

before the loss is paid, the capital cost for that period is expended, leaving the amount of assets 

available to pay losses, denoted by A, as 

 

  . (4.31) 

 

                                                           
14 Other frictional capital cost components might depend on total capital or total assets, but since they are likely to be 
smaller than the double-taxation amount, I have assumed that they also are proportional to the ownership capital. 
15 As discussed in EBRM, this amount is primarily an income tax liability.  
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4.4 Ownership Capital and Total Capital  
For the basic one-period model, the capital definition is straightforward. At the beginning of the 

period, the insurer’s owners supply a capital amount C, and the policyholders supply the premium, 

equal to L + zC. Since the capital cost amount zC is expended before the loss is paid, the amount of 

assets available to pay the loss is A = L + C.  

For a multi-period model, however, the amount available to pay losses after the first period is 

greater than L + C  by the amount K – zC > 0, which represents the expected capital cost for the 

remaining periods. Since this additional amount reduces default in exactly the same way as the 

owner-supplied capital, it may be considered as policyholder-supplied capital. Therefore it is useful to 

define the total capital as the available assets minus the expected loss, which for the basic multi-period 

model is 

   

 .  (4.41) 

 
Notice that for a one-period model, we have T = C, and for two or more periods, 

 T > C.  

It is important that the ownership capital measurement be consistent with the premium 

determination. Here I use fair-value (also known as mark-to market) accounting, where the value of 

obligations is the amount they would be worth in a fair market exchange16 and are thus equal to the 

fair premium. From equation 4.41 it is simple to determine the fair-value capital from the total 

capital and vice-versa. For brevity, I use OC to denote ownership capital. 

With a risk margin, discussed in section 8.3, we have a similar situation: the risk margin 

                                                           
16 An important property of fair value accounting is that, if the product is fairly priced (so that its components are priced 
at market values), there is no profit generated when the product or service is sold. Instead, the profit is earned smoothly 
over time as the firm’s costs of production or service provision are incurred. For an insurer, this means that the profit 
will emerge as the risk of loss is borne. 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 23 

compensates the insurer for bearing risk and is a premium component in addition to the expected 

loss. Like the unexpended expected capital cost, it provides additional default protection. However, 

in fair-value accounting, the risk margin is not considered as ownership capital. 

For the subsequent sections, I present most results using the total capital definition. Where 

appropriate, I show the OC for comparison.  

4.5 Capital Funding Strategies 
In order to determine the expected capital cost, we need to know how much capital will be used 

for each period. As discussed in section 3.4, the amount will depend on the loss amount at the end 

of the prior period: if the amount is large, it may be necessary to add capital; if the amount is small 

enough, capital might be withdrawn. Define a capital funding strategy as a set of rules that assigns a 

specific amount of capital, called the target amount, to the beginning of each period, corresponding 

to each possible loss value at the end of the prior period. Note that there is not necessarily a unique 

capital amount for each loss amount, since a range of losses can produce a single capital amount 

(such as region 2b in section 5.42). 

There are several basic capital funding strategies that an insurer might use. I describe the most 

relevant ones below, starting from the least to the most dynamic method.  

Fixed Assets (FA): under this approach, the insurer’s owners supply an initial capital amount, with 

no subsequent capital flows until the losses are fully settled. Thus, the initial assets remain constant 

until the losses are paid. The capital amount will vary over time, since loss estimates will fluctuate 

and the capital equals assets minus liabilities. This method is used in Lowe et al. [2011] to determine 

capital for a runoff capital model. Although it is viable for a true runoff insurer, it will not be for an 

ongoing insurer, whose capital level generally responds to the level of its loss liabilities. For example, 

if an insurer’s losses develop favorably, causing its capital amount to increase above a target level 
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dictated by the strategy, then the insurer will usually reduce its capital amount. 

Capital Withdrawal Only (CW): with this strategy, capital is withdrawn if the asset level becomes 

high relative to the losses and therefore capital exceeds a particular target amount. A common 

method for withdrawing capital is through dividends to shareholders.17 However, no capital is added 

if assets become lower than the target level. Except possibly for some mutual insurers, this method 

also does not represent actual practice, where, within limits, insurers will add capital if the existing 

capital amount is below the target level. 

Add Capital if Solvent (AC): here, capital is withdrawn if a particular target level is reached, and 

capital is added if assets are below the solvency level. However, if the insurer becomes technically 

insolvent, then no capital is added. In this event, the insurer usually is taken over by a conservator. 

The incentive for shareholders to fund capital additions comes from the prospect of adding new 

business, which is difficult to accomplish without adequate capital. Note that a less restrictive 

threshold (where insurers are slightly insolvent) might be used in the event that shareholders 

consider the franchise value of the insurer to be valuable enough. However, the results of this 

assumption would be analytically similar to using a strict solvency/insolvency threshold. The main 

point here is that there is an upper limit to losses beyond which capital is no longer added. 

A variation of the AC strategy, discussed in section 5.4, is where there is a cost to raising capital 

externally. I have labeled this strategy as ACR. 

Full Recapitalization (FR): this approach is similar to AC, but the insurer, even if technically 

insolvent, will add sufficient capital to regain the target level. However, in order to provide an 

adequate incentive for the shareholders to provide capital if the insurer becomes insolvent, the 

                                                           
17 For a mutual insurer, the dividends will go to policyholders, who are the insurer’s owners and therefore serve as 
shareholders. A mutual insurer’s dividends can also be used as part of its pricing strategy. 
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policyholders must accept a cash settlement for their claims; the amount equals the asset value. The 

insurer (or a different insurer) then agrees to insure the loss liability again and the policyholders pay 

a new premium for the reinstated coverage. The insurer’s owners then provide adequate capital for 

the insurance. This transaction, in effect, converts the technical insolvency into a cash or “hard” 

insolvency. Thus, it is possible for the insurer to default multiple times before the loss is settled. As 

discussed in section 5.2, the FR approach is theoretically superior to the other three methods in that 

it provides the highest consumer value for the insurance coverage. However, it is not feasible: 

normally, the policyholders will enter receivership rather than take back their liabilities and insure 

them again with a different insurer.18 

Other strategies, such as only adding capital, are possible. However, I have included only the 

strategies that are used in practice or that illustrate important concepts. 

Let  represent the target total capital amount at the beginning of period 

 t + 1 given that the value of the loss at the end of period t is . Thus the required assets at the 

beginning of period t + 1 are , and the indicated capital flow (i.e., addition or 

withdrawal) is the required assets minus the prior-period assets: 

 

 
  . (4.51) 

 
The above four capital funding strategies, plus the ACR variant, can be characterized by the 

regions of  for which the indicated capital flow  is permitted. The first region is , 

                                                           
18 One huge impediment to practically applying the FR method is that the insurer and the policyholders may have 
different opinions on the value of the loss reserve estimate. Another problem is that this capital funding method also 
requires either that policyholders without claims contribute enough to pay for their possible future incurred-but-not-
reported (IBNR) claims or for the IBNR reserve to be divided among the existing claimants. 
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where the insurer is technically insolvent. The second is  , where the 

insurer is solvent and capital can either remain the same19 or increase if permitted. The third is 

, where capital is withdrawn if permitted. Notice that the regions do not depend 

on the expected loss amount; they depend only on the asset amount and the required capital amount 

for the second period. However, the expected loss (and the other distribution parameters) determine 

the respective probabilities that the loss falls in each of the three regions. 

To illustrate, assume that the required total capital for the second period is 600 and is 

independent of the first-period loss value (i.e., it depends only on the variance, as under the normal 

distribution). The asset amount is 1400, which establishes the boundary between region 1 and region 

2.  If losses are less than 800, the remaining capital exceeds the required capital of 600 = 1400 – 800. 

Therefore, region 1 contains losses exceeding 1400, region 2 has losses between 800 and 1400 and 

region 3 contains losses less than 800. For region 1, capital is added only for FR. For region 2, 

capital is added for AC and FR. For region 3, capital is withdrawn for all funding strategies except 

FA.  

Table 4.51 summarizes the capital flows permitted by the different capital strategies. A minus 

indicates a withdrawal, a plus represents an addition and a zero indicates that capital remains the 

same.  

 

                                                           
19 Under the ACR strategy and the FR strategy with a capital-raising cost, there may be a sub-region of region 2, 
bordering on region 3, where capital remains the same. As shown in section 5.4, due to the cost of raising capital, it will 
be sub-optimal to add capital in this region, and also sub-optimal to withdraw it. 
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Table 4.51 
Permissible Capital Flows  

by Capital Strategy and Loss Range 
Illustrative Example 

 
Region Loss Range FA CW AC FR 

1 A > 1400 0 0 0 + 
2 800≤A ≤ 1400 0 0 + + 
3 A ≤ 800 0  –  – – 

 

Each of these strategies may have a different expected capital cost and therefore the premium 

will depend on the strategy used. Notice that after the initial capital is established, the chosen 

strategy will produce a unique sequence of subsequent capital amounts corresponding to the 

sequence of actual loss estimates. 

Since the insurer is fairly compensated up front for its capital costs, the capital suppliers 

(shareholders) will provide whatever capital amount (both for initial and subsequent periods) is 

desired by the policyholders. This also means that the investors are indifferent to the capital strategy 

desired by the policyholders, since the premium compensates the owners for the expected capital 

costs under the strategy. Therefore, for each capital strategy, we can determine the initial capital 

amount that maximizes the policyholder’s consumer value. Then the strategy with highest consumer 

value (or the lowest solvency cost) is the optimal strategy and can be used to determine capital for 

similar types of insurance. A particular strategy is considered more efficient than another if it produces 

a higher consumer value. 

4.6 Efficiency and Feasibility of Capital Funding Strategies 
Assume a two-period model and that initial assets for each strategy are fixed at . At the end of 

the first period, whatever the loss estimate , there is a single period remaining. We already know 

how to find the optimal capital for one period. Defining the required total capital in section 4.5 as 
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the optimal capital, the optimal capital for the beginning of period 2 is . Thus, if the actual 

capital  exceeds , the additional capital cost (from carrying the capital into the second 

period) will be greater than the reduction in the CE expected default value for the second period (by 

definition of the optimal capital), so policyholders will gain by a capital withdrawal to attain optimal 

capital. Note that this situation occurs in region 3 of Table 4.51. Consequently, CW is a superior 

strategy to FA, which we can represent as CW > FA. 

A similar argument shows that AC > CW. If the loss estimate is between initial assets minus 

 and initial assets (region 2), increasing capital will increase the capital cost less than it 

changes the CED value. In parallel fashion, we have FR > AC. 

However, as discussed in section 4.5, FR is not feasible in practice. AC is feasible for most 

insurers and CW, although feasible, is less efficient than AC. So CW is not a good choice unless it is 

not possible to raise capital externally. Therefore, for most insurers, the most efficient feasible 

choice of the four strategies is AC. Accordingly, the subsequent sections in this paper primarily use 

the AC strategy. Nevertheless, it is informative to compare results between the different strategies. 

In particular, the FR strategy provides an important baseline, since it produces the highest consumer 

value and thus theoretically is the most efficient strategy. It also has the important feature that it 

converts a multi-period model into a series of one-period models.  

Because of the single-period conversion property of the FR strategy, the required adjusted 

probability distributions can be analytically tractable, and it is relatively easy to calculate the optimal 

capital for the start of each period. This is usually not the case for the AC and CW strategies. 

5. OPTIMAL TWO-PERIOD CAPITAL 

In order to determine multi-period optimal capital, it is useful to begin by extending the one-
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period model to two periods. In the two-period exercise, we gain valuable insight regarding multi-

period capital dynamics. The two-period results are readily extended to additional periods in section 

6 using backward induction. The results here in section 5 use an example with a normal stochastic 

loss process. However, I also describe the general method to derive optimal capital for other 

stochastic processes. 

First, I address the simple case where there is no cost to raising capital from external sources. 

Then, in section 5.4, I introduce a cost of raising capital and show how this changes the AC optimal 

capital. 

5.1 Expected Default with the AC Strategy 
An important constraint in modeling capital for multi-period losses is that a technical insolvency 

normally forces an insurer into conservatorship. This event means that losses will continue to 

develop while assets remain fixed until the losses are settled. Here I assume that the insurer enters 

conservatorship immediately when the technical insolvency occurs at the end of a particular period.  

Conservatorship adds another dimension to the CE expected default calculation that is absent for 

a one-period model. From section 2, the CED for a one-period loss is denoted by . Define  as 

the unconditional ultimate CED for an insurer entering technical insolvency at the end of the first 

period. For a discrete loss process let  for   denote each possible value of the first-

period loss  that exceeds initial assets. Let  represent the certainty-equivalent probability that 

 occurs and  the CE expected second-period default given . The CE expected default 

due to a technical insolvency is therefore 

 

  .  (5.11) 
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To illustrate this, I approximate a normal stochastic loss process using a discrete probability 

distribution for the independent loss increments. This numerical example is shown in Appendix A. 

The value of  is 0.9029, which exceeds the first-period  value of 0.3144.  

Observe that  depends on the variance of loss development beyond the first period (i.e., the 

ultimate variance), while  only depends on volatility during the first period. For a positive second-

period variance, the mathematical properties of the default calculation ensure that  is greater than 

that of the original first-period default:  cannot be negative; it equals zero if the loss develops 

favorably. This asymmetry increases the expected ultimate default amount beyond its initial first-

period value regardless of the first-period loss amount. 

5.2 Optimal Two-period AC Capital  
A particular value of initial capital C will establish the assets A available to pay the loss at the end 

of the first period (equation 4.31). This asset amount will thus uniquely determine the CE expected 

default  for the first period, as discussed in section 5.1. The amount A will also uniquely 

determine the CED for the second period since the capital strategy is predetermined. The total CE 

expected default for the insurer is the sum of the CED values for the first and second periods.  

For a continuous distribution of losses, with x denoting the first period loss value, the equivalent 

of equation 5.11 is 

 

 . (5.21) 

 

If the insurer remains solvent at the end of the first period, there is one period remaining: it can 

become insolvent at the end of the second period. However, from section 2, for each loss value 

there is an optimal amount of capital and a corresponding optimal CED amount, represented by 
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. The insurer will add or withdraw capital to reach the optimal beginning second-period 

capital. The CE expected default in the second period is then 

 

 . (5.22) 

In words, , the CED for the second period, is the sum of the optimal one-period CED for 

each first-period loss value less than the asset amount, weighted by the CE probability of the loss 

value. Observe that the limits of integration span loss amounts from 0 to A, while the limits for  

span amounts greater than A. Consequently, the insurer’s total CE expected default for both periods 

is . 

From section 4.3, the premium for a multi-period loss coverage is , where K is the 

expected capital cost for all periods. For two periods, the expected amount of ownership capital 

used is the initial first-period OC (a fixed amount) plus the expected second-period initial OC (a 

random amount determined by the first-period loss). Let  be the optimal second-period initial 

OC given that . Under the AC strategy the second-period initial OC is the optimal OC for a 

one-period insurer with expected loss . Therefore we have 

 

  . (5.23) 

 

Here p(x) is the unadjusted probability of loss, since we have assumed that the insurer will 

incorporate the actual expected amount of capital into the premium. For simplicity, rather than 
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using the asset value A, I have used an infinite upper limit.20  

The consumer value of the insurance transaction is . The optimal initial 

available asset value is found by maximizing V, or alternatively, minimizing the solvency cost 

 

 . (5.24) 

 
Because  is not analytically tractable for important probability distributions such as the normal, 

we need to use numerical approximation methods to find the optimal assets in these cases. Once the 

optimal assets are found, we use equation 4.31 to determine the optimal capital. Section 5.3 outlines 

an approach for the normal and lognormal stochastic processes. 

For the FR strategy, the insurer is recapitalized at the end of the first period to the optimal 

second-period amount. So, viewed from the beginning of the first period, the solvency cost for the 

second period is the optimal amount for that period as if we had just begun that period. Therefore, 

the initial capital for the first period is independent of the second-period loss distribution, and 

depends only on the potential loss values for the first period.  

Section 5.1 showed that, for a given initial asset level, the CE expected default for the AC strategy 

is higher than that for the FR strategy. This implies that the optimal initial total capital for the AC 

strategy is higher than for the FR strategy, which is the theoretically most efficient strategy. This result 

is reflected in the section 5.3 numerical examples with the normal stochastic loss process.  

To prove this result, assume that we use an AC strategy, but the initial total capital is the optimal 

total capital for an FR strategy. The AC certainty-equivalent default  is greater than the optimal 

CED under FR. Also, the derivative  is a weighted average of the  values for losses 

                                                           
20 The error in this approximation will be small if the default probability is small. In the section 5.3 example, the 
difference in optimal capital is 333.34 – 333.15 = 0.19, an error of 0.06%. 
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greater than A. Each of the component  values in the weighted average is higher than z, so adding 

capital at the margin will reduce  more than it will increase the capital cost. Consequently, the 

optimal AC total capital will be greater than the optimal FR total capital21 for two periods and the 

optimal AC solvency cost will be greater as well. 

5.3 Optimal Two-period Capital for Normal Stochastic Processes 
In this section I use the normal stochastic process from section 4.2 to calculate numerical results. 

Here the period-ending loss distribution is normal. This distribution is continuous, and serves to 

illustrate dynamic loss development. The policyholder risk aversion is based on exponential utility; 

thus optimal capital can be determined from the resulting CE values, as shown in Appendix B. The 

numerical example developed here is expanded in subsequent sections to demonstrate results for 

variations of the basic model. These results are intended to elucidate the general method for 

determining optimal capital; a practical application will likely involve more complex modeling. 

Although the lognormal loss process is perhaps better suited to modeling insurance loss 

development,22 I have chosen to use the normal model, which is simpler to explain and which 

provides tractable results for a joint loss and asset distribution (see section 9). Under the lognormal 

process, the conditional one-period optimal capital and CED are proportional to the expected loss, 

while under the normal distribution, these values are independent of the expected loss. The results 

for a lognormal loss process are similar, 23 however.  

                                                           
21 Since the premium contains the expected capital cost for both periods, the optimal first-period FR ownership capital 
equals the optimal OC for a one-period model, less the expected capital cost for the second period. Essentially, in this 
case, compared to the one-period model, the policyholder has prepaid the second-period capital cost, so the optimal 
initial ownership capital is less than in the one-period model by the amount of the prepayment.  
22 The lognormal distribution has been used by several authors (see Wacek [2007] and Han and Goa [2008]) to analyze 
the variability of loss reserves. 
23 For the same periodic loss volatility, the optimal capital for the lognormal process is slightly higher than that for the 
normal counterpart.  
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With a normal loss process, the optimal capital and CED for one period are constants 

independent of the expected loss (but are a function of the standard deviation). This property 

facilitates the calculation of optimal capital for two or more periods. Appendix B develops a 

numerical example to illustrate optimal capital under the normal stochastic loss process with 

exponential utility, which is labeled as the normal-exponential model. I extend the example to 

illustrate results in subsequent sections of the paper. 

The example uses a two-period normal stochastic loss process with a mean of 1000 and variance 

of the loss increment equal to 1002 for each period. The CE value of the expected loss after one 

period is 1050 and the risk value (the CE of the loss minus its expected value) at each development 

stage is strictly proportional to the cumulative variance as in section 4.22. Thus, the CE value of the 

ultimate loss at the end of the second period is 1100.  

The frictional capital cost is z = 2%. The optimal one-period total capital is 291.62 and the 

optimal two-period initial total capital is 333.34.  

 Table 5.31 summarizes the optimal AC results. Here I compare the optimal two-period AC 

strategy with that of the optimal FR strategy. The table also shows results for the AC strategy using 

the optimal FR initial total capital as the initial capital for the AC strategy. 
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Table 5.31 
Optimal AC and FR Strategy Comparison 

Normal-Exponential Example 
(Source: Appendix B.3) 

 
Strategy Initial Total 

Capital 
1st Period CE 
Default 
Probability 

1st Period 
CED 

2nd Period 
CED 

1st Period 

Capital 
Cost  

2nd Period 
Capital 
Cost 

Solvency 
Cost  

FR  
Optimal 291.62 0.0200 0.7852 0.7852 5.7158 5.8325 13.1187 

AC 
Using FR 
Capital 

291.62 0.0200 2.1325 0.7695 5.7158 5.8325 14.4503 

AC 
Optimal 333.34 0.0073 0.7514 0.7794 6.5502 5.8325 13.9136 

 

Notice that the optimal solvency cost for the AC strategy has a lower total CED for both periods 

(1.5309) than does the FR strategy (1.5704). However, the AC capital cost is larger, giving a higher 

AC optimal solvency cost. 

5.4 Two-Period AC Model with Cost of Raising Capital 
The earnings for an ongoing insurer are usually positive; these provide internally generated capital 

which normally is sufficient to maintain its operations. Thus, most of the time it will withdraw 

capital (usually as distributions to owners) to maintain the desired capital level. If earnings are 

negative, it may be necessary to raise ownership capital externally, through issuance of bonds or 

equity capital. The initial basic model of section 4 assumed that the cost of raising capital externally 

is zero. This is not realistic, since it is generally considered that there is a positive cost of raising 

external capital for businesses (see Myers and Majluf [1984]), including insurers (see Harrington and 

Niehaus [2002]). 

A portion of this cost is due to the administrative expense of the capital issuance, such as 

investment bank fees. The other part of the cost is due to signaling, where if an insurer needs 
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additional capital due to low earnings, investors may believe that the management is poor. Thus, the 

capital suppliers will require a high return on the capital provided and the value of the company to 

existing shareholders will be diluted. This effect is especially prominent when most other insurers do 

not require additional capital.24  

5.41 Linear Model for Cost of Raising Capital 
To model the cost of raising capital (abbreviated by CRC), assume that the cost is a rate w times 

the amount of capital raised.25 We continue to assume that no capital is raised if the insurer is 

technically insolvent. Also assume that the insurer is already in business, so that its first-period 

capital is not raised externally.26  

For a two-period model, at the end of the first period, there is one period remaining. If it is not 

necessary to raise capital, the optimal capital for the beginning of the second period is determined by 

equation 2.23. However, if capital is raised at that point, there is an additional capital cost w to the 

insurer beyond z, the cost of holding capital.  

Let  represent the initial second-period ownership capital after having raised capital and  

the ending first period OC. Thus, the amount of capital raised is . We need to distinguish 

between the optimal amount of capital given that it is raised externally and the amount if it is 

generated internally. Hence the distinct notation for the capital amount given that it is raised 

externally. The total capital cost in the second period is then . 

                                                           
24 In the event of an industry-wide catastrophe or pricing cycle downturn, the signaling effect may not be significant. In 
fact, the prospect of near-term increased insurance prices can spur investment in the property-casualty industry. 
25 An alternative formulation is to assume that the cost of raising capital increases as the insurer nears insolvency, but 
this will be more difficult to model. 
26 The one-period model in EBRM implicitly assumed that there was no cost of raising capital. A solvent ongoing insurer 
with one-period losses will need to raise capital (to the optimal level for the next group of policyholders) if the ending 
loss amount is large enough. This effect will change the optimal initial capital slightly.  
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Because the marginal amount of capital raised carries a cost of z + w, following the section 2.2 

analysis, the optimal second period capital, given that it is externally raised, is determined by   

 

 ,  (5.411) 

 

where A2 is the second-period available assets. Since we assume that w is positive, the optimal 

second-period capital with a CRC is less than that if there were no CRC: since new capital raised is 

expensive with a CRC, the insurer will use less of it; the policyholder is satisfied, having achieved the 

optimal balance of price and security. Denote the optimal second-period OC, given that capital is 

raised externally at the end of the first period, by .  

5.42 Optimal Two-Period Capital with CRC 
With a positive cost of raising capital, we can modify the AC strategy to produce an optimal 

initial capital amount. To distinguish an AC capital strategy with a positive cost of raising capital 

from one with a zero cost, I abbreviate the CRC version to ACR. 

Under the dynamic ACR strategy, the CRC is incurred if the first-period loss estimate  is such 

that the ending first-period OC is between zero and . Thus, the capital flows depend on four 

distinct regions based on the first-period ending OC amount CE . To illustrate this, I expand Table 

4.51 by splitting region 2 into two sub-regions. Table 5.421 shows the capital flows by region: 
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Table 5.421 
Capital Flows by Region 

Two-Period AC Strategy with Cost of Raising Capital 
 

Region Capital Carried 
Forward 

Capital 

 Raised  

Capital  

Withdrawn  

1:      0 0 0 

2a:     0 

2b:    0 0 

3:     0  

 

In region 1, the insurer is technically insolvent, so there are no capital flows. In region 2a, the 

ending OC is lower than the optimal capital needed if raising capital, so the capital amount  is 

carried forward and capital is added to reach . In region 2b, the amount  is carried forward, 

but the ending capital is greater than , so no capital is raised. The ending capital is also lower than 

, so none can be withdrawn either. In region 3 the ending capital is more than , so the excess 

is withdrawn.  

Denote the region 2a expected amount of capital carried forward by . We have 

, where x is the ending first-period loss value and p(x) is the unadjusted 

probability of x occurring. This integral equals 

 

 , (5.421) 

 

where the expected default and the default probability values are determined by unadjusted 

probabilities. The expected amount of capital carried forward for region 2b is developed in a similar 
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fashion, and equals  

 

 .  (5.422) 

 
Equations 5.421 and 5.422 allow one to calculate the expected capital cost for the second period 

under the ACR strategy. The expected CE default amounts are determined by the optimal values 

associated with  and , so we can determine the optimal solvency cost and optimal capital. 

Appendix C illustrates this calculation by extending the section 5.3 normal example.  

Figure 5.421 compares the optimal initial, expected second-period and average total capital 

obtained by varying w in this example from 0 to 10%. 

 

Figure 5.421 
Optimal Initial Total Capital Amount by Cost of Raising Capital 

Two-Period AC Strategy  
Normal-Exponential Example 
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expected second-period optimal capital being lower than that for the optimal one-period capital. The 

second-period capital is diminished because the second-period capital cost goes up due to the CRC 

and the insurer (on behalf of the policyholder) will use less of it. The initial capital increases because 

the insurer will avoid some of the high second-period cost by having a higher initial capital and 

carrying more of it into the second period. Also notice that increasing the CRC also raises the 

average amount of capital over both periods. 

The capital raising cost will vary by insurer, and is likely to be lower for established insurers with 

better access to the capital markets. Thus, the CRC is another variable to consider when assessing 

risk-based capital.27 

5.5 Insurers with Limited Ability to Raise Capital 
Besides depending on the cost of raising capital, the optimal capital amount also depends on the 

ability of insurers to raise capital. It is well-known that the organizational form of insurers dictates 

how they may raise capital (see Harrington and Niehaus [2002] and Cummins and Danzon [1997]). 

In particular, depending on the details of their structure, mutual insurers may have difficulty raising 

capital externally.28 In the case where an insurer cannot raise external capital, the best capital strategy 

is capital withdrawal (CW). Note however, that this strategy will represent an upper limit to optimal 

capital for a mutual insurer, since the insurer can raise additional capital internally by charging its 

policyholders a higher premium.29 

                                                           
27  With a CRC, even under a FR strategy the optimal initial capital will be larger than without the CRC, since capital 
must be stockpiled early to avoid the cost of subsequently raising it. Thus, for the FR strategy with a CRC the initial 
capital depends on the volatility of future losses, not just the behavior of current period losses. 
28 Some mutual insurers have issued surplus notes, which are similar to equity in terms of capital structure, but are a type of 
risky bond to investors. According to A.M. Best [2003], the major issuers of surplus notes were usually large insurers 
with more access to capital markets, while small or mid-size insurers could only issue surplus notes in limited amounts 
with short maturity.  
29 However, this method is limited since the policyholders will tend to migrate to other insurers if the premium is too 
high.  
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Under CW, all capital flows (except for the initial capitalization) are withdrawals; capital increases 

arise from positive earnings. Using the section 5.4 example, the optimal initial CW total capital 

amount is 433.61, with an expected second-period optimal capital of 291.62 and average over the 

two periods of 362.62. The solvency cost of this optimum position is 16.29. For comparison, the 

solvency cost of the section 5.42 AC strategy with a 4% CRC is 14.76. 

Harrington and Niehaus show that mutual insurers carry more capital than stock insurers having 

the same risk. This result supports the analysis presented here. 

Although the solvency cost (and hence the consumer value) for the mutual insurer is inferior to 

that of the section 5.4 insurer, the policyholder is not necessarily worse off. A mutual policyholder is also 

an owner of the insurer and receives dividends if the mutual is profitable. These distributions are not 

taxable at the personal income level. However, a similar policyholder of a stock insurer with an 

equivalent stake in that insurer would be subject to income taxes on the capital distributions. This 

tax-free benefit increases the consumer value of the mutual insurance purchase. To illustrate, 

suppose that the personal income tax rate on the capital distributions is 20% and the expected return 

on capital is 8%. The average ownership capital for the section 5.4 stock insurer (with  

w = 4%) is 317.30. Thus, the expected return to the policy/equity holder is 25.38. The tax on this 

amount is 5.08 = 0.20(25.38). The stock policyholder’s consumer value after the personal income tax 

is the risk value minus the solvency cost minus the income tax: 80.16 = 100.00 – 14.76 – 5.08. The 

mutual policyholder’s consumer value, with no personal income tax, is in fact higher: 83.71 = 100.00 

– 16.29. 

To the extent that regulatory capital requirements are related to the optimal capital that insurers 

might carry, then the analysis here suggests that risk-based capital should be higher for mutual insurers 

than for stock insurers having the same default risk. 
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6. OPTIMAL CAPITAL FOR MORE THAN TWO PERIODS 

This section determines optimal capital for multiple periods by extending the two-period model 

for the capital strategies using the backward induction method. Here I outline the method generally 

and apply it to the AC and ACR strategies. 

6.1 General Backward Induction Method 
The backward induction method determines a sequence of optimal actions or results by starting 

from the end of a problem with discrete stages and working backwards in time, to the beginning of 

the problem. It uses the output of each prior stage to determine an optimal action based on the 

information available for the particular stage. This course proceeds backwards until one has 

determined the best action for every possible situation at every point in time. Backward induction is 

used extensively in dynamic programming and game theory.30 

To apply backward induction for a capital strategy where there is no CRC, define an index i for 

each stage, where i is the number of periods remaining until the ultimate loss is determined. At each 

stage i, we use three optimal quantities that have been determined from the prior stage, and may 

depend on the loss value x from stage i: the optimal ownership capital , the optimal CED 

 and the optimal capital cost .  

For stage i, we start with the optimal asset amount from the prior stage i – 1 and calculate the 

solvency cost. We vary the asset amount until the optimal solvency cost is attained, and record the 

values of the above three optimal quantities. The process is repeated until the Nth stage is complete. 

The result is the optimal initial capital, CED and capital cost for an N-period model. The 

intermediate stage results will give the optimal quantities for all models of lesser duration that have 

                                                           
30 For example, see Von Neumann and Morgenstern [1944]. 
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the same sequence of loss increment variances per period.31 Accordingly, for a model with constant 

volatility per period, we will get the optimal results for all models with N or fewer periods. 

6.2 Backward Induction Method with AC Strategy 
Under the AC capital strategy for stage i, the solvency cost has four components:  

(1) the CED for technical insolvency in the stage, (2) the expected CED for future insolvency, (3) 

the capital cost for the stage and (4) the expected future capital costs. The first two components 

represent the total CED for all periods through stage i, denoted by ,  and the last two represent 

, the total capital cost for all periods. Therefore we can represent the solvency cost as 

, where 

 

   (6.21) 

and 
 

 .  (6.22) 

 
We minimize the value of  to get the optimal available asset value  for this stage.32 From 

equation 4.31, we get the optimal OC: 

 

 .  (6.23) 

 
The optimal total capital is . We also have optimal values of the components , 

                                                           
31 For example, suppose a three-period model has a standard deviation (SD) of 50 for the first period loss increment, 60 
for the second period and 80 for the third period. This process will provide optimal results for the three-period case and 
will also give the optimal results for a one-period model with an 80 SD, and a two-period model with a 60 SD for the 
first period and 80 for the second period. 
32 Appendix C discusses the optimization technique, which uses two asset values whose difference is small. 
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and , which we label  and . So now we have the three inputs needed to determine the 

optimal capital for the stage i + 1, and successive stages, until the optimal initial capital for the Nth 

period is found.  

To illustrate this process, consider the basic section 5 example from Appendix B. We have  = 

0.7852 (from Appendix B.1) and  = 5.8325 (from Appendix B.3). Applying equations 6.21 and 

6.22, and iterating gives the following optimal values for a time horizon ranging from 1 through 4 

periods. 

 

Table 6.21 
Optimal Values by Number of Periods 

Normal-Exponential Example; AC Strategy  
 

No. of   

   Periods 

Initial Total   

   Capital CED 

Capital  

   Cost 

Ownership 

   Capital 

1 291.62 0.7852 5.8325 291.62 

2 333.34 1.5309 12.3827 327.51 

3 354.95 2.2367 19.2317 342.45 

4 365.70 2.9212 26.1537 346.10 

 

Extending the example to 20 periods, Figure 6.21 compares optimal initial total capital (TC) and 

ownership capital (OC) amounts by period length.  
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Figure 6.21 
Optimal Initial Total and Ownership Capital Amount by Number of Periods 

Normal-Exponential Example; AC Strategy  
 

 
 

Notice that the optimal initial total capital increases steadily, but at a declining rate, as the number 

of periods increases. Therefore, as the ultimate loss variance increases, the optimal initial total capital 

also increases.  

However, the pattern for ownership capital is different and rather interesting: for a small number of 

periods (5 in this example) the optimal initial OC increases, and then decreases with a longer 

horizon. Eventually, with a long enough horizon (17 periods here) the optimal initial OC is less than 

that for a single period. The reason for the declining amount of OC is that the premium component 

of the expected future capital costs provides additional assets in excess of the owner-supplied 

capital; the policyholder-supplied capital increases faster with horizon length than the amount of 

total capital needed to offset default risk. 

6.3 Multi-Period Capital with ACR Strategy 
As shown in section 5.42, the two-period optimal ACR capital calculation requires two optimal 

capital amounts at each stage: one based on the cost of holding capital z and a smaller amount based 

on z plus w, the cost of raising capital. Appendix D develops the recursive relationships needed for 
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the optimal ACR initial capital for N periods. Here we need six optimal quantities at each stage: 

three similar to those in section 6.2 (based on no CRC) and three more based on the higher capital 

costs under the CRC.  

Also, since incorporating the CRC creates loss region 2b (where capital remains the same for the 

next period), an additional calculation is required: at each stage, the expected CED and capital cost 

for this region must be found by numerical integration. Figure 6.31 extends the section 5.42 example 

to 10 periods and shows the optimal initial capital for w ranging from 0% to 50%. It also shows the 

optimal initial total capital for the CW strategy, which effectively has an infinite cost of raising 

capital.  

 

Figure 6.31 
Optimal Initial Total Capital Amount by Number of Periods 

and Cost of Raising Capital  
ACR Strategy; Normal-Exponential Example  
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7. CAPITALIZATION INTERVAL 

The preceding analysis has used an arbitrary period length, with capital flows occurring at the 

beginning of each period. Since the period length governs the duration between capital flows, and to 

distinguish it from other insurance periods such as policy term, I specifically refer to the period 

length as the capitalization interval (abbreviated as CI).  

The actual length of the CI will affect the optimal capital, since, for a given loss duration, a 

shorter capitalization interval will allow more opportunities to add or withdraw capital as the loss 

amount evolves. To analyze this effect, recall that the policy term is defined to be equal to the period 

length. Thus, the losses occur at the beginning of the policy term,33 and capital flows also occur at 

the beginning and end of the policy term. Section 7.3 discusses the case where the period length is 

shorter than the policy term. 

The frequency of potential capital additions and withdrawals will have a significant impact on the 

optimal capital and solvency cost, regardless of the capital strategy used. 

7.1 Capitalization Interval with the FR Strategy 
To illustrate the effect of the CI, again assume the basic one-period normal example from section 

5 with a standard deviation of 100. The optimal total capital is 291.62 with a solvency cost of 6.62. 

The period length and loss duration are both one year: thus, capital is supplied at the beginning of the 

year and the amount of loss is known at the end of the year. Also assume that the stochastic process 

is continuous over time: for every smaller period the loss variance is proportional to the period 

length. Now suppose that we subdivide the one-year period into half-year periods, with capital flows 

allowed at the beginning of each. Each smaller period will now have a loss standard deviation of 

                                                           
33 A more realistic assumption is that the loss may occur randomly throughout the policy term, with the average loss 
happening at the middle of the term. Here, I am merely attempting to show the effect of changing the capitalization 
interval length. A practical application would use the actual expected timing of the incurred losses. 
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70.71 =  and the capital cost rate is 0.01 = 0.02/2. Under the full recapitalization (FR) 

strategy, the optimal beginning total capital for each half-year period is now 208.56 with a 

corresponding 2.34 solvency cost. The solvency cost for the entire year is twice this amount, or 4.68. 

Thus, by allowing more frequent capital movement, the consumer value has improved and less 

capital is required. 

Figure 7.11 shows the effect of further subdividing the one-year period into more capitalization 

intervals: 

 

Figure 7.11 
Optimal FR Total Capital by Number of Intervals 

One-Year Loss Duration 
Normal-Exponential Example 

 

 

 

As the number of intervals becomes large, the optimal capital amount approaches zero! Although 

not shown in this graph, the annual solvency cost associated with the optimal capital also 

approaches zero (it is only 0.096 for 10,000 intervals). Since capital is added in response to 

infinitesimal changes in loss evaluation, there is only a tiny chance at any time that a default will 

occur, and if it does, the default amount will be infinitesimally small. Notice that this result depends 
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on the assumption of a continuous distribution for the loss increment: if the loss valuation can change 

in somewhat large increments, then the capital additions cannot “catch up.” Consequently, in a 

theoretical world with a continuous stochastic loss process and the ability to add capital with no 

cost, there is no need for an insurer to carry capital. However, the loss process might not be 

continuous, and, as discussed next in section 7.2, important real-world imperfections, frictions and 

costs do not permit an infinitesimally small CI, so capital is indeed required. 

7.2 Capital Strategies and Time Intervals 
For other capital strategies, the optimal capital also declines as the CI becomes smaller. Figure 

7.21 compares results of the FR, AC, CW and ACR (with 5% cost of raising capital) strategies, 

according to interval length. Here, I show the average amount of total capital over the year. Note that 

the initial capital for the first period will also decline with the number of intervals for the FR, AC 

and ACR with low capital-raising cost strategies. However, for the CW and high capital-raising cost 

ACR strategies, the first-period capital amount increases with the number of intervals. Nevertheless, 

since these strategies stockpile capital in the early periods and tend to withdraw more of it later than 

for the other strategies, the average amount of capital declines with the number of intervals.  
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Figure 7.21 
Optimal Average Total Capital For One Year 
by Number of Intervals and Capital Strategy 

Normal-Exponential Example 
 

 
 

Here, all strategies provide smaller optimal capital amounts and solvency costs as the CI length 

decreases. The AC strategy follows the FR strategy in that the optimal capital approaches zero as the 

interval approaches zero. However, the optimal capital for the CW and ACR strategies declines 

much more slowly34 because either capital cannot be added, or its addition is costly. 

Although the optimal capital and solvency cost decline with shorter period length, there will be a 

practical limit to this effect. Even for a pure continuous stochastic loss process, the minimum 

interval length is governed by real-world considerations. The minimum length depends on a 

sequence of events, each of which requires some time. Among other factors, the loss reserve must 

be evaluated (for most insurers this occurs monthly or quarterly) and then management must decide 

to raise capital and then contact an investment bank. The bank then performs due diligence and 

offers the public an opportunity to supply capital. Even if the insurer has a prior commitment from 

                                                           
34 It appears that the average capital may reach a fixed limit, but I have not proved this. 
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an investment bank, this process may take several months.  

Nevertheless, it is clear that policies with short capitalization intervals will require less capital than 

longer ones, and will be more efficient (with lower solvency costs) as well.35 Because some insurers 

may be better-equipped to generate capital flows quickly, the minimum interval length will vary by 

insurer. Consequently, this factor should be considered in assessing specific insurer capital levels. 

7.3 Effect of Policy Term and Capitalization Interval 
The preceding analysis has assumed that the capitalization interval equals the policy term. 

Generally, the policy term for property-casualty insurance is one year,36 but the capitalization interval 

will most likely be shorter than one year. Assume that the premium is paid at the beginning of the 

period. When the capitalization interval is shorter than the policy term, insolvency may occur early in 

the policy term. This event will effectively terminate coverage for losses that may occur in the 

remainder of the policy term, and will produce an additional solvency cost, since the full premium is 

paid up front. 

Here, more capital is needed if the policy term exceeds the CI, regardless of the number of 

intervals. Thus, besides the CI, which greatly affects the optimal capital, the length of the policy term is 

another variable that will influence the capital amount. This effect will be present with both short-

duration and long-duration37 losses, since the cost of foregone coverage must be considered.  

                                                           
35 Because the ability to quickly raise capital decreases solvency costs, the capitalization interval length will also affect 
short-duration losses in a manner similar to that of long-duration losses: optimal capital is less if the CI length is 
shortened.  
36 Some automobile policies have a six-month term and, less commonly, some commercial risks have multi-year 
coverage.  
37 Modeling this effect is more complicated than for property, since one must assume a relationship between the losses 
of each interval. For liability coverage, these will be correlated. A convenient approach is to assume that all losses move 
together.  
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8. MULTI-PERIOD MODEL EXTENSIONS 

This section extends the basic loss model to incorporate features that may be necessary for a 

practical application. Also, I briefly discuss how the results might apply to life insurance. 

8.1 Stochastic Time Horizon 
In a more realistic model of the development process for long-duration losses, the ultimate 

duration of losses is not known. Here I relax the basic model assumption that the loss develops 

randomly for N periods and is settled at the end of the Nth period. Instead, assume that, although 

the value evolves according to the section 4.2 liability stochastic process, the process may terminate 

randomly at the end of each period, at which point the loss is settled. In this model, there are N 

possible periods, extending to the longest possible claim duration. Call this model the stochastic-

horizon (abbreviated as SH) loss model. 

Let  represent the probability of settlement at the end of period i. Then . 

From section 4.21, with a constant per-period loss volatility the variance of the ultimate loss will be 

, since the variance of each period’s loss increment is independent of 

the prior value. This is a simple weighted average of the loss variances of the component N possible 

models.   

Meanwhile, assume that the certainty-equivalent expected value of the SH loss is proportional to 

the variance (as discussed in section 4.42). Consequently, the CE expected value of the SH loss must 

equal the weighted average of the CE expected loss values of its N component loss models, where 

the weights are the termination probabilities .  

Under the SH model, the optimal capital will be a weighted average of the optimal capital values 

for the component fixed-horizon models. Given the above analysis, to approximate the optimal SH 
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capital, it is reasonable to use the exact termination probabilities (rather than a CE adjusted set of 

probabilities) to weight the optimal capital amounts. 

To illustrate the SH model, we extend the basic normal-exponential example. Assume three 

periods with termination probabilities  = 0.5,  = 0.3 and  = 0.2. The average loss duration is 

1.7 periods and the respective expected amounts of loss paid at the end of each period are 500, 300 

and 200. From section 6.2, the optimal initial total capital amounts for the three component 

horizons are = 291.62, = 333.34 and  = 354.95. Thus, the optimal initial capital for the 

basic SH model is 316.80 = 0.5(291.62) + 0.3(333.34) + 0.2(354.95). 

Notice that, if the expected loss is independent of the loss duration (as in the basic model) the set 

of termination probabilities will represent the expected loss payment pattern. 

8.2 Interest Rates and Present Values 
Because multi-period losses, especially for liability insurance, can be paid several years from when 

the loss occurs, it is necessary to use the present value of the solvency cost components in determining 

optimal capital. Since the present value of a certainty-equivalent amount must also be a CE value, 

the present value is found using a risk-free interest rate, denoted by a rate r per period. A similar logic 

applies to the capital cost component. Note that this assumption of a single rate implies a flat yield 

curve; a practical application might require a separate riskless rate for each component duration.  

For a one-period model, the present value of the solvency cost is 

 

 . (8.21) 

 

The initial assets equal the capital plus the premium. The premium is , 
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which equals the present value of the expected loss and capital cost components. At the end of the 

period, before the loss and capital costs are paid, the initial assets grow to . The 

capital cost zC is expended prior to the loss payment, so the assets available to pay the loss are 

. Thus . Also, from section 2.2 we have 

.  The optimal solvency cost is found from , giving  

 

 .   (8.22) 

 

The amount z/(1 + r)  is the calibration level of the risk measure . With r = 0, we have 

, the result used in the earlier sections of this paper. With zero interest, we find the 

optimal assets satisfying the calibration level and subtract the expected loss amount to get the 

optimal capital. With a positive r, however, equation 8.22 gives the ending available assets; subtracting 

the expected loss gives the ending optimal capital, which must be reduced by a factor of 1 + r to 

produce the optimal initial capital. Consequently, the optimal initial capital is the present value of the 

amount of capital required with a zero interest rate, where the calibration level equals the present 

value of the capital cost rate. 

Besides affecting the present value of the optimal capital, the interest rate level will affect the 

frictional cost of capital (through double-taxation), as discussed in EBRM. I assume that the 

expected default has a negligible impact on the premium. If the insurer’s income tax rate is t, the 

frictional cost of capital component due to double taxation for one period equals  times 

the capital amount. It is useful to separate the frictional cost of capital into two components: the 

double-taxation cost, which depends on r and the other costs  (such as financial distress and 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 55 

regulatory restriction costs) that do not depend on r. We then have 

 

 . (8.23) 

 
 If r = 0, then  and the calibration level is . If r > 0, the calibration level is greater than 

 for . This inequality will hold for plausible values of t and .38 Therefore, the 

optimal capital amount from equation 8.22 will be less than the present value of the zero-interest 

optimal capital, since the calibration level is lower (making capital more costly). 

To illustrate the effect of the interest rate on optimal capital, I modify the basic section 5.3 

example for one period. Assume that  = 0.5% and t = 30%. With r = 0, we have z = 0.5% from 

equation 8.23, giving a 0.5% calibration level and optimal capital of 347.59. Increasing r to 5% 

boosts the calibration level to 2.52% and the optimal capital drops to 267.69. This amount is 

significantly less than the present value of zero-interest optimal capital: 331.08 = 347.59/1.05. 

The above analysis shows that the interest rate level reduces optimal capital (from that with zero 

interest) in two ways. First, there is a present value effect: since the initial capital grows at the rate r, 

less capital is needed to offset a potential default occurring in the future. Secondly, the frictional cost 

of capital is greater due to double-taxation on the increased investment income from capital: since 

the cost of capital is greater, insurers will use less of it.  

For a multi-period model, interest rates can readily be incorporated by modifying the section 6 

backward induction method. To illustrate, I use the basic AC strategy with no cost of raising capital. 

                                                           

38 The value of  is likely to be on the order of magnitude of 1%. Even if the insurer’s effective income tax rate is as 

low as 10% (giving  =11.1%), the relationship holds. 
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Let  denote the present value of the solvency cost for i periods with interest rate r.  

Using the section 6 backward induction indexing, define the present value of the expected capital 

cost as , which is the analog of  in equation 6.22: 

 

 .  (8.24) 

 

The solvency cost for stage i is therefore 

 

 .  (8.25) 

  

The default is realized at the end of i future periods, so its CE expected value  is discounted 

for i periods. However, the capital costs are discounted for a shorter time span on average, since 

they occur over the entire horizon length. 

Starting from the one-period optimal CED present value  and optimal capital cost 

present value , we use equation 8.25 recursively to generate the successive optimal capital 

amounts. To demonstrate this calculation, I use the basic AC example from section 6. Figure 8.21 

compares the optimal total capital for r ranging from = 0%, to 15%, for horizons of one to ten 

periods. 
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Figure 8.21 
Optimal Initial Total Capital by 

Riskless Interest Rate 
Normal-Exponential Example with AC Strategy 

 
 

 

 

Notice that, as for the single-period case, optimal capital is less for a given time horizon if the 

interest rate increases. Indeed, since , the optimal capital is also less than the present 

value of the zero-interest optimal capital for each time horizon.  

Also, for large interest rates, the optimal initial total capital decreases with the horizon length 

beyond a certain point. The transition occurs at 10 periods with r = 10% and 7 periods with r = 15% 

in the above example. This happens because the average duration of the capital costs (roughly i/2) is 

less than that for the default duration i.  

8.3 Risk Margins 
The preceding analysis assumed that the loss component of the premium included only the 

unadjusted expected value of the loss, i.e., the premium did not reflect a positive market price for 
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bearing the risk. Here I assume that the market value of the insured loss, denoted by , is greater 

than the expected loss: i.e., it contains a risk margin, whose value is denoted by M. The expected 

market-value loss, including the risk margin, can be determined from a third stochastic process with 

an adjusted probability distribution. For a one-period model, we have 

 

 , (8.31) 

 
where  denotes the adjusted probability underlying the risk margin. Here the relevant risk is 

systematic: it cannot be reduced through pooling, and therefore commands a price in financial 

markets. The value to the policyholder of the underlying risk, before it is reduced through insurance 

pooling, will be larger per unit of expected loss than that of the insurer’s risk (which is larger than 

the expected loss). So we have . 

For a multi-period stochastic process with equal variance of loss increments for each period, I 

assume that the risk margin increases uniformly with the number of periods. In that case, if the 

stochastic process is additive, then the risk margin will also be additive. Let m represent the risk 

margin as a ratio to the expected loss L for one period. So, for an N-period loss, the risk margin will 

equal mLN, and the market value of the expected loss will be L(1 + Nm).  

For a multiplicative stochastic process, the market value of L is . Observe that the 

present value of the market-value loss is , where r is the risk-free interest rate. 

Therefore, the market value of the expected loss can be expressed as the expected value L, 

discounted at a risk-adjusted interest rate ,39 where . 

                                                           
39 Butsic [1988] develops the risk-adjusted interest rate for insurance reserving and pricing applications. 
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The fair premium is . The risk margin then provides additional total capital, 

beyond the amount from the expected capital cost K (see section 6.2). The amount M can also be 

considered as policyholder-supplied capital; to give the same insolvency protection, the insurer will 

need less ownership capital than without the risk margin. As discussed in section 4.4, the risk margin 

is equivalent to ownership capital in terms of solvency protection.40 For multiple periods, the 

relationship holds as well, since the CED depends on the asset amount and not the accounting 

measure of the loss. To illustrate this effect, assume the basic AC normal model with a 0% interest 

rate, and let m = 2%.41 From section 5.31, for a one-period model without the risk margin, the 

optimal total capital is 291.62 and optimal available assets are 1291.62. The expected default depends 

on the asset level, not the capital amount as defined by the accounting method. With the risk 

margin, the same assets are also optimal: the CED is the same, and changing the asset amount 

through the initial owner-supplied capital will reduce the consumer value. 

Thus, the premium and initial assets will be larger by 20 = 0.02(1000). Optimal one-period capital 

is now reduced by 20 to 271.62 to give the same CE default probability (equal to the capital cost 

rate). Since the risk margin in this example is proportional to the number of periods, the optimal 

initial capital is reduced by 20 units times the number of periods in the time horizon. 

 Figure 8.31 compares the optimal initial ownership capital for the AC strategy by time horizon 

                                                           
40 In another sense, the risk margin may be considered as ownership capital in that it is not a third-party obligation: it 
“belongs” to the owners of the insurance firm and will be returned to the owners if the insurance proves to be 
profitable. However, depending on the accounting method used for income taxation, the risk margin may not generate a 
frictional capital cost (it currently does not in the U.S.). 
41 In practice, the amount of risk margin is a small fraction of premium. It is straightforward to show that the risk margin 
is , where R is the expected return on the capital C, r is the risk-free return and t is the 
income tax rate. For example, assume an insurer’s current expected (after-tax) return on equity is about 4% above the 
risk-free investment return, the effective tax rate is 30% and the leverage ratio C/L is 40%. A risk margin equal to 2.3% 
of expected loss will provide the required return on equity. Note also that the risk margin cannot exceed the risk value: 
the difference between the CE value of the loss and its expected value; otherwise the policyholder is better off without 
insurance. 
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for no risk margin and for a 2% risk margin.  

 

Figure 8.31 
Optimal Initial Ownership Capital by Time Horizon 

 2% Risk Margin (RM) vs. No Risk Margin (No RM) 
Normal-Exponential Example with AC Strategy 

 

 
 

The optimal ownership capital without a risk margin here is the same as in figure 6.21. Note that 

the total capital (also shown in Figure 6.21) continues to increase with the time horizon. 

In sections 5 through 7, I have assumed that the expected capital cost should be determined from 

an unadjusted loss distribution. However, with a risk margin, the expected capital cost for future 

periods should be calculated using the market value loss distribution  since the future capital 

amount depends on the future random loss value. The expected capital cost is larger, compared to 

the no-risk margin case, and the optimal fair-value capital will be less. Nonetheless, for simplicity, I 

have ignored the effect of the market value loss distribution on capital costs for this section.  

8.4 Life Insurance 
This paper has focused on property-casualty insurance. As such, the scope of the study precludes 

a thorough development of optimal capital for life and health insurance. However, below I briefly 

discuss some implications of the findings in this paper to life insurance products (note that health 
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insurance is similar to property-casualty insurance in that policy terms are short and there are few 

embedded options). 

Life Insurance Liability Risk 

 Generally, for life insurance the risk of losses being higher than expected is low due to the lack 

of correlation between claims from separate policies. There is some chance of default from losses 

occurring earlier than expected (e.g., whole life insurance) or later than expected (e.g., annuities). The 

risk of default for the amount of claims and their timing can be addressed by the techniques 

presented in the earlier sections. Life claims risk has a different stochastic process than long-

duration losses, since the periodic indemnity amounts are fixed but the horizon is stochastic. The 

process is not Markovian, since if more/fewer insureds die, then the probability of future deaths 

changes for the insured population.  

Embedded Policyholder Options  

 A major source of risk for life insurers is the nature of the embedded options in policy contracts. 

These are not usually present for property-casualty insurance. For example, life policyholders may 

stop paying premiums or they may add coverage after the policy has been in force; policyholders 

may be able to make loans at favorable terms; the policy may have other investment guarantees. The 

effect of any of these depends on policyholder behavior. Note that some policy features may not 

remain after the insurer becomes insolvent and is under conservatorship. Moreover, the policy 

features that create default risk have value to the policyholder, which should be incorporated into 

the consumer value in the optimal capital calculation. 

Capital Funding Strategies 

Notwithstanding the above differences between life and property-casualty insurance, the capital 

funding strategies available to life insurers are the same as for property-casualty insurers. The 
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availability and cost of external capital will also be similar. These factors will have parallel impacts on 

the amount of capital needed for life insurers. Also, modeling the asset risk will be similar, since 

both types of insurers have the same categories of investments in their portfolios. 

9. MULTI-PERIOD ASSET RISK 

The preceding results for risky losses can be extended to the case where assets are risky. Here I 

develop a method for integrating asset risk into the model and show some basic results for the AC 

strategy.  

I start with a treatment of asset risk in a one-period model that differs from the method in 

EBRM. In that analysis, I assumed the certainty-equivalent ending value of risky assets equaled the 

terminal value of the assets as if they were invested in risk-free securities. A better assumption is that 

the CE value of the risky assets equals their unadjusted expected ending value minus a quantity 

(called the risk premium in financial economics) that mirrors the risk value (as defined in section 2.23) 

for losses. The results from this analysis are consistent with standard finance techniques for 

optimizing an individual’s investment portfolio.42  

9.1 One-Period Joint Loss and Asset Model 
For one period, where both the loss and the ending asset amount are random, the CE expected 

default value is  

  

 .  (9.11) 

 

Here v represents the difference between the loss and available asset values for all combinations 

                                                           
42 See Bodie, Kane and Marcus [2014], chapter 6. 
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of loss and asset values that produce v, with  being the CE probability of v occurring. The 

expression for the unadjusted expected default D is similar to that equation 9.11, with the 

unadjusted probability p(v) replacing .  

Assume that the insurer’s assets consist of riskless securities having a zero return, as specified in 

section 4.1, as well as an amount of risky assets AR with an expected (market) rate of return  per 

period. The risky assets are diversified and have the same standard deviation (SD) of return  as 

the market rate of return. Thus, if the insurer’s ending asset value has a SD of , then its 

expected return amount is , which equals the asset risk SD times the Sharpe 

ratio.43 Notice that, although the Sharpe ratio is commonly applied to stock market risk, it can also 

characterize bond market risk: the expected return on a long-term bond will normally exceed that of 

a short-term Treasury note; meanwhile the bond value has a positive volatility due to potential 

interest rate fluctuations. 

 The variance of v, or the total variance, is , where  is the loss 

variance and  represents the correlation between loss and asset values.44 Also assume that the 

insurer maintains a constant asset risk as it changes its capital amount, so that additions and 

withdrawals are in riskless assets. 

In equation 9.11 (either the CE or unadjusted version), the expected default amount can be 

                                                           
43 The ratio of the expected excess return (over the risk-free rate) on a security to the standard deviation of the return is 

known as the Sharpe ratio. Here the risk-free rate is assumed to be zero, so the Sharpe ratio is simply equal to . 
44 For some insurance products that depend on investment performance (such as embedded options in life insurance 
and property-casualty products where the market value of losses depend on interest rates), the co-variation with losses 
may be more complex than we can represent with a simple correlation coefficient. Thus, more extensive modeling may 
be required for a practical application. 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 64 

obtained by assuming that the asset risk is zero and the original loss distribution is replaced by an 

alternative loss distribution that produces the same default amounts with the same probabilities as 

the joint asset and loss distribution. Call the alternative loss variable the augmented loss. Since the 

expected ending asset amount (prior to paying the loss) is greater than the initial value by the 

expected return ER, the expected augmented loss, denoted by , is reduced by this amount; thus 

. Accordingly, the augmented loss has mean  and standard deviation . 

Since the sum of two jointly distributed normal random variables is normal, if both the loss and 

ending asset amounts are normally distributed, then the augmented loss variable is also normal. If 

the asset and loss variables are not normal, then the augmented loss technique will produce 

approximate results. The subsequent analysis in this section assumes joint normality for the two 

variables. 

The expected certainty-equivalent default calculation is the same as that of a risky loss with mean 

 and variance , together with riskless assets. To illustrate, assume that policyholder risk 

aversion is based on exponential utility. We have  (from section 4.22), and 

. Thus the certainty-equivalent expected augmented loss is 

 

 .  (9.12) 

 
The quantity  denotes the asset risk premium. In finance this represents 

the amount by which the expected return is reduced to produce the CE ending value of the assets. If 

the ending asset values and losses are statistically independent, then  = 0, giving  

and .  
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Using the augmented loss and total variance, the optimal capital for an insurer with both asset 

and loss risk can be determined in the same way that we calculate the optimal capital for an insurer 

with riskless assets in a one-period model. By subtracting the optimal joint capital from the optimal 

capital for riskless assets, we get the implied optimal amount of capital for the risky assets. 

Because the expected return on risky assets is positive, including some risky assets in the insurer’s 

investment portfolio can reduce the solvency cost compared to that from a riskless portfolio. To 

illustrate this, we use the basic example from section 5.3. Suppose that, instead of riskless assets, the 

insurer now has AR = 50 units of risky assets with the remainder in risk-free securities. The market 

expected return is  = 5% with a volatility of  = 20% and the assets are uncorrelated with 

losses. Thus, the insurer’s asset risk is  = 10  = 0.2(50), the expected return amount is ER = 2.5 

= 50(0.05), the risk premium is RP = 0.50 = 0.01(10)2/2 and the total risk is  = 100.50. Equation 

9.12 gives  = 1048 = 1050 – 2.5 + 0.5. The optimal capital is then 291.02, which is less than the 

291.62 with no asset risk. The solvency cost with the risky assets is 6.6097, which is also less the 

6.6177 for riskless assets. In this case, the optimal capital for asset risk is negative:  –0.60 = 291.02 – 

291.62. This example shows that a moderate amount of asset risk can actually improve policyholder 

welfare: a situation akin to an individual benefitting from having an investment portfolio containing 

some risky securities. 

As the amount of risky assets increases, the expected return increases linearly with , but the 

risk premium increases with its square. Consequently, the beneficial effect of the expected return will 

vanish if the asset risk is too high. Also, the asset risk is mitigated by its combination with the loss 
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risk if the two are independent: if there is adverse correlation45 (where high/low loss values tend to 

correspond with low/high asset values), then the benefit of the expected return is also reduced.  

Figure 9.11 shows these two effects. Here I show the solvency cost for the above example by 

asset risk amount with correlation values of 0, 0.02, 0.05 and 0.10. The horizontal line indicated by 

SD(A) = 0 is the optimal solvency cost without asset risk. 

 

Figure 9.11 
Optimal Solvency Cost by Asset Standard Deviation 

And Asset/Loss Correlation 
One-Period Normal-Exponential Example 

  

 

 

All points below the zero asset-risk line represent situations where risky assets will improve 

solvency cost and all points above the line indicate a portfolio that worsens the solvency cost. 

Notice that in this example, if  = 0, then any amount of asset risk less than a standard deviation of 

                                                           
45 A mechanism for this effect is the Fisher hypothesis, where inflation and interest rates tend to move in tandem. This 
co-movement can increase unpaid loss values while depressing bond and stock values. Notice that the correlation 
coefficient is positive in this case, since the joint variance is greater under adverse correlation than for independence. 
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about 12 (i.e., risky assets are less than about 5% of the 1291 in total assets) will improve the 

solvency cost. If the asset SD is 5.95, the optimal solvency cost is attained. Also notice that if the 

asset/loss correlation is above approximately 0.06, then no amount of risky assets will improve the 

solvency cost. 

Although a small amount of asset risk is optimal in this example, the solvency cost is not far from 

optimal if asset risk is moderately higher. For example, if the insurer has risky assets with a 40 SD, 

the optimal solvency cost is 7.08, which is 0.46 greater than the zero asset-risk optimum of 6.62. 

However, the difference represents only about 0.05% of the expected loss, so this reduction of value 

to the policyholder may not be material in a practical setting. The optimal capital for this case is 

311.34, which is greater than the 291.62 with no asset risk; the 19.71 difference represents the 

amount of capital needed for asset risk. 

For a one-period insurer model, if the assets are bonds whose market values have a low 

correlation with the insurance losses, the above analysis shows that under a normal (positive-

sloping) yield curve, the optimal portfolio will have a duration to maturity that exceeds a single 

period. Thus, in assessing capital adequacy, the standard actuarial technique of matching asset and 

liability durations may not produce optimal results.  

9.2 Multi-Period AC Joint Loss-Asset Model 
Extending the one-period joint loss-asset model to two or more periods is relatively 

straightforward as long as the asset risk can be incorporated into the loss as in equation 9.12. If not, 

a more complex numerical method or simulation may be necessary.  

For a single-period model, the riskless interest rate (which I have assumed to be zero) is known at 

the beginning of the period. However, for more than one period, the future interest rate will vary 

randomly, with a mean of zero. I assume that the distribution of asset returns exceeding the risk-free 
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rate is independent of the level of the rate. Thus, the certainty-equivalent expected default values in 

equation 9.12 and their counterparts for multiple periods will be the same as if the future riskless 

rates were fixed at the initial one-period value. The present value of the expected CE default and the 

expected capital costs (see section 8.2) can be determined by using the expected risk-free rate,46 

which is zero for the simplified model in this section.  

For longer horizons, joint loss-asset risk is not quite parallel to the case of multi-period risky 

losses. The loss value will continue to evolve if technical solvency occurs at the end of the first 

period, as in the loss-only model. However, with risky assets, if the insurer becomes technically 

insolvent after the first period, the asset risk will drop to virtually zero since the insurer will enter 

conservatorship shortly after becoming technically insolvent. As discussed in section 3.2, the asset 

portfolio will be converted to an essentially riskless one by the conservator. For simplicity, assume 

that the investment portfolio is immediately converted to riskless assets upon technical insolvency. 

We also maintain the constant asset-risk assumption from the one-period model: if the insurer 

remains solvent, the asset portfolio retains the same risk as the size of the portfolio changes.  

Therefore, the optimal capital calculation under the joint loss-asset model is the same as with the 

loss-only model having the total risk , except that (1) the available assets are greater by the 

amount of the expected return on assets ER and (2) the CE technical default amount  is based on 

only the loss risk .  

To illustrate long-horizon asset-risk capital, we can extend the one-period example from section 

9.1 to the range of one to ten periods, using the AC capital strategy. Here the asset risk is 10, 20 or 

                                                           
46 In theory, the best rate for discounting these expected cash flows is the risk-free spot yield matching the length of the 
cash flow. With a normal yield curve, the spot yield for several periods will be greater than that of a single period. 
Although I have ignored this feature in developing the basic multi-period model, it can easily be incorporated into a 
practical application. 
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40 per period with a zero asset/loss correlation. We calculate the optimal joint total capital for each 

horizon length and for each asset risk amount. The optimal total asset-risk capital is the difference 

between the optimal joint total capital and the optimal total capital without risky assets. Figure 9.21 

displays these results. 

 

Figure 9.21 
Optimal Initial Total Asset-Risk Capital by Time Horizon 

 And by Asset Standard Deviation  
Normal-Exponential Example with AC Strategy 

 

 

 

Notice that the optimal asset-risk capital for an asset risk SD of 10 is negative for each horizon 

length, just as it is for a single period. Also, the optimal amount of asset-risk capital increases slightly 

with the horizon length for each asset risk SD. 

It is interesting to show the effect of the two major elements of asset risk that differentiate asset 

risk capital from loss risk capital: the expected return from risky assets and the elimination of risky 
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from loss-only risk having the same SD as the total joint loss and asset risk, or . We next assume 

in Case B, that there is a positive excess return for risky assets. In Case C (which represent the 

model in figure 9.21), we assume both a positive excess return and that assets are converted to 

riskless securities if a technical insolvency occurs. 

Assume that the asset risk SD is 40 (with an expected return of 10). Figure 9.22 shows the 

optimal first-period asset-risk total capital for horizons of one to ten periods, for each of the above 

three cases.  

 

Figure 9.22 
Optimal AC Initial Total Asset-Risk Capital Comparison  
by Time Horizon and by Asset Assumptions (A, B and C) 

Section 9.2 Example; Asset SD of 40 
 

 
 

The presence of the expected return (Case B) reduces the optimal asset-risk capital from that of 
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policyholder-supplied capital is provided only once, at the time the premium is written, covering all 

subsequent periods. In contrast, the expected return effectively provides added capital for each 

period on an ongoing basis as long as the insurer is solvent and maintains the asset portfolio. 

Eliminating asset risk when insolvent (Case C) reduces the asset-risk capital further for multi-

period horizons, as long as the amount of asset risk is greater than the optimal amount (an SD of 

5.95 per period). If the asset risk is lower than the optimal amount, then the elimination of asset risk 

when insolvent will slightly increase the optimal asset-risk capital for each period. 
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10. CONCLUSION 

The purpose of this study is to determine, in principle, the risk-based capital for multi-period 

insurance losses and assets. Using basic economic concepts central to insurance, I have shown how 

to find the optimal multi-period capital amount without arbitrarily choosing which risk measure 

(e.g., VaR, TVaR and others) and time horizon model (one-year vs. runoff) should be used. The 

analysis gives proper weight to volatility in each period and incorporates important constraints, such 

as conservatorship under technical insolvency and the ability to raise capital externally. Much of this 

undertaking is new territory. In particular, the notions of policyholder risk preferences and dynamic 

capital strategies may be unfamiliar to an actuarial audience. While falling short of a full practical 

application, I have provided numerical examples to illustrate how the concepts might be applied if 

the underlying parameters are known. 

The major qualitative results of this paper are summarized in section 1.1. Perhaps the chief 

among them are: (1) the optimal capital for long-horizon losses depends on both the annual loss 

volatility and the ultimate loss volatility, and will be greater than optimal capital based on the annual 

volatility, and (2) optimal capital for any horizon depends on the insurer’s ability to raise capital, and 

its cost of raising capital. Analyzing the first relationship is largely a technical actuarial exercise, while 

analyzing the second involves understanding an insurer’s connections to capital markets, ownership 

structure and internal information processes.  

Knowing the optimal capital provides the basis for applications in product pricing, corporate 

governance and regulation. Due to the many variables involved, optimizing capital for multi-period 

insurance can be rather complicated and perhaps daunting. However, as shown here, starting from a 

basic one-period model, the requisite multi-period model can be assembled step-by-step to produce 

useful results. More extensive modeling with additional elements can be accomplished using 
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simulation techniques.  

The analysis in this paper has identified some important factors relevant to multi-period risk that 

are not commonly considered in setting capital standards for insurance: capital funding strategies, 

the cost of raising external capital, the capitalization interval, policy term, ownership structure and 

the effect of conservatorship. These topics provide a fertile source for future research. 
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APPENDIX A: EXAMPLES FOR DISCRETE STOCHASTIC PROCESS 

Section 4.2 Example 
The loss stochastic process can be illustrated with a simple two-period binary example. The initial 

expected loss is 1000 and the reserve increments  and  each can be either 200, or –200 with 

probability 0.5, giving a per-period variance of (200)2. Let the risk value per period be 100. Then we 

have  = 1100 and  = 1200. The first period CE expected loss of 1100 is obtained by assigning 

a CE probability of 0.75 to the +200 reserve increment and 0.25 to the –200 increment.  

 The evolution of the ultimate loss and its certainty-equivalent counterpart is shown in Figure 

4.221 below. The first-period reserve increment probabilities and CE probabilities are denoted by 

 and , with  and  representing the second-period values. 

 
Figure 4.221 

Loss Reserve Evolution, Binary Numerical Example 
 

L   L1   L2    

         

   
 

0.5 0.75 1400 0.25 0.5625 

 0.5 0.75 1200      

    0.5 0.25 1000 0.25 0.1875 

1000         

   
 

0.5 0.75 1000 0.25 0.1875 

 0.5 0.25 800      

    0.5 0.25 600 0.25 0.0625 

         

Expected Value   1000   1000   

CE Expected 
Value  

 
1100  

 
1200  

 

 
Notice that for each period the variance of the loss increment is the same and that the variance of 

the evolved loss increases over time. Meanwhile, the mean for each subsequent period equals the 
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value of the loss from the prior period: for instance, if L1 becomes 1200 at the end of period 1, then 

1200 is the mean for period 2. The CE expected value of the second-period loss conditional on the 

emerged 1200 amount is 1200 plus the 100 risk value for the second period, or 1300. 

Section 5.1 Example 
Assume that the expected loss is 1000 and increments for each period range from 

 –400 to 400 in steps of 50; the corresponding loss probabilities are generated by a binomial 

distribution having a base probability 0.5 with 16 trials. Thus the probability of a 400 increment is 

(0.5)16, the probability of a 350 increment is 16(0.5)16, and so forth. The expected value of the 

increments is zero and the variance is (100)2. For the parallel CE stochastic loss process, assume that 

the base probability is 0.625, giving a higher subjective likelihood of larger increments: the 

probability of a 400 increment is (0.625)16 = 0.00054 and the probability of a 350 increment is 

16(0.625)15(0.375) = 0.00520. The CE expected value of the increment is 100, so the CE expected 

loss increases by a risk value of 100 each period.  

Now suppose that initial assets are 1300, so a technical insolvency occurs if the first-period loss is 

either 1350 or 1400 (the maximum possible loss). When the technical insolvency occurs, the assets 

remain fixed at 1300, but the loss can still develop for one more period. Consequently, if the first-

period loss is 1350, its value at the end of the second period is one of {1350 – 400, 1350 – 350,  , 

1350 + 400}, or {950, 1000, , 1750}. However, only the amounts {1350, 1400, , 1750} will 

produce a default when the loss is settled at the end of the second period. The respective CE 

probabilities for these amounts are {0.11718, 0.17361,  , 0.00054}. Weighting the possible default 

amounts by their occurrence probabilities gives 152.59, the conditional CED given that the 1350 

loss amount occurs.  

For the 1400 first-period loss, the range of its possible second-period values that produce an 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 

Casualty Actuarial Society E-Forum, Spring 2016 76 

ultimate default is larger: from 1350 to 1800. Thus, its conditional CED is larger, at 200.72, than that 

for the 1350 loss amount. Table 5.11 outlines these calculations. 

 

Table 5.11 
Conditional Certainty-Equivalent Expected Default 

Two-Period Numerical Example 
Binomial Stochastic Process; Assets = 1300 

 

       Total 
One-period 
Loss 

CE Probability 
(a) 0.00054 0.00520 . . . 0.06250 0.02625  

        

1400 2P Loss (b) 1800 1750 . . .  1400 1350  

 
Default (c): 
 [(b) – 1300] 500 450 . . .  100 50  

 

CE  Expected 
Default: 
 [(a) x (c)] 0.27 2.34  11.72 3.12 200.72 

        

1350 2P Loss 1750 1700 . . .  1350   

 Default 450 400 . . .  50 0  

 
CE  Expected 
Default 0.24 2.08 . . . 5.86 0 152.59 

 
 

The unconditional CED is determined by weighting the above conditional amounts by the CE 

probabilities of the 1350 and 1400 loss values occurring. We get  

 = 0.9029 = 0.00054(200.72) + 0.00520(152.59). Notice that under the FR strategy, with the same 

1300 in initial assets, the technical insolvency at the end of the first period is converted to a hard 

insolvency. So the CED equals the possible default amounts (50 = 1350 – 1300 and 100 = 1400 – 

1300) multiplied by the respective CE probabilities:  = 0.3144 = 0.00520(50) + 0.00054(100). For 

comparison with the FR strategy, notice that for each loss value producing a default (e.g., 1350) the 

default amount (50 here) is fixed under FR, but will further develop under AC (the CE expected 

value is 152.59).  
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APPENDIX B: NORMAL-EXPONENTIAL MODEL  

B.1 Optimal One-Period Results 
From EBRM (Appendix A4), if risk aversion is based on exponential utility with risk-aversion 

parameter a, and the loss distribution is normal with mean L and standard deviation , then we 

have 

   (B.11) 

and 

 . (B.12) 

 

Here  represents the cumulative normal probability with the shifted mean  and 

standard deviation . Also, .  

Equation B.11 is used to determine optimal capital for one period. To illustrate the optimal 

capital calculation, let L = 1000,  = 100, a = 0.01 and z = 0.02. For one period, we have 

 = 1050, so Y = 11.203. Since , equation B.11 gives optimal assets A = 

1291.62, thus optimal capital is 291.62. From equation B.12, the optimal CED is  = 0.7852. 

B.2 CE Value of Technical Default for Multiple Periods 
Equation B.12 is needed to determine the value of , the CED under technical insolvency for 

two or more periods. If the time horizon is N periods, and the insurer becomes technically insolvent 

at the end of the first period, then N – 1 periods remain. For each loss outcome , the CE 

expected ultimate loss is . The conditional CED value is readily found 

from equation B.12, and the unconditional value of  equals the sum of the conditional CED 
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amounts, weighted by their CE probabilities of occurrence. 

For example, if we have a three-period model with assets A = 1400 and the first-period loss 

value is  = 1500, the insurer is technically insolvent. Two periods remain; the loss now has a 

mean value of 1500 and will develop to its ultimate amount over the two periods. We have 

 = 1600 and a normal standard deviation of 141.42 = 100 . 

Accordingly, equation B.12 gives the CE default  = 216.10 for this particular loss outcome. Using 

numerical integration,47 we weight this value and the other CED amounts for losses exceeding 1400, 

by the corresponding CE probabilities of the losses, to get  = 0.1809. 

B.3 Optimal Two-Period AC Capital Example 
To illustrate the optimal two-period capital calculation, we extend the above example to two 

periods with  = 100 for each period. Using equation 5.214, we adjust the available asset level A, 

until the minimum solvency cost is attained. This occurs when  0.7514,  0.7794 and K = 

12.3827. Thus, the optimal solvency cost is  

S = 13.9136 and the optimal initial total capital is 333.34. This amount is greater than the 291.62 

needed for a one-period model with the same first-period variance. 

Notice that if we start with the optimal capital amount for one period (developed above), we 

have A = 1291.62, giving  2.1325,  0.7695, K = 11.5483 and  

S = 14.4503. This result is sub-optimal, so more capital is needed. 

Under the FR strategy for two periods, the optimal total capital for the first period is also 291.62. 

However, the ownership capital is less than 291.62 by the amount of the expected second-period 

                                                           
47 For these calculations, I used 1,000 discrete ending first-period loss values to approximate the result.  
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capital cost (which is policyholder-supplied capital contained in the premium) of  = 5.8325, so 

the first-period OC equals 285.79. The optimal solvency cost is 13.1187 = 2(0.7852) + 5.8325+ 

0.02(285.79). 
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APPENDIX C: SECTION 5.42 EXAMPLE  

Suppose that the cost of raising capital is w = 3% and initial assets are 1400. Thus we get  = 

246.50 (from equation 5.411) and = 291.62. We need to determine the expected cost of the 

capital and the CE value of the expected default. Assume that the initial first-period total capital is 

400. Table 5.422 shows these solvency costs by region. 

 

Table 5.422 
Expected CE Default and Second-Period Expected Capital Cost by Region 

Two-Period AC Strategy with 3% Cost of Raising Capital 
Normal-Exponential Example 

Initial Total Capital of 400 
 

Region Exp. CE Default  Exp. Capital Cost  

1 0.0130 0.0002 

2a 0.4538 0.3884 

2b 0.1661 0.4169 

3 0.5349 5.0204 

Total 1.2578 5.8258 

 

The expected CED for region 1 is the technical default amount; for region 2a it is the expected 

CED corresponding to , times the CE probability that the loss is in the region; for region 2b it 

equals the sum of all second-period CED values weighted by the CE loss probabilities (using 

numerical integration). The region 3 expected CED equals the expected CED corresponding to , 

times the CE probability that the loss is in the region. The expected capital costs are determined in a 

parallel fashion. However, for region 2a, the expected amount of capital raised is 2.6964, so the 

0.3884 amount includes the 3% cost of raising capital, or 0.0809. Also, since I have assumed for 

simplicity that capital for region 1 is still required after technical insolvency, the expected capital cost 
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is very small, at 0.0002. 

The first-period capital cost is 8.0000 = 0.02(400), and so the total solvency cost for both periods 

is 15.0836 = 8.000 + 5.8258 + 1.2578. To obtain the optimal value of the solvency cost, I perform a 

parallel calculation with a small increment (0.01) to the initial capital. Using a value of 400.01, the 

solvency cost differs by 0.000124. The capital is optimal when the difference is zero, so by iterating 

with different initial capital amounts, the optimal value is 349.04. At that point the solvency cost is 

14.7102. 

APPENDIX D: BACKWARD INDUCTION WITH ACR STRATEGY 

Under the ACR strategy, there are two optimal capital amounts to consider at each stage i of the 

iteration. The first is the optimal OC given the current loss value is small enough to withdraw capital. 

This is the amount  defined under the AC strategy. The second is the optimal capital 

 given the current loss value is large enough to add capital (by raising it externally).  

At each stage i, there are now six optimal quantities that we need to calculate: the three from the 

AC strategy (capital, CED and capital cost), and their counterparts given that capital is raised: the 

optimal capital is defined above, the optimal CED of  and the optimal capital cost . 

Since the ith period capital cost is not included, the corresponding optimal total capital is 

. 

At each stage, these three capital-raising components are found by using a capital cost for the 

current period of z + w instead of only z. We then have a parallel calculation of the solvency cost 

, which is minimized by changing the asset amount.  

Also, at each stage it is necessary to calculate the CED and capital cost components for region 2a 
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(where capital is neither raised nor withdrawn) by numerical integration: we vary the capital amount 

in this region and weight the results by the corresponding loss probabilities. 

To illustrate this process, I use the normal-exponential example with a 3% CRC. For one period 

we have the key variables  = 291.62,  = 0.7852,  = 5.8325,  

 = 246.50,  = 2.2839 and  = 4.301. To obtain the optimal two-period value , we 

start with an arbitrary initial capital amount (the optimal one-period capital of 291.62 is a good start) 

and calculate the solvency cost as in Appendix C. This is done by adding the CED and capital cost 

components for the four regions of first-period loss outcomes (see section 5.42). This calculation 

uses the above six key variables. We perform a parallel calculation with the capital increased by a 

small amount (say, 0.001). We adjust the capital amount (and its incremental counterpart) until the 

difference between the incremental and the original solvency costs is zero. This occurs when A = 

1349.04 and  = 14.7102, giving = 349.04,  = 343.16,  

 = 1.8536 and  = 12.8566. 

We next do a second calculation where the first period capital cost is z + w = 0.05. This provides 

the optimal values of the key variables for the case where capital is raised after the first period of a 

three-period horizon (we are preparing for the next stage of the induction procedure). Here we get 

 = 301.00,  = 3.2764 and  

 = 12.0567. 

We continue the induction process to get the optimal key variables for longer horizons.  
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GLOSSARY OF ABBREVIATIONS AND NOTATION 

 
Abbreviation Meaning Section 

Defined 
AC Add capital (strategy) 4.5 
ACR Add capital (strategy) with cost of raising capital 5.4 
CE Certainty-equivalent 2.1 
CED Certainty-equivalent expected default 2.1 
CI Capitalization interval 7.3 
CW Capital withdrawal (strategy) 4.5 
EBRM Economic Basis … Risk Based Capital Measurement 1 
FA Fixed assets (strategy) 4.5 
FCC Frictional capital cost 2.2 
FR Full recapitalization (strategy) 4.5 
IFRS International Financial Reporting Standards 1 
OC Ownership capital 4.4 
SD Standard deviation 9.1 
SH Stochastic horizon 8.1 
VaR Value-at-risk 1 
TVaR Tail value-at-risk 1 

 
 

Variable Meaning Section 
Defined 

a Risk aversion parameter 4.2 
A Assets 2.1 
AR Risky asset amount 9.1 
C Capital (ownership) 4.1 
CF Capital flow 4.5 
CR Capital raised externally App. D 
D Expected default 2.1 
DR Expected default if capital is raised App. D 
E( ) Expectation operator 4.3 
EF Expected capital carried forward 5.4 
ER Expected return 9.1 
G Expected default under technical insolvency 5.1 
H Expected default for remaining periods 5.2 
i Period index 4.3 
K Expected capital cost 4.3 
KR Expected capital cost if capital is raised App. B 
L Expected loss 2.1 
M Risk margin value 8.3 
N Number of periods 4.1 
p( ) Probability density 2.1 
P( ) Cumulative probability  6.2 
q Probability of period length 8.1 
Q Default probability 2.2 
r Risk-free interest rate 8.2 
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  Market rate of return 9.1 

R Expected return on capital 8.3 
RP Risk premium 9.1 
S Solvency cost 5.2 
SR Solvency cost with capital raised externally App. D 
t Income tax rate 8.3 
T Total capital 4.4 
TR Total capital when raised externally App. D 
v Loss minus asset value 9.1 
V Consumer value 2.2 
w Cost of raising capital 5.4 
x Loss or asset size 2.1 
X Reserve increment 4.2 
Y Ratio of successive reserve amounts 4.2 
z Frictional cost of capital 2.2 

 Partial derivative operator 5.2  
 Capital increment App. B 
 Premium 2.2 
  Asset/loss correlation 9.1 
 Standard deviation 4.2 

Subscript 
 

  

a Region  2a 5.4 
A Assets 9.1 
b Region  2b 5.4 
E Ending capital 5.4 
L Losses 9.1 
M Market  
R Raising capital 5.4 
t Elapsed time 4.2 
T Total assets and losses 9.1 
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