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______________________________________________________________________________ 
Abstract: GLMs that include explanatory classification variables with sparsely populated levels assign large standard 

errors to these levels but do not otherwise shrink estimates toward the mean in response to low credibility.  
Accordingly, actuaries have attempted to superimpose credibility on a GLM setting, but the resulting methods do 
not appear to have caught on.  The Generalized Linear Mixed Model (GLMM) is yet another way of introducing 
credibility-like shrinkage toward the mean in a GLM setting.  Recently available statistical software, such as SAS 
PROC GLIMMIX, renders these models more readily accessible to actuaries.  This paper offers background on 
GLMMs and presents a case study displaying shrinkage towards the mean very similar to Buhlmann-Straub 
credibility. 
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______________________________________________________________________________ 

1. INTRODUCTION 

Generalized Linear Models (GLMs) are by now well accepted in the actuarial toolkit, but they 

have at least one glaring shortcoming--there is no statistically straightforward, consistent way of 

incorporating actuarial credibility into a GLM. 

Explanatory variables in GLMs can be either continuous or classification.  Classification variables 

are variables such as state, territory within state, class group, class within class group, vehicle use, etc. 

that take on a finite number of discrete values, commonly referred to in statistical terminology as 

“levels.”  The GLM determines a separate regression coefficient for each level of a classification 

variable.  To the extent that some levels of some classification variables are only sparsely populated, 

there is not much data on which to base the estimate of the regression coefficient for that level.  The 

GLM will still provide an estimated coefficient for that level but will assign it a large standard error 

of estimation.  In effect, the GLM warns the user to exercise considerable care in interpreting that 

coefficient but doesn’t otherwise adjust the estimated coefficient to take into account the low 

volume of data.  When faced with this situation, the natural inclination of an actuary is to shrink low 

credibility levels towards the mean, but the GLM quotes a large standard error of estimation and 

leaves it at that. 

There have been a number of responses to this unsatisfactory state of affairs.  Some actuaries 

have been known to apply an ad hoc credibility adjustment to coefficients output by a GLM.  In 

some cases this even produces results similar to those arrived at by more statistically rigorous 
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methods.  If so, then what is so wrong with the ad hoc credibility adjustment of GLM output?  First, 

we cannot guarantee the ad hoc results will always agree closely with results from those other 

methods.  Second, the statisticians who designed our GLMs were unaware we intended to subject 

GLM estimates to the violence of a subsequent round of ad hoc credibility adjustments.  If they had 

known, they might have suggested a better starting point than GLM estimates.  This gets back to the 

old issue that a sequence of steps, each optimal individually, may not be optimal in the aggregate. 

Turning to other, more statistically rigorous attempts to incorporate credibility in a GLM setting, 

it would be desirable to find a method that estimates both the GLM and the credibility adjustment in 

a single, statistically consistent step where each GLM estimation and credibility adjustment takes into 

account the fact that the other estimation process is also going on.  A number of authors have 

indeed produced models that combine GLM and credibility, for example, Nelder and Verrall (1997), 

Ohlsson and Johansson (2004 and 2006), and Ohlsson (2006).  Given the importance of the issue 

these papers address, why have these models not caught on in actuarial circles (at least not that I am 

aware)?  I might hazard two guesses.  First, their math is somewhat complex and perhaps 

intimidating.  Second, their algorithms are iterative and require a nontrivial degree of programming 

from their users. 

There are alternative statistical models, quite similar in theory to Nelder and Verrall and Ohlsson 

and Johansson, known as Generalized Linear Mixed Models (GLMMs).  Statisticians actually 

developed these models some time ago, but it has only been very recently that popular stat software 

(like SAS, R, and S-Plus) has been enhanced to provide us with the means to readily estimate these 

models.  Furthermore, it should be noted that models much like GLMMs have even been 

introduced into the actuarial literature.  See, for example, Guszcza (2008), which admittedly 

introduced these models in a reserving rather than ratemaking setting, but that paper does provide a 

good introduction and intuition regarding what is going on in the guts of a GLMM, or something 

much like a GLMM. 

I will not argue that GLMMs provide better models than Nelder and Verrall and Ohlsson and 

Johansson, but the newly available software makes it easier to implement these GLMM models. 

1.1 Objectives of This Paper 

The objectives of this paper are to: 

 Introduce Linear Mixed Effects (LME) models and their generalization to Generalized Linear 

Mixed Models (GLMMs). 
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 Show how the LME, at least when applied to simple models, can be solved in closed form 

and leads directly to shrinkage of random effects towards the mean of the form of 

Buhlmann-Straub credibility.  This motivates at least the hope that a similar shrinkage might 

be expected from a GLMM, where the math is no longer tractable in closed form. 

 Demonstrate the application of a GLMM to a case study in which the hoped-for shrinkage is 

indeed observed and does indeed approximate the form of Buhlmann-Straub credibility. 

 Demonstrate along the way (in Appendix A) SAS code that implements the GLMM. 

In one sense, the central point of the paper is Table 4 and Figure 1.  These show the shrinkage 

observed in the case study and the fact that this shrinkage is of form approximately Buhlmann-

Straub.  The reader who takes nothing else away from this paper should at least keep this Table and 

Figure in mind as motivation for wanting to learn more about GLMMs as a means of implementing 

credibility in a GLM setting in a manner very reminiscent of credibility theory they already know. 

The reader should also keep in mind what this paper is not, and the following comments are 

offered as a means to managing readers’ expectations.  What this paper is not is a general review 

article on the various means by which credibility has been incorporated into a GLM setting.  I will 

not discuss the various ad hoc credibility adjustments to GLM output alluded to earlier, nor Nelder 

and Verrall, nor Ohlsson and Johansson, nor other more overtly Bayesian or Empirical Bayes 

methods.  I will not discuss the subtle theoretical points in which Nelder and Verrall and Ohlsson 

and Johansson differ from GLMMs nor examine the differences in results produced by applying ad 

hoc credibility adjustments vs. Nelder and Verrall vs. Ohlsson and Johansson vs. GLMMs to the 

case study of this paper.  What this paper is intended to say is, “Here is one very interesting way of 

implementing credibility in a GLM setting.  It might or might not be the best from among those 

methods currently available, but it is certainly promising.  It produces credibility-like shrinkage very 

similar to credibility you, the actuary, are already familiar with.  And it has the added advantage of 

ready implementation via software only recently available.” 

This paper is also not intended to be a comparison of GLMM implementations in different stat 

packages.  SAS PROC GLIMMIX is likely to be available to many of the readers of this paper, and it 

happens to be the means I chose to implement GLMMs.  But there are also implementations in R, 

S-Plus, etc., and I don’t mean to imply that SAS PROC GLIMMIX is superior to these others. 

I leave to another, more energetic and ambitious author the task of writing the general review 

article that some readers might have been hoping for.  Indeed, I would hope that this paper serve as 
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the impetus for such a review article. 

1.2 Prerequisites 

It will be assumed that the reader is already familiar with the theory of GLMs and their 

application to actuarial problems at the level of McCullagh and Nelder (1989), Anderson et al. 

(2004), and de Jong and Heller (2008). 

1.3 Outline of Remainder of This Paper 

The remainder of this paper proceeds as follows. Section 2 will introduce the Linear Mixed 

Effects (LME) model, a simpler cousin of the GLMM, as a means of introducing many features of 

GLMMs before I discuss their complications.  Section 3 will show how, in a very simple case, 

Buhlmann-Straub credibility emerges directly from the LME model.  This is done to motivate the 

connection between GLMMs and credibility.  The LME is generalized to the GLMM in Section 4. 

Section 5 presents a case study on live ISO data for an unspecified line of business.  By 

comparing GLM and GLMM runs on essentially the same model form and same data, it is shown 

that the GLMM introduces a shrinkage of sparsely populated classification variable levels towards 

the mean.  This shrinkage is not seen in the GLM.  Furthermore, it is shown that the credibility 

implied by this shrinkage is very close to the form of Buhlmann-Straub credibility.  Section 6 

concludes.  SAS code implementing the Section 5 case study as well as a discussion of some of the 

output from that code has been deferred to Appendix A. 

2. THE LINEAR MIXED EFFECTS (LME) MODEL 

The Linear Mixed Effects model is nothing other than classical linear regression (more correctly, 

the classical general linear model) with the addition of “random” effects to the “fixed” effects 

already treated in classical linear regression.  The error distribution is assumed normal.  Expected 

values are assumed linear in explanatory variables.  In the language of GLMs, the error distribution 

in the “exponential” family is the normal distribution, and the link function is the identity function. 

Especially because it is so central to the understanding of the rest of this paper, more needs to be 

said about the distinction between “fixed” and “random” effects.  The classic fixed effect is a 

classification variable with relatively few levels, those being the only levels we are interested in.  The 

classic random effect is a classification variable with potentially many levels, only some of which 

appear in our dataset by design of the sample that produced our dataset from the overall population.  

Re random effects, the focus is frequently on the variance among the levels rather than on the values 
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of the levels themselves, which are assumed to have expectation zero.  Even when there is interest in 

the values of the levels of the random effects, the inferential algorithm that predicts those levels 

must first estimate the random effects variances.  It should also be noted that to some extent the 

distinction between fixed and random effects depends on the context of the study; the very same 

effect treated as fixed in one study might reasonably be treated as random in another, given the 

different goals of the two studies. 

Consider the following example.  Suppose you want to test the relative efficacy of a number of 

drugs, so your model includes a drug main effect.  The levels of that drug main effect test whether 

some drugs are better than others, better than a control, better than a placebo, etc. in terms of some 

response that serves as the dependent variable in your model.  You run your drug trials at a number 

of test centers.  This suggests that you include test center as another main effect in your model to 

control for possible test center differences.  If you treat test center as a fixed effect, you end up 

drawing inferences for drug main effects appropriate for those test centers but not validly extendible 

to medical centers other than those at which you ran the tests.  On the other hand, if you drew your 

test centers relatively at random from a much larger universe of possible centers, and you reflect that 

fact by treating test center as a random main effect in your model, then you end up drawing drug 

main effect inferences that can validly be extended to centers other than the ones at which you 

actually did the tests.  Quoted standard errors of the drug effects will be somewhat larger because of 

the additional uncertainty attributable to the treatment center random effect.  For further 

enrichment re random effects, see Littell et al. (2006) or any one of many texts on random or mixed 

effects models. 

The above describes the classical statistical motivation for random effects, but the actuarial 

motivation for considering random effects actually differs somewhat from this.  If we treat state, or 

territory within state, as random, is that because we want to extend our model results to states or 

territories we didn’t actually have in our data?  No, not usually.  If we want our model results to 

apply to a given state or territory, we usually include that state or territory in our data.  But the zero 

expectation of random effects models creates a natural drift towards zero when data is thin.  This 

shrinkage towards zero looks a lot like credibility with the complement of credibility being the 

overall mean, and we invoke the statistical machinery of random effects to exploit that shrinkage. 

Turning to the description of the LME model, the basic equation is: 

.eZuXY    (2.1)
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This would be the classic linear regression equation (expressed in matrix form) except for the 

additional random effects term Zu.  This is a matrix equation.  If there are n observations, Y is an n-

vector of the observed values of the dependent variable.  X is an n by p matrix, referred to as the 

model structure (or design) matrix, for the fixed effects.  If the model includes an intercept term, 

there is a column of X consisting of all ones to capture the intercept.  For each continuous 

explanatory variable, there is a column of X consisting of the values for that variable.  For each main 

effect classification variable with m levels, there are m columns of X which are indicator variables 

for membership in each of the m levels (except that certain full rank parameterizations of the model 

suppress one of the columns).  The indicator variable for the ith level takes the value one if the 

observation is indeed in that level, zero otherwise.  Interaction terms contribute more complex 

columns to X.  β is the p-vector of regression coefficients for the fixed effects.  This is not to say 

that there are a total of p fixed effect variables in the model, only that, taking into account the 

intercept and the fact that classification variables contribute multiple columns to the structure 

matrix, it requires a total of p regression coefficients to fully specify the fixed effects part of the 

model. 

Z is the n by q design matrix for the model random effects.  The columns of Z are indicator 

variables for membership in classification variable levels for those classification variables treated as 

random effects.  The q-vector u is the equivalent of β and can be thought of as the vector of 

regression coefficients for the random effects.  The n-vector e is the vector of random measurement 

errors. 

Further structure is imposed by the following assumptions.  Both u and e vectors are multivariate 

normally distributed with expectations 0.  The variance of u is a q by q matrix Var[u]=G.  The 

variance of e is an n by n matrix Var[e]=R.  The u and e vectors are assumed uncorrelated: 

Cov[u,e]=0.  The structure of G specifies the structure of correlation among the random effects.  G 

is frequently assumed diagonal or block diagonal.  Other types of correlational structure among the 

observations, such as autocorrelated time series or spatial structure, are specified through the 

structure of the R matrix.  The user will most likely specify the structure of G and R, but these 

matrices may include unknown parameters that have to be estimated as part of the LME algorithm.  

It is common to speak of G side and R side covariance structure to distinguish between correlation 

arising through random effects vs. other time series or spatial processes.  These G side and R side 

covariance structures tend to be specified in different places in the model specification syntax. 

This model structure gives rise to two relevant distributions.  (The reader is forewarned that this 
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dichotomy will become more important when the LME is generalized to the GLMM in a later 

section.)  The first is the conditional distribution, Y|u, of the dependent variable Y conditional on 

actually knowing the random effects u.  This distribution has expectation Xβ+Zu and variance R.  

The second distribution is the marginal distribution for Y not knowing the random effects, which is 

the conditional distribution integrated over the random effects.  It has expectation Xβ (because u 

has expectation 0) and variance V=Var[Zu+e]=ZGZ'+R, where Z' denotes the transpose of the Z 

matrix.  Note that the total variance V has G side and R side contributions.  In a normal world, 

where both u and e are multivariate normal, so are both the conditional and marginal distributions 

for Y, but this result need not extend to the GLMM. 

The LME is solvable in closed form via generalized least squares.  The estimator for β is BLUE, 

Best Linear Unbiased Estimator (or EBLUE, Estimated or Empirical Best Linear Unbiased 

Estimator, if the total variance matrix, V, includes unknown parameters that have to be estimated as 

part of the solution.  For a discussion of BLUE and related terms, see Littell et al. (2006)), and is 

given by 

  .ˆ 111 YVXXVX    (2.2)

 

The predictor for the random effects is the expectation of the random effects u conditional on the 

observed Y, is BLUP, Best Linear Unbiased Predictor (or EBLUP, Estimated or Empirical Best 

Linear Unbiased Predictor), and is given by 

            .ˆVar,Cov| 11 XYVZGYEYYYuuEYuE    (2.3)

 

Discussion of how the unknown parameters in V are estimated would take us too far afield, nor is it 

necessary for the following argument. 

The reader seeking further enrichment re LME models can consult such books as Littell et al. 

(2006).  This book also provides discussion of such standard statistical terminology as BLUE and 

BLUP, the distinction between estimators for fixed effects and predictors for random effects, the 

generalization from LME to GLMM, as well as numerous examples of implementations of LMEs 

and GLMMs via SAS software. 
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3. HOW BUHLMANN-STRAUB CREDIBILITY EMERGES FROM THE 
LME MODEL 

A key point of this paper is that random effects in LME and their generalization to GLMMs 

entail a credibility-like shrinkage.  This result is exact for LME and particularly easy to see in the 

following simple example. 

Let us assume that class is the only explanatory variable, so we are looking at a one-way 

ANOVA, treating the grand mean as a fixed effect and the class offsets about the grand mean as 

random effects.  We assume data has been aggregated, so there is only one observation per class, the 

class i average response yi.  Y is the vector of the yi.  Exposures for class i are wi.  X is the fixed 

effects design matrix appropriate for an intercept only model, hence a single column of identical 

ones.  β, the vector of fixed effects regression coefficients, is only a 1-vector with the single entry the 

intercept.  The random effects design matrix, Z, has columns that are indicator variables for the 

various levels of the class variable.  If we assume our observations are in class order (first 

observation in the first class, second observation in the second class, etc.), then Z is just an identity 

matrix. 

We turn next to the structure of the R side and G side variance matrices.  R is the variance of the 

random errors e.  We assume the e are independent of one another from class to class, so R is 

diagonal.  Furthermore, we assume the ith class error variance is equal to a proportionality constant 

known as the within variance, σw
2, divided by the exposure volume wi.  In other words, the error 

variance declines with increasing volume.  So R is diagonal with diagonal elements σw
2/wi.  The 

random effects u are also assumed independent from class to class, so G is also diagonal with 

diagonal elements equal to the so-called between variance σb
2.  Then the total variance matrix 

V=ZGZ'+R is also diagonal with diagonal elements 

.
2

2

i

w
bi w

V


   
(3.1)

 

We will not here address the estimation of the unknown within and between variances but treat 

them for present purposes as known.  In fact, with only one observation per class, the within 

variance may not even be estimable.  The reader should also note that by reference to “within” and 

“between variance” we have slipped into actuarial jargon; to my knowledge “within” and “between 

variance” are not common statistical terms. 
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The estimator for the grand mean becomes, with very little algebra, exploiting the many structural 

simplifications of this particular example, 
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Defining credibility as 
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equation (3.2) becomes 
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(3.4)

 

So the BLUE estimator of the fixed effects grand mean is none other than the credibility weighted 

average of the class means. 

Turning next to the prediction of the random class effects, we already know by assumption that 

the unconditional expectations of the random effects vanishes, E[u]=0, and we know the total 

variance Var[Y]=V is diagonal.  We can also show in the present case that the covariance matrix 

Cov[u,Y] is diagonal. 

     
      .0,Cov,Cov,Cov
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(3.5)

Collecting these results into the generic BLUP predictor of equation (2.3), the diagonality of the 

matrices on the right-hand side of (2.3) causes the matrix equation to collapse to a collection of 

scalar equations in which ui depends only on yi. 
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(3.6)

So the posterior predictor of the random effect represents a shrinkage of the observed class mean 

towards the fixed effects grand mean by a factor that amounts to Buhlmann-Straub credibility.  (For 

the reader needing a refresher on Buhlmann-Straub credibility, see chapter 4 of Goovaerts and 

Hoogstad (1987).)  This might give us reason to hope that a similar result might hold at least 

approximately when LME is generalized to GLMM. 

4. GENERALIZATION OF LME TO THE GENERALIZED LINEAR 
MIXED MODEL (GLMM) 

For actuarial applications, the most restrictive assumptions in the LME model are that errors are 

normally distributed and that expected values are linear in explanatory variables.  We already know 

how much power is gained by generalizing the classical linear model to the GLM and would hope 

for a similar gain in power on applying similar generalizations to the LME model. 

 In the notation of the previous section, the conditional distribution Y|u is now assumed to be in 

the exponential family rather than normal.  Recall that the normal is a special case of the 

exponential family. 

 Rather than assuming the conditional expectation linear in explanatory variables, we assume 

there is at least a link function g such that the g transform of the conditional expectation is 

linear: g(E[Y|u])=Xβ+Zu.  Note that the identity link is a special case of this assumption. 

 We still assume u multivariate normal with mean 0, variance matrix G, and uncorrelated with the 

random measurement error Y-E[Y|u]. 

The resulting model is the Generalized Linear Mixed Model (GLMM).  Because the normal 

distribution is a special case of the exponential family, and the identity link is a special case of a more 

general link function, the LME model is a special case of the more general GLMM. 

However, there are a number of important features of the LME model that do not carry over to 

the GLMM.  One of them has to do with marginal distributions.  In LME, the conditional 

distribution Y|u is normally distributed.  So is u.  The marginal distribution Y, being the integration 

of Y|u over u, is also normal.  This does not always extend to the GLMM.  Y|u is distributed in the 
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exponential family.  The random effect u is still assumed normally distributed.  But the marginal 

distribution Y may not even be in the exponential family.  Keep that in mind as you interpret 

GLMM output. 

A second complication is that GLMM equations are not usually solvable in closed form.  Instead, 

there are iterative solution algorithms, much as for the GLM.  As a further consequence, there is no 

closed form algebra producing Buhlmann-Straub credibilities as we observed above in the LME 

case.  But we can compare a GLM and a GLMM run on the same data and essentially the same 

model form to find evidence of shrinkage in the GLMM not present in the GLM.  By plotting this 

shrinkage against measures of volume, we find evidence that the shrinkage is fit closely by credibility 

of Buhlmann-Straub form.  This is demonstrated in the case study of the next section of this paper. 

5. A CASE STUDY 

5.1 Structure of the Problem 

This case study is based on live, not simulated, ISO data.  I have masked both line of business as 

well as names of potential explanatory variables to preserve ISO’s intellectual property.  The 

dependent variable being modeled is experience ratio, the ratio of observed losses to expected losses 

under the current rating plan, the latter denoted as ALCCL.  The data are not at the level of 

individual risks but rather aggregated into cells defined as crossings on all relevant explanatory 

variables, producing about 300,000 cells.  As a consequence, some cells contain only a few risks; 

others contain thousands.  One might therefore expect choice of proper weights to be important.  

Classical actuarial reasoning would lead us to expect, just as in the case of loss ratios, that the 

variance of experience ratios be inversely proportional to volume.  In other words, the weights 

should be some measure of volume of business.  I tested a number of possible weights and observed 

the best weight diagnostics when I used ALCCL as weights. 

Before delving further into detail, we might fruitfully give some brief thought to what it means to 

model on experience ratios as the dependent variable.  The denominator of the experience ratio is in 

effect the current rating plan.  If the current rating plan is entirely adequate, we would expect to see 

no statistically significant evidence of structure in the experience ratio across the explanatory variable 

space, so any statistically significant evidence of structure is evidence for changes to the current 

rating plan, and the model parameters indicate the degree of change. 

I limited the case study model to four explanatory variables so as not to swamp the case study 

with too much detail.  The variable of primary interest is a classification variable, CLASS1, with 
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twelve levels.  Some of these levels are sparsely populated, and we will therefore want to treat 

CLASS1 as a random effect in a GLMM so as to shrink those levels towards the grand mean.  There 

are two other classification variables, COVARIATE1 and COVARIATE2, each with four levels, 

which we will treat as fixed effects.  There is also a continuous variable, COVARIATE3. 

By default, SAS encodes classification variable effects in linear models (and their generalizations, 

such as GLM and GLMM) as contrasts between each level and the last level in the list for that 

variable.  So, for each of CLASS1, COVARIATE1, and COVARIATE2, I have selected a well-

populated level to serve as the base level for that variable and recoded it to “9” or “99” to force it to 

the end of the list of levels for that variable.  This means that all contrasts will be expressed relative 

to stable bases. 

Note that we are not modeling frequency and severity separately but rather their joint impact on 

experience ratio.  We therefore need a distribution with positive mass at zero (to capture those cells 

with no loss) as well as a continuous density on the positive reals to capture cells with loss.  It has 

recently become popular to model such cases with a Tweedie distribution with exponent p between 

1 and 2.  An exponent p=1.67 is a popular choice, and that is what I have chosen for the present 

case study. 

Finally, we assume the ever-popular natural log link so as to yield a multiplicative model. 

5.2 The GLM 

The GLM model as summarized above was estimated via SAS PROC GENMOD.  Further detail 

re code, etc. is deferred to Appendix A.  The resulting parameter estimates from that model are 

summarized in the following Table 1. 
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Table 1 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter  DF Estimate 
Standard 

Error
Wald 95% 

Confidence Limits 
Wald Chi-

Square Pr > ChiSq

Intercept  1 -0.2963 0.0329 -0.3608 -0.2317 80.96 <.0001

class1 01 1 0.3346 0.0413 0.2538 0.4155 65.78 <.0001

class1 02 1 0.2585 0.1674 -0.0696 0.5865 2.38 0.1225

class1 03 1 0.3056 0.0463 0.2149 0.3963 43.59 <.0001

class1 04 1 -0.1181 0.0774 -0.2697 0.0335 2.33 0.1267

class1 05 1 0.4388 0.1278 0.1882 0.6894 11.78 0.0006

class1 06 1 0.2196 0.0487 0.1242 0.3149 20.36 <.0001

class1 07 1 0.4695 0.0885 0.2960 0.6430 28.12 <.0001

class1 08 1 0.4268 0.0928 0.2449 0.6086 21.15 <.0001

class1 10 1 0.2978 0.0708 0.1591 0.4366 17.71 <.0001

class1 11 1 -0.1779 0.1198 -0.4126 0.0569 2.20 0.1376

class1 13 1 -0.0423 0.1865 -0.4077 0.3232 0.05 0.8207

class1 99 0 0.0000 0.0000 0.0000 0.0000 . .

covariate1 2 1 0.0704 0.0367 -0.0014 0.1423 3.69 0.0548

covariate1 3 1 -0.0507 0.0840 -0.2152 0.1139 0.36 0.5460

covariate1 4 1 -0.3958 0.1005 -0.5927 -0.1989 15.52 <.0001

covariate1 9 0 0.0000 0.0000 0.0000 0.0000 . .

covariate2 3 1 -0.1554 0.0531 -0.2595 -0.0514 8.57 0.0034

covariate2 4 1 -0.0778 0.0406 -0.1574 0.0019 3.66 0.0557

covariate2 5 1 0.0617 0.1423 -0.2172 0.3407 0.19 0.6646

covariate2 9 0 0.0000 0.0000 0.0000 0.0000 . .

covariate3  1 -0.3652 0.0697 -0.5019 -0.2285 27.42 <.0001

Scale  0 670.2088 0.0000 670.2088 670.2088  

Note first that CLASS1 level 99, COVARIATE1 level 9, and COVARIATE2 level 9 all have 0 

degrees of freedom (DF) and 0.0000 estimates and standard errors of those estimates, because these 

are the base levels for their respective classification variables, are therefore pegged at 0.0000, and all 

other levels are expressed as contrasts off these.  Second, some of the CLASS1 levels have much 

larger standard errors than others.  These are the poorly populated levels most in need of credibility 

treatment.  More will be said about the Scale parameter in Appendix A. 



Generalized Linear Mixed Models for Ratemaking 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 14 

© Copyright 2010 ISO.  All Rights Reserved. 

5.3 The GLMM 

Now it is desired to give CLASS1 a credibility treatment, so the GLMM model as summarized 

above was estimated via SAS PROC GLIMMIX, treating CLASS1 as a random effect.  Again, 

further detail re code, etc. is deferred to Appendix A, but considerably more detail is provided for 

the GLMM relative to the GLM, given that the primary focus of this paper is on GLMMs. 

Table 2 displays the resulting fixed effects parameter estimates and Table 3 the random effects 

parameter estimates, specifically for the CLASS1 variable. 

Table 2 

Solutions for Fixed Effects 

Effect covariate1 covariate2 Estimate
Standard 

Error DF t Value Pr > |t|

Intercept   -0.08888 0.06507 11 -1.37 0.1993

covariate1 2  0.07203 0.03666 312E3 1.96 0.0494

covariate1 3  -0.04689 0.08411 312E3 -0.56 0.5772

covariate1 4  -0.3965 0.1006 312E3 -3.94 <.0001

covariate1 9  0 . . . .

covariate2  3 -0.1547 0.05310 312E3 -2.91 0.0036

covariate2  4 -0.07826 0.04070 312E3 -1.92 0.0545

covariate2  5 0.05959 0.1421 312E3 0.42 0.6749

covariate2  9 0 . . . .

covariate3   -0.3643 0.06961 312E3 -5.23 <.0001

These estimates are quite similar to those from the GLM (compare Tables 1 and 2) with the 

exception of the intercept.  This is because CLASS1 is treated as a fixed effect in the GLM, centered 

about its level 99, and is treated as a random effect in the GLMM, centered about a mean value of 

approximately 0.  The different centering of CLASS1 between GLM and GLMM results in 

offsetting adjustments to the intercepts in the two models.  Standard errors of the fixed effects are 

also quite similar between the two models. 
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Table 3 

Solution for Random Effects 

Effect class1 Estimate
Std Err 

Pred DF t Value Pr > |t| 

class1 01 0.1241 0.06917 312E3 1.79 0.0729 

class1 02 0.03040 0.1334 312E3 0.23 0.8198 

class1 03 0.09508 0.07121 312E3 1.34 0.1818 

class1 04 -0.2898 0.08770 312E3 -3.30 0.0010 

class1 05 0.1674 0.1161 312E3 1.44 0.1492 

class1 06 0.01150 0.07222 312E3 0.16 0.8735 

class1 07 0.2229 0.09499 312E3 2.35 0.0190 

class1 08 0.1836 0.09723 312E3 1.89 0.0589 

class1 10 0.08142 0.08468 312E3 0.96 0.3363 

class1 11 -0.2876 0.1106 312E3 -2.60 0.0093 

class1 13 -0.1349 0.1391 312E3 -0.97 0.3322 

class1 99 -0.2040 0.06847 312E3 -2.98 0.0029 

Note that there is no preferred base level; a parameter is quoted for every level, and the parameters 

appear to be approximately mean zero. 

5.4 Inferred Credibility 

We now extract the CLASS1 credibilities implicit in the GLMM by comparing the CLASS1 

parameter output from the GLMM to that from the GLM.  We do this in the following Table 4. 
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Table 4 

Inferred Credibility 

            

   Fixed Effects  Random Effects  (9) 

   (3)  (5)  (6)  (8)  Inferred 

(1) (2)  Class1 (4) Class1  Class1 (7) Class1  Class1 

Class1 ALCCL  Effect exp(effect) Relativity  Effect exp(effect) Relativity  Credibility 

01 484,185,185  0.3346 1.3974 1.1417  0.1241 1.1321 1.1399  0.9877 

02 16,832,999  0.2585 1.2950 1.0580  0.0304 1.0309 1.0380  0.6545 

03 359,748,011  0.3056 1.3574 1.1090  0.0951 1.0998 1.1073  0.9845 

04 103,293,336  -0.1181 0.8886 0.7260  -0.2898 0.7484 0.7536  0.8994 

05 27,864,645  0.4388 1.5508 1.2671  0.1674 1.1822 1.1904  0.7129 

06 324,592,379  0.2196 1.2456 1.0176  0.0115 1.0116 1.0185  1.0506 

07 60,941,612  0.4695 1.5992 1.3066  0.2229 1.2497 1.2583  0.8426 

08 55,682,170  0.4268 1.5323 1.2519  0.1836 1.2015 1.2098  0.8328 

10 108,633,028  0.2978 1.3469 1.1004  0.0814 1.0848 1.0923  0.9190 

11 39,019,053  -0.1779 0.8370 0.6839  -0.2876 0.7501 0.7552  0.7742 

13 15,101,361  -0.0423 0.9586 0.7832  -0.1349 0.8738 0.8798  0.5542 

99 664,914,612  0.0000 1.0000 0.8170  -0.2040 0.8155 0.8211  0.9777 

 2,260,808,391   1.2240 1.0000   0.9932 1.0000   

 

Fixed effect parameter estimates (from GLM) are tabulated in column (3), random effect 

parameter estimates (from GLMM) in column (6).  But these parameters reside in the space of the 

linear predictor.  To put them in the scale of the original observations, we invert the log link in 

columns (4) and (7).  As already noted, the fixed effect parameters are expressed as contrasts to level 

99, which was chosen for its volume, and hence stability, rather than for its being relatively centered 

among the levels.  So we would not expect the mean of fixed parameters to be near 0, nor the mean 

of their exponentials to be near 1, and indeed they are not.  Dividing the column (4) exponentials by 

their mean (weighted on ALCCL) produces relativities relative to a mean relativity of 1 in column 

(5).  Due to the manner in which they were predicted, the random effect parameters are far closer to 

mean 0, but we still adjust column (7) to a mean relativity of 1 in column (8). 

The column (5) and column (8) relativities are now directly comparable.  If credibility is implicit 

in a GLMM, the column (8) random effect relativities should have shrunk towards 1 relative to the 

column (5) fixed effect relativities.  Defining inferred credibility as column (9) = (column (8) - 

1)/(column (5) - 1), the evidence is there.  Furthermore, plotting these inferred credibilities against 
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ALCCL reveals evidence of declining credibility with declining volume.  (See Figure 1.  The two 

curves will be discussed in the next subsection of this paper.) 

Figure 1 
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One anomaly clearly stands out, CLASS1 level 06, for which the credibility is considerably in 

excess of 1.000.  If we examine Table 4, we find that, for level 06, both fixed and random effect 

relativities are so close to 1.000 that even small errors or distortions in those relativities are 

magnified in the ratio that defines the inferred credibility.  Among possible sources of error in the 

credibilities could be the fact that the renormalization of relativities to a mean of 1.0000 from 

column (3) to (5) and from column (6) to (8) in Table 4 introduces correlations among the CLASS1 

level parameters not present in the output from the GLM and GLMM. 
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5.5 Inferred Credibility Is Approximately in Buhlmann-Straub Form 

Are the above credibilities in approximately Buhlmann-Straub form 

kw

w
c


  

(5.1)

 

where c is credibility, w is a volume measure, and k is a constant?  The trick is to determine k.  If we 

assume Buhlmann-Straub form, then we can rework equation (5.1) into the following form: 

w

k

c
1

1
 

(5.2)

 

This suggests we define a dependent variable equal to the reciprocal of our inferred credibilities 

minus 1 and regress this against an explanatory variable equal to reciprocal ALCCL in a regression 

through the origin (no intercept).  The resulting regression coefficient would be our desired k.  

Applying this program to our Table 4 results, we find a k of 10.8 million (dollars).  This regression is 

a simple, unweighted one.  One could perhaps argue whether a weighted regression would be more 

appropriate, but this first approximation should suffice. 

One can alternatively estimate k from certain parameters in the GLMM output.  Appendix B 

derives a value of 11.5 million, in close agreement with the 10.8 million from the above regression. 

Returning to expression (5.1) we substitute ALCCL for w and the two estimates for k, and plot 

the two resulting curves on Figure 1.  The two curves are very close to each other and fit the 

inferred credibilities quite nicely.  One may conclude that the implicit GLMM credibilities, at least 

for this case, are close to Buhlmann-Straub form. 

6. SUMMARY AND CONCLUSIONS 

GLMs signal, by quoting large standard errors, uncertain estimates for sparsely populated levels 

of classification explanatory variables, but they do not also adjust those estimates closer to the mean 

in response to low credibility.  As a consequence, actuaries have desired for some time to introduce 

credibility into a GLM setting.  There have been various attempts, both ad hoc and statistically 

rigorous, but none appear to have become popular, for reasons not always obvious. 

The Generalized Linear Mixed Model (GLMM) provides yet another means of introducing 

credibility-like shrinkage into a GLM setting.  Recently available statistical software, including SAS 

PROC GLIMMIX as well as new R and S-Plus functions, brings these models within reach of 
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actuaries. 

This paper first introduced the reader to the Linear Mixed Effects (LME) model, a simpler cousin 

of the GLMM, as a means of introducing issues important for GLMMs but in a less complex 

environment.  It was shown how Buhlmann-Straub credibility falls directly out of the LME math, at 

least for a simple case.  The LME was then generalized to the GLMM, and a case study 

demonstrated how to use GLMM software and showed that the GLMM preserved shrinkage to the 

mean in a form at least approximating Buhlmann-Straub credibility. 

It is hoped that this paper will give actuaries sufficient knowledge, incentive, and courage to 

experiment with GLMMs in their next GLM project.  New software, such as SAS PROC 

GLIMMIX, provides them the means to do this. 
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Appendix A: SAS Implementation of the GLM and GLMM of the Case Study: Additional 
Detail 

I have included this appendix for those readers who would like more detail on how to implement 

the GLMM of the case study in at least one stat package.  This is not to imply that the SAS 

implementation of GLMMs is better than others, only that SAS is the package I chose.  There are 

implementations of GLMM in R and S-Plus as well as other stat packages. 

The reader should recall the model basics.  The dependent variable is EXPRATIO, or experience 

ratio, assumed Tweedie distributed with exponent p equal to 1.67.  Explanatory variables are 

classification variables CLASS1, COVARIATE1, and COVARIATE2, as well as the continuous 

variable COVARIATE3.  CLASS1 is treated as a fixed effect in the GLM and a random effect in the 

GLMM.  All other explanatory variables are treated as fixed effects in both the GLM and the 

GLMM.  The regressions are weighted on ALCCL, a measure of business volume in each record.  

The link is log. 
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A.1 The GLM 

The SAS code for the GLM is as follows: 

PROC GENMOD DATA=INDATA;  
 P=1.67;          
 Y=_RESP_;            
 A=_MEAN_;            
 VARIANCE BAR=A**P;    
 DEVIANCE DEV=2*((Y**(2-P)-Y*A**(1-P))/(1-P)-(Y**(2-P)-A**(2-P))/(2-P)); 
CLASS CLASS1 COVARIATE1 COVARIATE2;                            
WEIGHT ALCCL;                                                      
MODEL EXPRATIO= CLASS1 COVARIATE1 COVARIATE2 COVARIATE3/ 
 LINK=LOG SCALE=PEARSON;   
RUN; 

SAS PROC GENMOD does not naturally support the Tweedie distribution, but it does support a 

facility to allow users to specify their own distributions (by specifying both a variance and a deviance 

function for their distribution of choice).  Lines 2 through 7 of the above code are what specify the 

Tweedie.  The SCALE=PEARSON option in the MODEL statement is also important.  The 

variance law for the Tweedie (which specifies the functional form of the observation variances) is 

Var[y]=φμp/w, where y is the observation, μ is the fitted value, p is the Tweedie exponent, w is the 

weight, and φ is the so-called dispersion coefficient.  We are here telling the GLM to use a Pearson 

chi-squared estimator of the dispersion coefficient rather than assuming it equal to 1.  The 

dispersion coefficient is fundamental, because it is the basis for the standard error estimates of the 

GLM coefficients.  The Scale parameter of Table 1 of this paper is the square root of the estimated 

dispersion coefficient, and, at 670, is certainly quite far from 1. 

A.2 The GLMM 

Now we want to give CLASS1 a credibility treatment.  The following code fits a GLMM to the 

same data to which we previously fit a GLM, and with as much of the same model form as before as 

possible, with the exception that CLASS1 is now treated as a random effect. 

PROC GLIMMIX MAXOPT=50 PCONV=.000015 DATA=INDATA;  
 _VARIANCE_=_mu_**1.67;    
CLASS CLASS1 COVARIATE1 COVARIATE2;                            
WEIGHT ALCCL;                                                      
MODEL EXPRATIO= COVARIATE1 COVARIATE2 COVARIATE3/ LINK=LOG SOLUTION; 
RANDOM CLASS1/ SOLUTION; 
RANDOM _RESIDUAL_; 
RUN; 

Because a secondary purpose of this paper is to convince the reader that GLMMs are now within 

reach of actuaries via currently available software, we will spend more time on this code and its 
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resulting output than we did on the prior GLM.  First, technically, GLIMMIX doesn’t fit a 

maximum likelihood but rather a maximum pseudo-likelihood.  This means that, although you still 

need to specify the variance law of the Tweedie distribution (see line 2 of the code), you do not also 

need to specify a deviance function.  Had you been interested in one of the distributions supported 

by GLIMMIX rather than the user-defined Tweedie, just as in GENMOD you would have specified 

that distribution via a DIST= option in the MODEL statement. 

The MODEL statement specifies the fixed effects part of the model (and an option to the 

MODEL statement specifies the optional R side of the variance model).  The random effects, which 

determine the G side of the variance model, are specified by the RANDOM statements.  PROC 

GENMOD automatically gives you tables of parameter estimates and their standard errors, but, if 

you want those from PROC GLIMMIX as well, you have to ask for them via the SOLUTION 

options in the MODEL statement (for the fixed effects regression parameters) and in the 

RANDOM statement (for random effects regression parameters). 

The RANDOM _RESIDUAL_ statement is crucial.  GLIMMIX estimates a dispersion 

coefficient only for non-user-defined distributions, and even then only for those with a dispersion 

coefficient in their definition; otherwise, GLIMMIX pegs the dispersion coefficient at 1.000 by 

default.  The RANDOM _RESIDUAL_ statement is the way in which you force GLIMMIX to still 

estimate the dispersion coefficient for user-defined distributions. 

Lastly, note the MAXOPT and PCONV options in the PROC GLIMMIX statement.  By default, 

GLIMMIX attempts 20 iterations of a certain outer iteration (the fact that there is also an inner 

iteration will be noted momentarily) before giving up.  Furthermore, it determines model 

convergence when the percentage change of certain parameters from one iteration to the next is less 

than about 10-8.  The case study data was sufficiently volatile that the algorithm was never able to 

attain this high standard, but, by examining iteration history details, it was found that convergence 

could be achieved with a slightly relaxed standard of 50 iterations specified by the MAXOPT option 

and a convergence criteria of 1.5x10-5 specified by the PCONV option. 

Before discussing GLIMMIX output, I will sketch an outline of what GLIMMIX is actually 

doing when it estimates the model, as this will aid interpretation of subsequent output.  Unlike other 

familiar SAS model-building PROCs, GLIMMIX does not build models on the original data but 

rather on pseudo-data.  At the beginning of each iteration, it constructs new pseudo-data by 

linearizing the original data about the expected values from the prior iteration.  It then maximizes 

the pseudo-likelihood on that pseudo-data.  It should also be noted that the iteration referred to 
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here is the outer iteration. 

The algorithm doesn’t even solve simultaneously for the variance components (the unknown 

parameters of the total variance matrix V) and the fixed and random effects parameters.  Rather, it 

starts the iteration with a pseudo-likelihood that is a function of variance components, fixed effects, 

and the dispersion coefficient and is able to adjust out (“profile” out) the fixed effects and 

dispersion coefficient to produce an objective function that is a function of just the variance 

components.  It then enters an inner iteration to optimize this modified objective function over just 

the variance components.  Armed with estimates of the variance components from the inner 

iteration it then estimates fixed effects and predicts random effects, then returns to the outer 

iteration for another pass through, starting with producing the next pseudo-data set, and so on until 

convergence.  Although we will not examine an iteration history table output by our GLIMMIX run, 

if you were to examine such a table, you would note reference to iterations, restarts, and 

subiterations, which hints at the structure of inner iterations (subiterations) nested within outer 

iterations mentioned above. 

Turning to the output of the above SAS PROC GLIMMIX code, following a first table that 

summarizes the dataset, the dependent variable, the assumed distribution, the link function, the 

weights, and a few other model assumptions, there are tables of additional model dimensions, shown 

as Tables 5 and 6, that are highly useful for checking that the model estimated is the one the user 

intended to estimate, and that there hasn’t been some misinterpretation through some syntax error. 

 
Table 5 

Dimensions 

G-side Cov. Parameters 1

R-side Cov. Parameters 1

Columns in X 10

Columns in Z 12

Subjects (Blocks in V) 1

Max Obs per Subject 312131

Table 5 is crucial for verifying that GLIMMIX correctly interpreted our model specification.  We 

did indeed want one G side parameter to be estimated, the between variance for the CLASS1 

random effect.  We did indeed want one R side variance parameter, the dispersion coefficient.  

There should indeed be ten columns in the fixed effects design matrix, one for the intercept term, 
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four for each of COVARIATES 1 and 2, and one for COVARIATE 3.  There should indeed be 

twelve columns in the random effects design matrix because CLASS1 has twelve levels. 

Table 6 

Optimization Information 

Optimization Technique Dual Quasi-Newton 

Parameters in Optimization 1 

Lower Boundaries 1 

Upper Boundaries 0 

Fixed Effects Profiled 

Residual Variance Profiled 

Starting From Data 

Table 6 reminds us that the inner iteration does indeed profile out both fixed effects and the 

dispersion coefficient (Residual Variance), and optimization is only over the remaining G side and R 

side variance components, in this case, over the single unknown parameter of the between variance 

of the CLASS1 random effect.  Hence the optimization is only over one parameter.  Because this 

parameter represents a variance, it is bounded below by zero, hence the reference to one lower 

boundary.  But it is unbounded above. 

Table 7 displays the resulting estimated variance component parameters. 

Table 7 

Covariance Parameter Estimates 

Cov Parm Estimate
Standard 

Error

class1 0.04050 0.02095

Residual (VC) 449268 1137.28

As already noted, only two parameters were requested, the between variance of the CLASS1 random 

effect and the dispersion coefficient (Residual).  The dispersion coefficient is in close agreement 

with that from the previous GLM.  (Recall that the GLM dispersion coefficient is the square of the 

Scale parameter in Table 1: 6702 = 448,900.)  The CLASS1 between variance is about .04.  Its square 

root of about .2 (interpretable as approximately 20% because of the log link and because the random 

effects reside in the space of the linear predictor, in other words, in the logged space) indicates that 

levels of the CLASS1 variable fall a few tens of percent above and below the grand mean.  This 

seems reasonable. 
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Following these tables presented above the SAS output provides fixed effects and random effects 

parameters already presented and discussed as Tables 2 and 3 of this paper.  The reader seeking 

further detail is referred to the SAS PROC GLIMMIX online manual. 

 

Appendix B: Inferring a Buhlmann-Straub k Parameter from GLIMMIX Output 

Buhlmann-Straub credibility is of the form of equation (5.1).  The k parameter in that equation is 

frequently written as a ratio of within variance to between variance, which is how it appears in 

equation (3.3).  Can we read from our GLIMMIX output the numbers we would need to estimate 

within and between variance, and hence the k parameter?  Yes, but the reader is forewarned that the 

following is not a strict derivation but rather a plausibility argument.  It should be enough to support 

the approximate magnitude of the k parameter but not its precise value. 

First, if one studies derivations of Buhlmann-Straub credibility (see chapter 4 of Goovaerts and 

Hoogstad (1987)), one finds that what is referred to as the within variance is actually the 

proportionality constant in the relationship: observation variance proportional to reciprocal weights.  

Recall the Tweedie variance law: Var[y]=φμp/w, where φ is the dispersion coefficient, μ the expected 

value of y, p the Tweedie exponent, and w the weight.  Strictly speaking, the numerator of this law is 

not a constant because μ is not, being a function of explanatory variables.  Nevertheless, it might be 

reasonable to equate the within variance in the Buhlmann-Straub k to φ<μ>p, where <μ> is mean 

expectation. 

Next, the variance component indicated by GLIMMIX for the classification variable in question 

is almost the desired between variance, except that it is measured in the space of the linear predictor, 

where the random effects live, and not in the original scale of the observations, as needed for the 

Buhlmann-Straub k.  We just have to back-transform via the inverse link function, invoking the 

following approximation: Var[g(x)]≈g'(E[x])2Var[x].  In other words, the variance of the g transform 

of x is approximately the variance of x times the square of the derivative of g evaluated at mean x.  

Here, x is the linear predictor, Var[x] is the variance component from GLIMMIX, g is the inverse 

log link, in other words, the exponential.  Its first derivative is also the exponential.  E[x] is the mean 

linear predictor.  The exponential (the inverse link) of the mean linear predictor is approximately 

<μ>.  Then the between variance we seek is approximately <μ>2 times the variance component. 

Now, we assumed the Tweedie exponent p to be 1.67.  The GLIMMIX output tells us the 

dispersion coefficient φ is 449,000 and the CLASS1 variance component is .0405.  GLIMMIX 

doesn’t tell us, but we know from other checks of our dataset that <μ> is approximately .9, in which 
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