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Loss Simulation Model Testing and Enhancement 

Kailan Shang FSA, CFA, PRM, SCJP 

______________________________________________________________________________ 
Abstract. This paper is a response to the Casualty Actuarial Society’s call for papers on the topic of “Testing 
Loss Reserving Methods, Models and Data Using the Loss Simulation Model.” Its goal is to test and improve 
the Loss Simulation Model (LSM). The testing methods used are good sources for analyzing real claim data. A 
two-state regime-switching feature is also built into the model to add an extra layer of flexibility to describe 
claim data. 
Motivation. The testing and enhancement of the Loss Simulation Model helps improve and refine the model. 
The test method may also be a good reference for performing tests on real claim data. 
Method. Statistical tests are applied to the data simulated by the Loss Simulation Model. Standard distribution 
fitting methods such as maximum likelihood estimation are used to analyze real claim data. The open-source 
software LSM is enhanced via programming in Visual Basic. 
Results. The LSM is enhanced with two-state regime-switching capability. Testing of the Loss Simulation 
Model according to the list suggested by the Loss Simulation Model Working Party is conducted. It shows the 
consistency between model input and model output for the addressed issues except case reserve adequacy. 
Conclusions. Categorical variable and two-state regime-switching capability are added to the LSM. Testing of 
the LSM increases the confidence in the accuracy of this advanced and useful tool. 
Keywords. simulation model; loss reserving; regime-switching; copula. 
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1. INTRODUCTION 

This paper is a response to a call for papers by the Casualty Actuarial Society (CAS) on “Testing 

Loss Reserving Methods, Models and Data Using the Loss Simulation Model.” 

 1.1 Research Context 

The loss simulation model (LSM) is a tool created by the CAS Loss Simulation Model Working 

Party (LSMWP)1 to generate claims that can then be used to test loss reserving methods and 

models.2 The LSMWP paper suggests some model enhancement and additional tests of the LSM.3 

Based on the suggested list, additional tests are performed on the simulated results to test the 

correlation, severity trend, negative binomial distribution for frequency, and case reserve adequacy 

distribution. Real claim data are used to fit into distributions to determine parameters in LSM. The 

model is also enhanced by allowing a two-state regime-switching distribution model for both 

frequency and severity. 

1.2 Objective 

A. Model Testing 

1. Frequency distribution testing 

Test the Negative Binomial frequency distribution using various goodness-of-fit testing 

methods. 

2. Test correlation 

Test the frequency correlation between different lines for other copula types in addition to the 

normal copula: Frank, Gumbel, Clayton, and T copula. Those types of copulas are very important 

to capture the tail risk while the normal copula that has been tested by LSMWP assumes a linear 

correlation behavior. 

Test the correlation between report lag and size of loss under a normal copula. 

3. Severity trend and Alpha testing 

Apply time series analysis techniques to find the trend and alpha parameters from simulated 

                                                           
1 For more information about LSM and LSMWP, please visit http://www.casact.org/research/lsmwp. 
2 CAS Loss Simulation Model Working Party Summary Report,. pages 4-5, 
3 CAS Loss Simulation Model Working Party Summary Report, page 33, The paper addresses the first suggestion about 
model enhancement and tests 1, 2, 3, 5 of the LSM in the suggestion list. 
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data and compared with parameter inputs to check the statistical credibility. Ordinary least square 

(OLS) method and hypothesis testing are applied to the deterministic time trend model. 

4. Case Reserve Adequacy 

A 40% time point case reserve adequacy distribution is tested against simulation model input. 

B. Real Data and Simulated Data 

Marine claim data are used to fit the distribution for frequency and severity using Maximum 

Likelihood Estimation (MLE) and OLS for trend and seasonality analysis. The correlation between 

different lines is also estimated. The estimated distribution type and parameters can then be input 

into Loss Simulation Model (LSM) for simulation and further testing of different reserve methods. 

This illustrates how to use real data to determine inputs for the LSM. Unfortunately, only final claim 

data are available and there is no detailed paid loss history. Therefore, the Meyers’ Approach4 is not 

applied to test rectangles generated by the simulation model against those from the real data due to 

the missing details. 

C. Model Enhancement 

A categorical variable is included to enable setting parameters/distribution type for different 

states. A two-state regime-switching flexibility is then built in to enable moving from one state to the 

other state. The transition matrix of states from one period to another is an input table in the user 

interface. Hopefully, this can add the flexibility to mimic the underlying cycle we normally see in 

P&C business. The enhancement is intended for frequency and severity distribution. The simulated 

results based on this enhancement are also tested. 

1.3 Outline 

The remainder of the paper proceeds as follows. Section 2 will discuss the methodology and 

results of testing LSM. Section 3 will fit real claim data to distribution and determine trend 

parameters which are inputs for LSM. Section 4 will present the enhancement being made for the 

LSM. Section 5 will discuss the conclusion and potential further improvement of the LSM. 

2. MODEL TESTING 

The LSM is used to simulate claim and transaction data for testing. Once the simulator is run 

                                                           
4 CAS Loss Simulation Model Working Party Summary Report, pages. 7-8. 
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with specified parameters, the relevant R code in Appendix A is applied to the claim file and 

transaction file output from LSM. Running R code, process output data and apply statistical tests. A 

conclusion based on the statistical test results is then drawn for the addressed issues. 

2.1 Negative Binomial Frequency Distribution 

This test is to check if the simulated frequency result is consistent with the LSM input parameters 

for negative binomial distribution.5 

Test Parameters: 

 One Line with annual frequency Negative Binomial (size = 100, probability = 0.4)  

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

 Accident Year: 2000 

 Random Seed: 16807  

 # of Simulations: 1000 

Firstly, we draw a histogram of the simulated frequency data to give an indication of the 

distribution type. 

                                                           
5 Negative Binomial Distribution: “A discrete probability distribution of the number of successes in a sequence of 
Bernoulli trials before a specified (non-random) number r of failures occurs.”  

probability mass function as kr pp
k

rk








 
)1(

1  p: probability of success, k: number of successes. 

More details can be found at http://en.wikipedia.org/wiki/Negative_binomial_distribution. 
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Figure 1. Histogram of simulated frequency data (Negative Binomial) 

Histogram of observed data

dataf1

F
re

qu
en

cy

100 120 140 160 180 200

0
50

1
00

1
50

2
00

 
A QQ plot would also be a straightforward way to compare the simulated results with the 

intended distribution – Negative Binomial (Size = 100, probability = 0.4). From Figure 2, we can see 

that it is a good fit although the expected frequency distribution in the LSM has a slightly longer tail 

than the simulated results. 

Figure 2. QQ Plot – Simulated results vs. Negative Binomial (size = 100, prob. = 0.4) 
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Goodness-of-fit test using Pearson’s Chi-squared statistic is performed. The results disallow 

rejecting the null hypothesis that the simulated frequency follows negative binomial distribution. 

Goodness-of-fit test for nbinomial distribution 
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 X^2 df P(> X^2) 

Pearson 197.3816 205 6.360712e-01 

In addition, using maximum likelihood (ML) method to fit the negative binomial distribution and 

calculate the likelihood ratio statistics implies the same conclusion. 

Goodness-of-fit test for nbinomial distribution 

 X^2 df P(> X^2) 

Likelihood Ratio 113.3462 94 0.08499854 

Using ML method gives us an estimation of the parameters as follows: 

 size mu 

Estimation 117.2378284 144.1840000 

Standard deviation 9.5150285 0.5670163 

Our LSM inputs (size = 100 and prob = 0.4) imply mu = 150 and variance = 375. The estimated 

value gives us size = 117 and prob = 0.448. The variance is 321.5. Here prob = size/(size+mu) and 

variance = mu + mu2/size.6 

We can see that at the significance level of 5%, the confidence interval for size is (98.59, 135.89) 

which includes the model input size = 100. The mean and variance of the model input and 

simulated results are also not too far away. Those results together with the goodness-of-fit tests 

indicate that simulated frequencies are consistent with the negative binomial distribution. 

2.2 Correlation 

In LSM, there are two places where correlation can be built between variables. One is the 

correlation between frequencies of different product lines. The other is the correlation between 

claim size and report lag. The method of modeling correlation in LSM is a copula, which can capture 

tail risk better than standard linear correlation assumption. Available copula types in LSM include 

Clayton, Frank, Gumbel, t, and normal copula. A normal copula among different lines’ frequencies 

was tested and summarized in LSMWP paper.7  

Sections 2.2.1 to 2.2.4 discuss the correlations among frequencies of different lines. Section 2.2.5 

                                                           
6 Package stats version 2.12.0, R Documentation, The Negative Binomial Distribution. 
7 CAS Loss Simulation Model Working Party Summary Report, Section 6.2.3, pages 29-33. 
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discusses the correlation between claim size and report lag. In each section, once the simulator is run 

with these parameters, the R code in Appendix A.2 is applied to the output claim file and/or transaction 

file. Running the code produces joint frequencies for two lines of correlated loss size and report lag. 

Statistical methods are then applied to test the consistency between model inputs and model outputs. Each 

section contains the model parameters used and a discussion of how well the copula fits the output of the 

simulation. 

2.2.1 Clayton Copula 

This test is to check if the Clayton Copula8 modeling in LSM is appropriate for correlation 

between frequencies of different lines. 

Test Parameters: 

 Two Lines with annual frequency Poisson ( = 96)  

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

 Accident Year: 2000 

 Random Seed: 16807  

 Frequency correlation:   5, n = 2 (see footnote 8) 

 # of Simulations: 1000 

A simple way to compare is to draw a scatter plot for the intended copula and simulated 

frequency pairs. Figures 3 and 4 below show that they are of similar patterns. 

 

 

                                                           
8  Clayton Copula: 0)1()( /1

11   
 nuuuuC n
n . Details can be found on page 153 of 

Nelsen 2006. 
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Figure 3. Clayton Copula (5)          Figure 4. Simulated Frequencies 
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Clayton copula parameter is then estimated based on simulated frequency data using two 

methods. 

(1) The estimation is based on the maximum likelihood and a sample of size 998. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  4.112557   0.1441209  28.53546     0 

The maximized loglikelihood is 822.3826. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 998. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  4.623835   0.2434634  18.99191     0 

We can see that the model parameter  as 5 is within 95% confidence interval based on inversion 

of Kendall’s tau but not that for maximum likelihood estimation. This is also consistent with 

goodness-of-fit test results as below. We use two methods to test whether the correlation between 

simulated frequencies is consistent with assumed copula. 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 4.112557  
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Cramer-von Mises statistic:9 0.03709138 with p-value 0.004950495  

(2) Using Inversion of Kendall’s tau method for parameter estimation: 

Parameter estimate(s): 4.623835  

Cramer-von Mises statistic: 0.01276128 with p-value 0.2623762 

Based on Inversion of Kendall’s tau method, we cannot reject the null hypothesis that the 

simulated frequencies have a relationship as the Clayton copula with  = 5. But using Maximum 

Likelihood method, it is the opposite conclusion. It would be conservative for us not to reject the 

null hypothesis given the mixture of statistical test results. 

2.2.2 Frank Copula 

This test is to check if the Frank Copula10  modeling in LSM is appropriate for correlation 

between frequencies of different lines. 

Test Parameters: 

 Two Lines with annual frequency Poisson ( = 96)  

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

 Accident Year: 2000 

 Random Seed: 16807  

 Frequency correlation: 8, n = 2 (see footnote 10) 

 # of Simulations: 1000 

A simple way to compare is to draw the scatter plot for the intended copula and simulated 

frequency pairs. Figures 5 and 6 below show that they are of the similar patterns. 

                                                           

9 
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in Nelsen 2006,. 
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Figure 5. Frank Copula (8)                   Figure 6. Simulated Frequencies 
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Frank copula parameter is then estimated based on simulated frequency data using two methods. 

(1) The estimation is based on the maximum likelihood and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  7.508134   0.2770857  27.09679         0 

The maximized loglikelihood is 455.8911. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  7.544506   0.3076033  24.52674         0 

We can see that the model parameter  as 8 is within the 95% confidence interval based on 

either maximum likelihood or inversion of Kendall’s tau. 

Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 7.508134 

Cramer-von Mises statistic: 0.01648723 with p-value 0.3118812 

(2) Using Inversion of Kendall’s tau method for parameter estimation: 

Parameter estimate(s): 7.544506  
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Cramer-von Mises statistic: 0.01664421 with p-value 0.2029703 

Based on those testing results, we cannot reject the null hypothesis that the simulated results are 

consistent with Frank Copula with equal to 8. 

2.2.3 Gumbel Copula 

This test is to check if the Gumbel Copula11 modeling in LSM is appropriate for correlation 

among frequencies of different lines. 

Test Parameters: 

 Two Lines with annual frequency Poisson ( = 96)  

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

 Accident Year: 2000 

 Random Seed: 16807  

 Frequency correlation:  = 6, n = 2 (see footnote 11) 

 # of Simulations: 1000 

A simple way to compare is to draw the scatter plot for the intended copula and simulated 

frequency pairs. Figures 7 and 8 below show that they are of similar patterns. 

                                                           
11 Gumbel Copula: 1)])ln()ln()ln[(exp()( /1

21  
 n
n uuuuC . Details can be found on 

page 153 in Nelsen 2006. 



Loss Simulation Model Testing and Enhancement 

Casualty Actuarial Society E-Forum, Summer 2011 13 

Figure 7. Gumbel Copula (6)                  Figure 8. Simulated Frequencies 
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Gumbel copula parameter is then estimated based on simulated frequency data using two 

methods. 

(1) The estimation is based on the maximum likelihood and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  4.223043   0.1111714  37.98677         0 

The maximized loglikelihood is 1038.727. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  4.419024   0.1603205  27.56369         0 

We can see that the model parameter  as 6 is out of the 95% confidence interval based on 

either maximum likelihood or inversion of Kendall’s tau. 

Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 4.223043 

Cramer-von Mises statistic: 0.01498423 with p-value 0.1237624 

(2) Using Inversion of Kendall’s tau method for parameter estimation: 
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Parameter estimate(s): 4.419024 

Cramer-von Mises statistic: 0.01063169 with p-value 0.2623762 

Based on those testing results, we would reject the null hypothesis that the simulated results are 

consistent with Gumbel Copula with  equal to 6. 

2.2.4 t Copula 

This test is to check if the t Copula12 modeling in LSM is appropriate for correlation between 

frequencies of different lines 

Test Parameters: 

 Two Lines with annual frequency Poisson ( = 96)  

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

 Accident Year: 2000 

 Random Seed: 16807  

 Frequency correlation: v (degree of freedom) = 5, correlation = 0.8, n = 2 (see footnote 12) 

 # of Simulations: 1000 

A simple way to compare is to draw the scatter plot for the intended copula and simulated 

frequency pairs. Figures 9 and 10 below show that they are of the similar patterns. 

                                                           

12 t Copula, or Student t copula, ))(,),(()( 1
1

1
,, nvvv

n
v uTuTTuC 

   v: degree of freedom, : correlation matrix, 

T: t cumulative distribution function. 
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Figure 9. t Copula (dof = 5, 0.8)            Figure 10. Simulated Frequencies 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.2

0.
4

0
.6

0
.8

1.
0

x[,1]

x[
,2

]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0
.8

1
.0

Line1

Li
n

e2

 
The t copula parameter is then estimated based on simulated frequency data using two methods. 

(1) The estimation is based on the maximum likelihood and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  0.7614685  0.01254461  60.70086         0 

The maximized loglikelihood is 444.3589. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  0.7840726  0.01343576  58.35713         0 

We can see that the correlation assumption of 0.8 is within the 95% confidence interval based on 

inversion of Kendall’s tau and within the 99% confidence interval based on maximum likelihood. 

Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 0.7614685 

Cramer-von Mises statistic: 0.04547016 with p-value 0.01485149 

(2) Using Inversion of Kendall’s tau method for parameter estimation: 
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Parameter estimate(s): 0.7840726  

Cramer-von Mises statistic: 0.0259301 with p-value 0.04455446 

Based on those testing results, it is conservative for us not to reject the null hypothesis that the 

simulated results are consistent with the t Copula that has correlation = 0.8 and degree of freedom = 

5. 

2.2.5 Correlation between claim size and report lag 

This test is to check if the correlation between claim size and report lag in LSM is appropriately 

modeled. 

Test Parameters: 

 One Line with annual frequency Poisson ( = 120)  

 Monthly exposure: 1 

 Frequency Trend: 1.05 

 Seasonality: 1  

 Accident Year: 2000 

 Random Seed: 16807 

 Payment Lag: Exponential with rate = 0.002739726, which implies a mean of 365 days. 

 Size of entire loss: Lognormal with mu = 11.16636357 and sigma = 0.832549779 

 Correlation between payment lag and size of loss: normal copula13 with correlation = 0.85, 

dimension  2 (See footnote 13) 

 # of Simulations: 1014 

A simple way to compare is to draw the scatter plot for the intended copula and simulated 

frequency pairs. Figures 11 and 12 below show that they are of similar patterns. 

                                                           

13 Normal Copula, or Gaussian Copula, ))(,),(()( 1
1

1
n

n uuuC 
         : correlation matrix 

: normal cumulative distribution function. Details can be found on pages 43-54 of Li 2000.  
14 The reason to use 10 simulations instead of 1000 simulations is that 120 claims are expected (Frequency distribution 
with l = 120) in each simulation. The total expected number of pairs of data is 1200 with 10 simulations for correlation 
analysis. 
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Figure 11. Normal Copula (0.85)                  Figure 12. Simulated claim size vs. report lag 
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The normal copula parameter is then estimated based on simulated frequency data using two 

methods. 

(1) The estimation is based on the maximum likelihood and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

rho.1  0.8317376  0.006878922  120.9110     0 

The maximized loglikelihood is 694.6756. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  0.8538963  0.007917961  107.8430     0 

We can see that the correlation assumption (0.85) is within the 95% confidence interval based on 

inversion of Kendall’s tau. 

Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 0.8317376  

Cramer-von Mises statistic: 0.06218935 with p-value 0.004950495 

(2) Using Inversion of Kendall’s tau method for parameter estimation: 

Parameter estimate(s): 0.8538963  
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Cramer-von Mises statistic: 0.02898052 with p-value 0.01485149 

Based on those testing results, we would reject the null hypothesis at the significance level larger 

than 1.5% that the simulated results are consistent with Normal Copula that has correlation = 0.85. 

The difference in the value of correlation coefficients between model input and model output is not 

small. However, the simulated data still have a strong correlation as intended. 

2.3 Severity trend 

This test is to check if the severity trend in LSM is modeled as intended. 

Test Parameters: 

 One Line with annual frequency Poisson ( = 96)  

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

 Accident Years: 2000 to 2005 

 Random Seed: 16807 

 Size of entire loss: Lognormal with mu = 11.16636357 and sigma = 0.832549779 

 Severity Trend: 1.5 

 # of Simulations: 300 

Figure 13 shows the mean value of loss size over time. There is a clear consistent trend. Figure 14 

shows that Seasonal Decomposition of Time Series by Loess (STL),15 which decomposes a time 

series into seasonal, trend, and irregular components using loess.16 It is very obvious there is no 

seasonality and there exists an upward sloping trend. The residual errors behave like white noise. 

                                                           
15 Package stats version 2.12.0, R Documentation, Seasonal Decomposition of Time Series by Loess. A description of 
STL is available in Cleveland et al., 1990. 
16 Loess stands for Locally Weighted Regression Fitting. 
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Figure 13. Mean Loss Size                Figure 14. STL 
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Based on the log of mean loss size, a linear regression that estimates the linear trend factor 

supports our assumptions. 

Log(Mean Loss Size) = Intercept + trend * (time – 2000) + error term 

We get the following results using R. 

Residuals: 

 Min 1Q Median 3Q Max  

-0.051579 -0.023194 -0.007886 0.023918 0.078750  

Coefficients: 

                Estimate  Std. Error  t value   Pr(>|t|)     

(Intercept)   11.034162   0.007526   1466.1   <2e-16 

trend          0.405552    0.002196    184.7     <2e-16 

Residual standard error: 0.03226 on 70 degrees of freedom 

Multiple R-squared: 0.998,      Adjusted R-squared: 0.9979  

F-statistic: 3.412e+04 on 1 and 70 DF, p-value: < 2.2e-16 

We can see that the t test shows that the trend is not equal to 0 at a significant level less than 

0.1%. The high adjusted R2 and the F test also show that the trend is obvious. The trend factor 
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0.405552 is based on the log of the mean loss size and is equivalent to the trend factor of 1.5 for loss 

size (exp(0.405552) = 1.50013). This is also our model input. Figure 15 shows a good fitting of the 

regression. Residual graph (Figure 16) shows a white noise pattern. Autocorrelation Function (ACF) 

and Partial Autocorrelation Function (PACF) also support the existence of linear trend. 

Figure 15. Trend fitting               Figure 16. Residual, ACF, PACF 
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2.4 Alpha in Severity Trend 

This test checks if the alpha that determines the persistency of the force of trend for severity in 

LSM is modeled as intended. As described in LSM,17 the cumulative trend amounts (cum) are 

calculated first and then the trend multiplier is calculated as  





)()()( _
1

_
_

_
_ datepmtdateacc

dateacc

datepmt
dateacc cumcum

cum

cum
cumtrend 










 . 

Test Parameters: 

 One Line with annual frequency Poisson ( = 96)  

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  
                                                           
17 CAS Loss Simulation Model Working Party Summary Report, pages 66-67. 
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 Accident Years: 2000 to 2001 

 Random Seed: 16807 

 Size of entire loss: Lognormal with mu = 11.16636357 and sigma = 0.832549779 

 Severity Trend: 1.5 

 Alpha: 0.4 

 # of Simulations: 1000 

We choose the sample loss payments with report date during the 1st month and payment date 

during the 7th month.  

Therefore, the severity trend multiple is 122.1)5.1()5.1( 4.012/7)4.01(12/1   for those chosen 

claims. 

The expected loss size is 175,112122.1 2/83255.0166.11 2

 e . 

The histogram and QQ plot show that the fit is not perfect, but not too far away. 

Figure 17. Histogram of severity          Figure 18. QQ plot of severity 

Histogram of observed data

a

F
re

qu
en

cy

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0
1

0
2

0
30

40
50

6
0

7
0

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0e
+0

0
2e

+0
5

4e
+

05
6e

+
05

8
e+

05
1

e+
06

QQ-plot distr. Lognormal

a

S
ev

e
.e

x

 



Loss Simulation Model Testing and Enhancement 

Casualty Actuarial Society E-Forum, Summer 2011 22 

Figure 19. Histogram and fitted probability density function 
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Maximum likelihood estimation gives us the following fitted parameters and standard deviation. 

The mean value of severity is 113,346. When only volatility of meanlog estimation is considered, the 

mean loss derived by model input is within 95% confidence interval. 

         meanlog         sdlog    

Estimation     11.31595927     0.80279226 

Standard Deviation   0.05171240 0.03656619 

Results of Kolmogorov-Smirnov test and Anderson-Darling normality test support the 

lognormal distribution of the sampled payments. 

One-sample Kolmogorov-Smirnov test 

D = 0.0405, p-value = 0.8249 

alternative hypothesis: two-sided 

Anderson-Darling normality test 

A = 0.4114, p-value = 0.3384 

2.5 Case Reserve Adequacy Distribution 

In the LSM, the case reserve adequacy distribution parameters are intended to model 
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characteristics of an insurer’s case loss reserving process. For example, some insurers set a nominal 

reserve until a claim is investigated while others may set up a formula or “average” reserve initially. 

The ultimate claim value may be the same in both cases, but the timing and amount of the reserve 

changes may be quite different. The case reserve adequacy distribution attempts to model this 

process by generating case reserve adequacy ratio at each valuation date. Case reserve is determined 

by multiplying the generated final claim amount by case reserve adequacy ratio. 

Notice that, for simulated data, the case reserve adequacy parameters do not affect the ultimate 

claim value. However, in determining LSM parameters from real data where some of the accident 

years are not fully developed, the case reserve adequacy assumption may be crucial. 

This test is to check if the X% time point case reserve adequacy distribution in LSM is modeled 

as intended. We choose the 40% time point18 in this paper. 

Test Parameters 

 One Line with annual frequency Poisson ( = 96)  

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

 Accident Years: 2000 to 2001 

 Random Seed: 16807 

 Size of entire loss: Lognormal with mu = 11.16636357 and sigma = 0.832549779 

 40% Case Reserve: Lognormal with mu = 0.25 and sigma = 0.05 

 Severity Trend: 1 

 P(0) = 0.4 

 Est P(0) = 0.4 

 # of Simulations: 819 

From the test assumption, we know that the mean 40% case reserve adequacy ratio is 

                                                           
18 The 40% time point is the date that is equal to the 60% Report Date + 40% Final Payment Date. 
19 Similar reason as indicated in footnote 14 as the number of simulated claims is large enough for statistical testing with 
8 simulations. 
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2856.12/05.025.0 2

e . The transaction output is used to calculate the case reserve at 40% of payment 

lag using linear interpolation method. Those values are then used for testing purposes. 

The histogram, QQ plot, and probability density function show that the fit is not good. 

Figure 20. Histogram of severity         Figure 21. QQ Plot of severity 
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Figure 22. Histogram and fitted probability density function 
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Maximum likelihood estimation gives us the following fitted parameters and standard deviation. 

The mean value of severity is 1.141. When only volatility of meanlog estimation is considered, the 

mean loss derived by model input is within 95% confidence interval. 

        meanlog        sdlog    

Estimation     0.07973950    0.32269631 
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Standard Deviation   0.01435980 0.01015391 

Results of Kolmogorov-Smirnov test and Anderson-Darling normality test do not support the 

lognormal distribution of the sampled case reserve adequacy. 

One-sample Kolmogorov-Smirnov test 

D = 0.3869, p-value < 2.2e-16 

Anderson-Darling normality test 

A = 33.2183, p-value < 2.2e-16 

Model input and output are not consistent for both the distribution type and the fitted 

parameters. In the simulation, valuation dates of each claim are generated based on an assumption 

of waiting period (inter-valuation lag assumption). Before the final payment, case reserve is 

generated on the simulated valuation dates. Since valuation dates are randomly generated, it often 

does not coincide with the 40% time point. In those cases, linear interpolation method is used to get 

case reserve ratio at 40% time point for testing. On the first valuation date, i.e., the report date, a 

case reserve of 2,000 will be allocated for each claim without any adjustment related to the claim 

size. If the second valuation date happens after 40% time point, it is clear that linear interpolation 

method can give us false estimation of what is assumed in the model inputs. Therefore, there is no 

confident conclusion about whether the model is correct or not.  

A way to overcome this is to change the way in which transaction date is determined. In current 

coding, report date and final settlement date are generated before transaction date and case reserves 

are generated. We can set a few transaction dates as report date + X%(payment date – report date) 

instead of generating them based on waiting period distribution assumption. X% could be 40%, 

70%, and 90% to be consistent with current case reserve adequacy model input setting. In this way, 

linear interpolation is not needed anymore and the output data we got are also easier for testing the 

model and reserve methods. 

3. REAL DATA AND SIMULATED DATA 

Marine claim data are used for distribution fitting, trend analysis, and correlation analysis. Those 

estimated distributions and parameters could be input for LSM to generate stochastic claim data. 

Based on those claim data, reserve methods can be tested and evaluated. Unfortunately, paid loss 
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history data are not available in this example and Meyers’ Approach20 cannot be applied due to the 

lack of details. Below is a snapshot of the claim data used in this section. It has two product lines: 

Property and Liability. The data period is from 2006 to 2010. The number of accidents is 317 for 

Property Insurance and 428 for Liability Insurance. All the claims are closed with a final payment. 

Accident Date Payment data Line Final Payment

12/31/2006 3/30/2008 Property 249                

5/1/2006 11/27/2006 Property 16,293           

1/22/2010 4/22/2010 Property 65,130           

1/22/2006 8/20/2006 Liability 38,544           

7/27/2010 2/22/2011 Liability 13,206            

3.1 Property Line 

Fit the severity 

1. Draw a histogram of logarithm of payment to find out the most appropriate claim-size 

distribution type. Lognormal distribution seems to be a good candidate for describing claim size. 

Figure 23. Histogram of Log (Claim Size) 
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2. Use lognormal distribution fitting for claim size. 

        meanlog        sdlog    

Estimation     9.2848522    2.6269670 

                                                           
20 CAS Loss Simulation Model Working Party Summary Report, pages 7-8. 
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Standard Deviation   0.1484850 0.1049947 

3. Use a QQ plot to check the fitting. It is not a perfect fitting but this is probably the best we 

can achieve. 

Figure 24. QQ Plot of Log(Claim Size) 
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Fit the frequency 

4. Draw a time series of frequency data and conduct a Seasonal Decomposition of Time Series. 

There is no strong evidence of linear trend and seasonality during this period. 

Figure 24. Frequency                Figure 25. STL 
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5. Perform a linear regression for trend analysis. 

Log(Monthly Frequency) = Intercept + trend * (time – 2006) + error term. 

Residuals: 

 Min 1Q Median 3Q Max  

-1.48135 -0.36849 0.04697 0.38654 1.15768  

Coefficients: 

             Estimate  Std. Error  t value   Pr(>|t|)     

(Intercept)   1.93060    0.15164   12.732    <2e-16 

trend        -0.14570     0.05919   -2.462    0.0172 

Residual standard error: 0.5649 on 52 degrees of freedom. 

Multiple R-squared: 0.1044, Adjusted R-squared: 0.08715.  

F-statistic: 6.06 on 1 and 52 DF, p-value: 0.01718. 

Figure 26. Trend fitting            Figure 27. Residual, ACF, PACF 
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6. Detrend the frequency and fit to the frequency distribution. 

It looks like that lognormal distribution fits the detrended data better. 

        meanlog        sdlog    

Estimation     9.5539259    3.1311762 



Loss Simulation Model Testing and Enhancement 

Casualty Actuarial Society E-Forum, Summer 2011 29 

Standard Deviation   0.4260991 0.3012976 

Figure 28. Histogram of detrend freq.          Figure 29. QQ Plot of detrend freq. 
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The Kolmogorov-Smirnov test result also supports lognormal distribution assumption.  

One-sample Kolmogorov-Smirnov test  is as follows: 

D = 0.0814,  p-value = 0.8384. 

Therefore, we have all the parameters for frequency and severity distribution and trend of 

frequency for property line. 

3.2 Liability Line 

Fit the severity 

1. Draw a histogram of the logarithm of payments to find out candidates for the distribution type 

of the claim size. Lognormal distribution seems to be a good candidate for describing claim size. 
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Figure 30. Histogram of Log (Claim Size) 

Histogram of observed data
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2. Use lognormal distribution fitting for claim size: 

        meanlog        sdlog    

Estimation     9.50314718    1.42545383 

Standard Deviation   0.06890191 0.04872101 

3. Use a QQ plot to check the fitting. The fit is not good at the low end. 

Figure 31. QQ Plot of Log (Claim Size) 
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Fit the frequency 

4. Draw a time series of frequency data and conduct a Seasonal Decomposition of Time Series. 

There are no strong evidence of linear trend and seasonality during this period. 

Figure 32. Frequency                  Figure 33. STL 
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5. Use linear regression for trend analysis. 

Log(Monthly Frequency) = Intercept + trend * (time – 2006) + error term. 

 

Residuals: 

 Min 1Q Median 3Q Max  

-1.74504 -0.36590 0.09695 0.42571 1.03941 

Coefficients: 

             Estimate  Std. Error  t value   Pr(>|t|)  

(Intercept)   2.3330      0.2060   11.327   9.03e-16 

trend        -0.1357      0.0587   -2.311    0.0247 

Residual standard error: 0.5759 on 53 degrees of freedom. 

Multiple R-squared: 0.09158, Adjusted R-squared: 0.07444.  

F-statistic: 5.343 on 1 and 53 DF, p-value: 0.02472. 
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Figure 34. Trend fitting                     Figure 35. Residual, ACF, PACF 
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6. Detrend the frequency and fit it to the frequency distribution. It looks like lognormal 

distribution fits the detrended data better. 

        meanlog        sdlog    

Estimation     2.35724617    0.38449461 

Standard Deviation   0.05184524 0.03666012 

Figure 36. Histogram of detrend freq.               Figure 37. QQ Plot of detrend freq. 
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The Kolmogorov-Smirnov test also supports the assumption of lognormal distribution.  

One-sample Kolmogorov-Smirnov test 

D = 0.0981, p-value = 0.6293,  
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therefore, we have all the parameters for frequency and severity distribution and trend of frequency 

for liability line. 

3.3 Correlation 

First, we calculate the correlation coefficient between the two lines’ frequencies.  

           Line1        Line2 

Line1  1.0000000  0.2800634 

Line2 0.2800634  1.0000000 

The Frank copula parameter is then estimated based on simulated frequency data using two 

methods. Other types of copula can and should also be used to determine the best fit. 

(1) The estimation is based on the maximum likelihood and a sample of size 55. 

        Estimate  Std. Error   z value   Pr(>|z|) 

rho.1  1.512390    0.854729  1.769438  0.07682074 

The maximized loglikelihood is 1.533443.  

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 55. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  1.325654    0.918666  1.443020  0.1490148 

A simple way to compare is to draw the scatter plot for the intended copula and simulated 

frequency pairs. The figures below show that they are of the similar patterns. 
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Figure 38. Frank Copula (1.325654)        Figure 39. Simulated Frequencies 
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Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 1.512390  

Cramer-von Mises statistic: 0.02652859 with p-value 0.3514851  

(2) Using Inversion of Kendall’s tau method for parameter estimation: 

Parameter estimate(s): 1.325654  

Cramer-von Mises statistic: 0.02780636 with p-value 0.4009901  

Based on those testing results, we would not reject the null hypothesis that the real data are 

consistent with the Frank copula with parameter 1.325654. 

4. MODEL ENHANCEMENT 

4.1 Two-State, Regime-Switching Distribution 

Sometimes in the real world, one single distribution may not be able to represent the past 

frequency and severity experience data well. There are normally three reasons behind this: 

(1) Structural change: some exogenous impact causes distribution (distribution type and/or 

parameters) to change drastically during a time period and last thereafter. 

(2) Cyclical pattern: The business may have some cyclical characteristics. A normal case is the 



Loss Simulation Model Testing and Enhancement 

Casualty Actuarial Society E-Forum, Summer 2011 35 

underwriting cycle where for a certain period of time, the claim frequencies and/or severities 

will increase a lot and after that, it will return to a lower level. 

(3) Idiosyncratic risk: The claim data cannot be described by available distribution types.  The 

randomness due to idiosyncratic characteristics makes it hard to fit a certain distribution 

along the time. 

In the LSM, if the structural change is predicted, it can be incorporated by setting 

frequency/severity trend and even using different severity distributions for different months when 

the distribution type is expected to change. 

However, the current model does not have a direct solution for incorporating the cyclical pattern 

and idiosyncratic characteristics. In order to add the flexibility of LSM to handle the modeling of 

them, a categorical variable is included to enable setting parameters/distribution type for different 

states. For all the variables that are modeled as distribution, two-state regime-switching capability is 

built in to enable moving from one state to the other state. A two-state, regime-switching model is 

commonly used in time series analysis. Here state means the status of the object such as frequency 

and/or severity that is described as a certain distribution. 

The user can set two distributions with different parameters and determine the transition 

probability from one state to another. At the beginning of each month, the model will determine 

which distribution/state it will be for this month based on the transition matrix. 

Let’s take frequency distribution as an example to illustrate the process in the model. 

Input 

 State 1: Poisson Distribution ( = 120) 

 State 2: Negative Binomial Distribution (size = 36, prob = 0.5) 

 Assume the trend, monthly exposure, and seasonality are all 1 

 State 1 persistency: 0.5 

 State 2 persistency: 0.7 

 Seed: 16807 

Markov Chain Transition Matrix 

State persistency represents the probability that the variable will remain in the same state next 
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month. Here we assume the transition follows discrete Markov Chain.21. It means that the state of 

next month only depends on the state of the current month but does not depend on the state before 

the current month. In other words, it is not path-dependent. 

Another thing that needs to be determined is the state of the first month. In the current model 

setting, steady-state probabilities are used. Let’s define some variables first: 

 P11: state 1 persistency, the probability that the state will be 1 next month given that it is 1 

this month. 

 P12: the probability that the state will be 2 next month given that it is 1 this month. 

 P21: the probability that the state will be 1 next month given that it is 2 this month. 

 P22: state 2 persistency, the probability that the state will be 2 next month given that it is 2 

this month. 

 1: steady probability of state 1. 

 2: steady probability of state 2. 

We have the following relationship held. 
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We can then derive the steady-state probabilities 1 and 2 based on state persistencies P11 and 

P22. 
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Calculation Steps 

(1) Generate uniform random number randf0 on range [0,1]. 

                                                           
21 http://en.wikipedia.org/wiki/Markov_chain 
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(2) If randf0<, state of first month state is 1, else, it is 2. 

(3) Generate uniform random number randfi on range [0,1]. 

(4) For previous month state I, if randfi<Pi1, then state is 1, else it is 2. 

(5) Repeat step 3 and 4 until the end of the simulation is reached. 

Table 1 shows the two-state, regime-switching result for the first simulation. 

Table 1. Two-State, Regime-Switching Example 

Random Number (RN) State Criteria
0.634633548790589 2 RN>0.375
0.801362191326916 1 RN>0.7
0.529508789768443 2 RN>0.5
0.0441845036111772 2 RN<0.7
0.994539848994464 1 RN>0.7
0.21886122901924 1 RN<0.5
0.0928565948270261 1 RN<0.5
0.797880138037726 2 RN>0.5
0.129500501556322 2 RN<0.7
0.24027365935035 2 RN<0.7
0.797712686471641 1 RN>0.7
0.0569291599094868 1 RN<0.5

Based on those generated frequency states, the claim and transaction are populated. This 

enhancement is intended for frequency and severity distribution although the flexibility is given to all 

the variables that are modeled as distribution in the LSM. 

4.2 Testing 

The following model setting is used for testing two-state, regime-switching feature. 

Test Parameters: 

 Accident Year: 2000 

 Random Seed: 16807 

 # of Simulations: 300 

 Frequency correlation: Normal Copula with correlation as 95% 

Line 1 

Annual frequency: 
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 State 1: Poisson ( = 120), State 2: Negative Binomial (Size = 36, prob = 0.5) 

 State 1 persistency: 0.15 

 State 2 persistency: 0.9. It is equivalent to 1 = 10.53% and 2 = 89.47%. We can consider 

state 2 as the long-term normal case while state 1 is the short period where the cases of claim 

increase a lot compared to state 1. 

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

Size of entire loss 

 State 1: Lognormal with mu = 10 and sigma = 0.832549779 

 State 2: Lognormal with mu = 2 and sigma = 0.832549779 

 State 1 persistency: 0.3 

 State 2 persistency: 0.8. It is equivalent to 1 = 22.22% and 2 = 77.78%. 

 Severity Trend: 1 

 P(0) = 0 

 Est P(0) = 0 

Line 2 

Annual frequency:  

 State 1: Poisson ( = 120), State 2: Negative Binomial (Size = 36, prob = 0.5) 

 State 1 persistency: 0.2 

 State 2 persistency: 0.9. It is equivalent to 1 = 11.11% and 2 = 88.89% 

 Monthly exposure: 1 

 Frequency Trend: 1 

 Seasonality: 1  

Size of entire loss:  

 Lognormal with mu = 10 and sigma = 0.832549779 
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 Severity Trend: 1 

 P(0) = 0 

 Est P(0) = 0 

4.2.1 Frequency 

We split the claim data according to the state of the monthly frequency and test whether the 

distribution for each state follows our model assumption. 

State 1 

First, we draw a histogram of the simulated frequency data to give intuition of the distribution 

type. 

 

Figure 40. Histogram of simulated frequency data (State 1) 
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A QQ plot would also be a straightforward way to compare the simulated results with the 

intended distribution – Poisson (lambda = 10). In Figure 41, we can see that it is a good fit. 
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Figure 41. QQ Plot – Simulated results vs. Poisson (lambda = 10) 
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Comparing the probability distribution functions also gives us a vivid illustration of the fit. 

Figure 42. PDF – simulated vs. assumption 
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Goodness-of-fit test using Pearson’s Chi-squared statistic is performed. The results disallow 

rejecting the null hypothesis that the simulated frequencies follow a Poisson distribution. 

         Goodness-of-fit test for Poisson distribution 

                   X^2    df    P(> X^2) 

Pearson       15.30052  19   0.703315 

In addition, using maximum likelihood (ML) method to fit the Poisson distribution and calculate 

the likelihood Ratio statistics implies the same conclusion. 
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         Goodness-of-fit test for Poisson distribution 

                      X^2      df    P(> X^2) 

Likelihood Ratio   20.27080  17  0.260613 

Using ML method gives us an estimation of the parameters as follows: 

          lambda 

Estimation     10.1329923 

Standard deviation   0.1609832 

Comparing with our LSM input: lambda = 120, which implies a monthly frequency as Poisson 

distribution with lambda = 10. We can see that at significance level of 5%, the confidence interval 

for size is (9.82, 10.45), which includes the model input (lambda = 10).  

Two-sample Kolmogorov-Smirnov test 

D = 0.0411, p-value = 0.7286 

The Kolmogorov-Smirnov test also shows a reliable fit. Those results together with the 

goodness-of-fit tests indicate that simulated frequencies are Poisson distribution. 

State 2 

Firstly, we draw a histogram of the simulated frequency data to have an indication of the 

distribution type. 

Figure 43. Histogram of simulated frequency data (State 2) 
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A QQ plot would also be a straightforward way to compare the simulated results with the 

intended distribution – Negative Binomial (size = 3, prob = 0.5). From the figure below, we can see 
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that it is a good fit. The expected frequency distribution in the LSM has a slightly shorter tail than 

the simulated results. 

Figure 44. QQ Plot – Simulated results vs. Negative Binomial (size = 3, prob = 0.5) 
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Comparing the probability distribution function also shows fit below. 

Figure 45. PDF – simulated vs. assumption 
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Goodness-of-fit test using Pearson’s Chi-squared statistic is performed. The results allow us to 

reject the null hypothesis that the simulated frequencies follow negative binomial distribution. 

         Goodness-of-fit test for nbinomial distribution 
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                   X^2    df    P(> X^2) 

Pearson       30.75979  19   0.042890443 

In addition, using maximum likelihood (ML) method to fit the Poisson distribution and calculate 

the likelihood ratio statistics also implies the same conclusion. 

         Goodness-of-fit test for Poisson distribution 

                      X^2      df    P(> X^2) 

Likelihood Ratio   32.36216  16  0.008968028 

Using ML method gives us an estimation of the parameters as follows: 

          size             mu 

Estimation     2.78375646    3.00250312 

Standard deviation   0.14274338 0.04418285 

The estimated value gives us size = 2.78 and prob = 0.48. The derived variance is 6.24 

Where prob = size/(size+mu) and variance = mu + mu2/size22 

Our LSM inputs of size = 36 and prob =0.5 implies a monthly frequency as negative binomial 

distribution with size = 3, prob = 0.5. In comparison to estimated parameters based on simulated 

frequencies, they are not too far away. 

Those results are somewhat consistent with the negative binomial frequency distribution testing 

results in section 2.1 as the p values are not very high but disallow us rejecting the null hypotheses at 

low significance level. 

Transition Matrix 

The implied steady-state probability of the transition matrix is tested against the simulation result. 

The results and calculation step are shown below. The simulation results show the similar steady-

state probability. 

                                                           
22 Package stats version 2.12.0, R Documentation, The Negative Binomial Distribution. 
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Line 1 Frequency      Line 2 Frequency 
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Non Zero Cases: 

State 1: 391       State 1: 410 

State 2: 2797      State 2: 2733 

Probability of Zero Cases: 

State 1: 0.005% (e-10)     State 1: 0.005% (e-10) 

State 2: 0.125 (prob3)     State 2: 0.135 (e-2) 

Estimated all Cases: Non Zero Cases/ (1 – Probability of Zero Cases) 

State 1: 391       State 1: 410 

State 2: 3188 (2797/(1-0.125))    State 2: 3161 (2733/(1-0.135)) 

Total Cases: # of simulations * 12 months = 3600 

Steady-state probability (compared with 1 & 2) 

State 1: 391/3600 = 10.86%     State 1: 410/3600 = 11.4% 

State 2: 1-10.86% = 89.14%    State 2: 1-11.4% = 88.6% 

4.2.2 Severity 

In testing Line 1 severity data, one thing worth noticing is that the size of loss assumption in the 

LSM is based on report date. Accident date might be a better choice to link size of loss with date of 

occurrence. For example, the size of loss might be more relevant to the time of catastrophic event 

like the 2011 Japanese earthquake instead of the time that the loss caused by the event is reported. 

From the modeling perspective, it also creates difficulties to realize the two-state, regime-switching 

function as the simulation is looped around each accident date instead of reporting date. In this 

testing, size of loss assumption is changed to be linked with accident date. 

We split the claim data according to the state of the severity and test whether the distribution for 

each state follows our model assumption. 
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State 1 

First, we draw a histogram of the simulated severity data to have an indication of the distribution 

type. 

Figure 46. Histogram of simulated severity data (State 1) 
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A QQ plot compares the simulated results with the intended distribution – Lognormal (mu = 10 

and sigma = 0.832549779). From Figure 47, we can see that it is a good fit although the expected 

severity distribution as in the LSM has a slightly shorter tail than the simulated results. 

Figure 47. QQ Plot – Simulated results vs. Lognormal ( = 10 and  = 0.832549779) 
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Comparing the probability distribution functions also gives us a vivid illustration of the fit. 
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Figure 48. PDF – simulated vs. assumption 
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Using ML method gives us an estimation of the parameters as follows: 

          meanlog         sdlog 

Estimation     10.00677788     0.85323121 

Standard deviation   0.01536917 0.01086764 

Compare with our LSM input: mu = 10 and sigma = 0.832549779. We can see that at 

significance level of 5%, the confidence intervals for both parameters include the model input. 

State 2 

First, we draw a histogram of the simulated severity data to have an indication of the distribution 

type. 
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Figure 49. Histogram of simulated severity data (State .2) 
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A QQ plot compares the simulated results with the intended distribution –Lognormal (mu = 2, 

sigma = 0.832549779). From Figure 50, we can see that it is a good fit. The expected severity 

distribution in the LSM also has a slightly shorter tail than the simulated results as in state 1. 

Figure 50. QQ Plot – Simulated results vs. Lognormal ( = 2,  = 0.832549779) 
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Comparing the probability distribution functions also shows the fit below. 
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Figure 51. PDF – simulated vs. assumption 
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Using the ML method gives us an estimation of the parameters as follows: 

          meanlog         sdlog 

Estimation     2.00714752    0.83957055 

Standard deviation   0.00820275 0.00580022 

In comparison to our LSM input of mu = 2 and sigma = 0.832549779, we can see at a significant 

level of 5% that the confidence intervals for both parameters include the model input. 

4.2.3 Correlation 

Correlation is tested to make sure that the correlation modeling using Copula is not affected by a 

two-state, regime-switching model. Correlation between frequencies of two lines is chosen for 

testing. We have four sets of data to test: 

Set 1: Line 1: State 1 and Line 2: State 1 

Set 2: Line 1: State 1 and Line 2: State 2 

Set 3: Line 1: State 2 and Line 2: State 1 

Set 4: Line 1: State 2 and Line 2: State 2 

Scatter plots for the intended copula and simulated frequency pairs are shown below. Figures 

from 52 to 56 below show that they are of similar patterns. 
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Figure 52. Normal Copula (0.95) 
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              Figure 53. Set 1          Figure 54. Set 2 
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      Figure 55. Set 3          Figure 56. Set 4 
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For each set, we use maximum likelihood and inversion of Kendall’s tau for parameter estimation 
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and goodness-of-fit test. Below are the results. 

Set 1: State 1 for Line 1 and State 1 for Line 2 

Normal copula parameter is estimated based on simulated frequency data using two methods. 

(1) The estimation is based on the maximum likelihood and a sample of size 37. 

        Estimate  Std. Error   z value   Pr(>|z|) 

rho.1  0.9344341  0.01531399  61.01832     0 

The maximized loglikelihood is 35.42264. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 1000. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  0.9380688  0.02458959  38.14903      0 

We can see that the model parameter 0.95 is within the 95% confidence interval based on either 

of the two methods. 

Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 0.9344341  

Cramer-von Mises statistic: 0.01936648 with p-value 0.6980198 

(2) Using Inversion of Kendall’s tau method for parameter estimation: 

Parameter estimate(s): 0.9380688  

Cramer-von Mises statistic: 0.01821279 with p-value 0.7079208 

Kolmogorov-Smirnov test is also done for testing the copula. 

Two-sample Kolmogorov-Smirnov test 

D = 0.0423, p-value = 0.9995 

Based on those testing results, we can conclude that the simulated results show the same 

correlation as defined in model input. 
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Set 2: State 1 for Line 1 and State 2 for Line 2 

Normal copula parameter is estimated based on simulated frequency data using two methods. 

(1) The estimation is based on the maximum likelihood and a sample of size 307. 

        Estimate  Std. Error   z value   Pr(>|z|) 

rho.1  0.8400551  0.01290163  65.1123      0 

The maximized loglikelihood is 183.7114. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 307. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  0.852917  0.01677851  50.83388     0 

We can see that the model parameter 0.95 is out of the 95% confidence interval based on either 

of the two methods.  

Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 0.8400551  

Cramer-von Mises statistic: 0.03961167 with p-value 0.01485149  

(2) Using Inversion of Kendall’s tau method for parameter estimation 

Parameter estimate(s): 0.852917  

Cramer-von Mises statistic: 0.03370755 with p-value 0.01485149  

Two-sample Kolmogorov-Smirnov test 

D = 0.0213, p-value = 0.9837 

The testing results show mixed information. One of the possible reasons for this is that we are 

not using all the simulated data for Set 2 but truncated data. If the number of claim is zero for a 

particular month, this data is not included in the claim output file from the LSM. Therefore, we are 

testing against non-zero monthly data only. As state 2 has a 12.5% and 13.5% probability of zero 

monthly claims for the two lines, respectively, we can see that except for Set 1, all other sets have 

the similar problem. It is still safe to conclude that high correlation exists as desired by model input. 
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Set 3: State 2 for Line 1 and State 1 for Line 2 

Normal copula parameter is estimated based on simulated frequency data using two methods. 

 (1) The estimation is based on the maximum likelihood and a sample of size 329. 

        Estimate  Std. Error   z value   Pr(>|z|) 

rho.1  0.8644334  0.01056627  81.81065     0 

The maximized loglikelihood is 222.0031. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 329. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  0.893593  0.01178312  75.8367     0 

We can see that the model parameter 0.95 is out of the 95% confidence interval based on either 

of the two methods. 

Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 0.8644334  

Cramer-von Mises statistic: 0.07412085 with p-value 0.004950495  

(2) Using Inversion of Kendall’s tau method for parameter estimation: 

Parameter estimate(s): 0.893593  

Cramer-von Mises statistic: 0.04756158 with p-value 0.004950495  

Two-sample Kolmogorov-Smirnov test 

D = 0.016, p-value = 0.9996 

Similar with Set 2, high correlation exists in the simulated data. 

Set 4: State 2 for Line 1 and State 2 for Line 2 

Normal copula parameter is estimated based on simulated frequency data using two methods. 

(1) The estimation is based on the maximum likelihood and a sample of size 2376. 

        Estimate  Std. Error   z value   Pr(>|z|) 
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rho.1  0.8114362  0.005444864  149.0278      0 

The maximized loglikelihood is 1270.765. 

(2) The estimation is based on the inversion of Kendall’s tau and a sample of size 2376. 

        Estimate  Std. Error   z value   Pr(>|z|) 

parameter  0.845676  0.006024305  140.3773      0 

We can see that the model parameter 0.95 is out of the 95% confidence interval based on either 

of the two methods. 

Goodness-of-fit Test 

(1) Using Maximum Likelihood method for parameter estimation: 

Parameter estimate(s): 0.8114362  

Cramer-von Mises statistic: 0.5949188 with p-value 0.004950495  

(2) Using Inversion of Kendall’s tau method for parameter estimation: 

Parameter estimate(s): 0.845676  

Cramer-von Mises statistic: 0.4380294 with p-value 0.004950495  

Two-sample Kolmogorov-Smirnov test 

D = 0.0289, p-value = 0.1900 

Similar with Set 2, high correlation exists in the simulated data. 

5. CONCLUSION AND FURTHER DEVELOPMENT 

Based on the tests that have been conducted on the LSM, we cannot reject the assumption that 

model input and output are consistent regarding the following: 

(1) Negative binomial frequency distribution. 

(2) All copula types for frequencies among different lines except Gumbel Copula. 

(3) the correlation modeling between report lag and loss size based on Normal Copula. 

(4) Severity trend. 

(5) Alpha in severity trend. 
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Though the statistical test results does not support Gumbel Copula applied to frequencies 

correlation very well, it is safe to not reject the null hypothesis as at a lower significance level such as 

1%; it still passes the goodness-of-fit test. 

A case reserve adequacy test shows that the assumption is not consistent with simulation data. 

This may be caused by the linear interpolation method used to derive 40% time point case reserve. 

It is suggested revising the way in which valuation date is determined in the LSM. In addition to the 

simulated valuation dates based on the waiting-period distribution assumption as in the LSM, some 

deterministic time points can be added as valuation dates. The deterministic valuation dates are 

interpolated between the report date and the payment date. In the LSM, 0%, 40%, 70%, and 90% 

time-points, case reserve, adequacy distribution can be input into the model. Therefore, 0%, 40%, 

70% and 90% time points may be added as deterministic valuation dates. 

Marine claim data are used to fit the distribution for frequency and severity. Trend, seasonality, 

and correlation analyses are also conducted to determine model parameters. These could be 

examples of how we use real data to determine appropriate LSM input which can be used for 

simulation and further testing of different reserve methods. If there are some data about paid loss 

history of the claims, the LSM can be better utilized to test different reserving methods. This could 

be an area for further research on the LSM. 

Some enhancements have been made to the LSM. In the LSM, size of loss is linked to report 

date. The accident date might be a better choice for linking the size of loss with date of occurrence 

as the report lag would only have slight impact in loss size. From the modeling perspective, it also 

creates difficulties to realize the two-state, regime-switching function as the simulation is looped 

around each accident date instead of reporting date. 

A categorical variable is included to enable setting parameters/distribution type for different 

states. Two-state, regime-switching flexibility is built in to enable moving from one state to the other 

state with a specified transition matrix. This, hopefully, can add the flexibility to mimic the 

underlying cycle we normally see in P&C business. Relevant testing is performed on the simulation 

data, which shows the consistency between model input and model output. 
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APPENDIX A. R23 CODE 

Statistical software R is used for loss simulation testing purpose. Based on the claim and 
transaction files output from the loss simulation model, R is used to process the data, conduct the 
statistical test for copula and distribution, and draw graphics for viewing goodness of fit. The R 
codes are listed below for each test. The input/output directory shall be revised if the codes are to 
be reused. Lines start with “#” is the description of the codes below it. 

A.1 Negative Binomial Frequency Distribution Testing 

# Read raw data (Claim output file) 
rawdata<-read.csv("F:/Research/copula/copula test/Negative Binomial Frequency 100 
0.4/co.csv",skip=1,header=TRUE) 
 
# Manipulate claim output file to retrieve annual frequency data for each simulation/line 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdata,1,fcn) 
rawdata2<-cbind(rawdata,dataindex) 
rawdata3<-aggregate(rawdata2, list(rawdata2$Simulation.No), length) 
rawdata4<-rawdata3[,1:2] 
dataf1<-rawdata4$Simulation.No 
write.csv(datar,"F:/Research/copula/copula test/Negative Binomial Frequency 100 0.4/freq.csv") 
 
#draw histogram 
hist(dataf1,main="Histogram of observed data") 
 
#QQPlot 
freq.ex<-(rnbinom(n=1000,size=100,prob=0.4)) 
qqplot(dataf1,freq.ex,main="QQ-plot distr. Negative Binomial")  
abline(0,1) ## a 45-degree reference line is plotted 
 
#Histogram and PDF 
h<-hist(dataf1,breaks=10) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(dataf1),max(dataf1),by=1) 
yfit<-dnbinom(xfit,size=100,prob=0.4) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Negative Binomial pdf and histogram") 
lines(xfit,yfit, col="red") 
 
#Goodness of fit test 
library(vcd) 
gf<-goodfit(dataf1,type= "nbinom",par=list(size=100,prob=0.4)) 

                                                           
23 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
ISBN 3-900051-07-0, URL http://www.R-project.org/. 
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summary(gf) 
plot(gf) 
gf<-goodfit(dataf1,type= "nbinom",method= "ML") 
fitdistr(dataf1, "Negative Binomial")  
 

A.2 Correlation Test 
Correlation among the frequencies of different lines 
 
1. Clayton Copula 
# Read raw data (Claim output file) 
rawdata<-read.csv("F:/Research/copula/copula test/clayton 5/co.csv",skip=1,header=TRUE) 
 
# Manipulate claim output file to retrieve annual frequency data for each simulation/line 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdata,1,fcn) 
rawdata2<-cbind(rawdata,dataindex) 
#1st month instead of one year occurrences 
rawdata2m<-rawdata2[rawdata2$dataindex==1,] 
rawdata3<-aggregate(rawdata2m, list(rawdata2m$Simulation.No,rawdata2m$Line), length) 
rawdata4<-rawdata3[,1:3] 
data1<-rawdata4[rawdata4$Group.2==1,] 
data2<-rawdata4[rawdata4$Group.2==2,] 
rawdata5<-merge(data1,data2,by="Group.1") 
datar<-cbind(rawdata5$Simulation.No.x,rawdata5$Simulation.No.y) 
colnames(datar)<-c("Line1","Line2") 
write.csv(datar,"F:/Research/copula/copula test/clayton 5/x.csv") 
 
#copula test 
n<-length(datar[,1]) 
set.seed(123) 
x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1) 
plot(x) 
 
#Load R packages 
library(MASS) 
library(methods) 
library(mvtnorm) 
library(scatterplot3d) 
library(mnormt) 
library(sn) 
library(pspline) 
library(copula) 
 
#Set up copula object for copula distribution and goodness-of-fit test later 
clayton.cop <- claytonCopula(6, dim=2) 
 
#Copula fit with prespecified type. 
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fit.clayton<-fitCopula(clayton.cop,x,method="ml") 
fit.clayton 
fit.clayton<-fitCopula(clayton.cop,x,method="itau") 
fit.clayton 
 
#Copula Goodness-of-fit test 
gofCopula(clayton.cop, x, N=100, method = "mpl") 
gofCopula(clayton.cop, x, N=100, method = "itau") 
 
2. Frank Copula 
# Read raw data (Claim output file) 
rawdata<-read.csv("F:/Research/copula/copula test/frank 8/co.csv",skip=1,header=TRUE) 
# Manipulate claim output file to retrieve annual frequency data for each simulation/line 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdata,1,fcn) 
rawdata2<-cbind(rawdata,dataindex) 
#1st month instead of one year occurences 
rawdata2m<-rawdata2[rawdata2$dataindex==1,] 
#rawdata3<-aggregate(rawdata2, list(rawdata2$Simulation.No,rawdata2$Line), length) 
#1st month instead of one year occurences 
rawdata3<-aggregate(rawdata2m, list(rawdata2m$Simulation.No,rawdata2m$Line), length) 
rawdata4<-rawdata3[,1:3] 
data1<-rawdata4[rawdata4$Group.2==1,] 
data2<-rawdata4[rawdata4$Group.2==2,] 
rawdata5<-merge(data1,data2,by="Group.1") 
datar<-cbind(rawdata5$Simulation.No.x,rawdata5$Simulation.No.y) 
colnames(datar)<-c("Line1","Line2") 
write.csv(datar,"F:/Research/copula/copula test/frank 8/x.csv") 
 
#copula test 
n<-length(datar[,1]) 
set.seed(123) 
x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1) 
plot(x) 
 
#Load R packages 
library(MASS) 
library(methods) 
library(mvtnorm) 
library(scatterplot3d) 
library(mnormt) 
library(sn) 
library(pspline) 
library(copula) 
 
#Set up copula object for copula distribution and goodness-of-fit test later 
frank.cop <- frankCopula(8, dim=2) 
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#Copula fit with prespecified type. 
fit.frank<-fitCopula(frank.cop,x,method="ml") 
fit.frank 
fit.frank<-fitCopula(frank.cop,x,method="itau") 
fit.frank 
 
#Copula Goodness-of-fit test 
gofCopula(frank.cop, x, N=100, method = "mpl") 
gofCopula(frank.cop, x, N=100, method = "itau") 
 
3. Gumbel Copula 
# Read raw data (Claim output file) 
rawdata<-read.csv("F:/Research/copula/copula test/Gumbel 6/co.csv",skip=1,header=TRUE) 
# Manipulate claim output file to retrieve annual frequency data for each simulation/line 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdata,1,fcn) 
#rawdata2<-cbind(rawdata,dataindex) 
#1st month instead of one year occurences 
rawdata2m<-rawdata2[rawdata2$dataindex==1,] 
#rawdata3<-aggregate(rawdata2, list(rawdata2$Simulation.No,rawdata2$Line), length) 
#1st month instead of one year occurences 
rawdata3<-aggregate(rawdata2m, list(rawdata2m$Simulation.No,rawdata2m$Line), length)rawdata4<-
rawdata3[,1:3] 
data1<-rawdata4[rawdata4$Group.2==1,] 
data2<-rawdata4[rawdata4$Group.2==2,] 
rawdata5<-merge(data1,data2,by="Group.1") 
datar<-cbind(rawdata5$Simulation.No.x,rawdata5$Simulation.No.y) 
colnames(datar)<-c("Line1","Line2") 
write.csv(datar,"F:/Research/copula/copula test/Gumbel 6/x.csv") 
 
#copula test 
n<-length(datar[,1]) 
set.seed(123) 
x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1) 
plot(x) 
 
#Load R packages 
library(MASS) 
library(methods) 
library(mvtnorm) 
library(scatterplot3d) 
library(mnormt) 
library(sn) 
library(pspline) 
library(copula) 
 
#Set up copula object for copula distribution and goodness-of-fit test later 
gumbel.cop <- gumbelCopula(3, dim=2) 
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#Copula fit with prespecified type. 
fit.gumbel<-fitCopula(gumbel.cop,x,method="ml") 
fit.gumbel 
fit.gumbel<-fitCopula(gumbel.cop,x,method="itau") 
fit.gumbel 
 
#Copula Goodness-of-fit test 
gofCopula(gumbel.cop, x, N=100, method = "mpl") 
gofCopula(gumbel.cop, x, N=100, method = "itau") 
 
4. T Copula 
# Read raw data (Claim output file) 
rawdata<-read.csv("F:/Research/copula/copula test/t50.8/co.csv",skip=1,header=TRUE) 
# Manipulate claim output file to retrieve annual frequency data for each simulation/line 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdata,1,fcn) 
rawdata2<-cbind(rawdata,dataindex) 
#1st month instead of one year occurences 
rawdata2m<-rawdata2[rawdata2$dataindex==1,] 
#1st month instead of one year occurences 
rawdata3<-aggregate(rawdata2m, list(rawdata2m$Simulation.No,rawdata2m$Line), length) 
rawdata4<-rawdata3[,1:3] 
data1<-rawdata4[rawdata4$Group.2==1,] 
data2<-rawdata4[rawdata4$Group.2==2,] 
rawdata5<-merge(data1,data2,by="Group.1") 
datar<-cbind(rawdata5$Simulation.No.x,rawdata5$Simulation.No.y) 
colnames(datar)<-c("Line1","Line2") 
write.csv(datar,"F:/Research/copula/copula test/t50.8/x.csv") 
 
#copula test 
n<-length(datar[,1]) 
set.seed(123) 
x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1) 
plot(x) 
 
#Load R packages 
library(MASS) 
library(methods) 
library(mvtnorm) 
library(scatterplot3d) 
library(mnormt) 
library(sn) 
library(pspline) 
library(copula) 
 
#Set up copula object for copula distribution and goodness-of-fit test later 
t.cop <- tCopula(c(0.8), dim=2, dispstr="un", df=5, df.fixed=TRUE) 
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#Copula fit with prespecified type. 
fit.t<-fitCopula(t.cop,x,method="ml") 
fit.t 
fit.t<-fitCopula(t.cop,x,method="itau") 
fit.t 
 
#Copula Goodness-of-fit test 
gofCopula(t.cop, x, N=100, method = "mpl") 
gofCopula(t.cop, x, N=100, method = "itau") 
 
Correlation between claim size and report lag 
# Read raw data (Claim and transaction output file) 
rawdatap<-read.csv("F:/Research/copula/copula test/copula2/co.csv",skip=1,header=TRUE) 
rawdataa<-read.csv("F:/Research/copula/copula test/copula2/to.csv",skip=1,header=TRUE) 
 
# Manipulate transaction output file to retrieve final payment amount 
rawdataa2<-rawdataa[rawdataa$Transaction=="CLS",] 
data1<-rawdatap[,c(1,2,3,5)] 
data2<-rawdataa2[,c(1,2,3,4,7)] 
datan<-merge(data1,data2,by=c("Simulation.No","Occurrence.No","Claim.No")) 
 
# Translate payment date in terms of years 
fcn<-function(dataset){ 
x<-floor(dataset[5]/10000)-floor(dataset[4]/10000) 
y<-floor(dataset[5]/100)-floor(dataset[5]/10000)*100-(floor(dataset[4]/100)-floor(dataset[4]/10000)*100) 
z<-dataset[5]-floor(dataset[5]/100)*100-(dataset[4]-floor(dataset[4]/100)*100) 
r<-x+y/12+z/365 
return(r)} 
paymentlag<-apply(datan,1,fcn) 
rawdatap2<-cbind(datan,paymentlag) 
datar<-cbind(rawdatap2$paymentlag,rawdatap2$Payment) 
write.csv(datar,"F:/Research/copula/copula test/copula2/100/x.csv") 
 
#copula test 
n<-length(datar[,1]) 
set.seed(123) 
x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1) 
plot(x) 
 
#Load R packages 
library(MASS) 
library(methods) 
library(mvtnorm) 
library(scatterplot3d) 
library(mnormt) 
library(sn) 
library(pspline) 
library(copula) 
 
#Set up copula object for copula distribution and goodness-of-fit test later 
normal.cop <- normalCopula(c(0),dim=2,dispstr="un") 
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#Copula fit with pre specified type. 
fit.normal<-fitCopula(normal.cop,x,method="ml") 
fit.normal 
fit.normal<-fitCopula(normal.cop,x,method="itau") 
fit.normal 
 
#Copula Goodness-of-fit test 
gofCopula(normal.cop, x, N=100, method = "mpl") 
gofCopula(normal.cop, x, N=100, method = "itau") 
 

A.3 Severity Trend 

# Read raw data (Claim and transaction output file) 
rawdatap<-read.csv("F:/Research/copula/copula test/strend/co.csv",skip=1,header=TRUE) 
rawdataa<-read.csv("F:/Research/copula/copula test/strend/to.csv",skip=1,header=TRUE) 
 
# Manipulate transaction output file to retrieve final payment amount 
rawdataa2<-rawdataa[rawdataa$Transaction=="CLS",] 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdatap,1,fcn) 
rawdatap2<-cbind(rawdatap,dataindex) 
data1<-rawdatap2[,c(1,2,8)] 
data2<-rawdataa2[,c(1,2,7)] 
datan<-merge(data1,data2,by=c("Simulation.No","Occurrence.No")) 
rawdata3<-aggregate(datan, list(datan$dataindex), mean) 
#rawdata4<-rawdata3[,c(3,5,6)] 
rawdata4<-rawdata3[,c(4,5)] 
colnames(rawdata4)<-c("Month","MeanPayment") 
write.csv(rawdata4,"F:/Research/copula/copula test/strend/x.csv") 
datar<-rawdata4$MeanPayment 
 
#set up time series 
ts1<-ts(datar,start=2000,frequency=12) 
plot(ts1) 
plot(stl(ts1,s.window="periodic")) 
 
#linear trend fitting 
trend = time(ts1)-2000    
reg = lm(log(ts1)~trend, na.action=NULL) 
summary(reg) 
plot(log(ts1), type="o")   
lines(fitted(reg), col=2) 
par(mfrow=c(3,1)) 
plot(resid(reg)) 
acf(resid(reg),20) 
pacf(resid(reg),20) 
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A.4 Alpha in Severity Trend 

# Read raw data (Claim and transaction output file) 
rawdatap<-read.csv("F:/Research/copula/copula test/Alpha/co.csv",skip=1,header=TRUE) 
rawdataa<-read.csv("F:/Research/copula/copula test/Alpha/to.csv",skip=1,header=TRUE) 
 
# Manipulate transaction output file to retrieve final payment amount 
rawdataa2<-rawdataa[rawdataa$Transaction=="CLS",] 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdatap,1,fcn) 
rawdatap2<-cbind(rawdatap,dataindex) 
dataindex2<-apply(rawdataa2[,c(1:4)],1,fcn) 
rawdataa3<-cbind(rawdataa2,dataindex2) 
data1<-rawdatap2[,c(1,2,8)] 
data2<-rawdataa3[,c(1,2,7,8)] 
datan<-merge(data1,data2,by=c("Simulation.No","Occurrence.No")) 
datam<-datan[datan$dataindex==1,] 
b<-datam[datam$dataindex2==7,] 
c<-b[b$Payment!=0,] 
a<-c$Payment 
length(a) 
 
#draw histogram 
hist(a,main="Histogram of observed data") 
library(MASS) 
fitdistr(a, "Lognormal")  
 
#QQPlot 
Seve.ex<-(rlnorm(n=1000,meanlog=-0.8726,sdlog=0.9567)) 
qqplot(a,Seve.ex,main="QQ-plot distr. Lognormal")  
abline(0,1) ## a 45-degree reference line is plotted 
 
#Histogram and PDF 
h<-hist(a,breaks=10) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(a),max(a),by=1) 
yfit<-dlnorm(xfit,meanlog=-0.8726,sdlog=0.9567) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Lognormal pdf and histogram") 
lines(xfit,yfit, col="red") 
 
#Kolmogorov-Smirnov Tests 
ks.test(a,"plnorm", meanlog=-0.8726,sdlog=0.9567) 
 
#Anderson-Darling Test 
datas1.norm<-log(a) 
library(nortest) ## package loading 
ad.test(datas1.norm) 
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A.5 Case Reserve Adequacy 

# Read raw data (Claim output file) 
rawdatap<-read.csv("D:/LS/RS/case reserve/025/to.csv",skip=1,header=TRUE) 
 
# Manipulate transaction output file to retrieve final payment amount 
rawdataa<-rawdatap[rawdatap$Simulation.No<101,] 
 
# Calculate the number of days that have passed since Jan 1,2000 until the accident date 
x<-(floor(rawdataa[4]/10000)-2000)*365+(floor(rawdataa[4]/100)-floor(rawdataa[4]/10000)*100)*30+rawdataa[4]-
floor(rawdataa[4]/100)*100 
rawdatap2<-cbind(rawdataa,x) 
# Linear Interpolation of generated case reserves to get 40% time point case reserve 
fcn<-function(dataset){ 
   aa<-dataset$Date 
   b<-dataset$Case.Reserve 
   bb<-dataset$Case.Reserve 
   cc<-dataset$Payment 
   count<-length(dataset$Date) 
   temp<-0 
   for(k in 1:(count-1)){ 
   bb[k]<-b[k]+temp 
   temp<-temp+b[k] 
   } 
   bb[count]<-cc[count] 
   f<-approxfun(aa,bb) 
   xmin<-min(dataset[5]) 
   xmax<-max(dataset[5]) 
   x<-0.6*xmin+0.4*xmax 
   if(cc[count]==0){ 
   return(0) 
   }else{    
   return(f(x)/cc[count]/0.6)} 
   } 
rawdata0<-rawdatap2[,c(1,2,6,7,8)] 
m<-max(rawdata0$Simulation.No) 
a<-matrix(rep(0,m*134),nrow=134,ncol=m) 
# Get 40% case reserve for all claims 
for(i in 1:m) { 
  rawdata00<-rawdata0[rawdata0$Simulation.No==i,] 
  rawdata<-as.data.frame(apply(rawdata00,2,abs)) 
  n<-max(rawdata$Occurrence.No) 
  for(j in 1:n) { 
  dataset<-as.data.frame(rawdata[rawdata$Occurrence.No==j,]) 
  a[j,i]=fcn(dataset) 
  } 
} 
a<-as.vector(a) 
a<-a[a!=0] 
 
#draw histogram 
hist(a,main="Histogram of observed data") 
library(MASS) 
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fitdistr(a, "Lognormal")  
 
#QQPlot 
Seve.ex<-(rlnorm(n=1000,meanlog=0.25,sdlog=0.05)) 
qqplot(a,Seve.ex,main="QQ-plot distr. Lognormal")  
abline(0,1) ## a 45-degree reference line is plotted 
 
#Histogram and PDF 
h<-hist(a,breaks=30) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(a),max(a),by=1) 
yfit<-dlnorm(xfit,meanlog=0.25,sdlog=0.05) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Lognormal pdf and histogram") 
lines(xfit,yfit, col="red") 
 
#Kolmogorov-Smirnov Tests 
ks.test(a,"plnorm", meanlog=0.25,sdlog=0.05) 
 
#Anderson-Darling Test 
datas1.norm<-log(a) 
library(nortest) ## package loading 
ad.test(datas1.norm) 

A.6 Real Claim Data Fitting 

# Read raw data 
rawdata<-read.csv("D:/LS/RS/PL/pl.csv",header=TRUE) 
rawdata1<-rawdata[rawdata$Payment>0,] 
dataProperty0<-rawdata1[rawdata1$Line=="Property",] 
dataProperty<-dataProperty0[,-3] 
datalia0<-rawdata1[rawdata1$Line=="Liability",] 
datalia<-datalia0[,-3] 
 
#Property 
#draw histogram of claim 
hist(log(dataProperty$Payment),breaks=100,main="Histogram of observed data") 
library(MASS) 
fitdistr(log(dataProperty$Payment), "normal")  
 
#QQPlot of claim 
claim.ex<-(rlnorm(n=1000,mean=9.285,sd=2.267)) 
qqplot(log(dataProperty$Payment),claim.ex,main="QQ-plot distr. Normal")  
abline(0,1) ## a 45-degree reference line is plotted 
 
rawdata3<-aggregate(dataProperty, list(dataProperty$dataindex), length) 
rawdata4<-rawdata3[,1:2] 
colnames(rawdata4)<-c("tMonth","Freq") 
summary(rawdata4) 
 
#set up time series for frequency 
ts1<-ts(rawdata4$Freq,start=2006,frequency=12) 
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plot(ts1) 
plot(stl(ts1,s.window="periodic")) 
 
#trend analysis 
trend = time(ts1)-2006    
reg = lm(log(ts1)~trend, na.action=NULL) 
summary(reg) 
plot(log(ts1), type="o")   
lines(fitted(reg), col=3, lwd=3) 
 
par(mfrow=c(1,1)) 
plot(resid(reg)) 
acf(resid(reg),20) 
pacf(resid(reg),20) 
 
trendreg<--0.136*rawdata4[1] 
detrend<-rawdata4[2]-trendreg 
 
hist(as.numeric(detrend$Freq)) 
fitdistr(detrend$Freq,"normal") 
 
#QQPlot of detrended frequency 
freq.ex<-(rnorm(n=1000,mean=9.554,sd=3.131)) 
qqplot(detrend$Freq,freq.ex,main="QQ-plot distr. normal")  
abline(0,1) ## a 45-degree reference line is plotted 
 
ks.test(detrend$Freq,"pnorm", mean=9.554,sd=3.131) 
 
#Histogram and PDF 
h<-hist(detrend$Freq,breaks=15) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(detrend$Freq),max(detrend$Freq),length=40) 
yfit<-dnorm(xfit,mean=9.554,sd=3.131) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Normal pdf and histogram") 
lines(xfit,yfit, col="red") 
 
#Liability 
#draw histogram of claim 
hist(log(datalia$Payment),breaks=100,main="Histogram of observed data") 
 
fitdistr(log(datalia$Payment), "normal") 
 
#QQPlot of claim 
claim.ex<-(rlnorm(n=1000,mean=9.5,sd=1.425)) 
qqplot(log(datalia$Payment),claim.ex,main="QQ-plot distr. Lognormal")  
abline(0,1) ## a 45-degree reference line is plotted 
 
rawdata3<-aggregate(datalia, list(datalia$dataindex), length) 
rawdata4<-rawdata3[,1:2] 
colnames(rawdata4)<-c("tMonth","Freq") 
summary(rawdata4) 
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#set up time series 
ts1<-ts(rawdata4$Freq,start=2006,frequency=12) 
plot(ts1) 
plot(stl(ts1,s.window="periodic")) 
 
#trend analysis 
trend = time(ts1)-2005    
reg = lm(log(ts1)~trend, na.action=NULL) 
summary(reg) 
plot(log(ts1), type="o")   
lines(fitted(reg), col=3,lwd=3) 
 
par(mfrow=c(1,1)) 
plot(resid(reg)) 
acf(resid(reg),20) 
pacf(resid(reg),20) 
 
trendreg<--0.127*rawdata4[1] 
detrend2<-rawdata4[2]-trendreg 
 
#histogram of detrended data 
hist(as.numeric(detrend$Freq)) 
fitdistr(detrend2$Freq,"lognormal") 
fitdistr(detrend2$Freq,"normal") 
 
#QQPlot of detrended frequency 
freq.ex<-(rlnorm(n=100,meanlog=2.357,sdlog=0.3845)) 
qqplot(detrend2$Freq,freq.ex,main="QQ-plot distr. Lognormal")  
abline(0,1) ## a 45-degree reference line is plotted 
 
ks.test(detrend2$Freq,"plnorm", meanlog=2.357,sdlog=0.3845) 
 
#Histogram and PDF 
h<-hist(detrend2$Freq,breaks=15) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(detrend2$Freq),max(detrend2$Freq),length=40) 
yfit<-dlnorm(xfit,meanlog=2.357,sdlog=0.3845) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Normal pdf and histogram") 
lines(xfit,yfit, col="red") 
 
datar<-cbind(detrend$Freq,detrend2$Freq) 
colnames(datar)<-c("Line1","Line2") 
 
#copula test 
n<-length(datar[,1]) 
set.seed(123) 
x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1) 
plot(x) 
 
cor(datar) 
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#Load R packages 
library(MASS) 
library(methods) 
library(mvtnorm) 
library(scatterplot3d) 
library(mnormt) 
library(sn) 
library(pspline) 
library(copula) 
 
#Set up copula object for copula distribution and goodness-of-fit test later. Only Frank copula  
#is shown here while in real testing different types of copula should all be tested against the data 
 
frank.cop <- frankCopula(6, dim=2) 
 
#Copula fit with pre specified type. 
fit.frank<-fitCopula(frank.cop,x,method="ml") 
fit.frank 
fit.frank<-fitCopula(frank.cop,x,method="itau") 
fit.frank 
 
#Copula Goodness-of-fit test 
gofCopula(frank.cop, x, N=100, method = "mpl") 
gofCopula(frank.cop, x, N=100, method = "itau") 
 

A.7 Two-State, Regime-Switching Feature Testing 
Frequency 
# Read raw data (Claim output file) 
rawdata<-read.csv("D:/LS/RS/tsw/cc.csv",skip=1,header=TRUE) 
# Manipulate claim output file to retrieve annual frequency data for each simulation/line 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdata,1,fcn) 
rawdata1<-cbind(rawdata,dataindex) 
rawdata2<-rawdata1[rawdata1$Line==1,] 
 
## State 1 Frequency Testing 
rawdatas1<-rawdata2[rawdata2$State==1,] 
rawdata3<-aggregate(rawdatas1, list(rawdatas1$Simulation.No,rawdatas1$dataindex), length) 
dim(rawdata3) 
rawdata4<-rawdata3[,1:3] 
dataf1<-rawdata4$Simulation.No 
 
#draw histogram 
hist(dataf1,main="Histogram of observed data") 
 
#QQPlot 
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freq.ex<-(rpois(n=1000,lambda=10)) 
qqplot(dataf1,freq.ex,main="QQ-plot distr. Poisson")  
abline(0,1) ## a 45-degree reference line is plotted 
 
#Histogram and PDF 
h<-hist(dataf1,breaks=20) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(dataf1),max(dataf1),by=1) 
yfit<-dpois(xfit,lambda=10) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Poisson pdf and histogram") 
lines(xfit,yfit, col="red") 
 
#Goodness of fit test 
library(vcd) 
gf<-goodfit(dataf1,type= "pois",par=list(lambda=10),method= "MinChisq") 
summary(gf) 
plot(gf) 
fitdistr(dataf1, "Poisson")  
#Kolmogorov-Smirnov Tests 
ks.test(dataf1,freq.ex,exact=NULL) 
 
## State 2 Frequency Testing 
rawdatas2<-rawdata2[rawdata2$State==2,] 
rawdata3<-aggregate(rawdatas2, list(rawdatas2$Simulation.No,rawdatas2$dataindex), length) 
dim(rawdata3) 
rawdata4<-rawdata3[,1:3] 
datafs1<-rawdata4$Simulation.No 
dataf1<-c(rep(0,400),datafs1) 
 
#draw histogram 
hist(dataf1,main="Histogram of observed data") 
 
#QQPlot 
freq.ex<-(rnbinom(n=1000,size=3,prob=0.5)) 
qqplot(dataf1,freq.ex,main="QQ-plot distr. Negative Binomial")  
abline(0,1) ## a 45-degree reference line is plotted 
 
#Histogram and PDF 
h<-hist(dataf1,breaks=10) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(dataf1),max(dataf1),by=1) 
yfit<-dnbinom(xfit,size=3, prob=0.5) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Negative Binomial pdf and histogram") 
lines(xfit,yfit, col="red") 
 
#Goodness of fit test 
library(vcd) 
gf<-goodfit(dataf1,type= "nbinom",par=list(size=3,prob=0.5),method= "MinChisq") 
summary(gf) 
plot(gf) 
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fitdistr(dataf1, "Negative Binomial")  
 
Severity 
# Read raw data (Claim output file) 
rawdatap<-read.csv("D:/LS/RS/tsw/cc.csv",skip=1,header=TRUE) 
rawdataa<-read.csv("D:/LS/RS/tsw/tt.csv",skip=1,header=TRUE) 
# Manipulate transaction output file to retrieve final payment amount 
rawdataa2<-rawdataa[rawdataa$Transaction=="CLS",] 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdatap,1,fcn) 
rawdatap2<-cbind(rawdatap,dataindex) 
 
data1<-rawdatap2[,c(1,2,6,9)] 
data2<-rawdataa2[,c(1,2,7,8)] 
datan<-merge(data1,data2,by=c("Simulation.No","Occurrence.No")) 
datal<-datan[datan$Line==1,] 
datam<-aggregate(datal, list(datal $Simulation.No, datal $dataindex), mean) 
dim(datam[datam$State==1,]) 
dim(datam[datam$State==2,]) 
 
datal1<-datan[datan$Line==1,] 
datans1<-datal1[datal1$State==1,] 
datans2<-datal1[datal1$State==2,] 
 
## State 1 Severity Testing 
dataf1<-datans1$Payment 
 
#draw histogram 
hist(dataf1,main="Histogram of observed data") 
 
#QQPlot 
claim.ex<-(rlnorm(n=1000,meanlog=10,sdlog=0.83255)) 
qqplot(dataf1,claim.ex,main="QQ-plot distr. Lognormal")  
abline(0,1) ## a 45-degree reference line is plotted 
 
#Histogram and PDF 
h<-hist(dataf1,breaks=20) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(dataf1),max(dataf1),by=1) 
yfit<-dlnorm(xfit,meanlog=10,sdlog=0.83255) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Lognormal pdf and histogram") 
lines(xfit,yfit, col="red") 
 
# State 2 Severity Testing 
dataf1<-datans2$Payment 
 
#draw histogram 
hist(dataf1,main="Histogram of observed data") 
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#QQPlot 
claim.ex<-(rlnorm(n=1000,meanlog=2,sdlog=0.83255)) 
qqplot(dataf1,claim.ex,main="QQ-plot distr. Lognormal")  
abline(0,1) ## a 45-degree reference line is plotted 
 
#Histogram and PDF 
h<-hist(dataf1,breaks=20) 
xhist<-c(min(h$breaks),h$breaks) 
yhist<-c(0,h$density,0) 
xfit<-seq(min(dataf1),max(dataf1),by=1) 
yfit<-dlnorm(xfit,meanlog=2,sdlog=0.83255) 
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main="Lognormal pdf and histogram") 
lines(xfit,yfit, col="red") 
 
Correlation 
# Read raw data (Claim output file) 
rawdata<-read.csv("D:/LS/RS/tsw/cc.csv",skip=1,header=TRUE) 
# Manipulate claim output file to retrieve monthly frequency data for each simulation/line 
fcn<-function(dataset){ 
   x<-floor((dataset[4]-20000000)/100) 
   return(x)} 
# apply fcn which returns the month of accident date 
dataindex<-apply(rawdata,1,fcn) 
rawdata2<-cbind(rawdata,dataindex) 
rawdata3<-aggregate(rawdata2, list(rawdata2$Simulation.No,rawdata2$Line,rawdata2$dataindex,rawdata2$State), 
length) 
rawdata4<-rawdata3[,1:5] 
data1<-rawdata4[rawdata4$Group.2==1,] 
data2<-rawdata4[rawdata4$Group.2==2,] 
rawdata5<-merge(data1,data2,by=c("Group.1","Group.3")) 
 
# Test for Line 1 State 1 and Line 2 State 1. This can be changed to other combinations of states 1&2, #2&1, and 
2&2 
rawdata6<-rawdata5[rawdata5$Group.4.x==1,] 
rawdata7<-rawdata6[rawdata6$Group.4.y==1,] 
datar<-cbind(rawdata7$Simulation.No.x,rawdata7$Simulation.No.y) 
colnames(datar)<-c("Line1","Line2") 
 
#copula test 
n<-length(datar[,1]) 
set.seed(123) 
x<- sapply(as.data.frame(datar), rank, ties.method = "random") / (n + 1) 
plot(x) 
 
#Load R packages 
library(MASS) 
library(methods) 
library(mvtnorm) 
library(scatterplot3d) 
library(mnormt) 
library(sn) 
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library(pspline) 
library(copula) 
 
#Set up copula object for copula distribution and goodness-of-fit test later 
normal.cop <- normalCopula(c(0),dim=2,dispstr="un") 
 
#Copula fit with prespecified type. 
fit.normal<-fitCopula(normal.cop,x,method="ml") 
fit.normal 
fit.normal<-fitCopula(normal.cop,x,method="itau") 
fit.normal 
 
#Copula Goodness-of-fit test 
gofCopula(normal.cop, x, N=100, method = "mpl") 
gofCopula(normal.cop, x, N=100, method = "itau") 
 
#K-S test.  
normal.fit<-normalCopula(0.95, dim=2) 
y<-rcopula(normal.fit,1000) 
ks.test(x,y) 

APPENDIX B. QUICK GUIDE FOR TWO-STATE REGIME-SWITCHING 

The two-state, regime-switching feature is allowed for all variables that were modeled as 
distribution in LSM. Below is a short description about the related model input and output. 

 
Model Input 
Figure 57 below shows the model input interface of the example in section 4.1. By checking the 

checkbox “Two-state Switching,” two distribution set up panels will be shown. You would also need 
to input the State 1 persistency and State 2 persistency. If only one distribution is desired, you could 
either uncheck the checkbox “Two-State Switching” or input the same distribution type and 
parameters for the 1st and 2nd distributions. By default, frequency and severity has two-state regime 
switching. For others like report lag, only one distribution is allowed. Those, however, can be 
changed. XML import/export setting is also revised for this enhancement. 
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Figure 57. Model input of two-state switching feature 

 
 
Model Output 
Claim and transaction output files: A new column “State” is added to record the state of 

frequency in claim output file and state of severity in transaction output file. 
 
Claim output example snapshot 

Si mul at i on 2011/ 4/ 10 0: 30: 14
Si mul at i on Occur r ence No Cl ai m No Acci dent  Dat e Repor t  Dat e Li ne Type St at e

1 1 1 20000126 20000701 1 1 2
1 2 1 20000101 20000318 1 1 2
1 3 1 20000106 20010105 1 1 2
1 4 1 20000123 20000823 1 1 2
1 5 1 20000116 20000129 1 1 2
1 6 1 20000223 20000514 1 1 1
1 7 1 20000213 20000327 1 1 1
1 8 1 20000218 20000530 1 1 1
1 9 1 20000223 20010209 1 1 1
1 10 1 20000222 20000823 1 1 1
1 11 1 20000210 20000309 1 1 1
1 12 1 20000326 20000413 1 1 2
1 13 1 20000307 20000614 1 1 2
1 14 1 20000412 20000528 1 1 2
1 15 1 20000422 20000816 1 1 2
1 16 1 20000402 20000626 1 1 2  
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Transaction output example snapshot 

Tr ansact i ons 2011/ 4/ 10 0: 30: 14
Si mul at i on Occur r ence No Cl ai m No Dat e Tr ansact i on Case Reser ve Payment St at e

1 1 1 20000701 REP 2000 0 2
1 1 1 20000703 RES - 1999 0 2
1 1 1 20000726 RES 0 0 2
1 1 1 20000804 RES 0 0 2
1 1 1 20000907 RES 0 0 2
1 1 1 20001023 RES 0 0 2
1 1 1 20001108 RES 0 0 2
1 1 1 20010115 RES 0 0 2
1 1 1 20010120 RES 0 0 2
1 1 1 20010501 CLS - 1 2 2
1 2 1 20000318 REP 2000 0 2
1 2 1 20000706 RES - 1998 0 2
1 2 1 20000729 CLS - 2 3 2
1 3 1 20010105 REP 2000 0 2
1 3 1 20010115 RES - 1994 0 2
1 3 1 20010202 RES 0 0 2
1 3 1 20010424 RES 0 0 2
1 3 1 20010515 RES 0 0 2
1 3 1 20010812 CLS - 6 0 2
1 4 1 20000823 REP 2000 0 2
1 4 1 20000907 RES - 1998 0 2
1 4 1 20001129 CLS - 2 0 2
1 5 1 20000129 REP 2000 0 2
1 5 1 20000228 RES - 1992 0 2
1 5 1 20000301 CLS - 8 13 2
1 6 1 20000514 REP 2000 0 1
1 6 1 20000524 RES - 1990 0 1
1 6 1 20000907 RES 0 0 1
1 6 1 20000914 RES 0 0 1   

 
In tab “Summary” of simulation results, the state of each month’s frequency and severity is 

output for checking and records. 
 

Figure 58. Frequency state output 
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Figure 59. Severity state output 
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Abbreviations and notations 
Collect here in alphabetical order all abbreviations and notations used in the paper 
df, degree of freedom LSM, Loss Simulation Model
LSMWP, Loss Simulation Model Working Party ML, Maximum Likelihood
MLE, Maximum Likelihood Estimation OLS, Ordinary Least Square
QQ, Quantile-Quantile plot RN, Random Number
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