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Abstract

The Collective Risk Model (CRM) constructs aggregate losses from a claim count distribution

and a claim size distribution. The aggregate losses are Z = X1 + ...+XN , where the Xi are

independent and identically distributed as well as independent from the claim counts N .

Simulating individual claims can be a lengthy process when the expected number of claims

is large. Often it is sufficient to collect only individual claims greater than some threshold

τ together with the aggregate smaller claims. This is the case when modeling the effects of

excess of loss reinsurance.

The simulation run time can be significantly reduced, therefore, by simulating large losses

individually and small losses in aggregate. The challenge in doing this is to preserve the risk

characteristics of the original CRM, because the small losses and the large losses are not

generally independent.

This paper shows how to do this by first simulating the total claim counts and then

conditionally simulating both the individual large losses and an approximation to the aggregate

small losses. In the case where the claim count distribution is a mixed Poisson, it is shown

that the distribution of losses simulated from this method converges to the CRM distribution.

This result is a generalization of the principle that the limiting behavior of a mixed Poisson

CRM is controlled by the mixing distribution.

1 Introduction

The Collective Risk Model (CRM) constructs aggregate losses from a claim count distribution

and a claim size distribution. The aggregate losses are Z = X1 + ...+XN , where the Xi are

independent and identically distributed as well as independent from the claim counts N .

Simulating individual claims can be a lengthy process when the expected number of

claims is large. Often it is sufficient to collect only individual claims greater than some

threshold τ together with the aggregate smaller claims. This is the case when modeling the

effects of excess of loss reinsurance, for example.

The simulation run time can be significantly reduced, therefore, by simulating large

losses individually and small losses in aggregate. The challenge in doing this is to preserve



the risk characteristics of the original CRM, because the small losses and the large losses

are not generally independent. This paper shows how to do this by first simulating the

total claim counts and then conditionally simulating both the individual large losses and an

approximation to the aggregate small losses. The small losses are drawn from a Conditional

Aggregate Distribution (CAD) so this method is referred to as the CAD method.

Section 2 provides a brief review of other methods of reflecting the dependence between

large and small losses.

After providing some notation, definitions, and basic facts, Section 3 describes the CAD

method for generating large and small losses in the CRM. An illustrative example shows

that the method can be highly accurate.

Section 4 discusses mixed Poisson claim count distributions and proves a theorem that

shows the distribution simulated from the CAD method converges to the CRM distribution

when the claim counts arise from a mixed Poisson distribution. This provides theoretical

support for the practical observation that the CAD method seems to work. Additionally,

the theorem supports two other practical observations: (1) the particular choice of the con-

ditional aggregate distribution used to approximate the small losses is to some extent im-

material and (2) the mixing distribution seems to control the overall aggregate distribution.

These are related to ideas presented by Mildenhall [12] and their connections are discussed.

Section 5 provides a reinsurance application that uses only the total aggregate loss mean

and variance together with large the claim size and count distributions.

Section 6 illustrates a multi-line example.

2 Brief Review of Methods for Reflecting Large-Small

Dependence

Dependence between large and small losses as well as more general methods of reflecting

dependencies have been discussed by several authors. The methods include: recursion,

Fourier Transform, numerical integration, and simulation with copulas, as well as the Iman-

Connover method [5].

Using two-dimensional Panjer recursions, Walhin [17] illustrates how different results

are obtained when small and large losses are modelled independently as opposed to the

dependence structure implicit in the CRM. Homer and Clark [3] perform similar calculations

using two-dimensional Fourier Transforms. These methods are powerful and convenient when

the expected claim counts are relatively small.

Other techniques discuss more generally the modeling of dependencies between random

variates, but not specifically between the large and small losses of the CRM. Homer [4]



shows how to extend Heckman and Meyers’ [2] numerical integration to two dimensions.

Numerical integration works effectively when the claim counts are high but requires extensive

programming and lacks the flexibility of simulation.

Dependencies can be imposed in simulation exercises with tools like copulas or the Iman-

Connover method. Wang [22] and Venter [16] discuss the use of copulas and Mildenhall [12]

generalizes the Iman-Connover method to provide additional dependence structures.

3 The Conditional Aggregate Distribution (CAD) Method

The basic idea is to simulate the total claim count N and then conditionally simulate the

large claim count NL. The small claim count NS follows as N − NL. Large claims are

simulated individually. Small claims are conditionally simulated in the aggregate from an

approximating distribution, the conditional aggregate distribution.

It will be helpful to establish some notation and recall some basic facts of the CRM in

order to describe the CAD method and show how the losses from the CAD method reproduce

various moments of the CRM losses as well as the correlation between large and small losses.

3.1 Notation

The CRM losses are Z = X1 + ... + XN where the Xi are independent, identically dis-

tributed (iid) severities with common distribution FX(x), N is the random claim count with

distribution QN(n), and independent of the Xi.

The losses Xi are partitioned into losses smaller than some threshold τ and losses greater

than or equal to τ . The small claim count is NS and the large count NL with N = NS +NL.

The aggregate large losses are the sum of the individual large losses ZL = XL,1 + ...+XL,NL

and similarly for small losses ZS, with Z = ZS + ZL.

The distributions of the individual small and large claim sizes respectively are

FXS(x) =
FX(x)

FX(τ)
, x ∈ (0, τ), (1)

and

FXL(x) =
FX(x)− FX(τ)

1− FX(τ)
, x ∈ [τ,∞). (2)

The large claim count distribution conditional onN total claims is a Binomial distribution

because the claim sizes are iid and independent from the claim counts:

Pr(NL = m|N = n) = B(n,m, q) =

(
n

m

)
qm(1− q)(n−m), (3)

where q = 1− FX(τ) is the probability of a large loss.



Correlation of large and small losses: Large and small losses are correlated through

the claim count random variable (r.v.). The value of the correlation coefficient [15] is given

by

ρ(ZS, ZL) =
q(1− q)E[XS]E[XL](σ2(N)− E[N ])

σ(ZS)σ(ZL)
, (4)

where σ(Y ) denotes the standard deviation of the r.v. Y .

3.2 The CADk Algorithm

The pseudo-code for a single trial is as follows:

1. Draw N the number of total claims from the total claim count distribution QN .

2. Draw NL the number of large claims from the large claim count distribution conditional

on N total claims using equation (3).

3. Set the small claims NS = N −NL.

4. Draw the individual large claims {X1, ..., XNL} from the claim size distribution condi-

tional on Xi > τ , given by equation (2).

5. Draw the aggregate small claims from a distribution parameterized by matching the

first k moments of ZS|NS.

3.2.1 Preservation of Means, Variances and Correlations

To see how means, variances and large-small correlations are preserved consider how the large

and small losses are constructed. The simulated losses in steps 1-4 are completely consistent

with the CRM. In the last step an approximation is used: the small aggregate claims ZS are

simulated from an aggregate distribution with the matching k conditional moments. Denote

this method with k matching moments by CADk. Further, let F represent the distributional

family used in step 5, and set

Ẑ := CADk(N,X,F)

to mean the total loss r.v. generated by CADk. Similarly, ẐS is the small loss r.v. generated

by CADk. The notation ẐL is not needed since, by construction, ẐL = ZL.

For k ≥ 2, CADk preserves the mean, variance, and correlation of large and small losses:

Claim 3.1 For j ≤ k, E[Ẑj
S] = E[Zj

S], and for k ≥ 2,

ρ(ẐS, ZL) = ρ(ZS, ZL). (5)



Proof

E[Ẑj
S] = E

N,NL
[E[Ẑj

S|N,NL]] = E
N,NL

[E[Zj
S|N,NL]] = E[Zj

S], (6)

by construction. To see that correlation is preserved, it suffices to show that E[ẐSZL] =

E[ZSZL]. This follows as above since ẐS, ZL are independent given N, NL. 2

3.2.2 Selecting a Conditional Aggregate Distribution

The central limit theorem promises that the conditional small losses are asymptotically nor-

mal, but in fairly typical insurance situations, the r.v. ZS|NS will carry significant skewness.

It seems natural, then, to consider non-normal two-parameter families as well as three-

parameter families to match the conditional moments of the aggregate small claims; i.e.,

consider CAD2 and CAD3 models.

The statistics used for fitting are generally the mean, variance, and skewness. The mean,

variance, and skewness of conditional small claims are given by:

E[ZS|NS] = NSE[XS], (7)

σ2(ZS|NS) = NSσ
2(XS), (8)

γ(ZS|NS) = γ(XS)/
√
NS. (9)

Table 10 of Appendix A shows the parameterizations and method of moment fits for vari-

ous distributions. In several instances, a shift is used to provide an extra parameter. Section

4 develops some theory showing that the form of the conditional aggregate distribution is in

some sense immaterial.

3.3 Basic Example

The following example provides a comparison between direct simulation of the CRM and

simulation using the CAD.

The severity distribution is a 1ognormal (µ = 9 and σ = 2) censored at $1,000,000. The

frequency distribution is a negative binomial (mean=526.99 and variance=17884). These

are the same parameters used by Mildenhall in [12], section 4.1.

The conditional aggregate distribution is a lognormal. (See formulae in Appendix A.)

Tables 1 and 2 summarize the claim size and claim count distributions.



Table 1: Claim Size Distribution
Claim Incremental Cumulative

Size Probability Probability
0 0.0% 0.0%

10,000 54.2% 54.2%
20,000 13.2% 67.4%
30,000 6.9% 74.4%
40,000 4.4% 78.8%
50,000 3.1% 81.9%
60,000 2.3% 84.2%
70,000 1.8% 86.0%
80,000 1.4% 87.4%
90,000 1.2% 88.6%

100,000 1.0% 89.6%
200,000 5.0% 94.6%
300,000 1.9% 96.5%
400,000 1.0% 97.4%
500,000 0.6% 98.0%
600,000 0.4% 98.4%
700,000 0.3% 98.7%
800,000 0.2% 98.9%
900,000 0.2% 99.1%

1,000,000 0.9% 100.0%

Table 2: Negative Binomial Parameters
Mean 526.99

Variance 17,885

Table 3 provides a comparison of percentiles and statistics for the aggregate small and

large losses, while Table 4 compares the total losses. CRM large and CAD large losses are

drawn from the same distribution so they only differ due to different simulations. CRM

small and CAD small losses look equally close; the CAD approximation seems to work well.

The correspondence in Table 4 suggests that the dependence structure is preserved and this

is further supported by Table 5 which shows the simulated and theoretical correlation for

large and small losses. Table 6 shows the improved run-time using methods programmed

in R [14].



Table 3: CRM and CAD Simulated Losses
CRM CAD CRM CAD

Cumulative Small Small Large Large
Probability Losses Losses Losses Losses

1.0% 8.0 8.0 1.9 2.0
2.0% 8.7 8.8 2.4 2.5
3.0% 9.3 9.3 2.8 2.8
4.0% 9.7 9.7 3.1 3.1
5.0% 9.9 10.0 3.4 3.4

10.0% 11.1 11.2 4.3 4.3
20.0% 12.7 12.7 5.5 5.4
30.0% 13.9 13.9 6.4 6.4
40.0% 15.0 15.0 7.3 7.3
50.0% 16.1 16.1 8.2 8.1
60.0% 17.3 17.3 9.0 9.0
70.0% 18.5 18.5 10.0 9.9
80.0% 20.2 20.0 11.2 11.1
90.0% 22.5 22.4 13.1 13.0
95.0% 24.5 24.6 14.6 14.5
99.0% 28.7 28.8 18.0 17.8
99.9% 33.5 33.4 22.3 21.5
Mean 16.5 16.5 8.5 8.4

Std 4.5 4.5 3.5 3.4

Table 4: CRM and CAD Simulated Losses
CRM CAD

Cumulative Total Total
Probability Losses Losses

1.0% 11.3 11.2
2.0% 12.5 12.4
3.0% 13.3 13.3
4.0% 14.0 13.9
5.0% 14.6 14.6

10.0% 16.5 16.5
20.0% 19.0 18.9
30.0% 20.9 20.8
40.0% 22.7 22.6
50.0% 24.3 24.3
60.0% 26.2 26.1
70.0% 28.3 28.1
80.0% 30.7 30.6
90.0% 34.3 34.3
95.0% 37.5 37.3
99.0% 44.0 43.9
99.9% 53.1 51.5
Mean 25.0 24.9

Std 7.1 7.0



Table 5: Theoretical, CRM, and CAD Small-Large Linear Correlation
Correlation

Theoretical 57.3%
CRM 58.4%
CAD 57.0%

Table 6: CRM and CAD Simulation Run-Times
Trial Count CRM CAD x Faster

5,000 1.08 0.13 8.31
10,000 2.15 0.22 9.77
20,000 4.33 0.44 9.84

Before moving on to some underlying theory, we note several properties of the CAD

method for loss simulation modeling:

1. It captures individual large losses.

2. It is easy to program (wtih Excel\@Risk, or in R, for example) with fast run times.

3. It works well no matter the size of λ = E[N ] (as long as λL = E[NL] is manageable.)

4. It reflects the joint distribution of large and small losses.

5. It can be adapted to situations with incomplete knowledge (specifically when the sever-

ity distribution is not known or assumed; see the example in Section 5).

6. It is easy to incorporate into complex models (For example, CAD can be used for

multiple lines of business correlated via the claim count r.v.; see the example in Section

6).



4 CAD with the Mixed Poisson Claim Count

The losses simulated from the CAD method can be shown to converge to the losses in the

CRM when the claim count is a mixed Poisson. The particular conditional aggregate dis-

tribution used is somewhat immaterial while the mixing distribution of the Poisson controls

the unconditional aggregate shape.

This section discusses mixed Poisson distributions and then proves a convergence theorem

for the losses simulated with the CAD method.

4.1 Mixed Poisson Claim Counts

A Mixed Poisson distribution is just a Poisson distribution with a random parameter. For-

mally,

Definition: N is a mixed Poisson r.v. (QN is a mixed Poisson distribution) if N ∼
Poisson(λG) for λ = E[N ] and non-negative G such that E[G] = 1 and σ2(G) = c. In

this case we write N = MP (λ,G).

The r.v. G is referred to as the mixing distribution, and c the contagion parameter. Note

that for N = MP (λ,G),

σ2(N) = λ(1 + cλ) (10)

and

γ(N) =
1 + cλ(3 + λ

√
cγ(G))√

λ(1 + cλ)3/2
. (11)

Thus mixed Poisson claim counts carry positive contagion in the sense that c ≥ 0 and

the variance-to-mean ratio d = (1 + cλ) ≥ 1.

A convenient aspect of the mixed Poisson for ground-up claims is that large and small

claim counts are also mixed Poisson with the same mixing distribution. Using CRM(N,X) =

Z = X1+...+XN as notation for the CRM losses and abbreviating the coefficicent of variation

(c.v.) as ν(Y ) = σ(Y )/E[Y ],

Claim 4.1 If Z = CRM(MP (λ,G), X), then

ZS = CRM(MP ((1− q)λ,G), XS), and

ZL = CRM(MP (qλ,G), XL),

where q is the probability of a large loss. Furthermore,

ρ(ZS, ZL) = c/[ν(ZS)ν(ZL)]. (12)



Proof See Mildenhall [12]. Equation (12) follows from equation (4). 2

Recall that for Z = CRM(N,X),

E[Z] = λµ(X) (13)

σ2(Z) = λσ2(X) + µ2(X)2σ2(N) (14)

γ(Z) =
[
µ3(X)γ(N)σ3(N) + 3µ(X)σ2(X)σ2(N)

+λγ(X)σ3(X)
]
/σ3(Z) (15)

Here and later it is convenient, in particular, to have λ = E[N ] and, in general, to have µ(Y )

denote E[Y ] and µ′j(Y ) denote E[Y j] for a r.v. Y .

We may now use equations (10) and (11) and (13)–(15) to derive expressions for the c.v.

and skewness of Z = CRM(MP (λ,G), X):

ν(Z) =

√
c+

1 + ν2(X)

λ
(16)

γ(Z) =
µ′3(X)/(µ3(X)

√
λ) + 3c

√
λ(1 + ν2(X)) + (cλ)3/2γ(G)

(1 + ν2(X) + cλ)3/2
. (17)

It follows that as long as G and X do not depend on λ, ν(Z) → ν(G) =
√
c, and

γ(Z) → γ(G) as λ → ∞. We may thus infer that the choice of G wields critical influence

on the properties of a mixed Poisson CRM. This intuition is confirmed by the convergence

theorem and examples in section 4.4 (as well as by Proposition 1 of [12]).

4.2 Negative Binonial

The most common example of a mixed Poisson is the negaive binomial, arising from G ∼
gamma. The gamma mixing distribution has parameters α = 1/c and β = c. We specify the

negative binomial in terms of the mean and variance-to-mean ratio, and write N ∼ NB[λ, d].

Its pdf is given by

Pr(N = n) =
Γ(n+ λ/(d− 1))

n!Γ(λ/(d− 1))
d−λ/(d−1)

(
d− 1

d

)n
.

In the mixed Poisson formulation (d = 1 + cλ) the Negative Binomial pdf becomes

Pr(N = n) =
Γ(n+ 1/c)

n!Γ(1/c)
(1 + cλ)−1/c

(
cλ

1 + cλ

)n
.

This is the parameterization given in [10]. In [12], Mildenhall notes two types of negative

binomial models, distinguished by their behavior as λ varies. In the over-dispersed Poisson

(ODP) model, the variance-to-mean ratio is independent of λ. This forces the c parameter

to depend on λ as c = cλ = (d − 1)/λ. In this case the c.v. ν(N) =
√
cλ + 1/λ → 0 as

λ→∞ (and G = Gλ
D−→ 1). The contagion model, on the other hand, holds c fixed so that

d = dλ →∞ and ν(N)→
√
c as λ→∞.



4.3 Other Mixing Distributions

Tables 11–13 in Appendix B show various choices for the mixing distribution G. A twist

is that Tables 11–12 add shift and slope parameters s and m. So, the general form for G

is G = s + mH, where H is the named distribution. Refer to the appendices of [6] for the

standard parameterizations of the H-distributions. The parameters of H are then expressed

in terms of the contagion c, and the (optional) parameters s and m. The parameters m and

s are constrained by 0 <= s < 1 and m > 0. They may be redundant or determined by the

conditions µ(G) = 1 and σ2(G) = c.

Table 13 shows various ways to construct G from components Gi. In this case, c is

expressed in terms of the contagions ci of the components.

The second columns of Tables 11–13 show the skewness of G. Note the relationship

µ′3(G) = 1 + 3c + c3/2γ(G) so that the symmetric distributions have third moment equal

to 1 + 3c. The skewness γ(G) for a component distribution is expressed in terms of the

γi = γ(Gi)

See the notes after Table 13 for a more detailed discussion.

Returning to our main context, the practitioner may have trustworthy estimates for the

mean and c.v. of ZS. This will rarely, if ever, be the case for the skewness γ(ZS). By equation

(17), and Claim 4.1, the choice of G affords the opportunity to “take a view” of γ(ZS) in the

limit λ → ∞. For example, if one believes that the skewness will diversify away, then the

continuous or discrete uniform might be the proper choice for G. Otherwise, consideration

could be given to the ratio κ(G) = γ(G)/ν(G) = γ(G)/
√
c (the “skew-nu” ratio). For the

unshifted Poisson, gamma, and inverse Gaussian, κ is constant (κ = 1, 2, 3, respectively).

For the lognormal, κ = 3 + c. Choosing the shifted exponential or Pareto will result in much

higher skewness for ordinarily encountered values of c. Adding the shift parameter allows for

higher skewness with the more traditional choices. For example, the shifted gamma allows

any skew-nu ratio ≥ 2. Another reason to add a shift is to reflect an assumption on the

effective mimimum value of ZS. That is, adding a shift to G will tend to increase the effective

minimum of NS and, therefore, of ZS (Compare the simulated minimum values in Appendix

C, Exhibit 5 to those in Exhibit 2).

4.4 Convergence Theorem

For the convergence theorem, we need the notions of characteristic function and weak con-

vergence of distributions:

Definition:

1. The characteristic function of the r.v. Y is the complex-valued φY (t) = E[eitY ], t >



0, i =
√
−1.

2. A sequence of distribution functions is said to converge weakly to a limit F (written

Fn
D−→ F ) if Fn(y) → F (y) for all y that are continuity points of F. A sequence of

random variables Yn is said to converge weakly or converge in distribution to a limit

Y (Yn
D−→ Y ) if their distribution functions FYn(y) converge weakly.

Theorem 4.2 Suppose we are given Nλ = MP (λ,G), and r.v.’s Yn such that µ(Yn) = nm,

σ2(Yn) <= njs2 for some j, 0 <= j < 2, and fixed s. Define YNλ by YNλ |(Nλ = n) = Yn.

Then

YNλ/(λm)
D−→ G as λ→∞.

Proof Without loss of generality we may assume m = 1, so that µ(Yn) = n. Set

Ȳλ = YNλ/λ.

Applying the Continuity theorem (see Durrett, Theorem 3.4 [1], for example), which

states that convergence of characteristic functions implies convergence in distribution, we

need to show

L := lim
λ→∞

φȲλ(t) = φG(t).

Note that φȲλ(t) = φYλ(t̄), where t̄ = t/λ. Define NG
λ and LGλ by

NG
λ = Nλ|G (∼ Poisson(λG)),

LGλ = E
NG
λ

[φYn(t̄)|G,NG
λ = n].

Then L = limλ→∞ E
G

[LGλ ], and |LGλ | ≤ 1 so by the Bounded Convergence Theorem it suffices

to show that

lim
λ→∞

LGλ = eiGt.

Now, if Zn = Yn − n then µ(Zn) = 0 and µ′2(Zn) = σ2(Yn) = njs2. So, by Durrett,

Theorem 3.8 [1],

lim
λ→∞

LGλ = lim
λ→∞

E
NG
λ

[eit̄nφZn(t̄)|G,NG
λ = n]

= lim
λ→∞

E
NG
λ

[eit̄n(1 + njO(t̄2))|G,NG
λ = n]

= lim
λ→∞

E
NG
λ

[eit̄n|G,NG
λ = n]

+ lim
λ→∞

E
NG
λ

[eit̄nnjO(t̄2)|G,NG
λ = n]. (18)



Note that NG
λ ∼ Poisson(λG) implies that E[(NG

λ )r] = O((λG)r), for all r ≥ 0. With a

second application of Durrett, Theorem 3.8 [1] to eit̄n, we can evaluate the second term in

18 as

L∗ = lim
λ→∞

E
NG
λ

[eit̄nnjO(t̄2)|G,NG
λ = n]

= lim
λ→∞

E
NG
λ

[(1 + it̄n+ n2O(t̄2))njO(t̄2)|G,NG
λ = n]

= lim
λ→∞

[O((λG)j)O(t̄2) + iO((λG)1+j)O(t̄3) +O((λG)2+j)O(t̄4)]

= 0, as 0 ≤ j < 2.

Finally, the Poisson characteristic function φ(t) = eλ(eit−1) and one more application of

Durrett, Theorem 3.8 [1] show that

lim
λ→∞

LGλ = lim
λ→∞

E
NG
λ

[eit̄n|G,NG
λ = n]

= lim
λ→∞

eλG(eit̄−1)

= lim
λ→∞

eλG(it̄+O(t̄2))

= eiGt. 2

4.4.1 Convergence of CAD and CRM

If we set Yn =
∑n

i=1 Xi, Xi iid, then σ2(Yn) = nσ2(X) and we have Proposition 1 of [12],

i.e., for Z = CRM(MP (λ,G), X),

Z/µ(Z)→ G,

no matter the choice of X (“severity is irrelevent” 1). In our context, setting Yn = ẐS|NS = n

shows that for k >= 2 and ẐS = CADk(MP (λ(NS), G), XS,F),

ẐS/µ(ẐS)→ G

no matter the choice of X or F (severity and conditional aggregate distribution are irrele-

vant). Putting the two cases together supports ẐS as a good approximation for ZS as each of

these r.v.’s converge to G when normalized by the mean. The theorem equally applies to the

CAD total losses Ẑ by setting Yn = ẐS + ZL|(NS = n− B,NL = B), where B ∼ Bin(n, q).

Thus, the CAD small, large (by construction), and total losses converge to those of the CRM.

1Mildenhall [12] explains in the context of a CRM that, “in some cases the actual form of the severity
distribution is essentially irrelevant to the shape of the aggregate distribution.”



4.4.2 Convergence to G - Examples

Of course, the theorem also applies to ZL, but this is irrelevant to most insurance situations,

due to the relatively small expected claim count. In this case, severity may be quite relevant.

On the other hand, ZS will take on the characteristics of G for moderately sized insurance

portfolios. The top chart of Appendix C, Exhibit 1 shows the pdf of ZS for a portfolio

similar to the one in the Basic Example of Section 3.3 - with µ(Z) = $25, 000, 000 and large

loss threshold of $200,000 (solid area). The mixing distribution G is the three-point Hermite

(Appendix B, notes). Overlaid is the pdf of ẐS where ẐS|NS ∼ shifted exponential (as

in Appendix A, Table 10). It’s interesting that the highly skewed, monotonic exponential

distribution diversifies away to the symmetric, tri-modal Hermite. In fact the Table 10 shifted

exponential, as a CAD2 model, satisfies the convergence theorem with j = 1. If we match

only the mean (i.e., use a CAD1 model) we may reparameterize the shifted exponential as

Nsµ(XS)−
√
N j
Sσ(XS) + Exp[

√
N j
Sσ(XS)],

and this also satisfies the convergence theorem as long as j < 2. The bottom chart of

Appendix C, Exhibit 1 shows the case j = 1.5 converging to G, but more slowly. Of course,

a (CAD1) model with j = 0 would converge to G too quickly to be useful in approximating

the actual CRM. For example, such a model would have ν2(ẐS) = ν2(XS)/λ2 + c + 1/λ, so

that the severity component → 0 as 1/λ2 rather than 1/λ as in equation (16).

Exhibits 2-5 in Appendix C expand on the Basic Example in Section 3 in light of the

convergence theorem. The claim count distribution in this example was a negative binomial

wtih mean λ = 527 and and variance-to-mean ratio d = 33.94. Equivalently, this is a mixed

Poisson with gamma mixing distribution and contagion c = 0.0625. This is the subject of

Appendix C, Exhibit 2. We ran the CAD algorithm using the @Risk software with 30,000

iterations. We also simulated the small losses directly from the assumed claim count and

lognormal severity distributions as a basis for comparison.

The top chart of Exhibit 2.1 shows the simulated pdf of the “true” losses (solid region)

versus six different choices for the CAD distributional family F . These include both CAD2

and CAD3 models. Visually the fits are excellent, even for exotic choices such as the shifted

exponential and the (CAD3) distribution on two points. The table at the bottom of Exhibit

2.1 is adapted from the standard @Risk “Detailed Statistcs” output. It shows moment

and percentile statistics for each distribution. Convergence to the mixing distribution is

evidenced by considering the ratio of skewness to the c.v. (the skew-nu ratio). For a gamma

distribution, this ratio is equal to 2.

Exhibit 2.2 shows scatterplots of simulated large versus small losses. The top chart shows

the true small losses (ZL vs. ZS), while the bottom chart generates small losses via tha CAD



algorithm (ZL vs. ẐS). The close similarity of the two plots indicates that CAD does a good

job of reflecting the overall dependence of large and small losses, as well as matching the

numerical correlation per Claim 3.1.

Exhibits 3-5 repeat Exhibit 2 for different choices of the mixing distribution. A lognor-

mal mixing distribution is used in Exhibit 3 with similar results. Here, convergence to G

is evidenced by a skew-nu ratio in the 3-ish range. Exhibits 4 and 5 reflect more unusual

choices for the mixing distribution - a uniform and a three-point shifted binomial, respec-

tively. The shifted binomial is parameterized to match the skewness of the gamma mixing

distribution, i.e., γ(G) = 0.5. In these cases, due to the distinctive shapes of the pdf graphs,

visual inspection serves as evidence of convergence to G. Once again, the large vs. small loss

scatterplots match up extremely well. The scatterplot for the shifted binomial has three

distinct regions, corresponding to the three possible values of G. Each region appears very

nearly symmetric, reflecting the fact that ρ(ZS|G,ZL|G) = 0 by equation (4).

In [12] Mildenhall uses the Iman Conover (IC) method to model the dependence of large

and small losses. This is a rank-order correlation method that has the advantage of being

easy to use in spreadsheets and simulations. To apply IC, Mildenhall uses simulated output

from method of moments fitted curves for both small and large losses. The curve used is a

shifted gamma, i.e., a fit to the first three moments of the unconditional losses. In Appendix

C, Exhibit 6-7, the IC method is applied with the shifted gamma fitted curve for small losses,

but the actual CRM simulated output for large losses. For the gamma mixing distribution,

IC appears to do a good job matching the pdf graphs and scatterplots from Exhibit 2. Note,

however, that as long as the first three moments are kept constant, the small loss curve fit

will not vary with a change in the mixing distribution. The result is a poor fit to the small

loss pdf for the shifted binomial mixing distribution (Exhibit 7.1). The IC method also will

not reproduce the three distinct regions of the large vs. small loss scatterplots in Exhibit 5.2.

If we “cheat” by applying IC to CRM simulated output for both large and small losses, the

resulting scatterplot will show three distinct regions (Exhibit 7.2). However, the rank-order

construction will not replicate ρ(ZS|G,ZL|G) = 0, as can be seen by noting the positive slope

within each region. That is, the CAD method reflects the conditional small/large indepence

correctly, but the IC method does not.



5 CAD with Limited Information - A Reinsurance Ex-

ample

The example considered in this section is typical of a reinsurance pricing exercise requiring

simultaneous modeling of large and small losses. It is a reinsurance coverage with two sections

- (1) a stop-loss on the cedant’s “net” losses and (2) excess-of-loss (XoL) coverage. Here,

net losses are losses limited to the large loss threshold τ . Excess losses include all amounts

exceeding τ and limited to the policy limit. Aggregate net and excess loss are thus given by:

ZNet = ZS +NLτ

and

ZXoL = ZL −NLτ.

The stop-loss covers net losses excess of an annual aggregate deductible (AAD) and

limited to the annual aggregate limit (AAL), that is

ZSL = min(AAL,max(0, ZNet − AAD)).

Finally, the reinsurance coverage will reimburse the total of the two coverage sections:

ZRe = ZSL + ZXoL.

To evaluate and price such a reinsurance contract, it is clearly important to accurately

reflect the dependence of large and small losses. For example, the large-small dependence

may significantly impact downside risk measures such as Tail Value-at-Risk (TVaR). The

CAD methodology is thus an excellent candidate for the loss modeling. We will continue

to assume the underlying losses follow a mixed Poisson CRM, with contagion parameter

c=0.0625. Various choices for the mixing distribution G will be considered.

To this point, the CAD method as presented requires the full (ground-up) severity and

claim count distributions. In reinsurance applications, however, the available data may be

insufficient to reasonably parameterize these distributions. We will demonstrate how to

apply CAD with more limited input information.

For this example, the input data is limited to the mean and c.v. of total aggregate losses

(µ(Z), ν(Z)), the mean λ(NL) of the large loss claim count, and the large loss severity distri-

bution FXL . This information set-up is fairly typical in reinsurance pricing. The parameters

µ(Z), ν(Z) may have been estimated using aggregated data such as loss development tri-

angles and historical loss ratios. The distribution FXL may have been derived by fitting a

curve to the supplied large loss listing, with λ(NL) based on historical excess claim counts.



Alternatively, FXL may be an empirical distribution developed to replicate selected loss costs

for several XoL layers. In this example, we do assume an empirical distribution for FXL ,

with the large loss threshold τ = $200, 000. The large loss distribution and other parameter

values are shown in Table 7.

Table 7: Initial Parameters for Reinsurance Example
Parameter Value

τ $200,000
AAD $25,000,000
AAL $20,000,000
µ(Z) $25,000,000
ν(Z) 0.28

λ(NL) 21.5
Contagion c 0.0625

Large Loss Severity(F (XL))
Claim Incremental Cumulative

Size Probability Probability
200,000 19.6% 19.6%
300,000 25.2% 44.8%
400,000 14.1% 58.9%
500,000 8.9% 67.8%
600,000 6.1% 73.9%
700,000 4.4% 78.3%
800,000 3.3% 81.6%
900,000 2.6% 84.2%

1,000,000 15.8% 100.0%
Implied Large Loss Statistics

µ(XL) $490,900
ν(XL) 0.5691
µ(ZL) $10,554,350
ν(ZL) 0.3522

The large loss values in the bottom portion of Table 7 are easily computed from F (XL),

λ(NL), and c. The c.v. ν(ZL) is derived with equation (16) for ZL and XL, noting that ZL

is also a mixed Poisson CRM with contagion c.

The CAD algorithm also requires a value for the mean total claim count λ. It may be

that sufficient historical data is available for a reliable estimate of λ. If this is not the case,

we posit a value for λ. For this example, we set λ = 500.

Given a choice for the mixing distribution G, CAD steps 1-4 may now be executed. This

will generate simulated values for ZL, NL, and NS. To simulate values for ZS in step 5, we

need to derive expressions for the mean and c.v. of ZS|NS. Note that µ(ZS) = µ(Z)−µ(ZL),

λ(NS) = λ(N)− λ(NL), and

µ(ZS|NS) = NSµ(XS) = NSµ(ZS)/λ(NS). (19)



By equations (8) and (9), ν(ZS|NS) = ν(XS)/
√
NS. Equation (16) applied to ZS can

be used with equations (12) and (19) and the fact that σ2(ZS) = σ2(Z) − σ2(ZL) −
2ρ(ZS, ZL)σ(Z)σ(ZL) to eliminate ν(XS) from the expression for ν(ZS|NS). After some

algebra, the formula for ν(ZS|NS) becomes:

ν(ZS|NS) =√
λ(NS) [µ2(Z)(ν2(Z)− c)− µ2(ZL)(ν2(ZL)− c)]− µ2(ZS)

NSµ2(ZS)
. (20)

Equations (19) and (20) now allow for the method of moments fit in step 5 without

referring to the small loss severity r.v. XS. This limited information version of the algorithm

is strictly a CAD2 excercise. To derive an expression for γ(ZS|NS), say, would involve an

a priori estimate of the skewness γ(Z) - rarely, if ever, available. Table 8 substitutes the

known values from Table 7 into equations (19) and (20).

Table 8: Small Loss Model
µ(ZS) $14,455,650
λ(NS) 478.50

µ(ZS |Ns) = 30, 189.45NS
ν(ZS |NS) = 2.46/

√
NS

We may now run the CAD algorithm to determine an appropriate premium for the

coverage of ZRe. The premium P is set as P = µ(ZRe) + uΦ, where Φ is a downside risk

measure and u is the load factor. For this exercise, Φ = TV aR(ZRe, 0.99), the Tail Value-

at-Risk of ZRe at the 99th percentile. The load factor is set equal to 10%. Table 9 shows

the results of running the CAD algorithm with 30,000 iterations and various choices of the

mixing distribution G. There is some variation in µ(ZSL) and significant variation in the

TVaR values as G varies. This results in a smaller, but still significant variation in indicated

premium.

Care should be taken in applying the limited information CAD method. The choice of

the parameters λ, and c, along with the input information will impute values for some of

the other loss statistics. The preceding example imputes values for the small loss statistics

µ(XS), σ2(XS), µ(ZS), σ2(ZS), and also for σ2(ZL) (through the choice of c). However, there

is no a priori guarantee that, say, σ2(XS) > 0. There may also be a more subtle inconsistency,

such as µ(XS) > µ(XL). The practitioner should include these types of consistency checks

when applying the limited information CAD.

It is possible that input information such as found in Table 7 is internally consistent but

inconsistent with the mixed Poisson CRM. Informally, we say that the input information

admits a mixed Poisson CRM if there is a choice of λ and c resulting in no inconsistencies.



Table 9: Simulation Results from Different Mixing Distributions
Mixing Log- Shifted S. Log- Expo- S. Bi-

Distribution Uniform Gamma normal Gamma normal nential Pareto Beta nomial
µ(ZL) 10.5 10.6 10.6 10.6 10.5 10.6 10.5 10.6 10.5
µ(ZS) 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4

µ(ZNet) 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7
µ(ZXoL) 6.2 6.3 6.3 6.3 6.2 6.3 6.2 6.3 6.2
µ(ZSL) 1.6 1.5 1.5 1.4 1.2 1.4 1.1 1.5 1.7
µ(ZRe) 7.8 7.7 7.7 7.7 7.5 7.7 7.4 7.7 7.9

TVaR(ZRe, 99) 22.3 27.3 28.5 33.0 34.6 33.1 34.3 31.8 26.5
Premium 10.1 10.5 10.6 11.0 10.9 11.0 10.8 10.9 10.6

6 CAD with Multiple Lines of Business

This section adapts the CAD method to model multiple lines of business and impose cor-

relation between lines. In this context, let Zi, i = 1 . . .m, be the aggregatee loss r.v.

for the ith line, and τi the large loss threshhold. All other notations (Zi,S, Zi,L, etc.)

carry through. As in the previous section we allow for limited information, but say that

Zi admits a mixed Poisson CRM with parameters λi and ci. Note that by equation (16),

ci < min(ν2(Zi)− 1/λ(Ni), ν
2(Zi,S)− 1/λ(Ni,S), ν2(Zi,L)− 1/λ(Ni,L)).

6.1 Common Shock CAD

Of course, one can extend the CAD method to m lines of business simply by iterating

m times. For the multi-line mixed Poisson CRM, it’s natural to impose correlation via a

common shock component on the mixing distributions Gi [11]. As noted in Appendix B, the

twisted product construction is well-suited to this purpose.

With notation as above set cmin = min {ci, i = 1 . . .m}, and take w such that 0 ≤ w ≤ 1.

The parameter w is the weight given to the common shock component. We now assume that

the mixing distribution Gi has the form

Gi[ci] = G1 •G2,i = G1[wcmin]G2,i[(ci − wcmin)/G1].

Here, G1 is the common (or industry) component and G2,i is the line-specific component,

with contagion parameter “distorted” by G1. By the discussion in Appendix B, σ2[Gi] =

wcmin + ci − wcmin = ci, as required.

Programatically, step 1 of the CAD algorithm becomes

Step 1CS: Draw G1 from G1[wcmin]. Then, for each i, draw Ni from MP (λiG1, G2,i[(ci −
wcmin)/G1]).

Steps 2-5 then proceed unchanged for each line. By analogy with equation (12), the

common shock CAD results in the following correlations for i 6= j:



ρ(Ẑi,S, Ẑj,S) = wcmin/(ν(Zi,S)ν(Zj,S))

ρ(Ẑi,S, Zj,L) = wcmin/(ν(Zi,S)ν(Zj,L))

ρ(Zi,L, Zj,L) = wcmin/(ν(Zi,L)ν(Zj,L)).

6.2 Common Shock CAD with Conditional Correlation

In [11], Meyers employs a common shock model acting on the severity distributions, in ad-

dition to a claim count model similar to that described above. The CAD method suppresses

reference to the small loss severity, especially in the case of limited information. To gener-

ate a second source of between-line correlation, we specify a fixed correlation matrix to be

applied to the Zi,S|Ni,S in step 5 of the CAD algorithm. Step 5 is then replaced by

Step 5Corr: Draw aggregate small losses for each line from a joint distribution [Ẑ1,S|N1,s . . . Ẑm,S|Nm,s]

with correlation matrix Γ = [rij] and such that the marginals Ẑi,S|Ni,s are parameterized by

matching the first k moments of Zi,S|Ni,S.

For i 6= j, Step 5Corr implies that

Cov(Ẑi,S|Ni,S, Ẑj,S|Nj,S) = rij
√
Ni,SNj,Sσ(Xi,S)σ(Xj,S).

It follows that for common shock CAD with conditional correlation:

E
Ni,S ,Nj,S

[Cov(Ẑi,S|Ni,S, Ẑj,S|Nj,S)] ≈ hijrij

√
λ(Ni,S)λ(Nj,S)σ(Xi,S)σ(Xj,S),

where hij = E[
√
GiGj] = E

G1

[
√
G2,iG2,j|G1], using E[

√
N ] ≈

√
λ for N Poisson. Further-

more,

Cov[E[Ẑi,S|Ni,S],E[Ẑj,S|Nj,S]] = µ(Xi,S)µ(Xj,S)Cov[Ni,s, Nj,s]

= µ(Xi,S)µ(Xj,S)wcminλ(Ni,S)λ(Nj,S)

= wcminµ(Zi,S)µ(Zj,S).

Using equation (16) to eliminate the small loss severity we find;

ρ(Ẑi,S, Ẑj,S) =

E
Ni,S ,Nj,S

[Cov(Ẑi,S|Ni,S, Ẑj,S|Nj,S)] + Cov[E[Ẑi,S|Ni,S],E[Ẑj,S|Nj,S]]

σ(Zi,s)σ(Zi,s)

≈
wcmin + hijrij

∏
ι=i,j

√
ν2(Zι,S)− cι − 1/λ(Nι,s)

ν(Zi,S)ν(Zj,S)
. (21)



Note that hij = 1 if w = 1 and ci = cj = cmin. In particular, if Zi and Zj are identical,

then write ci = cj = t(ν2(Zi,S)− 1/λ(Ni,S)), and (21) reduces to

ρ(Ẑi,S, Ẑj,S) ≈ (t+ rij(1− t))[1− 1/(ν2(Zi,S)λ(Ni,S))]

≈ (t+ rij(1− t)),

if λ(Ni,S) >> 1/ν2(Zi,S).

7 Conclusion

The CAD method provides a way to efficiently simulate the CRM while preserving the

inherent dependencies between large and small losses. These dependencies are fundamentally

driven by the claim counts and the theorem presented herein shows how the mixed Poisson

CRM and CAD method model will converge as the expected claim count grows. This

provides theoretical support for the practical oservation that the CAD method does a good

job approximating the CRM.
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A Conditional Aggregate Distributions

Table 10: CAD2 and CAD3 Fits to ZS|NS

Distribution Statistics Fit
Normal µ = µ̂ µ̂ = NSµ(XS)

(µ̂, σ̂) σ2 = σ̂2 σ̂ =
√
NSσ(XS)

Uniform µ = µ̂ µ̂ = NSµ(XS)
on (µ̂− r̂, µ̂+ r̂) σ2 = r̂2/3 r̂ =

√
3NSσ(XS)

Lognormal µ = eµ̂+σ̂
2/2 µ̂ = ln[NSµ(XS)]− σ̂2/2

(µ̂, σ̂) σ2 = µ2(eσ̂
2 − 1) σ̂ =

√
ln[1 + σ2(XS)/(NSµ2(XS))]

Gamma µ = α̂β̂ α̂ = NS/ν
2(XS)

(α̂, β̂) σ2 = α̂β̂2 β̂ = µ(XS)ν2(XS)

Shifted µ = θ̂ + ŝ θ̂ =
√
NSσ(XS)

Exponential σ2 = θ̂2 ŝ = NSµ(XS)− θ̂
(ŝ, θ̂)

2-Point (CAD3) µ = µ̂ µ̂ = NSµ(XS)

(P(µ̂− â) = p σ2 = pâ2 + (1− p)̂b2 ŝ =
√
NSσ(XS)

P(µ̂+ b̂) = 1− p ) γ =
(1− p)̂b3 − pâ3

σ3/2
p =

(
1 + γ(XS)

√
1

4NS + γ2(XS)

)/
2

â = ŝ
√

(1− p)/p
b̂ = âp/(1− p)

Shifted µ = ŝ+ eµ̂+σ̂
2/2 µ̂ = ln(NSµ(XS)− ŝ)− σ̂2/2

Lognormal σ2 = (eσ̂
2 − 1)(µ− ŝ)2 σ̂ =

√
ln

[
1 +

NSσ
2(XS)

(NSµ(XS)− ŝ)2

]
γ = η(η2 + 3), where ŝ = NSµ(XS)−

√
NSσ(NS)/(ζ − 1/ζ), where

(µ̂, σ̂, ŝ) η =
√
eσ̂2 − 1 ζ = [

√
4 + γ2(XS)/NS + γ(XS)/(2

√
NS)]1/3

Shifted µ = ŝ+ α̂β̂ α̂ = 4NS/γ
2(XS)

Gamma σ2 = α̂β̂2 β̂ = γ(XS)σ(XS)/2

(α̂, β̂, ŝ) γ = 2/
√
α̂ ŝ = NSµ(XS)− α̂β̂

Generalized µ = α̂m̂/(α̂+ β̂) α̂ = (1− 1/ζ)NS/ν
2(XS)− 1/ζ

Beta σ2 = µ3β̂/[α̂(µ+ α̂β̂)] β̂ = α̂(ζ − 1)

(α̂, β̂, m̂(=max)) γ = 2µσ(α̂− β̂)/η, m̂ = ζNSµ(XS), where

(min=0) η = σ2α̂+ µ2β̂ ζ = 1 + ν(XS)
γ(XS)ν(XS) + 2NS

2ν(XS)− γ(XS)



B Poisson Mixing Distributions

B.1 Tables of distributions

Table 11: Continuous Mixing Distributions
Family and Equation Skewness
Gamma:

G = s+ Gamma

[
(1− s)2

c
,

c

(1− s)

]
2
√
c

1− s
Lognormal (Logn):

G =

√
c

1− s

(
3 +

c

(1− s)2
)

s+ Logn

[
ln

(
(1− s)2√

(1− s)2 + c

)
,

√
ln
(

1 +
c

(1− s)2
)]

Exponential (Exp):
G = 1−

√
c+ Exp[

√
c], c < 1 2

Inverse Gaussian (IG):

G = s+ IG
[
(1− s), (1− s)3

c

] 3
√
c

1− s
Pareto (Par):

G = 1−
√
c

k
+ Par

[√
c

k

(
k + 1

k − 1

)
,

2k

k − 1

]
2√
k

(
3k − 1

3− k

)
where max(1, c) < k < 3
Uniform (U):

G = U
[
1−
√

3c, 1 +
√

3c
]
, c < 1/3 0

Generalized Beta on (s,M+s) (GB):

G = GB [α, (M − 1 + s)α/(1− s), s,M + s], where
2
√
c(M − 2(1− s))

((1− s)(M − 1 + s) + c)
α = (1− s)[(1− s)(M − 1 + s)/c− 1]/M



Table 12: Discrete Mixing Distributions
Family and Equation Skewness
Discrete Uniform on 2m+1 points:
G = D[∆, p,m], defined by 0

P(1) = p, P(1± j∆) =
1− p
2m

, j ≤ m

∆ =

√
6c/(1− p)

(m+ 1)(2m+ 1)
, 1−m∆ > 0

Poisson (Psn):

G = s+
c

(1− s)
Psn[(1− s)2/c]

√
c

1− s
Negative Binomial (NB[λ,d]):

G = s+
c

d(1− s)
NB[d(1− s)2/c, d]

(2− 1/d)
√
c

1− s
M an integer ≥ 1
Binomial (Bin):

G = s+
(1− s)2 + cM

M(1− s)
Bin

[
M,

(1− s)2

(1− s)2 + cM

] √
c

1− s
− 1− s
M
√
c

M an integer ≥ 1

Table 13: Component Mixing Distributions
Family and Equation Skewness
Weighted Sum:

G[c] = pG1[c1] + (1− p)G2[c2]
pc

3/2
1 γ1 + (1− p)c3/22 γ2

c3/2
c = p2c1 + (1− p)2c2
Straight Product:

G[c] = G1[c1]G2[c2], G1, G2 independent.
c1c2[6 + 3(

√
c1γ1 +

√
c2γ2) +

√
c1c2γ1γ2]

c3/2
c = c1 + c2 + c1c2
Twisted Product:

G[c] = G1[c1]G2[c2/G1]
µ′
3(G1)f(G1, G2)− 1− 3c

c3/2
, where

c = c1 + c2 f(G1, G2) = E
G1

(µ′
3(G2[c2/G1]|G1))



B.2 Additional Notes

1. Products of Mixing Distributions. In several papers ([8],[10], for example), Meyers

presents count r.v.’s of the form N = N∗[G1[c1]λ, d(G1))], where G1 is a mixing distribution,

and N∗ is a family depending on λ, and d (i.e., N∗ ∼ NB[λ, d]). We consider the case

N∗ ∼ MP (λ,G2[c2]), with d = d2 = 1 + c2λ. Then N is also mixed Poisson, with N ∼
MP (λ,G1G2). If G1 and G2 are independent then we call G = G1G2 a straight product. In

this case the contagion parameter for G is c = c1 + c2 + c1c2. The conditional r.v. N |G1 has

variance-to-mean ratio d(G1) = 1 + c2G1λ. Should we wish to hold d(G1) constant, we may

drop the independence of G1, G2, and assume that G2 depends on G1 as G2 = G∗2[c2/G1]

where G∗2 is a family of mixing distributions. With a slight abuse of notation, we drop the ∗

and define the twisted product as G1 •G2 = G1G2[c2/G1]. For a twisted product, c = c1 + c2,

and d|G1 = d2 = 1 + c2λ.

The claim count presented in [8] is concisely described as N = NB[G1λ, d]. As d is

fixed with respect to G1, this is equivalent to N = MP (λ,G1 • G2), with G2 ∼ Gamma

and c2 = (d − 1)/λ. Now, its also the case that d is fixed with respect to λ, and thus the

underlying negative binomial model (i.e., N |G1 = 1) is of the ODP type. On the other hand,

if G1 ∼ gamma, then N1 = MP (λ,G1) is a negative binomial model of the contagion type.

If we set c1 = wc, for some 0 <= w <= 1, then c = c1 + c2 implies that c2 = (1−w)c. Thus

N can be considered a sort of credibility weighting between the ODP and contagion models.

The straight product formulation is seen in the “common shock” method for modeling

correlation over several lines of business. This method assigns to the ith line of business

the claim count Ni = MP (λi, G1G2,i). Here, G1 is the common (“industy-based” in [10])

component and the G2,i are the line-specific components. As in equation (12), this generates

a correlation of ρij = c1/(νiνj) between lines i and j, i 6= j. A twisted product is also well-

suited to this purpose, and produces the same correlations. As above, c = c1 + c2 allows us

to consider the model as a credibility weighting, now between the common and line-specific

components.

We do not have a closed-form formula for the skewness of G = G1 • G2. However,

suppose µ′3(G2) =
∑3

i=0 aic
i
2. This is the case for G2 ∼ gamma, and several others, but not

for G2 ∼ exponential. (The exponential is not a special case of gamma–unless c = 1–as the

shift s = 1−
√
c is forced.) Then µ′3(G) = a0µ

′
3(G1) + a1(1 + c1)c2 + a2c

2
2 + a3c

3
2, from which

γ(G) can be computed.

2. Discrete Mixing Distributions - The three-point “Hermite” distribution given by

Pr(1 + k
√

3c) = 2/3− |k|/6, k = −1, 0, 1 is used in [10]. This is an instance of the general

discrete uniform with a mass at G = 1. A Poisson mixing distribution is an important

limiting case of the framework presented in [19] and [18]. This is one example of infinitely



divisible mixing distributions, in which case the claim count can also be represented as a

compound Poisson in the sense of [6].

The shifted binomial is a very flexible choice for G. It converges to a Poisson as the

the integer parameter M → ∞, s fixed. For a given value of M , with M ≤ 1/c, setting

s = 1 −
√
Mc results in a symmetric distribution different from the discrete uniform. In

fact, G→ normal as c→ 0 with M = [1/c], and s = 1−
√
Mc. In general, for any skewness

value γ > 0, there is s such that γ(G) = γ, as long as M
√
c(
√
c − γ) < 1. (Note that this

condition is satisfied trivially for γ ≥
√
c.)

In [21], Simar gives an algorithm for constructing a non-parametric maximum likelihood

estimator (NPMLE) based on claim count observations. The NPMLE is then a finite mixing

distribution whose size depends on the number of observations.

3. Other Continuous Mixing Distributions - The inverse Gaussian as a mixing

distribution is the subject of [20] and is mentioned in [22], [18], and [12]. The resulting claim

count is the Poisson-inverse Gaussian, or PIG. Given its populartiy as a model for aggregate

distributions the lognormal is also a natural candidate as a mixing distribution.
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Detail Stats - Gamma Mixing

Loss Type Large Small Small Small Small Small Small

Method "True" (CRM Sim) CAD Logn. CAD S. Gamma CAD S. Logn CAD Exponential CAD 2-pt. "True" (CRM Sim)

Minimum 1,385,975                         2,398,609           2,808,190                  2,685,245           2,998,957                     3,045,139         2,682,782                         

Maximum 39,042,540                       25,898,300         27,588,630                25,894,870         25,626,020                   26,605,610       25,627,990                       

Mean 14,140,170                       10,938,800         10,937,300                10,943,990         10,939,010                   10,937,040       10,931,920                       

Std Deviation 4,652,660                         2,898,627           2,893,873                  2,895,765           2,894,886                     2,891,107         2,889,024                         

Variance 2.16473E+13 8.40204E+12 8.3745E+12 8.38546E+12 8.38037E+12 8.3585E+12 8.34646E+12

Skewness 0.532 0.5071                0.5040                       0.4819                0.4904                          0.5250              0.4949                              

CV 0.329 0.2650                0.2646                       0.2646                0.2646                          0.2643              0.2643                              

Skew-Nu 1.618 1.9139                1.9050                       1.8213                1.8531                          1.9860              1.8725                              

Mode 11,839,840                       10,443,110         10,444,170                9,741,620           9,137,559                     10,569,540       10,023,330                       

5% Perc 7,280,964                         6,617,527           6,616,314                  6,616,352           6,625,957                     6,646,187         6,628,636                         

10% Perc 8,478,519                         7,405,594           7,398,611                  7,405,873           7,405,128                     7,443,271         7,402,793                         

15% Perc 9,427,957                         7,977,141           7,977,279                  7,996,510           7,976,839                     7,995,743         7,983,588                         

20% Perc 10,153,280                       8,455,025           8,456,465                  8,461,667           8,455,437                     8,454,707         8,465,613                         

25% Perc 10,815,190                       8,869,101           8,878,454                  8,888,060           8,855,242                     8,867,610         8,873,186                         

30% Perc 11,444,160                       9,251,367           9,269,360                  9,269,123           9,255,394                     9,250,547         9,259,721                         

35% Perc 12,006,930                       9,625,078           9,627,173                  9,644,261           9,634,785                     9,618,922         9,630,174                         

40% Perc 12,584,930                       9,981,641           9,984,575                  9,983,185           9,993,351                     9,983,671         9,988,756                         

45% Perc 13,161,940                       10,341,280         10,341,520                10,339,860         10,323,750                   10,333,640       10,332,560                       

50% Perc 13,720,500                       10,687,030         10,689,310                10,694,390         10,687,300                   10,673,790       10,677,960                       

55% Perc 14,293,300                       11,059,730         11,045,600                11,041,930         11,070,400                   11,032,790       11,041,920                       

60% Perc 14,890,360                       11,433,110         11,409,440                11,445,670         11,436,400                   11,406,070       11,427,120                       

65% Perc 15,557,820                       11,838,890         11,807,440                11,862,800         11,844,620                   11,814,010       11,830,620                       

70% Perc 16,231,410                       12,259,280         12,251,480                12,282,940         12,255,120                   12,252,290       12,260,860                       

75% Perc 17,038,840                       12,749,390         12,735,450                12,767,710         12,742,260                   12,740,690       12,741,150                       

80% Perc 17,900,140                       13,276,090         13,296,010                13,312,140         13,294,120                   13,272,500       13,256,540                       

85% Perc 18,937,040                       13,942,170         13,935,960                13,938,120         13,950,790                   13,907,760       13,903,870                       

90% Perc 20,365,650                       14,781,560         14,794,910                14,778,790         14,808,720                   14,764,230       14,745,370                       

95% Perc 22,465,010                       16,101,710         16,124,400                16,093,960         16,095,310                   16,130,030       16,089,070                       
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Detail Stats - Lognormal Mixing

Loss Type Large Small Small Small Small Small Small

Method "True" (CRM Sim) CAD Logn. CAD S. Gamma CAD S. Logn CAD Exponential CAD 2-pt. "True" (CRM Sim)

Minimum 2,354,636                        3,279,025         3,784,197                 3,671,143           3,656,671                    3,801,383           3,686,909                        

Maximum 37,452,880                      29,297,280       28,652,320               30,017,500         27,943,100                  29,091,590         29,686,280                      

Mean 14,086,670                      10,905,680       10,904,890               10,901,090         10,899,620                  10,897,280         10,906,430                      

Std Deviation 4,663,644                        2,896,549         2,898,968                 2,905,355           2,888,524                    2,884,288           2,899,240                        

Variance 2.17496E+13 8.39E+12 8.40402E+12 8.44109E+12 8.34357E+12 8.31912E+12 8.40559E+12

Skewness 0.657 0.7345              0.7532                      0.7511                0.7555                         0.7820                0.7548                             

CV 0.331 0.2656              0.2658                      0.2665                0.2650                         0.2647                0.2658                             

Skew-Nu 1.985 2.7654              2.8332                      2.8182                2.8509                         2.9546                2.8393                             

Mode 13,312,870                      9,229,467         10,256,040               10,247,740         9,900,903                    9,298,220           9,593,592                        

5% Perc 7,379,982                        6,807,512         6,786,931                 6,814,347           6,839,257                    6,830,828           6,783,801                        

10% Perc 8,522,062                        7,512,230         7,506,557                 7,503,218           7,531,037                    7,537,819           7,511,076                        

15% Perc 9,390,949                        8,032,948         8,046,047                 8,007,588           8,034,989                    8,046,408           8,052,007                        

20% Perc 10,102,340                      8,449,887         8,447,854                 8,445,220           8,455,437                    8,468,788           8,484,241                        

25% Perc 10,756,510                      8,834,509         8,828,217                 8,834,182           8,813,141                    8,837,245           8,866,154                        

30% Perc 11,354,550                      9,198,359         9,198,009                 9,201,309           9,186,013                    9,198,724           9,204,506                        

35% Perc 11,937,640                      9,551,106         9,542,255                 9,528,743           9,529,370                    9,527,572           9,562,121                        

40% Perc 12,484,700                      9,891,079         9,887,307                 9,866,483           9,868,970                    9,867,238           9,890,388                        

45% Perc 13,034,730                      10,224,090       10,223,390               10,216,780         10,210,100                  10,201,090         10,234,600                      

50% Perc 13,589,010                      10,570,880       10,557,930               10,549,800         10,563,310                  10,539,160         10,571,090                      

55% Perc 14,173,760                      10,913,890       10,924,320               10,898,780         10,914,400                  10,887,340         10,918,910                      

60% Perc 14,742,170                      11,276,170       11,304,320               11,270,320         11,281,810                  11,266,530         11,280,100                      

65% Perc 15,378,140                      11,680,180       11,694,860               11,669,240         11,685,900                  11,647,070         11,666,960                      

70% Perc 16,102,160                      12,113,640       12,118,480               12,111,900         12,106,920                  12,094,540         12,089,420                      

75% Perc 16,888,410                      12,602,800       12,576,840               12,575,800         12,572,790                  12,572,670         12,563,000                      

80% Perc 17,763,110                      13,162,890       13,152,030               13,162,970         13,135,720                  13,120,340         13,138,160                      

85% Perc 18,831,010                      13,835,790       13,811,970               13,845,860         13,791,750                  13,804,000         13,818,980                      

90% Perc 20,265,510                      14,747,880       14,734,090               14,753,650         14,695,780                  14,693,850         14,735,270                      

95% Perc 22,529,300                      16,170,290       16,180,220               16,216,460         16,162,980                  16,163,700         16,199,130                      
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Large vs Small Losses - Lognormal Mixing Distribution
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Detail Stats - Uniform Mixing

Loss Type Large Small Small Small Small Small Small

Method "True" (CRM Sim) CAD Logn. CAD S. Gamma CAD S. Logn CAD Exponential CAD 2-pt. "True" (CRM Sim)

Minimum 2,622,778                        4,238,870         4,287,148                 4,468,165           4,670,314                    4,702,374           4,487,489                        

Maximum 32,122,340                      18,258,020       18,495,580               19,186,070         17,875,910                  22,198,040         18,737,170                      

Mean 14,053,220                      10,889,670       10,907,560               10,898,670         10,890,100                  10,895,280         10,893,480                      

Std Deviation 4,635,183                        2,851,964         2,868,312                 2,871,454           2,853,996                    2,866,448           2,870,310                        

Variance 2.14849E+13 8.1337E+12 8.22722E+12 8.24525E+12 8.14529E+12 8.21653E+12 8.23868E+12

Skewness 0.317 0.0601              0.0552                      0.0624                0.0553                         0.1008                0.0575                             

CV 0.330 0.2619              0.2630                      0.2635                0.2621                         0.2631                0.2635                             

Skew-Nu 0.960 0.2295              0.2099                      0.2367                0.2108                         0.3832                0.2182                             

Mode 13,955,570                      11,017,940       6,980,460                 10,483,140         8,609,236                    14,108,960         12,211,590                      

5% Perc 7,048,361                        6,452,205         6,455,139                 6,397,590           6,378,900                    6,456,264           6,419,141                        

10% Perc 8,138,355                        7,055,768         7,013,859                 7,003,973           7,048,737                    7,014,243           7,021,224                        

15% Perc 9,061,992                        7,556,159         7,537,291                 7,552,863           7,552,022                    7,506,401           7,519,121                        

20% Perc 9,832,303                        8,057,059         8,037,449                 8,029,881           8,068,227                    7,994,043           8,006,109                        

25% Perc 10,508,630                      8,513,653         8,513,914                 8,529,380           8,570,468                    8,496,666           8,504,713                        

30% Perc 11,221,460                      9,005,443         9,001,551                 8,979,073           9,023,686                    8,992,163           9,005,018                        

35% Perc 11,867,710                      9,487,384         9,519,624                 9,481,191           9,508,290                    9,477,224           9,504,768                        

40% Perc 12,520,510                      9,952,474         9,959,408                 9,980,229           9,972,253                    9,973,597           9,957,272                        

45% Perc 13,151,170                      10,395,700       10,469,080               10,447,890         10,437,390                  10,457,010         10,423,910                      

50% Perc 13,770,240                      10,893,210       10,916,910               10,885,080         10,868,990                  10,902,820         10,891,530                      

55% Perc 14,387,300                      11,351,630       11,342,420               11,337,470         11,302,950                  11,362,770         11,371,680                      

60% Perc 15,052,900                      11,818,450       11,799,030               11,827,650         11,747,140                  11,827,170         11,831,270                      

65% Perc 15,751,770                      12,266,250       12,275,180               12,301,380         12,233,950                  12,246,880         12,247,990                      

70% Perc 16,481,540                      12,716,240       12,744,370               12,728,420         12,705,610                  12,714,500         12,729,500                      

75% Perc 17,263,490                      13,187,060       13,228,660               13,177,340         13,203,610                  13,171,750         13,199,210                      

80% Perc 18,107,500                      13,637,550       13,672,250               13,665,560         13,675,010                  13,672,670         13,665,310                      

85% Perc 19,074,990                      14,168,400       14,169,310               14,175,580         14,130,870                  14,144,830         14,148,740                      

90% Perc 20,253,470                      14,693,240       14,774,350               14,737,180         14,695,780                  14,665,920         14,733,240                      

95% Perc 22,030,010                      15,450,310       15,511,660               15,494,220         15,508,650                  15,398,370         15,511,520                      
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Detail Stats - Shifted Biniomial

Loss Type Large Small Small Small Small Small Small

Method "True" (CRM Sim) CAD Logn. CAD S. Gamma CAD S. Logn CAD Exponential CAD 2-pt. "True" (CRM Sim)

Minimum 2,029,372                        5,480,892           5,220,685                 5,438,516           6,086,327                    6,125,506           5,578,668                        

Maximum 36,899,030                      20,782,580         20,297,310               20,802,180         19,114,040                  23,614,350         20,532,800                      

Mean 14,126,680                      10,956,630         10,947,030               10,951,330         10,953,510                  10,946,910         10,949,270                      

Std Deviation 4,631,549                        2,889,085           2,882,983                 2,889,601           2,896,795                    2,889,096           2,880,868                        

Variance 2.14513E+13 8.34681E+12 8.31159E+12 8.3498E+12 8.39142E+12 8.34688E+12 8.2994E+12

Skewness 0.515 0.4845                0.4885                      0.4872                0.4863                         0.5301                0.4920                             

CV 0.328 0.2637                0.2634                      0.2639                0.2645                         0.2639                0.2631                             

Skew-Nu 1.571 1.8374                1.8550                      1.8465                1.8386                         2.0086                1.8700                             

Mode 12,964,350                      8,087,866           8,148,018                 8,147,161           7,299,558                    8,102,896           8,147,660                        

5% Perc 7,483,617                        7,227,355           7,225,197                 7,235,228           7,216,417                    7,361,047           7,229,344                        

10% Perc 8,535,075                        7,570,712           7,577,371                 7,579,443           7,468,091                    7,599,695           7,574,011                        

15% Perc 9,306,652                        7,828,013           7,841,232                 7,836,373           7,677,954                    7,797,241           7,843,340                        

20% Perc 9,965,355                        8,066,383           8,081,884                 8,077,192           7,929,945                    7,978,476           8,080,636                        

25% Perc 10,604,400                      8,292,712           8,314,742                 8,302,414           8,350,285                    8,161,311           8,308,913                        

30% Perc 11,226,030                      8,556,097           8,553,878                 8,543,078           8,707,333                    8,385,700           8,549,825                        

35% Perc 11,833,320                      8,867,372           8,849,983                 8,827,609           8,980,929                    8,692,694           8,862,549                        

40% Perc 12,426,840                      9,308,444           9,295,946                 9,276,051           9,299,908                    9,299,985           9,303,648                        

45% Perc 13,021,220                      10,554,790         10,493,120               10,543,550         10,690,050                  10,919,380         10,509,370                      

50% Perc 13,661,470                      11,250,190         11,224,580               11,240,710         11,176,100                  11,368,280         11,244,800                      

55% Perc 14,291,840                      11,625,320         11,602,130               11,615,890         11,450,980                  11,632,780         11,611,090                      

60% Perc 14,945,040                      11,923,280         11,906,950               11,918,820         11,725,980                  11,850,840         11,900,920                      

65% Perc 15,622,390                      12,183,350         12,177,440               12,192,390         12,085,760                  12,071,050         12,163,850                      

70% Perc 16,370,580                      12,450,640         12,452,890               12,462,020         12,593,970                  12,294,140         12,441,100                      

75% Perc 17,150,500                      12,752,340         12,755,160               12,758,750         12,977,290                  12,571,500         12,758,940                      

80% Perc 17,999,210                      13,127,510         13,112,140               13,122,760         13,294,120                  12,960,450         13,111,080                      

85% Perc 19,036,000                      13,675,010         13,649,720               13,648,090         13,678,680                  13,653,300         13,627,890                      

90% Perc 20,423,720                      15,070,390         15,084,120               15,098,890         15,033,470                  15,360,840         15,105,940                      

95% Perc 22,467,470                      16,539,630         16,510,020               16,539,500         16,659,090                  16,393,870         16,502,230                      

CAD Method - Shifted Binomial Mixing Distribution
Small Losses
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Large vs Small Losses - Shifted Binomial Mixing Distribution
"True" Losses (ZL vs. ZS)
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Large vs Small Losses - Shifted Binomial Mixing Distribution
CAD Method (ZL vs. ẐS)
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IC Method - Gamma Mixing Distribution
Small Losses
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Large vs. Small Losses - Gamma Mixing Distribution
IC Method (ZL vs. ẐS)
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IC Method - Shifted Binomial Mixing Distribution
Small Losses
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Large vs. Small Losses - Shifted Binomial Mixing Distribution
IC Method (ZL vs. ẐS)
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Large vs. Small Losses - Shifted Binomial Mixing Distribution
IC "Cheat"  Method (ZL vs. ZS)
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