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Risk Load and the Default Rate of Surplus

1. Introduction

One of the biggest challenges facing the securitization of insurance risk is the translation
of pricing techniques between the insurance and capital market worlds. At their heart the
two worlds share similar purposes: assigning prices to uncertain future cash flow
patterns. While the purposes are similar, historically the techniques and terminology have
been somewhat disjoint. Widespread securitization of insurance results will require a
manageable model to understand and price insurance risk in a capital market context.
Ideally this model would also produce prices which were comparable to other securities
available in the capital market.

This paper introduces an insurance pricing model that translates aspects of corporate
bond pricing – specifically default risk – to an insurance framework. It jointly addresses
two favorite topics of casualty actuaries – allocated surplus and risk load, is well suited to
DFA applications, and has been fully implemented in an Excel workbook that will be
posted on the CAS Website.

The remainder of this paper is organized as follows. Section 2 discusses bond default risk
and its applications to an insurance portfolio. Section 3 addresses the determination of the
default loss rate on surplus. Section 4 explains the calculation of the required yield on
surplus. Section 5 explains the interdependent pricing model and discusses examples of
its application. Section 6 compares the new method with current risk load and surplus
methods. Section 7 discusses conclusions and areas for further research.

2. The Pricing of Default Risk

Debt instruments such as corporate bonds are priced at yield rates that offer a spread
above treasury (default-free) known as the yield premium. Yield premium is strongly
related to the bond’s rating as given by one of the bond rating agencies (e.g. Moody’s,
Standard & Poor’s, Fitch, Duff & Phelps). The bond rating reflects many qualitative and
quantitative factors but one of the most important is default risk.

Moody’s defines default as “any missed or delayed disbursement of interest and/or
principal” [11]. They distinguish between default rate (frequency of default per issuer)
and recovery rate once default has occurred (severity of loss as a percent of par value).
The product of these two is known as “default loss rate,” the expected loss due to default
expressed as a percentage of par value.



The yield premium should at least compensate a purchaser for the expected default loss
rate. The remaining “excess” or “true” yield premium above the default loss rate is the
actual reward for bearing the uncertainty of defaults. If the yield premium were not more
than the expected loss rate, investors would be entering into at best a break-even
proposition. If for example a class of high-yield bonds averaged a 4% annual loss rate,
and the yield premium above default-free was 4%, then on average investors in this class
of bonds would be earning the default-free rate while still facing the possibility of
defaults.

The true yield premium depends in part on the default severity potential. At one extreme
this class of bonds may have a 100% chance of defaulting 4% of par value. In this case
the true yield premium would not be much at all, because there is virtual certainty as to
the outcome. At the other extreme it may have a 4% chance of defaulting 100% of par, in
which case the true yield premium would need to be substantially higher – but how much
higher?

The answer to this question within the capital markets is investor-specific. It is based on
how willing an investor is to expose different amounts of her wealth to possible default.
The actual market prices are balances between the pricing opinions of parties with
differing amounts of wealth, experience and information. Each individual investor
determines his own “ideal” or “theoretically correct” price then decides where and by
how much to compromise in the market.

How can these concepts be applied to insurance? It is not so much the market price that
will inspire the new approach as the concept of pricing based on the exposure of wealth
to the risk of default. Supporting surplus acts something like a “perpetual bond,” one
which never formally reaches maturity (the principal is never due back). The surplus
provider expects a certain compensatory periodic yield as a reward for bearing the risk of
supporting the insurance portfolio. From the surplus provider’s standpoint this risk is the
risk of default: if the insurance portfolio’s results deteriorate the surplus funds will be
called upon to fulfill claims.

3. The Default Loss Rate on Surplus

Consider a portfolio of single-year property policies1 all incepting on the same date. The
company commits an amount of surplus for the year in support of this portfolio. From the
company perspective this “committed surplus” CS is assumed put in a fund F. Denote the
fund value at time t as Ft; the fund’s initial value is F0 at time 0 (policy inception).
                                                          
1 For simplicity, a single year of a short-tail line is used. It eliminates the need to connect pricing risk loads
with prior year reserve fluctuations. However, the model could be applied to any deviation in returns
supported by surplus.



Also going into this fund is some portion of the premium P, consisting in its entirety of
expected losses E(L), expenses, and risk load R. Expenses are assumed known and paid
for outside the fund, making the amount contributed to the fund from premium E(L) + R.

Assume the losses are completely paid at the end of the year (time t = T, the “terminal”
time). The fund has a stochastic terminal amount FT depending on the amount of losses
paid. This fund has similar financial performance characteristics to a single-period, zero-
coupon bond. With a zero coupon bond, principal is put up at time t = 0, and principal
plus interest is returned at time t = T. The yield Y on a single-period, zero-coupon bond is

Y = FT / Principal - 1 (3.1)

In the insurance case, the principal amount is the committed surplus CS. The initial fund
F0 is invested in a default-free security earning a known rate rdf, so the terminal fund
amount is the initial fund F0 accumulated at the default-free interest rate less any loss
payments. The loss payments are stochastic, so the expected yield E(Y) on CS is

E(Y) = E(FT) / CS - 1 (3.2)

= R / CS (3.3)

The terminal amount FT for a given outcome i with loss Li is

FT for outcome i = F0 x (1 + rdf) - Li

= [CS + E(L) + R] x (1 + rdf) - Li (3.4)

Over all possible outcomes2, the expected value of FT, E(FT), is

E(FT) = [CS + E(L) + R] x (1 + rdf) – Σi ( pi x Li ), (3.5)

where pi = the probability for outcome i, and  Σi = the sum over all outcomes. The
“needed surplus” for outcome i, NSi, is

NSi = Max [Li – E(L) - R , 0 ] (3.6)

                                                          
2 This represents a discretization of the loss distribution. This approach was originally developed for use in
property catastrophe management (the particular modeling software produced output files with discrete
outcomes) but has broader applications.



NSi is the amount of surplus needed to make up the shortfall (if any) between the
premium contribution and the loss amount. The expected value of NS over all outcomes is

E(NS) =  Σi { pi x Max [Li – E(L) - R , 0 ] } (3.7)

An outcome i with loss amount greater than the premium contribution E(L) + R would
draw NSi out of the available CS in order to make the loss payment. This represents a
partial (or total) default of the CS. The expected loss rate from default on CS would then
be

Expected Loss Rate on CS = E(NS) / CS (3.8)

We will call the expected loss rate on committed surplus the “surplus loss rate” or SLR.
Given a target SLR and E(NS), the committed surplus CS can be determined using a
rearrangement of equation 3.8:

CS = E(NS) / SLR  (3.9)

4. Required Yield on Committed Surplus

So far the model appears to be driven by expected loss rate on committed surplus.
However, expected value on its own cannot effectively distinguish between different
default severity levels. Solely using expected value, one could not distinguish between a
100% chance of a 1% default and a 1% chance of 100% default, or even a ½% chance of
a 200% default.

Surplus tiers (see [8]) provide a framework for addressing severity. The TYP on a given
incremental amount of surplus is assumed to be an increasing and non-linear function of
the portfolio’s committed surplus3. Consider the example surplus tiers presented in Table
1:

                                                          
3 The TYP could be modeled as a continuous function of CS. The tiers are a discrete simplification to aid in
the understanding and development of the concept. They also allow the introduction of the fixed TYP
“capacity charge” which would be difficult to model in a continuous functional form.



Table 1 – Example of Surplus Tiers

Tier # Surplus Range TYP

1 $0 - $1,000 25% of SLR

2 $1,000 - $2,000 50% of SLR

3 $2,000 - $3,000 100% of SLR

Assume $2,000 of surplus supports this portfolio. The first $1,000 of surplus is “Tier 1”,
the next $1,000 (“$1,000 xs $1,000”) is “Tier 2,” and the next $1,000 (“$1,000 xs
$2,000”) is “Tier 3.” If the SLRs are 5% for Tier 1 and 3% for Tier 2, the required TYPs
would be

TYP for Tier 1 = 25% * 5% = 1.25%

TYP for Tier 2 = 50% * 3% = 1.50%

4.1. Losses Beyond the CS

Tier 3 includes losses beyond the CS amount of $2,000 – default beyond the principal.
Unlike the bond world, there is a chance of “default” beyond the “principal” in our
insurance world. This makes plain one of the strongest criticisms of surplus allocation
(e.g. [1]): a company’s exposure to losses from a given portfolio does not stop at the
allocated surplus amount. All of a company’s surplus is available to pay any claim. This
means our CS bond could have defaults that are multiples of its principal. How does the
model handle this? And what does it mean?

The model handles it by extending the tiers beyond 100% of CS. Its meaning may not be
immediately apparent but upon reflection a satisfying interpretation can be found. Default
beyond a portfolio’s CS amount either means it is dipping into another portfolio’s CS or
into the common pool of “free” surplus available to any portfolio in the company. To
respond properly to this dipping into the common pool, the model needs to require ever-
higher TYP as the tiers increase. Consider an extension of the previous example with two
sub-portfolios of a company, each with $2,000 of CS, and a free pool of $1,000 to be
shared between them, as shown in Table 2:



Table 2 – Tier Example with Two Competing Sub-Portfolios

Tier # PF #1
Loss Rate

PF #2
Loss Rate

TYP
Requirement

PF #1
TYP

PF #2
TYP

1 5.00% 3.00% 25% of SLR 1.25% 0.75%

2 2.00% 2.00% 50% of SLR 1.00% 1.00%

3 0.00% 2.00% 100% of SLR 0.00% 2.00%

TOTAL 7.00% 7.00% 2.25% 3.75%

Both Portfolio #1 and #2 have total CS loss rates of 7.00%, but PF #2 has a more skewed
needed surplus distribution, requiring some of the common pool surplus. Because of the
increasing cost of surplus exposure as the tier increases, PF #2 has a higher Total TYP of
3.75% vs 2.25% for PF #1.

In the interdependent pricing model presented in Section 5, the calculation of required
yield for a given tier begins with the restatement of the NS distribution as a percentage of
CS. Using reinsurance terminology, the lower bound of the tier is the “retention” and the
width of the tier is the “limit.” As an example, the tier from 0% to 25% of CS would have
a retention of 0% and a limit of 25%. The dollar loss to that tier for outcome i, TierLossi$,
would be

TierLossi$ = CS x Min[limit, Max(NSi – retention,0)] (4.1)

The expected value of TierLoss$ over all outcomes, E(TierLoss), divided by the tier limit
(in $) gives the SLR for the tier.

4.2. Calculation of TYP

The TYP can be calculated in a number of ways, including:

• As a percentage of the expected loss rate of the tier – a “variable rate”;

• As a fixed additive increment assessed whenever a tier is breached to any degree – a
“capacity charge”;

• As a combination of fixed and variable.

The previous examples used only variable TYPs. The combination approach gives the
most flexibility. Using this approach, TYP would be calculated as



TYP = Fixed + Variable % x E(TierLoss)   (4.2)

The tier layers and TYP values used for demonstration purposes in the remainder of the
paper are presented in Table 3:

Table 3 – Tier Layers and True Yield Premiums

Tier # Lower Bound
as % CS

Upper Bound
as % CS

Variable TYP
Rate (applied
to Tier SLR)

Fixed TYP

1 0% 25% 0.10 0.1%

2 25% 50% 0.25 0.1%

3 50% 75% 0.50 0.1%

4 75% 100% 0.75 0.1%

5 100% 200% 1.00 0.1%

6 200% 400% 2.00 0.1%

7 400% Maximum 4.00 0.1%

To demonstrate the calculations, assume for outcome i the needed surplus NSi = 60% of
CS. Table 4 shows the example calculations (using the tier definitions from Table 3):

Table 4 – TYP’s for Outcome i

Tier # Tier SLR
as % CS

Variable
TYP

Fixed
TYP

Total
TYP

1 25% 2.50% 0.10% 2.60%

2 25% 6.25% 0.10% 6.35%

3 10% 5.00% 0.10% 5.10%

This completes the basic translation of an insurance portfolio being supported by
committed surplus to the bond default pricing framework. An interdependent pricing
model is now introduced which puts these ideas into practice.



5. The Interdependent Pricing Model

The interdependent pricing model is presented on Exhibits 1-12. Detailed descriptions of
the calculations can be found in Appendix A. The Microsoft Excel workbook
PRICEDEF.XLS which produced Exhibits 1-12 will be posted to the download library
of the CAS Website (www.casact.org).

To explore the performance of the model we will begin with a base case then introduce
variations to the base assumptions.

5.1. Base Case (Exhibit 1)

For the given loss distribution, tier definitions and yield premiums, the base case solves
for the risk load and committed surplus corresponding to:

• A maximum surplus loss rate SLR of 2.00%, selected for demonstration
purposes. When the SLR is at or below this “safety standard” the portfolio is
said to be in “loss rate balance.”

• Expected yield = Required yield. When this condition holds the portfolio is
said to be in “ yield balance.”

The important values are summarized in Table 5 below:

Table 5 – Base Case

Item Base Case Value

[1] Committed Surplus CS $3,600

[2] Risk Load R as % of E(L) 6.15%

[9] SLR 2.00%

[11] Expected Yield on CS 7.23%

[13] Required Yield on CS 7.23%

[14] True Yield Premium TYP 0.23%

Note that [14] TYP = [11] Expected Yield on CS - [4] Default Free Rate - [9] SLR.



5.2. Case 2: More Skewed Loss Distribution, Same CS and Risk Load %  (Exhibit 2)

How will the model respond when the loss distribution is more skewed but the CS and
Risk Load R as a % of E(L) remain the same? Case 2 features a more skewed loss ratio
distribution with a slightly larger expected value and much larger variance. The important
values are summarized in Table 6 below:

Table 6 – More Skewed / Same CS and Risk Load %

Item Base Case Value More Skewed Value

[1] Committed Surplus CS $3,600 $3,600

[2] Risk Load R as % of E(L) 6.15% 6.15%

[9] SLR 2.00% 2.58%

[11] Expected Yield on CS 7.23% 7.33%

[13] Required Yield on CS 7.23% 7.89%

[14] True Yield Premium TYP 0.23% 0.31%

The SLR increases since the same amount of surplus is supporting a more skewed
portfolio. The expected yield increases slightly (from 7.23% to 7.33% - due to the higher
E(L) and hence risk load $), but the required yield increases substantially from 7.23% to
7.89%. The deeper penetration into the CS by the more skewed NS distribution produces
a higher required TYP of 0.31%. This portfolio is now out of both yield and loss rate
balance.

5.3. Case 3: More Skewed Loss Distribution, Same CS, In Yield Balance (Exhibit 3)

Case 3 determines the risk load required to restore yield balance while keeping CS fixed.
The important values are summarized in Table 7 below:

Table 7 – More Skewed / Same CS / In Yield Balance

Item Base Case Value More Skewed Value

[1] Committed Surplus CS $3,600 $3,600

[2] Risk Load R as % of E(L) 6.15% 8.18%

[9] SLR 2.00% 2.46%

[11] Expected Yield on CS 7.23% 7.76%

[13] Required Yield on CS 7.23% 7.76%

[14] True Yield Premium TYP 0.23% 0.30%



A higher risk load (8.18% vs 6.15%) is required to restore yield balance given the more
skewed NS distribution. The yield balance point (7.76%) is higher than in the base case,
and the TYP is also higher (0.30% vs 0.23%).

5.4. Case 4: More Skewed Loss Distribution, In Yield and Loss Rate Balance (Exhibit 4)

Case 4 now adds additional surplus to Case 3 to completely restore the base case yield
and loss rate balance conditions. The important values are summarized in Table 8 below:

Table 8 – More Skewed / In Yield and Loss Rate Balance

Item Base Case Value More Skewed Value

[1] Committed Surplus CS $3,600 $4,445

[2] Risk Load R as % of E(L) 6.15% 8.10%

[9] SLR 2.00% 2.00%

[11] Expected Yield on CS 7.23% 7.22%

[13] Required Yield on CS 7.23% 7.22%

[14] True Yield Premium TYP 0.23% 0.22%

It took $845 in additional CS to restore loss rate balance. The yield balance point and
TYP are now essentially equivalent to the base case values.

5.5. Case 5: Less Skewed Loss Distribution, Same CS and Risk Load % (Exhibit 5)

Similar to Case 2, Case 5 examines how the model responds when the loss distribution is
less skewed but the CS and Risk Load as a % of E(L) remain the same. The less skewed
loss ratio distribution has a slightly smaller expected value and smaller variance. The
important values are summarized in Table 9 below:



Table 9 – Less Skewed / Same CS and Risk Load %

Item Base Case Value Less Skewed Value

[1] Committed Surplus CS $3,600 $3,600

[2] Risk Load R as % of E(L) 6.15% 6.15%

[9] SLR 2.00% 1.53%

[11] Expected Yield on CS 7.23% 7.14%

[13] Required Yield on CS 7.23% 6.71%

[14] True Yield Premium TYP 0.23% 0.18%

The SLR is much lower (1.53% vs 2.00%) because the CS is not being used as much by
the less skewed loss distribution. The expected yield is actually slightly lower, reflecting
the fact that the Risk Load $ is lower because E(L) is lower. This slight decrease is more
than offset by the large decrease in required yield (6.71% vs 7.23%) – again reflecting the
decreased use of the surplus. The TYP of 0.18% is also lower than Base Case.

5.6. Case 6: Less Skewed Loss Distribution, In Yield and Loss Rate Balance (Exhibit 6)

Exhibit 6 shows the new CS and Risk Load % needed to restore both yield and loss rate
balance with the less skewed loss ratio distribution. The important values are summarized
in Table 10 below:

Table 10 – Less Skewed / In Yield and Loss Rate Balance

Item Base Case Value Less Skewed Value

[1] Committed Surplus CS $3,600 $2,955

[2] Risk Load R as % of E(L) 6.15% 4.54%

[9] SLR 2.00% 2.00%

[11] Expected Yield on CS 7.23% 7.22%

[13] Required Yield on CS 7.23% 7.22%

[14] True Yield Premium TYP 0.23% 0.22%

$605 less in CS and a lower Risk Load % (4.54% vs 6.15%) restores both yield and loss
rate balance. The TYP and yield balance point are nearly equal to the Base Case values.



5.7. Case 7: New Risk Added Resulting in More Skewed Loss Distribution, No Additional
CS (Exhibit 7)

One of the critiques of marginal-surplus-based techniques (discussed in Section 6 below)
is their inability to handle situations where total surplus is fixed. Exhibit 7 shows how the
model handles this situation. A new risk is added resulting in a more skewed loss ratio
distribution and larger subject premium4. The important values are summarized in Table
11 below:

Table 11 – New Risk / More Skewed / Same CS / In Yield Balance

Item Base Case With New Risk New Risk

[1] Committed Surplus CS $3,600 $3,600 $0

[2] Risk Load R as % of E(L) 6.15% 8.18% 16.17%

[9] SLR 2.00% 2.95% -

[11] Expected Yield on CS 7.23% 8.31% -

[13] Required Yield on CS 7.23% 8.31% -

[14] True Yield Premium TYP 0.23% 0.36% -

The addition of the new risk without any additional surplus results in a higher overall risk
load % (8.18% vs 6.15%), higher SLR (2.95% vs 2.00%), a higher yield balance point
(8.31% vs 7.23%), and higher TYP (0.36% vs 0.23%). The model is now out of loss rate
balance. This is the impact of writing a new risk on a portfolio with fixed total CS. The
new risk has no marginal surplus associated with its addition, yet the method still comes
up with a risk load of 16.17% of its expected loss, much higher than the rest of the
portfolio.

5.8. Case 8: New Risk Added Resulting in More Skewed Loss Distribution, In Loss Rate
and Yield Balance (Exhibit 8)

Exhibit 8 shows the addition of the same new risk as in Exhibit 7 but this time allowing
additional CS to restore Loss Rate balance. The important values are summarized in
Table 12 below:

                                                          
4 Subject premium is used as a scaling mechanism to convert loss ratios to loss dollars. It is not meant to
include risk load, which would introduce recursion.



Table 12 – New Risk / More Skewed / In Loss Rate and Yield Balance

Item Base Case Value With New Risk New Risk

[1] Committed Surplus CS $3,600 $5,325 $1,725

[2] Risk Load R as % of E(L) 6.15% 8.10% 15.78%

[9] SLR 2.00% 2.00% -

[11] Expected Yield on CS 7.23% 7.23% -

[13] Required Yield on CS 7.23% 7.23% -

[14] True Yield Premium TYP 0.23% 0.23% -

Writing the new risk while maintaining loss rate balance requires $1,725 in additional
surplus. The resulting risk load for the new risk (15.78%) is slightly lower than in Case 7
with no additional CS.

5.9. Case 9: New Risk Added Resulting in Less Skewed Loss Distribution, In Loss Rate
and Yield Balance (Exhibit 9)

Exhibit 9 shows the addition of a new risk resulting in a less skewed overall loss
distribution, keeping the same CS and both Yield and Loss Rate balance. The important
values are summarized in Table 13 below:

Table 13 – New Risk / Less Skewed / Same CS / In Loss Rate and Yield Balance

Item Base Case Value With New Risk New Risk

[1] Committed Surplus CS $3,600 $3,600 -

[2] Risk Load R as % of E(L) 6.15% 4.54% -5.96%

[9] SLR 2.00% 1.97% -

[11] Expected Yield on CS 7.23% 7.19% -

[13] Required Yield on CS 7.23% 7.19% -

[14] True Yield Premium TYP 0.23% 0.22% -

The “less skewed” loss distribution is the same one used for Cases 5 and 6. Because of
the reduced skewness, the new risk can actually be written at a negative risk load. Stone
[12] mentioned the same possibility when discussing d, the pricing differential based on
capacity considerations – his equivalent to risk load:



It is highly probable that the value of d will be negative for those risks which add
substantial capacity to the portfolio, while d is likely to be highly positive for
most of the familiar Capacity Risks. [12, p.241]

Stone considered those risks that decreased the portfolio ratio of standard deviation to
mean (the coefficient of variation or “Exposure Ratio” to Stone) to be “capacity
creators.” The new risk in this example would certainly qualify as a capacity creator.

5.10. Case 10: Base Case With CS = Maximum Needed Surplus (Exhibit 10)

Case 10 considers what might be termed the “ruin theory” CS, set equal to the maximum
needed surplus. The important values are summarized in Table 14 below:

Table 14 – Base Case with CS = Maximum Needed Surplus

Item Base Case Value CS=Max(NS)

[1] Committed Surplus CS $3,600 $530

[2] Risk Load R as % of E(L) 6.15% 7.13%

[9] SLR 2.00% 13.12%

[11] Expected Yield on CS 7.23% 21.49%

[13] Required Yield on CS 7.23% 21.49%

[14] True Yield Premium TYP 0.23% 3.37%

With the lower surplus amount ($530 vs $3,600) the SLR is substantially worse (13.12%
vs 2.00%). Using capital market loss rate standards from Moody’s [11, p.22], it is
doubtful this supporting surplus would even receive a CCC rating which is usually
reserved for bonds on the border between speculative grade and outright default. In order
to restore yield balance slightly more risk load is needed than in the Base Case (7.13% vs
6.15%), but the yield balance point is quite high at 21.49%. The TYP is almost 15 times
as high as in the base case. These figures fall far outside those typically seen in the capital
market debt community.

5.11. Case 11: Base Case With Twice the CS (Exhibit 11)

One may legitimately ask what is stopping the allocation of too much or too little
surplus? Case 11 addresses the issue of too much surplus by doubling the base case CS.
The important values are summarized in Table 15 below:



Table 15 – Base Case with Twice the CS

Item Base Case Value Twice the CS

[1] Committed Surplus CS $3,600 $7,200

[2] Risk Load R as % of E(L) 6.15% 6.17%

[9] SLR 2.00% 1.00%

[11] Expected Yield on CS 7.23% 6.12%

[13] Required Yield on CS 7.23% 6.12%

[14] True Yield Premium TYP 0.23% 0.12%

Several encouraging responses to doubled CS are noted:

• The SLR is halved to 1.00%;

• The Expected Yield is reduced to 6.12%;

• The Required Yield is similarly reduced to 6.12%; and

• The TYP is halved to 0.12%.

The Risk Load % increases slightly to 6.17%. Intuitively it seems it should be equivalent
to the Base Case value. This would be true if there were no fixed TYP component. In both
cases item [33] Expected Loss $ to Tier is the same – $72.00. However, because of [36]
Yield Premium - Fixed, [37] Total Yield % on Tier for Case 10 is 4.50%, which is higher
than half the 8.90% value for the Base Case. If the Fixed Yield Premium were set to 0,
the Case 11 Risk Load % would equal that of the Base Case.

5.12. Case 12: Base Case With Half the CS (Exhibit 12)

Case 12 addresses the issue of too little surplus by halving the base case CS. The
important values are summarized in Table 16 below:

Table 16 – Base Case with Half the CS

Item Base Case Value Half the CS

[1] Committed Surplus CS $3,600 $1,800

[2] Risk Load R as % of E(L) 6.15% 6.15%

[9] SLR 2.00% 4.00%

[11] Expected Yield on CS 7.23% 9.46%

[13] Required Yield on CS 7.23% 9.46%

[14] True Yield Premium TYP 0.23% 0.46%



Similar to Case 11, the model responds appropriately to half the CS:

• The Risk Load % remains the same at 6.15%;

• The SLR is doubled to 4.00%;

• The Expected Yield is increased to 9.46%;

• The Required Yield is also increased to 9.46%; and

• The TYP is doubled to 0.46%.

5.13. Summary of Performance Characteristics

Table 17 summarizes the response of the interdependent pricing model to the various
changes in Cases 2-12.

Table 17 – Summary of Model Responses

Change from Base Case Model Response

Case

Loss Distrib.

CS

Risk
Load %

SLR Expected
Yield

Required

Yield

TYP

2 More Skewed Same Same Higher Higher Higher Higher

3 More Skewed Same Higher Higher Higher Higher Higher

4 More Skewed Higher Higher Same Same Same Same

5 Less Skewed Same Same Lower Lower Lower Lower

6 Less Skewed Lower Lower Same Same Same Same

7 Larger
Volume,

More Skewed

Same Higher Higher Higher Higher Higher

8 Larger
Volume,

More Skewed

Higher Higher Same Same Same Same

9 Larger
Volume, Less

Skewed

Same Lower Same Same Same Same

10 Same Much
Lower

Higher Much
Higher

Much
Higher

Much Higher Much
Higher

11 Same Doubled Same Halved Lower Lower Halved

12 Same Halved Same Doubled Higher Higher Doubled



6. Comparison with Other Risk Load Approaches

This section discusses how the new approach relates to the use of variance, ruin
thresholds, additional surplus and CAPM in the determination of risk loads.

6.1. Variance
Variance gained prominence as a financial risk measure from the work of Markowitz [9],
who equated more variance in the return distribution with more riskiness. However,
Markowitz only advocated variance as a relative risk measure for portfolio optimization,
not an absolute measure for individual security pricing. In fact, his first choice for a risk
measure was semi-variance (only considering downside risk), but he settled on variance
due to greater mathematical tractability5. This compromise worked well for portfolio
optimization, but in cases where the return distribution is skewed, the distinction between
upside and downside risk is critical for proper pricing. Variance ignores this distinction.

Using variance for price determination – having risk load be directly proportional to
variance – involves an implicit transformation of the return distribution. Individual risk
pricing involves the conversion of a given distribution of returns into a value – the
“price.” This conversion can be thought of as a transform of any deviation from the mean
y = x - µ into a value for that deviation v(y). Variance = E[(x - µ) (x - µ)] = E(y2) = the
expected value of the transformed deviation y where the implicit transform v(y) = y2.
Variance as a risk measure effectively prices deviations from the mean at the square of
their value. This implicit transform may not be appropriate. Companies may want to
explicitly price the costs of different degrees of exposure to their capital without having
to rely on variance’s implicit squaring transform.

The interdependent pricing model offers just such an alternative: using the needed surplus
distribution and surplus tier framework to explicitly transform the distribution of results.
This has several advantages:

• It makes the implicit transform explicit and gives companies a framework for
quantifying their risk opinions;

• It grounds the pricing process in familiar capital market terms: default loss
rate and true yield premium;

• It only deals with downside risk; and

• It is well suited to DFA applications.

                                                          
5 This point is made beautifully in Clarkson [3].



6.2 Ruin Thresholds
Ruin theory focuses on the theoretical ruin threshold of the insurance company – the
point where surplus hits zero – and the change in the ruin threshold from the addition of a
new policy. However, sole focus on the change in a selected percentile of the return
distribution (say the 99th) ignores what Philbrick calls “gradations of solvency” which
“are not easily handled in ruin theory” [12, p.60]. By reflecting the full impact of the
return distribution on surplus the new approach may be considered an application of
“impairment theory.” Using the entire return distribution instead of a single percentile
allows information about the “gradations of solvency” to be reflected in the pricing
process.

6.3 Additional Surplus
Meyers [11], Kreps [7] and Bingham [2] all assume the addition of a risk to a portfolio
requires additional surplus. What would these methods do if total surplus were
considered fixed? They would either produce an undefined risk load (since marginal
surplus = 0) or force the user to model the situation as if additional surplus were added
even though that may not be an option – for example in areas of high property
catastrophe exposure concentration. These methods seem at odds with the old
underwriting adage, “We will write any risk for the right price” by apparently requiring
“and allocated surplus amount” be appended at the end.

The new approach can handle both fixed and changing total surplus situations equally
well – see Cases 7 and 8.

6.4 CAPM
Feldblum [5] suggested property casualty insurance pricing be more closely tied to
capital market pricing practices. Feldblum shows how to employ the principles of CAPM
to the pricing of different lines of business by estimating underwriting “betas” that reflect
the correlation between each line’s returns and the return of a “market” insurance
portfolio. However, the empirical adequacy of CAPM as an explanatory security pricing
model has been called into question (e.g. Fama and French [4]), as has its viability as an
insurance pricing practice (Kozik [6]).

Despite these concerns, Feldblum’s effort to integrate financial market practices into
insurance should not only be applauded but extended. The new approach does just that,
adapting capital market debt practices to insurance. Default loss rate is an acknowledged
and accepted proxy from the bond community for safety of investment. Ruin theory may
be considered the actuarial equivalent of Value at Risk (VAR). Surplus loss rate is the
actuarial equivalent of bond default loss rate.



7. Conclusions and Further Research

It is hoped the reader has found this new model informative and interesting. It provides
an integrated solution to the risk load and surplus allocation problem, performs well in
circumstances where other models falter, and further unifies actuarial pricing methods
with those in the capital markets.

Clearly there are areas for further research associated with the ideas in this paper,
including:

• Viable functional forms to represent TYP as a continuous function of CS;

• Extension of the model to surplus supporting reserves;

• Comparison with variance and ruin theory based methods;

• Actual or implicit TYP distributions derivable from capital market pricing
information;

• Time – Bond default rates are time-dependent. The longer a bond’s term, the more the
chance of it defaulting.
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Appendix A

Description of the Interdependent Pricing Model

Each worksheet in the Excel workbook represents a complete, standalone version of the
interdependent pricing model. The model begins with the following inputs:

Loss Ratio distribution6 (Items [16] Probability and [18] Loss Ratio on
Exhibit 1)

[24] Tier Limits and [25] Tier Retentions, both expressed as % of CS

[35] Yield Premium – Variable

[36] Yield Premium – Fixed

[1] Committed Surplus CS

[2] Risk Load as % of Expected Loss E(L) = R%

[3] Subject Premium7

[4] Default-free Interest Rate

The following values are then calculated:

[5] Risk Load $ = R$ = [2] * [6] Expected Loss E(L)

[6] Expected Loss E(L) =

SumProduct( [16] Probability , [18] Loss Li )

[7] Initial Fund F0 = [1] CS + [5] R$ + [6] E(L)

[20] Fund Contribution from Premium = [5] + [6]

[21] Needed Surplus distribution NSi

= Max( 0, [18] Li – [20] Fund Contribution from Premium ).

[8] E(NSi) = SumProduct( [16] Probability , [21] NSi )

[9] Surplus Loss Rate SLR = [8] E(NSi) / [1] CS

[22] Terminal Fund Value FT

= [6] F0 x (1.00 + [4] Default-free Interest Rate) - [19] Loss Li

[10] Expected Value of FT = E(FT)

= SumProduct( [16] Probability , [22] FT )

[11] Expected Yield on CS = [10] E(FT) / [1] CS – 1.00

                                                          
6 A loss dollar distribution could also be used – see the following footnote.
7 This is purely used for creation of the loss dollar distribution to facilitate skewing or scale changes due to
the introduction of a new risk. It is not meant to be collected premium including the risk load being
calculated, which would introduce recursion.



These calculations follow the formulas in Section 3. The most important results are [9]
Surplus Loss Rate SLR and [11] Expected Yield on CS. Now the model uses the surplus
tiers to derive [13] Required Yield on CS and [14] True Yield Premium:

[26] – [32] NSi for each tier

= Max( 0, Min( [21] – [1] x [25], [1] x [24] )

= the smaller of the loss to the layer and the limit of the layer

[33] Expected Loss $ to Tier

= SumProduct( [16] Probability, NSi for each tier )

[34] Expected Loss % to Tier = [33] / [1] CS / [24] Tier Limit

[37] Total Yield % on Tier =

[36] Yield Premium – Fixed +

[34] Expected Loss % to Tier x [35] Yield Premium – Variable

[38] Total Yield $ on Tier = [37] x [1] CS x [24] Limit

[12] Total Yield $ Over All Tiers = Sum( [38] ) over all tiers

[13] Required Yield on CS = [12] / [1] CS

[14] True Yield Premium = [13] - [9] SLR – [4] Default-free Interest Rate


















































