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Abstract: This paper introduces a totally new approach to 
classification analysis. Part of its appeal stems from the 
fact that it provides a method for complying with 
Proposition 103's requirement that variables be considered 
in a specific order. Our paper is presented using private 
passenger automobile insurance; but, the technique could be 
used with any line of insurance. 

The analysis is based on a statistical procedure known as 
CHAID, introduced in 1980. CHAID analyzes a single 
attribute of a population (the dependent variable) based on 
other attributes (predictor variables). CHAID iteratively 
subdivides the population into classes having significantly 
different values for the dependent variable. 

This paper first describes some of the limitations of 
current classification analysis. We then introduce CHAID, 
and discuss how it overcomes these limitations. Because 
this is an introductory article, we have presented the 
statistical concepts of CHAID without fully explaining the 
underlying theory. Next, we present a CHAID analysis of 
"live" private passenger automobile experience. We then 
derive credibility weighted relativities for the CHAID 
classes. Finally, we briefly discuss actuarial and 
operational implications of a CHAID-derived class plan, and 
additional areas of needed research. 

237 



Current Classification Analysis 

Historically, the objectives of classification analysis have been: 

1. to subdivide the population into homogeneous groups whose loss costs 

can be predicted accurately; and 

2. to measure each group's relative share of the total costs. 

The more finely a population can be subdivided while still producing accurate 

individual group estimates, the better the allocation of costs. 

Proposition 103 added a third classification objective: in determining a 

group's share of the costs, classification variables must be used in a 

specific order. To quote, "Rates and premiums . . . shall be determined by 

application of the following factors in decreasing order of importance..." 

Current actuarial techniques focus almost exclusively on the second objective; 

the measurement of the relative share of costs for predefined groupings of 

insureds. The analyst subdivides his population based on characteristics he 

believes are most significant and defines a relationship among these 

characteristics in terms of a premium determination equation. A single 

equation is used for the entire population and dictates, for example, whether 

merit rating is assumed to be independent of age, sex, marital status factors 

(implying an additive relationship) or whether a compounding effect (implying 

multiplication) is anticipated. The subdivisions of the data and form of the 
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premium determination equation are decided before examining the data. Data 

analysis then concentrates on the proper allocation of costs among the 

subdivisions in the context of this equation. 

In allocating costs among the groups, the relative importance of a particular 

variable for the population as a whole is considered in one of two ways: 

either independent of all other variables, or in conjunction with certain 

variables and independent of the rest. For example, driver age, sex, and 

marital status are generally considered simultaneously, and may or may not be 

analyzed in conjunction with merit rating factors. When analyzed with merit 

rating, the potential for compounding (i.e. double counting) the effects of 

two factors working together is reduced. For example, higher class factors 

for youthful males respond to the fact that youthful males as a group are 

involved in more accidents. Merit rating factors (which include surcharges 

for prior accidents and violations) determined without consideration of the 

higher youthful factors may reflect some of the increased propensity for 

accidents recognized by the driver age factors. Considering age, sex, marital 

status, and merit rating simultaneously helps reduce such potential double 

counting. 

However, all other distinctions (territory, veh ic le differences, etc.) are 

either ignored in this analysis (by assuming that the groups are similarly 

represented in each class group and therefore differences "average out") or 

are reflected by using average relativities for the variables not under 

consideration. 
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LIMITATIONS OF THE CURRENT CLASSIFICATION ANALYSIS 

Defining the data categories and form of the premium determination equation 

before the data is examined effectively reduces the analysis to determining 

the "best" set of factors derivable in a relatively narrow context, 

independent of the data. This imposes three serious limitations on the depth 

of the analysis. 

First, by starting with a preconceived definition of the appropriate class 

groups, it is quite possible that the selected categories include groups that 

are not distinctly different in the population under review, and combine 

groups that are. 

Second, because of the complexity of analyzing several factors simultaneously, 

more often than not, practicality limits acceptable premium determination 

equations to only the simplest forms. While variables which may be explaining 

the same effect with respect to accident involvement are considered 

concurrently, the interaction of these variables is generally ignored. 

Third, and perhaps most important, by using a single equation, the procedures 

assume that all rating variables are equally important to the entire 

population. In other words, including age, sex, marital status, mileage, 

merit rating, territory and vehicle types in a single equation for all drivers 

implies that each of these factors carries the same significance for each type 

of driver. On the contrary, it is quite conceivable that variables may differ 

in their significance for different population segments. For example, the 

distinction between short and medium annual mileage may be meaningless for 
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drivers with a history of accidents. Or, completion of a driver training 

course may be irrelevant to young drivers with three or four moving 

violations. 

Thus, although current actuarial techniques do address the historical 

objectives outlined in the previous section, they are limited in their 

effectiveness to identify significant class groupings and, hence, in 

distributing costs. 

Finally, current procedures do not address the newest objective of 

classification analysis prescribed by Proposition 103. When variables are 

considered together, they are considered simultaneously, rather than in a 

specified order. 

INTRODUCTION TO CRAID 

CHAID is a statistical procedure that may help address these limitations. 

CHAID was first presented in an article entitled "An Exploratory Technique for 

Investigating Large Quantities of Categorical Data" by Dr. G.V. Kass in the 

1980 Applied Statistics. The procedure, an offshoot of an earlier technique 

known as Automatic Interaction Detection (AID), uses the chi-square statistic 

as its primary tool. 

CHAID is concerned with predicting a single variable, known as the dependent 

variable, based on a number of other variables, referred to as predictor 

variables. An analogous automobile insurance problem would be to predict 

either accident frequencies or pure premiums based on classification 

variables. 
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To quote from the Applied Statistics article, CHAID It,.. partitions the data 

into mutually exclusive, exhaustive, subsets that best describe the dependent 

variable". This is essentially the statistical equivalent of the first 

objective above for classification analysis. 

CHAID is an iterative technique that examines the predictors (e.g. 

classification variables) individually and utilizes them in the order dictated 

by their statistical significance. The CHAID analysis is very straightforward 

and intuitive. CHAID first determines which of the prediction 

(classification) variables is most effective in distinguishing among different 

levels of the dependent variable within the population. It then partitions 

the population on the basis of significant categories (levels) of that 

variable. For example, if the analysis found that annual mileage is the best 

variable for distinguishing among loss frequencies, the population is divided 

using the significant mileage levels (e.g. under 2,500, 2,501-5,000, etc.). 

Each partition is then examined individually to determine which of the 

remaining variables is most effective in distinguishing among risks in that 

partition. The process is continued until all variables have been examined. 

Those that are significant trigger another division of the data; those that 

are not significant are discarded for that partition. 

The result is similar to an inverted tree, with each branch identifying a 

significant subgroup of the population. Exhibit A illustrates an hypothetical 

result from a CHAID analysis. 
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CHAID directly responds to the limitations associated with current 

classification analysis described above. First, CHAID allows the data to 

define the appropriate class groups, thereby insuring that the groups 

identified pertain to the population under review. Second, because partitions 

are considered within the context of all previous factors, the interaction of 

all of the factors is automatically addressed correctly. Finally, because it 

is an iterative procedure, it provides an ordering of variables as required by 

Proposition 103. Although the ordering implied by the data may not be 

identical to that specified by Proposition 103, the technique may be altered 

to consider variables in a specific order. 

However, CHAID does not address the second classification objective: the 

allocation of costs. CHAID merely identifies significant classes. Other 

actuarial techniques must be used to determine appropriate relativities based 

on these classes. 

MATHEMATICAL DESCRIPTION OF CHAID 

In this section, we present an overview of the mathematical concepts 

underlying CHAID. Dr. Kass' algorithm is available in a PL/l program, and a 

general understanding of the procedure is sufficient to allow CHAID to be used 

effectively. For a more detailed explanation, we refer the reader to Dr. 

Kass' paper. 
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CHAID is basically an iterative four-step process: 

1. Examine each predictor variable to determine which levels are 

significant in distinguishing among the differences in the dependent 

variable; compress all levels that are not significant. 

2. Determine which of the predictors is the most significant in 

distinguishing among the dependent variable. 

3. Subdivide the data by the levels of the most significant predictor. 

Each of these levels will now be examined individually. 

4. For each level, 

a. examine the remaining variables to determine which levels are 

significant and compress all others. 

b. determine which predictor is the most significant and subdivide 

the data again by the levels of this variable. 

5. Repeat step 4 for all subgroups until all statistically significant 

subdivisions have been identified. 

CHAID involves a sophisticated application of the basic Chi-Square Contingency 

Test introduced in every basic statistics course. As a refresher, Exhibit B 

illustrates the mechanics of this test. 
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CHAID uses the chi-square statistic in two ways. First, it determines whether 

levels in the predictor can be merged together. Once all predictors are 

compressed to their smallest significant form, it then determines which 

predictor is the most significant in distinguishing among the dependent 

variable levels. 

Variables 

Before describing the process in more detail, we must explain the types of 

data that CHAID permits. The dependent variable must be divided into discrete 

categories. Predictor variables may assume three different forms: monotonic 

predictors (such as driver age) which have an implicit ordering, free 

predictors (such as territory) which have no implicit ordering, and floating 

predictors for which all but one of the levels follow a specific ordering. A 

floating predictor allows the use of a "missing" or "unknown" level (known as 

the floating level) in conjunction with an otherwise monotonic variable. 

CHAID Algorithm 

Assume the dependent variable has a>1 levels, and a specific predictor 

variable under analysis has c>l levels. This data can be summarized in a 

c x d contingency table. The objective of step 1 of the CHAID analysis is to 

compress the rows of this c x d table to include only levels that are 

significantly different. In mathematical terms, we wish to reduce the c x d 

table to the most significant j x d table, j-2,3,...c. We then choose the 

j x d table that has the most significant chi-square statistic. 
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Permissible mergers of levels will depend on the type of predictor variable. 

Whereas levels of free predictors can be combined in any manner, levels of 

monotonic variables can only be merged with contiguous levels. Mergers of 

levels of floating predictors are also restricted to contiguous levels, with 

the exception of the floating category, which can either stand alone or be 

combined with any other groups. 

Actual calculation of the best j x d table generally requires dynamic 

programming to examine all possible permutations. For monotonic predictors, 

the calculation is on the computational order of c2. For free predictors, the 

solution is on the order of 2c. 

Clearly, such computations make dynamic programming an unrealistic approach 

for examining a large number of predictor variables. Thus, Dr. Kass has 

developed an alternative method, analogous to techniques used in stepwise and 

piecewise regression, which does not guarantee an optimal solution, but has 

produced very satisfactory results in practice. His algorithm is described in 

Appendix A. 

Once the predictor levels have been compressed, the algorithm must determine 

the significance of the reduced contingency table. If there were no reduction 

to the table, the significance would be the complement of the probability of 

the computed value assuming (j-l)(d-1) degrees of freedom, which can be 

determined from any chi-square table. 

However, if our contingency table has been reduced, the algorithm insures that 

the resulting table is the best possible for its size. The significance, 
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therefore, must reflect the fact that this table has not been considered in 

isolation, but in the context of all possible j x d tables. Therefore it is 

not sufficient to merely determine the significance associated with the 

computed chi-square statistic. Instead, Dr. Kass associates a significance 

related to the simultaneous consideration of all j x d tables. Using a 

probability theorem credited to Bonferroni, he computes a lower bound on the 

simultaneous significance of all j x d tables. This significance level is 

determined by multiplying the significance for the unreduced table by a factor 

known as the Bonferroni multiplier. 

The multiplier corresponds to the number of ways that c levels can be reduced 

to j groups, and it differs for each type of predictor variable. Because only 

contiguous levels can be grouped for monotonic variables, the Bonferroni c-i 
multiplier is ( ) f-/ . The Bonferroni multiplier for free predictors, which 

can be grouped in any way, is: 
; (P;Y 

i! (r-i)! 

Not surprisingly, the multiplier for the floating predictors is the most 

complex, and takes the form: 

A numerical example will help illustrate the use of the multiplier. A4x5 

unreduced contingency table with a test statistic value of 23.3 has a 

significance of .025 (assuming 12 degrees of freedom). However, if we start 

with a 6 x 5 contingency table and reduce it to dimensions 4 x 5, the same 

test statistic would reflect a significance of .lO (4 x .025) assuming a 

monotonic predictor variable. If we were using 5% significance level as our 

critical point, the unreduced table would be considered significant, but the 

reduced table would not. 
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The reader is referred to the original paper for a more complete explanation 

of the use of Bonferroni multipliers. 

Thus, the final step in each iteration is to determine whether the predictor 

variable with the greatest significance is sufficiently significant to merit a 

partitioning of the data. If so, the data is subdivided based on the 

significant levels of that variable. If not, the process stops. 

Appendix B presents a simple example of the analysis of one predictor variable 

based on the algorithm described in Appendix A. 
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AN APPLICATION 

The Data 

We used CHAID to analyze a large private passenger data base containing 

records for all insureds written during a specific six month period. Each 

record contained the exposures earned (in months) and claims incurred during 

that time period. Exposures for each record vary from .5 to 6, since policies 

are written for a six month term. If policies were written evenly throughout 

the period, the average earned exposures would be 3.0. For our file, exposures 

averaged about 2.6, suggesting a little cyclicality. In the future this file 

will be extended to include writings over a full year. 

The dependent variable was property damage claim counts ranging from 0 to 2. 

Insureds with more than 2 claims in a six month period were assumed to have 

only 2. 

A variety of predictor variables were captured in the data base. For this 

analysis, we examined many of the traditional variables such as driver age, 

sex, marital status, annual mileage, accidents and convictions, as well as 

some less common variables such as number of vehicles on the policy, number of 

operators assigned to the vehicle, and original year insured with the company. 

Exhibit C describes the variables and the levels examined. Other variables, 

such as territory (or territory groups) and more refined subdivisions of some 

variables will be analyzed in the future, 
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For all but two variables, driver age and annual mileage, we used the full 

range of values available and allowed CHAID to designate the appropriate 

groupings. For age and mileage, we began with specific groups and allowed 

CHAID to further merge them if appropriate. Future research is planned to 

investigate each individual year of age, particularly for the younger drivers. 

We plan to use each driver's actual age, and allow CHAID to identify the 

appropriate groupings. Investigation of different mileage groupings is 

considered less important at this time. 

We considered a number of overlapping variables relating to driver 

performance. We separately identified the total number of minor and major 

convictions and chargeable accidents assigned to the vehicle as well as the 

points assigned under the company's merit rating program. In our analysis, 

all driver performance variables pertain to the vehicle exposure. One area 

needing future research is the relative importance of the individual's record 

versus the policy or vehicle record. 

Analysis 

The CHAID program requires three input parameters: a significance level for 

partitioning a variable, a significance level for merging levels within a 

variable, and a minimum number of records for a cell to be considered for 

partitioning. We used a 5% significance level for partitioning; i.e. there is 

only a 5% probability that a partition determined by CHAID is spurious. The 

significance level for merging within a variable must be less than the level 

for partitioning. We used 4.9%. Finally, we required at least 500 records to 

be in a cell before it could be considered for partitioning. 
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We emphasize that although our analysis is based on actual experience, it 

should only be considered an illustration of the CHAID technique. The data is 

only a sample from a book of business and may not be representative of the 

entire population. The findings presented here are preliminary, and require 

considerably more analysis before accepted as definitive. Moreover, this is 

our first major application of CHAID with a live data set. Additional 

exploratory research is required to determine the consistency of the 

partitioning on similar samples, the consistency of the partitioning over 

time, and the sensitivity of the results to different input parameters. 

Exhibit D presents the first three stages of partitioning for the entire 

population. It is interesting to note that before any partitioning, a 

variables with the exception of major convictions were significant at the 5% 

level when considered individually. Four variables in particular had a much 

greater significance level than the others: age of rated driver, annual 

mileage, marital status, and driver experience level. 

Rated driver age was the most significant by a relatively substantial margin. 

Although we separated insureds into nine age groups, CHAID found only eight 

significant: the claim count distribution for drivers 60-64 was not 

significantly different from drivers 65-69. 

After age, partitioning was triggered by different variables for different 

subgroups. For the youngest group, under age 21, the next most significant 

variable was merit rating points. For adults 30 to 49, the second most 

significant variable was the number of operators on the policy, which could be 

251 



considered a measure of exposure. For drivers between 50 and 59, annual 

mileage was the next most important factor, and for senior citizens, points 

again dominated all other factors. 

Rather than discuss the entire population, we will concentrate on two groups: 

adults 30-49, the largest age subgroup, and drivers under 21. 

Before focusing on these groups, three general aspects of the CHAID analysis 

bear comment. First, as can be seen from Exhibit D, although CHAID will not 

subdivide a cell with less than 500 records, it can produce a cell with very 

few records in it (e.g. operators 70-74, 6+ points). Because the chi-square 

test has a method for adjusting for varying sample sizes (i.e. the degrees of 

freedom) small cells are possible. Clearly, when we develop class 

relativities from this data, credibility considerations will eliminate such 

cells. 

Second, at any iteration it is possible for two variables to be highly 

significant and their significance levels virtually identical. Although CHAID 

will select one of these for partitioning, it is conceivable that for another 

sample, MAID may find the other variable slightly more significant. This is 

an aspect that bears additional investigation. 

Finally, a variable may be used more than once in an analysis. For example, 

if CHAID divides a group based on no convictions versus at least one 

conviction, it is possible that after another partition of the latter group 

based on a variable other than convictions, CHAID may further subdivide 

major convictions, e.g. separating 1-2 major convictions from more than 2. 
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Adults 30 - 49. 2 Operators on Policy 

Exhibit E presents the complete analysis for adults 30-49 with two operators 

on the policy. 

At the beginning of the process, the following factors were all significant at 

the 5% level: 

Number of Vehicles on Policy 
Annual Mileage 
Vehicle Use 
Number of Merit Rating Points 
Sex 
Marital Status 
Number of Accidents 
Number of Minor Convictions 

However, when these factors were considered sequentially, CHAID reduced the 

number of significant variables to only three or four for each subgroup. This 

would suggest that there is considerable overlap in the discriminating power 

of the different variables; overlap that current techniques do not adequately 

address. 

It can be argued that the CHAID analysis is largely influenced by our 

selection of the significance level, and selecting 10% or 15% instead of 5% 

would have produced additional partitions. This is supported to some extent 

by our data. If we had selected a 15% significance level, partitioning would 

have continued along three branches representing a fairly large percentage of 

this group; however, the statistics at this stage of the analysis suggest that 

it is unlikely that the branching would have continued too much farther. 
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Clearly one area that we will be examining in the future is the sensitivity of 

the analysis to this significance factor. 

The importance of the significance criteria selected for merging levels is 

also evident. In this analysis, when levels were partitioned, they seldom 

resulted in more than two or three subdivisions. For example, in partitioning 

based on minor convictions for the 2,500 to 10,000 annual mileage group, CHAID 

only distinguished between no convictions and at least one. This lack of 

distinction among multiple convictions is most likely attributable, at least 

in part, to our merging significance level. Had we relaxed this to 10% or 

15%, CHAID probably would have allowed more levels. 

Given that this analysis will be followed by a credibility technique to 

establish relativities, it may be appropriate to use less restrictive 

parameters in CHAID to identify the possible existence of additional 

significant levels and allow the credibility procedure to determine whether 

they in fact are usable. 

The paths and cells with a reasonable number of insureds identified by CHAID 

appear intuitively defensible to us. Some partitions were triggered by 

characteristics of this particular book. For example, widowed insureds 

comprise a unique market segment for this company and produced partitions that 

may not be generated from other populations. Other partitions were tied to 

the company's rating procedures. Clearly, the company's definition of merit 

rating points will affect the discriminating power of this variable, and the 

company's retention rate may affect the power of the "original year insured 

with company" variable. 
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We will leave the interpretation of the actual partitions to the reader, with 

the reminder that these analyses are preliminary and that we are not 

representing them as concrete findings. 

Drivers Under 21 

Exhibit F documents the full tree for drivers under 21. At the beginning of 

the analysis eight variables were significant at the 5% level: 

Merit Rating Points 
Vehicle Use 
Good Student Discount 
Inexperienced Operator Surcharge 
Major Convictions 
Number of Operators 
Number of Vehicles 
Minor Convictions 

Surprisingly, sex and marital status were not significant, even at this stage 

of the analysis. It may be that the gap in claim frequencies between young 

males and females, which has been narrowing for some time, has finally closed, 

or that these variables would become significant if we were to further divide 

this group by individual age. 

This analysis illustrates another interesting and intuitive aspect of CHAID. 

Although a variable is not significant at a specific step, it may become 

significant after partitioning. For example, even though the number of 

accidents is not a significant variable at the beginning of the process, it 

becomes important for drivers under 21 with 2-7 points. 
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The possibility of small cells is clearly evident in this group's analysis. 

CHAID produced cells of 4, 20, and 24 records as a result of partitioning a 

larger group. These will be of little or no use in a classification 

structure. 

Once again, we leave interpretation of the actual partitions to the reader. 

ALLOCATION OF COSTS 

Although CHAID identifies significant classes, it does not offer a method for 

allocating costs among those classes. The allocation must be accomplished by 

other techniques. 

Credibilitv Techniaues 

In the absence of credibility considerations, and still relying upon property 

damage frequency as our measure of relative risk, we would allocate costs 

based on the ratio of each CHAID class' average frequency to the average 

frequency of the total population, then adjust this ratio to a base class. 

Clearly, credibility cannot be ignored in light of some of the very small 

classes produced by CHAID. 

At this stage, we have two issues to address. The first and more difficult is 

identifying a reasonable credibility complement. The second is determining 

the degree of credibility to assign to a cell that is less than fully 

credible. If CHAID produces consistent partitions for the population over 

time, eventually historical average frequencies could be used as complements. 
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However, because the data have not been analyzed in this fashion previously, 

there are no sources directly comparable at this time. 

One complement we considered was the frequency estimate obtained from linearly 

regressing all of the cells on a particular level. In essence, each level 

would be "self-supporting". However, the CHAID process itself eliminates this 

as an alternative. CHAID effectively separates the observations on a 

particular level into cells clustering about a similar average. Thus, a 

linear regression of the data effectively fits the averages of the cells to a 

straight line, and reproduces the observed cell means. 

In the absence of more representative complements, we used the average 

frequency of the' cell directly above a particular cell's level as the 

complement. This is the average frequency that would have been assigned had 

there been no partitioning. 

This criteria lends itself perfectly to the Bayesian credibility technique 

described by Phil Heckman in his paper "Credibility and Solvency" presented at 

the 1980 Discussion Paper Program. In his paper, Mr. Heckman outlined the 

calculations for estimating credibility under a nested (or heirarchical) 

structure in which a subgroup is assigned some credibility and its "parent" 

group assigned the remainder. 

However, Mr. Heckman's paper is concerned with credibility associated with 

loss ratios rather than loss frequencies, and his credibility criteria is a 

function of premium rather than exposures. His credibility criteria takes the 

familiar form 2 - P/(P+K). In his application, P is the subgroup's premium, 

and K is estimated from the solution of a system of equations. 
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We believe that this "Heirarchical Bayesian" technique applies directly to our 

situation; however, adapting it represents a research project of its own. As 

an interim step, we offer the following less sophisticated approach. 

Full Credibility 

The first step in our procedure is to define a criteria for full credibility. 

Since we have limited our analysis to loss frequency, we have greatly 

simplified the problem, and can rely on some of the earliest efforts in 

credibility theory for a reasonable solution. We define full credibility as 

the number of observations required so that the probability is a least P that 

the true average frequency for the cell is within k% of the observed average 

frequency: i.e. 

P[(l-k)E</(h<(l+k)z]> P, where 

X represents the cell's observed average frequency, 

p represents the true average frequency, and 

P and k are specified. 

Under the assumption that each cell consists of independent and identically 

distributed random variables, with common meany- and variance fl', then the 

Central Limit Theorem ensures us that the distribution of the 

variable converges to a standard normal as the number of 

observations (n) increases. 

258 



Thus, we can rewrite our full credibility criteria as follows: 

And, the number of observations required for full credibility will be: 

Unfortunately, this 
i 

criteria depends on an unknown quantity, G- . 

Historically, this problem was solved by simply assuming that the mean and 

variance of the population are equal. Then, the criteria for full 

credibility is totally determined by the selection of P and k. Selecting P - 

90% and k - 5%, for example, leads to the popular 1,082 standard for full 

credibility. 

However, the variance of the frequency distribution generally exceeds the 

mean. We believe that this fact should be reflected in the full credibility 

criteria. Thus, rather than assuming the mean and variance equal, we 

characterized the credibility criteria as a sampling problem from a normal 

population with an unknown variance, and addressed it using the 

t-distribution. Substituting the sample variance for the true variance, our 
I 

full credibility criteria can now be written as: 
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Since, for large n, the t-distribution approaches the normal distribution, we 

again return to the normal distribution for our critical values. Thus the 

final form of our full credibility criteria is: 

Exhibit G presents this derivation in greater detail. 

This criteria differs from "classical" credibility criteria in two ways. 

First, because the variance is generally much greater than the mean for most 

of our cells, the number of observations required for full credibility is much 

larger than under the assumption of equal mean and variance. Second, there is 

no single credibility value: each cell's own variability determines its full 

credibility. 

Partial Credibility 

As mentioned above, the complement of credibility for a given cell is applied 

to the frequency of the cell immediately preceding the most recent 

partitioning. If the prior cell is not fully credible, the complement of 

credibility is assigned to that cell's credibility weighted frequency. 

To determine partial credibility, we used the square root rule (i.e. the 

square root of the number of observations divided by the number required for 

full credibility). 
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An ADPlication 

Exhibit H summarizes the results of these procedures on one subgroup of the 

population: Adults 30-49, 2 Operators on Policy, driving 2,500 to 10,000 

miles per year. Our full credibility criteria required the actual cell 

frequency to be within 10% of the observed average frequency with a 

probability of at least 90%. To determine class relativities, we would divide 

the credibility weighted frequencies shown in the last column of this exhibit 

by the population's average frequency and relate them to a base class. 

This exhibit clearly demonstrates the impact of the different class experience 

on the full credibility criteria. All classes require substantially more 

observations than would be required under the criteria assuming equal mean and 

variance. Moreover, the number varies dramatically depending on the magnitude 

of the sample variance relative to the sample mean. For the class requiring 

the smallest number (l+ minor convictions, males, 1 vehicle) the mean and 

variance were .0509 and .19436, respectively. For the class requiring the 

largest number (0 minor convictions, widowed) the mean and variance were .0220 

and .19033, respectively. 

Assuming that the number of observations required for full credibility would 

be reasonably similar for other population subgroups, all other age groups 

with the possible exception of drivers over age 74, should be fully credible 

(Exhibit D). Thus, any credibility weighting would bring the less credible 

classes towards each age group, or a subgroup of that age group's frequency. 
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Minimum Bias Technioues 

Although credibility techniques, and in particular the Hierarchical Bayesian 

credibility technique, seem to be the most obvious approach to allocating 

costs under CHAID, they may not be the only approach. An adaptation of 

minimum bias techniques commonly used in classification analysis today may 

provide an alternative allocation process. Whereas credibility techniques are 

focused on correcting for the variance in individual cells, minimum bias 

techniques attempt to minimize the bias of all individual classes while 

remaining unbiased in the aggregate. Minimum bias techniques require 

specification of a classification structure, a premium determination equation, 

and a minimization criteria (e.g., average absolute difference, squared 

differences). At this stage we have not explored the possibilities of using 

such a procedure with CHAID because of the difficulty of specifying a premium 

determination equation for our data. Depending on the classes derived from 

CHAID, however, specification of such an equation may be possible, making the 

minimum bias technique viable. Or, such procedures may be applicable to 

portions of a CHAID tree that are fully credible. 

CONCLUSIONS 

We believe that CHAID potentially could revolutionize classification analysis. 

CHAID is based on a more solid theoretical foundation than current 

classification ratemaking techniques, and solves many of the analytical 

problems that we have faced when trying to determine the combined effect of a 

variety of factors. Moreover, CHAID is much more intuitive than current 

techniques, which should eliminate much of the mystery surrounding 

classification analysis; mystery that is coming under increasing attack. 
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We have only opened the door to CHAID. We believe that our analysis 

demonstrates that CHAID can be used effectively with insurance data. 

Certainly much more analysis is needed before this technique can be used in 

practice. First, we must determine whether CHAID produces consistent class 

definitions over time, particularly when pure premiums rather than frequencies 

are used as the measure of relative risk. One additional problem to be 

resolved when we examine pure premiums is CHAID's requirement of a discrete 

dependent variable. Research will be required to determine appropriate 

groupings of pure premiums. 

We must also find the most effective input parameters: the significance level 

for partitioning and merging, and we must develop effective techniques for 

allocating costs among the classes. Most important, we must demonstrate that 

the class relativities developed under CHAID do a better job of allocating 

costs than current techniques. 

If CHAID is proven superior, it offers us a powerful tool for responding fully 

to questions regarding the relative importance of rating variables. For 

example, how does territory interact with other rating variables? What is the 

importance of the individual's ,driving record vis-a-vis the family's record? 

To what extent can mileage be used as a predictor of relative risk? 

Converting to a CHAID-based classification structure could have far reaching 

consequences in many areas. New actuarial techniques for distributing 

statewide rate level indications may be needed, perhaps at the territorial 

level. CHAID analysis may alter underwriters' perspectives of particular 
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subgroups. Underwriting guidelines may have to be developed in conjunction 

with a new pricing approach to protect the company against adverse selection. 

Finally, creative ways of constructing rate manuals will be needed to make the 

classification structure understandable in the field. 

We expect to be investigating CHAID for quite some time, and we hope that our 

article will interest others enough to join in the investigation. 
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CK-IAID ANALYSIS ILLUSTRATION 
Schematic of Two Accident Subgroups 

I 
[Q Accidents] 

I 

No other variables found significant 

No other variables found 
Significant 



Exhibit B 

CHI-SQUARE CONTINGENCY TABLE 
ILLUSTRATION 

Hypothesis: Grades are independent of school attended 

Observed Experience 

Grades 
School A B c D F Total (R;) 
------------------__--------------------~------------------------- 

1 10 12 20 14 9 
2 25 20 33 12 10 
3 17 25 20 22 15 
4 18 10 15 24 4 

Totals (Cj) 70 67 88 72 38 

Expected Experience (RiCj/N) 

Grades 
School A B C D F 
-------------------------------------------------------- 

1 14 13 17 14 7 
2 21 20 26 21 12 
3 21 20 26 21 11 
4 15 14 19 15 8 

Totals 71 67 88 71 38 

lobs - 
‘J 

or, IL 
Test Statistic: ' 5 24.04 

i j 
exf6j 

65 
100 

99 
71 

335 (N) 

Total 
______ 

65 
100 

99 
71 

335 

Degrees of Freedom: 12 [(rows-l) x (cols-1)] 

Significance Level: % 0.021 
(p-value) 
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Exhibit C 
Sheet 1 

CHAID DATA ELEMENTS 

Data Type code is as follows: M - Monotonic 
F - Free (nominal) 
L - Floating (1, 2, 3) 

FIELD NAME 

1. Incurred Claim Count 

DESCRIPTION 
VARIABLE PARTITIONS TYPE 

0 M 
. 
I 
2 or more 

2. Original Policy Year 1989 M 
1988 
1987 
1985 or 1986 
1984 or Prior 

3. Number of Operators on 
Vehicle 

1 
2 
3 
4 
5 
6 
7 
8 
9+ 

4. Number of Private Passenger 1 
Vehicle 2 

3 
4 
5 
6 
7 
8 
9+ 

5. Annual Mileage O-2,500 
2,501-5,000 
5,001-7,500 
7,501-10,000 
lO,OOl-12,500 
Over 12.500 

M 

M 

M 
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FIELD NAME 
DESCRIPTION 
VARIABLE PARTITIONS 

Exhibit c 

Sheet 2 

TYPE 

6. Vehicle Use Adult: F 
P - Pleasure Use 
DWS - Drive to Work Short 
DWL - Drive to Work Long 
B - Business 

Youth: 
P - Pleasure or Farm 
DW - Drive to Work 

7. Number of Rating Points on 0 
Vehicle 1 

2 
3 
4 
5 
6 
7 
8 or More 

a. Sex 

9. Marital Status 

F - Female 
M - Male 

M - Married 
S - Single 
D - Divorced 
W - Widowed 
L - Legally Separated 

10. Inexperienced Operator No 
Yes 

11. Good Student Discount No 
Yes 

12. Driver Training Discount No 
Yes 

13. Defensive Driving Discount No 
Yes 

14. Age Under 21 
21 - 24 
25 - 29 
30 - 49 
50 - 59 
60 - 64 
65 - 69 
70 - 74 
Over 74 
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Exhibit C 
Sheet 3 

FIELD NAME 
DESCRIPTION 
VARIABLE PARTITIONS TYPE 

15. Number of Chargeable 0 M 
Accidents 1 

2 
3 
4 
5 
6 
7 
8+ 

16. Number of Chargeable Major 0 
Convictions 1 

2 
3 
4 
5 
6 
7 
8+ 

17. Number of Minor Convictions 0 
1 
2 
3 
4 
5 
6 
7 
a+ 

M 
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CHAID ANALYSIS 

First Three Stages 

Population 

1.389,260 

L- 100.0% ) 

I 1 
O-1 Points 2-7 Points a+ Points 

112,061 45,706 512 

3 
70.8% 20.9% 0.3% 

Good 

Student Accidents Major Conv 

Discount (0, 1+> (O-1, 2+j 

(yes. no) . 

Oper Age: 

30-49 L 560,226 

40.3% 

2 0persl 

319.1701 ‘- 57.0% 

I 

I 

4-5 Dpers 

61,493 

11.0% 



CHAID ANALYSIS 

First Three Stages 

I 
I I I 



C”A,D ANALYSIS 

Drivers Age 30.49 

Full Tree 

(from Exhibit D) 

2 opers I- I 319,170 

1 cow 1 1 coy 1 190,680 LJ 85 9% 

l-z-l )uidouedl l”“‘11:l 

o-7 a+ m pOi"tS Points 

7.587 8 

99.9% 0.1% 



CHAID ANALYSIS 

Drivers Under 21 

Full Tree 

(from Exhibit D) 

Oper Age: Under 21 

158,279 

11.4% 

I 

O-l Points 

112,061 
70.8% 

r,'. 1 

Good No Good 

Student Student 

35,158 76,903 

I 

0 

Accidents 

25,514 

F 55.8% 1 

2-7 Points 

45,706 
20.9% 

I 

1+ 

Accidents 

20,192 

8+ Points 

512 '. 

0.3% 

I 

I 

1 

'2 Waj 

, 

O-l Maj 

Cm-iv Cow 

492 20 

. , 3.9% 



Exhibit G 
(Page 1) 

DERIVATION OF FULL CREDIBILITY CRITERIA 

Criteria: P[(l-k)'jT<p<(l+k)z],P, where 8 - sample mean 
p 

I 
$ - population mean 

- specified 

A. The criteria can be written as: 

P[-k.z< Z-/-4cz]>_P 

O-%- population variance 
n - number of observations 

According to the Central Limit Theorem, 

2-p (1) - 
vi& 

-->N(O,l) as n --> 0~ 

B. 
‘L 

<n-1)5 h, k' , where .t?- 
-P 

F-l w--) 
n- 

We also know that 

Thus, 

sample variance 
population variance 
number of observations 
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Exhibit G 
(Page 2) 

DERIVATION OF FULL CREDIBILITY CRITERIA 

C. So our full credibility criteria can be written: 

Using the normal approximation to the t-distribution, 
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Exhibit H 

Credibility-Weighted Frequencies 

Adults 30-49, 2 Operators, 2,500-10,000 Miles 

Class 
-------___________ 

Number of Records 
In For Full 

Cell Credibility 
------- __---_-__--_ 

2,500 - 10,000 222,017 60,986 

0 MINOR CONVICTIONS 190,680 63,484 

Not Widowed 190,102 63,628 
l-3 Vehicles 182,480 61,913 
4+ Vehs 7,622 106,413 

Widowed 578 33,322 

l+ MINOR CONVICTIONS 31,337 49,382 

Females 12,285 46,426 

Males 19,052 51,673 

1 Vehicle 1,637 20,300 
2+ Vehicles 17,415 57,733 

Frequencies 
In Credibility 

Cell Weighted 
----- __-----_____ 

0.0268 0.0268 

0.0255 0.0255 

0.0252 0.0252 
0.0254 0.0254 ** 
0.0220 0.0243 ** 

0.0992 0.0352 ** 

0.0346 0.0330 

0.0376 0.0354 ** 

0.0326 0.0328 

0.0509 0.0379 ** 
0.0309 0.0317 ** 

** Indicates end of branch 
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Appendix A 
(Page 1) 

DESCRIPTION OF CHAID ALGORITHM 

Below is the description of the CHAID algorithm as presented in Dr. Kass' 1980 

article. 

"Step 1. For each predictor in turn, cross-tabulate the categories of 

the predictor with the categories of the dependent variable 

and do steps 2 and 3. 

Step 2. Find the pair of categories of the predictor (only 

considering allowable pairs as determined by the type of 

predictor) whose 2 x d sub-table is least significantly 

different. If this significance does not reach a critical 

value, merge the two categories, consider this merger as a 

single compound category, and repeat this step. 

Step 3. For each compound category consisting of three or more of the 

original categories, find the most significant binary split 

(constrained by the type of the predictor) into which the 

merger may be resolved. If the significance is beyond a 

critical value, implement the split and return to step 2. 

Step 4. Calculate the significance... of each optimally merged 

predictor, and isolate the most significant one. If this 

significance is greater than a criterion value, subdivide the 

data according to the (merged) categories of the chosen 

predictor. 
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Appendix A 
(Page 2) 

Step 5 

DESCRIPTION OF MAID ALGORITRM 

For each partition of the data that has not yet been 

analyzed, return to Step 1. This step may be modified by 

excluding from further analysis partitions with a small 

number of observations." 

Source: "An Exploratory Technique for Investigating Large Quantities of 
Categorical Data", K.V. Kass, 1980, Applied Statistics 
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Appendix B 

SAMPLE CHAID ANALYSIS OF ONE PREDICTOR VARIABLE 

Dependent Variable: Claims Predictor Variable: Age of Driver (monotonic) 

a. Before any merging 

Dependent Variable 
Age of 
Driver 0 1 2 3 Total 

--_-----____---____----------------------------------- 

Under 20 350 75 50 25 500 \ Least Significant 
21-24 584 112 80 24 800 / Test Statistic: 3.86 
25-29 560 84 42 14 700 
30-49 3,440 340 140 80 4,000 
50-65 2,195 180 75 50 2,500 

Over 65 1,245 180 60 15 1,500 

Total 8,374 971 447 208 10,000 

b. After 1st merge 

Age of 
Driver 0 1 2 3 Total 

-______-_____--_____---------------------------------- 

Under 24 934 la7 130 49 1,300 
25-29 560 84 42 14 700 
30-49 3.440 340 140 80 4,000 \ Least Significant 
50-65 2,195 180 75 50 2,500 / Test Statistic: 4.99 

Over 65 1,245 180 60 15 1,500 

Total 8,374 971 447 208 10,000 

C. After 2nd merge 

Age of 
Driver 0 1 2 3 Total 

________________________________________-*------------ 

Under 24 934 la7 130 49 1,300 
25-29 560 a4 42 14 700 
30-65 5,635 520 215 130 6,500 

Over 65 1,245 180 60 15 1,500 

Total 8,374 971 447 208 10,000 

All levels significantly different. 

Significance of Variable: 0.00001 (Bonferroni adjusted) 
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