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Abstract: 

The purpose of this paper is to develop a simple model 
for determining distributions of present value estimates of 
aggregate losses. Three random components of the model that 
will be described are aggregate losses, payout patterns, and 
interest rates. 

In addition, this paper addresses the impact of timing 
and investment variability on risk margin/solvency 
requirements. 
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INTRODUCTION 

The work product of the actuary has historically 

involved the estimation of expected or average values. 

Although expected values have been known to be imprecise, the 

quantification of the dispersion of actual losses around 

their forecast expected value has not been awarded much 

significance. 

In more recent years with an increase in the number of 

companies employing self-insurance as a risk funding 

mechanism the evaluation of risk has taken on greater 

importance. For instance, the management of a small 

self-insured entity needs to be aware of the potential impact 

that variability in the retained losses can have on the 

entity's financial status. The management may want to fund 

the company's expected losses and also provide for a "risk 

margin" which can absorb shock losses. 

A captive is frequently used as an alternative to 

self-insurance. Capital requirements for the captive must be 

sufficient to prevent insolvency of the captive in the event 

that actual loss experience proves to be much worse than it 

is expected to be. Currently, capital requirements for 

captives as well as for larger insurance companies are 

frequently determined by ad hoc rules rather than rigorous 

analytical methods. 

Methods have been described by a number of authorsLS2 

which can, and frequently are, used to determine "risk 
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margins" on self-insured loss funding or capital requirements 

for companies. The most popular of these models analyzes the 

variability of aggregate losses. However, the impact of 

adverse loss experience on a company is also affected by the 

amount of investment income which can be earned on funds set 

aside to pay losses. If losses do not have to be paid for 

many years and interest rates are high, investment income can 

offset some of the bad loss experience. 

The contribution of future investment income to risk 

margin requirements is frequently estimated by present 

valuing a selected percentile of an aggregate loss 

distribution. This method of estimation generally treats 

payout patterns and interest rates as if they are 

deterministic variables. In this paper, a simulation model 

is described which can be used to analyze the dispersion of 

the present value estimates of aggregate losses. This model 

will incorporate three components of variability into the 

estimate of discounted losses. These components are modelled 

as follows: 

1. Aggregate losses are generated from an aggregate 

probability distribution based upon the 

"collective risk model." 

2. Payment pattern estimates are developed from a 

regression. The mean square error of the 

regression's residual is then used to model 
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payment pattern variability. 

3. A time series procedure is used to develop a 

stochastic model for interest rates. 

The models described in this paper represent an 

approach to simultaneously analyzing timing risk, investment 

return uncertainty, and aggregate loss variability . For the 

purpose of illustrating this approach, relatively simple 

models have been used. However, many appropriate 

alternatives to these models exist and may be preferred by 

the analyst. 

Two examples of applications of this model will be 

presented in this paper. In the first example, results of 

the model will be used to determine capital requirements for 

a captive insuring automobile liability. In the second 

example, the model capital requirements will be calculated 

for the medical malpractice line. These two examples are 

intended to illustrate the different impact that timing and 

interest rate risk have on different lines of business. 

AGGREGATE BOSS DISTRIBUTIONS 

The most commonly employed model for aggregate loss 

distributions is known as the "collective risk mode1.l' This 

model is described more thoroughly in numerous publications, 

but a brief review of some of the assumptions of the 
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collective risk model follows:3'4 

1. The number of losses in any time period is assumed 

to be generated by a random process. 

2. Claim sizes are assumed to be independent and 

identically distributed. 

3. The size of claims is assumed to be independent of 

the number of claims. 

In order to generate an aggregate probability distribution 

using this model, the following algorithm is utilized: 

1. 

2. 

3. 

4. 

The 

Generate a random claim count, N, from a 

probability distribution. 

Generate N random claim sizes from a claim size 

distribution. 

Apply per occurrence limits for the program being 

analyzed to each claim generated. 

Sum the claims and apply aggregate limits to this 

total loss amount. 

probability distributions from which the claim 

159 



counts and claim sizes are generated are typically parametric 

functions, although distributions derived from empirical data 

can also be used. The claim count distributions most 

commonly employed are the Poisson and the negative binomial. 

When the expected claim count is small, it makes little 

difference which distribution is used to model the claim 

count generating process.' As the expected claim count 

increases, however, the choice of model for the claim count 

distribution has a more significant impact on the variability 

of the aggregate probability model. Claim counts distributed 

according to the negative binomial distribution may exhibit 

significantly greater variability than claims distributed 

according to a Poisson distribution. The negative binomial 

is believed to be an appropriate distribution for 

incorporating parameter variance into a model. That is, 

observed aggregate claim counts frequently are generated by a 

heterogenous population whose underlying "true" expected 

claims vary among the members of the population. The 

observed variability will be greater than would be expected 

of Poisson distributed claims. Thus, the negative binomial 

is an appropriate distribution for modelling claims whenever 

the population generating the claims is believed to be 

heterogenous. This is usually the case when the variance of 

historical claims exceeds the mean of historical claims. 

Few other distributions have been used to model 

Property and casualty claims although many other discrete 

distributions with potential applications in insurance 
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exist. 

In the examples used in this paper, a negative binomial 

distribution is used to model claim counts. Appendix I 

describes the procedures used to incorporate this model into 

a simulation. 

A commonly used distribution for modelling claim 

severity is the lognormal distribution with the Pareto 

frequently employed to model excess losses, or the tail of 

the distribution.6 Other distributions, such as the Weibull, 

are also used to model claim severity and are easily utilized 

in simulation. Hogg and Klugman discuss the selection and 

fitting of distributions from empirical severity data.' 

As with claim count distributions, the populations from 

which claim severities are derived are frequently, if not 

almost always, heterogenous. Claim severity distributions 

are frequently modelled as if the parameters of the 

distribution are known and do not vary over a population. 

In fact, the parameters are unknown, having been estimated 

from sample data, and the "truet' parameters frequently vary 

within the population. Methods for modelling this 

variability are described by Meyers and Schenker.' 

The illustrations used in this paper will employ a log 

Student's t distribution for severity. Appendix V describes 

this distribution. 

Beard, Pentikginen, and Pesonen' point out that as the 

expected number of claims increases, a simulation becomes 

quite time consuming. This consideration is particularly 
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relevant to the model used in this paper due to the 

additional computational time involved in simulating payment 

patterns and interest rates. If the expected claim count is 

large they suggest that aggregate losses be modelled with a 

probability distribution fit to aggregate loss data. The 

model they use is the normal power approximation although 

other models for aggregate loss distributions have been 

proposed. These include the lognormal, generalized gamma, 

and generalized beta distributions.lO'" 

TIMING RISK 

The timing of payments has frequently been recognized 

as the result of a random process, though deterministic 

payment patterns are usually used in discounting losses. 

Recently, some attention has been focused upon the use 

of parametric models of loss development. These models 

relate the percentage of losses paid to the time period they 

are paid in using regression functions and probability 

distributions.'2"3'14 For these parametric models, 

theoretical probability distributions exist which describe 

the variability of actual parameters around an expected 

value. For instance, if the maximum likelihood method is 

used to estimate the parameters of development data, the 

variability of the actual parameters can be modelled using a 

normal distribution." In addition, functions using the 

parameters, such as the probability density function and 

cumulative probability distribution have a normal 
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distribution. Therefore, when using the maximum likelihood 

method, random payments could be generated using the normal 

distribution. 

In practice, the use of maximum likelihood can be 

difficult for the nontechnical actuary, therefore regression 

was chosen as the methodology to generate payment patterns. 

A disadvantage of the regression method is that the payment 

pattern from the model may not sum to one. This problem is 

addressed in a later section of the paper. 

For any regression, the distribution of actual values 

for the dependent variable, Yt, around a forecast value, Yt, 

follows a t distribution with parameters n, c2, and v. 

Where, 

fi = estimate of n = Pt 

02 = Variance of the forecast at time t 

This variance is directly proportional to the squared 

deviation between the actual value for xt and its mean. For 

a regression with only one independent variable the following 

is true:16 

-2 
u = 1+$+ 

(Xt- i-2) 2 

;: (xi- x)2 ! 

* MSE 

I=1 

where MSE = I=1 
V 
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N = the number of observations 

V = degrees of freedom = N-k-l 

k = the number of independent variables in the model 

When there is more than one independent variable in the 

model, the estimated variance of the forecast, 02, is defined 

as follows." 

-2 u = 
I 

1 + x)XTX)-lxt 1 * MSE 
Where X represents the matrix of data and x is an t 

array of actual values for one period, for the independent 

variables in the regression. The details of this calculation 

are presented in Appendix III for a two variable regression. 

However, to simplify the programming the following 

approximation to G" has been found to produce reasonable 

results although the variance is understated at the extremes 

of the distribution of x values. 

(r2 = [ l+ + ] . MSE 

An example is derived from a regression with two 

independent variables. To fit this curve, historic 

incremental paid losses were expressed as a percentage of 

estimated ultimate losses. Exhibit I presents a payment 

pattern to which a curve was fit, The curve which was fit to 

the data was 

f(t) = evabttc 

Where t is the midpoint of a development period. This curve 

was found to have the best fit as compared to a number of 

164 



Exhibit 1 

Payment Pattern TrisngLe 
Cmulative Percent Paid 

=I-DIEiliiiii====ii====== 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 

7.03% 
9.47% 
9.01% 
6.34% 
5.27% 
1.26% 
7.71% 
7.03% 

29.66% 
24.13% 
29.41% 
24.17% 
23.95% 
23.15% 
29.72% 
26.22% 
23.41% 

48.24% 
41.53% 
44.49% 
34.35% 
37.50% 
39.46% 
46.95% 
39.92% 
38.54% 

55.70% 59.16% 
46.93% 49.89% 
52.94% 55.87% 
41.06% 55.45% 
47.95% 52.04% 
51.97% 59.91% 
58.69% 66.61% 
49.93% 56.45% 

63.43% 
70.85% 
72.02% 
67.92% 
55.80% 

Z:Z 

73.67% 
72.60% 
81.30% 
82.33% 
62.56% 
70.70% 
77.10% 

81.86% 85.24% 
79.99% 90.18% 
85.73% 91.35% 
88.15% 89.87% 
77.92% 84.61% 
78.38% 85.71% 

88.70% 94.92% 
94.42% 95.25% 
92.62% 93.14% 
94.71% 97.49% 
89.67% 90.51% 

96.73% 96.81% 
98.69% w.cox 
94.05% 98.72% 
97.99% 98.03% 

97.08% 97.49% 
W.A% 99.73% 
98.75% 98.81% 

Payrent Pattern Triangle 
interval Percent Paid 

~~====I=i3===51==ii====- 

c 
._~._.~.__.-._......~-.....~-.....................___......._....~~...~~~~.~...~.~~~_.________.__.___...~.~~.~.-~...-_.~~.......~....~.....~.....-~-~--.---.-.----. 

Accident 
Year 

._ . . . . . _. 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 

_. 
Evaluation Point (Months Fran Inception) 

6 12 18 24 30 M 
..~.~.--....~~-.-.~......~~._.-.........._...__.__._. 

18.58% 7.46% 3.46% 4.27% 
7.03% 17.10% 17.41% 5.40% 2.97% 20.96% 
9.47% 19.94% 15.08% 8.45% 2.93% 16.15% 
9.01% 15.16% 10.18% 6.71% 14.39% 12.47% 
6.34% 17.61% 13.55% 10.45% 4.08% 3.77% 
5.27% 17.88% 16.31% 12.51% 7.94% 6.85% 
7.26% 22.46% 17.23% 11.74% 7.92% 5.80% 
7.71% 18.51% 13.70% 10.01% 6.52% 
7.03% 16.38% 15.13% 

42 48 54 60 66 72 78 a-5 90 96 102 
.___..___..______.____.___.___.___________.__..__._.__...__....___.__..__.-....~.~~.~.-~.......~-. 

10.24% &.18X 3.38% 3.46% 6.22% 1.81% 0.09% 0.27% 0.41% 2.43% 0.00% 
1.74% 7.40% 10.18% 4.24% 0.84% 3.44% 0.71% 0.33% 0.00% 0.00% 0.00% 
9.28% 4.44% 5.61% 1.27% 0.53% 0.91% 4.67x 0.03% 0.06% 

14.40% 5.83% 1.71% 4.84% 2.78% 0.49% 0.04% 
6.75% 15.36% 6.69% 5.05% 0.85% 
3.93% 7.68% 7.33% 
4.69% 

IV9 7.39% 18.13% 15.24% 9.09% 6.28% 10.04% 7.29% 8.15% 5.82% 3.77% 2.24% 1.66% 1.38% 0.21% 0.16% 1.21% 0.00% 



similar curves. (Note that f(t) is intended to be an analog 

of a probability density function.) 

f(t) = the percentage of losses paid in an interval, 

divided by the interval size 

This model is fit as follows. 

Y = ln( - ln( f(t) ) ) = a+bt+cln(t) 

Thus this model can be fit by regressing ln( -ln( f(t) ) ) on 

t and In(t). The parameters of the model can be estimated 

using commonly available statistical software. Exhibit II 

shows the parameters which were estimated using Lotus l-2-3. 

The columns of the spreadsheet display the raw data used to 

fit the payment pattern model as well as the transformed 

values used for the regression. The regression facility of 

Lotus l-2-3 was used to estimate the parameters of the curve. 

The parameters were then used to calculate fitted values for 

the dependent variable, Y, and for the percent of losses paid 

for each observation. Also shown, in Exhibit II, is the 

significant F statistic. The calculation of the 

Durbin-Watson test statistic for autocorrelation is shown in 

Exhibit III. The Durbin-Watson statistic was calculated as 

follows: 
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EXHIBlT II 

PayOut Pattern Regression 

f(t) = exp*t-A'(B^t)'(t*C)l 
==II==i-EE=1IT=====i======== 

I 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Cumulative interval Fitted 

Percent Percent lntervel f(t) Y t Lnct) Fitted Percent 

Year Paid Paid Hafurity Uidth Cal.(3)/(5) tLn(-Ln(f(t)))l Hidpcint tLN(Col.(a))l Y In Interval 

E=EI== ===zlEll= -- ..-=====a 5===1=== 1====1= ===I=====Ez ___----____ ==I===E==ilii=== =====ii== ===========r EIZECZ -------_--- 

1978 29.660% 29.66% 12 I2 

1978 48.240% 18.58* 18 6 

1978 55.700% 7.46% 24 6 

1978 59.160% 3.46% 30 6 

1978 63.430% 4.27% 36 6 

1978 73.670% 10.24% 42 6 

1978 81.860% 8.19% 48 6 

1978 85.240% 3.38x 54 6 

1978 88.700x 3.46% 60 6 

1978 94.920% 6.22% 64 6 

1978 96.730% 1.81% 72 6 

1978 96.810% 0.08% 78 6 

1978 97.080x 0.27% a4 6 

1978 97.49Q% 0.41% 90 6 

1978 99.910x 2.42% 96 6 

1978 w.9m 0.00% 102 6 

1979 7.030% 7.03% 6 6 

1979 24.130% 17.10% 12 6 

1979 41.530% 17.40% ia 6 

1979 46.930x 5.40% 24 6 

1979 49.890% 2.96% 30 6 

1979 70.850% 20.96% 36 6 

1979 72.600% 1.75% 42 6 
1979 79.990% 7.39% 48 6 

1979 9o.laoX 10.19% 54 6 
1979 94.420% 4.24% 60 6 
1979 95.250% 0.83% 66 6 

1979 98.690% 3.44% 72 6 

1979 99.400% 0.71% 78 6 

1979 W.TJO% 0.33% 84 6 

1979 w.730% 0.00% 90 6 

1979 99.730% 0.00% 96 6 
1979 99.730% 0.00% 102 6 
1980 9.470% 9.47x 6 6 
1980 29.410% 19.94% 12 6 
1980 44.490% 15.08% 18 6 
1980 52.940% 8.45% 24 6 
1980 55.870% 2.93% 30 6 

2.47% 

3.10% 

1.24% 

0.58% 

0.71% 

1.71% 

1.36% 

0.56% 

0.58% 

1.04% 

0.30% 

0.01% 

0.05% 

0.07% 

0.40% 

0.00% 

1.17% 

2.85% 

2.90% 

0.90% 

0.49% 

3.49% 

0.29% 

1.23% 

1.70% 

0.71% 

0.14% 

0.57% 

0.12% 

0.05% 

0.00% 

0.00% 

0.00% 

1.58% 

3.32% 

2.51% 

1.41% 

0.49% 

130.84% 6 

124.55% 15 

147.87x 21 

164.01% 27 

159.84% 33 

140.38% 39 

145.72% 4s 

164.46% 51 

164.01% 57 

151.93% 63 

175.85% 69 

218.86% 7s 

204.20% 81 

198.63% 87 

170.71% 93 

274.77% 99 

149.22% 3 

126.92% 9 

126.4X 1s 

154.98% 21 

166.99% 27 

121.02% 33 

176.43% 39 

148.09% 4s 

140.50x 51 

159.99% 57 

188.4sx 63 
164.12% 69 

190.80% 75 

201.56% 81 

274.77% 87 

274.77% 93 

274.77% 99 

142.28% 3 

122.50x 9 

130.39% 15 

144.99% 21 

167.18% 27 

1.7918 1.96% 

2.7081 2.51% 

3.0445 2.28% 

3.2958 1.90x 

3.4965 1.48% 

3.6636 1.09% 

3.8067 0.77% 

3.9318 0.51% 

4.0431 0.32% 

4.1431 0.19% 

4.2341 0.11% 

4.3175 0.06% 

4.3944 0.03% 

4.4659 0.01% 

4.5326 0.01% 

4.5951 0.00% 

1.0986 1.18% 

2.1972 2.35% 

2.7081 2.51% 

3.0445 2.28% 

3.2958 1.90% 

3.4965 1.48% 

3.6636 1.09% 

3.0067 0.77% 

3.9318 0.51% 

4.0431 0.32% 

4.1431 0.19% 

4.2341 0.11% 

4.3175 0.06% 

4.3944 0.03% 

4.4659 0.01% 

4.5326 0.01% 

4.5951 0.00% 

1.09a6 1.18% 

2.1972 2.35% 

2.7081 2.51% 

3.0445 2.28% 

3.2958 1.90% 

23.48% 

is.oa% 

13.68% 

11.38% 

8.88% 

6.57% 

4.61% 

3.08% 

1.95% 

1.16% 

0.65% 

0.34% 

0.17% 

0.07% 

0.03% 

0.01% 

7.09% 

14.08% 

15.08% 

13.68% 

11.38% 

8.88x 

6.57% 

4.61% 

3.08% 

1.95% 

1.16% 

0.65% 

0.34% 

0.17% 

0.07% 

0.03% 

0.01% 

7.09% 

14.08% 

15.08% 

13.68% 

11.38% 

Page 1 
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EXHIBIT II 

Payout Pattern Regression 

f(t) = exp-[-A*Wt)'(t~C)I 
====IEI=Ei=2ID===TI======== 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Cumlative Interval Fitted 

Percent Pl?WG-M Interval f(t) Y t Lnct) Fitted Percent 

Year Paid Paid Maturity Uidth Cal.(3)/(S) [Ln(-Ln(f(t)))l Midpoint tLN(CoL.(8))1 Y Ill Interval 

=z=:== =I====== ==5===f= ________ -_-___-- =__==== LT===:=ES== ====l=z=zLD===i 3=0==15= =====1=3==:E= ====s= lZ-------_- --__-___ - 

1980 72.020% 

1980 81.300% 

1980 85.730% 

1980 91.350% 

1980 92.620% 

1980 93.140% 

1980 94.050% 

1980 98.720% 

1980 98.750% 

1980 98.810% 

1981 9.010% 

1981 24.170% 

1981 34.350% 

1981 41.06ox 

1981 55.450% 

1981 67.920% 

1981 82.330% 

1981 88.150% 

1981 89.870% 

1981 94.710% 

1981 97.490% 

1981 97.990% 

1981 98.030% 

1982 6.340% 

1982 23.950% 

1982 37.500% 

1982 47.950% 

1982 52.040% 

1982 55.800% 

1982 62.560% 

1982 77.920% 

1982 84.610x 

1982 89.670% 

1982 90.510% 

1983 5.270% 

1983 23.150% 

1983 39.460% 

1983 51.970% 

16.15% 36 

9.28% 42 

4.43% 48 

5.62% 54 

1.27% 60 

0.52% 66 

0.91% 72 

4.6iT 78 

0.03% 84 

0.06% 90 

9.01% 6 

15.16% 12 

10.18% 18 

6.71% 24 

14.39% 30 

12.47% 36 

14.41% 42 

5.82% 48 

1.72% 54 

4.84% 60 

2.78% 66 

0.50% 72 

0.04% 78 

6.34% 6 

17.61% 12 

13.55% 18 

10.45% 24 

4.09% 30 

3.76% 36 

6.76% 42 

15.36% 48 

6.69% 54 

5.06% 60 

O.a4% 66 

5.27% 6 

17.88% 12 

16.31% 18 

12.51% 24 

6 2.69% 

6 1.55% 

6 0.74% 

6 0.94% 

6 0.21% 

6 0.09% 

6 0.15% 

6 0.78% 

6 0.01% 

6 0.01% 

6 1.50% 

6 2.53% 

6 1.70% 

6 1.12% 

6 2.40% 

6 2.08% 

6 2.40% 

6 0.97x 

6 0.29% 

6 0.81% 

6 0.46% 

6 0:08x 

6 0.01% 

6 1.06% 

6 2.94% 

6 2.26% 

6 1.74% 

6 0.68% 

6 0.63% 

6 1.13% 

6 2.56% 

6 1.11% 

6 0.84% 

6 0.14% 

6 0.88% 

6 2.98% 

6 2.72% 

6 2.09% 
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128.51% 33 

142.77% 39 

159.10% 45 

154.13% 51 

181.77x 57 

195.31% 63 

187.05% 69 

158.02% 7s 

229.29% 81 

222.03% 87 

143.47% 3 

130.24% 9 

140.52% 15 

150.26% 21 

131.65% 27 

135.42% 33 

131.61% 39 

153.38% 45 

176.72% 51 

157.28% 57 

W3.17% 63 

195.87% 69 

226.34% 75 

151.51% 3 

126.09% 9 

133.25% 15 

139.88% 21 

160.71% 27 

162.38% 33 

150.09% 39 

129.89% 45 

150.33% 51 

156.35% 57 

188.27% 63 

155.50% 3 

125.65% 9 

128.24% 15 

135.34% 21 

3.4965 1.48% 

3.6636 1.09% 

3.8067 0.77% 

3.9318 0.51% 

4.0431 0.32% 

4.1431 0.19% 

4.2341 0.11% 

4.317s 0.06% 

4.3944 0.03% 

4.4659 0.01% 

1.0986 1.18% 

2.1972 2.35% 

2.7081 2.51% 

3.0445 2.2a% 

3.2958 1.90x 

3.4965 1.48% 

3.6636 l.G9% 

3.8067 0.77% 

3.9318 0.51% 

4.0431 0.32%- 

4.1431 0.15% 

4.2341 0.11% 

4.3175 0.06% 

1.0986 1.18% 

2.1972 2.35% 

2.7081 2.51% 

3.0445 2.28% 

3.2958 l.W% 

3.4945 1.48x 

3.6636 1.09% 

3.8067 0.77% 

3.9318 0.51% 

4.0431 0.32% 

4.1431 0.19% 

1.0986 1.18x 

2.1972 2.35% 

2.7081 2.51% 

3.0445 2.28% 

B.BB% 

6.57% 

4.61% 

3.oax 

1.95% 

1.16% 

0.65% 

0.34% 

0.17% 

0.07% 

7.m 

14.08% 

15.08% 

13.6.3% 

11.38x 

8.88% 

6.57% 

4.61% 

3.oax 

1.95% 

1.16% 

0.65% 

0.34% 

7.09% 

14.08% 

15.08% 

13.68% 

11.38% 

8.88% 

6.57% 

4.61% 

3.08% 

1.95% 

1.16% 

7.09% 

14.08% 

15.oax 

13.68% 



EXHIBIT II 

Payout Pattern Regression 

f(t) = exp~c-A*(B~t~'(twl 
===II=lliiliiEE============== 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Cumulative Interval Fitted 

Percent Percent Interval f(t) I t Ln(t) Fitted Percent 

YWP Paid Paid Maturity Uidth Co1.(3)/(5) tLn(-Ln(f(t)))l Midpoint [LN(Co1.(8))1 Y In Interval 

=S=izE ======== q =ii=E=E= =Ei=ESII ------_ ---____ ==5==TE==== ====SEEE==lil=l =_==_=== -----------1 ====== ==II=iiEiiEII ----------- 

1983 59.910% 

1983 66.770% 

1983 70.700% 

1983 78.380% 

1983 85.710% 

1984 7.260% 

1984 29.720% 

1984 46.950% 

1984 58.690% 

I984 66.610% 

1984 72.410% 

1984 77.100% 

1905 7.710% 

1985 26.220% 

1965 39.920% 

1985 49.930% 

1985 56.450% 

1986 7.030% 

1986 23.410% 

1986 38.540% 

7.94% 30 6 

6.86% 36 6 

3.93% 42 6 

7.6a% 48 6 

7.33% 54 6 

7.26% 6 6 

22.46% 12 6 

17.23% 18 6 

11.74% 24 6 

7.92% 30 6 

5.80% 36 6 

4.49% 42 6 

7.71% 6 6 

18.51% I2 6 

13.70% 18 6 

10.01% 24 6 

6.52% 30 6 

7.03% 6 6 

16.38% 12 6 

15.13% I8 6 

Regression Output: 

constant I.714138 

Std Err of Y Est 0.178048 

R Squared 0.737556 

No. of Observations 96 

Degrees of Freedan 93 

1.32% 146.44% 27 

1.14% 149.77% 33 

0.66% 161.51% 39 

1.28% 147.21% 45 

1.22% 148.27% 51 

1.21% 148.49X 3 

3.74% 118.94% 9 

2.87% 126.70% 15 

1.96% 136.96% 21 

1.32% 146.50% 27 

0.97% 153.45% 33 

0.78% 157.93% 39 

1.29% 147.12% 3 

3.09% 124.66% 9 

2.28% 132.96% 15 

1.67% 140.94% 21 

1.09% 150.90% 27 

1.17% 149.22% 3 

2.73% 128.12% 9 

2.52% 130.30% 15 

3.2958 1.90% 

3.4965 1.48% 

3.6636 1.09% 

3.8067 0.77% 

3.9318 0.51% 

1.0986 1.18% 

2.1972 2.35% 

2.7081 2.51% 

3.0445 2.28% 

3.2958 1.90% 

3.4965 1.48% 

3.6636 1.09% 

1.0986 1.18% 

2.1972 2.35% 

2.7081 2.51% 

3.0445 2.28% 

3.2958 1.90% 

1.0986 1.18% 

2.1972 2.35% 

2.7081 2.51% 

11.38% 

8.88% 

6.57% 

4.61% 

3.08% 

7.09% 

14.08% 

15.08% 

13.68% 

11.38% 

8.88% 

6.57% 

7.09% 

14.08% 

15.08% 

13.68% 

11.38% 

7.09% 

14.08% 

15.08% 

X Coefficient(s) 0.0186 -0.2546 

Std Err of Coef. 0.0016 0.0439 

F Statistic 130.7 

-.. 
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EXHIBIT III 
Test of Residuals for Autocorrelation 

Uith Durbin Uatson Statistic 
==i==i============ii================= 

Observation Regression Observation Regression Observation Regression 
nurber Residual Residual^Z (e(t)-e(t-l)Y2 NUltW Residual Residual^Z (e(t)-et-I))^2 NW&r Residual Residue\*2 (e(t)-e(t-I))*2 

===i=i===== ==i=il==E _=____=z= z==ii======j_==== ===i===531= =i==i===== i====i==== ==i=====i==EDI= ___________ ----------- ==_======= i========i ===s====-____-- ------- 

I 0.061 
2 0.058 
3 -0.149 
4 -0.262 
5 -0.160 
6 0.104 
7 0.125 
8 0.018 
9 0.106 

10 0.313 
11 0.162 
12 -0.178 
13 0.061 
14 0.210 
15 0.584 
16 -0.361 
17 -0.002 
18 0.053 
I9 0.040 
20 -0.220 
21 -0.292 
22 0.228 
23 -0.257 
24 0.102 
25 0.257 
26 0.146 
27 -0.053 
28 0.279 
29 0.103 
30 0.087 
31 -0.551 
32 -0.456 

0.004 
0.003 
0.022 
0.069 
0.026 
0.011 
0.016 
0.000 
0.011 
0.098 
0.026 
0.032 
0.004 
0.044 
0.341 
0.130 
0.000 
0.003 
0.002 
0.048 
0.085 
0.052 
0.045 
0.010 
0.066 
0.021 
0.003 
0.076 
0.011 
0.008 
0.304 
0.208 

0.000 
0.043 
0.013 
0.010 
0.070 
0.000 
0.012 
0.008 
0.043 
0.023 
0.115 
0.057 
0.022 
0.140 
0.893 
0.129 
0.003 
0.000 
0.067 
0.005 
0.271 
0.235 
0.129 
0.024 
0.012 
0.039 
0.110 
0.031 
0.000 
0.408 
0.009 
0.009 

33 -0.361 
34 0.067 
35 0.097 
36 0.000 
37 -0.120 
38 -0.294 
39 0.153 
40 0.080 
41 -0.008 
42 0.121 
43 -0.072 
44 -0.121 
45 0.050 
46 0.431 
47 -0.190 
48 -0.024 
49 0.056 
50 0.020 
51 -0.101 
52 -0.173 
53 0.061 
54 0.084 
55 0.191 
56 0.049 
57 -0.105 
58 0.173 
59 0.150 
60 -0.038 
61 -0.252 
62 -0.025 
63 0.061 
64 -0.029 

Ourbin Watson 1.627 

0.130 
0.005 
0.009 
0.000 
0.014 
0.087 
0.023 
0.006 
0.000 
0.015 
0.005 
0.015 
0.003 
0.186 
0.036 
0.001 
0.003 
0.000 
0.010 
0.030 
0.004 
0.007 
0.037 
0.002 
0.011 
0.030 
0.023 
0.001 
0.064 
0.001 
0.004 
0.001 

0.183 
0.001 
0.009 
0.014 
0.030 
0.200 
0.005 
0.008 
0.017 
0.037 
0.002 
0.029 
0.145 
0.385 
0.028 
0.006 
0.001 
0.015 
0.005 
0.055 
0.001 
0.011 
0.020 
0.024 
0.077 
0.001 
0.036 
0.046 
0.052 
0.007 
0.008 
0.002 

67 
68 
69 
70 
71 

:: 
74 
75 
76 

2 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

9': 
92 
93 
94 
95 
96 

-0.069 0.005 0.026 
-0.229 0.053 0.002 
-0.186 0.034 0.037 

0.006 0.000 0.077 
0.284 0.081 0.016 
0.159 0.025 0.001 
0.182 0.033 0.054 

-0.051 0.003 0.000 
-0.065 0.004 0.017 

0.064 0.004 0.002 
0.022 0.000 0.002 

-0.023 0.001 0.004 
-0.087 0.008 0.001 
-0.059 0.004 0.002 
-0.108 0.012 0.048 

0.111 0.012 0.005 
0.180 0.032 0.030 
0.005 0.000 0.016 
0.133 0.018 0.009 
0.037 0.001 0.006 

-0.040 0.002 0.002 
-0.087 0.008 0.000 
-0.096 0.009 0.001 
-0.072 0.005 0.008 

0.019 0.000 0.003 
0.076 0.006 0.010 

-0.026 0.001 0.003 
-0.079 0.006 0.003 
-0.131 0.017 0.017 
-0.002 0.000 0.002 

0.041 0.002 0.002 
0.001 0.000 

SUSS 2.948 4.797 



Ii! (et - etm112 
DW = t=2 

E es 
t=1 

Where et is the difference between the actual and the fitted 

value for the tth observation of the dependent variable. A 

rule of thumb is that if no autocorrelation is present, the 

Durbin-Watson statistic should be between 1.5 and 2.5. For 

the sample size used in this example the result in Exhibit 

III is inconclusive. Therefore autocorrelation may or may 

not be present. To simplify the modelling process, no 

adjustment was made to the regression due to possible 

autocorrelation. 

Once the regression coefficients have been estimated 

the model's expected values for Y for each forecast time 

period can be determined. 

Pt = a + 6 t + 6 In(t) 

To simulate a value for a payout, the following 

algorithm is used: 

1. Calculate 2 (fitted Y) for the time period. 

2. Generate a random variable, T,from a t 

distribution with N-k-l degrees of freedom. 

N = the number of observations used to fit 

the parameters. 
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3. The simulated value for Y for year t is 

s = P+;T 

4. The percent paid in an interval is 

Percent Paid = . length of interval 

5. Multiply the percent paid in the interval by the 

aggregate losses for the accident year to obtain 

the aggregate amount of losses paid. 

INTEREST RATE RISK: THE ml4 WALK MODEL 

One of the most commonly used distributions to model 

the return on investments is the random walk model. In 

general, the random walk model assumes that the best guess 

for tomorrow's interest rate is today's interest rate. This 

model is denoted as follows: 

Ai = at , 

Ai = it - itml, or 

Aln(i) = ln(it) - ln(itml) 

Where it is an interest rate or an investment return for a 

time period t. a t is the residual term for the change in 

interest rates and is usually assumed to be normally 
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distributed with mean zero and variance u2. The following 

assumptions are made when using this model: 

1. The changes in returns are independent and 

identically distributed. 

2. The variance of the Ai's is constant over time. 

3. The series is level, i.e. it does not contain a 

trend. 

4. The error term in the model is uncorrelated with 

the error terms from any prior period. 

5. at is the residual term for the change in interest 

rates. Though it is frequently assumed to be 

normally distributed, normality is not a 

requirement of the model. 

The random walk model is a subset of a more general class of 

time series models known as Autoregressive Integrated Moving 

Average (ARIMA) models. The notation for the more general 

model is: 

wt = the nth difference of the interest rate series at 

time t 

wt= #lwt-l+ $ w 
2 t-2 

+ . . . + $NWt N - Bletml- 82et-2- . ..- 8ket-++ at 
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Where: 

@1 is a parameter relating the W at time t to the W at 

earlier times. It is also an *lautoregressive" parameter. 

e1 is a parameter relating the W at time t to the residual 

of earlier times. It is a "moving average" parameter. 

e t is the difference between the actual and the predicted 

values for W t' 

at is the same as previously defined. 

The random walk model is a very simple model and has 

frequently been used with financial data in the past. 

However, the hypothesis that interest rates follow a random 

walk model cannot be assumed to be appropiate without further 

testing. The hypothesis was tested on a series of monthly 

yields on one month treasury bills (treasury bills with one 

month left to maturity) between January 1970 and December 

1985. 

The first step in assessing the reasonableness of the 

random walk model for interest rates is to examine the 

autocorrelation and partial autocorrelation functions. The 

autocorrelation for lag k is the correlation between the 

I 
return at time t and the return at time k periods ahead of t. 

The sample estimate of the autocorrelation for the series 

is:i8 

N-k 

1 (it- i) (it+k - i) 

r t=1 = 
k 

z (it- i)2 
t=1 
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Where: 

N is the number of observations 

it is the interest rate for time t 

i is the average interest rate for the series 

When returns are independent and identically 

distributed, i.e. no autocorrelation exists, this Statistic 

is approximately normally distributed with a mean of zero and 

a variance of i. Thus a sample autocorrelation of greater 

than two times i may indicate a significant autocorrelation 

at a particular lag. ($ represents approximately the 95th 

percent confidence level of the normal distribution.) 

The partial autocorrelations for lag k measure the 

correlation between variables at different lags after 

removing the effect of the correlation of the variables at 

prior lags. Abraham and Ledolter provide a more complete 

explanation of the partial autocorrelation function and its 

estimation.lg As was the case with the autocorrelation 

function, when the interest rates are independent, the 

partial autocorrelations are approximately normally 

distributed with a mean of zero and a variance of i. 

Both autocorrelation and partial autcorrelation 

functions are part of the standard output of statistical 

packages which perform time series analysis. The SPSS 

statistical package was used to analyze the treasury bill 

data. The autocorrelations of the treasury bill data are 

shown in Chart I. These autocorrelations are large and do 
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not die out quickly indicating that the series should be 

differenced, as is predicted by the random walk model. The 

autocorrelation and partial autocorrelation functions of the 

differenced series are shown in Charts II and III. The size 

Of the autocorrelations and partial autocorrelations 

indicates that a more complicated model than the random walk 

model may be appropiate for this series. 

A model of the following form (also known as an 

ARIMA[l,l,l) model) was found to fit the data: 

i-i t t-1 = 4 CiteI- it-*) - 63 etel + at 

An assumption of ARIMA models is that the residuals Of 

each time period are uncorrelated with the residuals of prior 

time periods, A diagnostic check of the appropriateness of 

this assumption was performed using a Box-Ljung test. This 

statistic tests the joint null hypothesis that the 

autocorrelations at all lags are zero. The statistic used in 

the test isE2' 

Q = N (N+2) ; (N-i)-' r, 
i =I 

Where: ri is the ith sample autocorrelation 

N is the number of observations used to fit the model 

k denotes the number of autocorrelations tested for 

significance 

When the null hypothesis is true, this statistic has a 
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PARTIAL AUTOCORRELATION OF 
TREASURY BILL RATES 
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Chi-square distribution with k-m degrees of freedom, where m 

is the number of parameters in the model. The application of 

this test to the residuals of the fitted model indicated that 

the autocorrelations were not significant. 

The procedures which were used to identify an 

appropriate model for the treasury bill rate data were also 

applied to the natural logarithms of the treasury bill rates. 

Chart IV displays the autocorrelation function for this data. 

The autocorrelations indicated that the series should be 

differenced. When the series was differenced no significant 

autocorrelations or-partial autocorrelations appeared. These 

autocorrelations and partial autocorrelations are displayed 

in Charts V and VI. A Box-Ljung test was performed and this 

test found no significant autocorrelations in the residuals. 

Thus, for the logs of the interest rates, the need for a more 

complicated model than the random walk model was not 

indicated. Because it is a more parsimonious model and 

because it performed better than the ARIMA(1,1,1) model on 

statistical tests provided by the SPSS package, the random 

walk model for the logs of interest rates was chosen for use 

in simulation. 

For the model selected only one parameter estimate, the 

variance of the distribution, is needed. This parameter is 

estimated by calculating the variance of the first difference 

of the data. This calculation is shown in Exhibit IV. In 

addition, the skewness and kurtosis for the model are shown. 

It should be noted that a negative skewness is seen in this 
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AUTOCORRELATION OF THE LOG OF 
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OM Month Yield on Treasury Bills 
LS=ll=tllll==EILE=1==================~ 

EXHIBIT IV 

(1) (2) (3) (4) (5) (6) (7) (8) 

First sqw3d 

T-Bill MT-Bill Difference First Third Fourth 

YeIN Month Rate Rate) Of Logs Difference lmnsnt nanmt 
=I=ITe=LII------_---====================*=======--- ---------- ---==IIE=IC=rZI=I=I===========~-= 

m 1 0.63% -5.07 

70 2 0.53% -5.23 

70 3 0.55% -5.21 

70 4 0.54% -5.22 

70 5 0.53% -5.24 

70 6 0.50% -5.31 

70 7 0.50% -5.30 

70 8 0.53% -5.25 

70 9 0.48% -5.33 

70 10 0.44% -5.42 

70 11 0.38% -5.58 

70 12 0.36% -5.64 

71 1 0.34% -5.69 

71 2 0.27x -5.90 

71 3 0.28% -5.07 

71 4 0.30% -5.79 

71 5 0.35% -5.65 

71 6 0.41% -5.51 

71 7 0.42% -5.47 

71 8 0.37% -5.59 

71 9 0.38% -5.58 
71 10 0.34% -5.69 

71 11 0.33% -5.71 

71 12 0.28% -5.08 

72 1 0.26% -5.94 

72 2 0.2Tx -5.91 

72 3 0.28% -5.87 

72 4 0.28% -5.88 

72 5 0.29% -5.85 

72 6 0.29% -5.84 

72 7 0.29% -5.84 

72 8 0.36% -5.63 

72 9 0.37% -5.59 

72 10 0.38% -5.58 

72 11 0.42% -5.47 

72 12 0.40% -5.52 

73 1 0.45% -5.40 

73 2 0.47x -5.37 

73 3 0.51% -5.26 

73 4 0.50x -5.30 

73 5 0.54% -5.22 

-0.160 0.028 -0.005 O.Wl 

0.023 0.001 o.ooD o.oDD 

-0.008 0.000 -D.OiIO 0.000 

-0.024 0.001 -0.wo 0.000 

-0.067 0.004 -0.000 o.ow 

0.009 0.000 D.OW 0.004 

0.050 0.002 0.000 0.000 

-0.084 0.007 -0.001 o.wo 

-0.082 0.w7 -0.001 OAOD 

-0.166 0.027 -0.005 0.001 

-0.058 0.003 -O.DOD 0.000 

-0.049 0.002 -0.000 o.Doo 

-0.208 o.D43 -0.009 0.002 

0.030 0.001 o.oDD o.wD 

0.072 0.005 0.000 0.000 

0.142 0.020 0.003 0.000 

0.146 0.021 0.003 0.000 

0.041 0.002 0.000 0.000 

-0.128 0.016 -0.002 o.ooo 

0.011 0.000 0.000 0.000 

-0.107 0.011 -0.001 o.wo 

-0.025 0.001 -0.DoD o.Doo 

-0.167 0.028 -0.005 O.Wl 

-0.063 0.004 -0.000 o.DoD 

0.032 0.001 0.000 0.000 

0.046 0.002 o.ow 0.000 

-0.015 0.000 -o.DDo o.DDD 

0.030 0.001 o.DOO 0.000 

0.015 0.000 o.oDo o.DoD 

0.000 0.000 0.000 o.Dw 

0.209 0.044 0.009 0.062 

0.035 0.001 O.ODO O.WD 

0.011 0.000 0.000 o.Doo 

0.117 0.014 0.w2 o.DDD 

so.051 0.003 -0.000 0.000 

0.119 0.014 0.002 o.wJ 

0.028 0.001 0.000 0.000 

0.088 0.008 0.001 OS00 

-0.021 0.000 -0.000 o.ooD 

0.086 0.007 0.001 0.000 
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EXHIBIT Iv 

One nonth Yield on Treasury Bills 
=.==iS=i===5=====E~i=======:========~= 

(1) (2) (3) (4) (5) (6) (7) (8) 

First squared 

T-BiLl Ln(T-BiLl Difference First Third Fourth 

Year Month Rate Rate) Of LOBS Difference Moment t4anent 
5==5-iS5===iE=ZE=::=-E====..i----==E-;-i== 

73 6 0.62% -5.08 0.139 0.019 0.003 0.000 

73 7 0.69% -4.98 0.103 0.011 0.001 0.000 

73 8 0.71% -4.95 0.030 0.001 0.000 0.000 

73 9 0.60% -5.12 -0.176 0.031 -0.005 0.001 

73 10 0.58% -5.15 -0.026 0.001 -0.000 0.000 

73 11 0.63% -5.07 0.074 0.006 0.000 0.000 

73 12 0.61% -5.09 -0.021 0.000 -0.000 0.000 

74 1 0.62% -5.09 o.ooa 0.000 0.000 0.000 

74 2 0.62% -5.08 0.003 0.000 0.000 0.000 

74 3 0.71% -4.94 0.141 0.020 0.003 0.000 

74 4 0.72% -4.93 0.008 0.000 0.000 0.000 

74 5 0.63% -5.07 -0.139 0.019 -0.003 0.000 

74 6 0.64% -5.05 0.021 0.000 0.000 0.000 

74 7 0.61% -5.09 -0.041 0.002 -0.000 0.000 

74 a 0.75% -4.89 0.203 0.041 0.008 0.002 

74 9 0.51% -5.28 -0.392 0.154 -0.060 0.024 

74 10 o.s7% -5.16 0.118 0.014 0.002 0.000 

74 11 0.61% -5.09 0.071 0.005 0.000 0.000 

74 12 0.55% -5.20 -0.109 0.012 -0.001 0.000 

7s 1 0.45% -5.39 -0.191 0.036 -0.007 0.001 

75 2 0.38% -5.57 -0.178 0.032 -0.006 0.001 

7s 3 0.44% -5.44 0.136 0.018 0.002 0.000 

75 4 0.41% -5.51 -0.071 0.005 -0.000 0.000 

75 5 0.41% -5.49 0.015 0.000 0.000 0.000 

75 6 0.45% -5.40 0.094 0.009 0.001 0.000 

75 7 0.50% -5.30 0.098 0.010 0.001 0.000 

7s a 0.47% -5.37 -0.071 0.005 -0.000 0.000 

7s 9 0.52% -5.27 0.104 0.011 0.001 0.000 

75 10 0.44% -5.43 -0.160 0.026 -0.004 0.001 

75 11 0.41% -5.49 -0.059 0.004 -0.000 0.000 

75 12 0.43% -5.44 0.045 0.002 0.000 0.000 

76 1 0.37% -5.61 -0.165 0.027 -0.004 0.001 

76 2 0.39% -5.55 0.057 0.003 0.000 0.000 

76 3 0.39% -5.5s -0.000 0.000 -0.000 0.000 

76 4 0.40% -5.53 0.021 0.000 0.000 0.000 

76 5 0.43% -5.45 0.082 0.007 0.001 0.000 

76 6 0.44% -5.43 0.019 0.000 0.000 0.000 
76 7 0.42% -5.47 -0.039 0.002 -0.000 0.000 
76 8 0.41% -5.49 -0.020 0.000 -0.000 0.000 
76 9 0.42% -5.47 0.020 0.000 0.000 0.000 
74 10 0.39% -5.54 -0.073 0.005 -0.000 0.000 
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One Month Yield on Treasury Bills 
=iiS:l========j===CI=================== 

EXHIBIT IV 

(1) (2) (3) (4) (5) (6) (7) (8) 

First squared 

T-BiLI Ln(T-BiLL Difference First Third Fwrth 

Year Month Rate Rate) Of Logs Difference nmnt n-t 
======5=====F==I============:==============~===================================== 

76 11 0.36% -5.64 -0.102 0.010 -0.001 0.000 

76 12 0.35% -5.66 -0.024 0.001 -0.000 0.000 

77 1 0.38% -5.57 0.093 0.009 0.001 0.000 

77 2 0.37% -5.59 -0.022 0.000 -0.000 0.000 

77 3 0.37% -5.59 -0.000 0.000 -0.000 0.000 

77 4 0.36% -5.62 -0.023 0.001 -0.000 0.000 

77 5 0.39% -5.54 0.073 0.005 0.000 0.000 

77 6 0.40% -5.51 0.032 0.001 0.000 0.000 

77 7 0.43% -5.44 0.071 0.005 0.000 0.000 

77 8 0.44% -5.43 0.015 0.000 0.000 0.000 

77 9 0.49% -5.32 0.109 0.012 0.001 0.000 

77 10 0.50% -5.30 0.017 0.000 0.000 0.000 

77 11 0.47% -5.37 -0.070 0.005 -0.000 0.000 

77 12 0.45% -5.40 -0.033 0.001 -0.000 0.000 

70 1 0.50% -5.30 0.103 0.011 0.001 0.000 

78 2 0.50% -5.29 0.009 0.000 0.000 0.000 

76 3 0.56% -5.18 0.107 0.012 0.001 0.000 

78 4 0.52% -5.27 -0.082 0.007 -0.001 0.000 

78 5 0.53% -5.23 0.032 0.001 0.000 0.000 

78 6 0.55% -5.20 0.032 0.001 0.000 0.000 

78 7 0.54% -5.22 -0.016 0.000 -0.000 0.000 

78 8 0.62% -5.08 0.139 0.019 0.003 0.000 

78 9 0.65% -5.03 0.047 0.002 0.000 0.000 

78 10 0.TJ.Z -4.92 0.111 0.012 0.001 0.000 

78 11 0.74% -4.90 0.017 0.000 0.000 0.000 

78 12 0.72% -4.93 -0.029 0.001 -0.000 0.000 

79 1 0.79% -4.84 0.096 0.009 0.001 0.000 

79 2 0.78% -4.85 -0.011 0.000 -0.000 0.004 

79 3 0.80% -4.83 0.017 0.000 0.000 0.000 

79 4 0.78% -4.85 -0.017 O.WO -0.000 o.wo 

79 5 0.81% -4.82 0.032 0.001 0.000 0.000 

79 6 0.74% -4.91 -0.093 0.009 -0.001 0.000 

79 7 0.75% -4.09 0.022 0.001 0.000 0.000 

79 a 0.61% -4.81 0.076 0.006 0.000 0.000 

79 9 0.82% -4.81 0.005 0.000 0.000 0.000 

79 10 0.95% -4.65 0.154 0.024 0.004 0.001 

79 11 0.85% -4.77 -0.114 0.013 -0.001 0.000 

79 12 0.81% -4.82 -0.051 0.003 -0.000 0.000 

60 1 0.92% -4.68 0.132 0.018 0.002 0.000 

80 2 1.12% -4.49 0.193 0.037 0.007 0.001 

80 3 1.27% -4.37 0.122 0.015 0.002 0.000 
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One Month 'field on Treasury BiLls 
======5=5===-r=Si5i~================== 

EXHIBIT 1V 

(1) (2) (3) (4) (5) (6) (7) (8) 

First SqUFJFed 

T-6iII Ln(r-Bill Oifference First Third Fourth 

Year Month Rate Rate) Of Logs Difference nment umnt 
======I====T=F=iE=============================================~===============:== 

80 4 

80 5 

80 6 

80 7 

80 a 

80 9 

80 10 

80 11 

80 12 

81 1 

81 2 

81 3 

81 4 

81 5 

81 6 

81 7 

81 a 

81 9 

81 10 

81 11 

81 12 

a2 1 

82 2 

82 3 

a2 4 

a2 5 

a2 6 

a2 7 

a2 a 

a2 9 

62 10 

a2 11 

a2 12 

a3 1 

a3 2 

a3 3 

a3 4 

a3 5 

a3 6 

a3 7 

a3 8 

0.72% -4.93 -0.564 0.319 -0.180 0.101 

0.57% -5.16 -0.231 0.053 -0.012 0.003 

0.51% -5.28 -0.118 0.014 -0.002 0.000 

0.59% -5.13 0.154 0.024 0.004 0.001 

0.75% -4.90 0.230 0.053 0.012 0.003 

0.91% -4.70 0.201 0.040 0.008 0.002 

0.90% -4.71 -0.010 0.000 -0.000 0,000 

1.24% -4.39 0.315 0.099 0.031 0.010 

1.00% -4.61 -0.216 0.047 -0.010 0.002 

1.16X -4.45 0.154 0.024 0.004 0.001 

1.16% -4.45 0.001 0.000 0.000 0.000 

1.09% -4.52 -0.067 0.005 -0.000 0.000 

1.12% -4.49 0.027 0.001 0.000 0.000 

1.31% -4.34 0.155 0.024 0.004 0.001 

1.20% -4.42 -0.081 0.007 -0.001 0,000 

1.24% -4.39 0.029 0.001 0.000 0.000 

1.25% -4.38 0.006 0.000 0.000 0.000 

1.12% -4.49 -0.105 0.011 -0.001 0.000 

1.06% -4.55 -0.058 0.003 -0.000 0 .ooo 

0.86% -4.75 -0.204 0.042 -0.009 0.002 

0.78X -4.86 -0.108 0.012 -0.001 0.000 

1.00% -4.60 0.257 0.066 0.017 o.oLl4 

1.00% -4.61 -0.007 0.000 -0.000 0.000 

1.12% -4.49 0.118 0.014 0.002 0.000 

1.03% -4.57 -0.083 0.007 -0.001 0.000 

0.96% -4.64 -0.070 0.005 -0.000 0.000 

0.95% -4.65 -0.010 0.000 -0.000 0.000 

0.74% -4.90 -0.247 0.061 -0.015 0.004 

0.52% -5.25 -0.353 0.125 -0.044 0.016 

0.59% -5.14 0.115 0.013 0.002 0.000 

0.63% -5.07 0.070 0.005 0.000 0.000 

0.64% -5.06 0.013 0.000 0.000 0.000 

0.6ax -4.99 0.06.5 0.004 0.000 0.000 

0.64% -5.02 -0.027 0.001 -0.000 0.000 

0.65% -5.03 -0.019 0.000 -0.000 0.000 

0.71% -4.95 0.087 0.007 0.001 0.000 

0.66% -5.02 -0.075 0.006 -0.000 0.000 

0.68% -5.00 0.026 0.001 0.000 0.000 

0.72% -4.93 0.068 0.005 0.000 0.000 

0.74% -4.91 0.023 0.001 0.000 0.000 

0.71% -4.95 -0.048 0.002 -0.000 0.000 
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One llmth 'field on Treasury Bills 
==5==5======1==51==1================== 

EXHIBIT IV 

(1) (2) (3) (4) (5) (6) (7) (8) 

First squared 

T-EilL LnCT-gill Difference First Third Fourth 

Year Month Ratf! Rate) Of Logs Difference l4ahent klanent 
===E======i___________________________ --------------------------=======================================~==== 

83 9 0.72% -4.93 

a3 10 0.71% -4.95 

a3 11 0.71% -4.95 

a3 12 0.71% -4.95 

a4 1 0.74% -4.91 

84 2 0.69% -4.98 

a4 3 0.77% -4.87 

a4 4 0.76% -4.87 

a.4 5 0.69% -4.97 

84 6 0.77% -4.86 

a4 7 0.80% -4.83 

a4 a 0.79% -4.86 

a4 9 0.86% -4.75 

a4 10 0.69% -4.98 

84 11 0.62% -5.09 

a4 12 0.64% -5.05 

a5 1 0.62% -5.08 

a5 2 0.60% -5.11 

a5 3 0.67% -5.00 

a5 4 0.61% -5.10 

a5 5 0.51% -5.27 

85 6 0.55% -5.19 

85 7 0.58% -5.14 

a5 8 0.59% -5.13 

a5 9 0.58% -5.15 

a5 10 0.59% -5.13 

a5 11 0.55% -5.20 

a5 12 0.49% -5.32 
i=.T=ii== zST=F=3 ====i==r ===i_===s= 

N= 192 Avg = 

S.D. = 

Skeuness = 

0.024 

-0.023 

-0.000 

0.003 

0.046 

-0.076 

0.117 

-0.008 

-0.096 

0.105 

0.038 

-0.017 

0.089 

-0.224 

-0.111 

0.038 

-0.031 

-0.028 

0.111 

-0.100 

-0.175 

0.080 

0.052 

0.008 

-0.015 

0.020 

-0.073 

-0.114 
========I: 

-0.00131 

0.113 

-0.965 

0.001 0.000 

0.001 -0.000 

0.000 -0.000 

0 .ooo 0.000 

0.002 0.000 

0.006 -0.000 

0.014 0.002 

0.000 -0.000 

0.009 -0.001 

0.011 0.001 

0.001 0.000 

0.000 -0.000 

0.008 0.001 

0.050 -0.011 

0.012 -0.001 

0.001 0.000 

0.001 -0.000 

0.001 -0.000 

0.012 0.001 

0.010 -0.001 

0.030 -0.005 

0.006 0.001 

0.003 0.000 

0.000 0.000 

0.000 -0.000 

0.000 0.000 

0.005 -0.000 

0.013 -0.001 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.003 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.001 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 
=r.==E=E 

0.0127 -0.0014 0.0010 

Kurtosis = 6.425 



data and the kurtosis of greater than six is substantially 

higher than the theoretical kurtosis for a normally 

distributed variable of three. A further test of the 

distributional assumptions was performed. The hypothesis 

that the model's residual had a nonnal(0,c2) distribution was 

tested using a Kolmogorov-Smirnov statistic and rejected at 

the 95th percent confidence level. Thus the statistical data 

indicated that the normal distribution is not an appropiate 

model for generating the disturbance terms for the interest 

rate model. 

Taylor21 and Burn 22 have observed that financial time 

series frequently are nonnormal and they suggest procedures 

for modelling time series when normality is not assumed. For 

the simulation described in this paper a Cornish Fisher 

expansion was selected to model the random shock terms of the 

series. This approximation was selected because it does not 

significantly increase the difficulty of fitting models to 

the data or programming the simulation. It also provides a 

correction for the departure from normality exhibited by the 

skewness and kurtosis of the interest rate data. The Cornish 

Fisher expansion is discussed in Appendix II. 

In order to simulate a return from the random walk 

model, the following steps are performed: 

1. Generate a random shock term at using the Cornish 

Fisher expansion. 
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2. Since ln(Xt) - ln(Xtml) = at 

X 
or In * = a 

t 1 t 
t-1 

xt 

c= 
exp(at) 

xt = Xtel - exp(y) 

SUMMARY 

A complete model has now been described which can be 

used to generate random present values of losses. Losses 

paid in a particular period are assumed to earn interest from 

the inception of the policy period until the losses are paid 

out. Thus, the simulation works by first generating a random 

aggregate loss amount. Then a random payment pattern is 

generated for the aggregate loss amount. Finally, random 

interest rates are generated for present valuing the payouts. 

APPLICATION OF MODEL 

The first example presents results of the application 

of the simulation model to the determination of the capital 

requirements of a captive insuring automobile liability 

losses. 

An expected claim count of 200 was selected for this 

example. A negative binomial distribution with a variance 

equal to twice the mean was used. The parameters of this 
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distribution were not derived from actual data, but are 

typical of claim count distributions observed in practice. 

The payout pattern, as displayed in Exhibit I, has been 

derived from actual automobile liability data, as have the 

severity distribution parameters. These parameters are shown 

on the bottom of Exhibit V. A rate of 7.54% was used as the 

initial interest rate in the model. 

In this example, the capital requirements for the 

captive are determined from risk theoretic considerations. A 

criteria for selecting a capital requirement is that the 

probability that the company's actual loss Will exceed 

premiums collected plus investment income on the premiums 

plus the capital will be very small. Typically, this 

probability is selected to be 1% or 0.1%. If the difference 

between the 9gth percentile or the 99.gth percentile of the 

present value distribution and the expected present value is 

used as the capital requirement, this criteria is satisfied. 

Exhibits V and VI present the results of the simulation 

model for the first example. Exhibit V displays the selected 

percentiles of the undiscounted aggregate loss distribution 

and the distribution of the present value of losses. 

An average discount factor equal to the average of the 

present value distribution divided by the average 

undiscounted losses was determined. (This discount factor was 

tested for reasonableness by comparing it to a discount 

factor derived from the original payment pattern data and a 

7.54% rate of interest.) This discount factor was applied to 
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EXHIBIT V 

Aggregate Loss Sirmlation 

Aukmobile Lisbiiify 

Retention = f500.000 
S=E=:==E======D=:=i====== 

(1) (2) (3) 

Aggregate Present 

LOSS Value 

Percentile Amount LOSS 
==Ei===B=I=I==EED===================== 

5% S1,715,060 21.236.175 

10% f1,898,247 f1,418,835 

15% S2,028,626 $1.553.496 

20% t2,140,948 51,667,683 

25% 52,238,017 51,767,912 

30% $2,324,570 $1,855,017 

35% $2,410.222 51,937,643 

40% 52,500,99fl f2.022.185 

45% $2,578,671 t2,103,421 

50% 32,657.362 S2.178.678 

55% 12,742,001 528264.754 

60% t2.827,389 t2.347.769 

65% S2,925,761 52.435.732 

70% $3.027.118 S2,521,824 

75% t3,139,571 f2r629.860 

80% t3,275,600 $2.755.147 

85% $3,421,406 S2,895,081 

90% $3,623,862 53,081,293 

95% t3,913,000 t3,349,684 

99% s4.501.768 S3,897,830 

99.5% %,733.175 $4.123.510 

99.92 f5.313.894 f4,619,050 

A-.x! $2.719.628 52.223,8.58 

Sirmlation Parameters 

CLaim Count Mean: 

Claim Variancelnean: 

Lag t MU: 

Log t Sigma: 

Log t v: 

Number of trials 

200 

2 

7.9 

1.74 

12 

10,000 
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EXHIBIT VI 

Aggregate Loss Simulation 

AutcmbiLe Liability 

Retention = $500,000 
E=-i=Ei===l:=====B=l====== 

Discount Factor = 81.8% 

(I) (2) (3) (4) (5) 
Sinwlatian 

PV of Sirmlated Discount 

Aggregate PRSe"t P~lTtWt Factor 

LOSS Value Difference l(3)/ 
Percentile Amount LOSS 1(3)/(2)1-l Exh V (211 

===E=;_==:3=15rE=t============================================ 

5% S1,402,919 

10% $1,552,766 

15% tl,659,416 

20% $1,751,295 

25% $1.830.697 

30% 51,901,498 

35% tl,971,561 

40% 32,045,809 

45% 52,109.353 

50% f2,173,722 

55% t2,242,957 

60% f2,312,804 

65% $2.393.272 

70X t2.476.182 

75% 52,568,169 

80% L2,679,441 

85% 52,798,710 

90X 22,964,319 

95% $3.200.834 

99% 93.682,446 

99.5% S3.871.737 

99.9% S4.346.765 

81.236.175 

tl,418,835 

51,553,496 

Bl.667,683 

%1,767,912 

81,855,017 

81.937.643 

12,022,185 

62,103,421 

82,178,678 

f2,264,754 

$2.347.769 

B2.435.732 

82,521,824 

$2‘629,880 

82.755,147 

S2.895,081 

83,081,293 

93,349.684 

f3.097,030 

J4,123,510 

S4,619,050 

-11.9% 

-8.6% 

-6.4% 

-4.8% 

-3.4% 

-2.4% 

-1.7% 

-1.2% 

-0.3% 

0.2x 

1.0% 

1.5% 

1.8% 

1.8% 

2.4% 

2.8% 

3.4% 

3.9% 

4.7% 

5.8% 

6.5% 

6.3% 

Capital Requirmmt Difference 

72.1% 

74.7% 

76.6% 

77.9% 

79.0% 

79.8% 

80.4% 

80.9% 

81.6% 

82.0% 

82.6% 

83.0% 

83.3% 

83.3% 

83.8% 

84.1% 

84.6% 

85.0% 

85.6% 

86.6% 

87.1% 

86.9% 

@ Wile '61.458.578 $1.673.962 $215.384 

@ 99.9%ile $2,122.897 82,395,182 8272,284 
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the distribution of the undiscounted aggregate losses shown 

on Exhibit V. Thus, the percentiles of the aggregate loss 

distribution were present valued using a selected constant 

discount factor. In Exhibit VI these discounted losses are 

compared to the percentiles of the present value loss 

distribution. 

A conclusion which can be drawn based on Exhibit VI is 

that the percentiles of the present value loss distribution 

are not equal to the present value of the percentiles of the 

aggregate loss distribution. While these two distributions 

are approximately equal at intermediate percentiles, at the 

extremes of the distribution, there is a signficant 

difference between the values of the two distributions. The 

9gth percentile of the present value distribution is higher 

than the present value of the 9gth percentile of the 

aggregate loss distribution. The fifth percentile of the 

present value distribution is lower that the fifth percentile 

of the present valued loss distribution. 

The capital requirement derived from the model 

described in this paper is higher at both the 9gth percentile 

and the 99.gth percentile than the capital requirement 

derived by present valuing the 9gth and 99.gth percentiles of 

the aggregate loss distribution. 

Because automobile liability is a short tail line, 

payouts are more predictable and investment income earned on 

premiums is a smaller component of loss funding requirements 

than it is for a longer tail line. Thus, the difference in 
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capital requirements derived using the two different methods 

of evaluating risk is not as dramatic as it would be for a 

longer tail line. 

To illustrate the significant impact that timing and 

interest rate risk can have on a company's financial 

well-being, it is necessary to apply the method described in 

this paper to a line of business where payments are made more 

slowly. This is illustrated in the second example which 

simulates the experience of a captive insuring medical 

malpractice losses. 

A payout pattern curve was fit to industry medical 

malpractice data compiled by A.M. Best, The parameters of 

the frequency and the severity distribution were selected to 

be representative of this line of business. 

A model of the following form was fit to the medical 

malpractice payment data. 

1.2 

f(t) = emabtct 

The results of the simulation are presented in Exhibits 

VII and VIII. As suggested earlier, the difference between 

the present value of the aggregate loss distribution and the 

distribution of the present value of losses is much more 

significant for this example. 

The discount factor shown in Exhibit VIII was derived 

as described above for automobile liability. This average 
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EXHIBIT VII 

Aggregate Loss Sidation 

Medical l4alpractice 

Retention = $1 nirlion 
q =============i========== 

(1) (2) (3) 

Aggregate Present 

LOSS VAi.2 

PercentiLe Amount LOSS 

========r==r===ii====================== 

5% Sa,657,779 U&63,561 

10% $9.631.627 55.427.865 

15% t10.274.340 25.933.729 

20% s10,788,455 %,443,450 

25% 511,276,025 M,827,288 

30% 511,729,180 57,245,040 

35% 512.156.905 57.617.591 

40% $12,544,930 L7,983,861 

45% S12,aPb.lOO M,297,99O 

50% 513,276,955 '58,625,623 

55x 513,644,115 88,9a4,258 

60% 514,026,925 59.320,487 

65% 514,442.aoo 59,653,176 

10% S14.886,320 510,007,271 

75% t15,361,O65 f10,454,555 

80% t15,864,000 t10,910,135 

85% 516.449.845 S11,518,205 

90x t17.325.780 512,318,570 

95% tla,733,620 S13.535.480 

99% $21.264.935 t15,670,860 

99.5% t22,lOa.SOO 516.516.385 

99.9% 524.182,735 Sla,420,840 

Aw t13.414,055 Sa,771,733 

SimAation Par~mters 
__.___-_____________. 

Claim Count hkan: 100 

Claim Variance/Mean: 2 

Log t nu: 10.5 

Log t Sigma: 1.8 

Log t v: 10 
Nwixr of trials 10,000 
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EXHIBIT VIII 

Aggregate Loss Sinxrlation 

Medical Mdpractice 

Retention = $1 Million 
tSE=E=i======S==E===E---ii 

Discount Factor = 65.4% 

(1) (2) (3) (4) (5) 

Sidation 

P" of Simulated Discount 

Aggregate Prelent Percent Factor 

LOSS Vdlk? Difference l(3) / 

Percentile AmOunt LOSS t(3)/(2)1-1 EXh VII (2)1 
--_---__---- ==15==?=r==i=====iii====::========================------------ 

‘5% t5,661,504 S4,663,561 

10% 86,298,323 $5.427.865 

15% %,718,607 05.933.729 

20% 57,054,797 66.443.450 

25% 97,3X3,630 S6,027.288 

30% 57.669.957 t7.245.040 

35% 57,949,656 J7,617.591 

40% S8,203,393 t7,983.861 

45% 28.433.031 S8.297.990 

50% S&682,080 58.625.623 

55% S&922.174 S8.984.258 

60% t9,172,501 t9.320.487 

65% 29.444,450 t9,653.176 

70% W,734.470 510,007,271 

75% 510,044,923 S10.454.555 

80% $10,360.725 510.910.135 

85% 510.756.912 t11.518.205 

90% H1,329,692 912.318.570 

95% 512,250.308 513.535.480 

99% $13,905,5&J t15.670.860 

99.5% 514,457,213 616,516,385 

99.9% $15,814,907 518,420,860 

-17.6% 

-13.8% 

-11.7% 

-8.n 
-7.4% 

-5.5% 

-4.2% 

-2.7% 

-1.6% 

-0.7% 

0.7% 

1.6% 

2.2% 

2.8% 

4.1% 

5.3% 

7.1% 

8.n 
10.5% 

12.74; 

14.2% 

16.5% 

53.9% 

56.4% 

57.8% 

59.7% 

60.5% 

61.8% 

62.7% 

63.6% 

64.3% 

65.0% 

65.8% 

66.4% 

66.8% 

67.2% 

68.1% 

68.9% 

70.0% 

71.1% 

72.3% 

73.7% 

74.7% 

76.2% 

Capital Requiremnt Difference 

@ W%ile S5,133,855 S&,899.126 81.765.272 

@ 99.9%iLe $7.043.174 $9.649.108 82.605.933 
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discount factor of 65.4% can be compared to the discount 

factors shown in Exhibit VIII for the present value 

distribution. At the more extreme percentiles there are 

approximately ten percentage points difference in discount 

factors. There is also a $1,765,272 difference at the 9gth 

percentile and a $2,605,933 difference at the 99.gth 

percentile between the capital requirements derived using the 

distribution of present values, as opposed to a discounted 

aggregate loss distribution. Thus, by ignoring timing and 

interest rate risk, the amount of cushion against adverse 

experience that is provided by the required capital is 

considerably less than what it is believed to be. 

PRACTICAL CONSIDERATIONS WREN APPLYING THE MODEL: 
INTEREST RATE SELECTION 

Much of the actuarial literature on the selection of 

interest rates for use in discounting liabilities suggests 

that a risk free rate of return be used.23*24 The return on 

United States treasury bills and treasury bonds are 

frequently used as a proxy for the risk free rate of return. 

However, as the yields on United States treasury obligations 

vary with the maturity of the note or bond, a number of 

possible rates can be selected. 

The short term rates used in this analysis were part of 

a data base provided by the SPSS time series software 

package. These rates were used only as an illustration of a 

method of analysis, not because they are believed to be the 
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most appropriate rate for discounting losses. These rates 

may appear to be unnecessarily conservative. Because 

companies hold investments of varying maturities, they Can, 

on average, realize a return which exceeds the return on the 

one month treasury bills. 

In a recent analysis performed by Bryan and Linkez5, a 

number of different portfolios were tested for their ability 

to offset the effect of inflation on the liabilities of a 

personal injury settlement. The portfolios examined included 

one year, five year, ten year, fifteen year, and twenty year 

United States treasury obligations. Their research indicated 

that the one year treasury bill portfolio was better than the 

longer maturity portfolios at offsetting inflation and also 

was the lowest risk portfolio. Bryan and Linke concluded 

that "the least cost means of providing for a future payment 

stream of uncertain size is to construct a dedicated 

portfolio of very short term securities.8W26 

However, the conclusions reached by Bryan and Linke may 

not apply to large companies in the same manner as to 

individuals, since the companies can use sophisticated 

techniques such as asset liability matching to reduce their 

risk. Nevertheless, for a relatively small trust fund or 

captive, it may be prudent to use short term rates when 

discounting liabilities. 

An alternative to the use of the rate of return on 

investments with a single maturity is suggested by the work 

of Bradley." Bradley proposed that instead of discounting 
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assets and liabilities separately, the analyst should 

discount only the mismatch in cash flow between the assets 

and the liabilities. This implies that a portfolio of 

securities could be constructed with cash flows equal to the 

expected payout of the company's losses. The portfolio would 

have a present value equal to the purchase price of the bonds 

on the day the transaction is made. That is, the interest 

rate applied to each expected payment is the yield on zero 

coupon bonds maturing in the period when the payment is made. 

The expected losses, then, would be discounted at the same 

interest rates as the bonds which could, but need not 

actually be purchased to fund the losses. Actual payments, 

however will vary from their expected value and it is this 

variability which can be modeled in a simulation. 

To model the asset liability mismatch via simulation, 

an aggregate loss amount and a payout pattern are generated. 

The difference between each payment and the cash flow 

provided by a bond maturing in the period the payment is made 

is calculated. This difference, which is the asset liability 

mismatch for the period, is present valued using a random 

interest rate. The present value of the asset liability 

mismatch is added to the present value of the bond portfolio 

to determine the present value of losses. 

PRACTICAL CONSIDERATIONS WHEN APPLYING THE MODEL: 
SELECTION OF PAYMENT PATTERN MODEL 

A variety of curves can be used to model payout pattern 
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data. Kolb2a describes over twenty simple curves, a number 

of which have been successfully applied to model development 

data. 

A problem which occurs when regressions are used to 

model payment patterns is that the payment pattern derived 

from the model may not sum to one. Although the simulation 

program can be constructed to force the sum of all payout 

percentages to equal to lOO%, the payments derived from the 

fitted model may be significantly faster or slower than the 

actual payments the curve was fit to. This can happen even 

for a curve which is a "goodB' fit, as determined by the IX2 

and F statistics. 

Statistics such as average payment lag, average time 

for 100% of losses to pay out and average discount factor 

should be tabulated by the simulation. These statistics 

should be substantially similar to those derived from the 

data the regression was fit to, otherwise another model 

should be used. 

When using a curve of the following form, 

P 
f (t) = eeabtct 

the speed of payments can be adjusted by changing the 

exponent p. Increasing p will cause the model's payments to 

be made slower and decreasing p will cause the model's 

payments to be made faster. 
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CONCLUSION 

In this paper, a model has been presented which can be 

used to incorporate timing and investment risk into the 

determination of solvency or risk margins. It has been 

shown that, when determining risk margins, discount factors 

derived from deterministic payout patterns and constant 

interest rates are too low relative to discount factors 

derived from a random distribution of present values. 

The model described in this paper has other 

applications, such as the determination of risk margins for 

reserves and the estimation of the present value cost of 

aggregate excess reinsurance. In addition, the timing, 

interest rate, and aggregate loss distributions could be 

incorporated into a more complete stochastic model of 

insurance company operations. 
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APPENDIX I: NEGATIVE BINOMIAL DISTRIBUTION 

The probability density function for the negative 

binomial is: 

P(X = x) = (x+:-l]pr(l-p,x x = o,l,...,r 

The mean and variance of the negative binomial 

distribution are as follows: 

= r(l-PI u - 
P 

42 = r(l-p) 

P2 

A straightforward method of estimating the parameters 

of a negative binomial is the method of moments. The 

parameter p is equal to the mean of a number of years of 

claims adjusted to a common exposure level divided by the 

variance of claims. Once p has been determined r can be 

solved for by substituting p into one of the two moment 

formulas above. 

When the parameter r of the negative binomial 

distribution is less than 40, claim counts can be simulated 

using an exact formula: 

P(X = 0) = pr 

For X > 0, P(X = x) = x+r-1 
X 

(1 - p) P(X = x-l) 

For large values of r, a Cornish Fisher expansion can be used 

to approximate a negative binomial random variable. For this 
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approximation, first simulate a standard normal variable Z. 

Then: 

k k k2 
Y = z + $ (Z2- 1) + 2 (Z3- 32) - 6 (2Z3- 52) 

2+P 
k = Coefficient of skewness = 

3 

JJ-G 

k4 = Coefficient of kurtosis = 3 + 

A negative binomial random variable X is obtained from 

/.l + YO. Where 1-1 and F are the mean and standard deviation of 

the negative binomial distribution. 
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APPENDIX II: THE CORNISH FISHER EXPANSION 

A number of methods have been developed by 

statisticians which attempt to approximate the percentiles of 

a probability distribution with percentiles of another 

distribution. A purpose for using such a procedure is that 

the distribution used for the approximation is more 

convenient computationally than the original distribution. 

One of the most common approximations is the normal 

approximation. Because the sum of a large number of 

independently and identically distributed random variables is 

asymptotically normal, the normal distribution is frequently 

used to approximate variables which are the sums of nonnormal 

random variables. However the distribution being 

approximated is frequently more skewed and has a thicker tail 

than its normal distribution approximation would indicate. 

Cornish and Fisher developed an approximation which 

uses the normal distribution but has the same moments as the 

distribution being approximated. The details of their method 

of derivation are provided by Beard, Pentikginen, and 

Pesonen, and Johnson and Kotz.2g*30 The first twelve terms 

of the approximation they derived are: 

Ya = Za + $ (Z; - Ilk3 

1 += I z;- 3Za]kp - &[ZZ; - 5Zejk; 

6-Z; + 3 1 ka - & Z; - 5Z; + 2 1 k3k4 
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1 k: 

k6 

1 -- 384 32; - 242; + 29Za 1 k: 
+ & [w; - 103Z; + 107Z,)k:kl 

1 -- 
7776 2522; - 16882: + 1511za k: 1 

+ . . . 

Za = the cith percentile of the standard normal distribution 

k = the ith moment of the distribution of Y I 
Xa- u 

Ya =- the standardized variable of the distribution 0 approximated 

xa = the ath percentile of the distribution approximated 

Venter3' notes that since this series is an alternating 

and sometimes nonconvergent series, adding more terms may not 

improve its accuracy. The simulation described in the paper 

used the first four terms of the series. 

In insurance, the first two terms of the series (also 

known as the normal power approximation) are frequently used 

to model aggregate loss distributions. The approximation has 

been found to be accurate for moderately skewed 

distributions. The accuracy of the approximation which 

incorporates the first four moments of the original 
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distribution (and first four terms of the series) has not 

been thoroughly studied. 
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APPENLUX III: COMPUTATION OF THE VARIANCE OF THE FORECAST FOR 
A TWO VARIABLE REGRESSION 

The purpose of this appendix is to provide details of 

the calculation of the variance of the forecast for actuaries 

who program in a language that does not have matrix 

operations. 

Let Y be the dependent variable: X be an array of 

observations for the first independent variable; Z be the 

observations of the second independent variable: Xi, Zt are 

actual values of the independent variables for one forecast 

period; It is the forecast for Y at time t. 

i PI- y 
MSE = l=l N-k-l 

Then G2 = Estimate of the variance of the forecast 

I 

= 
[ l xt 

N 

zt Ex, 1 1=1 
b 

-1=1 1 

N 

c xlzI i=l 

; z1 -l 1 
I=1 

5 XIZI xt 
1=1 

; z: zt 
1=1 / 

*MSE 

Where: 
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INV = B 

C 

INV 
=- 

DET 

C 

E 

F 1 
A = 

D = N;:Z;- 
i=l 

E = ; Xi ; Zi- N ;: XiZi 
I=1 ‘=l I=1 

2 

F = N;X;- 
1=1 

DET = determinant of the matrix 
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-N 

An approx i 

2 

mation to G2 of 1+$ 
1 

* MSE was suggested in 

the paper. This approximation may not be very accurate if 

Ixt- X[ I or IZ,-- Z( is large. However, for the regression 

described in the paper, this tends to occur at time periods 

when the payout percentage is very small, and therefore the 

overall effect on simulation results is frequently not 

substantial. 
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APPENDIX IV: SIMULATION OF NORMAL, LOGNORMAL, AND T 
DISTRIBUTION RANDOM VARIABLES 

One of the most commonly used procedures for simulating 

losses from a normal distribution is the Box Muller 

transformation, which is described as follows. 

Let RNDI and RND2 equal two random numbers from a 

uniform distribution on the interval between zero and one. 

Then Z1 = J-2 In (RND1) cos (2nRNDZ) 

and Z2 = -2 In (RND1) sin (2nRND2) 

will be independent variables from a standard normal 

distribution. The quantity X = fi + ZIcr will be distributed 

normal(p,o') and e cc+zlo will have a lognormal distribution. 

A variable from a t distribution can be obtained by using Z1 

or Z2 in the following approximation32: 

t = z+ " 1 & ZJZI + 1) + A- 
96v2 

Z1(5Z: + 162; + 3) 

1 + - Z1(3ZZ + 19z; + 172; - 15) 
384~~ 

Where t is a random variable from a t distribution with v " 

degrees of freedom. 

This approximation is typically accurate to three 

decimal places except when the degrees of freedom are less 

than ten. 
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APPENDIX V: THE LOG STUDENT'S T DISTRIBUTION 

The density function of the log Student's t 

distribution is as follows: 

I In(x) - II ' -7j-- 

I I 

-(v+1) 

f(x) = ---p$qq IL + [ t 
xzo 

Where x denotes a severity random variable and S is the beta 

function. 

This distribution, which is based upon the assumption 

that the standardized logarithms of losses follow a t 

distribution, may be appropriate for severities which are 

believed to come from a mixture of lognormal distributions. 

Thus the conditional distribution of data is lognormal, with 

parameters 1-1 and r. The parameter T: is itself a random 

variable which has an inverted gamma distribution 33 : 

v/2 

2 f(s) = ___ VU2 

t 1 
4r2/2T2 

T(v/2) 
2 

z-(v+1) 
e 

Then the unconditional distribution of the logarithms of the 

losses is the Student's t distribution with mean fir variance 

2 
c'r and v degrees of freedom. The parameters of this 

distribution can be fit from the mean, variance, and the 

coefficient of kurtosis of the logged data. 
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N 

C ln(x,) 

r; = I=1 

N 

2 

ln(xi) - ii 
1 

N -1 

k, = coefficient of kurtosis 

4 ln(xi) - G 1 = 
(N - 1) o4 

For the t distribution, the coefficient of kurtosis, kq, is 

as follows. 

kd = 6 3+- v-4 ' v>4 

Therefore, 

The log Student's t distribution is appropriate if the 

kurtosis of the empirical logged severities exceeds the 

kurtosis for the normal distribution of three. This 

distribution is more dispersed than its lognormal analog. 
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