TITLE: PRICING EXCESS-OF-LOSS CASUALTY WORKING COVER

 REINSURANCE TREATIES
AUTHORS: Mr. Gary Patrik

Mr. Patrik is an Actuarial Director of Prudential Reinsurance Company. He received his FCAS in 1978, and earned an M.S. degree from Northwestern University as well as an M. S. degree from the Graduate School of Business Administration of New York University. Gary is currently, on the CAS Comittee on Theory of Risk, the CAS Education and Examination Committee and the AERF Loss Distriburion Textbook Selection Commitree.

Mr. Russell John
Mr. John is a Senior Actuarial Associate with Prudential Reinsurance Company. He receives his ACAS in May 1980 and holds a PhD degree in Mathemarics from Rutgers University.

REVIEWER: Mr. Jerry Miccolis

Mr. Miccolis is Vice President for Tillinghast, Nelson and Warren Inc. He has a B. S. degree in Mathematics from Drexel University in Philadelphia, and received his FCAS in 1979. Jerry is also a member of the American Acadeny of Actuaries and serves the CAS on the Committee on Theory of Risk as well as the Examination Committee.

I. INTRODUCTION

Abstract

An excess-of-loss reinsurance treaty provides the primary insurance company (cedant) wth reinsurance protection covering a certain layer of loss for a specified category of individual (direct) insurance policies. Hence, for each loss event (occurrence) coming within the terms of the treaty, the reinsurer reimburses the cedant for the dollars of loss in excess of a certain Eixed retention up to some maximum amount of liability per occurrence. For example, if the cedant's retention is $\$ 100,000$ and the reinsurer's limit of liability is $\$ 400,000$, then the reInsurer covers losses in the layer $\$ 100,000$ up to $\$ 500,000$; in ceinsurance terminology, this is the layer $\$ 400,000$ excess of $\$ 100,000$. The reimbursement generally takes place ar the time that the cedant reimburses the injured party. Allocated loss adjustment expenses are usually shared pro rata according to the loss shares, although in a few rrearies they may be included in with the loss amounts before the retention and reinsurance limit are applied.

In this paper, casualty coverage will mean either third party liability coverage or worker's compensation coverage, although on certain treaties it may be broader. For example, for automobile insurance, first party coverage may be included within the terms of the excess treaty along with the third party coverage;

in any case, the total loss covered per occurrence is added together before application of the retention and the reinsurer's limit.

A working cover is a treaty on which the reinsurer expects to pav some losses; reinsurance underwriters say that the cover is substantially exposed by the primary insurance policy limits. Typically, layers below $\$ 1,000,000$ per occurrence for casualty coverage are considered to be working covers. For a more complete discussion of this coverage, see Reinarz (1969), The Insurance Institute of London (1976) or Barile (1978).

An excess-of-loss casualty working cover is typically a large, risky contract. The annual reinsurance premium is usually six figures and quite often is millions of dollars. Although losses are expected, the number of losses to the treaty and their sizes are highly uncertain. Each cedant's Insurance portfollo is unique, so there are no simple standard reinsurance rates. Industrywide average increased limits factors might be used as a starting point for pricing; however, competition and uncertainty force the reinsurer to be more sophisticated in his analysis of each proposal. A further complication is that the reinsurer usually has much less information to work with than does his primary insurance colleague. The reinsurer is provided with often vague and incomplete estimates of past and future exposure, of underlying coverage, of aggregate ground-up direct losses, and with some details about the very few
historical large losses which are known. The final price will be reached by compericive bidding and by negotlation over particular contract terms. To compete, the reinsurer must work within severe rime and manpower constraints to estimate a price which he believes to be adequate and which he can justify to the cedant.

Pricing excess-of-loss casualty working covers with any degree of accuracy is a complex and difficult underwriting and actuariai problem. We believe that the general theoretical pricing problem will remain insolvable: there will always be more questions than there are answers. However, in the spirit of a "Call for Papers", we offer a progress report on our work to date, knowing that we have only the beginnings of a truly satisfying practical solution. We will illustrate the actuarial problem by pricing two relatively simple and representarive trearies. The approach is mathematical/actuarial; underwriting considerations are only briefly and incompletely mentioned, although these are very important. Some general solution criteria are presented and some tentative partial solutions are discussed. Although the point of view is that of a reinsurance actuary, we believe that the general approach may be of interest to other actuaries and that some of the paricular techniques will be immediately useful to our primary fasurance colleagues.

Any complicated procedure such as the one presented in this paper develops over time from the work and ideas of many people.

We wish to acknowledge the help of a few who have contributed to this development: Ralph Cellars, Howard Friedman, Charles Hachemeister, Mark Kleiman, Stephen Orlich, James Stanard and Edward Weissner.

II . TWO TREATY PROPOSALS

Reinsurers often receive proposals for which historical data are virtually non-existent. Such is the case when a newly formed or an about-to-be-formed primary company seeks reinsurance coverage or when an existing company writes a new insurance line or a new tercitory. There may be some vaguely analogous historical data, general industry information and some underwriting guesses about next year's primary exposure, coverage, rates and gross premiun. An example is that of a new doctors' mutual offering professional liability coverage to the members of the medical society in state A.

Example A: A Doctors' Mutual Insurance Company
Proposal

1. reinsured layer: $\$ 750,000$ excess of $\$ 250,000$
per occurrence; no annual aggregate re-
insurance limit; allocated loss adjustment
expense shared pro rata according to loss share.
2. underlying coverage: professional liability
claimsmade coverage for limits of $\$ 1,000,000 / \$ 3,000,000$ per claimant/
annual aggregate per doctor using the standard ISO policy form.
3. coverage period: beginning July 1,1980 and continuous until terminated.
4. reinsurance rate: the offer $1 s 25 \%$ of the gross direct earned premium with a 20% ceding commission and brokerage fee (thus, the net rate is 20%).

Informacion
5. exposure estimate of 500 doctors; no class breakdown.
6. class definicions - identical with ISO classes.
7. List of claims-made rates to be charged by doctor class for $\$ 1 M / \$ 3 M$ limits.
8. summary of calendar/accident year 1974-1978
aggregate known losses and earned premiums
for state A doctors covered by the BIG
Insurance Company.
9. details about the five known losses paid or presently reserved for more than $\$ 100,000$

In state A for accident years 1974-1978.
10. a booklet describing the organization and financial structure of the doctors' mutual, together with biographies of the principal managers, claims-persons and attorneys and a statement of a get-tough attitude toward defending professional liability claims.
11. other miscellaneous letters and memos stating why this is an especially attractive deal for the reinsurer and the doctors.

It should be apparent that most of this information is only indirectly useful for pricing the reinsurance coverage. The offered rate must be analyzed using analogous industry information. There is great uncertainty regarding the potential loss situation.

At the opposite extreme is the treaty proposal for which there is a great wealth of historical information. This is sometimes the case when a treaty has been in place for many years with only minor changes, such as increasing the primary retention over time to parallel the inflation in individual loss amounts. If a reinsurer has been on the treaty for a few years, his underwriting and claims-persons have gotten to know the primary company people and have audited the treaty accounts. Thus, there is less uncertainty regarding the potential loss situation. A much simplified example of this situation is considered (only one line of business).

Example B: P\&C Insurance Company

Proposal

1. reinsured layer: $\$ 400,000$ excess of $\$ 100,000$
per occorrence; no annual aggregate reinsurance limit; allocated loss adjustment expense shared pro rata according to loss share.
2. underlying coverage: general liability premises/
operations coverage, mainly in state B, written at various limits for bodily inJury and property damage liability.
3. coverage period: beginning January 1, 1980
and continuous until terminated.
4. reinsurance rate: the net rate is to be negotlated as a percentage of gross direct earaed premium.

Information
5. estimate of 1980 gross direct earned premium.
6. estimate of 1980 premium by policy limit.
7. summary of calendar faccident year 1969-1978
aggregate known losses as of 6/30/79 and gross
earned premiums fo: PGC's general liability coverage insurance portfollo.
8. list of rate changes and effective dates for this line of business for 1969 chrough present and information that no change is contemplated through 1980.
9. detailed $11 s t i n g s$ of all 358 general liability losses occurring since 1969 which were valued greater than $\$ 25,000$ as of $6 / 30 / 75,6 / 30 / 76, \ldots$. or $6 / 30 / 79$. At each evaluation, the information listed for each loss includes the following:
a) Identification number
b) accident year (occurience)
c) amount of loss paid
d) amount of loss outstanding
e) policy litits

The evaluation of these two treaty proposals will illustrate the pricing procedure. Note that for example A we are to evaluate an offered rate, while for example B we are to propose a net rate and negotiate.

Before proceeding with the detalls, we believe it necessary to discuss some general pricing philosophy.

III. PRICING PHILOSOPHY

```
An insurance contract may be thought of as a financial stochastic process - a random pattern of pav-ins and payouts over time. The financial repercussions of a casualty excess-of-loss treaty may continue for 20 years or more. Thus, a reinsurer must consider the many aspects of this financial process to be able to estimate prices which are reasonably consistent with broad corporate policy. An actuarial goal is to combine all the contract financial parameters and all the corporate (underwriting) decision-making criteria into one comprehensive premium calculation principle or function a black box which for each particular treaty produces the final premium or, more realistically, a negotiable premium range. Such a black box will not be purely mathematical, but will require substantial subjective input.
Present actuarial knowledge is short of this uropian goal. However, actuaries and underwriters have identified certain major contract parameters and decision-making criteria which should be considered when evaluating a particular contract. See Prate (1964), Reinarz (1969), Bithlmann (1970), Gerber (1974) and Freifelder (1976) among others for discussions of premium calculation principles.
```

We belleve that a reinsurer should consider the following Items for each treaty either explicitly or implicitiy:

1. The potential distribution of the aggregate loss to be ultimately paid by the reinsurer. Although the whole (past and future) coverage period should be considered, most important is the potencial distribution of the aggregate loss arising from the next coverage year. The potential distribution of the aggregate loss is based upon the reinsurer's subjertive evaluation of the situation and is difficult to specify in detail. Consequently. only certain major characteristics are estimated, such as the expected value, the variance or standard deviation, and certain percentiles, such as the 90 th , 95th and 99th.
2. The potential distriburion of the cash flow. The overall pattern over time is of interest, but more easily understood is the present value of the cash flow generated by the next coverage year. This random variable is distributed according to various price assumptions and the reinsurer's subjective assessment of the potential distributions of aggregate loss, payout patterns and investment rates-of-return. Since the loss payout varies by line of business, consideration of the potential distribution of this present value for each treaty may provide a more reasonable basis of comparison than does item (1).
3. Various corporate parameters and decision-making criteria. These include the following:
a) the potential distributions of aggregate loss and /or present value of cash flow estimated on the rest of the reinsurer's contract portfolio.
```
b) the reinsurer's financial surplus, both the
current evaluation and the potential distribution
of future values due to reserve changes and
losses arising from the rest of the contract
portfolio.
c) the reinsurer's financial assets and investment
opportunities.
d) various corporate goals, e.g., "growth and
profits with honor" (David J. Grady, address
at the Yarch 7, 1979 Casualty Actuaries of
New York meeting).
e) the reinsurer's attitude coward the trade-off
of risk versus rate-of-return on each contract
and on his whole reinsurance portfolio.
Items (a) - (e) are meant to indicate some of the considerations which might define a utility function for corporate decisionmaking. For any typical treaty evaluation, it may be possible to localize our attention and only reflect these global considerations indirectly. However, in the long run they may not be ignored.
Other more ambiguous items which a reinsurer might consider Include:
4. The surplus necessary to "support" the treaty from the
reinsurer's point-of-view. The seller of any insurance or re-
insurance contract exposes part of his surplus or net worth to
\(-410-\)
the risk that the loss will exceed the pure premium. Although it seens reasonable that some anount of surplus might be allocated to support any contract, there is yet no satisfactory theoretical functional definition. Note that this "supporting surplus' per treaty may not sum to the reinsurer's total surplus; he may be interested in surplus allocation on a relative basis: Does rreaty A need more "supporting surplus" than treaty B?
5. The potential distribution of rate-of-return on the "supporting surplus" for this treaty relative to the rates-ofreturn on other treaties in the reinsurer's contracs portfolio.

It should be apparent that neither we nor anyone else has a premium calculation principle which explicitly considers all these items. They are listed here to illustrate the complexity of the problem of accurately pricing refnsurance treaties. (Indeed, we would argue that it is almost as difficult to price any other large insurance contract or group of contracts.) We belfeve that thoughtiul reinsurance underwriters do evaluate treaty proposals along these or similar lines. To model this process reasonably well is difficult but not impossible, since there are many good theoretical models and estimation techniques avallable to the modern actuary.

Of all the items, item (1), the potential distribution of aggregate loss to the reinsurer, is the least ambiguous and the most important. Thus, the remainder of this paper concentrates

\begin{abstract}
upon the estimation of this distribution for excess-of-loss casualty working covers. We will describe a reasonable mathematical model for this distribucion and an estimation procedure for parameterizing the model.
\end{abstract}
IV. AN AGGREGATE LOSS MODEL

This section describes a mathematical model for the aggregate losses to be pald out on a particular insurance contract. The general insurance loss model wll then be specialized for an excess-of-loss reinsurance creaty. The model is based upon the concepts of collective risk theory developed by Bühlmann and others: for example, see Bühlmann (1969) and Beard, Pentikäinen and Pesonen (1977). The model is designed to allow the observer to account for and quantify his uncertainty regarding the "true" distribution of aggregare loss for a particular insurance contract (s). This uncertainty arises from many sources; among them are:
1. Any particular probability model is inexact.
2. Any parameters estimated from sample data are random; that is, subject to sampling errors.
3. The historical loss data may not be at final settlement values, but are themselves random estimates.
4. The proper adfustments for inflation over time are unknown.
5. The underlying insured population for the coverage period to be evaluated is different from the past population.
6. There are often data errors and analytical blunders.

The model will be developed from a subjective Bayesian viewpoint; the particularization of the model is determined from the viewpoint of an observer at a particular time with particular informarion. An honest competent reinsurer and an honest competent cedant would most likely have different final parameterized models for any given treaty. For a further discussion of subjective or "personal" probabllity, see Savage (1954) and Raiffa (1968).

The collective risk model describing the distribution of aggregate loss consists of many possible particular probability models, each of which is given a "weight" based upon its subjective likelihood. In this way, the cotal uncertainty regarding the particular outcome which will be realized is broken down into two pieces: 1) the mcertainty regarding the "best" particular model, sometimes called the parameter risk, and 2) the uncertainty regarding the actual loss value to be realized even when the particular probability model is known, sometimes called process risk. See Freifelder (1976) or Miccolis (1977) for further discussions of these actuarial concepts.
```

We will use the term "parameter" in a broader sense than is customary. A "parameter" will consist of a complete specification of a particular probability model such as the lognormal, or group of models, together with their usual parameters. Our uncertainty as to which parameter is "best" will be defined by a subjective probability distribution on the set of possible parameters.
It is easier to start with the case where the parameter is known (the particular model is specified). Let the random variable L denote the aggregate loss to be paid out on a given insurance cor :ace for a particular coverage year. We begin by assuming that the total coverage (exposure) can be split into independent homogeneous coverage groups in the following manner. Suppose that L can be wtitcen as:

$$
\begin{equation*}
L=I_{1}+L_{2}+\ldots+L_{k} \tag{4.1}
\end{equation*}
$$

where $L_{i}=$ random variable denoting the aggregate loss for group $i, i=1,2, \ldots ., k$.
Further, suppose that each L_{1} can be written as:

$$
\begin{equation*}
L_{i}=X_{i 1}+X_{i 2}+\ldots+X_{i N_{1}} \tag{4.2}
\end{equation*}
$$

```
```

where N_{1} - random variable denoting the number of losses (occurrences) for group 1.
$X_{1 j}$ - random variable denoting the gize (loss amount) of the $f^{\text {th }}$ loss for group 1 .

```

Groupe may be defined by any grouping of insureds or coverage whtch our power of analybis can reasonably and credibly geparste. Examples of groups could be:
1. distinct groups of classes of insureds or coverages.
2. Similar insureds grouped by distinct policy limit.
3. the overall coverage time period split into sub-periods. For example \(A\), our groups will be defined by year of coverage and ISO doctor class (the older seven class scheme). For example B, our groups will be defined by combined bodily injury and property damage policy limit.

Let \(P(x \mid \theta)=P r o b[L \leq x \mid \theta]\) be a particular c.d.f. (cumulative distribution function) for \(L\) with known parameter \(\theta\). Think of \(\theta\) as being a comprehensive parameter (vector) containing all the parameters necessary to specify the particular c.d.f.'s for the \(L_{f}{ }^{\prime} s\), \(\mathrm{N}_{1}\) 's and \(\mathrm{X}_{1 \mathrm{f}}\) 's. Now make the following assumptions:

Assumption 1: Given \(\theta\), the \(L_{i}\) 's are stochastically independent.
Asgumption 2: Given \(\theta\), the \(X_{11}\) 's are stochastically independent of the \(N_{i}{ }^{\prime} s\).
Asgumption 3: Given \(\theta\), for fixed 1 , the \(X_{1 j}\) 's are stochastically independent and identically distributed.

Thase assumptions split the total coverage into independent homogeneous coverage groups.

The model with known parameter \(\theta\) has very nice properties. The firgt property is that \(F(x \mid \theta)\) is the convolution of the c.d.f.'s for individual groups:
\[
\begin{align*}
F(x \mid \theta) & =F_{1}(x \mid \theta) \star F_{2}(x \mid \theta) \star \cdots \star F_{k}(x \mid \theta)  \tag{4.3}\\
\text { where } F_{1}(x \mid \theta) & =\operatorname{Prob}\left[L_{1} \leq x \mid \theta\right] \quad, \quad \text { for } 1=1,2, \ldots, k .
\end{align*}
\]

From this it follows that the cumulants of \(L\) given \(\theta\) are straightforward sums of the cumulants of the \(L_{i}\) 's given \(e\) :
\[
\begin{equation*}
K_{m}(L \mid e)=\sum_{1} K_{m}\left(L_{i} \mid e\right) \tag{4.4}
\end{equation*}
\]
where \(K_{m}(L \mid \epsilon)\) is the \(m^{t h}\) derivative of the logarithm of the moment generating function of \(L\) evaluated at 0 (if it exists).

Likewise for the \(K_{m}\left(L_{1} \mid \theta\right)\) 's.

See Rendall and Stuart (1966), pp. 157ff, for a discussion of cumu-
lants. In particular, the first three cumulants add:
(4.5)
\[
\begin{aligned}
K_{1}(L \mid \theta) & =E[I \mid \theta]=\sum_{i} E\left[L_{1} \mid \theta\right] \\
K_{2}(L \mid \theta) & =\operatorname{Var}[L \mid \theta] \\
K_{3}(L \mid \theta) & =\sum_{1} \operatorname{Var}\left[I_{1} \mid \theta\right] \\
\text { where } \mu_{m}(L \mid \theta) & =\sum_{1} \mu_{3}\left(L_{1} \mid \theta\right) \\
& \left.=\mathbb{L}[L-\mathbb{E}[L \mid \theta])^{m} \mid \theta\right]
\end{aligned}
\]

Because of assumptions 2 and 3. each \(F_{1}(x \mid \theta)\) can be written in terms of the c.d.f.'g of \(N_{1}\) and \(X_{1}\), where \(X_{1}\) is the common logs amounc random variable for group 1 :
\[
\begin{equation*}
F_{i}(x \mid \theta)=\sum_{n} \operatorname{Prob}\left[N_{1}=n \mid \theta\right] \cdot G_{1}^{*}(x \mid \theta) \tag{4.6}
\end{equation*}
\]
where \(G_{1}(x \mid \theta)=\operatorname{Prob}\left[X_{1} \leq x \mid \theta\right] \quad\) for \(1=1,2, \ldots k\).

A consequence of ( 4.6 ) is that the firgt three moments of \(L_{1}\) given e may be written:
(4.7)
\[
\begin{aligned}
& E\left[L_{1} \mid \theta\right]=E\left[N_{1} \mid \theta\right] \cdot E\left[X_{1} \mid \theta\right] \\
& \operatorname{Var}\left[L_{1} \mid \theta\right]=E\left[N_{1} \mid \theta\right] \cdot \operatorname{Var}\left[X_{1} \mid \theta\right]+\operatorname{Var}\left[N_{1} \mid \theta\right] \cdot E\left[X_{1} \mid \theta\right]^{2} \\
& \mu_{3}\left(L_{1} \mid \theta\right)= \\
&
\end{aligned}
\]

The scheme will be to develop parameterized models for the N's and \(X_{1}{ }^{\prime}\), calculate their first three moments given \(\theta\), and then use (4.7) to calculate the firgt chree moments of the \(L_{1}\) 's and use (4.5) to calculate the firgt three moments of \(L\) given \(\theta\).

The collective risk model 18 obtained by deleting the restriction that \(\theta\) is known. Instead, assume that the set \(a\) of possible parameters is lnown and that we can specify a subjective probability dis-
tribution \(U(\theta)\) on \(\cap\) which gives the aubjective likelihood of each subset of n . Buihlmann (1970) calls \(\mathrm{U}(\theta)\) a structure function. For simplicity, assume that \(\Omega\) is finfte so that \(U(\theta)\) is a discrete probability:

Assumption 4: \(\Omega\) is the finite set of possible parameters and \(U(\theta)\) is the likelthood of the parameter \(\theta\).
\(\Omega\) and \(U(\theta)\) specify the observer's uncertainty regarding the "best" parameter.

With \(\Omega\) and \(U(\theta)\) specified, the unconditional c.d.f. \(F(x)\) of \(L\) is the weighted sum of the conditional c.d.f.'s \(F(x \mid \theta)\) :
\[
\begin{equation*}
F(x)=\sum_{E} F(x \mid \theta) \cdot U(\theta) \tag{4.8}
\end{equation*}
\]

Likewise, for each \(F_{i}(x)\), the c.d.f. of \(L_{i}\).
A consequence of (4.8) is (Bühlmann (1970), p. 66):

for \(\mathrm{m}=0,1,2, \ldots\)

Likewtse, for each \(L_{i}\).
With \(\theta\) unknown, assumptions (1) - (3) may no longer hold, for the uncertainty regarding \(\theta\) may aimultaneously affect the model at all levela. For example, the c.d.f.'s of the \(L_{1}\) 's are usually subfectively derfived frow historical data altered by loss development. and inflationary trend asoumptions. The assumptions made simultane-
oubly about each \(L_{1}\) and \(L_{j}\) are usualis not independent, i.e., the particular parameters for the c.d.f. of \(L_{1}\) are correlated with the particular parameters for the c.d.f. of \(L_{j}\). Symbolically:


When \(\theta\) is unknown, equations (4.3) - (4.7) usually no longer hold. In perticular, equation (4.5) now holds only for the first moment:
\[
\begin{align*}
& E[L]=\sum_{i} E\left[L_{i}\right] \\
& K_{D}(L) \neq \sum_{i} K_{m}\left(L_{1}\right) \quad \text { for } m \notin 1 \\
& E\left[L^{m}\right] \neq \sum_{1} E\left[L_{i}^{W}\right] \quad \text { for } \mathbb{m} \neq 1  \tag{4.11}\\
& \mu_{m}(L) \notin \sum_{i} \mu_{m}\left(L_{1}\right) \quad \text { for } m \neq 1
\end{align*}
\]

Thus, the moments of \(I\) must now be evaluated directly from (4.9) by using (4.5) and (4.7); likewise for each \(L_{1}\). For example, the eecond woment of 1 is now written:
\[
\begin{align*}
E\left[L^{2}\right] & =\sum_{\theta} E\left[L^{2} \mid \theta\right] \cdot U(\theta) \\
& =\sum_{\theta}\left(\operatorname{Var}[L \mid \theta]+E[L \mid \theta]^{2}\right\} \cdot U(\theta)  \tag{4.12}\\
& =\sum_{\theta}\left\{\left(\sum_{1} \operatorname{Var}\left[L_{i} \mid \theta\right]\right)+\left(\sum_{i} E\left[L_{i} \mid \theta\right]\right)^{2}\right\} \cdot U(\theta)
\end{align*}
\]

Continue the expansion using formula (4.7).
Likewise for each \(L_{i}\).

Thia general collective risk model may be specialized to the case of an excess-of-loss reinsurance treaty. Suppose that the treaty covers group \(i\) losses in the layer from \(r_{i}\) (retention) up to \(b_{i}\). The general model may be specialized in at least two different ways. The first interpretation views \(X_{i}\) as the excess portion of each loss. We drop the subscript 1 in the following:

Model 1 Notation:
\(\mathrm{N}=\) randow variable denoting total number of nonzero losses ground-up.
\(X\) = random variable danoting that part between r and \(b\) of each ground-up loss.
\(S\) - random variable denoting the ground-up loss amount.

Given that a loss has occurred, \(X\) and \(S\) are related by:
\[
X= \begin{cases}0 & \text { if } \quad S \leq r  \tag{4.13}\\ s-r & \text { if } r<s<b \\ b-r & \text { if } b \leq s\end{cases}
\]

Thus, the c.d.f.'s of \(S\) and \(X\) given \(\theta\) are related by:
\[
G_{X}(x \mid \theta)=\left\{\begin{array}{llc}
G_{S}(r \mid \theta) & \text { if } & x \leq 0  \tag{4.14}\\
G_{S}(x+r \mid \theta) & \text { if } & 0<x<b-r \\
1 & \text { if } & b-r \leq x
\end{array}\right.
\]

If N is to denote the number of excess losses, then use the second specialization:

\section*{Model 2 Notation:}

N - random variable denoting the number of excess
loss occurrences.
\(X\) - random variable denoting the size of an excess loss, given that an excess loss has occurred.

EN - random variable denoting the total number of non-
zero ground-up losses, called "base number".
\(S\) - random variable denoting the ground-up loas
amount.
Hith known parameter \(\theta\), the c.d.f.' f of N and \(B N\) are related
by:
\[
\begin{align*}
\operatorname{Prob}[N a n \mid \theta]= & \sum_{m \geq n}\left(\operatorname{Prob}[B N-n \mid \theta] \cdot\binom{m}{a} \times\right.  \tag{4.15}\\
& \left.\left(1-G_{S}(r \mid \theta)\right)^{n} \cdot G_{S}(r \mid \theta)^{m-n}\right)
\end{align*}
\]
where \(G_{g}(x \mid \theta)-\operatorname{Prob}[S \leq r \mid \theta]\)
In particular, it is easy to show that:
(4.16)
\[
E[N \mid \theta]-E[B N \mid \theta] \cdot\left(1-C_{S}(r \mid \theta)\right)
\]

Likevise, the c.d.f.'s of \(X\) and \(S\) for Model 2 are related by:
(4.17) \(\quad G_{X}(x \mid \theta)= \begin{cases}0 & \text { if } x \leq 0 \\ G_{S}(x+r \mid \theta) \cdot\left(1-G_{S}(r \mid \theta)\right)^{-1} & \text { if } 0<r<b-r \\ 1 & \text { if } b-r \leq x\end{cases}\)

Model 1 is easier to work with since the definition of \(N\) remsins the same when different retentions are considered. But, it is easy to trade back and forth between the two models and, most importantly, they both yield identical anowers for the distribution of \(L\). We prefer to use Model 1, so hereafter \(N\) will be the number of non-zero ground-up losses.

The next three sections show how this general model may be used to evaluate the 108 potentials of particular treaties. To do so, we
mugt:
1. spectify the homogeneous groups.
2. spectfy the set of possible parameters \(\Omega\) and the subjective ilkelihood \(U(\theta)\), of each \(\theta\) in \(\Omega\).
3. calculate (using a computer package) the moments and approximate various percentiles of \(L\) Arom the moments of the \(N_{1}{ }^{\prime} s\) and \(X_{1}\) 's given the o's.

\section*{v. PARAMETER ESTIMATION: EXAMPLE A}

The most difficult part of this aggregate loss evaluation procedure is eatimating the parameters to be used in the models. The estimation for A Doctors' Mutual Insurance Company, example A, will illustrate the case where there are no credible historical loss data directly related to the exposure. In this case, general industry information must be used together with aubstantial judgement. In general, in this aftuation we presently estimate three parameters based upon low, wedfum and high loss frequency and severity assumptions (We purposely use the word "nedfum" to avoid the statistical theoretic connotations of words such as "mean" and "median".) For exmple A, the eatimates will be based upon Insurance Servicea Office ratemaking data and further modified by judge-
ment based upon the NAIC Medical Malpractice Closed Claim Surveyt (1977) and (1978).

The groups for example A are selected to be the seven doctors classes in the old ISO class plan because we believe there are sufficient data to separate these classes for loss frequency and aeverity. The complete parameter matrix is displayed in Table SA. It looks formidable but is really quite simple; much of it is repetitive and based upon standerdized judgement. Eech class is represenced by three rows: the low \(\theta\) is the first row for each class, the medlum \(\theta\) is the second row for each class and the high \(\theta\) is the third row for each class. In Section VII these parameters will be Input to a Prudential Reinsurance Company computer package named RISKMODEL which will calculate the moments of the aggregate los: L for the layer \(\$ 750,000\) excess of \(\$ 250,000\) for the coverage year \(1980 / 81\) using the formulas from section IV. The package also approximatea selected percentiles of the diatribution of \(L\).

The form of the parameterized c.d.f.'s we shall uge for the distribution of the number of loss occurrences \(N_{1}\) for class 1 is the negative btnomial defined in Appendix D. Thus, we must specify two parameters for each c.d.f.; we will specify \(E\left[N_{1} \mid \theta\right]\) and the ratio \(\operatorname{Var}\left[N_{i} \mid \theta\right]+E\left[N_{i} \mid \theta\right]\) for each clase. \(i\) for each \(\theta\). The expected numDer of ground-up loss occurrences \(E\left[N_{1} \mid \theta\right]\) is based upon the exposure and loss frequency astimates in Table 5A, columis (2) and (3). The estimates of exposure by class are based upon ISO exposure data

TABLE 5A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & droup & & EXiomilire & Frabinacy & venjetini & dsi cone & Pne 1 & FAR ： & trunc． & & excises prop & Hit & janicx \\
\hline & CLASS 1 & 1 & 2150000 & 0050 & 1.0000 & 2 & 23s40．0nno & 1.49140 & 1000 & & ． O ¢ \(\mathrm{ma}^{\text {a }}\) & 2：00 & \\
\hline & ct．asel & 2 & 2：5．0000 & ．0643 & 1． 5000 & 2 & 1144：00 0110 &  & 1000 & & － \(0: 1 / 20\) & 3000 & 1 \\
\hline & CLass 1 & 3 & 215.0000 & ．0cre & 2.0000 & 2 & 1815．c． 000 & 1.1910 & 1000 & & ． 3.380 & ご吅 & 9 \\
\hline & Class？ & 1 & 77.0000 & 0072 & 1.0000 & 2 & 23640.0000 & 1.4040 & 1000 & & ． 00.10 & 先00 & 1 \\
\hline & Clasisz & 2 & 77.0000 & 4890 & 1.5000 & 2 & 10450.0000 & 1．2900 & 1000 & & ． 45.60 & Endo & 0 \\
\hline & clessi & 3 & 77，0000 & ． 010 B & 2.0000 & 2 & 1315．．0000 & 1.1410 & 1000 & & ． 6 Ј 30 & 2530 & － \\
\hline & Class & 1 & 68.0000 & OCRS & 1.0000 & 2 & 23923．0000 & 1.4850 & 1008 & & ． คsio & 25no & 1 \\
\hline 1 & Cl．ASS3 & ＇ & 60． 0000 & 0176 & 1.50110 & 2 & 20105．0080 & 1．3\％10 & 1000 & & －64．40 & 5000 & 1 \\
\hline & cinss3 & 3 & 56． 0300 & ． \(61: 7\) & 2.0000 & 2 & ：0\％\％1．0000 & 1．14＂00 & 1000 & & 118 0 & 2500 & 0 \\
\hline N & ci．ns54 & 1 & 10．00no & ． 0104 & 1.0000 & ： & －25：0000 & 1． 4.550 & 1000 & & （0）．a & 2J00 & \\
\hline & CLiss4 & 2 & 10.0000 & ． 0130 & 1．5，000 &  &  & 1．\(: 17 \mathrm{HO}\) & 1000 & & ． 8 BLO & ．Enno & 0 \\
\hline 1 & Clas54 & 3 & 100000 & － 0156 & 2.0000 & 2 & 2150．a．ouo & 1．1890 & 1000 & & －0י\％ & ． \(2=00\) & 0 \\
\hline & Clans & & 46.0000 & ． 0130 & 2．0098 & 2 & 27911.0000 & 1．46：90 & 1080 & & 4：\％0 & 250 & \\
\hline & Clases & I & 46.0000 & ． 016.5 & 1.5008 & 2 &  & 1.2710 & 1000 & & 1460 & ．2000 & 0 \\
\hline & CLisst & 3 & 46．6000 & ． 0195 & 2.0000 & ， & 214031.0030 & 1． 1090 & 1000 & & ．\(n 2\) ：0 & － & 0 \\
\hline & Eir：556 & & 35．0000 & ． 0169 & 1.0000 & 2 & 23923.0000 & 1．46：0 & 1000 & & ． 9 ¢， 80 & ．2500 & 1 \\
\hline & C．，AE56 & 2 & 3． 00000 & ． 0212 & 1．7000 & & 20100.0000 & 1.2780 & 1000 & & ． 0150 & ． 5000 & 0 \\
\hline & chasso & 3 & 5：0007 & ． 0275 & 2.0000 & 2 & 20597．0000 & 1.1890 & 1000 & & － \(49 \leq 0\) & ． 2500 & 0 \\
\hline & clags & ＋ & 51.6000 & ． 015 & 1.0000 & & 30589．0000 & & 1000 & & & ．2500 & \\
\hline & CLASTS & \(?\) & 51.0070 & ． 0195 & 1.7000 & 2 & 25：642．1000 & \(1 .: 700\) & 1000 & & 1：4\％0 & .5000 & ： \\
\hline & clef．c57 & 3 & 31.0000 & ． 0.334 & 2.8000 & 2 & 20320.0000 & 1.1890 & 1000 & & ． 19950 & ．2500 & 0 \\
\hline
\end{tabular}
and the assumprion that there will be 500 doctors. Possible variance of the actual exposures from these estimates will be simply accounted for when gelecting the low and high frequency eattates. The medium frequency (ground-up) estimates are derived in Appendix A, p. Al. They are based upon projections of overall countrywide doctor loss frequency at the wid-point (January 1, 1981) of coverage year fiscal 1980/81, modified by varlous offsets: 1) class, 2) state, 3) year in claims-made program (in this case, first year) and 4) contagion (multiple doctors per incident). It is necessary to use a contagion faccor to adjust the basic ISO data, which are number of occurrences per doctor, since the treaty will cover loss per occurrence for all covered doctors added together. All the offsets are selected on the basis of ISO deta and NAIC \((1977,1978)\) information. The low and high loss frequencies are selected to be \(\pm 20 \%\) of the medium loss frequencies; this is pure judgement to reflect the uncertainty regarding the actual exposure and the "true" expected frequency per class. The ratio \(\operatorname{Var}\left[N_{1} \mid \theta\right]+E\left[N_{1} \mid \theta\right]\) values 1.0 (low), 1.5 (medium) and 2.0 (high), Table SA, column (4), are selected on the basis of research by the ISO Increased Limits Subcomiteree.

The parameters for the logs amount c.d.f.'s are in Table SA, colume (5) - (9). The number 2 in column (5) specifies to the computer package RISMMODEL that the form of the c.d.f. is the 4 -parameter modified Pareto distribution defined in Appendix \(D\); the other
```

choicea are 1 = lognormal and 3 = Weibull. Columns (6) - (9) are
Its four parameters for each class and each 0. We and the ISO
Incrensed Limits Subcommittee have found this general Pareto c.d.f.
to be very useful for describing loss amount distributions. The
particular parameters derived on Appendix A, Pp. A2 and A3 are based
upon ISO countrywide loss amount data and modified by various off-
sets (class, state and contagion) selected on the basis of orher ISO
data and NAIC (1977, 1979) 1pformation. Note that the offsets apply
to the B parameter (PARI) only. We do not presently offset according
to year in clafmammade program, although we might if we ever aee
amy claims-made loss data sufficient for this purpose. The low,
medium and high parameters are selected from c.d.f.'s fittec to five
policy years of ISO data via the maximum Ifkelihood techmiques de-
scribed in Patrik (1980) and are indeed the low, medium (all five
years combined) and high c.d.f.'s.
Column (10) of Table SA displays the aubjective weights assigned
to the three parameters. In this case, they are purely judgemental,
with the medium parameter assigned a 1ikelihood of 50% and the low
and high parameters assigned 25% likelihoods.

```

\section*{VI. PARAMETER ESTIMATION: EXAMPLE B}

\begin{abstract}
The parameter estimation for example \(B\), the exeess proposal for PoC Insurance Company's general liability coverage, will illustrate the case where there are credible historical loss data directiy related to the exposure. In chis case, we will use as much of the data as we can to select the homogeneous coverage groups, to estimate the forms of the loss amount c.d.f.'s and to estimate gome \(\theta^{\prime \prime}\) and \(U(\theta)\) 's (the loss count c.d.f.'s are assumed to be adequately modeled by negative binomial distributions). Recall fron Section II that the proposal is for \(\$ 750,000\) excess of \(\$ 250,000\) and that the P\&C Insurance Company has provided a detailed history of large losses (greater than \(\$ 25,000\) ), gross earned premiums, an overall rate history and more.

The steps of the procedure we will follow are:
1. Select the homogeneous coverage groups.
2. Decide which historical exposure years are most indicative of (can be asily adjuated to) next year 's exposure.
3. Estimate loss amount inflationary trend factors.
4. Select a primary retention to directly evaluate loss count and amount distributions for the next coverage year and restrict attention to those
\end{abstract}
large losses whose trended values are greater than this recention. This retention is not necessarily the proposed retention, but is instead the one which we believe will yield the moat credible estimates of the potential loss.
5. Decide how to adjust the large loss data to an ultimate settlement basis.
6. Estimate ground-up loss amount c.d.f.'s for the next coverage year, both forms and parameters, from the large loss data and general informacion.
7. Estimate the number of excess IBNR losses (excess of the deflated values of the selected retention (4)).
8. Estimate excess loss frequencies for the next coverage year.
9. Estimate bese (ground-up) loss count c.d.f.'s for the next coverage year based upon (6), (8) and the estimated exposure.
10. Select the parameter weights \(\mathbf{U}(\theta)\).

The procedure for example \(B\) will follow this outline very cleanly. In practice, however, any of the steps may be reversed and any of the decisions may be changed later during the procedure if the analyais so indicates.

\footnotetext{
We decided not to display the complete P\&C Insurance Company data in an appendix for three reasons:
1. We would like to focus on the general procedure, not all the details. Most of the detailed steps could be done in many different ways.
2. The data are volutainous.
3. The data, used with the primary camany's permission, should remein confidential.

Many sumary exhibits are displayed in Appendix B.
Step 1
The groups are defined by the major policy limits based upon the policy Ifmits listed on the large loss records and PbC Insurance Company's estimate of their policy limits distribution for 1980 . However, the general liability coverage will be analyzed as a whole; thus, the parameters of the estimated ground-up loss amome c.d.f.'s and the loss frequencies will be the same for each group - only the policy limits and the underlying exposure will be different. The complete parameter matrix which will later be input to the RISKMODEL computer package is displayed in Table 6A. In this case, there are four policy 1fmit groups: \(\$ 200,000, \$ 250,000, \$ 350,000\) and \(\$ 500,000\) or more; there are four parameters \(\theta\) : the first is the combination of the firat sow for each group, and so on.
}

Table 6A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & GROUP & & i.xposure & fraguency & VLn]-E[N] & nist cone & PAR 1 & PAR 2 & trunc. pt & \[
\underset{\times P}{\operatorname{ExCS}}
\] & WGI & INIEX \\
\hline & GL/3no & 1 & 1175.0000 & . 0108 & 1.5000 & 2 & 124014.0000 & 3.6795 & 0 & \(1.0 n d 0\) & .1000 & 1 \\
\hline & GLS!03 & 2 & 115.0000 & .01.5 & 2.0000 & 2 & 114:31.0000 & 3.17n9 & 0 & 1.0000 & . 14000 & 0 \\
\hline & OL/2eo & J & 1175.0008 & .0896 & 1.500, & 2 & 1417747. 3080 &  & 0 & 1.0000 & , 1000 & 0 \\
\hline & GL/200 & 4 & 1175.0060 & . 0104 & 2.0000 & 2 & 130673.06n0 & 3. 75.58 & 0 & 1.000n & . 3500 & 1 \\
\hline 1 & EL/2so & 1 & 1175.0000 & . 0108 & 1.5000 & 2 & 121015.0004 & \(3.67 \% 5\) & 0 & 1.0000 & 1000 & 1 \\
\hline & OL'250 & 2 & 1175.0000 & .01.55 & 2.0000 & 2 & 1945t.0000 & 3.1290 & 0 & 1.0000 & 4000 & n \\
\hline ※ & 6L^90 & 3 & 1175.0000 & .0096 & 1.5000 & 2 & 1343? 1 \%.0000 & 3. 6749 & & 1.0000 & 1500 & D \\
\hline \(\underset{\sim}{\sim}\) & GL/大50 & 4 & 1175000 & . 0104 & 2.0000 & 2 & 1.50.483.0000 & 3.74i8 & 0 & 1.1000 & . 3 F Og & 0 \\
\hline 1 & GL/35a & 1 & 23:0.0000 & n/nß & 1.5000 & & 12014.0000 & 3.6795 & & & & \\
\hline & 6t/3s0 & 2 & 2350.00110 & .018: & 2.0000 & 2 & \%us:4.00011 & 3.1290 & 0 & 1.00080 & 4000 & 1 \\
\hline & GL/350 & 3 & 2350.0000 & . 0090 & 1.5000 & 2 & 150347.0000 & 3.8769 & 0 & 1.0000 & 4000 & 0 \\
\hline & 6L/350 & 4 & こ350.0n00 & . 0104 & 2.000 & 2 & 110543.0000 & 3.75'8 & 0 & 1.0000 & . 1500 & \({ }_{0}\) \\
\hline & OL/500* & & 10000.0030 & 0108 & 1.5000 & 2 & 124010.0000 & 3.6795 & 0 & 1.0000 & . 1000 & \\
\hline & GL/500* & 2 & 10850.0000 & 0135 & 2.0000 & 2 & 49751.00n7 & 3.1290 & 0 & 1.0008 & . 4000 & 0 \\
\hline & GL/S00+ & 3 & 18800.0000 & \(0{ }^{0} 96\) & 1.5000 & 2 & 130747.0000 & 3.8789 & 0 & 1.0000 & . 1500 & 0 \\
\hline & 6L/500* & 4 &  & . 0104 & 2.0000 & 2 & 130693.0000 & 3.750 & 0 & 1.0000 & . 3500 & 0 \\
\hline
\end{tabular}

Step 2

\begin{abstract}
We restrict our attention to the large loss data from accident years 1973 through 1978 since we belfeve that these data are more easily adjuatable to 1980 level in a reasonsble manner. Also, there does not appear to be any significant development of logs counts or amounts beyond the 78 month evaluations of the data presented in PGC's June 30, 1975, . . ., June 30, 1979 loss evaluations. With this decision, we still have quite enaugh dara, over 200 large losses, to analyze. Step 3
\end{abstract}

Many different loss amount finflationary trend models may be developed using many different economic and actuarial assumptions. We shall use two very simple models:
1. Exponential trend model: ISO general liability bodily injury average loss amounts of various kinds from the past several years may be fit by exponential curvea in the usual manner. In this case, our model produces an annual trend eatimate of \(16.8 \%\).
2. Econometric trend model: Slightly more sophifcicated trand estimates are derived via a primitive but reasonable econometric model using the Bureau of Labor Statistics' Consumer Price Index and fts Medical Care Services component as independent variables and some ISO lose amount

\begin{abstract}
Index as the dependent variable. The trend factors to adjust each accident year's data to 1980 level are displayed in Appendix B, p. B2, column (1).

Loss parameters will be derived saparately from the two sets of data adjusted by these two trend modela. In genersi, uge as many reasonable trend models as possible and assign subjective weights to them.

Step 4
Our objective is to estimate 1980 ground-up loss amount and loss count c.d.f. models which produce accurate estimstes of the losses in the layer \(\$ 400,000\) excess of \(\$ 100,000\). However, to estimate these models, it is not necessary to restrict our attention to only those historical losses whose 1980 level values are greater than \(\$ 100,000\). With the exponential and econometric trend models, a 1980 retention of \(\$ 75,000\) deflates to 1973 values of \(\$ 25,291\) and \(\$ 25,299\), respectively (see colum (2) of Appendix B, Pp. B1 and B2). Since thene deflated values are larger than \(\$ 25,000\), the 1973 - 78 large loss data contain all known losses whose 1980 values are larger than \(\$ 75,000\). Furthermore, rore credible excess frequency and loss amount estimates may be obtained from evaluating a lower retention of \(\$ 75,000\). That is, there are 171 (exponential) and 158 (econometric) known losses whose 1980 values are greater than \(\$ 75,000\) (see Appendix B,
\end{abstract}

Pp. B1 and B2), while only 109 (exponential) and 104 (econometric) have 1980 values greater than \(\$ 100,000\). Therefore, we restrict our attention to those large losses whose 1980 level values are greater than \(\$ 75,000\). The 1980 level average values and number of occurrences at each evaluation date are shown in Appendix B, Pp. B1 and B2.

Step 5
For each historical coverage year, we want an estimate of the distribution of ultimate settlement values (1980 level) of losses greater than \(\$ 75,000\). The age-to-age development factors displayed in Appendix B, Pp. Bl and B2, for the 1980 level average values indicate that the large loss distribution for the recent years will change as more losses plerce the retention and as the losses are settled. Thus, these data must be adjusted. In this case we observe that the loss amount distribution appears to develop little beyond the 42 month evaluation. Also, the two yeara for which we can expect the data to substantially develop, 1977 and 1978, have only 14 and 3 large losses respectively. Thus, in this case we choose to use mulciplicative average alze development factors applied to the large loss values. These factors are dioplayed in Appendix B, Pp. Bl and B2. (For a more sophisticated approach, which simultaneously accounts for the development of loss counts and amounts, see Hachemeister (1976)).

The 1980 loss amount c.d.f.'s are derived from four data sets by using the maximum likelihood estimation techniques and testing procedures described in Patrik (1980). The data sets are:
1. The large losses together with their policy limits adjusted to 1980 level via the exponential trend model and developed to ultimate settlement.
2. Same as (1) except that the losses and policy limits are censored at (limited to) \(\$ 500,000\).
3. The large losses rogether with their policy limits adjusted to 1980 level via the econometric trend model and developed to ultimate settlement.
4. Same as (3) except that the losses and policy limita are censored at \(\$ 500,000\).

Censorship at \(\$ 500,000\) is used in (2) and (4) for two reasons:
1. The proposed refisurance layer stops at \(\$ 500,000\). Thus, we may focus upon the loss amount distribution below \(\$ 500,000\).
2. In general, we have found that censored (by policy limits) loss amount c.d.f.'s eatimated via the method of maximum likelihood fit better when there are some losses at the censorship points: the parameter estimates appear to have smaller sample error.
```

Hosever, the data in this case have no logses at
their policy limita.

```

The parameters for c.d.f.'s (1) - (4) are displayed in Table 6A, columns (5) - (9). Both the Kolmogorov-Smirnov Test and an "actuarial ad-hoc expected value test" (see Patrik (1980)) show the Pareto model fitting wuch better than either the lognormal or the Weibull models. Thus, each selected c.d.f. is Pareto (column (5) entry is 2). The colum (8) and (9) entries are aelected for convenience to be 0 and 1 , respectively, because we are not concerned with the lover end of the loss amount diatribution. See Appendix \(D\) and note that if \(X P=1\), then the four parameter model reduces to a two parameter model with the parameters PARI and PAR2 in Table 6A, columne (6) and (7). C.d.f.'s (2) and (4) fit well, while the fit of (1) and (3) is only fair. This information will be used later then selecting the subjective likelihoods (weights) of the parameters. Step 7

The number of IBNR (incurred but not reported) 1980 level Losses excesa of \(\$ 75,000\) for each year 1973, . . ., 1978 are esrimated using method developed by James Stanard and deacribed In Patrik (1978). The first step is to estimate a c.d.f. model for the distribution of report lags. In this case, the report lag is defined as the time in months between the date of occurrence of a \(108 s\) and the date its 1980 level incurred value first ex-

\begin{abstract}
ceeds \(\$ 75,000\). Weissner (1978) showed how to estimate this c.d.f. using the method of maximum likelihood when the data fnclude wonth of occurrence and monch of report for every loss. However in this case, such detall is not available: the data have only year of occurrence (accident) and year of report. Thus, we gelect a report lag c.d.f. model by comparing the actual number of occurrence age-to-age faccors in Appendix B, pp. B1 and B2, to tables of annual age-to-age factors generated by various theoretical report lag distributions, such as the exponential, lognormal or keibull. In this case, a Weibull distribution with parameters \(B=34.0\) and \(\delta=2.75\) (see Appendix D) appears to describe both sets of actual age-to-age factors best; so we will use it to calculate IBNR. The annual age-to-age factors generated by this Weibull are the row underined in the table in Appendix B, P. B3. The IBNR calculations are displayed in Appendix B, Pp. B4 and B5.

\section*{Step 8}
\end{abstract}

Appendix B, Pp. B6 and B7, displays the estimated IBNR per year (column (4)) and the implied 1980 level frequency excess-of- \(\$ 75,000\) per year (column (6)) with respect to gross direct earned premium at present (1980) rate level (columi (2)). Columns (7) and (B) display our estimates of the 1980 level base frequency per year. We use the rerm "base frequency" to distinguish these numbers from the true ground-up loss frequency. The base frequencies are slightly ficticious numbers derived
solely as convenient input for the RISRYODEL computer package (table 6A, column (3)). They are interpolated downard from the excess frequencies by use of the previously aelected loss amount c.d.f. models. For example, the bage frequency of . 0108 for 1973 in colum (7) of Appendix B, P. B6, is derived from the excess frequency of . 0019 in column (6) via:
```

 (excess frequency) + Prob[X>$75,000|c.d.f.(1)]
    ```
\[
\begin{align*}
& =(.0019)+\left(\frac{\beta}{\beta+75,000}\right)^{8}  \tag{6.1}\\
& =.0108
\end{align*}
\]
where \(B=124,016\) and \(\delta=3.6795\).

The base frequencies with respect to all four loss amount c.d.f.'s are displayed in Appendix B, PP. B6 and B7, along with four aelected values which are input in Table 6A, colum (3). Step 9

Tha negative binowial c.d.f. in selected as the general form for the distribution of \(N_{1}\), the number of 1980 base losses for policy ilmit group 1. The expected value for each particular c.d.f. is the base frequency times the eatimate of the 1980 gross direct earned premium in Table 6A, colum (2). The ratios \(\operatorname{Var}\left[\mathrm{N}_{1} \mid \theta\right]\) : \(E\left[\mathrm{~N}_{1} \mid \theta\right]\) in colum (4) are again selected on the basis of research by the ISO Increased Limits Subcomitree.

\section*{Step 10}
```

The parameter weights $U(\theta)$ in Table 6A, column (10), are selected on the following basis:

1. Each trend model is given weight . 50 .
2. The weight selected for loss amount c.d.f.
(2) together with its implied base frequency 1s . 40 (out of .50 possible) since it fit best; the remaining . 10 goes to c.d.f. (1). Likewise, loss amount c.d.f. (4) together with its implied base frequency is given a weight of .35 because of its good fit, with the remaining . 15 going to c.d.f. (3).
As a final remark on the parameter estimation for example B, it ahould be apparent that if we believe that the P\&C large loss data is not fully credible, then we can append more parameters based upon general industry information as in example A. The parameter weights would be adjusted accordingly, perhapa via some credibility procedure.
```
VII. MONENTS AND PERCENTILES OF THE DISTRIBUTION OF AGGREGATE LOSS

This section describes a computer package named RISKMODEL which takes information such as in Tables \(5 A\) and \(6 A\) and transforms

1t into moments and percentiles of the digtribution of aggregate loss for any selected mixture of loss layers. Tables 7A, 5A and 7B-7D document a RISKMODEL run for example \(A\); the cun for example \(B\) is contained in Appendix \(C\) and Tables 6A and 7E. In both cases the printout displays boch the package interrogatories and the user's input. Almost completeruns are displayed so that the reader can see how easily the complicated model formulas translate into a working computer package; the only parts eliminated are the atep-by-step data inpur process and some ending details regarding furtber displays and memory storage.

Table 7a diaplays the beginning of the RISKMODEL zun for example \(A\). The user enters the group names "class 1, class 2, *. . class \(7^{\prime \prime}\). apecifies that there will be three parameters and indicates that he wants the limits matrix LIM in the package to be assigned the elements of a previously created matrix LIMA. Since the proposed coverage is \(\$ 750,000\) excess of \(\$ 250,000\), the loss layers we want to consider are \(0-\$ 250,000\) and \(\$ 250,000\) - \$1,000,000: we observe the output for the lower layer to provide an extra check on the ressonableness of the output for the excess layer. For each group (class), there are tyo rows with lower and upper limit colums and a third column, INDEX, which Indicates when there is a change in group

The user next specifies that he wants the parameter matrix PAR in the package to be agsigned the elements of a previously

TABLE 7A

IO NOT PGNIE IF YOU MrIKE AN ERROR WHILE INPUTTIAG， OPFGRTUNITY TO LHAINGE LATER．
```

ENTER MriJQR LPDUP NAMES AS FOLLOWS: /GRP1/GRPN.........
HQTE: MUST IE IN GUQIES. FOR MORE THAN I LINE OF INPUT, USE,D

```
[:
    /CLASE1/CLASSこ/CLAS33/CLAS54/CLASSE/CLASSS/ELASS7.
ENTER THE NUMEER DF PARAMETERS, E.G. J
D:
        3
IO YOU WISH TO (I) INPUT VECTOR OF LIHITS. OR
(こ) USE MATRIX OF LIMITS PREVIOUSLY CREATEI. I OR 2.
日:
    ㄹ
EATER THE NAME OF IHE MATRIX OF LIMITS PREVIOUSLY CREATEI
NOTE NGME SHDULII HAVE PREFIX LIM
LIHA
IO YOU WISH TO SEE THE LIM MATRIX. Y OR N
\(Y\)

LIMITS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{LIMITS} \\
\hline LOWE R & UPPER & INIPEX \\
\hline 0 & 250000 & 1 \\
\hline 250000 & 1000000 & 0 \\
\hline 0 & 250000 & 1 \\
\hline 250000 & 1000000 & 0 \\
\hline 0 & 250000 & 1 \\
\hline 250000 & 1000000 & 0 \\
\hline 0 & 250000 & 1 \\
\hline 250000 & 1000000 & 0 \\
\hline 0 & 250000 & 1 \\
\hline 250000 & 1000000 & 0 \\
\hline 0 & 250000 & 1 \\
\hline 250000 & 1000000 & 0 \\
\hline 0 & 250000 & 1 \\
\hline 250000 & 1000000 & 0 \\
\hline
\end{tabular}
HO YOU WISH TO MAKE ANY CHANGES IN THE LIM HATRIX, Y OR N
N
TIO YUU WISH TO
(1) INPLT VECTOR OF PARAMETERS FOR THE FIRST SUFGROUP OR
(2) USE MATRIX OF PARAHETERS PREVIDUSLY CREATET. 1 OR 2
[].
    2
ENTER THE NAME CF THE MATRIX OF PARAMETERS PREVIOUSLY CREATED
NOTE: NALEE SHOULII HAVE PREFIX PAR
PARA
IO YOU WISH TC SEE THE PAR MATRIX, Y OR N
\(\boldsymbol{\gamma}\)
created matrix PARA, The parameter matrix was displayed in Table 5A.

Table 7B continues the run after the display of the parameter matrix PAR. Next displayed is matrix of intermediate calculations for layer 1: \(0-\$ 250,000\). The notation here is:

A - layer lower bound (here \(A=0\) )
\(B=\) layer upper bound (here \(B=250,000\) )
\(S=\) ground-up loss amount random variable
\[
\begin{aligned}
& P[S>A]=1-G_{1}(A \mid \theta) \quad \text { for each group } 1 \text { for each } \theta \\
& P[S>B]=1-G_{1}(B \mid \theta) \quad \text { for each group } 1 \text { for each } \theta \\
& E[S \star m]=\int_{A}^{B} x^{m} d G_{1}(x \mid \theta) \quad \text { for each group } 1 \text { for each } \theta \\
& \text { where } \quad m=1,2,3 \\
& G_{1}(x \mid \theta)=\operatorname{Prob}\left[S_{1} \leq x \mid \theta\right]
\end{aligned}
\]

These values will be uged co calculate the moments of the aggregate loss \(L\) given \(\theta\) by using formula (4.7). They are displayed so that the user can check that the run is going alright.

Table 7C continues the run with a display of a matrix of intermediate calculations for layer 2: \(\$ 250,000-\$ 1,000,000\). These are aimilar to those for layers 1 except that here \(A=\) 250,000 and \(B=1,000,000\). Next input are the selected \(\varepsilon\) 's

\section*{table 7B}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
GPDUPS \\
TO PROC
\end{tabular} & & \begin{tabular}{l}
PaRamet \\
INTERME
\end{tabular} & ER INPUT didate Ca & COHPLETEI ALCULATIONS, & HIT EXECU & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{IIC YOU WISH TO PRIHT THE INTERMEIIATE CALCULATIONS, P[S:4], P[S:F], E[S],E[S*2],E[S*3]. Y OR N,}} \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{INTERME!IA}} & \multicolumn{2}{|l|}{E CALCULATIDNS} & L'SEIE THROUGE & ILUT MOMEN & ALCULAI \\
\hline & & & & LAYER 1 & & \\
\hline GROUPS & & P[S*A] & P[5:H] & E[S] & E[5*2] & E[S*3] \\
\hline CLASS 1 & 1 & 1.000 & . 021 & 2. 216 E04 & 1.813E09 & \(2.415 E 14\) \\
\hline CLASS1 & 2 & 1.000 & . 026 & 2.258504 & 1.878 CO & \(2.546 E 14\) \\
\hline Clas5 1 & 3 & 1.000 & . 034 & 2.363 E 04 & 2.065 E09 & \(2.868 E 14\) \\
\hline Class? & 1 & 1.000 & . 021 & 2. 216E04 & 1.813 E 09 & 2.415 E 14 \\
\hline CLASS? & 2 & 1.000 & . 026 & 2.258E04 & 1.878E07 & 2.546E14 \\
\hline CLmSS? & 3 & 1.000 & . 034 & \(2.363 E 04\) & 2. OGSE09 & 2. BSBE14 \\
\hline CL.ASS3 & 1 & 1.000 & . 024 & 2.372 O 4 & 1.985E09 & 2.660 E 14 \\
\hline CLASS3 & 2 & 1.000 & . 032 & 2.500 E 04 & 2.154E09 & \(2.960 \mathrm{E14}\) \\
\hline CLASS 3 & 3 & 1.000 & . 042 & 2.717 O 04 & \(2.459 E 09\) & \(3.456 E 14\) \\
\hline CLASS 4 & 1 & 1.000 & . 026 & 2.478504 & 2.093 E 09 & \(2.824 E 14\) \\
\hline CLASS 4 & 2 & 1.000 & . 034 & \(2.585 E 04\) & 2.261E09 & \(3.124 E 14\) \\
\hline CI.ASS 4 & 3 & 1.000 & . 044 & 2.802 E 04 & 2.571E09 & 3.632 E 14 \\
\hline classs & 1 & 1.000 & . 030 & 2.642504 & \(2.304 E 09\) & \(3.146 E 14\) \\
\hline CLASSS & 2 & 1. 000 & . 038 & \(2.745 E 04\) & 2.468E09 & \(3.444 E 14\) \\
\hline CLinSS & 3 & 1.000 & . 050 & 2.932 O 4 & 2.787E09 & 3.973 E 14 \\
\hline CLASS6 & 1 & 1.000 & . 024 & \(2.392 E 04\) & 1.985E09 & 2.660 E 14 \\
\hline Classb & 2 & 1.000 & . 032 & 2.500 E 04 & 2.154E19 & \(2.960 \mathrm{E14}\) \\
\hline CLASS 6 & 3 & 1.000 & . 042 & \(2.717 E 04\) & 2.459509 & 3.456E14 \\
\hline CLASS 7 & 1 & 1.000 & . 033 & \(2.795 E 04\) & 2.507E09 & \(3.463 E 14\) \\
\hline CLASS7 & 2 & 1.000 & . 043 & 2.893 E 04 & \(2.667 E 09\) & 3.7S6E14 \\
\hline CLASS7 & 3 & 1.000 & . 05 & \(3.110 E 04\) & 2.994 E 09 & 4.303 E 14 \\
\hline
\end{tabular}

TABLE 7C
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{LAYER 2} \\
\hline GROUPS & P［3：A］ & P［S－E］ & E［5］ & E［5＊2］ & E［5＊3］ & \\
\hline CLASS 11 & ． 021 & .003 & B． 015 E 03 & \(4.093 E 09\) & 2．431E15 & \\
\hline Clinsst ？ & ． 023 & ． 005 & 9．754E03 & S． 103 E 07 & \(3.077 E 15\) & \\
\hline Clfissi 3 & ． 034 & ． 007 & 1．227E04 & \(6.522 E 09\) & 4． 014 E 5 & \\
\hline CLASS？ 1 & 021 & ． 003 & B． 015 E 03 & 4.093 03 & \(2.431 \mathrm{El5}\) & \\
\hline ［LASS？ 2 & ． 026 & ． 005 & 9．754E03 & \(5.103 E 09\) & \(3.097 E 15\) & \\
\hline CLASS2 3 & ． 034 & ． 007 & 1．ユコロE04 & \(6.522 E 07\) & 4.014 E 5 & \\
\hline CLiss 31 & ． 024 & ． 003 & \(9.025 E 03\) & \(4.622 E 09\) & 2．753E15 & \\
\hline CLASS3 2 & ． 032 & ． 006 & 1．176E04 & 6．177E09 & 3．763E15 & \\
\hline CLASS3 3 & ． 042 & ． 009 & 1．513E04 & \(8.059 E 09\) & 4.967 E 15 & \\
\hline CLASS4 1 & ． 026 & ． 004 & 9．701E03 & 4．973E69 & 2.964 ElS & \\
\hline CLASS4 2 & 034 & ． 006 & 1．253E 04 & \(6.587 E 09\) & \(4.016 E 15\) & \\
\hline CLASS4 3 & ． 044 & ． 0.09 & \(1.605 E 04\) & －SSSE09 & 5．276E15 & \\
\hline CLASSS 1 & ． 030 & ． 004 & 1．108E04 & 5.690 E 09 & 3．396E15 & \\
\hline CLASSS 2 & ． 030 & ． 007 & 1.409504 & 7．419E09 & \(4.527 E 15\) & \\
\hline CLASSS 3 & ． 050 & ． 010 & 1．790E04 & 7．551E09 & 5．897E15 & \\
\hline CLASSS 1 & ． 024 & .003 & 9．025E03 & \(4.622 E 09\) & 2.753 E 15 & \\
\hline CLASSO 2 & ． 032 & ． 006 & 1．176E04 & \(6.177 E 09\) & 3．763E15 & \\
\hline CLASSS 3 & ． 042 & ． 009 & 1．513E04 & 9．057E09 & \(4.967 E 15\) & \\
\hline CLASS 1 & ． 033 & ． 005 & 1．248E04 & \(6.423 E 09\) & \(3.641 E 15\) & \\
\hline CLASS 2 & ． 043 & ． 009 & 1．568E04 & B．こ5BEC9 & 5.04 UE15 & \\
\hline CLASS 3 & ．055 & ． 011 & \(1.973 \mathrm{E04}\) & \[
1.05 E F 10
\] & \[
6.520 E 15
\] & \\
\hline \multicolumn{7}{|l|}{TO PROCESS MORE INTERMEHIATE CALCULATIONS，HIT EXECUTE} \\
\hline \multicolumn{7}{|l|}{ENTER EPSILON（S）FOR UHICH PROR（LOSS＞MAX．PROE，LOSS）（EPSILON．（OCSS．E）
D：} \\
\hline \multicolumn{7}{|l|}{． 1 ．05 ．01} \\
\hline \multicolumn{7}{|l|}{HOW FOR THE FINAL PRINTOUT} \\
\hline \multicolumn{7}{|l|}{ENTER COMPANY NAME} \\
\hline \multicolumn{7}{|l|}{Ey．ample a：a hoctors mutual insurance company} \\
\hline \multicolumn{7}{|l|}{ENTER YOUR NAME（EG．J，SHITH） HOWARE H．FRIEDMAR} \\
\hline \multicolumn{7}{|l|}{ERTER TOLAY＇S IIATE（EG．JAN．1，1979） APRIL 1， 1980} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
enter in parenthesis and gudtes a seven character name for the units \\
（E．G．＇（LDCTDRS）＇OR •＿－（REDS）＿＇） D： \\
（ （DOCTORS） of exposure centered in 9 spaces
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{AIIJUST PAPER TO TOP OF NEW PAGE \＆HIT EXECUTE} \\
\hline
\end{tabular}

TABLE 7D

(.10, . 05, . 01) for the aggregate loss distribution percentiles. In the package, the 1 - \(\mathbf{c}\) percentile, \(L_{E}\), the point which \(L\) has aubjective probability \(c\) of exceeding, is called "the maximum probable loss for one in 'c \(\mathrm{c}^{-1}\), years". This wording was chosen to be more meaningful to the underwriters who see the main output.

The rain oucput is displayed in Table 7D. Various information about the distribution of aggregate loss for each layer is shown. The display should be self-explanatory to actuaries. Note for example, the amount of "risk" being assumed by the reinsurer as evidenced by the coefficient of skewness: 1.513 for the primary layer versus 3.862 for the excess layer. Or, notice the cofficients of variation: \(.930(169,614+182,404)\) for the primary layer versus \(3.184(176,305+55,367)\) for the excess layer. Approximations of the aggregate loss percentiles are in the last chree columis.

There are many methods for approximating the percentiles of a distribution. The method used by RISKMODEI is the NPapproximation described by Beard, Pentikäinen and Pesonen (1969 - 2nd ad. . 1977). This approximation 1a given by:
\[
\begin{equation*}
L_{E} \vdots E[L]+(\operatorname{Var}[L])^{\frac{1}{2}} \cdot\left\{z_{E}+\frac{Y}{6} 1 \cdot\left(z_{E}^{2}-1\right)\right\} \tag{7.2}
\end{equation*}
\]
\[
\begin{align*}
& \text { where } L_{E} \text { is minimal such that } \operatorname{Prob}\left[L>L_{E}\right] \leq \varepsilon \\
& z_{c}=\phi^{-1}(1-\varepsilon) \text { for the standard normal ( } 0,1 \text { ) c.d.f. } \\
& r_{1}=\mu_{3}(L)+(\operatorname{Var}[L])^{3 / 2} \text {, the coefficient of skewness. } \\
& \text { A problem with the NP-approximation is that if } Y_{1} \text { is } \\
& \text { very large (aay } \gamma_{1}>8 \text { ), then for certain values of } \varepsilon \text {, the } \\
& \text { approximation is much too large. However, there is a natural } \\
& \text { bound on } \mathrm{L}_{\mathrm{E}} \text { which RISKMODEL uses to bound the NP-approximation. } \\
& \text { This bound 1s: } \\
& \text { (7.3) } L_{E} \leq \varepsilon^{-1} \cdot E[L] \\
& \text { The necessity of this Chebyshev-like bound is seen immediately } \\
& \text { from: } \\
& E[L]=\int_{0}^{\infty} x \cdot d F(x) \quad \text { since } F(x)=0 \text { for } x<0 \\
& \geq \int_{L_{E}}^{\infty} x \cdot d F(x) \quad \text { aince } L_{E} \geq 0  \tag{7.4}\\
& \geq \int_{L_{E}}^{\infty} L_{E} \cdot d F(x) \\
& =E \cdot L_{E} \\
& \text { The extreme values of } \gamma_{1} \text {, which trigger this bound on the } \\
& \text { NP-approximation seem to occur only when the expected number of } \\
& \text { loss occurrences is very amall. For example, the bound occurs } \\
& \text { in the example A main output, Table 7D, for the excess layer for }
\end{align*}
\]
```

each individual class when E = . 10, .05 and sometimes .01;
In each case, the expected number of excess losses is less than
.05. It does not happen for the overall excess layer where the
expected number of losses is .18.
Thus, in certain extreme situations, the NP-approximation may not be very accurate. In fact, there has been quite a discusgion in the recent literature regarding the accuracy of the NP-approxination versus its various alternatives. The reasonable alternatives presentily include: 1) approximation via simulation, 2) an NP3-approximation which uses the fourth moment of L in addition to the first three and 3) approximation via the 3parameter gama distribution. See the argument carried on in Kauppi and Ojantakanen (1969), Seal (1977), Pentikäinen (1977) and Seal (1979) and also the discusaion in Cuming and Freifelder (1978).

```

The reasons to use the NP-approximation are:
1. It is easier to compure than any of its reasonable alternatives.
2. in mogt gituations, it is just as good.
3. It is slightly conservative; that \(1 s, L_{E}\) is less than the NP-approximation.

In particular, it is as good as the alternatives for the usual excess-of-10ss cagualty working cover gituation, Beard, Pentikäinen and Pesonen (1977), p. 5, eaid it well: "Thus it is important
not to develop mathematical tools of disproportionate accuracy (and complication) without regard to the context in the problem being solved".

The example B run, Appendix C, has four policy limit groups and tour parameters (see p. C1). The reason for grouping by policy limit should be obvious. Again, the limits and parameter matrices have been previously input. Since the proposed coverage is \(\$ 400,000\) excess of \(\$ 100,000\), the loss layers of interest are \(0-\$ 100,000\) and \(\$ 100,000-\min \{\$ 500,000\), policy limit \(\}\). The parameters. Table 6A, were discussed in detail in Section Vi. The intermediate calculations and the \(\varepsilon\) selection (pp. C2 and C3) are analogous to example \(A\).

The main output is displayed in Table 7E. Again note the "risk" being assumed by the reinsurer as evidenced by the coefficient of skewness: . 216 for the primary layer versus .437 for the excess layer. Or again notice the coefficients of variation: \(.129(1,247,991+9,678,618)\) for the primary layer versus \(.287(641,998 ; 2,238,766)\) for che excess layer. Note chat there is much less uncertaincy in example \(B\) than there was for example \(A\). Since we are using "base frequenciea" as explained in Section VI, the expected number of losses in layer 1 are probably understared; the expected loss in layer 1 may also be underatated. The estimates for layer 2 have no known syatematic bias.

VIII. CONCLUSION

We have described a procedure for estimating the distribution of the aggregate loss for the next coverage year of an excess-of-loss casualty working cover reinsurance treaty. Recall that for both treaty proposals, for each individual loss the reinsurer shares the allocated loss adjustment expense (ALAE) pro rata according to his ghare of the loss (the reinsurer's unallocated loss adjustment expense is included in his general overhead expense). The AlAE share increases the reinsurer's aggregate loss by \(3 \%\) to \(6 \%\) depending upon the line of business and the excess layer. For both examples, we will increase all aggregate loss figures by \(5 \%\)

According to the list in Section III, there are four more general items to consider before deciding about the adequacy of the rate offered on example \(A\) or before proposing a rate for example B. Without offering complete, elegant solutions, let us briefly consider those items (2) - (4).

Item (2) 1s the potential distribution of cash flow. Both proposals are fairly typical excess-of-loss casualty working covers which we may assume will have standard monthly or quarterly premium payment patterns and typical long tail casualty loss payout patterns. That simple general cash flow models can be constructed should surprise no one who hes read the CAS exam materials. In the long run, such general models should be constructed so that
```

any two treaty proposals can be compared to each other. However, even without such models explicitly set up, we can say something about these two treaty proposals. For instance, based upon typical medical malpractice claims-made loss payment paterns, the one year aggregate loss expected values or higher percentiles for example A could be discounted from 10% to 15% on a present value basis with respect to rates-of-return on investments of 5% or greater. Based upon typical casualty loss payment patterns, the discount for example B would be 10% to 20%. The present values of the premium payments for both examples would be discounted around 5\%. How this is viewed by the reinsurer depends upon items $(3)-(5)$.
Item (3) is the collection of the reinsurer's various corporate financial paramecers and decision-making criteria. Assuming that the reinsurer is at least moderate sized and is in good Einancial condition, then neither proposal in isolation leads to overwhelmingly complex decision problems; there is nothing unusual or very exciting here. It is highly unlikely that either treaty by itself could hurt such a reinsurer very much. However, the loss results of a whole portfolio of typical medical malpractice treaties, for example, would be correlated and could hurt a lot if priced badly.
Item (4) is the eurplus necessary to "support" a treaty from the reingurer's point-of-view and item (5) is the potential dis-

```


Example B could be profitable to the reinsurer if he can negotiate a reasonable net rate with the PGC Insurance Company. Exactly what the final rate will be depends upon the two com-
panies' attitudes toward risk, their separate evaluations of the loss potential, the rates that ara avallable for such coverage In the reinsurance marketplace and finaliy the amount of premium that P\&C is collecting from his insureds for the layer \(\$ 400,000\) excess of \(\$ 100,000\). A quick check of the ISO 1ncreased limits factors for state \(B\) for this coverage, 1.e., the premises/operations bodily injury table \(B\) (ISO Subline Code 314), indicates that about 15\% of P\&C's gross general liability premium ta collected for this layer. Since the expected excess aggregate loss is \(\$ 2,238,766\) (Table \(7 E\) ) and the expected gross direct earned premium 1s \(\$ 23,500,000\) (Table \(7 E\) total exposure), there 1s room to negotiate.

Puraly for illustration, suppose that a fat net rate of 12\% is negotiated for example B. Then the reinsurer's premium \(1 \mathrm{Is} .12 \times \$ 23,500,000=\$ 2,820,000\) and his pure premium 18. \(97 \times\) \(\$ 2,820,000=\$ 2,735,400\). The 90 ch percentile of the reinsurer' 8 mbjective distribution of aggregate loss is \(\$ 3,091,686, ~ 日 0 ~ o u r ~\) ad hoc supporting surplus is (1.05 x \(\$ 3,091,866\) ) \(-\$ 2,735,400=\) \$511,059. The expected rate-of-return on this supporting burplus \(1875 \%((\$ 2,735,400-1.05 \times \$ 2,238,766)+\$ 511,059)\).

If the ingurer and the reinsurer disagree atrongly on the Ioss potential, the rate could be negotiated to include a profic comilasion arrangement by shich they would share good years and bad years fairly. Reinsurance contract wording is often very Laventive; treaties are cugtom-made for the particular situation;

\begin{abstract}
the terms are adjusted to suit both parties. This is an example of a fundamental principle of reinsurance: reinsurance works best when it is a long term beneficial partnership between the parties.

We hope you noticed that the models, estimation techniques and decision procedures presented in this paper are not really specific to excess-of-loss reinsurance. They may be useful for pricing any large casualty contracts; with suitable modifications, they are useful for property insurance also. You may have noticed that we have presented no cookbook formulas for pricing reinsurance; the area is too rich in diversity and too interesting for such simplistic nonsense. We consider the work described here as only the beginning of a truly satisfying pricing procedure.

We close by noting that the Bibliography contains some papers on excess reinsurance pricing in addition to those previously mentioned. You will find most of these to be informative and interesting.
\end{abstract}

\section*{BIBLIOGRAPHY}
```

Ammeter, Hans (1955). "The Calculation of Premium-Rates for
Excess of Loss and Stop Loss Reinburance Treaties", Non-Proportional Reinsurance, ed. S. Vajda, Arithbel S.A.
Barile, Andrew J. (1978). Reinsurance. . . A Practical Guide,
Interstate Service Corporation.
Beard, R.E., Pentikäinen, T. and Pesonen, E. (1977).
R1gk Theory, The Stochagtic Basis of Insurance, Second
Edition. Chapman and Hall.
Benktander, Gunnar (1977). "The Use of Actuarial Techniques in
Non-Life Reinsurance: The Underwriting of Risks",
Reinsurance Offices Association.
Biihlmann, Hans (1970). Mathematical Methods in R1sk Theory,
Springer-Verlag.
Cummins, J. David and Freifelder, Leonard R. (1978) "A Comparative
Analysis of Alternative Maximum Probable Yearly
Aggregate Loss Estimatora", The Journel of Risk and
Insurance, Vol. 45, No. 1, pp. 27-52.
Ferguson, Ronald (1978). "Actuarial Note on Loss Rating" and
reviews by David J. Grady and Gary Patrik, Proceedings
of the Cosualty Actuarial Society, Vol. 65.
Freifelder, Leonard R. (1976). A Decision Theoretic Approach to Insurance Ratemaking, S.S. Heubner Foundation Mono8raph, No. 4, Richard D. Irwin, Ine. See also the review by Gary Patrik in The Actuarial Review, Vol. 4, No. 3, and author's reply in The Actuarial Review, Vol. 4. No. 4 .
Gerber, Hans U. (1974). "On Additive Premium Calcularion Principles", The ASTIN Bullerin, Vol. 7, pp. 215-222.
Hachemeister, Charles A. (1976). "Breaking Down the Loss Reserving Process", Casualty Actuarial Society Loss Reserves Symposium, Chicago, Illinois.
Harding, V. (1968). "The Calculation of Premiums for Excess of Losa Reinsurance of Mocor Business", Trans. 18th International Congress of Actuaries, Vol. 2, PP. 445-457.

```

 on Cholecs inder lincentatily, Addson-ixesjes.

Fefnara, Rober. C. (1069). Rroperty amb Latillity Reinsurance, Missinn Publishlus Company.

Savage, Leonn=d J. (195t). The Founditions of Etatistics, John Wiley 5 Sons, Inc.

Scal, Hilary L. (1977). "fpproxinations to Risk Theory's \(F(x, r)\) by Keans oi the Gama Distritution", ASTTM, Vol. 9, pp. 213-218.

Scal, Hilary L. (1979). "Letter to the Editor", AcTIN, Vol. 10, P. 130.

Straub, F. (1971). "Estimation of the lumber of Excess Clains by Means of the Credibility Theory", the tSTLS Bulletin, Vol. 5, Part 2, pp. 388-392.

Verbcock, H. G. (1972). "An Approach to the Arelysis cf Claims Expertence in Hotor Liability Excess ef Loss Refinsurancer, The ASTIM Buligein, Vol. 6, Part 3, PP. 195-202.
Weissner, Edwed \(\because\). ( \(197 C\) ). "Estimnticn of the Distritation of Report lasts by the Nethed of Yavimum Likelihcod". Proceedings of the Casualty Actuarti.l. Society, Vol. 65.

\section*{Al}

APPENDIX A
EXAMPLE A: A DOCTORS' MUTVAL TNSURANCE COMPANI
Parameter Selection
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline Doctor & Frequency & Medium & Severity & Low & Medium & High \\
\hline Class & Offset & Frequency & Offset & 3 & 8 & B \\
\hline 1 & . 90 & . 0062 & 1.00 & 23,640 & 18,450 & 18,155 \\
\hline 2 & 1.30 & . 0090 & 1.00 & 23,640 & 18,450 & 13,155 \\
\hline 3 & . 65 & . 0106 & . 90 & 23,923 & 20,106 & 20,597 \\
\hline 4 & . 80 & . 0130 & . 95 & 25,253 & 21,224 & 21,742 \\
\hline 5 & 1.00 & . 0163 & 1.05 & 27,911 & 23,458 & 24,031 \\
\hline 6 & 1.30 & . 0212 & . 90 & 23,923 & 20,106 & 20,597 \\
\hline 7 & 1.20 & . 0195 & 1.15 & 30,569 & 25,692 & 26,320 \\
\hline
\end{tabular}
(1) ISO old class plan.
(2) Selected on the basis of LSO data; the class 1,2 countrywide mean frequency is selected to be . 0385 and the class 3-7 countrywide mean Erequency is selected to be . 0904 for \(1 / 1 / 81\).
(3) The state A frequency offset is selected to be . 90 ; the first year claims-made offset is selected to be .25 ; the contagion (multiple doctors per incident) is selected to be . 30. Together with col. (2), these offset the countrywide mean frequencles in note (2). For example \(A\), the low and high frequencies are selected to be \(\pm 20 \%\) of the medium frequencies.
(4) Selected on the basis of ISO data.
(5)- (7) The state A severity offset is selected to be . 70; the contagion offset is selected to be 1.25. Together with col. (4), these offset the countrywide \(\beta\) parameters on \(p, A 2\).

\section*{APPEIDIX A}

EXAMPLE A: A DOCTORS' MPUAL IISURANCE COMPANY
General Loss Amount Distribution Model

Countrywide Loss Amount Parameters:
1/1/81
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \(\beta\) & \(\delta\) & \(t\) & xP \\
\hline Physicians & low & 27,017 & 1.484 & 1000 & . 808 \\
\hline \((1,2)\) & - medium & 21,086 & 1.293 & 1000 & . 856 \\
\hline & - high & 20,749 & 1.191 & 1000 & . 838 \\
\hline Surgeons & - low & 30,378 & 1.465 & 1000 & . 356 \\
\hline (3-7) & - medium & 25,531 & 1.273 & 1000 & . 886 \\
\hline & - high & 26,155 & 1.189 & 1000 & . 895 \\
\hline
\end{tabular}

The parameters are selected based upon ISO medical malpractice data via maximurn likelihood estimation - See Patrik (1980). The general loss amount c.d.f. is the 4 -parameter Pareto described in Appendix D.

APPETDIX A

Estimated Premium: 7/1/80-6/30/81
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline Doctor Class & \[
\begin{aligned}
& \# \text { in } \\
& \text { Class }
\end{aligned}
\] & \[
\begin{array}{r}
1980 \\
\text { 1M/3M } \\
\text { Rate } \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1980 \\
1 \mathrm{M} / 3 \mathrm{M} \\
\text { Premium } \\
\hline
\end{array}
\] \\
\hline 1 & 215 & \$ 400 & \$ 86,000 \\
\hline 2 & 77 & 720 & 55,440 \\
\hline 3 & 65 & 1,200 & 78,000 \\
\hline 4 & 11 & 1,600 & 17,600 \\
\hline 5 & 46 & 2,000 & 92,000 \\
\hline 6 & 35 & 2,400 & 84,000 \\
\hline 7 & 51 & 3,200 & 163,200 \\
\hline & 500 & & \$576,240 \\
\hline
\end{tabular}
(1) These are older ISO doctor class plan.
(2) Based upon ISO doctor distribution and the estimate of 500 doctors.
(3) First year claims-made rates to be used by A Doctors' Mutual Insurance Company.
(4) The reinsurance net premium is \(.20 \times \$ 576,240=\$ 115,248\).

EXAMPLE A: PLC INSURANCF CMMPANY
Average Incurred (Ground-Up) and occurrence Loss Development Excess of \(\$ 75,000\) at 2990 Level as of \(6 / 30 / 79\)

Actual**
Selected
 \begin{tabular}{cccccc}
\(18-30\) & \(30-42\) & \(42-54\) & \(54-66\) & \(66-78\) \\
5.64 & 1.31 & 1.34 & .98 & 1.05 \\
5.22 & 1.94 & 1.36 & .98 & 1.05 \\
\hline
\end{tabular}
- based on velghted everafic incurred
** based on average number of occurrences
exantie h: pac insurance cohtany
Avarage Tncurred (Grcund- \(U_{p}\) ) and Occurrence Loss Duveloptent


* baced on weighted avarage incurred
** baced on average nutber of occurrences

EXAMPLE B：P\＆C INSURANCE COMPANY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{12}{|c|}{} \\
\hline & MEAN MOH． & \[
\begin{aligned}
& \text { faram } \\
& \text { 厅Cnt.E }
\end{aligned}
\] & reps LHAPE & \[
\begin{gathered}
1070 \\
37^{2}
\end{gathered}
\] & \[
\text { מT:10 } 30
\] &  & \[
\begin{gathered}
=40 \\
68 \\
0
\end{gathered}
\] & \[
\begin{gathered}
6: 10 \\
?: 11
\end{gathered}
\] & \[
\begin{gathered}
70 \text { חד } 90 \\
\hline 0
\end{gathered}
\] & \[
\begin{aligned}
& 90 \text { TO } \\
& 10: ?
\end{aligned}
\] & \[
\begin{gathered}
102 \\
1114
\end{gathered}
\] & \[
\begin{gathered}
111: 17 \\
\text { UL. }
\end{gathered}
\] \\
\hline & 27 & 30.000 & 2.500 & 4． 0.0 & 1．790 & 1．219 & 1．0122 & 1．0145 & 1．0n0 & \(1.00 \pi\) & 1.030 & 1．000 \\
\hline & 23 & 31.070 & 2．500 & 4.117 & 1．14：3 & 1． י \(^{1}\) & 1．05．\({ }^{\text {a }}\) & 1．014 & 1．8n\％ & 1.00010 & 1.010 & 1．100 \\
\hline & 29 & 32．000 & \(\therefore .8110\) & 4.179 & 1．1016 & 1． \(2 \%\) & 1.084 & 1．010 & 1.001 & 1.000 & 1．000 & 1.020 \\
\hline & \(\because 9\) & 73.007 & 2.500 & 4．250 & 1.927 & 1．359 & \(1.0 \%\) & 1.113 & 1．101 & 1.0011 & 1．160 & 1.080 \\
\hline & 30 & 34.000 & 2.200 & 4． Sin & 1．96\％ & 1．54 & 1.051 & 1．71？ & 1．10．． & 1.000 & 1.0110 & 1．010 \\
\hline & 31 & 35.070 & 2.300 & 4.336 & 2.003 & 1．3：2 & J 10：\％ & 1．0：3 & 1．1113 & 1.000 & 1.1000 & 1.1100 \\
\hline & 32 & 36.007 & 2.300 & 4． 3 ， 3 & 2.030 & 1．3a & 1.100 & 1．0：？ & 1．914 & 1.000 & 1.000 & 1．009 \\
\hline 1 & 3 & 37.0110 & 2．500 & 4．4：3 & 2.071 & 1403 & 1．1．35 & 1.111 & 3．uil：； & 1.011 & 1． n 40 & 1．tes \\
\hline & \(3{ }^{3}\) & 314.1000 & 3.500 & 1． 1480 & 2．102 & 1．13：7 & 1．1：1 & 1．（191 & 1．c．0 & 1.00 & 1.060 & 1， \\
\hline \(\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{ }}\) & 35； & 37.000 & 2.500 & 4． & 2.131 & 1．4＇？ & 1．16） & 1．134\％ & 1.010 & 1．019 & 1.060 & 1． 02011 \\
\hline 1 & 27 & 30.000 & 2．ヷロ & 14．8．74 & 1.097 & 1．214 & 1.10 .51 & 1．00： & 3．r．po & 1.010 & 1．000 & 1．110 \\
\hline & 29 & 31.000 & 2． \(7: 10\) & 4.30 & 1．9゙\％ & 1．\(\because 5\) & 1． \(0^{1}+1\) & 1.00 .6 & 1．100 & 1．1019 & 1．009 & 1．10n \\
\hline & 2H & 32.000 & 2.750 & \(4.11 \times 3\) & 2.043 & 1．3：3 & 1． w －2 & 1．0n： & 1．010 & 1．0n0 & 1．nu0 & 15150 \\
\hline & & 23．000 & 2．73：0 & 4．is\％ & 2.061 & 1． 110 & 1．cti： & 1.007 & 1．000 & 1．00n & 1.190 & 1． 14110 \\
\hline & ＊＊30 & 34.000 & 2．ゼロ & 4.473 & 2.110 & 1．342 & \(1.0 \%\) & 1.010 & 1．001 & 1.000 & 1.000 & 1．400 \\
\hline & 31 & 35.700 & 2.750 & 5.038 & 2.157 & 1.374 & 1．19：1 & 1．0！4 & 1.801 & 1.0110 & 1．030 & 1.000 \\
\hline & 32 & 36.010 & 2.700 & 5.000 & 2.201 & 1.405 & 1.110 & 1．119 & 1．70？ & 1.005 & 1.079 & ：． 0 Ot \\
\hline & 13 & 37.000 & 2．750 & 5.145 & 2．217 & 1.1 .37 & 1．1：14 & 1． \(0 \times 1\) & 1．00？ & 1.000 & 1.000 & 1.000 \\
\hline & 34. & 33.000 & 2．750 & 5． 5193 & 2.231 & 1，4：03 & 1．145 & 1.031 & 1.004 & 1.000 & 1.090 & 1.100 \\
\hline & \(3{ }^{3}\) & 39.000 & 2．750 & 5． 236 & 2.310 & 1．40\％ & 1.164 & 1.038 & 1.003 & 1.000 & 1.000 & 1.000 \\
\hline
\end{tabular}
＊Expected value of annual age－to－age factors that would be generated if the report lags of losses occuring，in each month are distributed according to the Welbull distribution with specificd parameters．
＊＊Report 19 g c．d．f．selected with respect to hoth crend models．

\section*{APPENDLX B}

\section*{EXAMPLE B: POC INSURANCE COMPANY}

Number of IBNR Occurrences Excess of \$75,000 at 1980 level as of \(6 / 30 / 79\)

Total number of IBNR occurrences excess of \(\$ 75,000\) for accident years 1973-78 as of 6/30/79 are estimated using the wethod described in Patrik (1978).
Total IBNR \(=\frac{(\text { (nown }) \cdot \omega}{1-\omega}\)
- 87.2 and 80.4 with respect to the exponential and econometric trend models, respectively.
where
Known a total number of known occurrences excess of \$75,000 for accident years 1973-78 as of 6/30/79.
- 171 and 158 with respect to the exponential and econometric tread models, respectively.
\(\omega=\frac{\sum_{0} E P_{m} \cdot\left[1-W\left(x_{m}\right)\right]}{E P}\)
- . 3375 for months \(m\) such that \(1 / 73 \leq \infty \leq 12 / 78\)
\(E P_{\text {m }}=\) monthly exposure base, in this case GL gross direct earned premium at present rates, for \(1 / 73 \leq \mathrm{m} \leq 12 / 78\).
\(E P=\sum_{\mathrm{m}} E P_{\mathrm{m}}\) for \(1 / 73 \leq \mathrm{m} \leq 12 / 78\)

\section*{APPENDIX B}
```

 W(\cdot) a selected report lag c.d.f. (see 'p.B3).
 \mp@subsup{x}{\textrm{m}}{\prime}= maximum Observable report lag; that 1s, for
 accident month m the difference between 6/30/79 and the mid-point of \(m\).
 Letting IBNR $(x ; 6 / 30 / 79)$ denote the number of IBNR
occurrences for accident year x as of $6 / 30 / 79$, the total IBNR
is allocated to accident year x using the formula:

$$
\operatorname{IBNR}(x ; 6 / 30 / 79)=R \cdot \sum_{m} E P_{m} \cdot\left[1-W\left(x_{m}\right)\right]
$$

```
where
\(R=\frac{\text { Known }+ \text { Total IBNR }}{E P}\),
\(1 / x \leq m \leq 12 / x\), and \(x=73, \ldots, 78\)

The assumptions underlying this IBNR method are:
1. homogeneous coverage groups
2. the ratio of ultimate number of occurrences to earned exposure is constant and independent of time
3. the report lag distribution does not vary with occurrence date.

EXMPLE b: PLC INSURAMCE COMTASY
Excess and Base Frequencies and Excess IBNR
by Accident Yecr at 1980 Level
Exponential Trend Model
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\(\stackrel{\square}{0}\)} & \multirow[b]{3}{*}{Aceident Year} & \multirow[t]{3}{*}{Present Level Gross Direct Earned Premium
\(\qquad\) (000)} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{Occurrences Excess of \$75,000}} & \multirow[b]{3}{*}{Frequency Excess of
\[
575,000
\]} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Base Frequency*}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { 苛 } \\
& \underset{y}{\mid c}
\end{aligned}
\]} & \multirow[b]{3}{*}{병} \\
\hline & & & & & & & & & & \\
\hline & & & (6/30/79) & (6/30/79) & Ulelmate & & c.d.f. (1) & c.d.f. (2) & & \\
\hline 1 & 1973 & \$24,524 & 46 & 0 & 46.0 & . 0019 & . 0108 & . 0128 & \(\underset{\sim}{*}\) & \\
\hline & 1974 & 21,860 & 43 & - 5 & 43.5 & . 0020 & . 0114 & . 0135 & - & \\
\hline & 1975 & 19,435 & 41 & 3.2 & 44.2 & . 0023 & . 01.31 & .c155 & & \\
\hline & 1976 & 19,685 & 24 & 12.5 & 36.5 & . 0019 & . 0108 & . 0128 & & \\
\hline & 1977 & 21,137 & 14 & 28.6 & 47.6 & . 0020 & . 0114 & . 9135 & & \\
\hline & 1978 & 22,701 & 3 & 42.4 & 45.4 & . 2020 & . 0114 & . 0135 & & \\
\hline & Selected & - & - & - & - & - & . 0108 & . 0135 & & \\
\hline
\end{tabular}
* Base fraquency \(=\) excess frequency divided by the probability of an occurrence exceedinp, \(\$ 75,000\) for loss amount c.d.f.(1) and c.d.f.(2).
** Based on the tanR method degcribed in Appendix B, pr. B4 and BS.

EXAFPLE B: PLC INSURANCE COFPANY
Excess and tase Frequenctes and Excess benk
by Accident Year at 1980 level
Econametric Trmd Hodel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Present Level & Occur & cea Exceas & of \$15,000 & & & & & \\
\hline & Accident Tear & Gross Difeck Earned Premium ....(000) & \[
\begin{gathered}
\text { Rnown } \\
(6 / 30 / 79)
\end{gathered}
\] & \[
\begin{gathered}
\text { IBNR** } \\
(6 / 3 n / 79)
\end{gathered}
\] & Ultimate & Prequency Excess of 575,000 & \[
\begin{array}{r}
\text { Bese } F \\
\text { c.d.f. (3) }
\end{array}
\] & \begin{tabular}{l}
queney* \\
c.d.f. (4)
\end{tabular} & & \\
\hline 1 & & & & & & & & & & \\
\hline 8 & 1973
1974 & \(\$ 26,524\)
21,860 & 65
40 & 0
.4 & 64.0
40.4 & .0019
.0018 & .0101
.0096 & . 0104 & & \\
\hline - & 1974
1975 & 21,860
19.435 & 40
32 & .4
2.9 & 40.4
34.9 & .0018
.0018 & \[
\begin{gathered}
.0096 \\
.0096
\end{gathered}
\] & .0099
.0099 & & \\
\hline 1 & 1975 & 19.685 & 23 & 11.5 & 34.5 & . 0018 & . 0096 & . 0099 & & \\
\hline & 1917 & 21,131 & 14 & 26.4 & 40.4 & . 0019 & . 0101 & . 0104 & \({ }_{\square}\) & \\
\hline & 1978 & 22,701 & 3 & 39.2 & 42.2 & . 0019 & . 0203 & . 0104 & 哥 & 빤 \\
\hline & Selected & - & - & - & - & - & . 0096 & . 0104 & \(\times\) & \\
\hline
\end{tabular}
* Dase frequency - excesa frequency divided by the probability of on ocurrence exceeding s 5,000 for lass amount c.d.f.(3) and c.d.f.(4).
** Resed on the IBNR mathod described in Appendix B, PP. B4 and 85.

\section*{C1}

APPENDIX C

\section*{EYAMPLF: B: PAC INSURANCE COMPANY RISKMODEL RUN}

RISKMOIEL
L:O NOT FANIC IF YOUI MAKE AN ERPOR HHILE INPUTIING, OPPORTUNITY TO CHANGC LATER.
```

ENTER MAJOR GROUP NGMES AS FOLLOWS. /GRPI/GRP=
NOTE: MÜST` FE IN QUOTES. FOR MORE THAN I LINE OF INPUT, USE .D
0:
'8GL/2008GL/2508GL/3508GL/500+'
ENTER THE NUMGER DF PARAMEIERS, E.G. 5
0:
4
ILO YOU WISH TO (1) INPUT VECTOR OF LIMITS, OR
(2) USE MATRIX OF LIMITS PREVIOUSLY CREGTEII. I OR 2.
[
EHtER YॅhE name of the matrix of limits previously create[i
fOTE: NGIME SHOULII HAVE PREFIX LIM
LIMPRC

```
IIO YOU WISH TO SEE THE LIM MATRIX. Y OR N
\(Y\)
    LIMITS
\begin{tabular}{ccc} 
LOWER & UPPER & INIIEX \\
0 & 100000 & 1 \\
100000 & 200000 & 0 \\
100000 & 100000 & 1 \\
0 & 250000 & 0 \\
10000 & 100000 & 0 \\
0 & 350000 & 1 \\
10000 & 100000 & 0 \\
TOAKE ANY CHANGES IN THE LIH HATRIX. YORN
\end{tabular}
40 Yue UlSII 10
(1) INPUY VECTOR OF PARAMETERS FOR THE FIRST SUHGROUP OR
(2) USE mATRIX OF PARAMETERS PREVIOUSLY CREATEL, 1 OR 2
0:
            2
enter the name of the matrix of parameters previously created
NOTE: NAME SHOULD HAVE PREFIX PAR
PARPAC
DO YOU WISH TO SEE THE PAR MATRIX. Y OR N
Y
(The PAR matrix is displayed in Table 6A)

APPEITDIX C
EXAMPLE B：PGC INSURANCE COMPAIFY RISMMODEL RUN
```

HO YUU WISH TO mAKE ANY CHANGES IN THE PAR MATRIX, Y OR N
N
GP!DUPS ANII PARAMETER INPUT COMPLETE[
TO P\&GCESS INTERMELIATE CALCULATIONS. HIT EXECUTE

```
fO YDU WIGH TO PRINT THE. INTERMEIINTE CALCULATIONS,
P[S:A], P[S.H],E[S],E[S*2],E[S:3], Y OR N
\(Y\)

LAYER 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6POUPS & & P［S：A］ & P［S．E］ & E［S］ & E［5＊2］ & E［SM3） \\
\hline 6L／200 & 1 & 1.000 & ． 114 & 2．544E04 & 1．270E09 & 8.047613 \\
\hline GL／ 200 & ？ & 1.000 & ． 075 & 2． \(394 \mathrm{EO4}\) & 1.147509 & 7.112 E 13 \\
\hline GL／こ00 & 3 & 1． 000 & ． 122 & 2．591E04 & 1.317509 & B．3U4E13 \\
\hline GL／こ00 & 4 & 1.000 & ． 118 & 2．568E04 & 1．272E． 09 & B． 225 E 13 \\
\hline GLノご吅 & 1 & 1． 000 & ． 114 & 2．S4 UE04 & 1.270 E 09 & Q．047E13 \\
\hline 6LノE0 & 2 & 1.000 & ． 095 & 2．394E04 & 1.147509 & 7．112E13 \\
\hline GLブさ0 & 3 & 1． 000 & ． 122 & 工．591E04 & 1.312509 & B． 384 E 13 \\
\hline －1．入す！ & 4 & 1.000 & ． 118 & 2．568E04 & 1.292509 & 8．225E13 \\
\hline GL／3ड0 & 1 & 1.000 & ． 114 & \(2.544 E 04\) & 1．270E09 & 8.047513 \\
\hline GL／3E0 & 2 & 1.000 & ． 095 & 2．394E04 & \(1.147 E 09\) & \(7.112 \mathrm{El3}\) \\
\hline GL／350 & 3 & 1.000 & ． 122 & 2．591E04 & 1.312 E 09 & 8．301E13 \\
\hline CL／3：0 & 4 & 1.000 & ． 118 & \(2.568 E 04\) & \(1.292 E 09\) & B． 225 E13 \\
\hline GL／E00＋ & 1 & 1.000 & ． 114 & 2．544E04 & 1.270 E09 & 8.047513 \\
\hline GL／500＋ & 2 & 1.000 & ． 095 & 2．394F04 & \(1.147 E 09\) & 7．112E13 \\
\hline GL／500＋ & 3 & 1.000 & ． 122 & 2．591E04 & 1.312509 & B．384E13 \\
\hline GL／500＊ & 4 & 1.000 & ． 118 & 2.568504 & 1.292509 & \(8.225 E 13\) \\
\hline
\end{tabular}

APPERDIX C
EXAMPLE B: PGC INSURANCE COIPAUTY RISKIODEL RUN
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{LAYER 2} \\
\hline GRDUPS & & P[S:A] & P[5:8] & E[S] & E[S*2] & E[5*3] \\
\hline GL/200 & 1 & . 114 & . 020 & 1.147E04 & \(1.623 E 09\) & \(2.397 E 14\) \\
\hline GL/200 & 2 & . 095 & .025 & 9.503E03 & 1.342E00 & 1.972 F 14 \\
\hline GL/200 & 3 & . 172 & . 031 & 1.233E04 & 1.74 ? 1.09 & 2.572E14 \\
\hline CL/200 & 4 & . 118 & . 031 & 1.195E04 & 1.692609 & 2.490E14 \\
\hline OL/250 & 1 & . 114 & . 017 & 1.414 E .04 & \(2.217 E 00\) & 3.718E14 \\
\hline 6Lノ250 & 2 & . 095 & . 015 & 1.171E04 & 1.834E09 & 3.074E14 \\
\hline 6L/250 & 3 & . 122 & . 019 & 1.522E04 & 2.391509 & 4.015E14 \\
\hline 6L/250 & 4 & . 11 B & . 018 & \(1.474 E 04\) & 2.315E09 & \(3.886 E 14\) \\
\hline SL/350 & 1 & . 114 & . 007 & 1.705 EO & 3.073 E 09 & \(6.254 E 14\) \\
\hline GL/350 & 2 & . 095 & . 007 & 1.419EO4 & 2.562E09 & E. 233 E 14 \\
\hline GL/350 & 3 & . 172 & . 008 & 1.937E04 & 3.316509 & 6.75TE14 \\
\hline GL. \(/ 350\) & 4 & . 118 & . 008 & 1.780E04 & \(3.214 E 09\) & 6.550E14 \\
\hline GL/500* & 1 & .114 & . 003 & 1. 843E04 & 3.849E09 & \(9.493 E 14\) \\
\hline GL/500+ & 2 & . 095 & . 003 & 1.507E04 & 3.259E09 & B.154E14 \\
\hline GL/E00+ & 3 & .172 & . 003 & 2.037E04 & \(4.144 E 09\) & 1.021E15 \\
\hline GL/500+ & 4 & .118 & . 003 & 1.977E04 & 4.026E09 & \(9.944 \mathrm{El4}\) \\
\hline
\end{tabular}

TO PROCESS MORE IATERMEDIGTE CALCULGTIONS, HIT EXECUTE
ENIER EPSILON(S) FOR WHICH PROH(LOSS. AAX. PROE. LOSS) = EPSILON. (O`ES.S) [:
1.05 .01

HOW FDP THE FINAL PRINTDUS
ENTEP COMPANY NAME
EXAMPLE E: PRC INSURANCE COMPANY-GENERAL LIAEILITY
ENTER YOUR NAME (EG. J. SHITH)
RGLPH M. CELLARS
ENTER TOLIAY'S IIATE (EG. JAN. 1. 1979)
DCTOHER 31. 1979
ENTER IN PARENTMESIS ANI QUQTES A SEVEN CHARACTER NAME FOR THE UNITS (E,G. '(NOCTORS)' OR '_-(EEIS)_')


AIJUST PAPER TO TOP OF NEW PAGE HIT EXECUTE
(The main output is displayed in Table TE)

APPENDLX D

\section*{Probability Distribution Definitions}
\(\frac{\text { Negative Binomial }}{\text { density: } f(x \mid p, a)}=\binom{a+x-1}{a} p^{a}(1-p)^{a}\) for \(x=0,1,2, \ldots\).
where \(p, a>0\).
This is our basic model of the loss occurrence (count)
process. Note, if \(\operatorname{Var}[\mathrm{N}]+\mathrm{E}[\mathrm{N}]=1\), then RISKMODEL
assumes that the occurrence process is Poisson with \(\lambda=E[N]\).

\section*{Four Parameter Loss Amount Distributions}
\[
\text { c.d.f: } \quad G_{S}(x \mid \alpha, \beta, t, X P)= \begin{cases}\frac{X Q}{H(t \mid \alpha, \beta)} H(x \mid \alpha, \beta) & \text { for } 0<x \leq t \\ X Q+X P \cdot\{H(x \mid \alpha, \beta)-H(t \mid \alpha, \beta)\} & \text { for } x>t\end{cases}
\]
\[
\text { where } \begin{aligned}
t & \geq 0,0<X P \leq 1 \\
X Q & =1-X P \cdot\{1-H(t \mid a, B)\}
\end{aligned}
\]
\(H(x \mid a, E)\) is some c.d.f. for \(x>0\) with parameters \((a, B)\). RISKMODEL's present library of choices for \(H(\cdot \mid a, \beta)\) are (1) = lognormal, (2) - Pareto and (3) - Heibull. Definitions of each of these distributions are given below.
density: \(g_{S}(x \mid a, \beta, t, X P)= \begin{cases}\frac{X G}{H(t \mid a, \beta)} h(x \mid a, \beta) & \text { for } 0<x \leq t \\ X P \cdot h(x \mid a, \beta) & \text { for } x>t\end{cases}\)

APPENDIX D

A graph of the densicy \(g(\cdot \mid a, B, t, x P)\) in general looks like:


\section*{(1) Lognormal}
\[
\text { c.d.f: } H\left(x \mid \mu, \sigma^{2}\right)=\left(\frac{\log x-\mu}{\sigma}\right) \text { for } 0<x<\infty
\]
where \(\Phi(\cdot)\) is the standard normal \((0,1)\) C.d.f. and \(\sigma>0,-\infty<\mu<\infty\).
density: \(h\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma x} \exp \left(-(\log x-\omega)^{2}\right)\)

\section*{(2) Pareto}
\[
\text { c.d.f: } H(x \mid \beta, \sigma)=1-\left(\frac{\beta}{x+\beta}\right)^{\delta} \quad \text { for } x \geq 0
\]
where \(\beta, \delta>0\).
density: \(h(x \mid B, \delta)=\delta \beta^{\delta}(x+\beta)^{-\delta-1}\)

APPENDIX D

\section*{(3) Weibull}
\[
\begin{aligned}
\text { c.d.f: } & H(x \mid B, \delta)=1-\exp \left\{-\left(\frac{x}{B}\right)^{\delta}\right\} \quad \text { for } x \geq 0 \\
& \text { where } B, \delta>0 \\
\text { density: } & h(x \mid B, \delta)=\delta B^{-\delta_{x} \delta-1} \exp \left\{-\left(\frac{x}{B}\right)^{\delta}\right\}
\end{aligned}
\]

For more details on probability distributions, aee Hastinga and Peacock (1975) or Johnson and Koty \((1969,1970)\).```

