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I. INTRODUCTION

An excess-of-loss reinsurance treaty provides the primary
insurance company (cedant) with reinsurance protection covering
a certain layer of loss for a specified category of individual
(direct) insurance pelicies. Hence, for each loss event (occur-
rence) coming within the terms of the treaty, the reinsurer re-
imburses the cedant for the dollars of loss in excess of a cer-
tain fixed retentlon up to some maximum amount of liability per
occurrence. For example, 1f the cedant’'s retention is $100,000
and the reinsurer's limit of liability 1s $400,000, then the re-
insurer covers losses in the layer $100,000 up to $500,000; in
reinsurance terminology, this is the layer $400,000 excess of
$100,000. The reimbursement generally takes place at the time
that the cedant relmburses the injured party. Allocated loss ad-
justment expenses are usually shared pro rata according to the
loss shares, although in a few treaties they may be included in
with the loss amounts before the retention and reinsurance limit
are applied.

In this paper, casualty coverage will mean either third
party liability coverage or worker's compensation coverage, al-
though on certain treaties it may be broader. For example, for
automobile insurance, firsct party coverage may be included within

the terms of the excess treaty along with the third party coverage;
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in any case, the total loss covered per occurrence is added to-
gether before application of the retention and the reinsurer's
limic.

A working cover Is a treaty on which the reinsurer expects
to pay some losses; reinsurance underwriters say that the cover
is substantially exposed by the primary imsurance policy limits.
Typically, layers below $1,000,000 per occurrence for casualty
coverage are considered to be working covers. For a more com-
plete discussion of this coverage, see Reinarz (1969), The Iasur-
ance Institute of London (1976) or Barile (1978).

An excess-of-loss casualty working cover i1s typically a
large, risky contract. The annual reinsurance premium is usually
six figures and quite often is millions of dollars. Although
losses are expected, the number of losses to the treaty and their
sizes are highly uncertain. Each cedant's insurance portfolio is
unique, so there are no simple standard reinsurance rates. Indus-
trywide average increased limits factors might be used as a starting
point for pricing; however, competition and uncertainty force the
relnsurer to be more sophisticated in his analysis of each proposal.
A further complication is that the reinsurer usually has much less
information to work with than does his primary insurance colleague.
The reinsurer is provided with often vague and incomplete estimates
of past and future exposure, of underlying coverage, of aggregate

ground-up direct losses, and with some details about the very few
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historical large losses which are known. The final price will
be reached by compe:ic(.ive bidding and by negotiation over par-
ticular contract terms. To compete, the reinsurer must work
wi.r.hin severe time and manpower constraints to estimate a price
which he believes to be adequate and which he can justify to
the cedant.

Pricing excess—of-loss casualty working covers with any
degree of accuracy is a complex and difficult underwriting and
actuarial problem. We believe that the general theoretical
pricing problem will remain insolvable: there will always be
more questions than there are answers. However, in the spirit
of a "Call for Papers'", we offer a progress report on our work
to date, lnowing that we have only the beginnings of a truly sat-
isfying practical solution. We will illustrate the actuarial
problem by pricing two relatively simple and representative treaties.
The approach is mathematical/actuarial; underwriting considerations
are only briefly and incompletely mentioned, although these are very
important. Some general solution criteria are presented and some
tentative partial solutions are discussed. Although the point of
view is that of a reinsurance actuary, we believe that the general
approach may be of iInterest to other actuaries and that some of the
particular techniques will be immediately useful to our primary in-
surance colleagues. ’

Any complicated procedure such as the one presented in this
paper develops over time from the work and ideas of many people.

-~ 402 -



We wish to acknowledge the help of a few who have contributed
to this development: Ralph Cellars, Howard Friedman, Charles

Hachemeister, Mark Kleiman, Stephen Orlich, James Stanard and

Edward Welssner.

II. TWO TREATY PROPOSALS

Reinsurers often receive proposals for which historical
data are virtually non-existent. Such is the case when a newly
formed or an about-to-be-formed primary company seeks reinsur-
ance coverage or when an existing company writes a new insur-
ance line or a new tertitory. There may be some vaguely anal-
ogous historical data, general industry information and some un-
derwriting guesses about next year's primary exposure, coverage,
rates and gross premfum. An example is that of a new doctors'
mutual offering professional liability coverage to the members

of the medical society in state A.

Example A: A Doctors’ Mutual Insurance Company
Proposal
1. reinsured layer: $750,000 excess of $250,000
per occurrence; no annual aggregate re-
insurance limit; allocated loss adjustment

expense shared pro rata acc'ording to loss share.
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. underlying coverage: professional liability
claims~made coverage for limits of
$1,000,000/$3,000,000 per claimant/
annual agpregate per doctor using the
standard 1SO policy form.

3. coverage period: beginning July 1, 1980

and continuous until terminated.

&~

. reinsurance rate: the offer is 25% of the
gross direct earned premium with a 20%
ceding commission and brokerage fee -

(thus, the ner rate is 20%).

Informacion

5. exposure estimate of 500 doctors; no class
breakdown.

6. class definitions - identical with ISO classes.

7. list of claims-made rates to be charged by
doctor class for $1M/$3M limits.

8. summary of calendar/accident year 1974 - 1978
aggregate known losses and earned premiums
for state A doctors covered by the BIG
Insurance Company.

9, details about the five known losses paid or
presently reserved for more than §100,000

in state A for accident years 1974 - 1978,
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10. a booklet describing the organization and finan-
cial structure of the doctors' mutual, to-
gether with biographies of the principal
managers, claims-persons and attorneys and
a statement of a get-tough attitude toward
defending professional liability claims.

11. other miscellaneous letters and memos stating why

this is an especially attractive deal for
the reinsurer and the doctors.

It should be apparent that most of this information is only
indirectly useful for pricing the reinsurance coverage. The
offered rate must be analyzed using analogous industry information.
There is great umcertainty regarding the potential loss situation.

At the opposite extreme is the treaty proposal for which
there is a great wealth of historical information. This 1is some-
times the case when a treaty has been in place for many years with
only minor changes, such as increasing the primary retention over
time to parallel the inflation in individual loss amounts. If a
reinsurer has been on the treaty for a few years, his underwriting
and claims-persons have gotten to know the primary company people
and have audited the treaty accounts. Thus, there is less uncer-
tainty regarding the potential loss situation. A much simplified

example of this situation is considered (only one line of business).
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Example B: P&C Insurance Company
Proposal

1. reinsured layer: $400,000 excess of $100,000
per occarrence; no annual aggregate rein-
surance limit; allocated loss adjust-
ment expense shared pro rata according
to loss share.

2. underlying coverage: general lisbility premises/
operations coverage, mainly in state B,
written at varfous limits for bedily in-
jury and property damage liabilicy.

3. coverage period: beginning January 1, 1980
and continuous until terminated.

4, reinsurance rate: the net rate is to be nego-
tiated as a percentage of gross direct

earned premium.

information
5. estim-ar.e of 1980 gross direct earned premium.
6. estimate of 1980 premium by policy limir.
7. summary of calendar/accident year 1969 - 1978
aggregate known losses as of 6/30/79 and gross
earned premiums for P&C's general liability cov-

erage insurance portfolio.
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8. list of rate changes and effective dates for this
line of business for 1969 chrough present and
information that no change is contemplated
through 1980.
9. detailed 1listings of all 358 general liability losses
occurring since 1969 which were valued greater than
$25,000 as of 6/30/75, 6/30/76, . . . or 6/30/79.
At each evaluation, the information listed for
each loss includes the following:
a) 1identification number
b) accident year (occurrence)
c) amount of loss paid
d) amount of loss outstanding
e} policy limits
The evaluation of these two treaty proposals will illustrate
the pricing procedure. Note that for example A we are to eval-
uate an offered rate, while for example B we are to propose a net
rate and negotiate.
Before proceeding with the details, we believe it necessary

to discuss some general pricing philosophy.
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I11. PRICING PHILOSOPHY

An insurance contract may be thought of as a financial
stochastic process - a random pattern of pav-ins and payouts
over time. The financial repercussions of a casualty excess-
of-loss treaty may continue for 20 years or more. Thus, a
reinsurer must consider the many aspects of this financial
process to be able to estimate prices which are reasonably
consistent with broad corporate policy. An actuarial goal is
to combine all the contract financial parameters and all the
corporate (underwriting) decision-making criteria into one
comprehensive premium calculation principle or function -

a black box which for each particular treaty produces the final
premjium or, more realistically, a negotiable premium range.
Such a black box will not be purely mathematical, but will re-
quire substantial subjective input.

Present actuarial knowledge is short of this utopian goal.
However, actuaries and underwriters have identified certain
major contract parameters and declision-making criteria which
should be considered when evaluating a particular contract., See
Pratt (1964), Reinarz (1969), Bthlmann (1970), Gerber (1974) and
Freifelder (1976) among others for discussions of premium
calculation principles.

We believe that a reinsurer should consider the following

items for each treaty either explicitly or implicitly:
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1. The potential distribution of the aggregate loss to be
ultimately paid by the reinsurer. Although the whole (past and
future) coverage period should be considered, most important is
the potential distribution of the aggregate loss arising from the
next coverage year. The potential distribution of the aggre-
gate loss 1s based upon the reinsurer's subjecrive evaluarion of
the situation and is difficult to specify in detail. Consequently,
only certain major characteristics are estimated, such as the ex-
pected value, the variance or standard deviation, and certain per-
centiles, such as the 90th, 95th and 99th.

2. The potential distribution of the cash flow. The overall
pattern over time iIs of interest, but more easily understood is the
present value of the cash flow generated by the next coverage
year. This random variable is distributed according to various
price assumptions and the reinsurer's subjective assessment of the
potential distributions of aggregate loss, payout patterns and in-
vestment rates-of-return. S8ince the loss payout varies by line of
business, consideration of the potential distribution of this pres-
ent value for each treaty may provide a more reasonable basis of
comparison than does item (1).

3. Various corporate parameters and decision-making criteria.
These include the following:

a) the potential distributions of aggregate loss
and/or present value of cash flow estimated

on the rest of the reinsurer's contract portfolio.
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b) the reinsurer's financial surplus, both the
current evaluation and the potential distribution
of future values due to reserve changes and
losses arising from the rest of the contract
porcfolio.

c) the reinsurer's financial assets and investment
opportunities.

d) various corporate goals, e.g., 'growth and
profits with honor" (David J. Grady, address
at the March 7, 1979 Casualty Actuaries of
New York meeting).

e) the reinsurer's attitude toward the trade-—off
of risk versus rate-of-return on each contract
and on his whole reinsurance portfolio.

Items (a) - (e) are meant to indicate some of the congsidera-
tions which might define a utility function for corporate decision-
making. For any typical treaty evaluation, it may be possible to
localize our attention and only reflect these global considera-
tions indirectly. However, in the long run they may not be ig-
nored.

Other more aembiguous {tems which a reinsurer might consider
include:

4. The surplus necessary to "support" the treaty from the
reinsurer's point-of-view. The seller of any insurance or re-

insurance contract exposes part of his surplus or net worth to
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the risk that the loss will exceed the pure premium. Although

it seems reasonable that some amount of surplus might be allo-
cated to support any contract, there is yet no sarisfactory
theoretical functional definition. Note that this "supporting
surplus'” per treaty may not sum to the reinsurer’'s total surplus;
he may be interested in surplus allocation on a relative basis:
Does treaty A need more ''supporting surplus' than treaty B?

5. The potential distribution of rate-of-return on the
"'supporting surplus” for this treaty relative to the rates-of-
return on other treaties in the reinsurer’s contract portfolio.

It should be apparent that neither we nor anyone else has a
premium calculation principle which explicitly considers all these
items. They are listed here to illustrate the complexity of the
problem of accurately pricing reinsurance treaties. (Indeed, we
would argue that it is almost as difficult to price any other
large insurance contract or group of contracts.) We believe that
thoughtful reinsurance underwriters do evaluate treaty proposals
along these or similar lines. To model this process reasanably
well is difficult but not impossible, since there are many good
theoretical models and estimation techniques available to the
modern actuary.

0f all the items, item (1), the potential distribution of
aggregate loss to the reinsurer, is the least amblguous and the

most important. Thus, the remainder of this paper concentrates

- 411 -



upon the estimation of this distribution for excess-of-loss
casualty working covers. We will describe a reasonable mathe-
matical model for this distribution and an estimation procedure

for parameterizing the model.

1IV. AN AGGREGATE LOSS MODEL

This section describes a mathemarical model for the aggre-
gate losses to be paid out on a particular insurance contract.
The general insurance loss model will then be specialized for an
excess-of-loss reinsurance treaty. The model is based upon the con-
cepts of collective risk theory developed by Blhlmann and others:
for example, see Bithlmann (1969) and Beard, Pentikiinen and Pesonen
(1977). The model is designed to allow the observer to account
for and quantify his uncertainty regarding the "true" distribu-
tion of agprepate loas for a particular insurance contract(s).
This uncertainty arises from many sources; among them are:
1. Any particuler probability model is inexact.
2. Any parameters estimated from sample data are random;
that is, subject to sampling errors.
3. The historical loss data may not be at final settle-
ment values, but are themselves random estimates.

4. The proper adjustments for inflation over time are unknown.
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5. The underlying insured population for the coverage
period to be evaluated is different from the past
population.

6. There are often data errvors and analytical blun-
ders.

The model will be developed from a subjective Bayesian

viewpoint; the particularization of the model is determined

from the viewpoint of an observer at a particular time with
particular information. An honest competent reinsurer and an
honest competent cedant would most likely have different final
parameterized models for any givén treaty. For a further dis-
cussion of subjective or "personal' probability, see Savage (1954)
and Raiffa (1968).

The collective risk model describing the distribution of
aggregate loss consists of many possible particular probabilicy
models, each of which is given a "weight" based upon 1ts subjective
likelihood. In this way, the total uncertainty regarding the par-
ticular outcome which will be realized is broken down into two
pleces: 1) the wuncertainty regarding the 'best" particular model,
sometimes called the parameter risk, and 2) the uncertainty re-
garding the actual loss value to be realized even when the~parcic-
ular probability model is known, sometimes called process risk.
See Freifelder (1976) or Miccolils (1977) for further discussions

of these actuarial concepts,
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We will use the term "parameter” in a broader sense than

is customary. A "parameter" will consist of a complete speci-
fication of a particular probability model such as the lognormal,
or group of models, together with their usual parameters. Our
uncertainty as to which parameter is "best' will be defined by a
subjective probability distribution on the set of possible para-
meters.

It is easier to start with the case where the parameter is
known (the particular model is specified). Let the random variable
L denote the aggregate loss to be paid out on a given insurance
cor ract for a particular coverage year. We begin by assuming that
the total coverage (exposure) can be split into independent homo-
geneous coverage groups in the following manner. Suppose that L

can be written as:

(4.1) L = L1 +L +.,..+L

where Li = random variable denoting the aggregate loss for

group i, 1 =1, 2, . . ., k.

Further, suppose that each L1 can be written as:

(4.2) L =~ X +X _+...+X
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vhere Ny = random variable denoting the number of losses
(occurrences) for group 1.
xij = random vartable denoting the size (loss amount)

of the jth loss for group 1.

Croupa may be defined by any grouping of insureds or cov-
erage which our power of analysis can reasonably and credibly
separate. Examples of groups could be:

1. distinct groups of classes of insureds or coverages.

2. similar insureds grouped by distinct policy limit.

3. the overall coverage time period split into sub-periods.
Por example A, our groups will be defined by year of coverage and
IS0 doctor class (the older seven class scheme). For example B,
our groups will be defined by combined bodily injury and property
damage policy limit.

Let F(x|8) = Prob[L < x[8] be a particular c.d.f. (cumulative
distribution function) for L with known parameter 6., Think of 6 as
being a comprehensive parameter (vector) containing all the para-
meters necessary to specify the particular c.d.f.'s for the Li's'

Ni's and Xij'a. Now make the following assumptions:

Assumption 1: Given 6, the Li's are stochastically independent.
Asgumption 2: Given 8, the xij's are stochastically independent of
the Nil 8.

Assumption 3: Given @, for fixed 1, the X1 's are stochastically

]
independent and identically distributed.

- 415 -



These assumptions split the total coverage into independent homo-
geneous coverage groups.

The model with known parameter 8 has very nice properties.
The first property is that F(x|8) 1s the convolution of the c.d.f.'s

for individual groups:
(4.3) F(x|8) = Fl(x|6)"l-‘2(xl0)* *Fk(x‘B)

vhere Fl(xle) - P‘rob[Li < x|e2 for 1 =1, 2, ..., k.

Prom this it follows that the cumulants of L given & are straight-

forward sums of the cumulants of the Ly's given €:
4 -
(4.4) Km(Lle) E Km(Lile)

vhere Ky(L[€) 1s the mth derivative of the logarithm of the
moment generating function of L evaluated at 0 (if it exists).

Likewise for the K (Lyle)'s.

See Kendall and Stuart (1966), pp. 157ff, for a discussion of cumu-

lants. In particular, the first three cumulants add:

kK ey = EfL]e] = ¥ Ef1,]e]
1 i 1

(4.5) KZ(LIG) = var[L]6] = Vat[!.1|9]

1
1
K (L8 - -
¢ fe) “s“"“ : us(Lile)
where um(L|0) - p{(L - D:LIB])mle]
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Because of assumptions 2 and 3, each Fi(x[B) can be written
in terms of the c.d.f.'s of Ny and Xy, where Xy 1s the common

loas amount random veriable for group 1:

.6  F(x[8) = ] Prov(x =aleleci"x]e)
n
wvhere Gi(x|e) - l’robL’}(1 < x}e] for 1t =1, 2, ..., k.

A consequence of (4.6) 1s that the first three moments of Ly

given € may be written:
Hiyle] = e0x [07-E[x, fe]
4.7) Var[Lilej - E[Ni|e]-Var[X1|6] + Var[Nile]-ECxilejz
“3(L1|°) - E[Nilej-ua(xlle) + “3(“1‘9)'E[x1|°]3

+ 3-Var[NilB]-E[X1|e]-Var[Xi]9]

The scheme will be to develop parameterized models for the Ni'5
and Xi's. calculate their first three moments given 8, and then use
(4.7) to calculate the first three moments of the L,'s and use (4.5)
to calculate the first three moments of L given 6.

The collective risk model is obtained by deleting the restriction
that & is known. Instead, assume that the set § of possible para-

meters is known and that we can specify a subjective probability dis-
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tribution U(B) on f which gives the subjective likelihood of each
subset of . Bithlmenn (1970) calls U(6) a structure function.
For simplicity, assume that  is finite so that U(8) is a discrete

probability:

Assumption 4: 0 is the finite set of possible parameters and

U(8) 1s the likelthood of the parameter 8.

N end U(8) specify the observer's uncertainty regarding the "best"
parameter.

With & and U(8) specified, the unconditional c.d.f. F(x) of
L 15 the weighted sum of the conditional c.d.f.'s F(x|e):
(4.8) F(x) = ] F(x|8)-u(3)

e

Likewise, for each Fi(x). the c.d.f. of L;.

A consequence of (4.8) 1s (Bihlmann (1970), p. 66):

4.9) EfL™] = | E[1%]e]-U(e) form=0, 1, 2, ...
8

Likewise, for each Li'

With & unknown, assumptions (1) - (3) may no longer hold, for
the uncertainty regarding 6 may simultaneously affect the model at
all levels. For example, the c.d.f.’'s of the Ly's are usually sub-
Jectively derived from historical data altered by loss development

and inflationary trend assumptions. The assumptions made simultane-
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ously about each l.i and Lj are usually not independent, i.e., the
particular parameters for the c.d.f. of 1‘1 are correlated with the

particular parameters for the c.d.f. of Lj' Symbolically:

E[LiLj] = gE[LiLj|8]-U(6)

(4.10) - z E[LileJ'EEL |e].u(e)
H hl

¥ (] elLyfel-uce)) -] E[L,[83-u(e))
8 2] 3

When & 1s unknown, equations (4.3) - (4.7) usually no longer

hold. In perticular, equation (4.5) now holds only for the first

moment :
£l =} E)
i
Km(]_) ¥ E K (L) for m ¢ 1
(4.11)
™) ¢ ] E[L';'_] for m# 1
i
u (L) ¢ ; (L) for m ¢ 1
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Thus, the moments of L must now be evaluated directly from (4.9)
by using (4.5) and (4.7); likewise for each Li' For example, the

second moment of L is now written:

E12) ¥ E(12]e]-u(e)
3]

(4.12) = Y(var{r{e] + E[L|6]2}-U(0)
8

IX{¢) var(L [eD)+(] EELileJ)Z}-u(e)
6 1 1

Continue the expansion using formula (4.7).

Likewise for each Li'

This general collective risk model may be specialized to the
case of an excess-of-loss reinsurance treaty. Suppose that the
treaty covers group 1 losses in the layer from L9 (retention) up to
_bi'

ways. The first interpretation views X 3 as the excess portion of

The general model may be specialized 1n at least two different

each loss. We drop the subscript 1 in the following:

Model 1 Notation:
N = random variable denoting total number of non-

zero losses ground-up.
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X = random variable denoting that part between
t and b of each ground-up loss.

S = random variable denoting the ground-up loss
amount.

Given that a loss has occurred, X and S are related by:

0 if S=<r
(4.13)
X = S-r ifr<Sc<b
b-r if b < S

Thus, the c.d.f.'s of S and X given 6 are related by:

G e if x <0
(6.14) (1o <
Gx(xle) = Gs(x-ﬂ'le) if O<x<b-r
1 if b-rsx

If N is to denote the number of excess losses, then use the

second specialization:

Model 2 Notation:
N = random variable denoting the number of excess
loss occurrences.
X = random varidble denoting the size of an excess
loss, given that an excess loss has occurred.

BN = random variable denoting the total number of non-
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zero ground-up losses, called "base number".
S = random variable denoting the ground-up loss

amount.
With known parameter 8, the c¢.d.f.'s of N and BN are related
by:

Prob[N=n|s] = Z(Prob[BN-mIe]-(m) x

(4.15) m>n a o
(1 =G (elan™eGo(x|0)" )

where Gg(r|e) = Prob[s < r|e]

In particular, it is easy to show that:

(4.16) Bnjed = E[BNjOJ (1 - Go(xie))

Likewise, the c.d.f.'s of X and S for Model 2 are related by:

0 if x<0

1

6.17) G (x]@) = ¢ Go(x#r]0)e(1 ~ G (r[))T 4f O<x<b -

1 1#f b-r<x

Model 1 1s easier to work with since the definftion of N remsins
the same when different retentions are considered. But, it 1s easy
to trade back and forth between the two models and, most importantly,
they both yield {dentfcal answers for the distribution c_>f L. We pre-
fer to use Model 1, 80 hereafter N will be the number of non-zero
ground-up losses.

The next three sections show how this general model may be used

to evaluate the loss potentials of particular treaties. To do so, we
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must:
1. s=specify the homogeneous groups.
2. spectfy the set of possible parameters  and
the subjective likelihood U(8), of each & in f1.
3. calculate (using a computer package) the mom-
ents and approximate various percentiles of L
from the moments of the Ny's and X;'s given the

8's.

V. PARAMETER ESTIMATION: EXAMPLE A

The most difficult part of this aggregate loss evaluation
procedure is eatimating the parameters to be used in the models.
The estimation for A Doctors' Mutual Insurance Company, example
A, will 1llustrate the case where there are no credible historical
loss data directly related to the exposure. In this case, general
industry information must be used together with smubstantial judge-
ment. In general, in this sftuation we presently estimate three
parameters based upon low, medium and high loss frequency and se-
verity assumptions (We purposely use the word "medium" to avoid the
statistical theoretic connotations of words such as "mean" and
"“medfan'.) For example A, the estimates will be based upon Insur-

ance Services Office ratemaking data and further modified by judge-
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ment based upon the NAIC Medical Malpractice Closed Claim Sur-
veys (1977) and (1978),

The groups for example A are selected to be the seven doc-
tors classes in the old I50 class plan because we believe there
are sufficient data to separate these classes for loss frequency
and severity. The complete parameter matrix 1s displayed in
Table SA. It looks formidable but is really quite simple; much
of tt is repetftive and based upon standardized judgement. Each
class 18 represented by three rows: the low 6 is the first row
for each class, the medium 8 is the second row for each class and

the high 8 1s the third row for each class. In Section VII these

parameters will be input to a Prudential Reinsurance Company com-
puter package named RISKMODEL which will calculate the moments of
the aggregate loas L for the layer $750,000 excess of $250,000 for
the coverage year 1980/81 using the formulas from Section IV. The

package algo approximates selected percentiles of the distribution of L.

The form of the parameterized c.d.f.'s we shall use for the dis-
tridbution of the number of loss occurrences Ni. for class 1 is the
negative binomial defined in Appendix D. Thus, we must specify two
parameters for each c.d.f.; we will specify E[NiIBJ and the ratic
VanNile] + E[NJS] for each class.i for each 6. The expected num—
ber of ground-up loss occurrences E[Nilej is based upon the exposure
and loss frequency estimates in Table 5A, columng (2) and (3). The

estimartes of exposure by class are based upon 150 exposure data
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and the assumption that there will be 500 doctors. Possible
variance of the actual exposures from these estimates will be
simply accounted for when selecting the low and high frequency
estimates. The medium frequency (ground-up) estimates are de-
rived In Appendix A, p. Al. They are based upon projections of
overall countrywide doctor loss frequency at the mid-point
(January 1, 19B1) of coverage year fiscal 1980/81, modified by
various offsets: 1) class, 2) state, 3) year in claims-nade
program (in this case, first year) and 4) contagion (multiple
doctors per incident). It 1is necessary to use a contagion fac-
tor to adjust the basic ISO data, which are number of occurrences
per doctor, since the treaty will cover loss per occurrence for all
covered doctors added together. All the offsets are selected on
the basts of ISO data and NAIC (1977, 1978) information. The low
and high loss frequencies are selected to be * 207 of the medium
loas frequenctes; this 1s pure judgement to reflect the uncertainty
regarding the actual exposure and the "true" expected frequency per
class. The ratio Var[N,]e] + E[N;[6] values 1.0 (low), 1.5 (medium)
and 2.0 (high), Table 5A, column (4), are selected on the basis of
research by the IS0 Increased Limits Subcommittee,

The parameters for the loss amount c.d.f.'s are in Table 5A,
colums (5) - (9). The number 2 in column (5) specifies to the com-
puter package RISKMODEL that the form of the c.d.f. is the 4-para-

meter modiffed Pareto distribution defined in Appendix D; the other
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choices are 1 = lognormal and 3 = Weibull. Colummns (6) - (9) are
1ts four parameters for each claams and each 8. We and the ISO
Increased Limits Subcommittee have found this general Pareto c.d.f.
to be very useful for describing loss amount distributions. The
particular parameters derived on Appendix A, pp. A2 and A3 are based
upon 150 countrywide loss amount data and modified by varfous off-
sets (class, state and contagion) selected on the basis of other 1SO
data and NAIC (1977, 1979) information. Note that the offsets apply
to the B parameter (PAR1) only. We do not presently offset according
to year in claims-made program, although we might if we ever see
any claims-made loss data sufficient for this purpose. The low,
medium and high parameters are selected from c.d.f.'s fitted to five
policy vears of IS0 data via the maximum likelihood techniques de-
scribed in Patrik (1980) and are indeed the low, medium (all five
years combined) and high c¢.d.f.'s.

Column (10) of Table SA displays the subjective weights assigned
to the three parameters. In this case, they are purely judgemental,
wvith the medium parameter agsigned a likelihood of 50X and the low

and high parameters assigned 257 likelihoods.
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VI. PARAMETER ESTIMATION: EXAMPLE B

The parameter estimation for example B, the exeess pro-
posal for P&C Insurance Company's general lisbility coverage,
will illustrate the case where there are credible historical
loss data directly related to the exposure. In this case, we
will use as much of the data as we can to select the homo-
geneous coverege groups, to estimate the forms of the loss
amount c.d.f.'s and to estimate some 8's and U(8)'s (the loss
count c.d.f.'s are assumed to be adequately modeled by nega-
tive binomial distributions). Recall from Section II that the
proposal is for $750,000 excess of $250,000 and that the P&C
Insurance Company has provided a detatiled history of large
losses (greater than $25,000), gross earned premiums, an over-
all rate history and more.

The steps of the procedure we will follow are:

1. Select the homogeneous coverage Eroups.

2. Decide vhich histerical exposure years are

most indicative of (can be.dasily adjusted
to) next year's exposure,

3. Estimate loss amount inflatfionary trend factors.

4. Select a primary retention to directly evaluate

loss count and amount distributions for the next

coverage year and restrict attention to those
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large losses whose trended values are greater
than this retention. This retention is not
necessarily the proposed retention, but 1is in-
stead the one which we believe will yleld the
most credible estimates of the potential loss.

5. Decide how to adjust the large loss data to an
ultimate settlement basis.

6. Estimate ground-up loss amount c.d.f.'s for the
next coverage year, both forms and parameters,
from the large loss data and gemeral informa-
tion.

7. Estimate the number of excess IBNR losses (ex-—
cess of the deflated values of the selected
retention (4)).

8. Estimate excess logs frequencies for the next
coverage year.

9. Estimate base (ground-up) loss count c.d.f.'s
for the next coverage year based upon (6), (8)
and the estimated exposure.

10. Select the parameter weights U(6).

The procedure for example B will follow this outline very

cleanly. In practice, however, any of the steps may be reversed
and any of the decisions may be changed later during the pro-

cedure if the analysis so indicates.
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We decided not to display the complete P&C Inmsurance
Company data in an appendix for three reasons:
1. We would like to focus on the general procedure,
not all the details. Most of the detailed steps
could be done in many different ways.
2, The data are voluminous.
3. The data, used with the primary company's per-
mission, should remain confidential.
Many summary exhibits are displayed in Appendix B.
Step 1
The groups are defined by the major policy limits based
upon the policy limits listed on the large loss records and P&C
Insurance Company's estimate of their policy limits distribu-
tion for 1980. However, the general liability coverage will be
analyzed as a whole; thus, the parameters of the estimated
ground-up loss amount c.d.f.'s and the loss frequencies will be
the same for each group - only the policy limits and the under-
lying exposure will be different. The complete parameter matrix
which will later be fmput to the RISKMODEL computer package is
displayed in Table 6A. In this case, there are four policy
linit groups: $200,000, $250,000, $350,000 and $500,000 or more;
there are four parameters 8: the first is the combination of

the first row for each group, and so on.
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Step 2

We restrict our attention to the large loss data from
accident years 1973 through 1978 since we believe that these
data are more easily adjustable to 1980 level in a reasonable
manner. Also, there does not appear to be any significant
development of loss counts or amounts beyond the 78 month eval-
uvations of the data presented in p§C's June 30, 1975, . . .,
June 30, 1979 loss evaluations. With this decistion, we still
have quite enough data, over 200 large losses, to analyze.
Step 3

Many different loss amount inflationary trend models may
be developed using many different economic and actuarial assump-
tions. We shall uge two very simple models:

1. Exponential trend model: ISO general liability
bodily injury average loss amounts of various
kinds from the past several years may be fit
by exponential curves in the usual manner. In
this case, our model produces an annual trend
estimate of 16.8%7.

2. Econometric tremd model: Slightly more sophis-
ticated trand estimates are derived via a primi-
tive but reasonable econometric model using the
Bureau of Labor Statistics' Consumer Price In-
dex and its Medical Care Services component as

independent variables and some IS0 losg amount
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index as the dependent variable. The trend

factors to adjust each accident year's data

to 1980 level are displayed in Appendix B,

p. B2, column (1).
Loss parameters will be derived separately from the two sets
of data adjusted by these two trend models. 1In genersl, use
as many reasonable trend models as possible and assign sub-
jective weights to them.
Step &

Our objective is to estimate 1980 ground-up loss amount and
loss count c.d.f. models which produce accurate estimates of the
losses in the layer $400,000 excess of $100,000. However, to es-
timate these models, it is not necessary to restrict our atten-
tion to only those historical losses whose 1980 level values are
greater than $100,000. With the exponential and econometric
trend models, a 1980 retention of $75,000 deflates to 1973 values
of $25,291 and $25,299, respectively (see ¢olumm (2) of Appendix
B, pp. Bl and B2). Since these deflated values are larger than
$25,000, the 1973 - 78 large loss data contain all known losses
whose 1980 values are larger than $75,000. Furthermore, more
credible excess frequency and loss amount estimates may be ob-
tained from evaluating a lower retention of $75,000. That is,
there are 171 (exponential) and 158 (econometric) known losses

whose 1980 values are greater than $75,000 (see Appendix B,
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pp. Bl and B2), while only 109 {exponential) and 104 (econo-
metric) have 1980 values greater than $100,000. Therefore,
we restrict our attention to those large losses whose 1980
level values are greater than $75,000. The 1980 level average
values and number of occurrences at e¢ach evaluation date are
shown in Appendix B, pp. Bl and B2.
Step 5

For each historical coverage year, we want an estimate of
the distribution of ultimate settlement values (1980 level) of
losses greater than $75,000. The age-tc—age development fac-—
tors displayed in Appendix B, pp. Bl and B2, for the 1980 level
average values indicate that the large less distribution for
the recent years will change as more losses plerce the retention
and as the losses are settled. Thus, these data must be adjusted.
In this case we observe that the loss amount distribution appears
to develop little beyond the 42 month evaluation. Also, the
two years for which we can expect the data to substantially de-
velop, 1977 and 1978, have only 14 and 3 large losses respec-
tively. Thus, in this case we choose to use multiplicative average
size development factors applied to the large loss values. These
factors are displayed in Appendix B, pp. Bl and B2. (For a more
sophisticated approach, which simultaneously accounts for the

development of loss counts and amounts, see Hachemeister (1976)).
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Step 6
The 1980 loss amount c.d.f.'s are derived from four data sets
by using the maximm likelihood estimation techniques and testing
procedures described in Patrik (1980). The data sets are:
1. The large losses together with their policy limits
adjusted to 1980 level via the exponential trend
model and developed to ultimate settlement.
2. Same as (1) except that the losses and policy
limits are censored at (limited to) $500,000.
3. The large losses together with their policy
limits adjusted to 1980 level via the econometric
trend model and developed to ultimate settlement.
4. Same as (3) except that the losses and policy
limits are censored at $500,000.
Censorship at $500,000 1s used in (2) and (4) for two
reasons:
1. The proposed reinsurance layer stops at $500,000.
Thus, we may focus upon the loss amount distribution
below $500,000.
2. 1In general, we have found that censored (by policy
limits) loss amount c.d.f.'s estimated via the
method of maximum likelihood fit better when there
are gome losses at the censorship points: the para-

meter estimates appear to have smaller sample error.
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However, the data in this case have no losses at
their policy limits.

The parameters for c.d.f.'s (1) - (4) are displayed in
Table 64, columns (5) - (9). Both the Kolmogorov-Smirnov Test
and an "'actuarial ad-hoc expected value test" (see Patrik
(1980)) show the Pareto model fitting much better than either
the lognormal or the Weibull models. Thus, each selected c.d.f.
ts Pareto (column (5) entry 1s 2). The column (8) and (9) en-
tries are selected for convenience to be 0O and 1, respectively,
because we are not concerned with the lowver end of the loss
apount distribution. See Appendix D and note that if XP = 1,
then the four parameter model reduces to &8 two parameter model
with the parameters PARL and PAR2 in Table 6A, colummns (6) and
(7). C.d.f.'s (2) and (4) fit well, while the fit of (1) and
(3) 1s only fair., This information will be used later when
selecting the subjective likelihoods {weights) of the parameters.
Step 7

The number of IBNR (incurred but not reported) 1980 level
losses excess of $75,000 for each year 1973, . . ., 1978 are es~
timated using & method developed by James Stenard and described
in Patrik (1978). The first step is to estimate a c.d.f. model
for the distribution of report lags. In this case, the report
lag ts defined as the time in months between the date of occurrence

of a loss and the date its 1980 level incurred value first ex-
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ceeds $75,000. Weissner (1978) showed how to estimate this
c.d.f. using the method of maximum likelihood when the data
include month of occurrence and month of report for every
loss. However in this case, such detail is not available:

the data have only year of occurrence (accident) and year of
report. Thus, we select a report lag c.d.f. model by com-
paring the actual number of occurrence age-to-age factors in
Appendix B, pp. Bl and B2, to tables of annual ape-to-age
factors generated by various theoretical report lag distribu-
tions, such as the exponential, lognormal or Weibull. 1In
this case, a Weibull distribution with parameters 8 = 34.0

and 8§ = 2,75 (see Appendix D) appears to describe both sets of
actual age-to-age factors best; so we will use it to calculate
IBNR. The annual age-to-age factors generated by this Weibull
are the row underlined in the table in Appendix B, p. B3. The
IBNR calculations are displayed in Appendix B, pp. B4 and BS.
Step §

Appendix B, pp. B6 and B7, displays the estimated IBNR per
year (column (4)) and the implied 1980 level frequency excess—
of-$75,000 per year (columm (6)) with respect to gross direct
earned premium at present (1980) rate level (column (2)).
Columns (7) and (8) display our estimates of the 1980 level base
frequency per yesr. We use the term '"base frequency" to dis-
tinguish these numbers from the true ground-up loss frequency.

The base frequencies are slightly ficticious numbers derived
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solely as convenient input for the RISKMODEL computer package
(table 6A, column (3)). They are interpolated downward from
the excess frequencies by use of the previously selected loss
amount c.d.f. models. For example, the base frequency of .0108
for 1973 in column (7) of Appendix B, p. B6, 1s derived from

the excess frequency of .0019 in column (6) via:

(excess frequency) + Prob[X>$75,000|c.d.f.(1)]

B s
6.1 = (. —E .
6.1 (-0019) * (135660
= .0108

where B8 = 124,016 and 6 = 3.6795.

The base frequencies with respect to all four loss amount c.d.f.'s
are displayed in Appendix B, pp. B6 and B?7, along with four
selected values which are input in Table 6A, column (3).
Step 9

The negative binomial c.d.f. i1s melected as the general form
for the distribution of Ni' the number of 1980 base losses for
policy limit group i. The expected value for each particular c.d.f.
i1s the base frequency times the estimate of the 1980 gross direct
earned premium in Table 6A, column (2). The ratios
VArl:Nile] 3 E[N1|e] in column (4) are again gselected on the basis

of research by the ISO Increased Limits Subcommittee.
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Step 10

The parameter weights U(6) in Table 6A, columm (10), are
selected on the following basis:
1. Each trend model is given weight .50.
2. The weight selected for loss amount c.d.f.
(2) together with its implied base frequency
is8 .40 (out of .50 possible) since it fit
best; the remaining .10 goes to c.d.f. (1).
Likewise, loss amount ¢.d.f. (4) together
with its implied base frequency is given a
weight of .35 because of its good fit, with
the remaining .15 going to ¢.d.f. (3).
As a final remark on the parameter estimation for example
B, it should be apparent that if we believe that the P&C large
loss data 1s not fully credible, then we can append more para-
meters based upon general industry information as in example A.
The parameter weights would be adjusted accordingly, perhaps via

some credibility procedure.

VII. MOMENTS AND PERCENTILES OF THE
DISTRIBUTION OF AGGREGATE LOSS

This section describes a computer package named RISKMODEL

which takes information such as in Tables 5A and 6A and transforms
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it into moments and percentiles of the distribution of aggre-
gate loss for any selected mixture of loss layers. Tables
7A, S5A and 7B-7D document a RISKMODEL run for exemple A; the
run for example B 1is contained in Appendix C and Tables 6A and
7E. In both caae; the printout displays both the package
interrogatories and the user's input. Almost complete runs are
displayed so that the reader can see how easily the complicated
model formulas translate into a working computer package; the
only parts eliminated are the step-by-step data input process
and some ending details regarding further displays and memory
storage.

Table 7A diaplays the beginning of the RISKMODEL run for ex-
ample A. The user enters the group names '"class 1, class 2,
.« . ., clasgs 7", specifies that there will be three parameters
and indicates that he wants the limits matrix LIM in the
package to be assigned the elements of a previously created matrix
LIMA. Since the proposed coverage is $750,000 excess of $250,000,
the loss layers we want to consider are 0 - $250,000 and $250,000
- §1,000,000; we observe the output for the lower layer to pro-
vide an extra check on the reascnableness of the output for the
excess layer., For each group (class), there are two rows with
lower and upper limit columns and a third column, INDEX, which
indicates when there ig a change in groun.

The usar next specifies that he wants the parameter wmatrix

PAR in the package to be assigned the elements of a previously
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TABLE 7A

FICKAUDEL
10 NOT PAMILC IF YOU MAKE AN ERROR WHILE INPUTTING.
OPPGRTUNITY 70 CHANGE LATER.

ENTER A
HOTE: AU
0:

QR GROUP NAMES AS FOLLOWS: JGRE1/GRPY ...\
T KE IN QUOTES. FOR MORE THAN 1 LINE OF INPUT., USE .0

J
3

'/CLASC1/CLASS2/CLASS3/CLASSL/CLASSS/CLASSS/CLASS?”

ENTER THE NUMEER OF PARAMETERS., E.G. S
D:
3

0 YOU WISH T0 (1) INPUT VECTOR OF LIMITS. OR

(2) USE MATRIX OF LIMITS PREVIOUSLY CREATEL. 1 OR 2.
0:

-
EMTER THE NAME OF 1HE MATRIX OF LIMITS PREVIOQUSLY CREATED
NOTE" NAME SHOULD HAVE PREFIX LIM

LINA
10 YOU WISH TO SEE THE LIM MATRIX. Y OR N
Y
LIMITS
LOWER UPPER INDEX
0 250000 1
250000 1000000 0
0 250000 3
250000 1000000 0
0 250000 1
250000 1000000 [}
0 256000 1
: 250000 1000000 0
0 250000 1
250000 1000000 [1]
[ 250000 3
250000 1000000 0
0 250000 1
250000 1000000 0

D0 YOU WISH TO MAKE ANY CHANGES IN THE LIM MATRIX. Y OR N
N

0 YOU WISH TO

(1) INPUT VECTOR OF PARAMETERS FOR THE FIRST SUERGROUP OR

(2) USE MATRIX OF PARAMETERS PREVIOUSLY CREATEL. 1 OR 2

. 2

ENTER [HE NANE CF THE MATRIX OF PARAMETERS PREVIOUSLY CREATED
NOTE: NANME SHOULD HAVE PREFIX PAR

PARA

D0 YOU WISH TC SEE THE PAR MATRIX. Y OR N
Y
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created matrix PARA. The paremeter matrix was displayed in
Table 5A.

Table 7B continues the run after the display of the para-
meter matrix PAR. Next displayed 1s a matrix of intermediate

calculations for layer 1: 0 - $250,000. The notation here is:

(7.1) A = layer lower bound (here A = 0)
B = layer upper bound (here B = 250,000)

S = ground-up loss amount random variable

P(S>A] = 1—GI(A|8) for each group 1 for each ©
p{S>B] = 1-Gi(B|8) for each group 1 for each 8
B
Es*m] = [ x® dGi(xla) for each group 1 for each 8
A
wvhere m=1,2,3

G, (x|e) = Prob[s, < x|6]

These values will be used to calculate the moments of the aggre-
gate loss L given 6 by using formula (4.7). They are displayed
g0 that the user can check that the run is going alright.

Table 7C continues the run with a display of a matrix of in-
termediate calculations for layer 2: $250,000 - $i,000,000.
These are similar to those for layers 1 except that here A =

250,000 and B = 1,000,000. Next fnput are the selected e's
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TABLE 7B

00 YOU WISH TO MAKE ANY CHANGES IN THE PAR MATRIX. Y OR N
N

GPNUPS AND PARAMETER INPUT COMPLETED
TO PROCESS INTERMEDIATE CALCULATIONS, HIT EXECUTE

[0 YOU WJSH TO PRINT THE INTERMEDIATE CALCULATIONS,
PLS:41, PLS>K],ELS].ELS=2],ECS*33. Y OR N,

Y
INTERMEUIATE CALCULATIONS USEDN THROUGHUOUT MOMENT CALCULATIONS

LAYER 1
GROUPS PLS>A) PLS*R] ELS] ELS%2] ELS%3]}
CLASS1 1 1.000 .021 2.2146E04 1.813E09 2.815E14
CLASS1 2 1.000 .026 2.258E04 1.878E09 2.546E1Y
CLASS1 3 1.000 .03y 2.363E04 2.065E09 2.868E1Y4
CLASS2 1 1.000 .021 2.216E04 1.813E09 2.41GE1L
CLASS2 2 1.000 L0268 2. 258E04 1.878E07 2.546E14
CLASS2 3 1.000 .03 2.363E04 2.085E09 2.86BE1Y
CLASS3 1 1.000 .02u 2.372E04 1.985E09 2.660E1H
CLASS3 2 1.000 .032 2.500E0Y 2.154E0? 2.960E14
CLASE3 3 1,000 042 2.717E04 2.4%7E09 3.4S46E1Y
CLASSY 1 1.000 026 2.4%78E04 2.093E09 2.82LELY
CLASSY 2 1.000 034 2,503804 2,261E09 3.128E14
CLASSY 3 1.000 0Ly 2.802E0% 2.571E09 3.632E14
CLASSS 1 1.000 .030 2.642E04 2.304E09 3. 144E14
Cl.ASS8S 2 1.000 . 018 2. 745EDY 2.4468E09 J.44LELY
CLASSS 3 1.000 .030 2.952E04 2.787E09 3.973E14
CLASSS 1 1.000 .02y 2.392E04 1.983E09 2.660E1Y4
CLASSS 2 1.000 ,032 2.500E04 2,154E09 2.960€E1H
CLASSS 3 1,000 042 2,717E04 2.439E09 3. 458E1Y
CLASS7 1 1,000 .033 2.795E04 2.507E09 3. 4463ELY
CLASS? 2 1.000 043 2.893E04 2.667E09 3.756E14
CLASS? 3 1.000 053 3.110E04 2.994E09 4.303E1Y4
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TABLE 7C

LAYER 2
GROUPS PL3>A) PLS-H] ECS] ELS%23 ECS*3)
CLASST 1 .021 .003 B.015E03 4.093E09 2.431E135
CLASSst 2 L0248 .005 ?.754E03 5.103E07 3.077E1S
CLASSL 3 .03y .007 1.227E04 6.522E09 4.014%E1S
CLASS2 1 .021 L0038 B8.015:£03 4. 093E07 2.431E15
CLASSD 2 026 .00% 9.754E03 S.103E09 3.077E1S
€LASS2 3 034 .007 1.227E04 6.522E07 4. 014E15
CLASS3 1 024 .003 ?.025£03 4, 622609 2,733E1S
CLASS3 2 .032 .006 1.176E04 6.177E09 3.763E1S
CLAS33 3 . 042 .009 1.513E04 8.059R0% 4.9467E15
CLASSH 1 026 .00u 9.7031E03 4.973ELY 2.964ELS
CLASSY 2 L0034 .006 1.253E04 6.5872£09 4.016E15
CLASSY 3 L 044 .00% 1.603E04% 6.555E09 5.276E15
CLASSS 1 . 030 .00y 1,108E04 5.690E09 3.396E15
CLASSS 2 . 038 .007 1.409E0Y4 7.419E09 4.527E1S
CLASSS 3 . 050 .010 1.790E04 ?.551E09 9.897€15
CLASES 1 024 .003 ?.025E03 4%.622€09 2.733E15
CLASS6 2 .032 L0046 1.176E04% 6. 177E09 3. 763ELS
CLASSS 3 Lo42 .009 1.313E04 8.057E09 4. 967ELD
CLASSY 1 .033 .00% 1.248E0Y 6.423E09 3.841E15
CLASSY 2 .0u3 .008 1.566E04 8.208E0? . 0UUELS
CLASS7 3 .055 .01 1.973e04% 1.055F10 6. 920E15

TO PROCESS MORE INTERMEDIATE CALCULATIONS, HMIT EXECUTE
ENTER EPSILONCS) FOR WHICH PROB(LOSS>MAX. PROE, LOSS) = EPSILON. (0<¢$.5)

0:
.1 .09 .01
NOW FOR THE FINAL PRINTOUY

ENTER COMPANY NAME
EXAMPLE A: A DOCTORS MUTUAL INSURANCE COMPANY

ENTER YOUR NAME (EG. J, SHITH)
HOWARD H. FRIEDRAN

ENTER TOIAY'S DATE (EG, JAN. 1, 1979)
APRIL 1., 19080

ENTER IN PARENTHESIS AND QUDTES A SEVEN CHARACTER NAME FOR THE UNITS

{E.G. ‘(DDCTDRS) " DR ‘__(BEDSI.")

o: OF EXPOSURE CENTERED IN 9 SPACES
*(DOCTORS) *

AIJUST PAPER TO TOP OF NEW PAGE & HIT EXECUTE
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TABLE 7D

EXAMPLE A: A DUCTORS #UTUAL JHSURANCT CPMPANY
LAYER 1
LINLTS EXPECTER cneri, HAKIAUN PROMABLE LOSS
CXPDSURE LI EXPLEILD S1ANDARL o
LOWER UI'PER OF LOSLES LUSY LEVIAT TUN SKEWNFSS 10.0 TLARS 20.0 YEARS 100.8 YLARS
GROUPS ¢ 000) <DDCIORS) (s} +) (%) %) (3]
CLASSY o 230 215.000 1.3 39.072 75,227 2.993 160,419 380.%89
CLASD [ 77.000 .69 20,476 T4, 764 4.170 113,637 310,044
CLASSY o 250 464,000 .70 23,430 3.917 174,600 332.704
CLASSY 5 250 10,000 .13 4.500 8.026 LS. A00 234.3R4
CLASSS ¢ 250 46.000 .75 20,357 3.606 137,709
CLASS54 1 250 I%.000 7Y 25,015 €1.076 3.810 128,230 171 . 4%
CLACLS? Q 2%0 T1.009 1.00 40,319 00,928 3.055 170,547 3,008
TOTALS 300.000 5.35 182,404 149. 414 1.513 427,306 534,476 765.907
LAYER 2
LINIIG EXPECTED COLFF . MAXIMUH PROIARLE LOSS
-EXPOGURE NURVER EXPECIED STANDARD oF ONF IN
1.OWE? UPPER OF LOGSES LSS OLVIATTUR SKEWNLSS 10.0 YEARS 20.0 YEARS 100.0 YLARS
GROUFS ts 000> (DOCIURS ) o) X3 A} ts) 4
S0 1000 215,000 .04 11,003 TR 110.030 1. 640 SDB. 97
LU0 1800 77.000 02 V.74 11.790 T7.434% 114,848 S73.438
250 1000 54.000 .02 7,041 10,457 70,511 18D 648, ugy
259 1000 13,000 .00 1,808 23 a9 10,082 MO 1Ng. a0
0 1090 Ys. 000 .3 9,108 9.1 21,03 02,057 668, 343
U 1800 3u.000 .02 7.475 10.359 ML 7G2 PR ) &uB. 143
230 1000 S1.600 L] 13,508 06.970 7,700 133.001 270,163 TIL. T3
TRTALS Je0.000 +1R 55,367 174,305 3.842 RELE LY T39.089 V64.43%

PREPAHRLCD BY: HCGWARD H. FRIEDMAN
DATE: APRIL 1, 1980



(.10, .05, .01) for the aggregate loss distribution percentiles.
In the package, the 1 ~ ¢ percentile, L:' the point which L has
subjective probability e¢ of exceeding, is called '"the maximum

' years". This wording was chosen

probable loss for one in e
to be more meaningful to the underwriters who see the main output.
The main output is displayer'l in Table 7D. Various infor-
mation about the distribution of aggregate loss for each layer
18 shown. The display should be self-explanatory to actuaries.
Note for example, the amount of 'risk” being assumed by the
reinsurer as evidenced by the coefficient of skewness: 1.513
for the primary layer versus 3.862 for the excess layer. Or,
notice the coefficients of variation: .930 (169,614 & 182,404)
for the primary layer versus 3.184 (176,305 + 55,367) for the
excess layer. Approximations of the aggregate loss percentiles
are in the last three colums.
There are many methods for approximating the percentiles
of a distribution. The method used by RISKMODEL is the NP-
approximation described by Beard, Pentikéinen and Pesonen

(1969 - 2nd ed., 1977). This approximation 1is given by:

(7.2) L, ':' E[L] + (Var[L])H-(z: + X122 - 1)}
6 E
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vhere L. is minimal such that Prob[L>L ] < ¢
z, = o-l(l-c) for ¢ the standard normal (0,!) c.d.f.

3
Yy oug(L) ¢ (Var[L:l)/Z, the coefficient of skewness.

A problem with the NP-approximation is that if ylis
very large (say vy >8), then for certain values of ¢, the
approximation is much too large. However, there is a natural
bound on L, which RISKMODEL uses to bound the NP-approximation.

This bound is:
(7.3) L < e 1-E[L]

The necessity of this Chebyshev-like bound is seen immediately

from:
HL] = [ x-dF(x) since F(x) = 0 for x < 0
[
> [ x-dF(x) aince L_ > 0
(7.4) Le
> [ 1 -dF)
L
€
= golL

€

The extreme values of yj, which trigger this bound on the
NP-approximation seem to occur only when the expected number of
loss occurrences is very small, For example, the bound occurs

in the example A main ocutput, Table 7D, for the excess layer for
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each individual class when € = .10, .05 and sometimes .01;

in each case, the expected number of excess losses is less than
.05. It does not happen for the overall excess layer where the
expected number of losses 1s .18.

Thus, in certain extreme situations, the NP-approximation
may not be very accurate. In fact, there has been quite a dis-
cusgion in the recent literature regarding the accuracy of the
NP-approximation versus its various alternatives. The reasonable
alternatives presently include: 1) epproximation via simulation,
2) an NP3-approximation which uses the fourth moment of L in
addition to the first three and 3) approximation via the 3-
parameter gamma distribution. See the argument carried on in
Kauppi and Ojantakanen (1969), Seal (1977), Pentikdinen (1977)
and Seal (1979) and also the discussion in Cummins and Freifelder
(1978).

The reagons to use the NP-approximation are:

1. it 1s easier to compute than any of its reasonable

alternatives.

2. 1in most situations, {t 1s just as good.

3. 1t s slightly conservative; that is, LE i3 less than

the NP-approximation.
In particular, it is as good as the alternatives for the usual
excess-of-loss casuslty working cover situation. Beard, Pentikiinen

and Pesonen (1977), p. 5, said it well: "“Thus it 1s important
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not to develop mathematical tools of disproportionate accuracy
(and complication) without regard to the context in the problem
being solved".

The example B run, Appendix C, has four policy limit groups
and four parameters (see p. Cl). The reason for grouping by policy
1imit should be obvious. Again, the limits and parameter matrices
have been previously input. S8ince the proposed coverage is
$400,000 excess of $100,000, the loss layers of interest are
0 - $100,000 and $100,000 - min {$500,000, policy limit}. The
parameters, Table 6A, were discussed in detail in Section VI.

The intermediate calculations and the € selection (pp. C2 and C3)
are analogous to example A.

The main output 1s displayed in Tsble 7E. Again note the
"rigk" Being assumed by the reinsurer as evidenced by the co-
efficient of skewness: .216 for the primary layer versus .437
for the excess layer. Or again notice the coefficients of varia-
tion: .129 (1,247,991 + 9,678,618) for the prit;mry layer versus
.287 (641,998 + 2,238,766) for the excess layer. Note that there
is much less uncertainty in example B than there was for example A.
Since we are using 'base frequencies” as explained in Section VI,
the expected number of losses in layer 1 are probably understated;
the expected loss in layer 1 may also be understated. The esti-

mates for layer 2 have no known systematic bias.
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osouPs

aL/aee
GL/2350
fL/330
GL/500e

TOTALS

orOUPS

aL/200
GL/258
oL/358
oL/s0be

TOTALS

LIn1Te

100
100
100
1908

LINITO
LOWER UPPER
(% 0oD)
100 200
100 236
190 330
100 Soo

EXPOSURE

1nry.
1175, 000
2350.900
168000, 088

23390.000

EXPOBURE
wmw)
1173.0008
1175,000
23s50.008
16800, 000

23300. 800

TABLE TE

EXANPLE B: PRC INSURANCE COMPANY-GENERAL LIASILITY

EXPECTED
NUNBL R EXPECTLD
LOssED Loss
(s
13.58 A3, 731
13.38 463,931
27,17 747,842
217.33 T,I%2,89
11,86 9,470,818
EXPECTRD
NUMBEN EXPECTED
LOBSES LOS8
%)
77,023
?1.81%
213,779
1.856.156
2,238,764

LAYER 1

STANDARD
PEVIATION
)

219,137
219,139
314,939
1.070.2v8

1,287,991

LAYER 2

BTANDARD
DEVIATION
i)

79,993
108,998
180.223
600,303

481,998

CNEFF .,

aF
BXEWNEBS

COEFF,
QoF
SKEWUNEBS

1.22%
1.352
1.123

.4Bs

-w37

BAXIMUM PROPANLE LOSS

10.0 YEARS
(3 3]

780,360
760, 340
1,207,750
*.180.452

13,307,968

OHE IN
20.0 YEARS
)

o935, 753
885,703
1,529,073
?.372.8R3

11.808,837

RAXIMUM PROBABLE

YEARD
L 3]

199. 084
235,693

h66. 454
2,854,85%

3,491, 606

ONE IN
20.0 YEARS
s

234,484
296.0823
T4T7.0%%
2.926.009

3.3M. 779

PREPARED BY: RALPH M
DATE:

OCTORER

100.0 YEARS
(3 1)

1,100,
1,100,600
812,083

11,509

3
12,700,408

Loss
100.0 YEARS
o)
335,192
%27.208
782,016
I, ub7,635

3,939,912

. CELLARS

31. 1979



VIII. CONCLUSION

We have described a procedure for estimating the distri-
bution of the aggregate loss for the next coverage year of &n
excess—of-loss casualty working cover reinsurance treaty. Recall
that for both treaty proposals for each individual loss the
reinsurer shares the allocated loss adjustment expense (ALAE)
pro rata according to his share of the loss (the reinsurer’s
unallocated loss adjustment expense 1s included in his general
overhead expense). The ALAE share increases the reinsurer's
aggregate loss by 3% to 6% depending upon the line of business
and the excess layer., For both examples, we will increase all
aggregate loss figures by 5Z.

According to the list in Section IIl, there are four more
general items to consider before deciding about the adequacy of
the rate offered on example A or before proposing a rate for
example B. Without offering complete, elegant solutions, let us
briefly consider those items (2) - (4).

Item (2) is the potential distribution of cash flow. Both
proposals are fairly typical excess-of-loss casualty working
covers which we may assume will have standard monthly or quarterly
premium payment patterns and typical long tail casualty loss pay-
out patterns. That simple general cash flow models can be con-
structed should surprise no one who has read the CAS exam materials.

In the long run, such general wodels ghould be constructed so that
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any two treaty proposals can be compared to each other. However,
even without such models explicitly set up, we can say something
about these two treaty proposals. For instance, based upon
typical medical malpractice claims-made loss payment patterns,
the one year aggregate loss expected values or higher percentiles
for example A could be discounted from 10% to 15% on a present
value basis with respect to rates-of-return on investments of 5%
or greater. Based upon typical casualty loss payment patterns,
the discount for example B would be 10X to 20Z. The present values
of the premium payments for both examples would be discounted
around 5%. How this is viewed by the reinsurer depends upon items
3) - (5).

Item (3) is the collection of the reinsurer's various cor-
porate financial parameters and decision—making criteria. Assuning
that the reinsurer is at least moderate sized and is in good
financial condftion, then neither proposal in isolation leads to
overvhelmingly complex decision problems; there is nothing un-
usual or very exciting here, It is highly unlikely that either
treaty by itself could hurt such a reinsurer very much. However,
the loss results of a whole portfolio of typical medical mal-
practice treaties, for example, would be correlated and could hurt
a lot 1if priced badly.

Item (4) is the surplus necessary to "support” a treaty from

the reinsurer's point-of-view and item (5) 1s the potential dis-
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tribution of the rate-of-return on this "supporting surplus”.
These are very ambiguous but we believe useful concepts. Strictly
for {llustration, let us define an ad-hoc measure of supporting
surplus for our two treaty examples. In each case, we will con-
sfder the supporting surplus to be the difference of the 90th
percentile of the distribution of aggregate loss and ALAE minus
the pure premfum (that part of the premium available to pay losses).

The A Doctors' Mutual Insurance Company proposal, example A,
is expected to be profitable to the reinsurer based upon the
1980/81 expected aggregate loss of $55,367 in the layer $750,000
excess of $250,000 (Table 7D) and an expected net reinsurance
premium of $115,248 (Appendix A, p. A3). But the 90th percentile
of the reinsurer's subjective distribution of aggregate loss is
$354,284 (Table 7D), over three times the net premium. This 1is
very risky, and our ad-hoc supporting surplus is (1.05 x $354,284) ~
(.97 x $115,248) = $260,208 (take 3Z out of the net premium for
overhead expenses). The expected rate-of-return on this supporting
surplus 1s 217 (((.97 x $115,248) - (1.05 x $55,367)) + $260,208).
The reinsurer's decision to accept or reject the proposal would
be based upon his attitude toward risk and upon the extra premium
he wants for assuming such risk.

Example B could be profitable to the reinsurer if he can
negotiate a reasonable net rate with the P&C Insurance Company.

Exactly what the final rate will be depends upon the two com-
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panies’ attitudes toward risk, their separate evaluations of the
logss potential, the rates that are available for such coverage

in the reinsurance marketplace and finally the amount of premium
that P&C 18 collecting from his insureds for the layer $400,000
excess of $100,000. A quick check of the ISO increased limits
factors for state B for this coverage, i.e., the premiges/operations
bodily injury table B (ISO Subline Code 314), indicates that about
15X of P&C's gross general liability premium 18 collected for

thie layer. Since the expected excess aggregate loss 1is

$2,238,766 (Table 7E) and the expected gross direct earned .premium
is $23,500,000 (Table 7E total exposure), there is room to negotiate.

Purely for illustration, suppose that a flat net rate of
122 is negotiated for example B. Then the reinsurer's premium
is .12 x $23,500,000 = $2,820,000 and his pure premium 1s .97 x
$2,820,000 = $2,735,400. The 90th percentile of the reinsurer's
subjective distribution of aggregate loss is $3,091,686, so our
ad hoc supporting surplus is (1.05 x $3,091,866) - $2,735,400 =
$511,059. The expected rate-of-return on this supporting surplus
is 75Z (($2,735,400 - 1.05 x $2,238,766) + $511,059).

If the ingsurer and the reinsurer disagree strongly on the
loss potential, the rate could be negotiated to include a profit
commission arrangement by which they would share good years and
bad years fairly. Reinsurance contract wording is often very

inventive; treaties are custom—made for the particular situatiom;
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the terms are adjusted to suit both parties. This is an example
of a fundamental principle of reinsurance: reinsurance works
best when it 1s a long term beneficial partnership between the
parties.

We hope you noticed that the models, estimation techmiques
and decision procedures presented in this paper are not really
specific to excess-of-loss reinsurance. They may be useful for
pricing any large casualty contracts; with suitable modifications,
they are useful for property insurance also. You may have noticed
that we have presented no cookbook formulas for pricing reinsurance;
the area 1is too rich in diversity and too interesting for such
simplistic nonsense. We consider the work described here as only
the beginning of a truly satisfying pricing procedure.

We close by noting that the Btbliography contains some papers
on excess reinsurance pricing in addition to those previously
mentioned. You will find most of these to be informative and

interesting.
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APPENDIX A
EXAMPLE A: A DOCTORS' MUTUAL INSURANCE COMPANY
Parameter Selection

(1) (2) [€)] (4) (3) (6) (7)
Doctor Frequency Medium Severity Low Medium High
Class Of fset Frequency Offset £ 8 8

1 -90 .0062 1.00 23,640 18,450 18,155

2 1.30 .0090 1.00 23,640 18,450 13,155

3 .65 .0106 .50 23,923 20,106 20,597

4 .80 .0130 .95 25,253 21,224 21,742

5 1.00 .0163 1.05 27,911 23,458 24,031

6 1.30 .0212 .90 23,923 20,106 20,397

7 1.20 .0195 1.15 30,569 25,692 26,320

(1} 1S0 old class plan.

(2) Selected on the basis of IS0 data; the class 1, 2 countrywide
mean frequency is selected to be .0385 and the class 3 - 7
countrywide fean frequeiicy is selected to be .0904 for 1/1/31.

(3) The state A frequency éffset is selected to be .90; the first
year claims-made offset is selected to be .25; the contagion
(multiple doctors per incident) ig gelected to be .30, To-
gether with col. (2), these offset the countrywide mean fre-
quencies in note {(2). For example A, the low and high fre-
quencles are selected to be + 20X of the medium frequenciles.

(4) Selected on the basis of ISO data.

(5)- (7) The state A severity offset is selected to be .70; the con-

tagion offset is selected to be 1.25. Together with col. (4),
these offset the countrywide B8 perameters on p.A2.
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APPENDIX A
EXAMPLE A: A DOCTORS' MUTUAL INSURANCE COMPANY

General Loss Amount Distribution Model

Countrywide Loss Amount Parameters:

1/1/81
8 [ t Xp
Physicians - low 27,017 1.484 1000 .808
(1, 2) - medium 21,086 1.293 1000 .856
- high 20,749 1.191 1000 .838
Surgeons - low 30,378 1.465 1000 .356
3-17) - medium 25,531 1.278 1000 .886
- high 26,155 1.189 1000 .895

The parameters are selected based upon ISO medical malpractice data
via maximum likelihood estimation - See Patrik (198Q0). The gen-
eral loss amount ¢.d.f. is the L-parameter Pareto described in
Appendix D.
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(1)
(2)

(3)

(%)

A3

APPEHDIX A

EYAMPLE A: A DOCTORS' MUTUAL THSURANCE COMPARY
Estimated Premium: 7/1/80 - 6/30/81

(1) (2) (&) (4)
1980 1980
Doctor § in 1M/3M 1M/3M
Class Class Rate Premium
215 $ 400 $ 86,000
77 720 55,440
65 1,200 . 78,000
11 1,600 17,600
46 2,000 92,000
35 2,400 84,000
_ 51 3,200 163,200

500 $576,240

These are older 1S0 doctor class plan.

Based upon IS0 doctor distribution and the estimate
of 500 doctors.

First year claims-made rates to be used by A Doctors'
Mutual Insurance Company.

The reinsurance net premium is .20 x $576,2L0 = $115,2L8,
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EXAMPLE 8: P3¢ INSURANCE COMPANY

Average Incurred (Ground-Up) and Occurrence Loss Development
Excess of $15,000 at 1980 Level as of 6/30/79

Exponential Trend Model

Trend Deflated Accident Age In Nonths
Factor Retention Yenr 18 10 42 54 66 78
2,966 $25.291 1973 Avg. 8 RA 141,778 170,039 162,867 159,706 159,117
¢ 19 30 45 L1} 46
2.539 29,540 1974 Avg. 9 ]117,249 134,211 165,289 173,331 183,696 z
¢ 4 17 39 48 43 ~
g
2,174 34,502 1975 Avg. 81 92,268 103,421 113,232 122,553 =] =
' H 28 81 ol
o
1.861 40,299 1976 Avg. 3 1112,482 109,284 109,583
1 5 10 24
1,59 47,069 1977 Avg. § [+] 100,650
[} 0 14
1.364 54,976 1978 Avg. $|103,172
[ 3
Avarage Incurred Age-to-Ultimate Factors
18 - vle. 30 - Ule. 42 - Ule. 54 - Ult, 66 - Ulr.
Actual#® 1.7 1.22 1.04 1.02 1.00
Selected 1.20 1.12 1.05 1.02 1.00
Occurrence (count) Age-to-Ape Factors
18 - 10 30 - &2 42 - 54 34_- 66 66 - 78
Actuala® 5.64 1.81 1.34 .93 1.05
Selected 5.22 1.94 1.36 .98 1.05

* baned on vcighted avcrage fncurred
** based on average pumber of occurrences
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Trend
Factor
2.964
2,420
2.012
1721

1.306

1.350

EXAMPLE R:

PEC INSURANCE COMPANY

Average Tncurred {(Crcund-Up) ond Occurrence Loss Duvelopment

Excess of $75,000 ut 1980 Leval as of 6/30/79

Econometric Trend Model

tue 1o Months

Deflated Accident
Retentdon Year 18 30 42 S4 66 18
425,299 1973 Avg. § NA 141,960 170,257 163,076 159,911 159,321
19 0 45 44 46
30,992 1974 Avg. § |[111,925 140,014 160,026 172,256 183,063
’ 4 14 38 41 40
37,283 1975 Avg. § 100,600 118,962 124,117 131,588
L} 1 n 18 32
43,584 1976 Avg. § [121,726 121,905 102,667
L} 5 9 23
49,817 1977 Avg. § o 95,201
t 0 14
55,546 1978 Avg. § 1102,150
L 3
Average Inucrred Age-to-Ultimate Factors
18 - vit. 30 - Ule. 42 - Ult. 54 - Ule. 66 ~ vYE.
Actual® 1.16 1.12 1.03 1.02 1.00
Selected 1.20 1.12 1.05 1.02 1.60
Occurrence {(count) Age-to-Age Factors
18 - 30 30 - 42 42 -~ 54 54 - 66 66 - 78
Actual** 4.80 2,06 1.37 .98 1.05
Selected 5.22 1.94 1.36 .98 1.05
% baced on weighted average incurred

®» baged on

average muxber of occurrences

€ X1aNiddV
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EXAMPLE B:

P&C

INSURANCE COMPANY

WETHULE, DISTRUIWUTION *
ACCTLINT YEAR AGE-TN-AGE FACTOPS
HOAN PARAMETERS 18 7O 3n 10 uwr Tn sS4 TD 64 10 M 10 90 TO 102 10 1% 10
MON. SCALE SHAPE an " o &b wn ?0 102 1h uLT
27 30.000 2. 1.770 1.714 1.012 1000 1.400 1.000 1.000 1.000
2 o 1.0m3 1,205 1.053 L.ons 1.000 L.0n0 1.000 1.000
29 u 1.0106 1 1,049 1,007 1.001 1.000 1.000 1.000
9 2. 1.927 1 1.077 1.013 1.n01 1.000 1.000 1.000
30 2.32un0 1.766 1.¢ 1.0 1.m7? 1.002 1.o000 L.vug 1.00¢
3t 35.000 2.500 2.003 1.3 1. 1.003 1.000 [ R U] 1.000
3T J&6.00n 2.500 2,040 h 1. 1.004 1.008 1,000 1.0un
13 37.000 2.500 2.0 1 1. .00 toond 1.0u0 1,060
3 Jir.u0o 2.500 2.102 1. 1. 1.¢n7 1.r001 1.00nQ 1309
Y 37.000 2.500 2.151 1. 1. 1.010 1.upt 1.080 1,030
27 30.000 2. 1.997 1 1. 1.002 1.500 1.000 1.hng0 1.0
28 31.000 2. 1,754 1 1. 1.0048 1.000 r.an0 1.000 L.nan
I 32,000 2. 2.0u7 1. 1. 1.0, 1,000 1.000 1.100 1 0o
o J3.n00 a2 2.0 1.3 1. 1.007 1.000 1,000 1.010 1.000
30 3u.0up 2. 2.110 1.3 1, 1.010 1.001 1.0u0 1.000 1.000
31 3C.900 2. 2.1%7 1.374 1.094 .00 1.0n0 1.%00 1.u000
32 36.000 2. 2.201 1,408 1.110 L.o1y 1.00% £.000 i.nap
a3 37.000 2 2,242 1.0387 1.1 L. 1.000 1.000 1.0n09
34 33,000 2. 2,201 1.443 1,185 1.031 1.000 1.000 1.ho0
35 3%.000 2. 2.310 1.4/ 1.164 1.039 .1.000 1.000 1.0c0

* Expected value of annual age-to-age factors that would be genrerated

if the report lags of losscs occurring In each month are distributed
according to the Weibull distribution with specified paramcters.

*% Report lap c-d.f. selected with respect to hoth trend models.

4 XIINIdav
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APPENDIX B
EXAMPLE B: P&C INSURANCE COMPANY
Number of IBNR Occurrences Excess of $75,000
at 1980 Level as of 6/30/79
Total number of IBNR occurrences excess of $75,000 for
accident years 1973 - 78 as of 6/30/79 are estimated using

the method described in Patrik (1978).

(Known) * w

Total IBNR =
1 -w

= 87.2 and B80.4 with respect to the
exponential and econometric trend
models, respectively.

wvhere
Known = total number of known occurrences excess of
$75,000 for accident years 1973 - 78 as of
6/30/79.

= 171 and 158 with respect to the exponential
and econometric trend models, respectively.
] e[l - wogy]
—

EP

= .3375 for months m such that 1/73 <m < 12/78
EP_ = ponthly exposure base, in this case GL gross

direct earned premium at presgent rates,

for 1/73 <m < 12/78.

EP = ] EP for 1/73 tm < 12/78
m
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W(:) = selected report lag c.d.f. (see p.B3).

X; = mnaxioum observable report lag; that is, for
accident month m the difference between
6/30/79 and the mid-point of m.
Letting IBNR(x;6/30/79) denote the number of IBNR

occurrences for accident year x ae of 6/30/79, the total IBNR

is allocated to accident year x using the formula:
IBNR(x;6/30/79) = R - ; Ep_.[1 - LIC Y|

where
Known + Total IBNR

EP

1/x <m < 12/x, and x = 73,...,78.

The assumptions underlying this IBNR method are:
1. homogeneous coverage groups

2. the ratio of ultimate number of occurrences to
earned exposure is constant and independent of time

3. the report lag distribution does not vary with
occurrence date.
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EXAMPLE B: P&C TNSURANCE COMPANY

Excess and Base Frequencies and Excess LBNR
by Accident Yezr at 1980 Level

Exponential Trend Model

Present Level Occurrences Excess of $75,000
Gross Direct Frequency Bage Frequency?*
Accident Eerned Premium Knowvn TBNRAX Excess Of
Year (000) (6/30/79) (6/30/79) Uleimate $75,006  c.d.f.(1) e.d.f.(D)
1973 $24,524 46 0 46.0 -0019 .0108 .n1z8
1974 21,860 43 -5 43.5 .0020 0114 .0135
1975 19,435 41 3.2 44.2 .0023 .01 .C155
1976 19,685 24 12.5 36.5 -001% L0108 .0128
1977 21,137 14 28.6 42.6 .0620 .Ml L0135
1978 22,701 3 42.4 45.4 .0020 .0114 .D1135
Selected - - - - - .0108 L0135
* Base freq y - fr y divided by the probabllity of an occurrence

exceeding $75,000 for loss amount c.d.f.(l) and c.d.f.(2).

#4 Based on thc IBNR method described in Appendix B, pp. B4 and BS.

g XLaNIddY
94
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EXAMPLE B: PAC INSURARCE COMPANY

Excess and Rase Frequencles and Fxcess IBNR
by Acctdent Year at 1980 Lovel

Econometric Trend Kodel

Preaent Level Occurrencen Exceas of $75,000
Gross Direce Frequency Base Froquency®
Accidene Barned Premium Xnown YBERS* Excess Of
Tear (000} {6130/19) (6/30/79) Ultimate $75,000 c.d.£. (1) c.d.f.(4)
1973 $26,524 46 Q 66.0 L0189 L0101 . .0104
1974 21,360 40 .4 40.4 -0018 .0096 L0099
1975 19,435 32 2.9 36.9 L0018 .0096 -0099
1976 19,685 23 11.5 34.5 L0018 0096 .0099
19717 1 14 26.4 4D.4 .0019 0101 .0104
1978 22,701 3 39.2 62.2 -0019 -0im 010G
Selected - - - - - .009%6 L0106

# Rase frequency » excesa frequency divided by the probability of an occurrence
exceeding §75,000 for loss amount c.d.f.(3) and e.d.f.{4}.

## Based on the IBHR method described in Appendix B, pp. B4 and B5.

e

g X1Q3dgy
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APPENDIX C
EAMPLE B:  pgC INSURANCE COMPANY RISKMODEL RUN

RISKMOLEL
L0 NOT PANEC IF YOU MAKE AN ERPOR WHILE INPUTTING,
OPPORTUNITY TO CHANGL LATER

ENTER MAJOR GROUP NAMES AS FOLLOWS.  /GRPL/GRPD..........
NOTE: HUST BE IN QUOTES. FOR HORE THAN 1 LINE OF INPUT, USE .0
o

*&GL/2008GL/25048GL/35086L./5004

ENTER THE NUMBER OF PARAMETERS, E.G. S
ag:
y

10 you WISH 7O (1) INPUT VECTOR OF LIMITS, OR

(2) USE MATRIX OF LIMITS PREVIOUSLY CREATED. 1 OR 2.
. 2

ENTER THE NAME OF THE MATRIX OF LIMITS PREVIOUSLY CREATED
HNOTE: NAME SHOULD HAVE PREFIX LIM

LIMP&C

ID YOU WISH TO SEE THE LIM MATRIX. Y OR N
Y

LIMITS

LOVER UPPER INDEX

0 100000 1
100000 200000 0

0 100000 1
106000 250000 0

0 190000 1
1000C0 350000 o

0 100000 1
100000 500000 0

DO YOU BISH TO MAKE ANY CHANGES IN THE LIM MATRIX. Y OR N
N

LD yuuw WisH 10

<1) INPUY VECYOR OF PARAMETERS FOR THE FIRST SURGROUP OR

(2) USE MATRIX OF PARAMETERS PREVIOUSLY CREATED. 1 OR 2

0: 2

ENTER THE NAME OF THE MATRIX OF PARAMETERS PREVIOUSLY CREATED
NOTE: NAME SHOULD HAVE PREFIX PAR

ParPAC

DO YOU WISH TO SEE THE PAR MATRIX. Y OR N
Y

(The PAR matrix is displayed in Table 6A)
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EXAMPLE B: P&C INSURANCE COMPANY RISKMODEL RUW

U0 YOU WISH TO MAKE ANY CHANGES IN THE PaR MATRIX. Y DR N
N

GROUPS ANI PARANETER INPUT COMPLETED
TO PKRGCESS INTERMEDIATE CALCULATIONS. HIT EXECUTE

N0 YOU wisH TO PRINT THE INTERMEDIATE CALCULATIONS,
PLS>A), PL5. MY, ELS1,ELS*2],EL5=3). Y OR N,
Y

LAYER 1
GROUPS PLS:AY PLS*E] ECS] ELEw2] ELS*3)
GL/200 1 1.000 118 2.SUBEOY 1.270E09 8.047E13
GL/200 2 1.000 L0095 2.3%4E0Y 1.147€09 7.112613
GL/200 3 1.000 .122 2.591E0% 1.31°€09 8.3HBYELS
GL/200 4 1.000 .118  2.S4BE0Y 1.292€09 B.225€13
GL/256 1 1.000 L1114 2.94uE0N 1.270E09 8.047E13
2 1.000 .095  2,394E0Y 1.14TE09 7.112613
3 1.000 L1222 2.591E0Y 1.312F09 B.384UEL3
4 1.000 .118  2.568E04 1.292609 8.225€13
1 1.000 L11% 2.544E0N 1.270£09 8.047E13
2 1.000 L0953  2.394E0u 1.147E09 7.112E13
3 1.000 122 2,591E04 1.312E09 8.301E13
GL/3%0 % 1.000 .118  2.56BEOY 1.292€09 8.225E13
GL/S00+ 1 1.000 114 2,544E04 1.270E09 8.047E13
GL/S00+ 2 1.000 .095  2.I9uE0M 1.147€09 7.112613
GL/500+ 3 1.000 ,122  2,591E04 1.312E09 8.384E13
GL/S00+ & 1.000 .118 2.548E04 1.292E09 8.225613
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APPERDIX C
EXAMPLE B: P&C INSURANCE COMPAITY RISKMODEL RUN

LAYER 2
GROUPS PES>AJ PLS+E] ELS] ECS«23 ELS#3)
GL/200 1 Ll1n .02% 1.147E04% 1.623E09 2.387E1Y
GL/200 2 095 .029 9.S03E02 1.342e09 1.972614
GL/200 3 L1122 .031 1.233£04 1.747E07 2.572E14
GL/200 & .118 .031 1.195E04 1.692E09 2.490E1Y4
GL/250 1 -114 .017 1.LI8EOY 2.217E0% 3.718E14
6L/s250 2 .095 .015 1,171E04 1.834E09 3.074E1Y
GL/250 3 L1232 .018 1.522E08 2.391509 4.015E1Y4
GL/250 & 118 .018 1. u7uEDN 2. 31%E09 3.884E14
GL/350 1 L) .07 1.705E04 3.073E09 6.29%E1H
GLs/350 2 .09S .007 1.41PE0Y 2.362E09 S.233E1NH
GL/350 3 .122 .008 1.837e04 3.316E09 6. 7SVE1H
GL/7350 & .118 .008 1.7B0E0Y 3.214£09 6.550E1
GL/S00+ 1 RS .003 1.893E04 3.BueEQ? P M9IELY
GL/500+ 2 . 095 .003 1.507£04 3.259E09 B.154E1Y
GL/5%00+ 3 .122 .003 2.,037E04 4.14LuEQ? 1,021E15
GL/500+ & .118 .003 1,977E0Y 4.024E09 9. 9ULELY

TO PROCESS MORC INTERMEDIATE CALCULATIONS, HIT EXECUTE
ENTER EPSILON(S) FOR WHICH PROF(LOSS-MAX. PROE. LOSS) = EPSILON. (0<g5.5)
0:

.1 .05 .01
HOW FOR THE FINAL PRINTOUY

ENTER COMPANY NAME
EXAHPLE F: P&C INSURANCE COMPANY-GENERAL LIAKILITY

EMTER YOUR NAME (EG. J. SNITH)
RALPH M. CELLARS

ENTER TODAY'S DATE (EG. JAN. 1, 197%)
OCTORER 31. 1979

ENTER IN PARENTHESIS ANL QUOTES A SEVEN CHARACTER NAME FOR THE UNITS

(E.G. '(DOCTORS)" OR “__(BEDS)_')

D: . \\Qr EXPOSURE CENTERED IN 9 SPACES
©oocoe0 ¢

ADJUST PAPER TO TOP OF NEW PAGE & HIT EXECUTE

(The main output is displeyed in Table TE)
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Probabilicy Distribution Definitions

Negative Binomial
atx-l

density: f(xlp,a) - pu(l - p)a for x = 0,1,2,....
a

where p,a > 0.
This is our basic wmodel of the loss occurrence (count)

process. Note, if Var[N] +E[NJ = 1, then RISKMODEL
assumes that the occurrence process Lis Poisson with A = EN].

Four Parameter Loss Amount Distributfions

H—(ﬁm)- H(x|c,8) for O<xs<t

XQ + XP-{H(x|c,B)-H(t |a,8)} for x>t

c.d.f: Gglx|a,8,t,XP) =

vheret > 0, 0 < XP < 1
%Q = 1 - XP-{1 - H(t|a,B)}

H(x]a,B) 1s some c.d.f. for x > O with parameters (a,B).

RISKMODEL's present library of choices for H(+|a,B) are
(1) = lognormal, (2) = Pareto and (3) = Weibull. Definitions
of each of these distributions are given below,

h s
H_(é?u_,—ﬁ) (x]a,8)  for Dex<t

density: gs(xlu.B.t.XP) - |
XP-h(x|a,B) for x>t
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A graph of the density g(-‘a.s,t,XP) in general looks like:

7 = 8g(x|a,B,t,XP)

y-axis

y = h(xla,B)

1) lognormal

c.d.f: Hx|p,0?) = Q(EL:__'_“.) for 0 < x < =

where ¢(*) is the standard normal (0,1) c¢.d.f. and
g>0, =<y <o,

1
density: h{x|u,0?) = exp{-(log x - u)?}
Y ' Fox 707

(2) Pareto
6
c.d.f: H(x[8,6) = 1 -(x 8 ) for x > 0
+

vhere 8,8 > O,
Y]

density: h(x|8,6) = og’x + gy 7!
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(3_Weibull .

c.d.f: H(x|8,8) = 1-exp(—(ﬁ°) for x > 0

where 8,8 > O

density: h(x|B,) = GB-Gxé-lup(—mG}

For more details on probability distributions, see Hastings and
Peacock (1975) or Johmson and Kotz (1969,1970).
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