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PORTFOLIO BASED PRICING OF RESIDUAL BASIS RISK 
WITH 

APPLICATION TO THE S&P 500 PUT OPTIONS 

Sergei Esipov and Dajiang Guo 

ABSTRACT 

Financial option pricing methodology since Black and Scholes (1973) defines option prices as 
the hedging cost to set up a riskless hedged portfolio. Financial options are treated as redundant 
contracts, since they can be replicated by trading the underlying assets. The so-called "relative 
valuation" method prices financial options in the world of  the risk-neutral measure. On the 
actuarial side, there is no liquid secondary market for insurance contracts; thus, insurance and 
reinsurance contracts are viewed as non-redundant, primary contracts to complete the market. 
Actuarial risk models that price insurance liability contracts are not based on an assumption of  
hedging, instead considering the present value of  future losses and the cost of  allocated. 

This paper is devoted to pricing "hybrid" (insurance and financial) risk products by combining 
the financial option pricing method with the actuarial pricing method. It suggests that the price 
of  contingent claims containing both hedgeable risk and unhedgeable risk should reflect the 
average cost of  hedging, plus a risk premium that compensates for the marginal residual risk 
the contract brings to the existing portfolio. To evaluate the residual risk, a portfolio-based 
pricing method is proposed to evaluate loss and systematically consider risk premium. The risk 
premium is charged to satisfy risk management and return on risk capital requirements. The 
proposed method is tested by pricing the Standard and Poor's 500 index (SPX) options in a 
simulated objective world. 
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Introduction to 
"Portfolio-Based Pricing of Residual Basis Risk 
with Application to the S&P 500 Put Options'; 

by 
Sergei Esipov and Dajiang Guo 

Donald Mango, FCAS, MA,4A 

A m e r i c a n  R e - I n s u r a n c e  

The authors of  this paper, Sergei Esipov and Dajiang Guo, were colleagues of mine when I worked 
at Centre Solutions. These two gentlemen are not actuaries, but capital market quantitative analysts, 
with backgrounds in economics, finance and natural sciences. At Centre Solutions, they were 
involved in the evaluation of  contracts that applied reinsurance techniques to risks with some 
capital market components. It was during discussions of  these contracts that both they and their 
Centre Solutions actuarial colleagues saw just how divergent our respective approaches were. To 
Sergei's and Dajiang's credit, they reached out in earnest to learn the "actuarial" approach to 
evaluating risk. Once they embraced the theory and techniques, they applied them to one of  the 
more difficult problems facing the capital market quantitative analysts: the volatility smile of  
option pricing. 

This term may be foreign to most casualty actuaries, so some background on the issue would be 
helpful. To begin, recall the assumptions underlying the Black-Scholes formula (quoting the 
original source [ 1 ]): 

• The short-term interest rate is known and is constant through time. 
• The stock price follows a random walk in continuous time with a variance rate 

proportional to the square of  the stock price. Thus the distribution of  possible stock 
prices at the end of  any finite interval is log-normal. The standard deviation rate o f  the 
return of the stock is constant. 

• The stock pays no dividends or other distributions. 
• The option is "European," that is, it can only be exercised at maturity. 
• There are no transaction costs in buying or selling the stock or the option. 
• It is possible to borrow any fraction of  the price of  a security to buy it or to hold it, at the 

short-term interest rate. 
• There are no penalties to short selling. A seller who does not own a security will simply 

accept the price of  the security from a buyer, and will agree to settle with the buyer at 
some future date by paying him an amount equal to the price of  the security on that date. 
[1, p. 6401 
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Given these assumptions, a perfectly hedged portfolio is possible, one which exactly duplicates the 
payoffs of  the option under all possible outcomes. By no-arbitrage pricing theory, the cost of  this 
hedging portfolio must be the price of  the option. That is the theory, anyway. 

In the real market, however, transactions are not costless, short-term interest rates and volatilities 
vary over time, so dealers cannot achieve perfect hedges. The resulting BlackScholes prices are 
therefore often different from the market prices. Quoting an excellent description of  the situation 
from [2]: 

These [differences] have been documented with respect to the call option's exercise prices, 
its time to expiration, and the underlying common stock's volatility. Since there is a one-to- 
one relationship between volatility and option price through the Black.,Scholes formula, the 
volatility is often used to quote the value of  an option. An equivalent measure for the 
mispricing of  Black-Scholes model is thus the implied or implicit volatility, i.e. the 
volatility which generates the corresponding option price. The Black-Scholes model 
imposes a fiat term structure of  volatility, i.e. the volatility is constant across both maturity 
and strike prices of options. If option prices in the market were confirmable with the Black- 
Scholes formula, all the Black-Scholes implied volatilities corresponding to various options 
written on the same asset would coincide with the volatility parameter o of  the underlying 
asset. In reality this is not the case, and the Black.,Scholes implied volatility heavily depends 
on the calendar time, the time to maturity, and the moneyness of  the options. The price 
distortions, well-known to practitioners, are usually documented in the empirical literature 
under the terminology of  the smile effect [emphasis mine], referring to the U-shaped pattern 
of  implied volatilities across different strike prices. [2, p. 23] 

No-arbitrage pricing theory relies on the concept of the perfect hedge, which is not achievable in 
practice. With imperfect hedges, some residual basis risk remains. The question is how to address 
this basis risk in the pricing of  derivatives. 

Quoting from the third paragraph of  their paper, Esipov and Guo suggest 

that the price of contingent claims containing both hedgeable risk and unhedgeable risk 
should reflect the average cost of  hedging, plus a risk premium that compensates for the 
marginal risk the contract brings to the existing portfolio. 

They take an actuarial approach to the problem, allocating capital to a new security based on its 
marginal impact upon the portfolio's Value-at-Risk (VaR) - the ruin threshold. Using this 
approach, they generate indicated option prices that closely resemble market prices - including the 
volatility smile. 

This paper would be groundbreaking based on this achievement alone. From an actuarial point-of- 
view, however, it is even more revolutionary - even evolutionary. It represents validation of  
insurance pricing techniques in the capital markets community. There has been much discussion 
and interest lately regarding adoption of capital market techniques in insurance pricing. It is 
certainly encouraging to see this reciprocation. 
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As a bonus, the paper also provides an introduction to the simulation modeling of a capital market 
price process - the S&P 500 Index. 

The focus of the 2000 Discussion Paper Program is "Insurance in the Next Century," a topic of  
great interest to the CAS membership. At first glance, this paper may not appear to be about what 
we might define today as insurance. However, it is about what insurance may evolve towards in the 
next century. More importantly, it is undeniably aboutactuarial science in the next century. 

Donald Mango 
American Re-Insurance 
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1. I N T R O D U C T I O N  

In the convergence of  capital and insurance markets, we increasingly observea rapid merging of  
capital market products and insurance protection products, or so-called integrated financial and 
insurance risk management programs. Examples include the Catastrophe Linked Bond, Catastrophe 
Equity Put, Property-Catastrophe Services (PCS) options, Hybrid Corporate Risk Management 
Program, Collateralized Bond (Loan) Obligation (CBO/CLO), Structured Finance, etc. This 
presents great challenges to both financial and actuarial risk modeling. The financial models are 
challenged by the abundance of  residual risk remaining after typical sens i t iv i ty  hedging (by this we 
mean delta-, gamma-, vega-, etc. hedging), while the actuarial pricing models are unprepared to 
price products that are tradable in liquid markets. 

Financial option pricing methodology since Black and Scholes (1973) defines option prices as the 
hedging cost to set up a riskless hedged portfolio. Financial options are treated as redundant 
contracts, since they can be replicated by trading the underlying assets. The so-called "relative 
valuation" method prices financial options in the world of  the risk-neutral measure. On the actuarial 
side, there is no liquid secondary market for insurance contracts; thus, insurance and reinsurance 
contracts are viewed as non-redundant, primary contracts to complete the market. Actuarial risk 
models that price insurance liability contracts are not based on an assumption of hedging, instead 
considering the present value of  future losses (loss theory) and the cost of allocated capital. The 
pricing is done in the world of the objective measure (Panjer and Willmot (1992)). In recent 
literature on risk pricing, actuaries and financial economists are struggling to connect various 
pieces of financial and insurance pricing theories into one unified risk pricing theory (Wang 
(1999)). 

This paper is devoted to pricing "hybrid" (insurance and financial) riskproducts by combining the 
financial option pricing method with the actuarial pricing method. It suggests that the price of  
contingent claims containing both hedgeable risk and unhedgeable risk should reflect the average 
cost of  hedging, plus a risk premium that compensates for the marginal risk the contract brings to 
the existing portfolio. In practice, when there is basis risk lett affter sensitivity hedging, it is 
important to incorporate risk management and capital allocation decisions into option underwriting. 
To evaluate the residual risk, a portfolio-based pricing method is proposed to evaluate loss and 
systematically consider risk premium. The risk premium is charged to satisfy risk management and 
return on risk capital requirements. The profit and loss distributions are priced based on a 
combination of  Value-at-Risk and return on capital approaches. Its existing counterpart is the 
equilibrium capital asset pricing model (CAPM) developed by Sharpe (1964), Lintner (1965), and 
Mossin (1966). 

In the derivatives markets, there are at least two stylized facts thatpuzzle the profession. One is that 
implied volatility is on average larger than realized volatility; the other is that implied volatility 
curves exhibit "smile" or "smirk" effects for out-of-the-money options with different strike levels. 
Fleming (1993), Jorion (1995), and Gun (1996) show that the implied volatility extracted from the 
stochastic volatility model of  Hull and White 0987) is a dominant, but still a biased estimator in 
terms of  ex  an te  forecasting power in the stock index and foreign currency option markets. There 
are at least three potential explanations for the puzzling empirical evidence that the implied 

50 



volatility is a biased forecast of  future volatility: the nonzero risk premium for distributed risk, 
transaction costs in dynamic hedging, and potential inefficiency of  the option market. The 
hypothesis of  the risk premium of  volatility in the option prices is empirically supported by Guo 
(1998), who found that the market price of volatility risk is non-zero and time varying. The size of  
the estimated risk premium implies that the compensation for volatility risk is a significant 
component of the risk premium in option prices; therefore, a certain bias exists between implied 
volatility and realized volatility. 

In the presence of  residual basis risk, pricing is performed in two steps. The first step is to obtain 
the probability distribution of  possible cumulative discounted profits and losses after hedging, the 
P&L distribution. The second step is to convert the P&L distribution into a single number - the 
suggested price. As for the first step, Esipov 0996) derived a general mixed backward-forward 
Kolmogorov-likeequation for tracking the P&L distribution with arbitrary hedging strategy. (See 
Esipov and Vaysburd (1998), (1999) for full exposition and examples.) This equation allows one to 
bypass the Monte-Carlo simulation in a log-normal setting and obtain, most efficiently, the P&L 
distribution after hedging by numerical integration using finite differences. While we found this 
method to be excellent for generating realistic P&L distributions, it was also found that some 
practitioners are only comfortable with Monte-Carlo simulations, given that even a complex model 
of  the dynamics of  the underlying asset can be implemented in a straightforward manner. With this 
in mind we base this paper on an econometrically sound model o f  the underlying asset 
implemented by using the Monte-Carlo simulation. Given that the computer power is consumed by 
generating realistic details of  the statistics of  the underlying asset, we are no longer in a position to 
optimize the hedging strategy. Therefore, we a priori select a delta-hedge with implied volatility, 
which has been the usual choice for many trading desks for abouttwo decades. Recently, we have 
heard of  novel practices to hedge with historical volatility and, moreover, with forecasted volatility. 
We found such cost-effective solutions to bring little relief to the tails of  the P&L-distribution of  
residual basis risk. 

This paper also discusses in considerable detail how to convert the P&L-distribution into a price, 
and makes an application to index options. The question of  what to do if the derivative security is 
already being traded, and how to take into account its existing market price is set aside for now. 
This question will be considered elsewhere. 

Suppose a representative Dealer writes a put option and dynamically hedges her position by 
shorting a certain amount of  the underlying assets, according to the Black-Scholes sensitivity. In a 
standard Black-Scholes world, if the underlying asset is log-normally distributed, and continuous 
frictionless hedging is possible, the full hedging (replication) cost would be a well-defined constant 
number, thus it is the value of  the option contract. However, in reality, none of  the Black-Scholes 
assumptions holds exactly: the underlying volatility could be time varying, the hedginginvokes 
transaction costs, and can only be done discretely. Thus, the full hedging cost has a stochastic 
behavior characterized by a distribution, which means that the residual risk exists. This is where the 
present paper comes into play: what can the Dealer do while taking the residual basis risk to the 
portfolio consisting of  assets and this derivative? By taking risk, the Dealer must (1) meet the 
internal risk management requirements, and (2) allocate scarce economic capital. (In return, the 
Dealer has to generate a certain minimal return. Many firms expect, at least, a 20% return on 
allocated economic capital.) 

The solution of  this problem is illustrated below by studying the P&L-distribution and subsequently 
by pricing the Standard and Poor's 500 index (SPX) options in a simulated objective world. While 

51 



the complete list of  risk factors is extensive, here we focus on three major concerns an option 
Dealer has to consider. 

(I) Non-log-normal distribution of  the underlying asset, as might be generated by stochastic 
volatility, jumps and memory. To generate a simulated world, we use a GJR-GARCH(I ,l)/Jump- 
Diffusion model to approximate the underlying SPX volatility process. This is a minimal model 
which is capable of  reproducing most of  the empirically observed regularities of  the volatility 
process (mean-reversion, persistence, and leverage effect) reasonably closely. Time series analyses 
reflected in the extensive literature on ARCH and GARCH models have already determined the 
statistical properties of  the volatility process of  the SPX index. The index exhibits time-varying 
volatility, nonzero skewness and leptokurtosis (Baillie and Bollerslev (1989), Engle and Lee 
(1997)). In addition, stock market downside j u m p s a r e  added from a compound Poisson-Beta 
distribution with maximum loss of  up to 25% in a day; thus, the 1987 stock market crash has a 
positive probability in the model. Smaller jumps are more frequent. 

(2) We look at the transaction costs in dynamic hedging. In the Black-Scholes world with 
transactions costs, continuous rebalancing of a hedge position leads to infinite costs, while less 
frequent trading gives lower costs, but a less exact hedge. 

(3) Finally, we examine, the risk premium for unhedgeable remaining basis risk. 

With these complications, the final profit and loss (P&L) to the option Dealer is no longer certain. 
The Dealer has to develop a formal procedure torelate the P&L distribution at maturity to a (dollar) 
value of  the derivative security. It is clear that charging the limit loss is overly expensive. Risk 
premiums for the residual basis risk calculated according to the method proposed in this paper 
exhibit the stylized fact of  implied volatility biasedness. In general, in the simulated world, the 
implied volatility is about 10%-40°,4 higher than the realized volatility. These numbers are 
consistent with the historical behavior of  the S&P 500 options market. We can also generate the 
implied volatility "smile" or "smirk" curve, which closely matches the one-year SPX option's 
implied volatility curve. This suggests the volatility "smile" is a reflection of the risk (insurance) 
premium imbedded in the out-of-the-money options. 

In practice, this approach can be extended to price long term stocks, currency, and, with some 
modifications, even commodity options. Long-term options form non-liquid, over-the-counter 
markets with a small number of  market makers. The observed bid-ask spreads are much wider than 
for the short-term options. The demand of  long-term options ("long volatility") is much larger than 
their supply ("short volatility"). Ideally, Dealers would hedge their positions by buying offset 
contracts from risk takers (like hedge funds, or insurance companies); however, the imbalance of 
demand and supply force them to use the underlying assets to hedge their positions and take 
residual risks. 

The result of  the present study can be subsequently used by academia toimprove on option pricing 
models, and by practitioners to structure over-the-counter derivative products and perform firm- 
wide risk management, considering the entire portfolio as an "option". 

The paper proceeds as follows. Section 2 is devoted to a portfolio-based pricing method for risk 
evaluation. Section 3 shows how to create a simulated world of  the SPX index. Section 4 describes 
the price generating process of  short term options and compares with the real world observations. 
Section 5 extends the result to price long term put options, and Section 6 concludes. 
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2. P O R T F O L I O - B A S E D  R I S K  P R I C I N G  

The pricing technique presented in this section is based on historical probabilities, and correlations 
with the existing portfolio. This technique combines actuarial methods for computing the risk 
premiums with the Value-at-Risk approach. The calibration procedure used in the conventional 
risk-neutral approach is fully replaced here by a set of constraints on the values of the risk 
premiums expressed though a return on allocated capital. 

An important characteristic of a portfolio is its Value-at-Risk, VaR. Notwithstanding the growing 
popularity of this term, its definition is far from unique. We adopt the narrow definition where VaR 
is the 99%-ile (or 1% left limit) of the P&L distribution of the net cash flows associated with a 
given time horizon. (Really, full VaR is a set of numbers - the inverted cumulative P&L- 
distribution.) The conventional approach to determine VaR is a Monte-Carlo simulation of all the 
contracts under management. We are going to show how to bypass this complex step in a simple 
market-wide setting. The situation simplifies greatly when one focuses on a single contract whose 
cash flows are small relative to the scale of the whole portfolio. This is usually the case for the so- 
called "Benchmark Market Portfolio", i.e. the collection of contracts traded on a market or held by 
major players. The same assumption holds true for large financial institutions. Under this 
assumption, the change of VaR caused by adding a single contract is much smaller than the current 
VaR itself. Because the new contract is small relative to the portfolio, the detailed shape of its P&L 
distribution is irrelevant. 

Below, the P&L distribution of a Market Portfolio is assumed to be normal, N(E(X) , .E ) ,  although 

the same technique is applicable to an arbitrary distribution. Adding a contract with probability 
distribution p(x) to this portfolio shifts the VaR (99%-ile) by 

AVaR = E ( X  + x) + N -I (0.0 I)~/E[(X + x - E ( X )  - E(x)] 2 ] _ E ( X )  - N-I  (0.0 I),JE[(X - E(X)] 2 = 

where E(x)  is the (objective) expected value under the added P&L distribution, ~xiS the 

corresponding standard deviation, p is the correlation between the P&L of the Market Portfolio 

and that of the contract, ,E = x [ E [ ( X -  E(X)) 2 ] >~ t:r x is the standard deviation of the Benchmark 

Market Portfolio. The shift of VaR is usually a negative number, indicating a loss to the portfolio, 

=-N-1(0 .01)=2.326 is a constant. Note, that the above-given formula can be easily 

generalized to account for a non-normal Market Portfolio. In this case the second term is simply 
proportional to the log-derivative of the P&L-distribution ofthe Market Portfolio. 

In most markets, the market premiums charged for contracts are smaller than the change of VaR, so 
additional risk capital has to be allocated and invested. If the actual premium is Pr, one has to 
allocate an additional amount - A V a R -  Pr, i.e. max(-AVaR,0) altogether to keep the VaR limit 
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unchanged (clearly, if AVaR is positive there is no need to allocate capital at all; such a contract 
has infinite return within our assumptions, and seems to be very attractive). In what follows we 
assume that AVaR is negative. The formal expected continuous return on such investment ~ is 

simply 

e u r  _ [-AVaR - Pr + E(x)]e rT 

- AVaR - Pr 
(2) 

Indeed, the numerator is the future amount of allocated capital plus the expected profit on the deal, 
while the denominator is the allocated capital. Substituting the explicit expression for AVaR from 
(I), one finds the expected continuous return 

~=r+~n[i~ pr+e(x) ] 
- g(x)+~fxrx -PrJ (3) 

where r is the risk-free rate. In the market, where participants expect to earn a certain return on 
investment, the value of /a  = g is roughly fixed by the majority of participants. SolvingEq(3) for 
Pr gives 

Pr = - E ( x )  + (p tr  x [I - e -<~-r)r  ] = - E ( x )  + r~r x , (4) 

where, again, /.t =/7 is the market-required return on risk capital, and the constant t¢ helps to 
indicate that, effectively, we "charge by standard deviation", which is one of the traditional 
actuarial risk loading principles. The latter formula is surprisingly robust. Note that it is not 
consistent with any choice of a utility function on a stand-alone basis. Formally, it is consistent 
with the following utility "function" on the market level: 

u ( X  + x) = x - - ~  ( x  - E ( X ) ) ( x -  E (x ) ) .  (5) 
p_- 

This function has to be integrated by using the joint probabilitydistribution of the market and the 
given deal. However, a second glance at this latter formula reveals that we are dealing with a 

funct ional ,  which is not even reducible to a cumulant expansion. 

In summary, the minimum premium earned must ensure that: (1) the new portfolio (the contract 
plus the original portfolio) will meet the risk management requirement, that is, the VaR is kept at 
the same threshold as the original portfolio; and (2) the return on capital requirement is met for the 
risk capital allocated to this new contract. The premium formula given above is far from being 
universal. It simply reflects some wide-spread capital allocation guidelines. It is worth noting here 
that at present a single universal formula can hardly exist for capital allocation, and attempts to 
formalize this issue usually spark a debate. 
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3. THE DATA GENERATING PROCESS IN A SIMULATED WORLD 

This section establishes a simulated SPX world which closely replicates the empirical distributional 
properties of  the SPX index during the period 1988-1997. The SPX index volatility has well 
documented time-series properties of  mean-reversion, persistence, and the leverage effect. Mean- 
reversion means that after experiencing positive or negative shocks, the volatility itself will 
converge back to its long term average value. Persistence means that a large movement of  stock 
volatility tends to be followed by a large movement, while small volatility changes tend to be 
followed by subsequent small volatility changes. The leverage effect meansthat negative moves of  
the underlying have a greater impact on volatilitythan positive moves of  equal amount. We use the 
GJR-GARCH(I,I) model of  Glosten, Jagannathan, and Runkle (G JR) (1993), modified by using an 
additional jump component to capture conservatively the large downside movement of  a stock 
index, especially large market corrections and crashes. While the adopted model generates rather 
realistic time series, and is similar to other minimal models in its class, it is not necessarily unique. 
It would be of  interest to test the expected stability of  our results for a range of  different models for 
the underlying index. 

The diffusion process for the stock index process is assumed to be a standard discrete Geometric 
Brownian Motion with jumps, 

S t - S t _  1 = S t _  I ( m  + a t + qt ) (6) 

where m is the log-drift per time step, trtis the volatility of  the process, which has zero mean and 

its variance h t is given below, qt is the jump component. The GJR-GARCH(I,1) volatility process 

is 

where ff  is the long-run average volatility per time step (volatility scales as the square root of 
number of  the time steps). D t reflects the shock momenturn with 

I, ty t _<0 
Dt = O, ~ t  > 0 

(8) 

A positive parameter 7' reflects the "leverage effect", fl is the measure of  memory which decays 

as (1- f l )n  after n time steps, a is the amplitude of  the stochastic component from the previous 
time step. During the period from September 1, 1988 to July 1, 1997, the key descriptive statistics 
for the daily SPX index return are 

Annualized SPX mean return 13.86% 

Annualized SPX return volatility 11.95% 
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Daily Probability of  Jump 

Daily Average Jump Size 

0.99% ] 
2.70% 

The corresponding parameters of  the GJR-GARCH(I,I) model for the S&P 500 index return (using 
the estimation techniques in Engle and Lee (1996)) are: a = 0.0332, fl = 0.9122, 7 = 0.0925 . The 
time step here is one business day, and all units are adjustedcorrespondingly. 

Unfortunately, the GARCH-class models are not satisfactory in generating large price deviations. 
In view of  this, it is important to add the jump component. We didn't modify the G JR parameters 
while adding the qt term, which is drawn from a compound Poisson-beta distribution. As a result 

our model is somewhat more conservative than the market historical data. In the compound 
distribution smaller jumps are more frequent, and daily positive and negative jumps arrive at an 
average arrival rate of  0.99% (each as a separate Poisson process). The jump size is drawn from a 
beta distribution, with a mean of  2.7%, and a minimum of 2%. In particular, we allow a maximum 
loss of  up to 25% in a day; thus, the 1987 stock market crash could have a positive probability in 
the model. 

4. F R O M  H E D G I N G  C O S T  T O  O P T I O N  P R I C E S  

From Distributions to Prices 
In the simulated world generated above, assume a representative Dealer writes a one year at-the- 
money put option, then dynamically hedges herposition on a daily basis by buying or selling a 
certain amount of  stocks, as required by the Black-Scholes delta-hedge. 

The table below describes the key parameters for aone year option, 

Forward SPX 106.18% 

SPX Spot 100.00% 

SPX Strike 106.18% 

Short-term Risk-free Rate (per annum) 6.00% 

Selected Volatility for delta-hedging (per 11.95% 
annum) 

Time to Maturity (yrs) l 

Proportional Transaction Costs 0.05% 

Note that all SPX-related (dollar) values are measured in SPX spot units. For simplicity, the hedge 
volatility of  11.95% is an indicative single-number estimate for the range of  volatilities observed 
during the day when hedging was performed. In the real world, Dealers may use the observed 
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implied volatility from that day to compute the hedge-delta: however, theimplied volatility changes 
over time as the underlying index moves and derivatives are traded. 

In an ideal Black-Scholes world, where the underlying index follows a Geometric Brownian 
Motion, and hedging can be performed continuously, the full accumulated hedging cost has a fixed 
value, which should be equal to the theoretical Black-Scholes option price. However, when the 
underlying spot process does not follow a log-normal distribution, and hedging is discrete, the 
hedging cost is a random variable depending on the realization of each pass in the simulated world. 
Usage of the sensitivity, however advanced, at best generates an over-hedge for many scenarios, 
but cannot fully cover the risk. 

In this simulated world, with the presence of stochastic volatility, jumps, and discrete hedging, the 
final profit and loss (P&L) to the option Dealer is no longer certain. The Dealer has to develop a 
formal procedure which would allow her to relate the P&L distribution at maturity to a (dollar) 
value of the derivative security. The portfolio-based risk pricing can be applied to determine the 
price of the put contract along the linesdescribed in Section 2. 

As before, let o" x denote the standard deviation of P&L associated with the position of writing the 

option and hedging, E(x) refer to the expected cost, and p refer to the correlation of the "option + 

hedge" position with the Benchmark Market Portfolio. In actuarial modeling, p is used in the 
calculation of the risk loading. Its implicit value can be reverse-engineered from the market prices. 
For the purpose of comparison, we have listed four  different versions of the price formula, as we 
have seen or heard of their existence in practice (Pr I is the one we derived in Section 2 above): 

(1) Annual return on allocated capital is p 

Pr t = -E(x)  + ~pcr x [1 - e- t f i - r ) r  ], (5') 

(2) Return is infinite or no capital is allocated, 

Pr 2 = - E ( x )  + ~ . r  (9) 

(3) Maximum Observed Cost (Pr 3 = MOC) is used, which is the 100 th percentile of the hedging 

cost distribution. 

(4) Additional 1% of the Maximum Observed Cost is charged on top of the value in (5') 

Pr 4 = -E(x)  + ~po" x [I - e-(/7-r)T ] 4 MOC 
100 (10) 

One year at-the-money put option price 

Figure 1 shows, in the simulated world, the cumulative probability distribution function of the costs 
of writing a one year put option and performing the Black-Scholes delta-hedge on a daily basis. 
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This strategy is insufficient for loss immunization. Moreover, the tails of  the distribution of 
replication costs are very weakly sensitive to whether historical orimplied volatility is used as is 
the standard deviation (since we are dealing with a parabolic minimum). The probability 
distribution of  the hedging P&L has been studied analytically by using the technique similarto 
what can be found in Esipov and Vaysburd (1998, 1999). Evolution of  this distribution obeys a 
certain integro-differential equation (not presented here). In the ideal Black-Scholes world this 
distribution becomes a delta-~nction centered at the Black-Scholes price. 

As an example, we choose p = 50%, and annual return on allocated capital p = 3 0 % .  The 
following prices were generated using the four pricing methods (1-4) at different strike levels. 

Strike/Forw pr I pr 2 pr 3 pr 4 
ard 

0.75 0.0035 0.0096 0.1165 0.0046 

1.00 0.0568 0.0690 0.1426 0.0580 

1.25 0.2538 0.2588 0.3106 0.2569 

Volatility "Bias" and "Smile" 

In the derivatives markets, there are at least two stylized facts thatpuzzle the profession: one is that 
implied volatility is on average larger than realized volatility, the other is that implied volatility 
curve exhibits "smile" or "smirk" effects for out-of-the-money options with different strike levels. 
These empirical stylized facts can be reproduced bythe model. 

Implied Volatility vs. Realized Volatility 

The empirical study on SPX daily returns during the period from September I, 1988 to July I, 1997 
suggests a three-month moving average annualized volatility of  11.95%, with a maximum of  
34.14% and a minimum of  3.74%; and volatility of  volatility is around 39%. During the same 
period, the averaged annual implied volatility of the SPX one year put is 16.73%,which is 40% 
higher than the actual realized volatility. 

If we use the Black-Scholes formula to reverse-engineer the so-called "implied" volatility from the 
at-the-money price suggested by Pr I above, we find that the "implied" volatility is 14.23%. This is 
much higher than the objective volatility of  11.95% that is used to generate the simulated SPX 
world (or 13.43% after adjustment of time varying volatility and jumps). Indeed, this price 
generating process can reproduce (qualitatively, at this level) the observed difference between 
implied volatility and realized volatility. One can further tailor the model bycalibrating the risk 
loading parameterp to match the observed difference of  SPX implied volatility and realized 

volatility. 

Volatility Smile 

For out-of-the-money SPX put options, the implied volatilities exhibit a "smile" or "smirk" effect 
for different Strike/Forward ratios. Conventionally, these volatilities are reverse-engineered out 

58 



from the observed market prices using the Black-Scholes formula. Similarly, "implied" volatilities 
can be inferred from the option prices generated by the model. Among the four pricing methods 
described above, the first and fourth formulas provide the best fit of  the observed implied volatility 
"facial expression" of  SPX put options. 

Strike/Forw Vol Vol from Vol from Vol from 
ard from Pr I Pr 2 Pr 3 Pr 4 

0.75 0.1829 0.2314 0.6434 0.1928 

1.00 0.1423 0.1722 0.3582 O. 1458 

1.25 0.1436 0.1757 0.3479 0.1600 

Figure 2 shows the implied volatility "smile" curve for the different pricing formulas. The method 
suggests that the origin of  the smile is the relative growth of  the risk premium for the away-from- 
money options. 

5. VALUATION OF STRUCTURED DERIVATIVE PRODUCTS 

In practice, this approach can be extended to value structured derivative products in the non-liquid, 
over-the counter market. Structured derivative products can be valued in two steps. First, calibrate 
the model towards the liquid options market (usually short term options). Second, use the calibrated 
model to price other non-liquid instruments, like long term out-of-the-money stocks, currency, and 
commodity options. Option prices observed from liquid option markets contain rich information 
about the market's expectation of  the future distribution of  the underlying asset, and the risk 
appetite towards profit and loss distributions. This information can be fully utilized by calibrating 
the model (for example, the risk loading parameter p ,  and the future objective volatility parameter) 
to make it exactly fit the implied volatility curves of  the liquidoptions, in term of slope ("smile" or 
"smirk") and values. To get an exact fit, we can first calibrate p from recent historical implied and 
realized volatility, then use the "current" market implied volatility term structure to calibrate out 
the term structure of  market expectation of  future objective volatility (not implied volatility). 

Calibration to liquid option market prices 

On the day (November 17,1998) when the test described here was performed, theprice for a one 
year at-the-money (Strike/Forward = l) European-style put was 8.52%, or the annual market 
implied volatility was approximately 21.4%. For illustrative purposes, we keep the correlation 
parameter p unchanged at 50%. In the calibration, when we choose the objective volatility 
parameter to be 17%, the observed market price of  the option can be reproduced by ar~. Thus, 
when the "future" objective volatility of  the underlying SPX index is assumed to be 17.00%, the 
observed one year market implied volatility can be reproduced by the "calibrated" model. In 
practice, this exercise can be extended to calibrate out a term structure of  objective volatility. In 
risk management, this objective volatility curve contains very useful information in predicting 
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future volatility and conducting stress tests. After the model is "calibrated" successfully to capture 
the price generating process of  the liquid options, these "calibrated" parameters are used to 
generate the price of  long term options or exotic options in the non-liquid, over-the counter market. 

Pricing a five year  SPX put option 

Option Price 

Now let's price a five year SPX European-style put option that is mostly traded on the over-the- 
counter market. Using the fiat term structure of  objective volatility, we adopt the same parameters 
to generate a simulated SPX world for five years with the exception of volatility magnitude of  the 
process. It is now assumed to be larger, 17%. Note that in a Black-Scholes hedged'world, the 
expected return will not affect the value of  the options. 

Figure 3 shows, in the simulated world, the cumulative probability distribution function of  the costs 
of  writing a five year put option and performing the Black-Scholes delta-hedge on a daily basis. If 
we use Pr I then the suggested price for the put option is 17.69% (or "implied" volatility is 
21.24%). For comparison, suppose the "market-implied" volatility curve is fiat, that is, the five year 
"market-implied" volatility equals the one-year "market-implied" volatility of  21.4%, then the 
Black-Scholes price for a five year at-the-money European-style put is 17.82%. The following 
prices are generated by the different pricingmethods at different Strike/Forward ratios. 

Strike/Forw pr I pr 2 pr 3 pr 4 
ard 

0.75 0.0709 0.0805 0.3117 0.0741 

1.00 0.1769 0.1886 0.4972 0.1819 

1.25 0.3371 0.3508 0.8334 0.3454 

Volatility Smile 

Figure 4 shows the implied volatility "smirk" curves. It is important to note that the "smirk" is less 
friendly as compared to Figure 2. However, it is consistent with the shape observed in the option 
market for long term SPX put options. The model reproduces (qualitatively, at this level) the well- 
known property of  the volatility term-structure: the "smile" weakens at longer maturities. In the 
model results, this is a direct consequence of  the portfolio based or VaR-based risk premium 
loading. The following table summarizes the "implied volatilities" generated from different pricing 
methods for different Strike/Forward ratios. 

Sgike/Forw Vol Vol from Vol from Volffom 
ard from Pr I Pr 2 Pq Pr 4 

0.75 0.2229 0.2374 0.5982 0.2279 

1.00 0.2124 : 0.2261 0.6190 0.2182 
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6. C O N C L U S I O N  

Large financial institutions, which are permanently involved in selling and trading derivative 
securities, should pay more attention to estimating the profit and loss distributions associated with 
these contracts. While such a general statement may be regarded as self-obvious in actuarial 
communities, its implications for financial quantitative analysis are far-reaching. On the other side, 
the market price provides an ultimate constraint on the actuarial approach to premium. The 
message which emerges from this work is that one has to be prepared to deal with basis risk in all 
circumstances. We have shown that the profit and loss distributions may lead to consistent pricing 
which can potentially reproduce complex market effects such as volatility "smile" and its term 
structure. The merger of  financial and actuarial worlds is taking place today, and its complete 
quantitative description has a long-term market value. 
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Figure 1. The Cost of Writing a One Year Put Option and Hedging 
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Figure 2. Implied Volatility Smile from Simulator, One Year Put 
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Figure 3. The Cost of  Writing a Five Year Put Option and Hedging It 
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25.00% 

Figure 4, Implied Volatility "Smile'; Five Year Put 
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