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Disclaimers

¢ This does not necessarily represent the views
of the speakers’ employers

¢ All exhibits are illustrative only unless
otherwise indicated. They do not contain real
data and the speakers do not claim that the
relationships among variables shown in the
exhibits hold in the real world.
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Anti-Trust Statement

¢ As members of the Casualty Actuarial Society or CPCU
Society or as participants in this event, please be mindful
of the constraints of the antitrust laws. There shall be no
discussions of agreements or concerted actions that may
restrain competition. This prohibition includes the
exchange of information concerning individual company
rates, coverages, market practices or any other
competitive aspect of an individual company's operation.
Each member or participant is obligated to speak up
Immediately for the purpose of preventing any discussion

falling outside the indicated bounds. @
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Agenda

¢ Trends in usage of predictive analytics In
Insurance

¢ Questions the underwriter should ask the
data scientist

¢ Questions the data scientist should ask the
underwriter

¢ Collaboration beyond single projects

¢ Questions @




Industry Usage of Predictive
Modeling
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Source: Adapted from Willis Towers Watson 2015 Predictive Modeling and Big Data Survey; participating
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Predictive Modeling for Risk
Selection and Pricing
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(www.towerswatson.com). 6




~what’s in your :
model/
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What Should the Underwriter
Ask the Data Scientist?

- What does the process look like?
- What does the model take into account?

- Can you prove to me the model actually
WOrks?

- What does the model do to my book of
business?

- Miscellaneous?
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Overall Process
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Modeling Process
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Sensitivity Analysis*
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Average Predictions™
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Deviation
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Indicated Factor
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Double Lift Chart
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Relative Cost
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Change In Mix

¢ Suppose we model on mature years 2007-
2014

— ldentifies that accounts in SIC abcd are
terrible...need a 100% surcharge

—1n 2015-2016, book was re-underwritten and
SIC abcd, which used to be 10% of the book,
IS no longer represented.
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Change In Mix

If we off-balance to ¢ If we balance for the

keep same rate level book we modeled

— Old rate level 500 — Old rate level 500

— New rate must — Should have been
average 500 charging abcd 950 and

— No abcd left in book everyone else 450

— So new rate for — S0 new rate for
everything else is 500 everything else is 450

>
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Disruption

Volume
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What Should the Data
Scientist Ask the Underwriter?

¢ Which facts about customers matter?

¢ What third-party data is already in use by
underwriters?

¢ What issues are they experiencing in the

D

marketplace?




What Should the Data
Scientist Ask the Underwriter?

¢ What should be provided to the tactical
decision-maker?
— Reason codes (color coded)
— Comparison to similar risks
— Soliciting feedback from the field
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What Should the Data
Scientist Ask the Underwriter?

¢ What does the new business transaction look
like and are there challenges that may make
collected data In the future different from the
past?
— What is known when in the underwriting process
— Shifting of reporting of data elements
— Technological advancements
— Privacy and legal issues

— Digital competitors and distribution @




What Should the Data
Scientist Ask the Underwriter?

¢ What business Is desired to be written in the
future?
— Broaden risk appetite
— Launch new products
— Offer differentiated coverages
— Expand geographic reach
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Predictive Power Comparison
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Impact of Predictive Modeling
on Top and Bottom Lines
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Source: Adapted from Willis Towers Watson 2015 Predictive Modeling and Big Data Survey; participating
companies comprised 11% of US personal lines carriers and 17% of commercial lines carriers

(www.towerswatson.com).
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I Collaboration Beyond
Individual Projects

¢ ldentifying niches in market where an
information edge can be built over
competitors

¢ Working together to build that edge
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Questions?




