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Hierarchical compartmental reserving models provide a parametric framework for 
describing aggregate insurance claims processes using differential equations. We 
discuss how these models can be specified in a fully Bayesian modeling framework to 
jointly fit paid and outstanding claims development data, taking into account the 
random nature of claims and underlying latent process parameters. We demonstrate 
how modelers can utilize their expertise to describe specific development features and 
incorporate prior knowledge into parameter estimation. We also explore the subtle 
yet important difference between modeling incremental and cumulative claims 
payments. Finally, we discuss parameter variation across multiple dimensions and 
introduce an approach to incorporate market cycle data such as rate changes into the 
modeling process. Examples and case studies are shown using the probabilistic 
programming language Stan via the brms package in R. 
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1. Introduction 
Claims reserving, pricing, and capital modeling are core to actuarial functions. The 

assumptions used in the underlying actuarial models play a key role in the management of any 

insurance company. 

Knowing when those underlying assumptions are no longer valid is critical for the business 

to initiate change. Transparent models that clearly state the underlying assumptions are easier 

to test and challenge, and hence can speed up the process for change. 

Unfortunately, many underlying risk factors in insurance are not directly measurable and are 

latent in nature. Although prices are set for all policies, only a fraction of policies will incur 

losses. Reserving is often based on relatively sparse data to make predictions about future 

payments, potentially over long time horizons. 

Combining judgment about future developments with historical data is therefore common 

practice for many reserving teams, particularly when entering a new product, line of business, 

or geography, or when changes to products and business processes would make past data a less 

credible predictor. Modern Bayesian modeling provides a rich tool kit for bringing together the 

expertise and business insight of the actuary and augmenting and updating it with data. 

In situations where the actuary has access to large volumes of data, nonparametric machine 

learning techniques might provide a better approach. Some of these are based on enhancement 

of traditional approaches such as the chain-ladder method (Wüthrich 2018, Carrato and Visintin 

2019), with others using neural networks (Kuo 2018); (Gabrielli, Richman and Wüthrich 2018) 

and Gaussian processes (Lally and Hartman 2018). 

With small and sparse data, parametric models such as growth curves (Sherman 1984, Clark 

2003, Guszcza 2008) can help the actuary capture key claims development features without 

overfitting, however, the actuary may require expertise and judgement in the selection of the 

growth curve and its parameterization. 
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Hierarchical compartmental reserving models provide an alternative parametric framework 

for describing the high-level business processes driving claims development in insurance 

(Morris 2016). Rather than selecting a growth curve, the experienced modeler can build loss 

emergence patterns from first principles using differential equations. Additionally, these loss 

emergence patterns can be constructed in a way that allows outstanding and paid data to be 

described simultaneously (see Figure 1.1). 

Figure 1.1. Comparison of reserving methods and models 

 

The starting point mirrors that of a scientist trying to describe a particular process in the real 

world using a mathematical model. By its very nature, the model will only be able to 

approximate the real world. We derive a “small-world” view that makes simplified 

assumptions about the real world, but which may allow us to improve our understanding of 

key processes. In turn, we can attempt to address our real-world questions by testing various 

ideas about how the real world functions. 

Compared with many machine-learning methods, which are sometimes described as “black 

boxes”, hierarchical compartmental reserving models can be viewed as “transparent boxes.” All 

modeling assumptions must be articulated by the practitioner, with the benefit that expert 
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knowledge can be incorporated, and each modeling assumption can be challenged more easily 

by other experts. 

Finally, working within a parametric framework allows us to simulate artificial data in 

advance of fitting any models. An a priori understanding of model suitability should steer 

practitioners to align modeling assumptions with their expectations of reality, and therefore 

may improve predictive performance. 

 1.1 Outline of the document 

This document builds on the original paper by Morris (2016). It provides a practical 

introduction to hierarchical compartmental reserving in a Bayesian framework and is outlined 

as follows: 

x In Section 2 we develop the original ordinary differential equation (ODE) model and 

demonstrate how the model can be modified to allow for different claims processes, 

including different settlement speeds for standard versus disputed claims and different 

exposure to reporting processes. 

x In Section 3 we build the stochastic part of the model and provide guidance on how to 

parameterize prior parameter distributions to optimize model convergence. Furthermore, 

we discuss why one should model incremental paid data in the context of underlying 

statistical assumptions and previously published methodologies. 

x In Section 4 we add hierarchical structure to the model, which links compartmental 

models back to credibility theory and regularization. The “GenIns” data set is used to 

illustrate these concepts as we fit the model to actual claims data, and we highlight the 

conceptual differences between expected and ultimate loss ratios when interpreting 

model outputs. 

x Section 5 concludes with a case study demonstrating how such models can be 

implemented in “RStan” using the “brms” package. Models of varying complexity are 

tested against each other, with add-ons such as parameter variation by both origin and 
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development period, and market cycle submodels. Model selection and validation is 

demonstrated using posterior predictive checks and holdout sample methods. 

x Section 6 summarizes the document and provides an outlook for future research. 

x The appendix presents the R code to replicate the models in Sections 4 and 5. 

We assume the reader is somewhat familiar with Bayesian modeling concepts. Good 

introductory textbooks on Bayesian data analysis are those by McElreath (2015), Kruschke 

(2014), and Gelman et al. (2014). For hierarchical models we recommend Gelman and Hill 

(2007), and for best practices on a Bayesian work flow, see Betancourt (2018). 

In this document we will demonstrate practical examples using the brms (Bürkner 2017) 

interface to the probabilistic programming language Stan (Stan Development Team 2019) from 

R (R Core Team 2019). 

The brm function—short for “Bayesian regression model”—in brms allows us to write our 

models in a way similar to a generalized linear model or multilevel model with the popular R 

functions glm or lme4::lmer (Bates et al. 2015). The Stan code is generated and executed by brm. 

Experienced users can access all underlying Stan code from brms as required. 

Stan is a C++ library for Bayesian inference using the No-U-Turn Sampler, also known as 

NUTS (a variant of Hamiltonian Monte Carlo, or HMC), or frequentist inference via limited-

memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) optimization (Carpenter et al. 

2017). For an introduction to HMC see Betancourt (2017). 

The Stan language is similar to Bayesian Inference Using Gibbs Sampling, or BUGS (Lunn et 

al. 2000), and Just Another Gibbs Sampler, or JAGS (Plummer 2003), which use Gibbs sampling 

instead of HMC. BUGS was used by Morris (2016) and has been used for Bayesian reserving 

models by others (Scollnik 2001; Verrall 2004; Zhang, Dukic, and Guszcza 2012), while Schmid 

(2010) and Meyers (2015) have used JAGS. Examples of reserving models built in Stan can be 

found in Cooney (2017) and Gao (2018). 
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2. Modeling the average claims development process 
Many different approaches have been put forward to model the average claims development 

process. The most well-known is perhaps the nonparametric chain-ladder method, which uses 

average loss development factors to model loss emergence (Schmidt 2006). Parametric 

approaches, such as growth curve models, have also been widely documented (Sherman 1984; 

Clark 2003; Guszcza 2008). 

2.1 Introduction to compartmental models 

Compartmental models are a popular tool in many disciplines to describe the behavior and 

dynamics of interacting processes using differential equations. 

Disciplines in which compartmental models are used include the following: 

x Pharmaceutical sciences, to model how drugs interact with the body 

x Electrical engineering, to describe the flow of electricity 

x Biophysics, to explain the interactions of neurons 

x Epidemiology, to understand the spread of diseases 

x Biology, to describe the interaction of different populations 

Each compartment typically relates to a different stage or population of the modeled process, 

usually described with its own differential equation. 

2.2 Multicompartmental claims modeling 

Similar to salt-mixing problem models, which describe the flow of fluids from one tank into 

another (Winkel 1994), we can model the flow of information or monetary amounts between 

exposure, claims outstanding, and claims payment states for a group of policies. 
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Figure 2.1. Schematic diagram of claims flow 

 

The diagram in Figure 2.1 gives a schematic view of three compartments (“tanks”) and the 

flow of monetary amounts between them. We start with a “bucket” of exposure or premium, 

which outflows into a second bucket, labeled OS, for reported outstanding claims. 

The parameter kୣ୰ describes how quickly the exposure expires as claims are reported. For a 

group of risks, it is unlikely that 100% of exposure will convert to claims. Therefore, a 

proportion, or multiple of exposure (RLR = reported loss ratio), is assumed to convert to 

outstanding claim amounts. 

Once claims have been processed, the insurer proceeds to pay its policyholders. The 

parameter k୮ describes the speed of claims settlement, and the parameter RRF (reserve 

robustness factor) denotes the proportion of outstanding claims that are paid. An RRF greater 

than 1 would indicate case underreserving, whereas an RRF less than 1 would indicate case 

overreserving. 
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The set of compartments (the “state-space”) and the claims processed through them can be 

expressed with a set of ordinary differential equations (ODEs). Denoting the “state-variables” 

EX ൌ exposure, OS ൌ outstanding claims, and PD ൌ paid claims (i.e., the individual 

compartments), we have the following: 

dEX/dt ൌ െkୣ୰ ⋅ EX
dOS/dt ൌ kୣ୰ ⋅ RLR ⋅ EX െ k୮ ⋅ OS
dPD/dt ൌ k୮ ⋅ RRF ⋅ OS

᩷᩷ሺ1ሻ 

The initial conditions at time 0 are typically set as EXሺ0ሻ ൌ Π (ultimate earned premiums), 

OSሺ0ሻ ൌ 0, PDሺ0ሻ ൌ 0 for accident period cohorts. Alternative approaches can be taken for 

policy year cohorts, which are discussed later in this section. 

For exposure defined in terms of ultimate earned premium amounts, the parameters describe 

the following: 

x Rate of earning and reporting (kୣ୰): the rate at which claim events occur and are 

subsequently reported to the insurer 

x Reported loss ratio (RLR): the proportion of exposure that becomes reported claims 

x Reserve robustness factor (RRF): the proportion of outstanding claims that are 

eventually paid 

x Rate of payment (k୮): the rate at which outstanding claims are paid 

Here we assume that parameters are time independent, but in later sections we will allow for 

increased structural flexibility. 

The expected loss ratio, ELR (expected ultimate losses ൊ ultimate premiums), can be derived 

as the product of RLR and RRF (the reported loss ratio scaled by the reserve robustness factor). 

Setting parameters kୣ୰ ൌ 1.7, RLR ൌ 0.8, k୮ ൌ 0.5, and RRF ൌ 0.95 produces the output 

shown in Figure 2.2. 



Hierarchical Compartmental Reserving Models 

Casualty Actuarial Society Research Paper 12 

Figure 2.2. Illustration of the different compartment amounts for a group of policies over time 

 

The autonomous system of ODEs above can be solved analytically by iterative integration: 

EXሺtሻ ൌ Π ⋅ expሺെkୣ୰tሻ

OSሺtሻ ൌ
Π ⋅ RLR ⋅ kୣ୰

kୣ୰ െ k୮
⋅ ቀexp൫െk୮t൯ െ expሺെkୣ୰tሻቁ

PDሺtሻ ൌ
Π ⋅ RLR ⋅ RRF

kୣ୰ െ k୮
൫kୣ୰ ⋅ ሺ1 െ expሺെk୮tሻ െ k୮ ⋅ ሺ1 െ expሺെkୣ୰tሻ൯

᩷᩷ሺ2ሻ 

The first equation describes an exponential decay of exposure over time. 

Outstanding claims are modeled as the difference between two exponential decay curves 

with different time scales, which determine how the reported losses (Π ⋅ RLR) are spread out 

over time and how outstanding losses decay as payments are made. 

The paid curve is an integration of the outstanding losses curve. It represents a classic loss 

emergence pattern with two parameters, kୣ୰ and k୮, multiplied by an expected ultimate claims 

cost, represented by the product of Π ⋅ RLR ⋅ RRF. 

The peak of the outstanding claims cost is at t ൌ logሺk୮/kୣ୰ሻ/ሺk୮ െ kୣ୰ሻ, representing the 

inflection point in paid loss emergence. Note that the summation of OSሺtሻ and PDሺtሻ gives us the 

implied incurred losses at time t. 
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2.3 Two-stage outstanding compartmental model 

We can increase the flexibility of the model in many ways, for example by introducing time-

dependent parameters or adding one or more compartments to the model, as outlined by 

Morris (2016). 

Adding compartments keeps our ODEs autonomous, which makes them easier to solve 

analytically and to visualize in a single diagram. 

The diagram in Figure 2.3 depicts a compartmental model that assumes reported claims fall 

into two categories: they are either dealt with by the insurance company quickly, with claims 

paid to policyholders in a timely fashion, or they go through another, more time-consuming 

process (such as investigation, dispute, and/or litigation). 

Figure 2.3. Two compartments for outstanding claims to allow some claims to be settled faster than 
others 

 

We translate this diagram into a new set of ODEs: 
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dEX/dt ൌ െkୣ୰ EX
dOSଵ/dt ൌ kୣ୰ RLR ⋅ EX െ ൫k୮భ  k୮మ൯ OSଵ
dOSଶ/dt ൌ k୮మ ሺOSଵ െ OSଶሻ
dPD/dt ൌ RRF ሺk୮భ OSଵ  k୮మ OSଶሻ

᩷᩷ሺ3ሻ 

Solving the system of autonomous ODEs can be done iteratively, resulting in the solutions 

below. However, numerical solvers are typically preferred to reduce algebraic computation and 

minimize risk of error. 

EXሺtሻ ൌ Π᩸expሺെkୣ୰tሻ

OSଵሺtሻ ൌ
Π᩸RLR᩸kୣ୰

kୣ୰ െ k୮భ െ k୮మ

ൣexpሺെሺ𝑘భ  𝑘మሻ𝑡ሻ െ expሺെ𝑘𝑡ሻ൧

OSଶሺtሻ ൌ
Π᩸RLR᩸kୣ୰᩸k୮మ

k୮భሺk୮మ െ kୣ୰ሻሺkୣ୰ െ k୮భ െ k୮మሻ
ሾ

expሺെሺk୮భ  k୮మሻtሻሺkୣ୰ െ k୮మሻ െ
expሺെk୮మtሻሺkୣ୰ െ k୮భ െ k୮మሻ െ
expሺെkୣ୰tሻ k୮భ൧

PDሺtሻ ൌ
Π᩸RLR᩸RRF

k୮భሺk୮మ െ kୣ୰ሻሺkୣ୰ െ k୮భ െ k୮మሻ
ሾ

൫k୮భሺkୣ୰ ሺk୮భ െ kୣ୰ሻ െ k୮మ ሺk୮భ  k୮మሻሻ  2kୣ୰k୮మ൯ 
expሺെሺk୮భ  k୮మሻtሻ൫kୣ୰ሺkୣ୰k୮భ െ kୣ୰k୮మ  k୮మ

ଶ െ k୮భk୮మሻ൯ 
expሺെk୮మtሻ൫kୣ୰k୮మሺkୣ୰ െ k୮భ െ k୮మ൯ 
expሺെkୣ୰tሻ൫k୮భሺk୮భk୮మ  k୮మ

ଶ െ kୣ୰k୮భሻ൯൧

 

Plotting the solutions illustrates faster and slower processes for the two distinct groups of 

outstanding claims, producing a paid curve that exhibits a steep start followed by a longer tail, 

shown in Figure 2.4. 

Many data sets will not separate outstanding claims into different categories, in which case, 

the sum of OSଵ and OSଶ will be used for fitting purposes. 
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Figure 2.4. Example of a two-stage outstanding model, with a portion of the claims settled at a faster 
rate (0.7) than others (0.5) 

 

It is trivial to expand this approach by adding further compartments to allow for more than 

two distinct settlement processes. The next section introduces a multistage exposure 

compartment model in which the number of compartments becomes a variable itself. 

2.4 Multistage exposure model 

The models thus far have assumed an exponential decay of exposure over time. 

Furthermore, we have assumed that the exposure at t ൌ 0 can be represented by ultimate 

earned premiums. 

In reality, at t ൌ 0 we may expect some exposures to still be earning out (on an accident year 

basis) or not yet be written (on a policy year basis). If we have a view on how exposures have 

earned in the past and may earn into the future (e.g., from our business plan), then we can feed 

blocks of exposure into the compartmental system over development time (Morris 2016), with 

the result that kୣ୰ simplifies to k୰. 

Alternatively, we can use a cascading compartmental model to allow for different earning 

and reporting processes as part of the modeling process, as in Figure 2.5. 
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Figure 2.5 Schematic of a multistage transition model 

 

We assume that risks are written and earned at a constant rate, analogous to water flowing 

from one tank to the next at a constant rate. The claims reporting delay is then modeled by the 

number of different compartments. 

We can express this compartmental model as a system of α ODEs: 

gሶ ଵ ൌ െβ gଵ
gሶ ଶ ൌ β gଵ െ β gଶ

⋮ ⋮
gሶ  ൌ βgିଵ െ βg

 

More succinctly, we express the system as an ODE of α order: 

d

dt gሺt; α, βሻ ൌ െ  ቀ
α
i ቁ



୧ୀଵ

β୧ dሺି୧ሻ

dtሺି୧ሻ gሺt; α, βሻ 

For α ൌ 1 we get back to an exponential decay model. 

This ODE can be solved analytically (Gesmann 2002): 

gሺt; α, βሻ ൌ ቐ
β tିଵ

ሺα െ 1ሻ! eିஒ୲  t  0

0 t ൏ 0
 

Relaxing the assumption that α is a positive integer gives 

gሺt; α, βሻ ൌ
β tିଵ

Γሺαሻ eିஒ୲᩷ for t  0, 
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with the gamma function Γሺαሻ ൌ ∫ xିଵஶ
 eି୶dx. 

The trained eye may recognize that gሺt; α, βሻ is the probability density function (PDF) of the 

gamma distribution, which is commonly used to model waiting times. 

Finally, let’s imagine we collect the outflowing water in another tank, with amounts in this 

compartment calculated by integrating gሺt; α, βሻ over time. This integration results in a gamma 

cumulative distribution function (CDF), 

Gሺt; α, βሻ ൌ න g
୲


ሺx; α, βሻdx ൌ

γሺα, t βሻ
Γሺαሻ ᩷ for t  0, 

using the incomplete gamma function γሺs, tሻ ൌ ∫ tሺୱିଵሻ୶
 eି୲dt. 

Visualizing the functions gሺt; α, βሻ and Gሺt; α, βሻ shows that for a fixed β the parameter α can 

be used to determine how quickly the curves converge; see Figure 2.6. 

Figure 2.6. Visualization of the gamma function for different values of હ 

 

The gamma function has previously been proposed to model loss emergence patterns, 

labeled as the “Hoerl curve” (England and Verrall 2001). 

For our purpose of modeling exposure decay, we introduce parameters kୣ, describing the 

earning speed, and d୰, describing the reporting delay. 
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We define kୣ ൌ β and d୰ ൌ α; which implies that the speed of earning kୣ matches the flow of 

water from one tank into the next, while d୰ can be linked to the number of transient tanks. 

The analytical form for the exposure can be then expressed as 

EXሺtሻ ൌ Π ୩
ౚ౨ ୲ౚ౨షభ

ሺୢ౨ሻ
eି୩୲. 

In other words, we model exposure as ultimate earned premium (Π) weighted over time 

with a gamma PDF. 

Inserting the solution into the ODEs produces the following: 

dOSଵ/dt ൌ Π ⋅ RLR ⋅
kୣ

ୢ౨  tୢ౨ିଵ

Γሺd୰ሻ eି୩୲ െ ሺk୮భ  k୮మሻ ⋅ OSଵ

dOSଶ/dt ൌ k୮మ ⋅ ሺOSଵ െ O𝑆ଶሻ
dPD/dt ൌ RRF ⋅ ሺk୮భ ⋅ OSଵ  k୮మ ⋅ OSଶሻ

᩷᩷ሺ4ሻ 

Figure 2.7 illustrates the impact the multistage exposure submodel has on the two-stage 

outstanding curves and paid loss emergence pattern. Claim reports and payments develop 

more slowly, as typically observed for longer-tailed business lines. 

Figure 2.7. Example of multistage exposure model (𝐤𝐞 ൌ , 𝐝𝐫 ൌ . ૠ) with a two-stage outstanding 
process 
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Note that with the proposed extensions, setting d୰ ൌ 1 and k୮మ ൌ 0 gets us back to the 

original model (1), with one parameter, kୣ୰, for the exposure and reporting process, and one 

parameter, k୮, for the payment process. 

We can express our model as an autonomous ODE system for various extensions, but 

integrating the system is not always straightforward. Fortunately, as we will see in a later 

section, Stan (Stan Development Team 2019) has a Runge-Kutta solver to integrate the system 

numerically. 

It is worth emphasizing that this framework allows us to build parametric curves that share 

parameters across paid and outstanding data. This enables us to learn from both data sources at 

the same time and have consistent ultimate projections of paid and incurred claims (see the 

phase plots in Figure 2.8). This is in contrast to fitting separate curves for paid and incurred 

data, resulting in two different answers. 

 

Figure 2.8. Phase plot of models 1 ʹ 3. The 3-D plot (left) illustrates that models 1 and 2 assume 
exposure to peak at t = 0, while model 3 assumes exposure to be 0 at t = 0, with gradual increase and 
decrease over time. Note that for models 2 and 3 OS displays the sum of OS1 + OS2. The 2-D plot 
(right) shows the relationship between outstanding and paid claims, which can be compared against 
actual data. 

 

In practice, for some business lines, claim characteristics can be heterogeneous or case 

handling processes inconsistent, resulting in volatile outstanding claims development. The 
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value of incorporating outstandings may be diminished if the data do not broadly conform to 

the model’s assumption on how outstandings and payments link. 

Similarly, for the model assumptions to hold, the process lifecycle from earning exposure 

through to paying claims should be approximable as continuous for a volume of policies. 

In summary, compartmental models provide a flexible framework to build loss emergence 

patterns for outstanding and paid claims from first principles. We outline two extensions here, 

yet many more are feasible depending on the underlying features the practitioner is hoping to 

build within a structural model for the average development process. Getting a “feel” for the 

parameters, their interpretations, and how they determine loss emergence characteristics in 

each case will become important when we have to set prior distributions for them. 



Hierarchical Compartmental Reserving Models 

Casualty Actuarial Society Research Paper 21 

3. Modeling parameter and process uncertainties 
In the previous section we developed an understanding of how to model the average 

behavior of the claims development process using compartmental models. In this section, we 

start to build statistical models around a central statistic such as the mean or median. 

We will not model any data here; instead, the focus is on selecting distributions for the 

observation scale (the “process”) and priors for the system parameters. The aim is to create a 

model that can simulate data that shares key characteristics of real data. This will lead to a 

discussion on modeling cumulative versus incremental paid claims. 

We demonstrate how these models can be implemented in Stan (Stan Development Team 

2019) using brms (Bürkner 2017) as an interface from R (R Core Team 2019) to generate prior 

predictive output. 

3.1 Data-generating (“process”) distribution 

To model the data-generating process for our observations, y୨, we have to consider the likely 

distribution of our data (D) and how the process can be expressed in terms of parameters. In 

simple models, we often distinguish between parameters that are direct functions of variables in 

the data (Θ) and family-specific (Φ), which are either fixed or vary indirectly with respect to Θ in 

line with specific distributional assumptions. Examples of the latter include the standard 

deviation σ in Gaussian models or the shape α in gamma models. 

The generic form of a univariate data-generating process for repeated measures data (such as 

claims development) can be written as follows: 

y୨ ∼ Dሺfሺt୨, Θሻ, Φሻ 

Note that in more complex models we can estimate specific relationships between Φ and 

data features by introducing additional parameters. 

It can be helpful to think about how the variability in y୨ is related to changes in the mean or 

median. In ordinary linear regression, where the process is assumed to follow a normal 



Hierarchical Compartmental Reserving Models 

Casualty Actuarial Society Research Paper 22 

distribution (or, equivalently, to have a Gaussian error term), a constant variance is typically 

assumed: 

y୨ ∼ 𝖭৷৺৵𝖺৴ሺμሺt୨ሻ, σሻ 

In the claims reserving setting it is often assumed that volatility changes with the mean. A 

multiplicative or overdispersed relationship is usually considered. 

Given that claims are typically right skewed and that larger claims tend to exhibit larger 

variation, the lognormal or gamma distributions are often a good starting point. Other popular 

choices are the negative binomial (claim counts) and Tweedie (pure premium) distributions. 

However, for some problems, standard distributions will not appropriately characterize the 

level of zero-inflation or extreme losses observed without additional model structure. 

For the lognormal distribution, a constant change assumption on the log scale translates to a 

constant coefficient of variation (CoV) on the original scale (CoV ൌ ඥexpሺσଶሻ െ 1): 

y୨ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺμሺt୨ሻ, σሻ 

It can be helpful to model variables on a similar scale so that they have similar orders of 

magnitude. This can improve sampling efficiency and, in the case of the target variable, makes 

it easier apply the same model to different data sets. For this reason, we advise modeling loss 

ratios instead of loss amounts in the first instance. However, we also note that this approach 

will have an effect on the implicit volume weighting within the optimization routine for 

constant CoV distributions, and on occasion it may be preferable to target claim amounts. 

The choice of the process distribution should be carefully considered, and the modeler 

should be able to articulate the selection criteria. 

3.2 Prior parameter distributions 

The concept of analyses beginning with “prior” assumptions, which are updated with data, 

is fundamental to Bayesian inference. In the claims reserving setting, the ability to set prior 

distributional assumptions for the claims process parameters also gives the experienced 
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practitioner an opportunity to incorporate his or her knowledge into an analysis independently 

of the data. 

An expert may have a view on the required shape of a parameter distribution and the level 

of uncertainty. Figure 3.1 (Bååth 2011) provides an overview of typical distributions. In order to 

select a sensible distribution, it can be helpful to consider the following questions: 

x Is the data/parameter continuous or discrete? 

x Is the data/parameter symmetric or asymmetric? 

x Is the data/parameter clustered around a central value? 

x How prevalent are outliers? 

x Are the outliers positive or negative? 
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Figure 3.1. Schematic diagram of popular distributions and their parameters 

 

There is no concept of a “prior” in frequentist procedures, and hence Bayesian approaches 

can offer greater flexibility when such prior knowledge exists. However, note that priors are 

starting points only, and the more data that are available, the less sensitive posterior inferences 

will be to those starting points. 

3.3 Cumulative versus incremental data 

Since we intend to model the full aggregated claims distribution at each development time, 

we have to carefully consider the impact the process variance assumption has on model 

behavior. This is particularly true for paid claims. Actual payments are incremental by nature, 

but we have the option to model cumulative payments. Does our choice matter? 



Hierarchical Compartmental Reserving Models 

Casualty Actuarial Society Research Paper 25 

Many traditional reserving methods (including the chain-ladder technique) take cumulative 

claims triangles as an input. Plotting cumulative claims development allows the actuary to 

quickly understand key data features by eye and identify the appropriateness of the selected 

projection technique. 

In compartmental reserving models we estimate cumulative paid claims in the final 

compartment—a scaled (RRF) and delayed (k୮) version of the integrated outstanding claims—

so it is also natural to visualize cumulative paid claims development. However, if we assume a 

constant (e.g., lognormal) CoV process distribution and model cumulative claims, this would 

imply more volatile paid claims over development time as payments cumulate. As a result, 

changes from one development period to the next would become more volatile. This feature is 

in direct contradiction to our intuition and the mean compartmental model solution, which 

expects less movement in the aggregate cumulative paid claims as fewer claims are 

outstanding. 

To illustrate this concept and get us started with Bayesian model notation, we consider a 

simple growth curve model for cumulative paid loss ratio development. 

Let’s assume the loss ratio data-generating process can be modeled using a lognormal 

distribution, with the median loss ratio over time following a simple exponential growth curve. 

The loss ratio ሺℓ୨ሻ at any given development time ሺt୨ሻ is modeled as the product of an expected 

loss ratio ሺELRሻ and loss emergence pattern Gሺt; θሻ: 

ℓ୨ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺηሺt୨; θ, ELRሻ, σሻ
ηሺt; θ, ELRሻ ൌ logሺELR  ⋅  Gሺt; θሻሻ

Gሺt; θሻ ൌ 1 െ eି୲

ELR ∼ 𝖨৶৾𝖦𝖺৵৵𝖺ሺ4,2ሻ
θ ∼ 𝖭৷৺৵𝖺৴ሺ0.2,0.02ሻ
σ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0.1,0.1ሻା

 

Note that we specify prior distributions for the parameters ELR, θ, and 𝜎 to express our 

uncertainty in these quantities. We assume that the expected loss ratio (ELR) follows an inverse 
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gamma distribution to ensure positivity, but also allow for potential larger losses and hence 

poorer performance. 

The parameter θ describes loss emergence speed, with lnሺ2ሻ/θ being the expected halfway-

time of ultimate development. We set a Gaussian prior for this parameter, with a mean of 0.2 

and standard deviation of 0.02, which implies that we expect 50% development of claims after 

around 3.5 years, but perhaps this occurs a month earlier or later. 

The process uncertainty (σ) has to be positive, so we assume a Student t-distribution left-

truncated at 0. Figure 3.2 illustrates the prior parameter distributions. 

Figure 3.2. Density plots of prior parameter distributions 

 

Sampling from this model produces payment patterns with many negative increments in 

later development periods, as depicted in Figure 3.3. 
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Figure 3.3. Spaghetti plot of 100 simulated cumulative loss ratios 

 

The reason for this behavior is the lognormal constant CoV, σ. As the mean loss ratio 

increases with development time, volatility increases as well, and there is no constraint in the 

model for the lognormal realizations to be increasing by development time. 

However, this is not what we typically observe in development data. To account for this 

discrepancy, Meyers (2015) imposes a monotone decreasing constraint on the σ୨ parameter with 

respect to development time, while Zhang, Dukic, and Guszcza (2012) and Morris (2016) 

include a first-order autoregressive error process. 

Many others, including Zehnwirth and Barnett (2000) and Clark (2003), model incremental 

payments, for example as follows: 

ηሺt୨; θ, ELRሻ ൌ log൫ELR  ⋅   ൣGሺt୨; θሻ െ Gሺt୨ିଵ; θሻ൧൯ 

Modeling the incremental median payments with a lognormal distribution and a constant 

CoV is not only straightforward in the brms package in R, as shown in the code below, but the 

resultant simulations from the model appear more closely aligned to development data 

observed in practice, as shown in Figure 3.4. 

myFun <- " 

real incrGrowth(real t, real tfreq, real theta){ 

  real incrgrowth; 
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  incrgrowth = (1 - exp(-t * theta)); 

  if(t > tfreq){  

    incrgrowth = incrgrowth - (1 - exp(-(t - tfreq) * theta));  

  } 

  return(incrgrowth); 

} 

" 

prior_lognorm <- brm( 

  bf(incr_lr ~ log(ELR * incrGrowth(t, 1.0, theta)), 

     ELR ~ 1, theta ~ 1, nl=TRUE), 

  prior = c(prior(inv_gamma(4, 2), nlpar = "ELR", lb=0), 

            prior(normal(0.2, 0.02), nlpar = "theta", lb=0), 

            prior(student_t(10, 0.1, 0.1), class = "sigma")), 

  data = dat, file = "models/section_3/prior_lognorm", 

  stanvars = stanvar(scode = myFun, block = "functions"), 

  family = brmsfamily("lognormal"), 

  sample_prior = "only") 

Figure 3.4. Simulations of incremental claims payments and cumulative aggregation across 
development period 

 

Additional factors that lead us to favor the use of incremental data include the following: 
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x Missing or corrupted data for some development periods can be problematic when we 

require cumulative data from the underlying incremental cash flows. Manual 

interpolation techniques can be used ahead of modeling, but a parametric growth curve 

applied to incremental data will deal with missing data as part of the modeling process. 

x Changes in underlying processes (claims handling or inflation) causing effects in the 

calendar period dimension can be masked in cumulative data and are easier to identify 

and model using incremental data. 

x Predictions of future payments are put on an additive scale, rather than a multiplicative 

scale, which avoids ad hoc anchoring of future claims projections to the latest 

cumulative data point. 

3.4 Prior predictive examples 

In this section, we provide three more examples of simulation models with different process 

distributions. These models are generative insofar as they are intended to emulate the data-

generating process. However, their parameters are set manually as priors rather than estimated 

from data, so we term them “prior predictive” models. 

The prior predictive distribution (pሺyሻ) is also known as the marginal distribution of the 

data. It is the integral of the likelihood function with respect to the prior distribution 

pሺyሻ ൌ ∫ pሺy|θሻpሺθሻdθ, 

and is not conditional on observed data. 

Clark (2003) demonstrates how an overdispersed Poisson model can be fitted using 

maximum likelihood, and Guszcza (2008) illustrates the use of a Gaussian model with constant 

CoV. 

Below, we showcase how these ideas can be implemented in Stan with brms. 

At the end of the section we outline a prior predictive model for compartmental model (1) in 

the previous section. 
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3.4.1 Negative binomial process distribution 

An overdispersed Poisson process distribution is assumed in Clark (2003), but here we will 

use a negative binomial distribution to model overdispersion generatively. This is also a 

standard family distribution in brms.1 

The negative binomial distribution can be expressed as a Poisson(μ) distribution where μ is 

itself a random variable, coming from a gamma distribution with shape α ൌ r and rate β ൌ ሺ1 െ

pሻ/p: 

μ ∼ 𝖦𝖺৵৵𝖺ሺr, ሺ1 െ pሻ/pሻ
y ∼ Poissonሺμሻ  

Alternatively, we can specify a negative binomial distribution with mean parameter μ and 

dispersion parameter ϕ: 

y ∼ 𝖭𝖾𝗀𝖺ৼ𝗂৾𝖾𝖡𝗂৶৷৵𝗂𝖺৴ሺμ, ϕሻ
𝖤ሺyሻ ൌ μ

𝖵𝖺৺ሺyሻ ൌ μ  μଶ/ϕ
 

The support for the negative binomial distribution is ℕ, and therefore we model dollar-

rounded loss amounts (𝐿j) instead of loss ratios. 

A growth curve model can be written as follows, with a log-link for the mean and shape 

parameters: 

L୨ ∼ 𝖭𝖾𝗀𝖺ৼ𝗂৾𝖾𝖡𝗂৶৷৵𝗂𝖺৴ሺμሺt୨; θ, Π, ELRሻ, ϕሻ

μሺt୨; θ, ELRሻ ൌ log ቀΠ ELR൫Gሺt୨; θሻ െ Gሺt୨ିଵ; θሻ൯ቁ
θ ∼ 𝖭৷৺৵𝖺৴ሺ0.2,0.02ሻା

ELR ∼ 𝖨৶৾𝖦𝖺৵৵ሺ4,2ሻ
ϕ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,logሺ50ሻሻା

 

This is straightforward to specify in brms: 

prior_negbin <- brm( 

  bf(incr  ~ log(premium * ELR * incrGrowth(t, 1.0, theta)), 

 
1 Custom distributions can be defined in brms too; see Bürkner (2020). 
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     ELR ~ 1, theta ~ 1, nl = TRUE), 

  prior = c(prior(inv_gamma(4, 2), nlpar = "ELR"), 

            prior(normal(0.2, 0.02), nlpar = "theta", lb=0), 

            prior(student_t(10, 0, log(50)), class = "shape")), 

 data = dat, family = negbinomial(link = "log"), 

 stanvars = stanvar(scode = myFun, block = "functions"), 

 file="models/section_3/prior_negbin", sample_prior = "only") 

This specification gives the outputs shown in Figure 3.5. 

Figure 3.5. Prior predictive simulations of 100 losses with a negative binomial process distribution 
assumption 

 

3.4.2 Gaussian process distribution with constant coefficient of variation 

Guszcza (2008) proposes a Gaussian model with constant CoV to force the standard 

deviation to scale with the mean. 

We can re-express our loss ratio growth curve model from earlier as 

ℓ୨ ∼ 𝖭৷৺৵𝖺৴ሺηሺt୨; Θ, ELRሻ, σ୨ሻ
σ୨ ൌ σඥη୨

ηሺt୨; θ, ELRሻ ൌ  ELR൫Gሺt୨; Θሻ െ Gሺt୨ିଵ; Θሻ൯
θ ∼ 𝖭৷৺৵𝖺৴ሺ0.2,0.02ሻା

ELR ∼ 𝖨৶৾𝖦𝖺৵৵𝖺ሺ4,2ሻ
σ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.1ሻା,
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which we can specify in brms once more (note the use of the nlf function here, which maps 

variables to nonlinear functions): 

prior_gaussian <- brm( 

  bf(incr_lr ~ eta, 

     nlf(eta ~ ELR * incrGrowth(t, 1.0, theta)), 

     nlf(sigma ~ tau * sqrt(eta)), 

     ELR ~ 1, theta ~ 1, tau ~ 1, nl = TRUE), 

  data = dat, family = brmsfamily("gaussian", link_sigma = "identity"), 

  prior = c(prior(inv_gamma(4, 2), nlpar = "ELR"), 

            prior(normal(0.2, 0.02), nlpar = "theta", lb=0), 

            prior(student_t(10, 0, 0.1), nlpar = "tau", lb = 0)), 

  stanvars = stanvar(scode = myFun, block = "functions"), 

  file = "models/section_3/prior_gaussian",  

  sample_prior = "only") 

Figure 3.6 illustrates the output of this approach. 

Figure 3.6. Prior predictive simulations of 100 losses with a Gaussian process distribution assumption 

 

3.4.3 Compartmental model with lognormal distribution 

Finally, we simulate model output for our first compartmental model (1). 
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Compartmental models have a little more complexity than the growth curve models above, 

and so we have additional considerations for their implementation with brms and Stan: 

• How to deal with the multivariate nature of the compartmental model, which is specified 

to fit paid and outstanding claims data simultaneously 

• How to solve the ODEs numerically 

• How to ensure that as the number of prior assumptions grows, their initialization values 

are valid 

3.4.3.1 Compartmental model setup 

To model paid and outstanding loss ratio data simultaneously, we stack both into a single 

column and add another column with an indicator variable. This indicator (𝛿) allows us to 

switch between the two claim stages and specify different variance levels (with a log link): 

y୨ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺμሺt୨; Θ, δሻ, σሾஔሿሻ

μሺt୨; Θ, δሻ ൌ log ቀሺ1 െ δሻOS୨  δ൫PD୨ െ PD୨ିଵ൯ቁ

σሾஔሿ ൌ exp ൫ሺ1 െ δሻβைௌ  δ β൯

δ ൌ ቊ
0 if y୨ is outstanding claims
1 if y୨ is paid claims

Θ ൌ ሺkୣ୰, k୮, RLR, RRFሻ
dEX୨/dt ൌ െkୣ୰ ⋅ EX୨
dOS୨/dt ൌ kୣ୰ ⋅ RLR ⋅ EX୨ െ k୮ ⋅ OS୨
dPD୨/dt ൌ k୮ ⋅ RRF ⋅ OS୨

᩷᩷ሺ5ሻ 

Some of the more complex compartmental models described in the previous section have no 

analytical solutions for their ODE systems, forcing us to rely on numerical integration. 

Fortunately, the Stan language contains a Runge-Kutta solver. We can write our solver in 

Stan and pass the code into brms in the same way as we did with the analytical growth curve 

solution earlier. 

The Stan code below shows three functional blocks. The first function defines the ODE 

system, the second the solver, and the third the application to the data. Note the modeling of 

incremental paid claims for development periods greater than 1. 
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myCompFun <- " 

// ODE System 

real[] ode_claimsprocess(real t, real [] y,  real [] theta,  

                         real [] x_r, int[] x_i){ 

  real dydt[3]; 

  // Define ODEs 

  dydt[1] = - theta[1] * y[1]; 

  dydt[2] = theta[1] * theta[3] * y[1] - theta[2] * y[2]; 

  dydt[3] = theta[2] * theta[4] * y[2]; 

   return dydt; 

  } 

//Priors & Solver 

real int_claimsprocess(real t, real ker, real kp,  

                       real RLR, real RRF, real delta){ 

  real y0[3]; 

  real y[1, 3]; 

  real theta[4]; 

  theta[1] = ker; theta[2] = kp; 

  theta[3] = RLR; theta[4] = RRF; 

  // Set initial values 

  y0[1] = 1; y0[2] = 0; y0[3] = 0; 

   

  y = integrate_ode_rk45(ode_claimsprocess,  

                        y0, 0, rep_array(t, 1), theta, 

                        rep_array(0.0, 0), rep_array(1, 1), 

                        0.0001, 0.0001, 500); // tolerances, steps 

      return (y[1, 2] * (1 - delta) + y[1, 3] * delta); 

} 
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//Application to OS and Incremental Paid Data 

real claimsprocess(real t, real devfreq, real ker, real kp,  

                   real RLR, real RRF, real delta){ 

    real out;  

    out = int_claimsprocess(t, ker, kp, RLR, RRF, delta); 

    if( (delta > 0) && (t > devfreq) ){ // paid greater dev period 1 

    // incremental paid 

     out = out - int_claimsprocess(t - devfreq, ker, kp, RLR, RRF, delta); 

    } 

    return(out); 

} 

" 

At the beginning of the HMC simulation Stan initializes all parameter values randomly 

between -2 and 2. Although these can be changed by the user, the default initializations can 

cause issues for parameters that cannot be negative in the model. To avoid setting multiple 

initial values, it is common practice to define parameters on an unconstrained scale and 

transform them to the required scale afterwards. 

For our example, we will assume all compartmental model parameter priors are lognormally 

distributed. For the implementation, however, we use standardized Gaussians and transform 

them to lognormal distributions using the nlf function. 

RLR ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ0.6ሻ, 0.1ሻ
RRF ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ0.95ሻ, 0.05ሻ
kୣ୰ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ1.7ሻ, 0.02ሻ
k୮ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ0.5ሻ, 0.05ሻ

 

We assume Gaussians for βைௌ  and β, with the volatility for outstanding loss ratios slightly 

higher than for paid loss ratios: 

βைௌ ~ 𝖭৷৺৵𝖺৴ሺ0.15, 0.025ሻ
β ~ 𝖭৷৺৵𝖺৴ሺ0.1, 0.02ሻ
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The above implies a lognormal distribution for σሾஔሿ given the log link. 

Now that we have prepared our model, we can simulate from it with brms (below) and 

review the prior predictive output (Figure 3.7). 

frml <- bf( 

  incr_lr ~ eta, 

  nlf(eta ~ log(claimsprocess(t, 1.0, ker, kp, RLR, RRF, delta))), 

  nlf(RLR ~ 0.6 * exp(oRLR * 0.1)),  

  nlf(RRF ~ 0.95 * exp(oRRF * 0.05)), 

  nlf(ker ~ 1.7 * exp(oker * 0.02)),  

  nlf(kp ~ 0.5 * exp(okp * 0.05)), 

  oRLR ~ 1, oRRF ~ 1, oker ~ 1, okp ~ 1, sigma ~ 0 + deltaf, 

  nl = TRUE) 

mypriors <- c(prior(normal(0, 1), nlpar = "oRLR"), 

              prior(normal(0, 1), nlpar = "oRRF"), 

              prior(normal(0, 1), nlpar = "oker"), 

              prior(normal(0, 1), nlpar = "okp"), 

              prior(normal(0.1, 0.02), class = "b",  coef="deltafpaid", dpar = "sigma"), 

              prior(normal(0.15, 0.025), class = "b",  coef="deltafos", dpar= "sigma")) 

prior_compartment_lognorm <- brm(frml, data = dat,  

  family = brmsfamily("lognormal", link_sigma = "log"), 

  prior = mypriors, 

  stanvars = stanvar(scode = myCompFun, block = "functions"), 

  file="models/section_3/prior_compartment_lognorm", 

  sample_prior = "only") 
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Figure 3.7. Prior predictive simulations of 100 outstanding and paid development paths with a 
lognormal process distribution assumption 

 

The prior predictive simulations appear to resemble development data, despite having not 

used any real data to generate them. 

As part of a robust Bayesian work flow, one should next try to fit the model to a sample of 

the prior predictive distribution to establish whether the model parameters are identifiable 

(Betancourt 2018). This is left as an exercise for the reader. 
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4. Modeling hierarchical structures and correlations 
In the previous section we discussed generative models for claims development. We will 

continue this line of thought and add more complexity in the form of hierarchies for describing 

claims emergence pattern variation by accident year. 

4.1 Introduction to hierarchical models 

Hierarchical and multilevel models are popular tools in the social and life sciences. A typical 

motivation for their use is to understand which characteristics are shared among individuals 

within a population as well as which ones vary, and to what extent. In the frequentist setting, 

these models are usually termed “mixed-effects” or “fixed- and random-effects” models. 

In insurance we face similar challenges: we want to learn as much as possible at a credible 

“population” level and make adjustments for individual cohorts or policyholders. The 

Bühlmann-Straub credibility pricing model (Bühlmann and Straub 1970) is a special case of a 

hierarchical model. 

Hierarchical models have been proposed in the reserving literature previously, for example 

by Antonio et al. (2006); Guszcza (2008); Zhang, Dukic, and Guszcza (2012); and Morris (2016). 

When it comes to claims reserving, we typically consider the aspects of the data-generating 

process that we believe to be the same across a dimension and those that will vary “randomly,” 

for the purpose of the model. 

It is generally assumed that the loss emergence pattern of claims is similar across accident 

years, while aggregate loss amounts themselves vary given the “random” nature of loss event 

occurrence and severity. 

For example, the standard chain-ladder method derives a single loss emergence pattern from 

a claims triangle. The loss development factors are applied to the most recent cumulative claims 

positions to provide ultimate loss forecasts by accident year. However, the latest cumulative 

claims positions are the result of a random process for which volatility tends to dominate in 

earlier development periods (i.e., younger accident years), leading to highly sensitive 
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projections from the chain-ladder approach. This issue is often addressed by using the 

Bornhuetter-Ferguson method (Bornhuetter and Ferguson 1972), which incorporates prior 

information on expected loss ratios and uses the loss emergence expectation as a credibility 

weight for the chain-ladder forecast. 

Hierarchical compartmental models provide a flexible framework to simultaneously model 

the fixed and random components of the claim development process. 

4.2 Specifying a hierarchy 

The previous section presented models that we can extend to be hierarchical. For example, 

we could assume that the pattern of loss emergence is the same across accident years and that 

expected loss ratios vary “randomly” by accident year 𝑖 around a central value 𝐸𝐿𝑅: 

ℓ୧୨ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺηሺt୨; θ, ELRሾ୧ሿሻ, σሻ
ηሺt; θ, ELRሾ୧ሿሻ ൌ logሺELRሾ୧ሿ   ⋅   ሺGሺt୨; θሻ െ Gሺt୨ିଵ; θሻሻ

ൌ log൫ELRሾ୧ሿ൯  log൫Gሺt୨; θሻ െ Gሺt୨ିଵ; θሻ൯
ELRሾ୧ሿ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺELRୡሻ, σሾ୧ሿሻ
ELRୡ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ0.6ሻ,0.1ሻ

σሾ୧ሿ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.05ሻା

θ ∼ 𝖭৷৺৵𝖺৴ሺ0.2,0.02ሻ
σ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.05ሻା

 

This parameterization is known as the “centered” approach, whereby individual 𝐸𝐿𝑅 

estimates are distributed around an average or central value. For subsequent models, we 

replace lines 4–6 above with the following structure: 

logሺELRሾ୧ሿሻ ൌ μୖ  uሾ୧ሿ
uሾ୧ሿ ൌ  σሾ୧ሿzሾ୧ሿ 

μୖ ∼ 𝖭৷৺৵𝖺৴ሺlogሺ0.6ሻ,0.1ሻ
σሾ୧ሿ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.025ሻା

zሾ୧ሿ ∼ 𝖭৷৺৵𝖺৴ሺ0,1ሻ

 

In this specification, individual effects are estimated around the population as additive 

perturbations, relating naturally to the “fixed” and “random” effects terminology. However, 

this is a potential source of confusion in the Bayesian setting, where all parameters are random 
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variables. We therefore opt for the terms “population” and “varying” in lieu of “fixed” and 

“random” to avoid such confusion. 

The second “noncentered” parameterization is the default approach in brms for hierarchical 

models because it often improves convergence, so we adopt it for all hierarchical models fitted 

in this paper. 

4.3 Regularization 

Hierarchical models provide an adaptive regularization framework in which the model 

learns how much weight subgroups of data should get, which can help to reduce overfitting. 

This is effectively a credibility weighting technique. Setting a small value for 𝜎ሾሿ above ensures 

that sparse data (e.g., for the most recent accident year) has limited influence on 𝐸𝐿𝑅ሾሿ. In this 

scenario, our estimate of log(ELRሾ୧ሿሻ will “shrink” more heavily toward 𝜇ாோ. 

Regularization allows us to estimate the parameters of more complex and thus more flexible 

models with greater stability and confidence. For example, as we noted earlier, the multistage 

model (4) collapses into the simpler model (2) with kୣ ൌ 1 and k୮మ ൌ 0. We can therefore use the 

more complex model with priors centered on 1 and 0 to allow flexibility, but only where the 

data provide a credible signal away from our prior beliefs. In this sense, we can estimate 

parameters for models that would be considered “overparameterized” in a traditional 

maximum-likelihood setting. 

4.4 Market cycles 

For the compartmental models introduced in Section 2, hierarchical techniques allow us to 

estimate “random” variation in reported loss ratios and reserve robustness factors across 

accident years. 

However, changes in the macroeconomic environment, as well as internal changes to pricing 

strategy, claims settlement processes, and teams, can also impact underwriting and reserving 

performance in a more systematic manner. 
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Where information relating to such changes exists, we can use it in our modeling to provide 

more informative priors for the reported loss ratios and reserve robustness factors by accident 

year. 

One approach is to on-level the parameters across years. Suppose we have data on historical 

cycles in the form of indices, with 𝑅𝐿𝑀  describing reported loss ratio multipliers and 𝑅𝑅𝑀  

describing reserve robustness change multipliers on a base accident year. 

Sources for the reported loss ratio multipliers could be risk-adjusted rate changes or 

planning or pricing loss ratios, while the reserve robustness multipliers could be aligned with 

internal claims metrics. 

This data (or judgment, or both) can be used to derive prior parameters 𝑅𝐿𝑅ሾሿ and 𝑅𝑅𝐹ሾሿ by 

accident year as follows: 

RLRሾ୧ሿ ൌ RLRୠୟୱୣ ⋅ RLM୧
ై

RRFሾ୧ሿ ൌ RRFୠୟୱୣ ⋅ RRM୧
ూ

 

For each accident year, we specify parameter priors as the product of a base parameter (e.g., 

the expected loss ratio for the oldest year) and an index value for that year. We also introduce 

additional parameters 𝜆ோோ, 𝜆ோோி to describe the extent to which expected loss ratios correlate 

with the indices. 

On a log scale this implies a simple additive linear relationship: 

μୖୖሾሿ ൌ μୖୖ  λୖୖ logሺRLM୧ሻ
μୖୖሾሿ ൌ μୖୖ  λୖୖ logሺRRM୧ሻ

 

For interpretability, the reported loss ratio and reserve robustness multiplier should be set to 

1 for the base accident year. Under this assumption it may be preferable to set prior 

assumptions for 𝜆 close to 1 also, provided the indices are considered reliable. Furthermore, the 

credibility parameters 𝜆 could be allowed to vary by accident year. 

A weakness of this approach is that any index uncertainty observed or estimated in earlier 

years does not propagate into more recent years. Additionally, the 𝜆 parameters have minimal 
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influence for years in which the indices are close to 1. Although this allows us to set loss ratio 

priors for each year individually, we could instead adopt time series submodels for the 𝑅𝐿𝑅 and 

𝑅𝑅𝐹 parameters to address these limitations. 

The next section illustrates how to build a hierarchical compartmental model for a single 

claims triangle. To keep the example compact, we will touch on market cycles but not model 

them directly. However, the case study in Section 5 will explicitly take market cycles into 

account. The corresponding R code is presented in the appendix. 

4.5 Single-triangle hierarchical compartmental model 

This example uses the classic “GenIns” paid triangle (Taylor and Ashe 1983) from the 

ChainLadder package (Gesmann et al. 2019). The triangle has been used in many reserving 

papers, including Mack (1993), Clark (2003), and Guszcza (2008). We also use the premium 

information given in Clark (2003) for our analysis (see Table 4.1). 
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Table 4.1 Premiums and cumulative paid claims triangle, with values shown in thousands 

 Premium 1 2 3 4 5 6 7 8 9 10 

1991 10,000 358 1,125 1,735 2,218 2,746 3,320 3,466 3,606 3,834 3,901 

1992 10,400 352 1,236 2,170 3,353 3,799 4,120 4,648 4,914 5,339  

1993 10,800 291 1,292 2,219 3,235 3,986 4,133 4,629 4,909   

1994 11,200 311 1,419 2,195 3,757 4,030 4,382 4,588    

1995 11,600 443 1,136 2,128 2,898 3,403 3,873     

1996 12,000 396 1,333 2,181 2,986 3,692      

1997 12,400 441 1,288 2,420 3,483       

1998 12,800 359 1,421 2,864        

1999 13,200 377 1,363         

2000 13,600 344          

 

The incremental data in Figure 4.1 exhibit substantial volatility, in both quantum and 

development behavior. Some of the variance seen in the cumulative loss ratio development 

could be attributed to risk-adjusted rate changes across accident years. 
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Figure 4.1. Example triangle of incremental and cumulative paid loss ratio development by accident 
year 

 

With a single payment triangle we are still able to use a hierarchical compartmental model, 

such as model (4), to model paid loss ratio loss emergence. This is similar to fitting a 

hierarchical growth curve model; however, we will not be able to make inferences about case 

reserve robustness. 

We allow all compartmental model parameters to vary by accident year and again use the nlf 

function to transform parameters from 𝖭৷৺৵𝖺৴ሺ0,1ሻ into lognormal priors: 

frml <- bf(incr_lr ~ eta, 

           nlf(eta ~ log(ELR * lossemergence(dev, 1.0, ke, dr, kp1, kp2))), 

           nlf(ke ~ exp(oke * 0.5)), 

           nlf(dr ~ 1 + 0.1 * exp(odr * 0.5)), 

           nlf(kp1 ~ 0.5 * exp(okp1 * 0.5)), 

           nlf(kp2 ~ 0.1 * exp(okp2 * 0.5)), 

           ELR ~ 1 + (1 | AY),  

           oke  ~ 1 + (1 | AY), odr ~ 1 + (1 | AY),  

           okp1 ~ 1 + (1 | AY), okp2 ~ 1 + (1 | AY), 

           nl = TRUE) 
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We set prior parameter distributions similar to those in the previous section and add priors 

for the Gaussian perturbation terms of the varying effects. The standard deviations for these are 

set to narrow Student’s t-distributions as regularization to prevent overfitting: 

mypriors <- c(prior(inv_gamma(4, 2), nlpar = "ELR", lb=0), 

              prior(normal(0, 1), nlpar = "oke"), 

              prior(normal(0, 1), nlpar = "odr"), 

              prior(normal(0, 1), nlpar = "okp1"), 

              prior(normal(0, 1), nlpar = "okp2"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "ELR"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "oke"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "odr"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "okp1"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "okp2"), 

              prior(student_t(10, 0, 1), class = "sigma")) 

Now we can estimate the posterior distributions for all of the parameters in our model: 

fit_loss <- brm(frml, prior = mypriors, 

                data = lossDat, family = lognormal(), seed = 12345, 

                stanvars = stanvar(scode = myFuns, block = "functions"), 

                file="models/section_4/GenInsIncModelLog") 

The model run does not report any obvious warnings. Diagnostics such as 𝑅 and effective 

sample size look good, so we move on to reviewing the outputs. The case study in the next 

section will cover model review and validation in more detail; hence we keep it brief here. 

We note that the population 𝑘 and 𝑘మ  from the extended compartmental model are 

identified with 95% posterior credible intervals that scarcely contain 1 and 0, respectively, 

indicating possible support for this model structure (see Table 4.2). 
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Table 4.2. Population-level estimates 

 Estimate Est. Error l–95% CI u–95% CI 

ELR 0.491 0.033 0.428 0.559 

ke 0.660 0.179 0.382 1.070 

dr 1.145 0.077 1.045 1.344 

kp1 0.428 0.134 0.249 0.752 

kp2 0.113 0.059 0.039 0.272 

Notwithstanding data volatility, the model appears reasonably well behaved against the 

historical data (see Figure 4.2). 

Figure 4.2. Posterior predictive distribution for each accident and development year, showing the 
predicted means and 95 percent predictive intervals 

 

Figure 4.3 plots 50% and 90% posterior credible intervals for each accident year’s estimated 

deviation from the population 𝐸𝐿𝑅 on the log scale. This allows us to inspect how variable the 
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model estimates performance to be across accident years and the levels of uncertainty for each 

year. 

Figure 4.3. Posterior credible intervals from HMC draws of ELR by accident year, showing the expected 
performance variance across all years 

 

Observe that all credible intervals contain 0, so we cannot be sure that any one year’s 𝐸𝐿𝑅 is 

different from the population average. However, there is some evidence of deviation across 

years, which, as observed in the cumulative paid developments, could be attributed to historical 

rate changes. 

In addition, we compare the posterior mean loss emergence pattern by accident year against 

the Cape Cod method outlined in Clark (2003) with maximum age set to 20, as implemented in 

Gesmann et al. (2019). Figure 4.4, panel (a), shows that the selected compartmental model’s loss 

emergence patterns do not vary much across accident years due to our relatively tight priors, 

mirroring initially the Weibull curve and, for later development years, the loglogistic growth 

curve. 
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Figure 4.4. Comparing hierarchical growth curves with different prior parameter distributions 

 

If we increase the uncertainty of the hyperprior parameter distributions from 

𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ૮૭, ૭, ૭. ૮ሻ to 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ૮૭, ૭, ૮ሻ, then the individual accident year development data 

gets more weight, and estimated loss emergence patterns start to exhibit some variance across 

accident years, shown in Figure 4.4, panel (b). 

4.6 Expected versus ultimate loss 

We parameterized the above model in terms of 𝐸𝐿𝑅𝑠 (expected loss ratios) rather than 𝑈𝐿𝑅𝑠 

(ultimate loss ratios). This was deliberate, since our model aims to estimate the latent parameter 

of the underlying development process. 

For a given accident year, the 𝐸𝐿𝑅 parameter describes the underlying expected loss ratio in 

the statistical process that generated the year’s loss emergence. Put another way, if an accident 

year were to play out repeatedly and infinitely from scratch, then the ELR is an estimate of the 

average ultimate loss ratio over all possible scenarios. 

In reality, of course, we can observe only a single realization of the claims development for 

each accident year. This realization will generate the 𝑈𝐿𝑅 (the actual ultimate loss ratio), which 

derives from the sum of payments to date plus estimated future incremental payments. 
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Hence, the ultimate loss (or ultimate loss ratio) is anchored to the latest cumulative payment, 

while the expected loss ratio treats the payments to date as one random series of payment 

realizations. 

Table 4.3. Expected and ultimate losses (to age 20) with respective estimated standard errors of 
second model with wider hyperprior parameters 

AY ELR (%) Est. error ULR (%) Est. error 

1991 46.6 4.4 43.2 1.4 

1992 52.7 5.4 58.7 2.2 

1993 49.7 4.6 53.5 2.4 

1994 47.4 4.8 50.2 2.9 

1995 49.0 4.9 47.0 3.8 

1996 49.5 5.4 49.1 4.7 

1997 50.5 6.1 52.2 5.7 

1998 50.4 6.0 53.8 6.7 

1999 48.7 6.2 49.1 7.7 

2000 48.3 6.7 48.5 8.6 

 

The estimated 𝑈𝐿𝑅 standard errors are driven only by the estimated errors for future 

payments; hence they increase significantly across newer accident years as ultimate uncertainty 

increases. The estimated errors around the 𝐸𝐿𝑅 are more stable, as are the estimated mean 𝐸𝐿𝑅 

values. The differences between expected and ultimate loss ratios demonstrate the point made 

above: the 𝑈𝐿𝑅 is anchored to the latest payment value and is therefore influenced by that 

particular random series of payments to date, as shown in Table 4.3. 
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Finally, we can review the distribution of the posterior predictive reserve, derived as the sum 

of extrapolated future payments to development year 20, or calendar year 2010 (see Figure 4.5). 

The reserve distribution is not an add-on, but part of the model output. 

Figure 4.5. Histogram of posterior predictive payments up to development year 20 of second model 
with wider hyperprior parameters. Mean model reserve highlighted in blue. 

 

Note that reserve uncertainty can be analyzed in more detail, since the model returns the full 

posterior distribution for all parameters and hence, predictions, by accident year and 

development year. 

4.7 Correlations across effects 

As a further step we could test for correlations between parameters across accident years. For 

example, we might expect that lower loss ratios correlate with a faster payment speed. 

Assuming a centered multivariate Gaussian distribution for the varying effects with an LKJ 

prior (Lewandowski, Kurowicka, and Joe 2009) for the correlations becomes somewhat 

cumbersome to write down in mathematical notation. However, if we define the growth curve 

to include 𝐸𝐿𝑅ሾሿ as a parameter, 

𝐺෨ሺ𝑡; 𝐸𝐿𝑅ሾሿ, 𝑘ሾሿ , 𝑑ሾሿ , 𝑘భሾሿ
, 𝑘మሾሿ

ሻ : ൌ 𝐸𝐿𝑅ሾሿ ⋅ 𝐺ሺ𝑡; 𝑘ሾሿ, 𝑑ሾሿ, 𝑘భሾሿ
, 𝑘మሾሿ

ሻ, 

then the notation for the varying-effects correlated model can be written as follows: 
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ℓ୧୨ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺη୧ሺtሻ, σሻ
η୧ሺtሻ ൌ log൫G෩ሺt; Θሻ൯

Θ ൌ μ  u

μ ൌ ቀμୖ, μ୩, μୢ౨, μ୩౦భ
, μ୩౦మ

ቁ

u ൌ ቀuୖ, u୩, uୢ౨, u୩౦భ
, u୩౦మ

ቁ
Priors :

σ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ3,0,0.1ሻା

μୖ ∼ 𝖨৶৾𝖦𝖺৵৵𝖺ሺ4,2ሻ
μ୩, μୢ౨ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ3ሻ,0.2ሻ

μ୩౦భ
∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ0.5ሻ,0.1ሻ

μ୩౦మ
∼ 𝖭৷৺৵𝖺৴ሺ0.2,0.5ሻ

u ∼ 𝖬৽৴ৼ𝗂৾𝖺৺𝗂𝖺ৼ𝖾𝖭৷৺৵𝖺৴ሺ, ሻ
 ൌ 𝐃 ષ 𝐃
𝐃 ൌ 𝖣𝗂𝖺𝗀 ቀσୖ, σ୩, σୢ౨, σ୩౦భ, σ୩౦మቁ

ሺσୖ, σ୩, σୢ౨, σ୩౦భ, σ୩౦మሻ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ3,0,0.1ሻା

ષ ∼ 𝖫৳𝗃𝖢৷৺৺ሺ1ሻ

᩷᩷ሺ6ሻ 

Implementing this correlation structure in brms is straightforward; we simply add a unique 

character string to each varying effect term: 

frml <- bf(incr_lr ~ log(ELR * lossemergence(dev, 1.0, ke, dr, kp1, kp2)), 

          ELR ~ 1 + (1 | ID | AY),  

          ke  ~ 1 + (1 | ID | AY), dr ~ 1 + (1 | ID | AY),  

          kp1 ~ 1 + (1 | ID | AY), kp2 ~ 1 + (1 | ID | AY), 

          nl = TRUE) 

This notation naturally extends further. Suppose we have development data by company 

and accident year, as in Zhang, Dukic, and Guszcza (2012), and would like to model a structure 

that allows 𝐸𝐿𝑅 to vary by accident year and company. With 𝑘 and 𝑘 constant by accident 

year but varying by company, and correlating 𝐸𝐿𝑅, 𝑘, and 𝑘 by company, we can write the 

following: 

(ELR ~ 1 + (1 | ID | company) + (1 | AY:company), 

 ker ~ 1 + (1 | ID | company), 

 kp  ~ 1 + (1 | ID | company)) 
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An implementation of a similar multicompany model on a cumulative loss ratio basis in 

brms is given in Gesmann (2018). 

These examples illustrate how brms provides a powerful and rich framework to build 

complex models using intuitive model notation. For more detail, please refer to the various 

brms and RStan vignettes. Note that the underlying Stan code can be extracted from any brms 

object using the stancode function. 
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5. Compartmental reserving case study 
In this section, we demonstrate how to fit hierarchical compartmental models of varying 

complexity to paid and outstanding claims development data simultaneously. We also 

introduce models with parameter variation by both accident and development year, in addition 

to an application of the previously outlined approach for integrating pricing and reserving cycle 

information into the modeling process. 

Our first model is based on the case study presented in Morris (2016), which models 

outstanding and cumulative paid claims using a Gaussian distribution. In Section 3 we 

proposed modeling incremental payments with a right-skewed process distribution (e.g., 

lognormal), which a second model demonstrates. Model 2 also introduces parameter variation 

by development year, showcasing the usability and flexibility of brms for specifying varying 

effects. Finally, we build on this work further with a third model, which incorporates pricing 

and reserving cycle trends into the modeling process. The purpose of this procedure is to 

capture performance drift across time and apply judgment for individual years—particularly 

for less mature years, where hierarchical growth curve approaches typically shrink parameters 

back to an “all-years” average. 

The work flow in this case study involves six steps: 

1. Data preparation: Create a training data set, up to the penultimate calendar year, and a 

test data set, based on the most recent calendar year. 

2. Model building: Develop model structures including process distributions, prior 

parameter distributions, and hierarchical levels. We omit prior predictive distribution 

reviews in the text for brevity (see Section 3.4 for more detail). 

3. Training: Fit the models on the training data and review in-sample posterior predictive 

checks. 

4. Testing and selection: Review each model’s predictions against the latest calendar 

year’s paid loss ratios, and select the most appropriate model. 
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5. Fitting: Refit (train) the selected model on the combined training and test data, which 

include the latest calendar year. 

6. Reserving: Review the final model, predict future claims payments, and set the reserve. 

We also have the “lower triangle” of development, which allows us to critique our reserve 

estimates against actual values. 

5.1 Data preparation 

The data comprise Schedule P Workers’ Compensation paid and incurred development data 

for company 337 (Fannin 2018), as in the Morris (2016) case study, depicted in Figure 5.1. 

Figure 5.1. Paid and outstanding loss ratio development by accident year, shown for all 10 
development years 

 

We split the data into a training set, with data up to 1996; a test data set, which contains the 

1997 calendar year movement; and finally, to review our reserve, a “validation” set, which 

contains development for all accident years to age 10. Figure 5.2 shows the validation scheme 

for incremental paid loss ratios. 
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Figure 5.2. Training, testing, and validation data splits 

 

5.2 Model building 

We build and train three hierarchical compartmental reserving models (see the appendix for 

the corresponding code): 

x Model 1: A Gaussian distribution model, based on the original case study in Morris 

(2016), fitted to outstanding and cumulative paid amounts 

x Model 2: A lognormal distribution model, fitted to outstanding and incremental paid 

loss ratios with additional parameter variation by development year 

x Model 3: An enhancement of model 2 that incorporates market cycle data and judgment 

to influence forecasts for less mature accident years  

5.2.1 Model 1: Gaussian distribution 

Model 1 is analogous to the first model outlined the original case study in Morris (2016). We 

assume a Gaussian process distribution and model outstanding and cumulative paid amounts. 

For the hierarchical structure, we assume 𝑘, 𝑘 are fixed by accident year and that 

𝑅𝐿𝑅ሾሿ, 𝑅𝑅𝐹ሾሿ have correlated varying effects by accident year, with a weak LKJ prior on the 

correlation between them. 
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y୧୨ ∼ 𝖭৷৺৵𝖺৴൫μሺt୧୨; Θ, δሻ, σሾஔሿ൯
μሺt୧୨; Θ, δሻ ൌ ሺ1 െ δሻOS୧୨  δPD୧୨

δ ൌ ቊ
0 if y୧୨ is outstanding claim
1 if y୧୨ is paid claim

Θ ൌ ൫kୣ୰, RLRሾ୧ሿ, k୮, RRFሾ୧ሿ൯

OS୧୨ ൌ Π୧ RLRሾ୧ሿ
kୣ୰

kୣ୰ െ k୮
൫eି୩౦୲ౠ െ eି୩౨୲ౠ൯

PD୧୨ ൌ Π୧ RLRሾ୧ሿ RRFሾ୧ሿ
1

kୣ୰ െ k୮
൫kୣ୰ሺ1 െ eି୩౦୲ౠሻ െ k୮ሺ1 െ eି୩౨୲ౠሻ൯

᩷᩷ሺ7ሻ 

Next, we specify priors for the parameters being estimated, based on judgment and intuition: 

log ሺσሾஔሿሻ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ1,0,1000ሻ

kୣ୰ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ3ሻ,0.1ሻ
k୮ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ1ሻ,0.1ሻ

RLRሾ୧ሿ ∼ μୖୖ  uୖୖ
RRFሾ୧ሿ ∼ μୖୖ  uୖୖ

μୖୖ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ0.7ሻ,0.2ሻ
μୖୖ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ0.8ሻ,0.1ሻ

ሺuୖୖ, uୖୖሻ′ ∼ 𝖬৽৴ৼ𝗂৾𝖺৺𝗂𝖺ৼ𝖾𝖭৷৺৵𝖺৴ሺ, 𝐃 ષ 𝐃ሻ
ષ ∼ 𝖫𝖪𝖩𝖢৷৺৺ሺ1ሻ

𝐃 ൌ ൬σୖୖ 0
0 σୖୖ

൰

σୖୖ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.2ሻା

σୖୖ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.1ሻା

 

In summary, we anticipate the following: 

x A moderately high reported loss ratio, reflected by a prior median 𝑅𝐿𝑅 equal to 70%, 

with prior CoV around 20% 

x A relatively fast rate of reporting, reflected by a prior median 𝑘 equal to 3. This gives a 

value of claims reported in the first development year equal to 𝛱 𝑅𝐿𝑅 ሺ1 െ 𝑒-ଷሻ ൌ

𝛱 𝑅𝐿𝑅 95%, where 𝛱 denotes ultimate earned premiums. The prior CoV of 10% covers 

the interval [2.5, 3.5]. 
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x Some degree of case overreserving. A 0.8 prior median for 𝑅𝑅𝐹 translates to 80% of 

outstanding losses becoming paid losses on average. The prior CoV of 10% covers the 

possibility of adequate reserving. 

x A rate of payment 𝑘, which is slower than the rate of earning and reporting. The prior 

median of 1 and prior CoV of 10% covers a 𝑘 between 0.85 and 1.2 with approximately 

95% probability. 

Note that each lognormal median is logged in the above specification, since expሺ𝜇ሻ is the 

median of a lognormal distribution with parameters 𝜇 and 𝜎, while 𝜎 is approximately the CoV. 

5.2.2 Model 2: Lognormal distribution and additional structure 

For models 2 and 3 we will assume 

• a lognormal data-generating distribution with constant CoV across development and 

accident years; 

• loss ratio dependent variables (rather than loss amounts), with incremental paid loss ratios 

being our principal target; and 

• accident and development year varying effects for each compartmental parameter. 

The implication of assuming a lognormal process distribution is that we estimate the median 

loss ratio development process. The number of parameters in the vector 𝛩 will vary between 

models 2 and 3: 

𝑦 ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ𝜇ሺ𝑡; 𝛩, 𝛿ሻሻ, 𝜎ሾఋሿ
ଶ ሻ

𝜇ሺ𝑡; 𝛩, 𝛿ሻ ൌ ሺ1 െ 𝛿ሻ𝑂𝑆  𝛿൫𝑃𝐷 െ 𝑃𝐷,ିଵ൯

𝛿 ൌ ൜
0 if 𝑦 is outstanding claims
1 if 𝑦 is paid claims

᩷᩷ሺ8ሻ 

For model 2 we use similar prior assumptions to model 1, except for 𝜎ሾఋሿ (since we are 

modeling loss ratios rather than loss amounts). We set this prior to a lognormal with a median 

of 10%: 

𝜎ሾఋሿ ∼ 𝖫৷𝗀৶৷৺৵𝖺৴ሺlogሺ0.1ሻ,0.2ሻ 
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Models 2 and 3 allow each compartmental model parameter to vary by both accident and 

development year. The approach is analogous to the “row” and “column” parameters defined 

in statistical models for the chain ladder, but with compartmental parameters varying rather 

than the expected outcome. As before, each parameter shrinks to a population estimate for 

sparse accident/development years: 

𝛩 ൌ 𝜇௵  𝑢௵

𝜇௵ ൌ ቀ𝜇ோோ, 𝜇ோோி, 𝜇ೝ, 𝜇ቁ

𝑢௵భ ൌ ቀ𝑢ோோሾ,ೕሿ , 𝑢ோோிሾ,ೕሿ ቁ

𝑢௵మ ൌ ൬𝑢ೝሾ,ೕሿ
, 𝑢ሾ,ೕሿ

൰

𝑢௵భ ∼ 𝖬৽৴ৼ𝗂৾𝖺৺𝗂𝖺ৼ𝖾𝖭৷৺৵𝖺৴ሺ, 𝜮ሻ
𝜮 ൌ 𝑫 𝜴 𝑫

𝜴ሾ𝒊,𝒋ሿ ∼ 𝖫𝖪𝖩𝖢৷৺৺ሺ1ሻ

𝑫 ൌ 𝖣𝗂𝖺𝗀 ቀ𝜎ோோሾ,ೕሿ , 𝜎ோோிሾ,ೕሿቁ

𝑢ೝሾ,ೕሿ
∼ 𝖭৷৺৵𝖺৴ ቀ0, 𝜎ೝሾ,ೕሿ

ቁ

𝑢ሾ,ೕሿ
∼ 𝖭৷৺৵𝖺৴ ቀ0, 𝜎ሾ,ೕሿ

ቁ

𝜎ோோሾ,ೕሿ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.7ሻା

𝜎ோோிሾ,ೕሿ ∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.5ሻା

𝜎ೝሾ,ೕሿ
, 𝜎ሾ,ೕሿ

∼ 𝖲ৼ৽𝖽𝖾৶ৼ𝖳ሺ10,0,0.3ሻା

 

5.2.3 Model 3: Pricing and reserving cycle submodel 

The final model in this case study builds pricing and reserving cycle information into the 

modeling process, as introduced in Section 4.4. 

In lieu of market cycle information for the study, we compile an earned premium movement 

index and raise it to a judgmental power (0.6) to proxy a rate change index. This defines a set of 

reported loss ratio multipliers, 𝑅𝐿𝑀 . We also select reserve robustness multipliers, 𝑅𝑅𝐹, which 

are set to correlate with 𝑅𝐿𝑀  to reflect learnings from model 2 (shown later in this section). 
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These multipliers (Figure 5.3) are used to define prior values for 𝑅𝐿𝑅 and 𝑅𝑅𝐹 by accident year 

relative to the oldest year. 

Figure 5.3. Proxy cycle indices 

 

We model the extent to which 𝑅𝐿𝑅 and 𝑅𝑅𝐹 depend on the 𝑅𝐿𝑀 and 𝑅𝑅𝑀 indices with two 

additional parameters, 𝜆ோோ, 𝜆ோோி: 

𝑅𝐿𝑅ሾ,ሿ ൌ 𝜇ோோሾሿ  𝑢ோோሾ,ೕሿ

𝜇ோோሾሿ ൌ 𝜇ோோభ ⋅ 𝑅𝐿𝑀ሾሿ
ఒೃಽೃ

𝑅𝑅𝐹ሾ,ሿ ൌ 𝜇ோோிሾሿ  𝑢ோோிሾ,ೕሿ

𝜇ோோிሾሿ ൌ 𝜇ோோிభ ⋅ 𝑅𝑅𝑀ሾሿ
ఒೃೃಷ

𝜆ோோ ∼ 𝖭৷৺৵𝖺৴ሺ૮, ૭. ૯ሻ
𝜆ோோி ∼ 𝖭৷৺৵𝖺৴ሺ૮, ૭. ૯ሻ

 

The prior means for 𝜆ோோ and 𝜆ோோி are set to 1, which assumes that the expected loss ratio 

movements year-over-year directly correlate with the selected indices. This allows performance 

drift across those accident years in which market conditions are changing. However, the priors 

are weakly regularizing to allow inferences to pull away from our initial judgments—values 

less than 1, for example, would indicate a weaker correlation between the indices and loss ratio 

movements. 
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The varying effects uୖୖሾ,ౠሿ  and uୖୖሾ,ౠሿ will override the index-driven accident year estimates 

if there is sufficient information in the data relative to the priors. The largest impact of the 

market cycle submodels should therefore be seen for less mature accident years, where we 

expect uሾ୧,୨ሿ to shrink toward 0. 

Note that in practice, we parameterize the model slightly differently to be able to estimate 

compartmental parameters on the standard normal scale before back-transforming them (see 

appendix for brms implementation). 

For simplicity, we maintain the existing RLR and RRF population priors on μୖୖభ  and μୖୖభ . 

All other assumptions from model 2 are carried forward. 

5.3 Training 

We train the models on loss and loss ratio development up to the 1996 calendar year. The 

review of model 1 is kept brief, with greater emphasis placed on models 2 and 3. 

5.3.1 Training model 1 

To review model 1 against the training data, we assess 100 outstanding and cumulative paid 

loss ratio posterior predictive samples by accident year and development year, shown in 

Figures 5.4 and 5.5. 
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Figure 5.4. Model 1: Outstanding loss ratio versus 100 simulations from the posterior predictive 
distribution 

 

Figure 5.5. Model 1: Cumulative paid loss ratio versus 100 simulations from the posterior predictive 
distribution 

 

At a glance, the model appears to provide reasonable in-sample coverage of the data points 

themselves. However, the spaghetti plots illustrate an incompatibility of the constant-variance 

Gaussian process distribution with our intuition of the claims development process: in 
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particular, we do not usually expect negative outstanding amounts or reductions in cumulative 

payments over time. Modeling cumulative payments with a constant process variance allows 

the model to generate negative posterior paid increments. Furthermore, the Gaussian 

assumption does not prevent negative outstanding posterior realizations. 

5.3.2 Training model 2 

For model 2, we target outstanding and incremental paid loss ratios, and replace the 

Gaussian process distribution assumption with a lognormal. Each compartmental model 

parameter is able to vary by accident and development year. 

Figure 5.6. Model 2: Outstanding loss ratio versus 100 simulations from the posterior predictive 
distribution 

 

The posterior realizations for the constant CoV lognormal distribution now better reflect our 

understanding of typical development data: outstanding loss ratio variance shrinks by 

development year, and outstandings do not fall below 0, as shown in Figure 5.6. 
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Figure 5.7. Model 2: Incremental paid loss ratio versus 100 simulations from the posterior predictive 
distribution 

 

The incremental paid loss ratio samples also appear reasonable (Figure 5.7). As with the 

outstandings, we observe a reduction in variance over development time, together with strictly 

positive realizations. Consequently, when we cumulate the paid loss ratios, the process 

behavior aligns with expectations (Figure 5.8). 
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Figure 5.8. Model 2: Cumulative paid loss ratio versus 100 simulations from the posterior predictive 
distribution 

 

To assess the impact of the inclusion of additional varying effects compared with model 1, 

we inspect marginal posterior mean parameter estimates by development year. If these have 

any systematic trends, we may consider incorporating them into the ODEs (analytical solutions) 

to carry through into extrapolation and, hence, reserve setting. Alternatively, we could model 

certain of the compartmental parameters to be functions of development year in our statistical 

model. 



Hierarchical Compartmental Reserving Models 

Casualty Actuarial Society Research Paper 65 

Figure 5.9. Model 3: Marginal compartmental posterior parameter estimates by development year, 
with 3-degree-of-freedom B-spline smoothers 

 

The model estimates significant variation for RLR and RRF by development year, supporting 

the decision to allow them to vary across this dimension (see Figure 5.9). However, the trends 

appear somewhat cyclical, with uncertain direction beyond development year 9 in most cases. 

Therefore, we opt not to change the compartmental/ODE structure to account for directional 

trends into unseen development years. 

In Figures 5.10 and 5.11 we review posterior parameter distributions for RLR and RRF, in 

addition to the correlation between them by accident year. A traceplot is shown for the latter to 

diagnose convergence (inspected for all models and parameters but not shown). 
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Figure 5.10. Model 3: Prior versus posterior parameter densities 

 

The moderate positive posterior correlation between the RLR and RRF varying effects by 

accident year mirrors the original compartmental reserving paper (Morris 2016), and is 

suggestive of a reserving cycle effect where prudent case reserves are set in a hard market and 

vice versa. 

Figure 5.11. Model 3. Prior versus posterior parameter densities 

 

We can see the correlation between RLR and RRF more clearly by visualizing the marginal 

posterior parameter distributions by accident year. Overlaying the year-over-year percentage 
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changes in ultimate earned premiums reveals performance improvements for increases in 

premium and deteriorations for reductions in premium (Figure 5.12). This suggests that the 

movements in premium may be partially driven by rate changes. 

Figure 5.12. Model 3: RLR and RRF posterior distributions by accident year 

 

Note that this correlation breaks down between 1995 and 1996, where a premium reduction 

is not mirrored by a deterioration in expected performance. 

With only two data points available for 1996, this could be a consequence of regularization. 

More specifically, we expect the model to credibility weight between the 1996 data and an all-

years average. However, the prior years have been relatively favorable up until 1995, where a 

significant deterioration in performance is estimated.  

If we intend to carry forward the prior years’ correlation between premium movements and 

performance, then regularization back to an all-years average loss ratio is not desirable. 



Hierarchical Compartmental Reserving Models 

Casualty Actuarial Society Research Paper 68 

5.3.3 Training model 3 

We train our third model on the data, which integrates market cycle indices and judgment 

into the model to capture trends in RLR and RRF by accident year, and proceed to review the 

posterior predictive checks (Figures 5.13–5.15). 

Figure 5.13. Model 3: Posterior predictive checks for outstanding loss ratio development 

 

Figure 5.14. Model 3: Posterior predictive checks for incremental paid loss ratio development 
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Figure 5.15. Model 3: Posterior predictive checks for cumulative paid loss ratio development 

 

The in-sample fits once again appear reasonable, but observe that in contrast to model 2, this 

model projects a performance deterioration across the more recent accident years, in which 

premiums have been reducing. This can be attributed to the use of the RLM and RRM indices, 

which trend upward for more recent years. We also see that the λୖୖ mean posterior has 

increased slightly, to 1.06 from our prior of 1.00, whereas the λୖୖ posterior is materially 

unchanged from the prior (Figure 5.16). 
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Figure 5.16. Model 3: Prior versus posterior lambda parameter densities 

 

We visualize RLR and RRF posterior distributions by accident year once more (Figure 5.17) 

and observe a stronger correlation between their year-over-year changes and corresponding 

premium movements up to 1996. The model estimates that the 1996 accident year has a modest 

probability of inadequate case reserving (RRF  1). 

Figure 5.17. Model 3: RLR and RRF posterior distributions by accident year 
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Finally, we review marginal kୣ୰ and k୮ estimates by accident year to investigate trends for 

additional consideration within the model structure (Figure 5.18). 

Figure 5.18. Model 3: Marginal compartmental posterior parameter estimates by accident year, with 
3-degree-of-freedom B-spline smoothers 

 

Observe that k୮ is estimated to trend upward by accident year, suggestive of a faster claims 

settlement process in more recent years. The model’s accident year parameter variation takes 

care of this pattern, but if we expected a smoother trend we could model k୮ to increase by 

accident year monotonically. This would be analogous to the changing settlement rate model 

outlined in Meyers (2015), and is left as an exercise for the reader. 

5.4 Testing and Selection 

We exclude Model 1 from the selection process due to the incompatibilities of a Gaussian 

process distribution. Next, we predict incremental paid loss ratios using models 2 and 3 and 

compare these against actual loss ratios for the 1997 calendar year. 

5.4.1 Testing model 2 

We first inspect the model 2 future paid loss ratio development distributions by accident 

year, and overlay the actual one-year-ahead cumulative paid loss ratios (Figure 5.19). 



Hierarchical Compartmental Reserving Models 

Casualty Actuarial Society Research Paper 72 

Figure 5.19. Model 2: Cumulative paid loss ratio one-step-ahead holdout performance 

 

The one-step-ahead predictions are within the reserve uncertainty bands for most years; 

however, the model does not appear to perform as well at the mean level for 1996 and 1997. For 

1997 in particular, the projections could be considered optimistic against projected 1995 and 

1996 performance. 

5.4.2 Testing model 3 

Compared with model 2, model 3 perhaps does a better job on the one-step-ahead 1996 and 

1997 accident year predictions (Figure 5.20). 
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Figure 5.20. Model 3: Cumulative paid loss ratio one-step-ahead holdout performance 

 

By tracking proxy market cycle information, the model is able to better account for the 

increasing loss ratio trend between 1994 and 1996, and into the unseen 1997 accident year. 

5.4.3 Model selection 

To compare each of the models in detail, one-step-ahead incremental paid loss ratio actual-

versus-expected plots and root-mean-square errors (RMSEs) are reviewed in Figure 5.21 and 

Table 5.1, respectively. 

Figure 5.21. Actual versus expected one-step-ahead paid loss ratio. Each circle represents a different 
accident year, with size relative to its earned premium. 
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5.1. One-step-ahead paid loss ratio RMSE comparisons 

Model RMSE Change 

Model 2 2.56% - 

Model 3 1.13% -56.1% 

 

Model 3 offers a 56% one-step-ahead RMSE improvement on model 2. The out-of-sample 

actual-versus-expected plots corroborate this and suggest that model 3 may be more predictive 

than model 2 at the mean level. We therefore select model 3 as the preferred structure. 

In practice, a wide range of models could be tested, comprising different structural and prior 

assumptions, with a view to maximizing one-step-ahead predictive performance. This approach 

is not taken here primarily for brevity, but also because favorable one-step-ahead performance 

may not translate to favorable 10-step-ahead performance. A more robust approach would 

perhaps be to predict n-step-ahead performance based on fitting each model to ever-smaller 

triangles and optimizing the trade-off between n-step-ahead performance estimates and the 

quantity of data used to derive the model parameters and performance estimates. 

5.5 Fitting 

Having selected model 3 for our reserving exercise, we fit it to the training and test data (i.e., 

triangles up to and including calendar year 1997) and compare actual reserves against model-

estimated reserve uncertainty as a final validation step. 

5.5.1 Fitting the selected model 

We retrain our selected model on all information known to date (in the context of this 

reserving exercise), and proceed to review reserve posterior intervals for cumulative paid loss 

ratios. 
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Figure 5.22. Final model: Cumulative paid loss ratio full holdout performance 

 

Based on Figure 5.22, the model has done a reasonable job of predicting reserve uncertainty 

for 1996 and prior. The 1997 year had a deteriorating development profile and longer tail 

relative to prior years, which the model was able to anticipate to some extent by leveraging the 

RLM and RRM indices. 

5.6 Reserving 

We take a closer look at the actual-versus-predicted reserve by accident year in Figure 5.23. 

The same scale is adopted for all years to highlight the insignificance of earlier-year reserves 

relative to the later years. 
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Figure 5.23. Final model: Age 10 reserve versus predicted reserve distribution by accident year 

 

5.7 Discussion 

The compartmental model predictions are reasonably accurate at the mean level, with some 

under- and overprediction for individual years. Across the more recent years, there is posterior 

mean overprediction for 1994, and underprediction for 1996 and 1997. However, the actual 

reserves fall within the estimated distributions. 

The total estimated reserve distribution at age 10 in aggregate is depicted in Figure 5.24. 

Figure 5.24. Final model: Age 10 reserve versus predicted reserve distribution 
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The actual reserve was $130M against an estimated mean reserve of $123M (a 5% 

underprediction). This is at the 75th percentile of the estimated reserve distribution. 

The underprediction can be attributed to the 1996 and 1997 accident years—reviewing the 

upper and lower triangles, we observe that both of these years exhibited underreserving in 

contrast to the overreserving observed in prior years (Figure 5.25). 

Figure 5.25. Accident years 1996 and 1997 incurred loss ratio development (green and blue, 
respectively) exhibit underreserving in contrast to prior years 

 

Model 3 was able to forecast a deterioration through the market cycle submodel and 

estimated positive correlation between RLR and RRF. However, with a marked shift in 

performance and just two data points at the time of fitting, it is perhaps unsurprising that the 

model’s posterior mean reserve falls short. 

We conclude that the incurred data are somewhat misleading in this study due to 

deteriorating performance and case reserve robustness for less mature years. However, the 

incorporation of market cycle information (and judgment), together with a separation of 

portfolio performance and reserve robustness assumptions, can facilitate challenge, scenario 

analysis, and communication of key uncertainties during the reserving process. 
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6. Summary and future developments 
In this paper we have presented a fully Bayesian modeling framework for the aggregated 

claims process to capture trends observed in paid and outstanding claims development data. 

In Section 2 we outlined how to map the claims process to a system of differential equations 

from first principles to describe key dynamics. Using the basic building blocks of 

compartmental models, readers can extend and adjust the presented models to their own 

individual requirements. 

In Section 3 we developed stochastic models for the claims process, describing 

the random nature of claims and latent underlying process parameters. 

We showed how practitioners can utilize their expertise to describe the structure of 

underlying risk exposure profiles and corresponding parameter uncertainties. In addition, we 

highlighted the subtle but important difference between modeling incremental and cumulative 

claims payments. 

This discussion culminated in a stochastic compartmental model, developed without 

reference to any particular data set, which was used to generate artificial prior predictive 

samples. These were used to test whether underlying model assumptions could produce data 

that bear a resemblance to actual observations. This is a critical aspect of the modeling process 

to understand model behavior. Note that the CAS Loss Simulator (CAS Loss Simulation Model 

Working Party 2018), based on Parodi (2014), uses similar ideas for individual claims 

simulation. 

In Section 4, the model was further extended to allow for fixed and varying parameters 

across grouping dimensions. Thanks to regularization we can incorporate many modeling 

parameters, while at the same time mitigating the risk of overfitting. Having fitted a model, we 

discussed the difference between the expected loss for a given accident year (i.e., the underlying 

latent mean loss) and the ultimate loss (i.e., actual cumulative claim payments to date, plus the 

sum of future claim payments). While the expected loss provides a means for us to challenge 
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our model and has applications in pricing, the actual reserve is the key metric for financial 

reporting and capital setting. 

The case study in Section 5 provided a practical guide to hierarchical compartmental model 

building. A work flow based on training and test data sets was outlined, which included model 

checking and improvement, and selection criteria. We introduced the concept of parameter 

variation by both accident year and development year, together with a method for 

incorporating market cycle information and explicit judgments into the modeling process. 

Code snippets were shown throughout the document to illustrate how this modeling 

framework can be applied in practice using the brms interface to Stan from R. The succinct 

model notation language used by brms allows the user to test different models and structures 

quickly, including across several companies and/or lines of business, with or without explicit 

correlations. 

Those familiar with probabilistic programming languages can write hierarchical 

compartmental reserving models directly in Stan (Carpenter et al. 2017), PyMC (Salvatier, 

Wiecki, and Fonnesbeck 2016), TensorFlow Probability (Abadi et al. 2015), or other software. 

Well-specified models with appropriate priors run within minutes on modern computers, 

and therefore hierarchical compartmental reserving models can be a part of the modern 

actuary’s reserving toolbox. The transparency of model assumptions and ability to simulate 

claims process behavior provides a means of testing and challenging models in a visually 

intuitive manner. 

Finally, as new data are collected, the Bayesian framework allows us to update our model 

and challenge its existing assumptions. If the posterior output changes significantly, then this 

should raise a call for action, either to investigate the model further or to challenge business 

assumptions. 
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6.1 Extensions 

The framework and tools provided in this paper accommodate a wide range of modeling 

extensions, which may target ODE structures, statistical modeling assumptions, or both. 

Examples of extensions that may warrant further investigation include the following: 

x Double compartmental modeling of claim counts (IBNR—“incurred but not reported”) 

and claims severity (IBNER—“incurred but not enough reported”). An approach to 

developing severity using a growth curve approach is given in McNulty (2017). 

x Using Gaussian processes in conjunction with compartmental models to model the 

stochastic loss ratio development process 

x Mixture models that combine the compartmental approach with other parametric 

models, such as growth curves. Mixing proportions that vary by development age would 

provide greater flexibility to describe “nonstandard” average claims development 

patterns. 
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7. Appendix 
The appendix presents the R code used in Sections 4 and 5. The code can be copied and 

pasted into an R session. At the time of writing, R version 3.6.1 (2019-07-05) was used, with 

brms 2.10.0 and RStan 2.19.2. 

library(rstan) 

library(brms) 

rstan_options(auto_write = TRUE) 

options(mc.cores = parallel::detectCores()) 

7.1 R code from Section 4 

The GenIns triangle is part of the ChainLadder package. The triangle is transformed into a 

long table format, with premiums, incremental paid, and loss ratio columns added: 

library(ChainLadder) 

library(data.table) 

data(GenIns) 

lossDat <- data.table( 

  AY = rep(1991:2000, 10), 

  dev = sort(rep(1:10, 10)), 

  premium = rep(10000000+400000*0:9, 10), 

  cum_loss = as.vector(GenIns), 

  incr_loss = as.vector(cum2incr(GenIns)) 

)[order(AY, dev), 

  `:=`(cum_lr = cum_loss/premium, 

       incr_lr = incr_loss/premium)] 

The next code chunk shows how the loss emergence pattern is modeled using differential 

equations in Stan. The Stan code is stored as a character string in R, and later passed on into 

brm. 
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myFuns <- " 

real[] ode_lossemergence(real t, real [] y,  real [] theta,  

                         real [] x_r, int[] x_i){ 

  real dydt[3]; 

  real ke = theta[1]; 

  real dr = theta[2]; 

  real kp1 = theta[3]; 

  real kp2 = theta[4]; 

   

  dydt[1] = pow(ke, dr) * pow(t, dr - 1) * exp(-t * ke)/tgamma(dr) 

          - (kp1 + kp2) * y[1]; 

  dydt[2] = kp2 * (y[1] - y[2]); 

  dydt[3] = (kp1 *  y[1] + kp2 * y[2]); 

  

  return dydt; 

} 

real int_lossemergence(real t, real ke, real dr,  

                        real kp1, real kp2){ 

  real y0[3]; real y[1, 3]; real theta[4]; 

   

  y0[1] = 0; y0[2] = 0; y0[3] = 0;  

   

  theta[1] = ke;  

  theta[2] = dr; 

  theta[3] = kp1; 

  theta[4] = kp2; 

   

  y = integrate_ode_rk45(ode_lossemergence,  
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                        y0, 0, rep_array(t, 1), theta, 

                        rep_array(0.0, 0), rep_array(1, 1), 

                        0.0001, 0.0001, 500); // tolerances, steps 

  return (y[1, 3]); 

} 

real lossemergence(real t, real devfreq, real ke, real dr,  

                   real kp1, real kp2){ 

    real out = int_lossemergence(t, ke, dr, kp1, kp2); 

    if(t > devfreq){ // paid greater dev period 1 

    // incremental paid 

     out = out - int_lossemergence(t - devfreq, ke, dr, kp1, kp2); 

    } 

    return(out); 

} 

" 

The following code defines the hierarchical structure using the formula interface in brms: 

frml <- bf(incr_lr ~ eta, 

           nlf(eta ~ log(ELR * lossemergence(dev, 1.0, ke, dr, kp1, kp2))), 

           nlf(ke ~ exp(oke * 0.5)), 

           nlf(dr ~ 1 + 0.1 * exp(odr * 0.5)), 

           nlf(kp1 ~ 0.5 * exp(okp1 * 0.5)), 

           nlf(kp2 ~ 0.1 * exp(okp2 * 0.5)), 

           ELR ~ 1 + (1 | AY),  

           oke  ~ 1 + (1 | AY), odr ~ 1 + (1 | AY),  

           okp1 ~ 1 + (1 | AY), okp2 ~ 1 + (1 | AY), 

           nl = TRUE) 
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7.1.1 Multilevel effects with narrow priors 

Model run with narrow priors for the multilevel effects: 

mypriors <- c(prior(inv_gamma(4, 2), nlpar = "ELR", lb=0), 

              prior(normal(0, 1), nlpar = "oke"), 

              prior(normal(0, 1), nlpar = "odr"), 

              prior(normal(0, 1), nlpar = "okp1"), 

              prior(normal(0, 1), nlpar = "okp2"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "ELR"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "oke"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "odr"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "okp1"), 

              prior(student_t(10, 0, 0.1), class = "sd", nlpar = "okp2"), 

              prior(student_t(10, 0, 1), class = "sigma")) 

fit_loss <- brm(frml, prior = mypriors, 

                data = lossDat, family = lognormal(), seed = 12345, 

                stanvars = stanvar(scode = myFuns, block = "functions"), 

                file="models/section_4/GenInsIncModelLog") 

fit_loss 

#>  Family: lognormal  

#>   Links: mu = identity; sigma = identity  

#> Formula: incr_lr ~ eta  

#>          eta ~ log(ELR * lossemergence(dev, 1, ke, dr, kp1, kp2)) 

#>          ke ~ exp(oke * 0.5) 

#>          dr ~ 1 + 0.1 * exp(odr * 0.5) 

#>          kp1 ~ 0.5 * exp(okp1 * 0.5) 

#>          kp2 ~ 0.1 * exp(okp2 * 0.5) 

#>          ELR ~ 1 + (1 | AY) 
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#>          oke ~ 1 + (1 | AY) 

#>          odr ~ 1 + (1 | AY) 

#>          okp1 ~ 1 + (1 | AY) 

#>          okp2 ~ 1 + (1 | AY) 

#>    Data: lossDat (Number of observations: 55)  

#> Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

#>          total post-warmup samples = 4000 

#>  

#> Group-Level Effects:  

#> ~AY (Number of levels: 10)  

#>                    Estimate Est.Error l-95% CI 

#> sd(ELR_Intercept)      0.04      0.03     0.00 

#> sd(oke_Intercept)      0.08      0.06     0.00 

#> sd(odr_Intercept)      0.09      0.07     0.00 

#> sd(okp1_Intercept)     0.08      0.06     0.00 

#> sd(okp2_Intercept)     0.09      0.07     0.00 

#>                    u-95% CI Rhat Bulk_ESS Tail_ESS 

#> sd(ELR_Intercept)      0.11 1.00     1784     1690 

#> sd(oke_Intercept)      0.24 1.00     3352     2226 

#> sd(odr_Intercept)      0.26 1.00     4252     2019 

#> sd(okp1_Intercept)     0.23 1.00     3068     2082 

#> sd(okp2_Intercept)     0.26 1.00     3572     1614 

#>  

#> Population-Level Effects:  

#>                Estimate Est.Error l-95% CI u-95% CI 

#> ELR_Intercept      0.49      0.03     0.43     0.56 

#> oke_Intercept     -0.90      0.54    -1.92     0.13 

#> odr_Intercept      0.49      1.04    -1.62     2.47 
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#> okp1_Intercept    -0.40      0.58    -1.40     0.82 

#> okp2_Intercept     0.01      0.97    -1.87     2.00 

#>                Rhat Bulk_ESS Tail_ESS 

#> ELR_Intercept  1.00     4459     3290 

#> oke_Intercept  1.00     3769     2887 

#> odr_Intercept  1.00     6278     3278 

#> okp1_Intercept 1.00     3746     2407 

#> okp2_Intercept 1.00     5210     3193 

#>  

#> Family Specific Parameters:  

#>       Estimate Est.Error l-95% CI u-95% CI Rhat 

#> sigma     0.37      0.04     0.30     0.45 1.00 

#>       Bulk_ESS Tail_ESS 

#> sigma     6018     2946 

#>  

#> Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample  

#> is a crude measure of effective sample size, and Rhat is the potential  

#> scale reduction factor on split chains (at convergence, Rhat = 1). 

Population-level posterior parameters on original scale: 

x <- posterior_samples(fit_loss, "^b") 

mySummary <- function(x){ 

  c(Estimate = mean(x), Est.Error = sd(x), 

    `l-95% CI` = as.numeric(quantile(x, probs = 0.025)), 

    `u-95% CI` = as.numeric(quantile(x, probs = 0.975))) 

} 

rbind( 

  ELR = mySummary(x[, 'b_ELR_Intercept']), 
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  ke = mySummary(exp(x[, 'b_oke_Intercept'] * 0.5)), 

  dr = mySummary(1 + 0.1 * exp(x[, 'b_odr_Intercept'] * 0.5)), 

  kp1 = mySummary(0.5 * exp(x[, 'b_okp1_Intercept'] * 0.5)), 

  kp2 = mySummary(0.1 * exp(x[, 'b_okp2_Intercept'] * 0.5)) 

  ) 

#>     Estimate Est.Error l-95% CI u-95% CI 

#> ELR   0.4912   0.03330  0.42824   0.5595 

#> ke    0.6595   0.17935  0.38199   1.0696 

#> dr    1.1454   0.07655  1.04457   1.3441 

#> kp1   0.4281   0.13434  0.24851   0.7521 

#> kp2   0.1134   0.05934  0.03931   0.2723 

7.1.2 Multilevel effects with wider priors 

Model run with wider priors for the multilevel effects: 

mypriors2 <- c(prior(inv_gamma(4, 2), nlpar = "ELR", lb=0), 

              prior(normal(0, 1), nlpar = "oke"), 

              prior(normal(0, 1), nlpar = "odr"), 

              prior(normal(0, 1), nlpar = "okp1"), 

              prior(normal(0, 1), nlpar = "okp2"), 

              prior(student_t(10, 0, 1), class = "sd", nlpar = "ELR"), 

              prior(student_t(10, 0, 1), class = "sd", nlpar = "oke"), 

              prior(student_t(10, 0, 1), class = "sd", nlpar = "odr"), 

              prior(student_t(10, 0, 1), class = "sd", nlpar = "okp1"), 

              prior(student_t(10, 0, 1), class = "sd", nlpar = "okp2"), 

              prior(student_t(10, 0, 1), class = "sigma")) 

fit_loss2 <- brm(frml, prior = mypriors2, 

                data = lossDat, family = lognormal(), seed = 12345, 

                control = list(adapt_delta = 0.9, max_treedepth=15), 
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                stanvars = stanvar(scode = myFuns, block = "functions"), 

                file="models/section_4/GenInsIncModelLog2") 

fit_loss2 

#>  Family: lognormal  

#>   Links: mu = identity; sigma = identity  

#> Formula: incr_lr ~ eta  

#>          eta ~ log(ELR * lossemergence(dev, 1, ke, dr, kp1, kp2)) 

#>          ke ~ exp(oke * 0.5) 

#>          dr ~ 1 + 0.1 * exp(odr * 0.5) 

#>          kp1 ~ 0.5 * exp(okp1 * 0.5) 

#>          kp2 ~ 0.1 * exp(okp2 * 0.5) 

#>          ELR ~ 1 + (1 | AY) 

#>          oke ~ 1 + (1 | AY) 

#>          odr ~ 1 + (1 | AY) 

#>          okp1 ~ 1 + (1 | AY) 

#>          okp2 ~ 1 + (1 | AY) 

#>    Data: lossDat (Number of observations: 55)  

#> Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

#>          total post-warmup samples = 4000 

#>  

#> Group-Level Effects:  

#> ~AY (Number of levels: 10)  

#>                    Estimate Est.Error l-95% CI 

#> sd(ELR_Intercept)      0.05      0.04     0.00 

#> sd(oke_Intercept)      0.24      0.20     0.01 

#> sd(odr_Intercept)      0.67      0.51     0.03 

#> sd(okp1_Intercept)     0.24      0.20     0.01 



Hierarchical Compartmental Reserving Models 

Casualty Actuarial Society Research Paper 90 

#> sd(okp2_Intercept)     0.81      0.61     0.04 

#>                    u-95% CI Rhat Bulk_ESS Tail_ESS 

#> sd(ELR_Intercept)      0.13 1.00     1764     1934 

#> sd(oke_Intercept)      0.73 1.00     2545     1999 

#> sd(odr_Intercept)      1.93 1.00     2642     1788 

#> sd(okp1_Intercept)     0.75 1.00     2603     2620 

#> sd(okp2_Intercept)     2.26 1.00     3638     2070 

#>  

#> Population-Level Effects:  

#>                Estimate Est.Error l-95% CI u-95% CI 

#> ELR_Intercept      0.49      0.04     0.42     0.57 

#> oke_Intercept     -0.88      0.56    -1.94     0.18 

#> odr_Intercept      0.29      1.00    -1.70     2.20 

#> okp1_Intercept    -0.44      0.60    -1.50     0.84 

#> okp2_Intercept     0.00      0.98    -1.92     2.00 

#>                Rhat Bulk_ESS Tail_ESS 

#> ELR_Intercept  1.00     3294     2689 

#> oke_Intercept  1.00     2795     2949 

#> odr_Intercept  1.00     5223     2804 

#> okp1_Intercept 1.00     2771     3067 

#> okp2_Intercept 1.00     3941     2730 

#>  

#> Family Specific Parameters:  

#>       Estimate Est.Error l-95% CI u-95% CI Rhat 

#> sigma     0.37      0.04     0.30     0.45 1.00 

#>       Bulk_ESS Tail_ESS 

#> sigma     5560     2997 

#>  
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#> Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample  

#> is a crude measure of effective sample size, and Rhat is the potential  

#> scale reduction factor on split chains (at convergence, Rhat = 1). 

Population-level posterior parameters on original scale: 

x <- posterior_samples(fit_loss2, "^b") 

rbind( 

  ELR = mySummary(x[, 'b_ELR_Intercept']), 

  ke = mySummary(exp(x[, 'b_oke_Intercept'] * 0.5)), 

  dr = mySummary(1 + 0.1 * exp(x[, 'b_odr_Intercept'] * 0.5)), 

  kp1 = mySummary(0.5 * exp(x[, 'b_okp1_Intercept'] * 0.5)), 

  kp2 = mySummary(0.1 * exp(x[, 'b_okp2_Intercept'] * 0.5)) 

  ) 

#>     Estimate Est.Error l-95% CI u-95% CI 

#> ELR   0.4921   0.03795  0.42340   0.5741 

#> ke    0.6698   0.19095  0.37871   1.0928 

#> dr    1.1310   0.06812  1.04282   1.3004 

#> kp1   0.4213   0.13688  0.23628   0.7600 

#> kp2   0.1130   0.05958  0.03821   0.2717 

Note that in order to predict the models, the user-defined Stan functions have to be exported 

to R via the following: 

expose_functions(fit_loss, vectorize = TRUE) 

7.2 R code from case study in Section 5 

7.2.1 Data 

The data used for the case study is a subset of the wkcomp data set from the raw R package 

(Fannin 2018): 
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library(raw) 

data(wkcomp) 

library(data.table) 

library(tidyverse) 

# Convert to tibble, rename cols, add calendar year and loss ratio columns 

wkcomp <- wkcomp %>%  

  as_tibble() %>%  

  rename(accident_year = AccidentYear, dev_year = Lag,  

         entity_id = GroupCode) %>%  

  mutate(cal_year = accident_year + dev_year - 1, 

         paid_loss_ratio = CumulativePaid/DirectEP, 

         os_loss_ratio = (CumulativeIncurred - CumulativePaid)/DirectEP) 

 

# Add incremental paid loss ratio column 

wkcomp <- wkcomp %>%  

  group_by(entity_id, accident_year) %>%  

  arrange(dev_year) %>%  

  mutate(incr_paid_loss_ratio = paid_loss_ratio -  

           shift(paid_loss_ratio, n=1, fill=0,  

                 type="lag")) %>%  

  ungroup() %>%  

  arrange(entity_id, accident_year, dev_year) 

 

# Stack paid and os into one column + define train and test 

wkcomp2 <- wkcomp %>%  

  transmute( 

    entity_id, accident_year, dev_year, cal_year,  

    premium = DirectEP, delta = 1, deltaf = "paid", 
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    loss_ratio_train = ifelse(cal_year < max(accident_year),  

                              incr_paid_loss_ratio,  

                              NA), 

    loss_ratio_test = ifelse(cal_year >= max(accident_year),  

                             incr_paid_loss_ratio,  

                             NA), 

    loss_amount_train = ifelse(cal_year < max(accident_year),  

                               CumulativePaid,  

                               NA), 

    loss_amount_test = ifelse(cal_year >= max(accident_year),  

                              CumulativePaid,  

                              NA) 

  ) %>%  

  bind_rows( 

    wkcomp %>%  

      transmute( 

        entity_id, accident_year, dev_year, cal_year,  

        premium = DirectEP, delta = 0, deltaf = "os", 

        loss_ratio_train = ifelse(cal_year < max(accident_year),  

                                  os_loss_ratio,  

                                  NA), 

        loss_ratio_test = ifelse(cal_year >= max(accident_year),  

                                 os_loss_ratio,  

                                 NA), 

        loss_amount_train = ifelse(cal_year < max(accident_year),  

                                   CumulativeIncurred - CumulativePaid,  

                                   NA), 

        loss_amount_test = ifelse(cal_year >= max(accident_year),  
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                                  CumulativeIncurred - CumulativePaid,  

                                  NA) 

      ) 

  ) 

Filter for company “337”: 

dat337 <- wkcomp2 %>% filter(entity_id ==337) 

7.2.2 Model 1 

myFunsCumPaid <- " 

real paid(real t, real ker, real kp, real RLR, real RRF){ 

 return( 

  RLR*RRF/(ker - kp) * (ker *(1 - exp(-kp*t)) -  

  kp*(1 - exp(-ker*t))) 

 ); 

} 

real os(real t, real ker, real kp, real RLR){ 

 return( 

  (RLR*ker/(ker - kp) * (exp(-kp*t) - exp(-ker*t))) 

 ); 

} 

real claimsprocess(real t, real ker, real kp,  

                   real RLR, real RRF, real delta){ 

    real out;  

    out = os(t, ker, kp, RLR) * (1 - delta) +  

          paid(t, ker, kp, RLR, RRF) * delta; 

     

    return(out); 
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} 

" 

frml1 <- bf(loss_amount_train ~ premium * claimsprocess(dev_year, ker, kp, 

                                                        RLR, RRF, delta), 

            nlf(ker ~ 3 * exp(oker * 0.1)), 

            nlf(kp ~ 1 * exp(okp * 0.1)), 

            nlf(RLR ~ 0.7 * exp(oRLR * 0.2)), 

            nlf(RRF ~ 0.8 * exp(oRRF * 0.1)), 

            oRLR ~ 1 + (1 | ID | accident_year), 

            oRRF ~ 1 + (1 | ID | accident_year), 

            oker ~ 1,  okp ~ 1,  

            sigma ~ 0 + deltaf, 

            nl = TRUE) 

mypriors1 <- c(prior(normal(0, 1), nlpar = "oRLR"), 

               prior(normal(0, 1), nlpar = "oRRF"), 

               prior(normal(0, 1), nlpar = "oker"), 

               prior(normal(0, 1), nlpar = "okp"), 

               prior(student_t(1, 0, 1000), class = "b",  

                     coef="deltafpaid", dpar= "sigma"), 

               prior(student_t(1, 0, 1000), class = "b",  

                     coef="deltafos", dpar= "sigma"), 

               prior(student_t(10, 0, 0.2), class = "sd", nlpar = "oRLR"), 

               prior(student_t(10, 0, 0.1), class = "sd", nlpar = "oRRF"), 

               prior(lkj(1), class="cor")) 

m1fit <- brm(frml1, data = dat337[!is.na(loss_ratio_train)],  

             family = gaussian(), 
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             prior = mypriors1, 

             stanvars = stanvar(scode = myFunsCumPaid, block = "functions"), 

             control = list(adapt_delta = 0.99, max_treedepth=15), 

             file="models/section_5/CaseStudy_Model_1", 

             seed = 123, iter = 2000, chains = 4) 

m1fit 

#>  Family: gaussian  

#>   Links: mu = identity; sigma = log  

#> Formula: loss_amount_train ~ premium * claimsprocess(dev_year, ker, kp, RLR, RRF, delta)  

#>          ker ~ 3 * exp(oker * 0.1) 

#>          kp ~ 1 * exp(okp * 0.1) 

#>          RLR ~ 0.7 * exp(oRLR * 0.2) 

#>          RRF ~ 0.8 * exp(oRRF * 0.1) 

#>          oRLR ~ 1 + (1 | ID | accident_year) 

#>          oRRF ~ 1 + (1 | ID | accident_year) 

#>          oker ~ 1 

#>          okp ~ 1 

#>          sigma ~ 0 + deltaf 

#>    Data: dat337[!is.na(loss_ratio_train)] (Number of observations: 90)  

#> Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

#>          total post-warmup samples = 4000 

#>  

#> Group-Level Effects:  

#> ~accident_year (Number of levels: 9)  

#>                                    Estimate Est.Error 

#> sd(oRLR_Intercept)                     0.64      0.15 

#> sd(oRRF_Intercept)                     0.74      0.22 
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#> cor(oRLR_Intercept,oRRF_Intercept)     0.54      0.26 

#>                                    l-95% CI u-95% CI 

#> sd(oRLR_Intercept)                     0.40     1.00 

#> sd(oRRF_Intercept)                     0.33     1.22 

#> cor(oRLR_Intercept,oRRF_Intercept)    -0.01     0.97 

#>                                    Rhat Bulk_ESS 

#> sd(oRLR_Intercept)                 1.00     1779 

#> sd(oRRF_Intercept)                 1.00     1763 

#> cor(oRLR_Intercept,oRRF_Intercept) 1.00     1300 

#>                                    Tail_ESS 

#> sd(oRLR_Intercept)                     2221 

#> sd(oRRF_Intercept)                     1536 

#> cor(oRLR_Intercept,oRRF_Intercept)     1532 

#>  

#> Population-Level Effects:  

#>                  Estimate Est.Error l-95% CI u-95% CI 

#> oRLR_Intercept       1.44      0.26     0.92     1.95 

#> oRRF_Intercept      -1.36      0.42    -2.17    -0.50 

#> oker_Intercept      -5.40      0.81    -6.87    -3.71 

#> okp_Intercept       -8.49      0.36    -9.17    -7.79 

#> sigma_deltafos       8.25      0.16     7.96     8.57 

#> sigma_deltafpaid     6.66      0.20     6.31     7.08 

#>                  Rhat Bulk_ESS Tail_ESS 

#> oRLR_Intercept   1.00     1137     2014 

#> oRRF_Intercept   1.00     2518     2684 

#> oker_Intercept   1.00     1821     2368 

#> okp_Intercept    1.00     2491     2826 

#> sigma_deltafos   1.00     1485     2306 
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#> sigma_deltafpaid 1.00     1825     2109 

#>  

#> Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample  

#> is a crude measure of effective sample size, and Rhat is the potential  

#> scale reduction factor on split chains (at convergence, Rhat = 1). 

7.2.3 Model 2 

myFunsIncrPaid <- " 

real paid(real t, real ker, real kp, real RLR, real RRF){ 

 return( 

  RLR*RRF/(ker - kp) * (ker *(1 - exp(-kp*t)) -  

  kp*(1 - exp(-ker*t))) 

 ); 

} 

real os(real t, real ker, real kp, real RLR){ 

 return( 

  (RLR*ker/(ker - kp) * (exp(-kp*t) - exp(-ker*t))) 

 ); 

} 

real claimsprocess(real t, real devfreq, real ker, real kp,  

                   real RLR, real RRF, real delta){ 

    real out;  

    out = os(t, ker, kp, RLR) * (1 - delta) +  

          paid(t, ker, kp, RLR, RRF) * delta; 

     

    if( (delta > 0) && (t > devfreq) ){ // paid greater dev period 1 

    // incremental paid 

     out = out - paid(t - devfreq, ker, kp, RLR, RRF)*delta; 
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    } 

    return(out); 

} 

" 

frml2 <- bf(loss_ratio_train ~ eta, 

            nlf(eta ~ log(claimsprocess(dev_year, 1.0, ker, kp, 

                                        RLR, RRF, delta))), 

            nlf(ker ~ 3 * exp(oker * 0.1)), 

            nlf(kp ~ 1 * exp(okp * 0.1)), 

            nlf(RLR ~ 0.7 * exp(oRLR * 0.2)), 

            nlf(RRF ~ 0.8 * exp(oRRF * 0.1)), 

            oRLR ~ 1 + (1 | ID | accident_year) + (1 | dev_year), 

            oRRF ~ 1 + (1 | ID | accident_year) + (1 | dev_year), 

            oker ~ 1  + (1 | accident_year) + (1 | dev_year),  

            okp ~ 1 + (1 | accident_year) + (1 | dev_year),  

            sigma ~ 0 + deltaf, nl = TRUE) 

mypriors2 <- c(prior(normal(0, 1), nlpar = "oRLR"), 

               prior(normal(0, 1), nlpar = "oRRF"), 

               prior(normal(0, 1), nlpar = "oker"), 

               prior(normal(0, 1), nlpar = "okp"), 

               prior(normal(log(0.2), 0.2), class = "b",  

                     coef="deltafpaid", dpar= "sigma"), 

               prior(normal(log(0.2), 0.2), class = "b",  

                     coef="deltafos", dpar= "sigma"), 

               prior(student_t(10, 0, 0.3), class = "sd", nlpar = "oker"), 

               prior(student_t(10, 0, 0.3), class = "sd", nlpar = "okp"), 

               prior(student_t(10, 0, 0.7), class = "sd", nlpar = "oRLR"), 
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               prior(student_t(10, 0, 0.5), class = "sd", nlpar = "oRRF"), 

               prior(lkj(1), class="cor")) 

m2fit <- brm(frml2, data = dat337[!is.na(loss_ratio_train)],  

             family = brmsfamily("lognormal", link_sigma = "log"), 

             prior = mypriors2, 

             stanvars = stanvar(scode = myFunsIncrPaid, block = "functions"), 

             control = list(adapt_delta = 0.99, max_treedepth=15), 

             file="models/section_5/CaseStudy_Model_2", 

             seed = 123, iter = 2000, chains = 4) 

m2fit 

#>  Family: lognormal  

#>   Links: mu = identity; sigma = log  

#> Formula: loss_ratio_train ~ eta  

#>          eta ~ log(claimsprocess(dev_year, 1, ker, kp, RLR, RRF, delta)) 

#>          ker ~ 3 * exp(oker * 0.1) 

#>          kp ~ 1 * exp(okp * 0.1) 

#>          RLR ~ 0.7 * exp(oRLR * 0.2) 

#>          RRF ~ 0.8 * exp(oRRF * 0.1) 

#>          oRLR ~ 1 + (1 | ID | accident_year) + (1 | dev_year) 

#>          oRRF ~ 1 + (1 | ID | accident_year) + (1 | dev_year) 

#>          oker ~ 1 + (1 | accident_year) + (1 | dev_year) 

#>          okp ~ 1 + (1 | accident_year) + (1 | dev_year) 

#>          sigma ~ 0 + deltaf 

#>    Data: dat337[!is.na(loss_ratio_train)] (Number of observations: 90)  

#> Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

#>          total post-warmup samples = 4000 

#>  
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#> Group-Level Effects:  

#> ~accident_year (Number of levels: 9)  

#>                                    Estimate Est.Error 

#> sd(oRLR_Intercept)                     0.69      0.31 

#> sd(oRRF_Intercept)                     0.73      0.47 

#> sd(oker_Intercept)                     0.26      0.22 

#> sd(okp_Intercept)                      2.23      1.35 

#> cor(oRLR_Intercept,oRRF_Intercept)     0.37      0.47 

#>                                    l-95% CI u-95% CI 

#> sd(oRLR_Intercept)                     0.15     1.37 

#> sd(oRRF_Intercept)                     0.04     1.79 

#> sd(oker_Intercept)                     0.01     0.80 

#> sd(okp_Intercept)                      0.57     5.44 

#> cor(oRLR_Intercept,oRRF_Intercept)    -0.69     0.98 

#>                                    Rhat Bulk_ESS 

#> sd(oRLR_Intercept)                 1.00     1032 

#> sd(oRRF_Intercept)                 1.00     1042 

#> sd(oker_Intercept)                 1.00     3430 

#> sd(okp_Intercept)                  1.00      470 

#> cor(oRLR_Intercept,oRRF_Intercept) 1.00     2682 

#>                                    Tail_ESS 

#> sd(oRLR_Intercept)                     1089 

#> sd(oRRF_Intercept)                     1527 

#> sd(oker_Intercept)                     1638 

#> sd(okp_Intercept)                      1269 

#> cor(oRLR_Intercept,oRRF_Intercept)     2614 

#>  

#> ~dev_year (Number of levels: 9)  
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#>                    Estimate Est.Error l-95% CI 

#> sd(oRLR_Intercept)     0.35      0.26     0.01 

#> sd(oRRF_Intercept)     1.11      0.49     0.13 

#> sd(oker_Intercept)     0.27      0.23     0.01 

#> sd(okp_Intercept)      0.45      0.43     0.02 

#>                    u-95% CI Rhat Bulk_ESS Tail_ESS 

#> sd(oRLR_Intercept)     0.98 1.00     1072     1669 

#> sd(oRRF_Intercept)     2.12 1.00      949      921 

#> sd(oker_Intercept)     0.86 1.00     3410     1546 

#> sd(okp_Intercept)      1.32 1.01      552      903 

#>  

#> Population-Level Effects:  

#>                  Estimate Est.Error l-95% CI u-95% CI 

#> oRLR_Intercept       1.54      0.44     0.70     2.47 

#> oRRF_Intercept      -1.45      0.69    -2.78    -0.07 

#> oker_Intercept      -1.31      1.08    -3.40     0.84 

#> okp_Intercept       -5.07      1.75    -7.71    -1.50 

#> sigma_deltafos      -1.78      0.16    -2.13    -1.49 

#> sigma_deltafpaid    -1.89      0.16    -2.20    -1.57 

#>                  Rhat Bulk_ESS Tail_ESS 

#> oRLR_Intercept   1.00     1167     1897 

#> oRRF_Intercept   1.00     1689     2552 

#> oker_Intercept   1.00     4150     2685 

#> okp_Intercept    1.00      499     1205 

#> sigma_deltafos   1.00     1109     1860 

#> sigma_deltafpaid 1.00     1198     2632 

#>  

#> Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample  
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#> is a crude measure of effective sample size, and Rhat is the potential  

#> scale reduction factor on split chains (at convergence, Rhat = 1). 

7.2.4 Model 3 

CycleIndex <- data.table( 

  accident_year = 1988:1997, 

  RLM = c(1, 1.18, 1.22, 1.05, 1, 0.87, 0.94, 1.34, 1.64, 2.14)^0.6, 

  RRM = c(1, 1.05, 1.05, 1.01, 1.0, 0.95, 0.99, 1.1, 1.25, 1.35)^0.6 

) 

setkey(dat337, accident_year) 

setkey(CycleIndex, accident_year) 

dat337 <- CycleIndex[dat337] 

frml3 <- bf(loss_ratio_train ~ eta, 

            nlf(eta ~ log(claimsprocess(dev_year, 1.0, ker, kp, 

                                        RLR, RRF, delta))), 

            nlf(ker ~ 3 * exp(oker * 0.1)), 

            nlf(kp ~ 1 * exp(okp * 0.1)), 

            nlf(RLR ~ 0.7 * exp(oRLR * 0.2) * (RLM^lambda1)), 

            nlf(RRF ~ 0.8 * exp(oRRF * 0.1) * (RRM^lambda2)), 

            oRLR ~ 1 + (1 | ID | accident_year) + (1 | dev_year), 

            oRRF ~ 1 + (1 | ID | accident_year) + (1 | dev_year), 

            lambda1 ~  1, 

            lambda2 ~ 1, 

            oker ~ 1  + (1 | accident_year) + (1 | dev_year),  

            okp ~ 1 + (1 | accident_year) + (1 | dev_year),  

            sigma ~ 0 + deltaf, nl = TRUE) 
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mypriors3 <- c(prior(normal(0, 1), nlpar = "oRLR"), 

               prior(normal(0, 1), nlpar = "oRRF"), 

               prior(normal(0, 1), nlpar = "oker"), 

               prior(normal(0, 1), nlpar = "okp"), 

               prior(normal(log(0.2), 0.2), class = "b",  

                     coef="deltafpaid", dpar= "sigma"), 

               prior(normal(log(0.2), 0.2), class = "b",  

                     coef="deltafos", dpar= "sigma"), 

               prior(student_t(10, 0, 0.3), class = "sd", nlpar = "oker"), 

               prior(student_t(10, 0, 0.3), class = "sd", nlpar = "okp"), 

               prior(student_t(10, 0, 0.7), class = "sd", nlpar = "oRLR"), 

               prior(student_t(10, 0, 0.5), class = "sd", nlpar = "oRRF"), 

               prior(normal(1, 0.25), nlpar = "lambda1"),  

               prior(normal(1, 0.25), nlpar = "lambda2"),  

               prior(lkj(1), class="cor")) 

m3fit <- brm(frml3, data = dat337[!is.na(loss_ratio_train)],  

             family = brmsfamily("lognormal", link_sigma = "log"), 

             prior = mypriors3, 

             stanvars = stanvar(scode = myFunsIncrPaid, block = "functions"), 

             control = list(adapt_delta = 0.99, max_treedepth=15), 

             file="models/section_5/CaseStudy_Model_3", 

             seed = 123, iter = 2000, chains = 4) 

m3fit 

#>  Family: lognormal  

#>   Links: mu = identity; sigma = log  

#> Formula: loss_ratio_train ~ eta  

#>          eta ~ log(claimsprocess(dev_year, 1, ker, kp, RLR, RRF, delta)) 
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#>          ker ~ 3 * exp(oker * 0.1) 

#>          kp ~ 1 * exp(okp * 0.1) 

#>          RLR ~ 0.7 * exp(oRLR * 0.2) * (RLM^lambda1) 

#>          RRF ~ 0.8 * exp(oRRF * 0.1) * (RRM^lambda2) 

#>          oRLR ~ 1 + (1 | ID | accident_year) + (1 | dev_year) 

#>          oRRF ~ 1 + (1 | ID | accident_year) + (1 | dev_year) 

#>          lambda1 ~ 1 

#>          lambda2 ~ 1 

#>          oker ~ 1 + (1 | accident_year) + (1 | dev_year) 

#>          okp ~ 1 + (1 | accident_year) + (1 | dev_year) 

#>          sigma ~ 0 + deltaf 

#>    Data: dat337[!is.na(loss_ratio_train)] (Number of observations: 90)  

#> Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

#>          total post-warmup samples = 4000 

#>  

#> Group-Level Effects:  

#> ~accident_year (Number of levels: 9)  

#>                                    Estimate Est.Error 

#> sd(oRLR_Intercept)                     0.29      0.21 

#> sd(oRRF_Intercept)                     0.80      0.40 

#> sd(oker_Intercept)                     0.26      0.21 

#> sd(okp_Intercept)                      1.69      1.28 

#> cor(oRLR_Intercept,oRRF_Intercept)     0.17      0.52 

#>                                    l-95% CI u-95% CI 

#> sd(oRLR_Intercept)                     0.01     0.80 

#> sd(oRRF_Intercept)                     0.08     1.62 

#> sd(oker_Intercept)                     0.01     0.78 

#> sd(okp_Intercept)                      0.40     5.02 
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#> cor(oRLR_Intercept,oRRF_Intercept)    -0.85     0.96 

#>                                    Rhat Bulk_ESS 

#> sd(oRLR_Intercept)                 1.00     1435 

#> sd(oRRF_Intercept)                 1.00     1383 

#> sd(oker_Intercept)                 1.00     4237 

#> sd(okp_Intercept)                  1.00      392 

#> cor(oRLR_Intercept,oRRF_Intercept) 1.00     1747 

#>                                    Tail_ESS 

#> sd(oRLR_Intercept)                     1803 

#> sd(oRRF_Intercept)                     1811 

#> sd(oker_Intercept)                     2390 

#> sd(okp_Intercept)                      1217 

#> cor(oRLR_Intercept,oRRF_Intercept)     2039 

#>  

#> ~dev_year (Number of levels: 9)  

#>                    Estimate Est.Error l-95% CI 

#> sd(oRLR_Intercept)     0.37      0.27     0.02 

#> sd(oRRF_Intercept)     1.16      0.52     0.17 

#> sd(oker_Intercept)     0.27      0.23     0.01 

#> sd(okp_Intercept)      0.48      0.53     0.02 

#>                    u-95% CI Rhat Bulk_ESS Tail_ESS 

#> sd(oRLR_Intercept)     1.02 1.00     1269     1897 

#> sd(oRRF_Intercept)     2.24 1.00     1020      905 

#> sd(oker_Intercept)     0.83 1.00     4717     2299 

#> sd(okp_Intercept)      1.61 1.00      924      867 

#>  

#> Population-Level Effects:  

#>                   Estimate Est.Error l-95% CI u-95% CI 
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#> oRLR_Intercept        1.33      0.42     0.58     2.25 

#> oRRF_Intercept       -1.58      0.70    -2.91    -0.14 

#> lambda1_Intercept     1.06      0.21     0.65     1.46 

#> lambda2_Intercept     1.02      0.25     0.53     1.50 

#> oker_Intercept       -1.35      1.09    -3.46     0.75 

#> okp_Intercept        -5.78      1.69    -7.95    -1.85 

#> sigma_deltafos       -1.80      0.15    -2.11    -1.52 

#> sigma_deltafpaid     -1.91      0.16    -2.22    -1.60 

#>                   Rhat Bulk_ESS Tail_ESS 

#> oRLR_Intercept    1.00     1434     2624 

#> oRRF_Intercept    1.00     2272     2852 

#> lambda1_Intercept 1.00     6838     3540 

#> lambda2_Intercept 1.00     8468     2802 

#> oker_Intercept    1.00     4601     2525 

#> okp_Intercept     1.01      450     1590 

#> sigma_deltafos    1.00     1567     2758 

#> sigma_deltafpaid  1.00     1535     2518 

#>  

#> Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample  

#> is a crude measure of effective sample size, and Rhat is the potential  

#> scale reduction factor on split chains (at convergence, Rhat = 1). 

Note that in order to predict from the models, the user-defined Stan functions have to be 

exported to R via the following: 

expose_functions(m1, vectorize = TRUE) 

expose_functions(m2, vectorize = TRUE) 

expose_functions(m3, vectorize = TRUE) 
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7.3 Session information 

utils:::print.sessionInfo(session_info, local=FALSE) 

#> R version 3.6.1 (2019-07-05) 

#> Platform: x86_64-apple-darwin15.6.0 (64-bit) 

#> Running under: macOS Mojave 10.14.6 

#>  

#> Matrix products: default 

#> BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib 

#> LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib 

#> attached base packages: 

#> [1] stats graphics  grDevices utils   data sets  methods   base      

#>  

#> other attached packages: 

#>  [1] cowplot_1.0.0       ggridges_0.5.1      

#>  [3] raw_0.1.6           MASS_7.3-51.4       

#>  [5] knitr_1.25          modelr_0.1.5        

#>  [7] forcats_0.4.0       stringr_1.4.0       

#>  [9] dplyr_0.8.3         purrr_0.3.2         

#> [11] readr_1.3.1         tidyr_1.0.0         

#> [13] tibble_2.1.3        tidyverse_1.2.1     

#> [15] tidybayes_1.1.0     latticeExtra_0.6-28 

#> [17] RColorBrewer_1.1-2  lattice_0.20-38     

#> [19] ChainLadder_0.2.10  data.table_1.12.2   

#> [21] bayesplot_1.7.0     brms_2.10.0         

#> [23] Rcpp_1.0.2          rstan_2.19.2        

#> [25] ggplot2_3.2.1       StanHeaders_2.19.0  

#> [27] deSolve_1.24 
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