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Abstract

This article will discuss the use of results from popular Property Catastrophe mod-
els. It will explain common terms like Occurrence Exceedance Probability (OEP) and
Aggregate Exceedance Probability (AEP) and show how these are related to event
count and event size ideas. Simulation and the use of multiple models (blending) will
also be discussed.
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1 Introduction

A reinsurance or insurance actuary will frequently need to work with the results of com-
mercial Property Catastrophe models. This work may include incorporating results such as
an average annual loss (AAL) into a pricing exercise or making additional calculations such
as simulating catastrophes in a capital model. This article will provide an introduction to
some of the simpler uses of commercial catastrophe models, including common terms, basic
calculations and simulation. Combining or blending of models will also be discussed.

1.1 Popular Cat Models

Two models will be reviewed along with their standard formats. These are Risk Management
Solution’s RMS platform and Verisk’s AIR platform.

1.1.1 AIR

The AIR output is provided in the form of sample data and some capital models refer to
this as pre-simulated data. Table 1 provides an example. The table values are illustrative
and don’t represent any particular exposures to actual losses. Columns are provided for
simulation number or year, event id, and claim size. This format is relatively easy to use
because it looks like a historical loss listing. This table is sometimes referred to as a year-
event loss table (YELT) because it provides loss detail by year and event. Note that Table
1 is missing year 2 and that year 3 has multiple events.

The mean and standard deviation of the annual loss from an AIR YELT created from n
simulated years with ny events in year y (which could be zero) are

µ = (
n∑

y=1

ny∑
e=1

lossy,e)/n (1)

σ =

√√√√∑n
y=1

(∑ny

e=1 lossy,e
)2

n
− µ2 (2)
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Table 1: AIR-style Year Event Loss Table (4 Years)

Year Event ID Loss

1 1 100
3 2 500
3 3 300
4 4 100

The events within each year are summed by year before computing the annual mean and
standard deviation. For the annual mean, this is equivalent to a straight sum of all the
event-year data divided by the number of years n. For Table 1 we have

µ = 250 = (100 + 500 + 300 + 100)/4 and (3)

σ = 320 =
√

(100)2 + (500 + 300)2 + (100)2)/4− 2502. (4)

1.1.2 RMS

The RMS output is provided in the form of a list of parameters for each event. Table 2
provides a brief description of each column. There are two columns that need additional
comment, Sdi and Sdc. These two columns represent an approximation that RMS uses to
represent the standard deviation of the loss for a given event. The standard deviation for the
event loss is the sum of an independent component, Sdi, and a correlated component, Sdc.
This split facilitates RMS calculations as the event loss is built up from components whose
individual losses are partially dependent on one another. Later on we will discuss events
that are split into subcomponents like Personal lines and Commercial lines. The Sdi-Sdc
split will be important then, but for now we can just think of their sum as the standard
deviation of the event loss.

Table 2: RMS-style Event Loss Table Parameters

Column Name Description

Event ID Unique identifier of the event
Rate Annual event frequency
Mean Average Loss if the event occurs
Sdi Independent component of the spread of the loss if the event occurs.
Sdc Correlated component of the spread of the loss if the event occurs.
Exposure Total amount of limits exposed to the event (Maximum loss)

Table 3 provides an example of RMS output. This table is often referred to as an event
loss table (ELT) because it provides event details. As before, the table values are illustrative
and don’t represent any particular exposures to actual losses.

The mean and standard deviation of the annual loss described by an RMS ELT with m
event rows are

µ =
m∑
e=1

(Ratee)(Meane) (5)
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Table 3: RMS-style Event Loss Table

Event ID Rate Mean Sdi Sdc Exposure

1 .10 500 500 500 10,000
2 .10 300 400 800 5,000
3 .50 200 300 400 4,000

σ =

√√√√ m∑
e=1

(Ratee)((Sdie + Sdce)2 + Mean2
e). (6)

For Table 3 we have

µ = 180 = (.1)(500) + (.1)(300) + (.5)(200) (7)

σ = 737 = [(.1)((500 + 500)2 + 5002) +

(.1)((400 + 800)2 + 3002) +

(.5)((300 + 400)2 + 2002)]1/2. (8)

These formulae can be derived by assuming each event is an independent collective risk
model (CRM) 1 with Poisson mean Ratee and a severity distribution with mean Meane and
standard deviation Sdie + Sdce.

A common use for these tables is to apply reinsurance terms and then estimate prices or
distributions net of reinsurance. This is straightforward with AIR-style data (Table 1) and
a bit more difficult with RMS-style data (Table 3). So it is common to use the parameters
from RMS-style data to simulate individual events and then work with the simulated data
directly. Simulating from RMS-style ELTs will be discussed in section 3.2.

1.2 OEP, Return Period, AEP and PML

The terms Occurrence Exceedance Probability (OEP), Return Period, Aggregate Exceedance
Probability (AEP), and Probable Maximum Loss (PML) are commonly used and commonly
confused. Sometimes OEP and AEP will be abbreviated as EP (Exceedance Probability)
[GK05]. We will step through each term and explain it. To begin, it is useful to think of these
definitions in the context of a collective risk model with an annual event count distribution
and an event size distribution. Imagine simulating a set of losses from these distributions
and presenting the results in a form similar to Table 1. The statistics that we want, like
OEP and AEP, can then be computed from that table.

1.2.1 OEP

The Occurrence Exceedance Probability(OEP) curve O(x) describes the distribution of the
largest event in a year. In particular, O(x) is the probability that the largest event in a year
exceeds x.

1A collective risk model assumes a claim count N and claim sizes Xi, i = 1, ..., N with each Xi independent
and identically distributed and each Xi indepdendent from N .
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The distribution of the largest event in the year is not the same as the distribution of the
event size.

Consider our AIR-style (Table 1) losses. The empirical claim size distribution FX(x)
shown in Table 4 reflects all event losses. In contrast, the OEP curve is derived from the

Table 4: Empirical Claim Count and Severity Distribution Derived from Table 1

x Pr(X = x) n Pr(N = n)

100 50% 0 25%
300 25% 1 50%
500 25% 2 25%

largest event in each year, which is shown in Table 5. Table 6 presents our empirical OEP

Table 5: Largest Events by Year Derived from Table 1

Year Largest Event

1 100
2 0
3 500
4 100

curve.

Table 6: Empirical OEP Curve Derived from Table 1

PMLocc OEP Return Period
x O(x) r = 1/O(x)

0 75% 1.33
100 25% 4.00
500 0% ∞

The OEP is often used by primary insurers to help select their catastrophe reinsurance
program limits and retentions.

1.2.2 Return Period

It is common to talk about a return period r instead of the OEP, where r = 1/O(x). It is
the expected number of years between events that exceed x.

1.2.3 PML

The dollar amount of loss x is often called the Occurrence Probable Maximum Loss (PML)
at return period r, or simply the PML for the return period r. Thus,

1/r = O(x) = O(PMLocc) (9)
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or
PMLocc(r) = O−1(1/r), (10)

where O−1(x) is the inverse OEP function. The OEP and the PML are linked. Sometimes
actuaries will refer to an OEP curve or a PML curve; they refer to the same thing. Table
6 represents an OEP or PML curve. The PML column shows dollars and the OEP column
shows probabilities, though often OEP is supplemented or replaced with its reciprocal, the
return period. As part of their rating process, AM Best asks companies for their Occurrence
PML losses for the 100-year return period for wind and for the 250-year return period for
earthquake. [Irw16]

1.2.4 AEP

The Aggregate Exceedance Probability(AEP) curve A(x) describes the distribution of the
sum of the events in a year. In particular, A(x) is the probability that the sum of the events
in a year exceeds x.

The AEP is not the same thing as the OEP, but is often confused with it.
The AEP can be very different from the OEP when the probability of two or more events

is significant. The AEP and OEP can be similar when the probability of two or more events
is very small; they are identical when there is zero probability of two or more events. (See
appendix A.) The AEP is used to help consider the total volume of catastrophe events in a
year. The total losses by year from Table 1 are shown in Table 7 and used to compute an
empirical AEP in Table 8.

Table 7: Total Losses by Year Derived from Table 1

Year Total Losses

1 100
2 0
3 800
4 100

Table 8: Empirical AEP Curve Derived from Table 1

PMLagg AEP Return Period
x A(x) r = 1/A(x)

0 75% 1.33
100 25% 4.00
800 0% ∞

Note that our empirical OEP and AEP curves are not the same. However, our OEP and
AEP curves would be identical if year 3 did not have a second event.

Sometimes modelers will use the term aggregate PML which is defined in a manner
similar to the occurrence PML but with the aggregate distribution. The aggregate PML is
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essentially the inverse function of the AEP.

PMLagg(r) = A−1(1/r). (11)

It should be noted that PML is often used informally and its meaning is not always clear.
Usually PML used by itself is understood to mean Occurrence PML, but it can also refer to
an Aggregate PML. It may simply refer to an intuitive notion of a large loss without a well
defined statistical meaning.

2 OEP and the Collective Risk Model

Sometimes a reinsurance actuary will receive an OEP table or even part of one and be asked
to apply reinsurance terms for pricing. In these situations it is helpful to be able to reverse
engineer a claim count distribution FN(n) and a severity distribution FX(x) from the OEP
curve. Using the claim count and severity distributions one can then simulate individual
losses and apply reinsurance terms to the simulated data. It is easy to start with detailed
event loss data and compute the OEP curve as we did with Table 1 and Table 6, and just a
bit harder to go the other way.

Conversely, there may be situations where an actuary starts with the claim count dis-
tribution and claim size distribution and it may be convenient to compute the OEP curve
directly, without simulating.

These tasks are relatively easy if we assume that the vendor models can be represented
by a collective risk model with independent claim counts and independent and identically
distributed claim sizes. This is probably an oversimplication, but it provides a convenient
and useful framework.

2.1 Converting OEP Curves to Claim Count/Severity Curves

There is substantial information contained in the OEP and it is tightly connected to the dis-
tribution of the number of events in a year and the distribution of the size of an event. Given
the cumulative distribution function (cdf) FX(x) for the claim size X and the probability
function PN(n) for the claim count N , O(x) can be written explicitly.

O(x) = Pr(M > x) where M = max(X1, ..., XN) (12)

= 1− Pr(Xi ≤ x for i = 1, ..., N) (13)

= 1− EN(FX(x)N) = 1− PGF(FX(x)) (14)

where PGF(x)2 is the probability generating function for N . The claim size cdf FX(x) may
then be derived from this equation. For some claim count distributions PGF(t)−1 is easily
expressed and we obtain

FX(x) = PGF−1(1−O(x)). (15)

This process does not generally produce a unique size distribution FX(x) because we need
to select the claim count distribution FN(n) and its parameters. A different FN(n) will yield
a different FX(x). However, the size distributions computed this way will be consistent with
the starting OEPs and the claim count assumption.

2The PGF of a discrete distribution is defined as PGF(t) = E(tN ).
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2.1.1 OEP Conversion Example

Let’s take our empirical OEP (Table 6) and using the empirical PGF

PGF(t) = 0.25 + .5t+ .25t2, (16)

estimate FX(100). In practice, we usually use the Poisson claim count assumption, but it
is convenient here to stick with the empirical figures. We don’t have a closed form for the
inverse function of the empirical PGF, but since it is a quadratic we can solve for the roots.

O(100) = .25 = 1− (.25 + .5FX(100) + .25(FX(100))2). (17)

or
0 = −.25(FX(100))2 − .5FX(100) + (1− .25− .25) (18)

The negative root yields

F (100) = .73 =
.5−

√
.52 − (4)(−.25)(.5)

(2)(−.25)
(19)

Table 9 completes this process. The inverted claim size curve is a coarse approximation (we
are only working with three points), but it is entirely consistent with the starting OEP.

Table 9: Claim Size Distribution from OEP

x O(x) Inverted FX(x) Table 4 FX(x)

0 75% 0% 0%
100 25% 73% 50%
500 0% 100% 100%

2.1.2 OEP and the Poisson Distribution

For the Poisson claim count distribution we have

PGF(t) = exp(λ(t− 1)) (20)

O(x) = 1− exp(λ(F (x)− 1)) (21)

F (x) = 1 +
log(1−O(x))

λ
. (22)

Equation 22 can be used to convert an OEP to an event size distribution if an estimate of λ
is available. This is very convenient.

In theory, λ may be estimated directly from O(x). 3

exp(−λ) = Pr(0) = 1−O(0) (23)

=⇒ λ = − log(1−O(0)). (24)

3The OEP can “pack” both claim count and severity information if the count distribution is Poisson and
FX(0) = 0. See appendix B
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This may be difficult to apply in practice since it is common to receive only a partial OEP
curve without an entry for zero or Pr(0) will be very nearly zero when the catastrophe
distribution includes frequent losses.

A common practice is to take the smallest claim size entry xmin of interest and compute

λ = − log(1−O(xmin)). (25)

In this case, λ represents the Poisson mean for claims greater than xmin and equation 22 is
applied to produce a claim size distribution for claims greater than xmin. Note, F (xmin) = 0.

2.1.3 OEP and the Negative Binomial Distribution

Using the mean-contagion form [HM83] for the Negative Binomial claim count distribution
we have

PGF(t) = (1− cλ(t− 1))−1/c (26)

O(x) = 1− (1− cλ(F (x)− 1))−1/c (27)

F (x) = 1 +
1− (1−O(x))−c

cλ
. (28)

3 Aggregation and Simulation of Cat Losses

A common use for catastrophe modeling output is to feed it into capital models to be
mixed with other sources of loss. Randomly drawn catastrophe losses are combined with
randomly drawn losses from other sources. In order to do this the capital model has to have
a mechanism for using the catastrophe output. In the case of AIR-style output it is often
as simple as randomly drawing a year and then looking that year up in a table like Table
1. In the case of RMS-style output, the capital model needs to use the parameter table to
perform its own simulation.

3.1 AIR

The YELT produced by AIR is essentially pre-simulated data and can be used directly
or re-sampled. One should be careful with re-sampling if the results are to be combined
with other AIR model results (for example, merging two companies’ cat results) because
the dependencies among events can be destroyed by independently sampling two separate
YELTs that share perils. Two AIR-style tables should be joined by common years and
events. Alternatively, one can draw a single random year and use the same year to extract
losses from both tables.

3.2 RMS

The RMS ELT contains parameters for both the number of events and the size of each event.

3.2.1 Number of Events

The number of events N can be simulated from a Poisson with mean λ set to the sum of the
ELT rates.

λ =
∑

Ratei (29)
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N ∼ Poisson(λ). (30)

3.2.2 Size of Events

A claim size can be simulated for each claim in two steps. First, we determine which event
occurs, that is, which ELT row are we using. This is done by drawing a random row/event
R from the ELT with each row/event having a probability in proportion to its rate.

U ∼ Uniform(0, 1) (31)

R = min{r : U ≤
r∑

i=1

Ratei/λ} (32)

Second, now that we know which row or event we are using, we use the event parameters
to draw a random claim size X from a scaled Beta distribution. The Beta distribution
parameters a and b are computed as follows:

aR =
(

MeanR

SdiR + SdcR

)2
(

1− MeanR

ExposureR

)
− MeanR

ExposureR
(33)

bR = aR

(
ExposureR

MeanR

− 1
)

(34)

X ∼ (ExposureR)(Beta(aR, bR)). (35)

The cdf for the Beta distribution is the incomplete Beta function

F (x) = β(a, b;x) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0
ta−1(1− t)b−1dt. (36)

In EXCEL one can generate a scaled beta variate with

= BETA.INV(RAND(),aR, bR)∗ExposureR. (37)

Table 10 illustrates RMS-style simulation using the parameters from our RMS-style ELT
(Table 3).

Table 10: RMS-Style Simulation using Table 3-ELT

Poisson Uniform Beta Beta Scaled
Trial Count Draw Row Parameter Parameter Beta

N U R a b X

1 1 0.70 3 11.5875 220.1625 204
2 0 – – – – –
3 2 0.15 2 14.9800 234.6867 272
3 – 0.40 3 11.5875 220.1625 168
4 1 0.05 1 3.3750 23.6250 268

This procedure works if the ELT does not have event parameters sub-divided by region or
line of business. When each event is sub-divided by region or line of business the simulation
process requires additional steps to preserve dependencies between sub-divisions. Table 11
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Table 11: RMS-Style ELT with Two Sub-categories

Personal Lines Commercial Lines
Event ID Rate Mean Sdi Stc Exposure Mean Sdi Sdc Exposure

1 0.1 300 400 300 3000 200 300 200 1000
2 0.1 100 371 267 1000 200 150 533 4000
3 0.5 100 224 200 2000 100 200 200 2000

provides an example of an ELT with sub-divisions. In order to simulate from Table 11 we
need to aggregate it to make it look like Table 3. The following approximation has worked
well for the authors.

1. Aggregate the event parameters as follows

MeanR =
∑
k

MeanR,k (38)

ExposureR =
∑
k

ExposureR,k (39)

SdiR =
√∑

k

Sdi2R,k (40)

SdcR =
∑
k

SdcR,k. (41)

2. Apply equations 33–35 to the results of step 1 (equations 38–41) to simulate the total
event loss X.

3. Allocate X to the sub-divisions Xk.

Xk = X
MeanR,k

MeanR

. (42)

This allocation is not perfect but it assures that the sub-categories sum to the simulated
total and preserves much of the component dependencies. The values in Table 11 can be
aggregated across Personal and Commercial Lines using equations 38–41 to reproduce our
simpler RMS-style ELT (Table 3).

4 Model Blending

The catastrophe models available in the market can produce a wide range of loss results.
Companies that use these models need to understand the model differences and determine
the best model(s) to manage their catastrophe risk. A common practice of using multiple
models is to blend the models together. For example, Florida Hurricane Catastrophe Fund
uses a weighted average of five models (RMS, AIR, EQE, ARA, FPM) in their ratemaking
[Inc16]. The benefit of model blending is that it reflects elements of a range of models,
stabilizes changes in individual models across time and yields a single set of results.

It is beyond the scope of this paper to discuss how to determine the weights that should
be used to blend the models. We will focus on the technical approaches that can be used to
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blend the models, assuming the weights have already been determined. The model blending
approaches can become quite complicated if we consider breaking down the models into
various components and blending them at the component level. However, those approaches
need to be supported by tremendous amount of independent research and the practical
difficulties have limited their applications. Below we will discuss two more straightforward
and much more widely used approaches for model blending: ELT/YELT blending and OEP
blending.

4.1 ELT/YELT Blending

When the YELT results are provided, we can blend them together by following the steps
below. For the sake of simplicity, we assume that the RMS (ELT) and AIR (YELT) loss
results are provided and the blending weights to be used are ω RMS and (1-ω) AIR, which
can be easily generalized to other cases if necessary.

1. Convert RMS ELT to YELT format using Monte Carlo simulation described in section
3.2.

2. Sample from a uniform distribution. For a given year, if the sampled value is less than
ω, take the losses from the RMS YELT, otherwise take the losses from the AIR YELT.

3. Repeat the above for year 1 to year 10k to create a 10k blended YELT.

This process is illustrated in Table 12 for a 50/50 weighting. In terms of the OEPs of the

Table 12: 50/50 Blending of Models Using AIR-Style Table 1 and RMS-Simulation Table 10

Model Model Event
Trial Uniform Selected Count Loss

1 0.599 AIR 1 100
2 0.041 RMS 0 –
3 0.401 RMS 2 168
3 – – – 268
4 0.925 AIR 1 100

component models, the theoretical OEP derived from blending the simulations is

Omix(x) = ωOrms(x) + (1− ω)Oair(x), (43)

where ω is the weight given to the RMS model. The advantage of this approach is that
it produces a blended set of results comprised of specific modeled events, it is simple to
implement, and it can be used to model dependencies with other portfolio results as long
as the same uniform draw and technique is used to blend the other portfolio results. Its
disadvantage is that the blended results with this approach could be different from the
blended OEPs that are usually presented to the management teams, regulatory bodies and
rating agencies.
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4.2 OEP Blending

In practice, the modeling results are often presented to various interested parties as sum-
maries like the OEPs instead of the underlying ELTs or YELTs. The weighting factors are
usually directly applied to the dollar amounts x for a fixed return period r or exceedance
probability 1/r. Table 13 shows a 50/50 blend of RMS and AIR results derived from Tables
1 and 10. The Table 13 AIR PML for return period 2 was interpolated from Table 6 and

Table 13: 50/50 OEP Blending Using AIR-OEP Table 6 and RMS-Simulation Table 10

Return AIR RMS 50/50
Period PML PML PML

1.33 0 0 0
2 50 204 127
4 100 268 186
∞ 500 272 384

the RMS PML column was constructed from Table 10 RMS simulated losses.
The theoretical OEP for this approach, in terms of the occurrence PMLs, is

PMLmix(r) = ωPMLrms(r) + (1− ω)PMLair(r) or (44)

Oblend(PMLmix) = 1/r. (45)

This is not equivalent to ELT/YELT Blending. The ELT/YELT blending essentially weights
probabilities at fixed amounts while the OEP blending weights dollars amounts at fixed
probabilties. A better name for OEP blending might be PML blending.

The OEP blending is certainly very intuitive and it has become a common practice
to present results this way. However, this only provides a high level summary of blended
results. For some calculations, actuaries need the underlying loss details by event. The
OEP conversion technique introduced in section 2.1 can be applied to the blended OEPs to
produce claim count and severity distributions that can be used in simulation models and
will yield the “blended” OEP curve.

5 Conclusion

It is helpful to understand the various terms used by consumers of catastrophe modeling and
their relationship with the traditional claim count/severity collective risk model (CRM).

In particular, one can avoid common areas of confusion:

1. The OEP and AEP are not the same.

The OEP and AEP keep track of different random variables, respectively, the largest
event each year versus the total of each year’s events.

2. The probable maximum loss (PML) can be associated with the OEP or the AEP.

PML is often used informally and usually refers to the dollar amount x associated with
a particular return period r or exceedance probability 1/r, that is, the inverse OEP
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function,
PML(r) = x = O−1(1/r). (46)

Sometimes PML refers to the AEP, where it might be called the aggregate PML, and
it becomes the inverse AEP function (A−1),

PML(r) = x = A−1(1/r). (47)

3. Blending OEPs is not the same as blending simulated results.

It is a relatively simple experiment to take two cat models and compare a 50/50 weight-
ing of their Occurrence PML curves (OEP blending) with the OEP curve produced
by simulating from one model half the time and the other model the rest of the time
(ELT/YELT Blending). These are not the same. The former weights dollar amounts
for a fixed exceedance probability or return period, while the latter weights probabili-
ties for a fixed dollar amount. It is an unfortunate use of language that OEP blending
actually refers to weighting PMLs or dollar amounts while ELT/YELT blending actu-
ally refers to weighting probabilities (or OEPs).

The OEP contains substantial information and it can be used to infer information about
all events. Catastrophe modeling can be viewed in the context of a collective risk model
(CRM) with a claim count distribution and a severity distribution. Understanding the
connection between the OEP and an underlying CRM allows one to go back and forth
between the two forms.

One can convert OEP output from a vendor model into claim count and severity distri-
butions that can then be included in a capital model that uses claim count/severity inputs.
Conversely, one can compute OEPs from a custom model, built from a traditional claim
count/claim size approach, and compare the custom results with vendor models.

The trick is to understand what the components are and how they are different.
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A When are the AEP and the OEP alike?

The AEP is generally not the same as the OEP. However, the two can be similar when the
probability of 2 or more claim counts is very small. They are identical when the probability
of 2 or more claim counts is zero. To see this, recall that for a collective risk model with size
cdf FX(x) and count probabilities PN(n) the aggregate distribution for

Z = X1 + ...+XN (48)

is
FZ(x) =

∑
n

PN(n)F
(n)
X (x), (49)
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where F
(n)
X (x) is the nth convolution of FX with itself. Therefore, the AEP which is the

probability of annual losses Z exceeding a given amount x is 1− FZ(x) or

A(x) = 1−
∑
n

PN(n)F
(n)
X (x). (50)

Compare this to the OEP

O(x) = 1−
∑
n

PN(n)(FX(x))n. (51)

When PN(n) = 0 for n > 1 then A(x) = O(x) because F
(1)
X = FX . Similarly, A(x) ≈ O(x) if

A(x)−O(x) =
∞∑
n=2

PN(n)(F
(n)
X (x)− (FX(x))n) (52)

is sufficiently small.

B OEP packing

Generally speaking, we need to add information about the claim count distribution to our
knowledge about the OEP in order to compute a size distribution consistent with the OEP.
However, if we can make two specific assumptions then we can compute a size distribution
solely from the OEP.

1. There is no point mass at zero in the claim size distribution, FX(0) = 0.

2. The claim count distribution is Poisson.

We can imagine all the claim count and severity information as packed into the OEP when
these two conditions are met. The claims size distribution F (x) is extracted as described
in section 2.1.2 and the Poisson mean is extracted from O(0). Recall from equation 22 for
Poisson counts that

F (x) = 1 +
log(1−O(x))

λ
. (53)

Adding that F (0) = 0 implies
λ = − log(1−O(0)). (54)
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